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Abstract

Ribonucleic acid, or RNA, is a linear polymer involved in a wide variety of functions,
both in human and in viral cells, as highlighted also by the recent pandemic. Func-
tionality of RNA molecules is strongly linked to their three-dimensional structure,
which is the reason why the RNA folding problem has become of great interest in
recent years. Among the proposed solutions, one possible approach relies on the
design of coarse-grained physical models to speed up molecular dynamics simula-
tions. Among them, HIRE-RNA is a high resolution model with specific functional
forms designed to reproduce experimental results. In this internship project, we
aim to optimize HIRE-RNA parameters related to local interactions, building a ma-
chine learning setup from scratch. Starting from a limited number of heterogeneous
RNA sequences, we created a suitable dataset and we developed a model that com-
putes the energies with HIRE-RNA. The optimization is performed with Stochastic
Gradient Descent, trying to match coarse-grained energies with those computed
in the atomic representation, and results are tested in molecular dynamics simu-
lations. Due to the large number of parameters and the constraints imposed by
their physical meaning, different methods are introduced and compared, through
the analysis of some physical quantities extracted from the simulations, such as
bond lengths or angles. Although the obtained results are not definitive, they al-
ready provide an improvement in the model performance and constitute a good
starting point for future developments. The software implementations are available
at https://github.com/GianLMB/HiRE_optimization.
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Introduction

RNA molecules are complex biological objects involved in a wide variety of cellular
functions. Similarly to proteins, RNA functional activity depends on the character-
istic three-dimensional structure of the molecule and its dynamical behaviour, influ-
enced by the biological and chemical conditions of the surrounding environment. The
study of RNA folding has led to the development of computational methods, com-
plementary to experimental techniques, that aim to predict 3D secondary structures.
One of these approaches is based on physical models, that consider the interactions
of the system’s particles and retrieve the complexity of 3D structures trough the
minimization of the energy of the system in ab initio molecular simulations. All-
atoms simulations, however, are extremely expensive in terms of simulation time,
that is the reason why simplified models, that use a coarse-grained (CG) description
of the molecule, are introduced [1]. In this context, HHRE-RNA is a high resolution
coarse-grained force field, where each nucleotide is represented as 6 or 7 beads. This
simplification, however, comes at a cost, that is the introduction of more than 200
free parameters related to force couplings, equilibrium values and particle-specific
coeflicients, that have to be tuned in order to reproduce experimental results. The
force field was originally optimized using standard techniques (genetic algorithm
maximizing the energy difference between a native structure and decoys) and lim-
ited experimental data. The recent advent of machine learning (ML) provides an
array of tools with the potential to improve these results.

The aim of this internship project is therefore to develop a procedure, based on
machine learning and physical intuition, to optimize the parameters. The report is
organized as follows: in chapter 1 we give a brief introduction about RNA molecular
structure and the interactions that are involved, which show the complexity of this
biological object. We explain then in detail the HIRE-RNA force field, analysing all
the energy contributions that are considered in the model.

In chapter 2 we focus on local interactions and we describe the computational
implementation of the ML model and the construction of related dataset, starting
from a limited number of RNA sequences. Subsequently, we explain the optimiza-
tion procedure, based on Stochastic Gradient Descent algorithm, and we report the
methods used for model evaluation.

In chapter 3 we show the obtained results, beginning with a statistical analysis
of the dataset and a study of the performance of the algorithm. A comparison be-
tween different optimization methods adopted is then performed, based on molecular
dynamics simulations.

What we want to achieve, in the end, is an improvement in the model perfor-
mance and predicting power, that can be obtained both from an optimization of the
parameters appearing in the functions, and from an optimization of the functional
form itself. This second task, that could possibly be accomplished with Symbolic
Regression, will be the main subject of future works.



1 RNA molecular structure and
HiRE-RNA force field

1.1 RNA structural organization and complexity

Ribonucleic acid, or RNA, is a linear polymer composed by a sequence of nucleotides,
most often arranged in a single-stranded structure. Each nucleotide contains a
phosphate group and a ribose sugar, that constitute the negatively charged backbone
of the molecule, and a nitrogenous base. In RNA, four different bases are found, that
also give name to the corresponding nucleotides: adenine (A) and guanine (G), that
are made of two aromatic rings and are referred as purines, and cytosine (C) and
uracil (U), that have only one ring and are known as pyrimidines. Aside from their
well-known roles as genetic information carriers (mRNA) and amino acid recruiters
(tRNA), RNA molecules also participate in regulating gene expression through post-
transcriptional processes (miRNA), gene silencing (RNAi), and catalytic activities
(ribozymes) [2]. Moreover, the importance of the study of RNA molecules has been
highlighted by the recent pandemic, with the SARS-CoV-2 virus featuring an RNA-
based genome and a replication mechanism controlled by non-coding RNA.

Due to the vast variety of functions that RNA molecules perform, their length
varies in a wide range of values, from the few nucleotides of genes regulating miRNA
to the several thousands of ribosomal RNA. The length of the molecule and the se-
quence of nucleotides is essential in determining the spatial organization of atoms
and their dynamical behaviour, which in turn affect RNA functionality. Just like
DNA, RNA benefits from sequence complementarity, with A pairing with U and
G pairing with C. These well-known pairings, better referred to as Watson-Crick
or canonical base pairs, are very stable and contribute to the formation of helical
structures (A-form). Ideally, if one only has strands with perfect complementary
sequences, the structure of the molecule is a double helix; but RNA sequences al-
most never allow for base complementarity along the whole sequence, which is the
reason for their mostly single-stranded nature and the complexity of their spatial
structure and energy landscape. Nevertheless, some common structural units ap-
pear at different length scales, an indication that canonical base pairing is only one
of the interactions that drive RNA folding. Actually, experiments show that the
first non covalent interaction that is involved in the process is stacking [3, 4], that
is induced by the planar configuration of bases, which tend to align themselves and
expose their charged exocyclic groups to the (typically polar) solvent. This charac-
teristic, combined with steric and electrostatic backbone constraints, is the actual
main cause of the stable helical structure [5].

Moreover, in most cases of folded RNA three-dimensional structures, non-canonical
pairs are critical for creating the tertiary interactions that stabilize the functional
conformation. In fact, in principle every nucleotide in an RNA chain can favorably
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interact with every other nucleotide through hydrogen bonds, and most of all pos-
sible configurations are actually found in RNA molecules. Each nitrogenous base
has three sides, identified as Watson-Crick (WC), Hoogsteen and Sugar, that can
be involved in more or less stable hydrogen bonds. It is therefore not uncommon to
also find bases forming multiple simultaneous interactions, giving rise to structures
known as triplets and quadruplets.

