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Abstract

In the past years, Spotify and YouTube have been dominating the music pro-
duction scene, thus storing valuable information about how songs achieve pop-
ularity and become a successful hit. Past researches tried to determine the
hit-potentiality focusing on the audio characteristics and showed the limitation
of this approach. In this work, we studied popularity dynamics of songs in-
cluding, together with audio characteristics, features from artist and release’s
context, and processed these using machine learning techniques. As metrics
for popularity, we employed the cumulative views on YouTube achieved by a
song’s video on this streaming platform. First, we investigated the relationship
between songs with similar audio feature and their release date to identify sub-
genres with concomitant popularity. Then, we processed our data by fitting the
songs’ popularity, ranked by their followers’ number on Spotify, using a Zipf’s
model to provide a reference for a song’s success accounting for the fame pre-
viously achieved by its artist. Thus, comparing the actual performance against
the one predicted by the Zipf’s law, we defined a success score whose forecast,
using different machine learning models, could determine which features had
most predictive potential. From our results, release dates showed little to no
relation with music sub-genres, as the distribution of release dates by sub-genre
peaked in almost the same times. Namely, songs are released irrespective of their
genre. Moreover, while the correlation between YouTube views and followers’
number on Spotify was moderate, stronger dependence resulted from songs with
negative Success score. We hypothesised that these songs only achieve “business
as usual” performance, as opposed to those with positive score that outperform
instead. Using supervised learning techniques, we showed that audio and con-
textual features from Spotify and YouTube (e.g., the number of subscribers of
the YouTube channel featuring the song) were sufficient to train a model capa-
ble of determining with good accuracy the success score of different songs: in
particular, a great influence on the prediction was determined by the YouTube
context in which the song was released.
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Chapter 1

Introduction

As of now, the music industry is adjusting to a digital revolution front-run by
several streaming platforms (Spotify YouTube, Apple Music, etc.) that led in
the past decade to a change of the paradigm on how music is enjoyed. One of the
main questions arising among music practitioners is how to forecast success of
specific tracks. There are many different effects that might affect the dynamics
of a hit song [1]. The experience felt by the consumer, for example, is regarded
to have a particular influence since it is able to capture the consumer’s reaction
that triggers interest [2]. This process could lead to a recurrent pattern in the
acoustic evolution of songs and the statistical physics approach turned out to
be useful to determine these emerging patterns [3]. In terms of pure success,
however, it is far more interesting to look at the problem from a more machine-
learning oriented point of view. It was demonstrated that there is indeed a
dependence between audio features and success and that it could be possible
to predict on-chart’s results by songs up to a certain margin of error [4, 5,
6, 7, 8, 9, 10, 11, 12]. On a more methodological level, different approaches
have been tried, such as Middlebrook’s work [13] who has been able to predict
optimally the success (considered as finding a song in the Billboard Hot-100)
using supervised learning techniques (such as neural networks, random forests,
and Support Vector Machine), or Yang’s work [14] in which it was attempted
to apply convolutional neural networks to address the problem. Moreover, it
is interesting to see how contextual information, such as the genre and the
artist popularity could influence the prediction. Asai [15] demonstrated how
the artist’s fame above all contributed to a prolonged presence of songs in top-
charts, while Pham [16], instead, tried to improve the accuracy of the prediction
by adding artist’s and track’s contextual features (such as the artist’s name,
release date, composer,etc.) to the training set, as well as Araujo [17] who tried
to introduce contextual information about the presence of songs in past Spotify’s
rankings. On the other side, another interesting decision that could affect the
performance of a song is the time period in which it is released. Discussions
with music industry experts here in Sony CSL revealed that most marketing
strategies, put in place by production companies, thoroughly assess the right
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timing at which a song must be released in order to maximize exposition and
revenues. This might yield that similar songs could be released in analogous
times of the year, therefore leaving a trace of a genre spiking in certain times of
the year.

In this study, we tackled the problem of detecting release-strategies patterns
associated to specific sub-genres and success prediction. In Chapters 2, we will
introduce the methods and theoretical foundation on which our research was
anchored. In Chapter 3, we will report the results obtained by our analysis. In
Chapter 4, finally, we will discuss said results and future developments for the
line of research on music success prediction.
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Chapter 2

Methods

In this chapter, we will describe data collection and composition; then, we will
formally introduce the methods and algorithms used to conduct the study on
the audio features and on the prediction of the success score.

2.1 Data collection

The data was obtained through Spotify’s and YouTube’s APIs, in two different
stages. First, from Spotify, a fetcher program scraped every day all the infor-
mation associated to the songs that have ever appeared in selected playlists. In
particular, once a song was detected inside a playlist, the fetcher kept track of
its evolution even after its removal from said playlist. Then, the song’s title
and artist were queried from YouTube to save the three most viewed videos
associated to the track. To determine the song’s main video, the one that the
fetcher had seen for the longest time was selected; if this was not discriminant
enough, then the one having the most views was chosen.

The fetched data was grouped in five main groups:

• Audio features, which comprises of acousticness, danceability, duration (in
ms), energy, instrumentalness, liveness, loudness, speachiness, tempo and
valence;

• Playlist features, made up of two sub-datasets: playlists’ followers and
track position;

• Context YouTube, consisting in the songs’ channel’s videocount and fol-
lowers;

• Context Spotify, comprising of the songs’ artists’ number of followers and
popularity;

• Reaction features, made up of comments, likes and dislikes under songs’
Youtube’s videos;
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• Popularity measure, consisting of songs’ YouTube views and Spotify’s pop-
ularity.

Aside from these, we had other data regarding static description of the tracks,
like the explicitness or the type of album the song was released in; most of this
information, however, proved to be unimportant for our study and the sake of
our results.

2.2 Audio features’ analysis

The audio features are a part of the dataset that describes the audio char-
acteristics of the tracks. To each song, we assigned a 10 dimensional vector,
each component describing a specific musical aspect of the track. In order to
represent these quantities it was necessary to apply a dimensionality-reduction
algorithm. The one which appeared to be the most stable for our data was
the UMAP reduction [18, 19]. This method, in brief, consists of two phases: a
graph construction in high-dimensional space and an optimization of said map-
ping into a low-dimensional graph. In the first phase, we construct a weighted
graph where each node is an observation, and its nearest neighbors are the k
closest other observation with respect to a given distance (usually Euclidean).
The weight on each edge is the distance between two nearest neighbors, rescaled
by a factor depending on k, in order to preserve the high-dimensional proximi-
ties. In the second phase, instead, we try to optimize the low-dimensional graph
layout with a process that can be viewed as a stochastic gradient descent on
individual observations or as a force-directed graph layout algorithm [20]. This
causes, analogously to what happens for t-SNE [21], points which are far from
each other to be drawn further away, and those that are close, closer. However,
in contrast with t-SNE, this algorithm can preserve the global structure of our
observations.

In order to evaluate the emergence of genres, we tried the clustering algo-
rithms K-Means, Density-based Clustering and Gaussian Mixtures, which define
music genre, respectively, by: the proximity between similar songs, the local
density, and Gaussian-like concentration, within the space of audio features.

2.2.1 Clustering methods

K-means. K-means [21] is a pretty straight-forward and simple algorithm. Let
us consider a set of N unlabeled observations, {xi} i = 1, . . . , N where xi ∈ Rp

and p is the number of features, and {µk} k = 1, . . . ,K set of K cluster centers.
The idea behind is to look for centers by minimizing this following cost function,

C({x,µ}) =
K∑
k=1

N∑
n=1

rnk(xn − µk)2 (2.1)

where rnk is a binary variable called the assignment, which will assume values
1 if xn belongs to cluster k, 0 otherwise. The algorithm will therefore consist of
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two steps:

• Given assignments rnk, we minimize C to obtain the centers. This yields,

µk =
1

Nk

N∑
n=1

rnkxn (2.2)

• At fixed {µk}, we again minimize C with respect to the assignments.

• We repeat these steps iteratively until some convergence is met.

It is clear how this method privileges points spatially close to each other, ex-
ploiting a euclidean metric to evaluate the distances; also, let us notice how this
algorithm is guaranteed to converge at some point. However, a major drawback
is that it considers the variances of different clusters as a fixed equal quantity,
so in cases where this assumption fails the algorithm can lead to a faulty result.

Density-based clustering. We mentioned beforehand that one of the
main characteristic we wanted to highlight was that densely-packed agglomerate
should yield for a musical genre. This can be reproduced through Density-
based (DB) Clustering [21], which supports the idea that clusters are defined
by regions of space with higher density of data points; those considered outliers
or noise are instead expected to be part of low-density areas. In addition, DB
clustering assumes local-density estimation of data as a statistically reliable
quantity, therefore it is possible to order points by their densities, which in turn
implies that, through this method, it is possible to determine clusters of different
shape and sizes, highlighting the presence of outliers in the space. Let us have
X = {xn ∈ Rp, n = 1, . . . , N} a set of datapoints with p number of features.
Defining the ϵ-neighborhood of point xn as

Nϵ(xn) = {x ∈ X | d(x,xn) < ϵ} (2.3)

where d(·, ·) is the Euclidean distance, we can consider Nϵ as a crude estimate
of the local density. Moreover, we can define xn as a core-point if at least Nmin

points are in Nϵ, where Nmin is a free parameter of the algorithm that sets the
scale of the size of the smallest cluster one should expect. Finally, a point xi

is said to be density-reachable if it is in the Nϵ of a core-point. With this in
mind, the DBSCAN algorithm (the most prominent Density-based clustering
methods) will unfold in the following way:

• Until all points in X have been visited; do

– Pick a point xi that has not been visited

– Mark xi as a visited point

– If xi is a core point; then

∗ Find the set C of all points that are density reachable from xi.
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∗ C now forms a cluster. Mark all points within that cluster as
being visited.