Stacking, base pairings and electrostatic forces drive RNA folding towards the
formation of typically very compact structures, that correspond to minima of the
thermodynamical landscape, determined by surrounding conditions and the folding
process itself. Depending on the nature of the landscape, a given RNA populates an
ensemble of conformations of various compactness, stabilities, and flexibilities. As
the length of an RNA molecule increases, the complexity of the landscape and the
number of possible nonidentical states increases, but favored states remain. This is
the reason why RNA is commonly perceived as an unstructured molecule, even if
that is not the case, as we have seen. Hairpins, bulge loops, pseudoknots, helices
dockings, ribose zippers are only few of the structures arising in these molecules
(see Figure 1.1), and models that automatically predict secondary structures are
not always able to capture this wide and complex variety, despite their great im-
provement in the last five years [6]. In general, they are very well suited for regions
that contain a good percentage of canonical pairings, while their accuracy is limited
for more intricate 3D structures [7].

(a) 191 hairpin. (b) 2glw pseudoknot.

Figure 1.1: Examples of common RNA structures: hairpin and pseudoknot.

1.2 HiRE-RNA force field

Among the possible solutions to the RNA folding problem, one is the introduction
of specific ab initio physical force fields to carry out the molecular simulations, that
are otherwise computationally too expensive to be performed with an all-atoms de-
scription. To overcome the limitations imposed by the size of the molecule, and
follow the large scale rearrangements occurring in folding, one can resort to a sim-
plification of the system through coarse graining. The challenge of this approach is
to design a force field able to capture all of the subtle interactions that give rise to



folding while maintaining a sufficiently simple description of the system for efficient
simulations.

HiRE-RNA is an effective model designed to fold any RNA architecture and
study the structural dynamics of RNA molecules [8, 9]. The model points at the main
physical interactions involved in RNA folding, with specific functional forms that aim
to reproduce stacking and base pairings, including non-canonical and multiple pairs.
Coarse graining is performed representing each nucleotide as six or seven beads, for
pyrimidines and purines respectively. Among these beads, one corresponds to the
phosphate, P, four to the sugar atoms, O5, C5, C4, C1, and the remaining ones to the
centers of mass of the aromatic rings that form the nitrogenous bases (Figure 1.2).

i 4
® ° .
Adenine Guanine

A G A B
3 mﬁ

. e
Uracil Cytosine

Figure 1.2: Nucleotides in the HIRE-RNA model. On the left, comparison of atomistic
and coarse-grained representation of the four types of nucleotides, also including the con-
nection to the following bases; on the right, a closer view to guanine residue, with the
actual dimension of the beads, based on their covalent radius. In the text, particles O5,

C5, CA and CY are also referred to as O, C, R1, R4.

The interactions between these beads can be divided in two groups, local and non-
bonded interactions, and are described in the following sections. The whole model
is implemented in a Fortran code, that computes both the energy and the forces,
by differentiation. In this way, it allows to compute both the energy landscape of a
sequence, useful for its thermodynamic analysis, and to perform molecular dynamics
simulations to study the time evolution of the system.

1.2.1 Local interactions

The potential energy for the local interactions among particles in the molecule is
the sum of three terms:
Eloc: Eb+Ea+Ed (11>

where Fj, is related to the bond lengths between two particles, E, to the bond angles
defined by three particles, and E; to the dihedral angles defined by quadruples of
particles. Each of these terms has the form of a sum of simple harmonic or periodic
potentials over the set of interacting particles , where the coupling constants and the
equilibrium values are the parameters to optimize. Information regarding indexes of



interacting particles and type of interaction are stored in topology parameters.top
files, that are generated along with the coarse-grained structure of the molecule.

Bond energy

Each harmonic term for the bond energy between two particles ¢, j has the form
Eb = € k‘b (d - do)z (1.2)

where ¢, is a global weight coefficient, k;, and dy are the particle dependent coupling
constant and equilibrium distance respectively, and d = |Z; — Z;| is the distance
between the particles.

Angle energy

Similarly, for angle energy between particles ¢, j and k the expression is
E, =€k, (0 — 0)* (1.3)
with analogous notation as before, where 6 is defined as

Tij * Tkj

S (1.4)
1735|174

cosf =

and 7j; = Z; — ;. Unlike the bond energy coefficient €,, which is independent of the
particles, €, is the product of a global scaling factor and a coefficient depending on
the angle type.

Torsion energy

The dihedral angle ¢ is defined as
COS p = 11, - T, (1.5)

where 77; and 7i;, are the normals to the planes defined by particles 7, j, k and j, &,
[, respectively, normalized to 1. In terms of ¢, the torsion energy is defined as

E, = ¢€qkq [l + cos(me — ¢o)] (1.6)

where m is an integer number that describes the multiplicity of the state and ¢y is
the equilibrium angle. Similarly to the angle case, €; is the product of a particle
independent and a particle dependent factor. A representation of local interactions
is showed in Figure 1.3.

1.2.2 Non-bonded interactions

The potentials contributing to the non-bonded interaction energy are the short range
excluded volume potential E.,, long range electrostatic potential E,;, stacking po-
tential Fy, and base pairing potential Ep,. The total energy is the sum of these
potentials:

Enpy = Eey + Eop + Es + Ey,. (1.7)
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(a) Bond length. (b) Bond angle. (c) Dihedral angle.

Figure 1.3: Visual representation of local interactions.

While for local interactions the functional forms are the same used in atomistic de-
scriptions, for non-bonded interactions there is not an exact correspondence, and
expressions are designed to reproduce empirical results. All of the terms are com-
puted over each pair of atom belonging to different residues, whose distance is below
a certain cutoff, depending on the interaction type.

Excluded volume

The excluded volume potential is represented as a sigmoidal function:

1

Eeac = €ex 1-— —1 n efn(dfdo)

(1.8)

where €., defines the maximum strength of the interaction, x controls the width of
the sigmoid and dj is the reference distance between the beads. When d = |%; — 7}
approaches an interpenetration distance, the potential rapidly increases to strongly
discourage that configuration.

Electrostatic potential

Using an implicit description for ions and water molecules, electrostatic repulsion of
the phosphates and charge screening are represented by a Debye—Hiickel potential
between P particles, characterized by a screening length A\p that depends on ion
concentration:

—d/\p

dme  d
Under physiological conditions, due to their negatively charged backbone, RNA
molecules are typically surrounded by positive ions, that can provide a ionic screen-
ing or either act as structural ions, that actively affect the folding process.