• Return the cluster assignments C1, . . . , Ck, with k the number of clusters.
Points that have not been assigned to a cluster are considered noise or
outliers.

Notice the only two parameters DBSCAN asked for are ϵ and Nmin, with a
computational cost of O(N logN). From this algorithm, a more sophisticated
approach is represented by the HDBSCAN algorithm [22] [23]. This is an algo-
rithm that attempts to apply an hierarchical approach to the concept of Density-
based Clustering and, therefore, it tries to span over a set of possible ϵ (defined
through a Single-Linkage hierarchical process) in order to find the optimal value.
It only asks for one parameter mpts, a smoothing factor in density estimated of
clusters, (i.e. how smooth my cluster must be in order to stop the search) but
its computational time tends to be of superior order than the one for DBSCAN,
O(N2).

Gaussian Mixture models. Lastly, following the hypothesis of Gaussian
distribution for our clusters, let’s discuss Gaussian mixture models [21]. In
these, points are drawn from one of K Gaussians with mean µk and covariance
matrix σk, such that

N (x|µ,σ) ∼ exp

(
−1

2
(x− µ)σ−1(x− µ)T

)
. (2.4)

Denoting πk as the probability of drawing a point from the k-th Gaussian, the
total probability of generating point x from the model is

p(x|{µk,σk, πk}) =
K∑
k=1

N (x|µk,σk)πk. (2.5)

We can extend this equation taking into account a dataset X = {xi, i =
1, . . . , N} such that

p(X|{µk,σk, πk}) =

N∏
i=1

p(xi|{µk,σk, πk}) (2.6)

It is useful now to introduce a latent variable z = (z1, z2, . . . , zK) ∈ {0, 1}K that
quantifies to which cluster a datapoint x belongs to, assuming each datapoint
can belong only to a single cluster (we will denote the total set of latent variables
z as Z). This implies that the probability of observing x given z will be

p(x|z; {µk,σk}) =
K∏
k=1

N (x|µk,σk)zk (2.7)

and the probability of observing a given value of latent variable

p(z|{πk}) =

K∏
k=1

πk. (2.8)
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We can now use Bayes’ rule to obtain the joint probability p(x, z;θ), where
θ = {µk,σk, πk},

p(x, z;θ) = p(x|z; {µk,σk})p(z|{πk}) (2.9)

which, reapplying Bayes, implies that the conditional probability of the data
point x being in the k-th cluster, γ(zk) given the model parameters θ will be

γ(zk) ≡ p(zk = 1|x;θ) =
πkN (x|µk, σk)∑K
j=1 πjN (x|µj , σj)

. (2.10)

Ideally, we could now apply MLE and obtain θ̂ = arg maxθ p(X|θ). However,
due to complexity it is extremely hard to obtain the maximum in this way,
hence a new strategy is needed. Another possible way to obtain the parameters
is through Expectation Maximization (EM) [24]. Given an initial guess for the
parameters, EM computes them iteratively by setting

θ(t+1) = arg maxθ Ep(Z|X;θ(t))[log p(X,Z; θ(t))], (2.11)

yielding,

µ
(t+1)
k =

∑N
i=1 γ

(t)
ik xi∑N

i=1 γ
(t)
ik

(2.12)

σ
(t+1)
k =

∑N
i=1 γ

(t)
ik

(
xi − µ

(t+1)
k

)(
xi − µ

(t+1)
k

)T

∑N
i=1 γ

(t)
ik

(2.13)

πk =
1

N

N∑
i=1

γ
(t)
ik (2.14)

where γ
(t)
ik = p(zik|X; θ(t)).