(1.9)

Stacking

Both stacking and hydrogen bond interactions depend on the relative orientations
of the bases involved, which is described with the introduction of a base plane. The
plane is defined by the last three beads of each residue, through the normal vector
1i7, and it does not involve any information about the backbone orientation. The
expression for the energy is the following:

_(rr=re)? (rg—ro)?

By=—ce™ = e w (L= (1= (7ig - 7ig)?)] [em M (oo Ort0) (1.10)
+ €—A2(1—c052(6'J—02))] [e—Al(l—COSQ(GJ—Gl)) + 6—Ag(1—c052(01—02))]
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where 71 (r) is the distance between the centre of mass of base I (J) and the plane
defined by base J (I):

(1.11)

and the parameters rq, o, Ay, As, 01, 05 are properties of the base.

Base pairing

Base pairing occurs when bases are coupled on almost parallel planes, and the in-
teraction strength depends on the orientation of the bases and the distance between
particles that form the hydrogen bonds. In the HIRE-RNA model, the potential
is the product of a term that assures planarity, £, and another term related to
hydrogen bonds, Fyy.

Planarity is obtained by introducing Gaussian weights on the position of the three
terminal particles of each residue, that are those forming the nitrogenous base, in
order to assure that the beads of one base lie on the plane defined by the other one.
In mathematical terms, we have

3 3
Ey = €y [Z e(d'?‘]/‘”Q] [Z e<d§J/5>2] (1.12)

k=1 ky=1

where d’]“ is the distance between particle k& belonging to base J and the plane
defined by base I, and €, and ¢ are the coupling constant and width parameters.

The hydrogen bond term is instead a function of the inter-base distance p = ||,
with p'= Z; — ¥, and the angles a; and «, defined in an analogous way as

cosay = T, - Mgy, (1.13)
with
4 ), , e o ﬁ T , ,
nIP %’ pr=—r * (p . nI)nI and Nz, = |7:§32 ) T3 = Xy Zr,
32
(1.14)
The potential then takes the form
Ehb = —€pp khb ei(pipO)Q/é V(Oé[) V(O[J) (115)

where ky;, is a pair-specific coefficient, py and & are the equilibrium distance and

Gaussian width, and v(«) is a function that assures that only values of a close to

the equilibrium value o contribute to the potential. Explicitly, we have

6 .

cos’(a — ag) if cos(a — ag) > 0

v(a) = (e = ) o= a0) 2 (1.16)
0 otherwise.

In order to break the symmetry of the function with respect to the sign of «, a
dihedral angle 7 between the particle forming the bond and the three beads of the



other base is introduced. In this way, the value of « is corrected according to

(1.17)

4o ifcosT>0
a g
—a  otherwise.

The model is designed to represent not only canonical pairs, but 22 possible
configurations involving different combinations of bases and all of their sides, each
one associated with a specific set of distances, angles and number of hydrogen bonds
(shown in Figure 1.4). The choice of 22 interactions is arbitrary, but is based on

AC

A R A e Y
}{J AG I}i,{w '\j f_,r,J

i w?

? P }'f (‘EJ ».J '

e H’H c WH L eww ' t WW

W: Watson-Crick

\j V‘} H: Hoogsteen € cys
lﬁ“" C e t: trans
5: Sugar

cWw t WH

Figure 1.4: Set of 22 base pairs considered in the HIRE-RNA model. Canonical WC
pairs, considered by all CG models, are highlighted in red, while in green are non-canonical
pairs occurring at WC side of the bases.

their occurrence according to the Nucleic Acid Database (NDB) [10]. Thanks to a
combination of the hydrogen bonds potential and the excluded volume constraints,
HiRE-RNA model automatically respects the atomistic condition that each side of
the nitrogenous base can pair with only one base, with hydrogen bonding acceptor
and donor atoms involved in at most one interaction at a time.
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2 Optimization procedure

Looking at the several terms that define the HIRE-RNA model, it is clear that they
involve a large number of free parameters concerning geometric properties and cou-
plings that balance the strength of the different type of interactions. In order to
reproduce structural results obtained from experiments, and to perform sufficiently
accurate simulations, these parameters need to be chosen with high precision. A
preliminary work have already been carried out in this direction, with two different
methods. Geometric parameters were obtained from a statistical analysis on 200
sequences extracted from NDB database, including molecules of varying sizes and
topologies, while global energetic parameters where optimized with genetic algo-
rithms. A genetic algorithm is a stochastic classical evolutionary algorithm, and it
is based on Darwin’s theory of evolution. The optimization is performed by ran-
domly varying in a small range the values of parameters, that behave like genes in a
chromosome, and selecting only those mutations that improve the fitness, a function
that reflects the ability of the model to explain the observed data [11].

The next step is to improve these results with machine learning, building a model
that uses data concerning the position of particles and their interactions to optimize
the parameters. Since the number of parameters is very large (more than 200),
the optimization procedure has been organized in two consecutive parts, related to
local interactions and non-bonded interactions respectively, that involve different
parameters and methodologies. In this report, we focus only on local interactions,
mainly for three reasons. First, we expect their functional forms to be fixed, and
therefore they should not require any type of symbolic treatment; second, they
do not depend much on the global structure of the molecule, which imposes less
constraints in the choice of the training set in terms of sampled structures; third,
the effect of non-bonded interactions is limited, which is useful to appreciate the
effect of variations of the parameters in molecular dynamics simulations.

2.1 Model and dataset construction

Machine learning (ML) is a subfield of artificial intelligence with the goal of de-
veloping algorithms capable of learning from data in an automatic way. In almost
every machine learning setup, the classical ingredient are a dataset X, a model 9(5),
which is a function of the parameters 6, and a loss function C'(X, g(6)), also called
sometimes cost function, that allows to quantify how well the model g(g) explains
the observations X. The model is fit, or trained, by finding the values of 0 that
minimize the loss function [12].

Nowadays, many ML framework are available, that allow to deal with the model
implementation and training in an intuitive way. The language used for this project
is Python, and the machine learning framework adopted is PyTorch [13], for its
Automatic Differentiation tools. Its basic data structures are called tensors, and they
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correspond to multi-dimensional arrays with possibly associated gradient functions.
All algebraic operations between tensors are also implemented, with a syntax that
closely resembles that of NumPy.