2.3 Success score

To analyze a song’s success, its audio features do not suffice: they do not con-
vey any information about the artist’s fame at the moment of release, or any
other information regarding the fanbase/followers status, that can indicate the
potential public size listening to the song. By leveraging power-law’s structure
of YouTube views, we defined a success score that could take artist’s past pop-
ularity into account. In [25] it was reported that an ordered sequence of data
ranked by frequency (i.e. the most frequent in position 1, the second-most in
position 2 and so on) behaves as a power-law with respect to the rank, such that

F (s) ∼ rV (s)−α, (2.15)

where F (s) is the frequency associated to the song s, rV (s) a function that as-
sociates each song to its YouTube views rank and α is the power-law coefficient.
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This model is called Zipf’s law and it is able to effectively predict the behavior
of the bulk of the ranking curve of our data, but it fails when it tries to estimate
the less frequent events. Therefore, a straightforward linear fitting cannot be a
good strategy to retrieve this pattern, since it would give too much weight to
the fat tail. As shown in [26], the solution to this problem can be of different
types: however, the one we found most useful for our data was establishing an
exponential binning, such that the effect of the fat tail can be mediated by an
exponential sample of elements.

Using this model, it is possible to measure if and how much a given song,
ranked based upon a different criterion, outperforms the prediction based on
the YouTube data, and how the different features affect this outcome. To do so,
it was necessary to introduce a new metric, which we generally called ’success
score’. Defining a new criterion for ranking our songs, we can consider the views
of the rF -th ranked song w.r.t. this criterion as

V (s) ≡ V (rF (s)) (2.16)

where rF (s) is function associating each song to a ranked position (i.e. rF (s) is
the rank of song s with respect to the criterion F ). To define the success score
we consider the difference between the views of s and its prediction from the
Zipf’s law considering this ordering, s.t.

score(s) = log10(V (s)) − log10(crF (s)−α), (2.17)

where rF (s)−α is the Zipf’s law fitted on the YouTube-ranked songs and c is a
constant value needed to rescale the model to fit the data correctly (notice that
c can be retrieved from the previously introduced linear fit as c = 10b where b
is the intercept of the linear fit). As a variant, we also considered its sign, i.e.,

sgn(score(s)) =

{
+1 if score(s) > 0,

0 else.
(2.18)

Up to this point, our goal was to predict the score (or at least its sign), training
our model with different subsets of features. To this end, different supervised
learning tools were used.

2.3.1 Supervised learning

We tried to apply three main family of models: Linear models, Random forests’
models and LGBM models.

Linear models. To have a first picture of the behavior of our data, we
decided to apply linear models, in particular an OLS regression for score and
a Logistic regression for sgn(score). As shown in [21], given X ∈ Rn×p set of
data where n is the number of songs and p the number of features such that
X = {xi ∈ Rp, i = 1, . . . , n} , ω ∈ Rp set of parameters and y ∈ Rn set of
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labels, this model retrieves the right value of the parameters by minimizing the
L2 norm of the difference

min
ω∈Rp

[Xω − y] =⇒ ω = arg min[Xω − y]. (2.19)

On the discrete side, we introduce the logistic function as

σ(s) =
1

1 + e−s
. (2.20)

This model tries to minimize the following cost function in order to retrieve the
parameters ω, i.e.

C(ω) =

n∑
i=0

yi log σ(xT
i ω) − (1 − yi) log(1 − σ(xT

i ω)) (2.21)

=⇒ ω = arg min[C(ω)]. (2.22)

These models give us a first, very simple, idea of how the prediction could come
out, however to improve accuracy we need more sophisticated models.

Random forest models. As shown in [21, 27, 28], a random forest is a type
of model consisting of a collection of tree-structured predictors {h(x,Θk), k =
1, . . . } where Θk are independent identically distributed random vectors. Each
tree casts a unit vote for the most popular class at input x. So, before heading
into the discussion of these structures, let us introduce the concept of decision
tree. Consider a graph G = (V,E), E ⊂ V × V with V subdivided into three
subsets, V = D ∪ C ∪ T of D decision, C chance and T terminal nodes. In a de-
cision node, the decision maker selects an action, i.e. one of the edges stemming
from this node (one of the edges having the node in question as the parent).
In a chance node, one of the edges stemming from it (a reaction) is selected
randomly. Terminal nodes represent the end of a sequence of actions/reactions
in the decision problem. For each edge e ∈ E, we let e1 ∈ V denote its first
element (parent node) and let e2 ∈ V denote its second element (child node).
Let us also introduce 2 function: one denoting payoff s.t. y : E −→ R and the
other denoting probabilities s.t. p : {e ∈ E | e1 ∈ C} −→ [0, 1]. We can now
define a decision tree as a tuple (G, y, p) satisfying the following conditions:

1. there exists r ∈ V (root) such that ∀v ∈ V/r there exists a unique path
from r to v, written as r → v;

2. all and only terminal nodes have no children, i.e. ∀v ∈ V : v ∈ T ⇐⇒
∄e ∈ E : e1 = v;

3. p(·) is correctly defined, i.e. ∀v ∈ C :
∑

e∈E , e1=v p(e) = 1.