Every model in PyTorch is defined starting from the Module class. Its key method
is called forward, where the structure of the model is implemented. It receives data
points as inputs, and it contains all the consecutive operations and transformations
performed on them, that lead to the final output. For instance, it could contain the
definition of the different layers of a neural network, or implement a simple linear
regression, or even compute some quantities of interest for a subsequent analysis.
In our particular case, the model computes separately the bond, angle and torsion
contributions to the energy of the HIRE-RNA force field, for each RNA sequence
received as input.

The loss function is designed with the aim to find a match between energies
computed with the CG HIRE-RNA model and with an all-atom (AA) model. The
latter is obtained with Amber (Assisted model building with energy refinement) [14],
a package of molecular simulation programs, and the unit of measure for all energy
computations is kcal/mol. One reason for this choice is that, for the optimization,
we can not simply rely on the minimization of the total energy of the system, since
local interactions alone are not in an energy minimum. Such approach could instead
be possible for non-bonded interactions, that effectively drive the molecule towards
its minimized configuration, but only once local interactions are fixed, to reduce the
number of degrees of freedom. Another reason is that an energy matching would
provide a more accurate energy scale for local interactions, that is essential if we
want to compute thermodynamical quantities, and should lead to a more similar
behaviour in terms of dynamical evolution between CG and AA representations.
To achieve this, the loss function is defined as the sum of the squared difference
between each energy term computed with the HIRE-RNA model and with Amber,
averaged over the inputs. This kind of loss function leads to the matching of each
energy contribution separately during the optimization, preventing compensation of
one term against another, that would happen if one considers only the total energy.

In order to train the model, the dataset must contain a sufficiently large amount
of RNA sequences to capture all the types of interactions we are interested in. At
the moment, since we focus only on local interactions about bonds, angles and
torsions, short sequences are a good compromise to guarantee an adequate level of
heterogeneity, without affecting the performance of the algorithm. To achieve this,
200 initial structures with different lengths, taken from NDB database, are randomly
cropped into 1640 sub-sequences, composed by 7 nucleotides each (see Figure 2.1).
The operation is done by parsing the structure files (.pdb extension), that store
the information regarding the sequence of nucleotides, their type and the Cartesian
coordinates of the particles, and selecting only the desired nucleotides with the tools
provided by the BioPython module [15].

For each of the new structures obtained, we performed a relaxation with Amber,
to assure that the subsequences correspond to minimized configurations, and we
computed their exact energies in the AA representation. The relaxation leads to
more stable structures and is useful to analyse the results of the optimization in
the molecular dynamics simulations: ideally, when no external force is applied,
we expect the system to remain close to its equilibrium position, even in the CG
representation. After that, we generated the coarse-grained structure file and the
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Figure 2.1: Examples of cropped sequences obtained from lato PDB structure. The new
subsequences are in turn minimized to find their optimal structure.

topology file, that contain all the relevant features for the energy computation with
the HIRE-RNA model. They include the type of atoms and interactions, the indexes
of atoms involved, and also information about the sequence of residues and mass and
charge of particles, that are not considered in local interactions, but are necessary
to compute non-bonded energies and forces.

The features are then extracted from the different files and collected in DataFrames,
which are stored in csv files. Features are padded in order to obtain the same matrix
structure for all the sequences, where each column corresponds to a feature. Those
that are used in the model for local interactions are:

— atom_type, an integer array containing indexes associated to the types of each
atom, used for the choice of all particle dependent coefficients;

— coordinates, with x, y and z coordinates of each particle;

— bonds, that contains the indexes of the pairs of atoms forming the bonds and
of the type of bond, necessary for the choice of parameters;

— angles, containing the indexes of the three atoms forming each angle and of
the type of angle;

— torsions, that contains the indexes of the four atoms defining each dihedral
and of the type of dihedral;

— energies, with the energies components computed with Amber.

To retrieve the original lengths of the padded arrays, a new file seq_frame.csv is
created, containing the name of the sequences and the corresponding lengths of each
array. This data structure, despite being more expensive in terms of memory than
a dictionary, allows a direct conversion to tensors, which is performed when the
dataset is allocated. In the end, each sequence is encoded as a dictionary with two
entries:

— lengths, a l-dimensional tensor that contains the array with the original
lengths of the features;
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— features, a 2-dimensional tensor containing the matrices of padded features.

This structure also allows the iteration and the automatic batching implemented in
PyTorch Dataloader class.

To verify the heterogeneity of the sequences in the dataset, a statistical analysis
was performed, that shows the occurrence of the different type of interactions and
their distributions in terms of energy. The results are reported in Section 3.1. In this
context, Principal Component Analysis (PCA) was also applied, which consist in
an orthogonal transformation in the data space to highlight the directions of larger
variance, and it is also useful for data visualization.

2.2 Stochastic Gradient Descent and model eval-
uation

The optimizer is an algorithm that performs the minimization of the loss function.
The classical one is called Stochastic Gradient Descent (SGD), that consists in a
stochastic approximation of the Gradient Descent algorithm. In the simplest case,
parameters g are updated, in each iteration, according to

Opir = 0, — 0, VoE(0;) (2.1)

where VyFE (0:) is the gradient of the loss function with respect to the parameters,
and the coefficient 7, called learning rate, controls the size of the step we take in the
direction of the gradient at time t. When performed on the whole dataset, gradient
descent is a deterministic algorithm, that for specific initialization of parameters bo
and choice of the learning rate, converges to the same local minimum. As it can be
expected, the convergence to a certain minimum and its velocity strongly depend on
the choice of the learning rate: the smaller n;, the more steps are required to reach
the local minimum. In contrast, if it is too large, the minimum could be overshoot
and the algorithm becomes unstable. To mitigate the limitations of the algorithm,
such as its computational cost, its extreme sensitivity on the choice of the learning
rate and its dependence on initial conditions, stochasticity is introduced. This is
usually achieved by replacing the actual gradient over the full data at each step by
an approximation to the gradient computed using a subset of the dataset, called
minibatch. Typical minibatches range between 10 and 100 data points, but they
can be as small as one single data point. The procedure is then repeated over several
training epochs, where a random permutation of the dataset is performed.

Variations of the basic algorithm are possible, that update parameters collecting
information also from the second derivative of the loss function, or an approxima-
tion of it. One of these examples is Preconditioned Stochastic Gradient Descent
(PSGD) [16, 17], that aims to assign a similar weight to the gradient in each direc-
tion of the parameters space. This second-order optimization method improves the
convergence in non-convex manifolds or in situations of high gradient noise, allowing
a faster escape from saddle points in regions where gradients would otherwise be too
small, and was also tested in this project.