The actual action of a tree is easy to understand: at each level, it asks questions
in order to partition the data into smaller subsets, with leaves of this tree con-
sisting in the end point of this sequential partition. There are different methods
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to aggregate trees together; however, the most common is the BAGGing (Boot-
strap AGGregation). Imagine to have a very large dataset, L, subdivided in M
subsets, {L1, . . . ,LM}. If each partition is large enough to learn a predictor, we
can create an aggregate of predictors, trained on each subset. For continuous
predictors, this is generally an average, s.t.

ĝLA(x) =
1

M

M∑
i=1

gLi(x) (2.23)

where gLi(x) is the value of the predictor for the subset of the dataset Li applied
to vector x. Analogously, for classifiers it becomes a majority vote, s.t.

ĝLA(x) = arg max
j

M∑
i=1

I[gLi(x) = j], (2.24)

where I[gLi(x) = j] is an indicator that assumes value 1 if gLi(x) = j, 0 other-
wise. The usefulness of BAGGing stands on the fact that this way of aggregating
results can significantly reduce the variance of the estimator without affecting
the bias.

LGBM models. For Random Forests’ models, the decisional structure was
solid, however the estimator considered were very simplistic. An improvement
could be represented by the Gradient Boosted models and, in particular, the
LGBM, or Light Gradient Boosted Method. Firstly, let’s give a general defini-
tion for the Gradient Boosted method [21]. It combines the concept of boosting
and gradient descent to produce an ensemble of decision trees. So, let’s first
denote a decision tree j with T leaves as gj(x) and parametrize it by two quan-
tities: a function q : x ∈ Rp → {1, . . . , T} that maps each data point to a specific
leaf and ω(x) ∈ RT that assigns weights to the leaves, such that gj(xi) = ωq(xi).
We now need a cost function; specifying the prediction of our ensemble for a
datapoint (yi,xi) as

ŷi = gA(xi) =
M∑
j=1

gj(xi), gj ∈ F (2.25)

where M is the number of members of the ensemble and F the space of trees,
we can define the cost function as

C(X, gA) =

N∑
i=1

l(ŷi, yi) +

M∑
j=1

Ω(gj), (2.26)

where l(ŷi, yi) is a term that measures the goodness of predicition (it’s usually
considered differentiable and convex) and Ω(gj) is a regularizer, needed to avoid
overfitting on our datapoints. We will consider this regularizer rather general,
but it depends on the type of Gradient Boosted tree we are trying to use. To
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form the ensemble,we will use an iterative method that will consider a family of
predictors of the form

ŷ
(t)
i =

t∑
j=1

gj(xi) = y(t−1) + gt(xi) (2.27)

(Notice, ŷ
(M)
i = gA(xi) by definition). For large t, each tree is a small pertur-

bation to the predictor, s.t. we can expand the cost function in Taylor series to
second order:

Ct = C(X, gt) =
N∑
i=1

l(y(t−1) + gt(xi), yi) +
M∑
j=1

Ω(gj) (2.28)

≃ Ct−1 + ∆Ct, (2.29)

where

∆Ct = aigt(xi) +
bigt(xi)

2

2
+ Ω(gt) (2.30)

and

ai = ∂
y
(t−1)
i

l(ŷt−1
i ), (2.31)

bi = ∂2

y
(t−1)
i

l(ŷt−1
i ). (2.32)

Finally, we choose the t-th decision tree to minimize ∆Ct. Differently, the Light-
GBM takes into account and implements two novel techniques, the GOSS and
the EFB: the first excludes large amounts of data with small gradients and
computes only on the remaining, while the second bundles mutually exclusive
features to reduce their number. It is shown this method reduces the compu-
tational time needed to perform training by up to 20 times, keeping the same
accuracy. For a more detailed description of LGBM models, we refer to [29].
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Chapter 3

Results and Analysis

In this chapter, we will discuss the results obtained from our study regarding
the analysis of audio features and the prediction of the success score, providing
graphical representation and quantitative evidence in support of our findings.

3.1 Absence of temporal pattern for genre publica-
tion

One of the main goal of this study was to determine, if present, the insurgence
of genres clusterization in audio features and check if similar songs are released
in analogous intervals of time throughout the year. So the first step we took
was to train a UMAP model and visualize our data. The result is shown in
Fig. 3.1. Data distribution is observed to be homogeneous anywhere, with one
giant dense block of points occupying the majority of the space, and an isolated
smaller island in the bottom right part of the picture, that might indicate a
specific genre.

It is interesting to see how the distribution evolves over time, separating all
the tracks in subsets by groups of songs released in the same 30-days interval,
as it is showed in Fig. 3.2. The tracks’ subsets are evenly distributed, that is,
even though they do not show the same density at each month, the distribution
of points is even across the map, so the points dislocate for each interval of time
like they do in the general case.

At this point, we investigated different clusters, their emergence over time
and how the emergence affect the distribution per interval of time of our tracks.
First, we trained a KMeans model on the data, to see if some first simple
considerations can be made on the data. In order to look for the optimal number
of clusters, we analyzed the behavior of the distortion score with the number of
cluster K in Fig. 3.3. Applying the elbow method, we can see that for K = 7 a
slight stabilization of the score is detected, hence we’ll consider our number of
clusters as 7. At this point, we trained our KMeans model, obtaining the results
shown in Fig. 3.4. The retrieved clustering is not clear, as different clusters are
identified (due to the simplistic nature of KMeans) but are not well separated
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Figure 3.1: UMAP projection of Audio Feature data in 2D (left) and 3D (right). We can notice in
both graphs an isolated cluster on the bottom right part, which might indicate a solitary genre.

or dense: most of them converge on the same block of data but are not really
isolated. This hypothesis can be corroborated by the silhouette score analysis
shown in Fig. 3.5. The low average score, in particular, supports the lack of real
separation between clusters. We then tried to apply the HDBSCAN model as it
can take the local density of points into account for determining clusters, rather
than relying only on the spatial distance.

Using default values for mpts, the results obtained is shown in Fig. 3.6.
Again, no clear separation in the main block of data; however with this method
the single “island” of points is identified as part of a single cluster. So far,
this is the only instance we can make about emerging genre in our data but
it only relates to a selected group of songs, in the sense that we can’t argue
about any other emerging genre outside of this specific sample. Moreover, this
method gives us no information about how the centers behave and where they
are located (differently to what is possible exerting from KMeans); therefore,
we need to look out for another model, leveraging on the assumption that our
data is distributed in a Gaussian-like pattern.

To that end, we applied the Gaussian mixture model. Again, to set the
number of clusters K, we performed the elbow method analysis on the AIC
score for different number of centers Fig. 3.7 [30], returning K = 7. For this
number, the clustering process we are looking for is shown in Fig. 3.8. Two main
isolated clusters can be identified in the graph (leftward side of the graph and
rightward island), however the two clusters are not well separated (especially
the rightward one, in which part of that island is associated with a different
cluster that is somewhat of a background-noise cluster present across the entire
mapping).

Moreover, having localized the different centers, we could analyze how many
points are associated to each cluster for monthly subsets of songs, trying to exert
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Figure 3.2: Distribution of songs in UMAP projection, grouped by month of release. Some months are
more dense than the rest, like the 4-th. However, there is no dynamics shown in this representation
that yields for a clear separation of genre by release date’s time intervals.

a pattern describing the behavior of genre’s publications with their release dates.
The result is shown in Fig. 3.9. We see two main peaks in the songs’ distribution
of the number of publications over time, associated to February/March and
September/October in which most songs seems to be released; unfortunately,
the distributions are homogeneous and independent of the center/cluster (even
though we could stress the fact that there are some centers that present a higher
percentage of released songs, which, however, is true for any interval considered
and not only for specific ones).
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Figure 3.3: Distortion score analysis with elbow method. Notice the elbow, though very light, is
detected at K = 7.

Figure 3.4: KMeans method applied to the Audio Feature dataset. No clear separation between clusters
emerges.

Figure 3.5: Silhouette plot for KMeans model with K = 7 clusters. Notice the average score is not
very high, hence the clusters are not well separated.

3.2 Success prediction

The success of a song is shaped in three stages: first the song is released, then
it gathers attention and finally it reaches the peak of popularity within 15 days
from release (Fig. 3.10). As such, to analyze a song’s success dynamics, time
series must be pre-processed to match these phases. That is, in our case, syn-
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Figure 3.6: HDBSCAN model trained on the dataset. Notice how, in this case, the single island
is considered as an individual, well separated cluster, while the rest of the data doesn’t show clear
separation.

Figure 3.7: AIC score analysis for the Gaussian Mixture model. In this case, the optimal value is shown
to be K = 7 (vertical dotted line).

Figure 3.8: Gaussian Mixture clustering on UMAP-projected Audio Feature data. Clear single clusters
can be seen in the extreme right and left part of the graph, even though the rightward island is separated
into two main distributions.

chronizing all songs to the first day in which they appeared in data and their
YouTube views were recorded.

This date was, then, stored and used to synchronize all the other features
coherently. Such a step was necessary in order to analyze a track’s evolution
independently of its release period, and to be able to compare the evolution

21



Figure 3.9: Histogram and KdE plots of the distribution of songs by 30-days intervals from late
November 2020. It is shown how there is no privileged release month related to different genres.