Moreover, learning rate and minibatch size are external hyperparameters that
have to be selected in order to improve the performance of the algorithm[18]. Espe-
cially for the learning rate, a typical choice, and also the one adopted in our case, is
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to reduce it along the training procedure. It can be done using adaptive algorithms,
that already include this feature (the most used one is Adam [19]), or introducing a
scheduler that reduces the learning rate when particular conditions are encountered,
for instance if the loss function does not decrease after a certain amount of epochs.

For our problem, parameters that have to be optimized can be divided into four
main groups:

global parameters, related to the coefficients €, €, and €g4;

— coupling constant and equilibrium distance for bond lengths;

coupling constant and equilibrium angle for angles;
— coupling constant and phase for dihedrals.

The initial values of all parameters can be found in Table A.1. The optimization
is then performed as described before, minimizing the loss function using SGD al-
gorithms with different choices of the hyperparameters. As it is usually done, the
dataset is divided in two subsets (with a 4:1 ratio), where the first one is used to
train the model, while the second one acts as a test set for the evaluation.

The performance of the model is then estimated in two ways: first, a comparison
between the energy distributions in the AA and CG representations, with the new
parameters obtained; second, the HIRE-RNA model is tested in molecular dynamics
simulations on some minimized sequences taken as examples. In particular, we ob-
serve how the initial structure, that correspond to a minimum of the AA potential,
changes after the introduction of the CG representation with the new parameters.
Both the qualitative representation and a quantitive analysis of the molecular config-
uration are performed with VMD (Visual Molecular Dynamics) program [20], that
provides a wide variety of methods to read and display the content of structural
PDB files.

While in the AA description one can extrapolate the correct values for the single
bond, angle or dihedral interaction from Amber, this is not feasible for our CG
model, since most of the particles do not have a direct correspondence. This would
require an analysis on all the possible positions of the actual atoms that give rise
to a particular CG configuration, that is beyond the scope of this project. We must
therefore rely only on the sum of the single interactions, that is the reason why the
scores that are commonly used to evaluate results of a model are not informative
enough in our case. Indeed, the matching of the total energy for each interaction
is an important factor, but also other features have to be taken into account, like
the actual values of the single parameters, that have to satisfy some constraints
(in case of couplings), or match some particular distributions (in case of geometric
parameters).

One way to quantify the accuracy of a molecular dynamics simulation is to
compute the root-mean-square deviation (RMSD) with respect to the initial confor-
mation [21]. Tt is defined as

RMSD = (2.2)
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where d; is the distance between atom i and either a reference structure (like in our
case) or the mean position of the N equivalent atoms. Starting from the minimized
AA configuration, we expect the RMSD to stay below 1 A for a well-behaved model.
Otherwise, it would be the indication of a variation from the original structure that
is beyond the effect of the CG approximation, meaning that the molecule effectively
behaves in a different way with respect to the empirical observations. Both the
RMSD and the distributions related to geometric parameters, and in general the
analysis of the trajectory, are obtained with the MDtraj module [22].
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3 Results

3.1 Dataset analysis

Before entering the results of the optimization procedure, we report here the pre-
liminary analysis performed on the dataset. First of all, we checked that the four
types of residues where present in a sufficient quantity and in a similar proportion,
in order to not have a biased dataset. The resulting bar plot is reported in Fig-
ure 3.1. They range from roughly 2600 to 3400 nucleotides, corresponding to as

3500 4

3000

2500 4

g
s
E]

Frequency
-
5
(=]
28

1000

500

Gua Ade Cyt Ura
Residue type

Figure 3.1: Frequency of residues appearance in the dataset.

many residue specific interaction types, that gives a sufficiently crowded statistical
sample to consider. The energy distributions for bonds, angles and torsions com-
puted with Amber in the AA representation are reported in Figure 3.2. As one can

Bonds energy distribution Angles energy distribution Torsions energy distribution

0.040 4
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Figure 3.2: Energy distributions in the dataset for the three types of interactions (bonds,
angles and torsions) computed with Amber in the AA representation. Average value p
and standard deviation o for each distribution are also reported.

see, all the distributions have a similar slightly asymmetrical shape, but the range of
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values in which they vary is distinct. In particular, there is a difference of one order
of magnitude between bonds and torsions energy, that justifies the separation of
energy computation in the ML model and in the loss function, otherwise the bonds
contribution would be totally neglected.

To visualize how the different terms affect the total energy for each interaction
type, we construct matrices for bonds, angles and torsions, where each column
corresponds to a sequence, while each row identifies a type of interaction, with
a specific coupling constant and equilibrium distance. The entries are then the
average energy of that type, for each sequence in the dataset, computed with the
original parameters of the HIRE-RNA model in CG representation. This is done to
check if some type of interactions give a contribution that is sensibly higher with
respect to others, and also to find possible correlations with the total energy. In
this perspective, PCA is performed on the obtained matrix, after a normalization is
applied. The results for bonds interactions are shown in Figure 3.3. From the matrix

IIIII (| III II I"II (I IIIIIIII I II 1 IIII III
I II""I“I IIIIIIIII I III I “IIIII IIIII o
U | I N (1 [ I
I I nrii N

Bond type index
Av.erage energy (kcalmfmol)

T T T T T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 3.3: Visualization of HIRE-RNA energies for bonds interactions. On the top,
heatmap showing the first 200 columns of the bond matrix, as defined in the text; each
entry corresponds to the average energy for a specific bond type, in a given sequence. On
the bottom, representation of the first two principal components of the normalized matrix,
with different colors for points corresponding to sequences with energy respectively above
or below the mean value.

representation, it can be noticed that the average energy is similar between the
sequences, for the same type of interaction. This is not surprising, since the dataset
is made of minimized sequences, therefore we expect distances between particles to
be generally close to their equilibrium values. It is also not surprising that bonds
that involve nitorgenous bases have also compatible energies: they correspond to
to the index from 3 to 8 (for all indexing adopted, the reference is Table A.1),
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and some entries are empty because that type of residue does not appear in the
considered RNA sequence. More interesting is instead the comparison between P-O
energy (index 11) and R4-P energy (index 1), that are extremely different in the CG
representation. The reason is that, while the former is in direct correspondence with
the actual physical bond, the latter is an approximation that neglects two atoms,
thus causing a much bigger variance in the distances, that in turn increases the
value of the average energy, given its harmonic potential shape. We expect to find
a similar energy ratio also in our optimized model.