Figure 3.10: Cumulative views recorded day by day for ’Escape Plan’ by Travis Scott and ’Already
Dead’ by Juice WRLD in log scale. Notice that the first one has already reached its “stationary” value
when we started recording the data since the value of cumulative views changes minimally, while the
second one reaches it after 15 days.

together in a standard way. To better understand this concept, we refer to
Fig. 3.11 as an example. These two randomly chosen songs show analogous
behaviors in terms of time-dependent YouTube views’ increase per day with a
first big spike on the release date and then a decrease interrupted by occasional
smaller spikes.

Moving forward, to study success prediction, at first we decided to check if
there could be a time pattern that described the evolution of any song. Defining
our datapoints as x ∈ Rp where p = 8 is the number of features we associated
to any song, we trained a UMAP model in order to reduce dimensionality and
visualize the data. The results obtained are shown in Fig. 3.12

No clear pattern emerges from the time series, either coloring by time in-
stances or by songs. Afterwards, we decided to approach the problem with a
different method. When considering the evolution of a song popularity behavior,
we assume it will reach a “saturation point” after which variations in terms of
success/views are minimal: from our data, we identified this point to be around
15 days after the release date (Fig. 3.10). Hence, taking into consideration the
YouTube views of songs 15 days after their release date and ordering them up,
we obtain the curve showed in Fig. 3.13. The behavior for low rank is consis-
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Figure 3.11: Time evolution of new YouTube views per day for ’Escape Plan’ by Travis Scott and
’Already Dead’ by Juice WRLD in log scale. Notice how the behaviors of these two songs is analogous:
first a very peaked spike, then a decrease, with occasional lower spikes.

Figure 3.12: UMAP projection of the time series of all the tracks, in which each datapoint is a p-
dimensional vector with coordinates representing a specific success feature at a specific instant of time.
No clear pattern emerges in this analysis.

tent with what we would expect from a power-law behavior. However, we can
already see how the tail behaves rather differently. In order to fit a power-law,
we have to bin our data exponentially, thus reducing the effect of the tail. To
choose the optimal binning, we have studied the behavior of the mean standard
deviation over all bins, as shown in Fig. 3.14. For N = 13, the curve shows
the last significant drop in the standard deviation and, following the “elbow
method” approach, we chose this number as our optimal estimated number of
bins, Nbin.

Fitting the Zipf’s law, we obtain the curve shown in Fig. 3.15. Notice how-
ever, that the tail is still badly approximated by the power-law: as shown in
[25], there are other function we could try to fit our model that should produce
more accurate results.

Subsequently, we wanted to show how much a different rank should corre-
spond in terms of success. To this end, we tried to reorder the data by the
number of artist followers each song has on Spotify. The result is shown in
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Figure 3.13: Logarithm of YouTube views ordered from top to bottom. For the first 8000 points, the
curve behaves like a power-law (this will be more clear later).

Figure 3.14: Mean standard deviation vs number of bins. We set the optimal number of bins at the
last significant drop in the standard deviation.

Fig. 3.16. It is clear how the different ordering produces a very noisy dynamics,
but after applying a rolling mean to the data it is possible to see how the curve
behaves similarly as the one in Fig. 3.13.

An analogous analysis can be done ordering the data by the song popularity
on Spotify, obtaining similar results (Fig. 3.17). The dynamic in this case seems
to be more noisy, even though the general outlook is similar.

Effectively, this noise is generated by the discrepancy of the different rank-
ings. The Zipf’s law predictions on the rankings of the artists’ popularity (used
from now on) provides a measure of how many YouTube views a song should
achieve, based on the artist accrued fame. This concept is well represented
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Figure 3.15: YouTube rank curve vs Fitted Zipf’s law in log-log scale. The fit is trustworthy up until
r ≃ 3.5, where the tail behavior heavily affects our data, showing in this interval the simplicity of our
approximation.

Figure 3.16: Log Views YouTube ordered by the artist popularity at day 0 vs Rank. The general
behavior is consistent with what produced when ordered by the number of Views on YouTube, however
it is incredibly noisy. In order to give a better look at the graph, we applied a rolling mean to the data.

by Fig. 3.18, in which the artists’ popularity-ranked YouTube views are shown
in comparison with the Zipf’s law prediction. The magnitude of this discrep-
ancy is the success score, defined in Chapter 2. Before heading into the success
prediction part, it could be interesting analyzing the correlation between the
YouTube ranked views and the artists’ popularity ranked YouTube views to
give more insight about the nature of the score.