PCA, however, is not much more informative. We represented with different col-
ors sequences with a bonds energy computed with Amber that’s below or above the
mean, projected on the two first principal components, that represent respectively
56% and 23% of the total variance. Even if some regions present different concen-
trations of the two types, there is not a clear distinction. An analogous analysis was
carried out on angles and torsions energies, obtaining similar results.

3.2 Hyperparameters selection and free minimiza-
tion

In order to perform the optimization, hyperparameters have to be chosen first, in-
cluding minibatch size and learning rate. In our case, the choice of the latter has a
large influence on the results of the model: the range is limited between 107 and
1073 to avoid a slow convergence in one sense, and unfeasible results in the second;
at the same time, as we will see later, its optimal value can not be simply estimated
relying on the convergence of the loss function. Minibatch size, instead, does not
affect much the results of the parameters, therefore it can be chosen based only on
execution time and decrease in the loss function. Since the dataset includes more
than 1000 sequences, a full batch approach was excluded, and values considered
range from 1 (single point batch) to 256 elements. The results in terms of loss func-
tion and execution time, for a learning rate set to 1072, are shown in Figure 3.4.
While the execution time is similar for all the minibatch sizes considered, except for
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Figure 3.4: On the left: Loss function computed on the training set over the first 50
epochs, for different minibatch sizes. On the right: Average time (in seconds) for epoch,
with its standard deviation, for the minibatch sizes considered.

the single point batch, that is 20% higher, the convergence rate of the loss function
dramatically increases with the number of elements. While this is expected, it is also
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a sign that the program does not exploit completely the batched structure of the
inputs. The reason is that, despite being similar, each sequence contains different
numbers and types of atoms, and as a consequence the number of bonds, angles and
dihedrals also varies. Therefore, the energy computation must be performed on each
sequence on its own, while the minibatch allows to average the gradients and avoid
too dissimilar values. Given the results above, we chose to adopt minibatches made
of 4 elements, that are a good compromise between fast convergence, execution time
and modulation of stochastic noise. Concerning the optimizer and the scheduler, we
have opted for Adam algorithm with a learning rate of 107, filled with a scheduler
that automatically reduces learning rates after 20 epochs if the loss function does
not decrease.

With this setup, a first optimization was performed, letting all parameters vary
in a free range of values, with their default initialisation. As and indicator for the
accuracy of the model, we also considered the R? score. If we call y; the expected
values (computed with Amber) with average g, and g; the predicted values for RNA

sequence 4, R? is defined as
S?"CS

R*=1-
Stot

(3.1)

with
N

N
Sres = Z(yl - 91)2 Stot = Z(yz - g)2 (32)
i=1 =1
that are called respectively residual sum of squares and total sum of squares. A value
of R? close to 1 denotes an accurate matching between the expected value and the
prediction, while 0 or even negative values are the signal of a worse prediction. The
training was executed over 400 epochs, and the results are reported in Figure 3.5.
The decrease in the loss function, as well as the gradual increment in the R? score and
the very good matching between Amber and new HiRE-RNA energy distributions
prove that the model works in the correct way, especially in comparison with the
initial distribution. To be more specific, the distribution of the initial torsions
energy has a similar variance with respect to the correct one, but a lower mean
value, while variance for bonds and angles energy is much greater than the expected
value, to the extent that in favour of a clearer representation it was necessary to
limit the range on the x-axis in the plots. For instance, angle energies range from
roughly 0 to 3000 kcal/mol, while Amber values are between 20 and 60 kcal/mol.
At the end of the optimization procedure, the loss function reaches a value of 28,
corresponding approximately to an average energy difference of 3 kcal/mol for each
type of interaction, which is indeed a good matching.

However, if one looks at the new values obtained for the parameters, it is not clear
if they can represent the correct physical properties of the corresponding interac-
tions. In particular, we focus on global parameters and some geometric parameters
taken as examples, that are shown in Table 3.1. Concerning the global parameters,
that define the ratio between the different types of interaction, it is clear that those
for bonds and angles were highly overestimated, with respect to the energies ob-
tained with Amber. While this feature seems to be correctly captured, the same is
not true for the equilibrium values, that should be initially very close to the correct
ones, being extracted from empirical distributions. Instead, a large variation is ob-
served, especially in torsion parameters. At the same time, couplings do not differ
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Figure 3.5: Results of the free optimization. In order: loss function for train and
test set over 400 epochs; R? score computed for train and test set as function of the
epochs; distributions of bonds, angles and torsions energy computed with Amber AA
representation and with HIRE-RNA model, for initial and new parameters.

Original value | New value Parameter

2.608 0.251 Global bonds coefficient

1.483 0.029 Global angles coefficient

1.307 1.440 Global torsions coefficient
3.800 3.688 R4-P bond equilibrium length (A)
1.430 1.481 O-C bond equilibrium length (A)
2.1450 2.6086 P-O-C equilibrium angle (rad)
1.7104 1.6046 C-R4-P equilibrium angle (rad)
-0.3491 -0.5351 R4-R1-A1-A2 dihednral phase 1 (rad)
-2.7925 -0.3006 R4-R1-A1-A2 dihedral phase 1 (rad)
0.3491 -0.7906 C-R4-P-O dihedral phase (rad)

Table 3.1: Some parameters of interest, with the original value and the new one, obtained
with the free optimization.

much from their initial values, a sign that gradients associated to them are much
smaller with respect to the parameters.

Moreover, the obtained parameters are sensible to the values at which they are
initialized. To show that, we report in Figure 3.6 the coupling and equilibrium value
for P-O-C angle, with different initialisations extracted from a uniform distribution
in a 20% range from their reported value, after a 100 epochs training. As one can
see, coupling is strongly correlated to its initialisation (with a 0.99 correlation coeffi-
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Figure 3.6: P-O-C angle related parameters, for different initialisations extracted from a
uniform distribution, before and after the optimization. On the left: coupling parameter,
that exhibits a clear linear correlation. On the right: equilibrium angles, whose final value
ranges in a small interval and is almost independent of the initialisation.

cient), meaning that, in fact, those parameters are not affected by the optimization
procedure. The outcome is different, instead, for the equilibrium angle, whose cor-
relation coefficient with the initial value is 0.24. Indeed, despite variations in the
initialisation, it sets mostly in a narrow range of values around 2.285 rad, that is
however already distant from the original HIRE-RNA value. Moreover, a compari-
son with the value reported in Table 3.1, obtained after 400 epochs, shows that this
divergence is likely to grow even more along the optimization process. For these
reasons, two approaches were tried in order to overcome the correlation between
initial and final values and the large variation of geometric parameters with respect
to their empirical distributions. Comparisons between the free optimization and the
other approaches are shown in the next section.

3.3 Comparison between different methods

The substantial divergence between initial equilibrium values (obtained from Amber
distributions) and the ones obtained with the free minimization led us to explore
variations of the basic SGD algorithm. In particular, two opposite approaches were
tried: first, a preconditioning of gradients (PSGD) was performed in order to drive
them to comparable values between each other, since gradients associated to torsions
and geometric parameters were generally larger in the free optimization; second,
we assigned learning rates with different orders of magnitudes to each group of
parameters (corresponding to global parameters, couplings and equilibrium values
for bonds, angles, torsions), to guide the minimization towards a minimum that
would not change much geometric parameters (we will call this model NG).

It is important to remind that, in the end, we are not interested in finding the
global minimum of the loss function, but a minimum that is compatible with the
physical meaning of the parameters. Introducing these constraints does not change
the structure of parameters space, but influences the convergence of the algorithm
towards minima, that led in some attempts to negative values for couplings. In
order to prevent it, the initialisation for couplings was also changed, but in a future
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implementation of the algorithm it shall be replaced by enriched functional forms.
To be more specific, couplings were set to 100 kcal mol™! A2 for bonds, 10 kcal mol™
rad? for angles and 10 kcal mol™! for torsions. In addition, in PSGD a learning rate
of 10 was used, while those adopted for NG are 10 for global parameters, 10 for
couplings and 107 for geometric parameters. The model was trained for 400 epochs
with a minibatch size of 4 elements, and the obtained parameters were collected to
perform a relaxation of input structures. The resulting distributions for bond lengths
are reported in Figure 3.7. As it can be seen, none of the models is capable to reflect
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Figure 3.7: Distributions of all bond lengths appearing in HIRE-RNA model for mini-
mized RNA structures, obtained with the different methods adopted. The dashed distri-
bution refers to Amber representation, that corresponds to the expected values. On the
z-axis, bonds lengths measured in Angstrém are represented.

the expected Amber distribution, even if the free minimization is the one that leads
to more divergent values. Results for HIRE-RNA model with initial parameters
have not been represented, as they are highly overlapping with those of NG model,
despite having different couplings. Indeed, they are closer to Amber distribution,
but they do not overlap as much as one would expect, that shows how the geometry
of minimized structures is influenced also by the ratio between energy contributions.
Moreover, even if the sequences only have 7 nucleotides, the effect of non-bonded
interactions can not be completely neglected. A similar behaviour can be observed in
angle distributions, that are shown in Figure 3.8. Again, the correspondence between
HiRE-RNA and Amber distributions is far from convincing, but some observations
can be made. In the first place, NG distributions (and therefore, also those from old
HiRE-RNA model) are more close to expected ones, at least in terms of the average
value; this is true especially for most of the backbone angles, while worst result are
obtained in general for the interactions between sugar and nitrogenous bases (R4-R1-
X1). To be more specific, angles involving purines and P-O-C angle are set to very
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Figure 3.8: Distributions of angles amplitudes (in radians) in minimized structures and
comparison between different methods adopted, with Amber expected distributions repre-
sented with dashed lines. Worst results are obtained in angles involving beads in nitroge-
nous bases.

divergent values, to the extent that distributions for the free minimization are not
even visible in the plots. Another aspect that can be highlighted is that, commonly,
obtained distributions have a variance that is much lower than its expected value,
especially in the PSGD model. One possible reason could be the very nature of the
optimization process, that in favour of a smaller value for the loss function tends to
sharpen the distributions around their mean and eventually reduce the mobility of
particles.

The situation becomes even more complex for dihedrals, for which Amber distri-
butions themselves are multivariate due to the multiple equilibrium configurations
available. To take it into account, some torsions-related functions in the HiRE-
RNA model are obtained as the sum of two or more sinusoidal terms with differ-
ent weights, which is the reason why some parameters in Table A.1 refer to the
same atoms. Moreover, the large contribution that torsions give in terms of energy
makes them the most driving of local interactions in determining the structure of
the molecule. For their high degeneracy, parameters related to torsions were the
most difficult to constrain during the optimization, that is why an initialisation to
a different magnitude order was necessary.

We report in Figure 3.9 dihedral distributions obtained from minimized se-
quences. It is immediately clear that they are in general much broader than those
related to bonds and angles, spanning over the whole interval [—7, 7), both in Am-
ber and HiRE-RNA representations. Despite being sometimes quite far from the
expected distributions (in particular for purines), it is however interesting to note
that the new distributions are able to capture the multivariate nature of the in-
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Figure 3.9: Distributions for dihedrals appearing in the HIRE-RNA model, for different
optimization methods, and comparison with Amber expected values; dihedrals, obtained
from minimized structures, are measured in radians. Unlike bonds and angles, distribu-
tions are typically multivariate.

teraction. This is especially true for O-C-R4-P and R4-P-O-C dihedrals, whose
distributions are similar for all the models and reflect the expected ones. Like for
bonds and angles, also in this case the distributions that closely resembles Amber
ones are those of NG (and old HIRE-RNA) model, while distributions obtained with
free minimization and PSGD deviate from them the most, in terms of average value
and variance respectively.

To quantify the divergence between Amber structures and minimized structures
obtained with the analysed models, we computed the root-mean-squared deviation
(RMSD). As mentioned in Section 2.2, a value lower than (or close to) 1 A is typically
an indication of well-behaved simulations. RMSD between the obtained structure
and the reference one were collected for 1225 input sequences, and their statistical
properties are represented in Figure 3.10. The box plot allows to appreciate the
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Figure 3.10: Statistical properties of RMSD distributions for the different models con-
sidered, represented in a box plot. The thick lines represent medians of distributions,
while boxes extend from the lower to the upper quartile value of the data and whiskers
represent data range.

median, as well as the extension of the distributions, for all considered models.
While PSGD proved to be the worst model, with a median above 1 A and RMSDs
that exceed 2.5 A, that is also reflected in the high bias and low variance of its
geometric distributions, better results are achieved with other models, that produce
results compatible with the expected structures. First, is it worth noticing the
high similarity between the original HIRE-RNA model and NG, for which couplings
were initialised in an uniform way. The correspondence between their RMSD and
geometric parameters distributions could be an indication that either fixing the
values of the latters effectively drives the optimization towards a model similar to
the original one, or that geometric parameters have a much more significant role
than couplings in determining the model behaviour, as long as the correct energy
scales are reproduced. Rather surprisingly, the best results are obtained with the
Free minimization model, for which the RMSD is always below 1 A. This could be
explained, despite the poor matching for bonds and angles distributions, with the
better accordance in dihedral values, which are more decisive in the determination
of the molecule conformation. Indeed, even if not optimal, the model is able to
represent their multimodal distributions and to generally recognise their peaks, and
the fact that dihedrals appear in cosine functions, instead of as absolute values,
further enhances this similarity.

Other experiments conducted on the model, like the reduction of the degrees
of freedom (for instance, fixing particle-dependent global parameters) and the em-
bedding of parameters within specific functional forms that impose constraints on
their values, did not improve its predictive power in terms of MD simulations. Quite
surprisingly, instead, reducing the number of parameters resulted in a more difficult
training and in a stronger compensation effect between the different terms, leading
to worse predictions. However, it is important to emphasize that current results and
observations are derived only from a partial analysis, that will be subject to further
studies in future projects.
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4 Conclusions and future work

In this internship report we have described the procedure adopted and the first
results obtained in the optimization with machine learning of HIRE-RNA | a coarse-
grained force field designed to study RNA folding. Due to the complexity of the
model and the high number of parameters involved, we focused only on local in-
teractions, namely covalent bonds, bond angles and dihedral torsions. From HiRE
implementation in Fortran, we developed a Python algorithm that reproduces its
numerical results for energy computations, and finds the optimal values for the pa-
rameters attempting to match HiRE energies with those computed with Amber in
an all-atoms representation. In order to do so, a proper training set was created,
starting from a limited number of RNA structures extracted from NDB database.

The main difficulty in this project was to find the correct minimum in the opti-
mization process that is compatible with the physical meaning of parameters, and
establish a complete and reliable method to define the accuracy of the model, de-
spite the lack of information related to single interactions. In this perspective, in
order to evaluate the model performance, we used both machine learning tools and
information extracted from molecular dynamics simulation, such as distributions
of geometrical quantities and RMSD, and we compared three optimization meth-
ods based on different implementations of SGD algorithm, namely free optimization
without constraints, PSGD and different learning rates and initialisations (NG). The
first results show that a soft enough free optimization leads to parameters that bet-
ter reproduce atomic simulations in terms of the global configuration of the RNA
molecule, even though the distributions of bond lengths and angles substantially
diverge.

These results are expected to be improved in upcoming years, following different
paths. One of them is to perform other optimization attempts, using more refined
labels to find a better matching between the single energy terms, that will possibly
lead to a more accurate accordance with MD simulations. The same methods will
be applied also to non-bonded interactions, for which we will not pursue a matching
with Amber energies, but we will rather impose a minimization of the potential.

In the long term, instead, a more ambitious approach will be the functional opti-
mization of the potential, that will involve both local and non-bonded interactions.
This task will be tackled with state of the art deep learning techniques, from Sym-
bolic Regression to Graph Neural Networks, with the aim to further enhance the
predictive power of HIRE-RNA model.
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A Parameters Tables

Table A.1: Initial values of the parameters to optimize, divided in the four groups. For
bonds, angles and dihedrals, each line in the Table corresponds to a specific combination of
particles. Units of measure are assigned as following, to provide the correct dimensionality
in the energy computation: global parameters: adimensional; bond couplings: kcal mol™!

Bonds
Coupling | Eq. length (A) | Atom types
Global parameters 30.000 3.800 R4-P
2.608 Bonds 200.000 2.344 R4-R1
1.483 Angles 200.000 2.622 R1-G1
2.073 Angles k R4-R1-X1 200.000 2.633 R1-A1
1.519 Angles k R1-G1/A1-G2/A2 200.000 3.062 R1-U1
2.355 Angles k P-O-C 200.000 3.004 R1-C1
4.190 Angles k O-C-R4 200.000 2.450 G1-G2
4.698 Angles k C-R4-P 200.000 2.180 Al1-A2
4.824 Angles k R4-P-O 200.000 1.520 C-R4
5.636 Angles k C-R4-R1 200.000 1.593 P-O
2.130 Angles k R1-R4-P 200.000 1.430 0-C
1.307 Torsions
4.247 | Torsion k R4-R1-G1/A1-G2/A2 :
10.816 | Torsion k R4-G1/A1-G2/A2-R1 : Dihedrals
. Coupling | Phase (rad) | Atom types
11.121 Torsion k C-R4-R1-X1
. 1.000 -0.3491 R4-R1-G1-G2
5.819 Torsion k P-R4-R1-X1
. 0.200 -2.7925 R4-R1-G1-G2
0.501 Torsion k C-R4-P-O
. 1.000 -0.3491 R4-R1-A1-A2
0.730 Torsion k R1-R4-P-O
. 0.200 -2.7925 R4-R1-A1-A2
0.331 Torsion k O-C-R4-P
. 1.000 -2.8798 R4-A1-A2-R1
0.257 Torsion k O-C-R4-R1
. 1.000 -2.8798 R4-G1-G2-R1
0.224 Torsion k P-O-C-R4
0.207 Torsion k RA-P-O-C 1.000 -2.6180 C-R4-R1-A1
: 0.200 2.6180 C-R4-R1-A1
1.000 -2.6180 C-R4-R1-G1
Angles 1.000 -2.6180 C-R4-R1-C1
Coupling | Eq. angle (rad) | Atom types 0.200 2.6180 C-R4-R1-C1
70.000 2.1572 R4-R1-A1 1.000 -2.6180 C-R4-R1-U1
70.000 2.3126 R4-R1-U1 0.200 2.6180 C-R4-R1-U1
70.000 2.1555 R4-R1-G1 1.000 1.7453 P-R4-R1-Al
70.000 2.2881 R4-R1-C1 1.000 1.7453 P-R4-R1-G1
120.000 2.0368 R1-A1-A2 1.000 1.7453 P-R4-R1-C1
120.000 1.9408 R1-G1-G2 1.000 1.7453 P-R4-R1-U1
70.000 2.1450 P-O-C 1.200 0.3491 C-R4-P-O
70.000 1.9303 O-C-R4 1.200 2.7925 R1-R4-P-O
70.000 1.7104 C-R4-P 1.000 1.5708 O-C-R4-P
50.000 1.9199 R4-P-O 1.000 2.6180 0-C-R4-R1
70.000 2.3649 C-R4-R1 0.330 0.0000 P-O-C-R4
100.000 1.7104 R1-R4-P 0.125 3.1416 P-O-C-R4
0.830 0.0000 P-O-C-R4
1.000 0.0000 R4-P-O-C

A-2: angle couplings: kcal mol! rad?; dihedral phases: kcal mol™.
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