We would expect these two quantities to be extremely correlated. However,
as we can see in Fig. 3.19, the correlation between the two rank is moder-
ate (Spearman’s correlation = 0.415). Separating the songs in the two sub-
groups (positive and negative scored), we obtain a type of distribution shown
in Fig. 3.20. Notice how the correlation on positive-scored songs is very low
(as we could expect) and how the correlation on all the other songs significantly
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Figure 3.17: Log Views YouTube ordered by the max of song popularity in the first 15 days after the
release date vs Rank. The general behavior is very similar to what happens in Fig. 3.16, however the
noisy seems to be more relevant here.

Figure 3.18: Fitted Zipf Law vs Spotify artist follower’s rank in log-log scale. The perfomance of the
track is estimated by comparison with the Zipf’s law fit. Notice, in particular, how the Artist follower’s
ranked songs uniformly distribute around the Zipf’s law prediction.

increases when taking these out of the picture. This finding suggests that under-
performing songs display a “business-as-usual” dynamic, where song’s success
is correlated with past fame achieved by its artist, which is not the case for
over-performing songs, whose success behaviour, in fact, is different and do not
depend much on the artist followers.

For completeness, we also show the correlation between YouTube ranked dis-
tribution and Spotify song’s popularity ranked distribution in Fig. 3.21. Again,
the correlation is low but we could draw a consideration analogous to the previ-
ous one made. This case, however, is a less meaningful one, since the information
provided by this quantity is an analogous quantification to the YouTube views,
in the sense that both quantities provide insight on the song’s performance on
their respective platforms.
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Figure 3.19: Grid map representing the distribution of points with respect to the YouTube views
rank and the Spotify artist popularity rank in log-log scale. Notice that positive-scored songs are
concentrated on the right-most side of the graph, while negative-scored ones are more present in the
central part of the map, showing somewhat of a linear behavior.

Figure 3.20: Grid maps representing the distribution of points with respect to the YouTube views rank
and the Spotify artist popularity rank in log-log scale, separating data by positive and negative score.
Notice that the positive-scored songs show very little correlation between the two rankings, while the
negative-scored ones show a stronger correlation than the general case.

The crucial part of our study is to draw a prediction for this score, which
requires the training of a model to forecast the performance of any song. To do
so, we applied different models presented in the Methods chapter (the reader
should bear in mind that for all the discrete classifiers we considered the discrete
representation of the score). To benchmark the best performances of the models,
we considered a training set composed by all these features and varied the model
(Fig. 3.22). For the regression problem, LGBM model scored best in terms of R2

score and mean square error. A similar result is obtained for the classification
problem (Table 3.1).
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Figure 3.21: Grid map representing the distribution of points with respect to the YouTube views rank
and the Spotify song popularity rank where the x-axis is log-scaled. The behavior and the correlation
is analogous to the case of the Spotify artist popularity rank.

Ideally, a prediction of success should be best drawn before the release date
of a song, but song’s inherent characteristics (e.g. audio features) do not provide
good accuracy. In our study, we assessed the contribution, in terms of predictive
potential for success, of different set of features as they become available during
the “life cycle” of a song. To this end, fixing the model as the LGBM, we
varied the features included in the training set by adding each time new ones to
those previously available. As a baseline, we will consider the audio features, to
which we recursively add the features for the playlists, the Spotify context, the
YouTube context, and the reactions.

Logistic regression Random Forest LGBM

F1 score 0.941 0.960 0.968

AUC metric 0.954 0.987 0.990

Table 3.1: Accuracy and error on the prediction of the score for YouTube ranked data with different
models. Notice how, in this case, all the models predict similar results.

The results are shown in Table 3.2. When given the context on YouTube and
the Reaction features (in this case comments under the YouTube video), a big
improvement in the accuracy appears in our prediction. This makes sense since
the score is computed from data ordered by YouTube views and therefore the
YouTube context could be an important driver of the success of a song, as well as
any descriptor of the YouTube situation. Moreover, the improvement yielded by
the comments is also to be considered as a ”post-op” data (data available after
the release date), so statistically dependent to the number of views: in a sort of
way, we could see it as an estimator for views, and since the score is calculated
on success data it makes sense that this quantity greatly improves accuracy.
This concept is better shown by Fig. 3.23, that shows the scatter plot of the
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(a) Scatter plot of prediction vs actual value
with Linear regression.

(b) Scatter plot of prediction vs actual value
with Random Forest regression.

(c) Scatter plot of prediction vs actual value
with LGBM regression.

Figure 3.22: Different scatter plots for the three models applied: Linear regression, Random forest
regression and LGBM regression. Notice how the R2 score and mean square error are worse for 3.22a
compared to the other two methods. This explains the very sloppy displacement of points around the
optimal value, yielding a much more complex relation between the score and its features. Instead,
3.22b and 3.22c are much more accurate, with this last one showing slightly better values for the two
parameters.

YouTube views with the number of comments on release date, highlighting how
these two quantities are heavily correlated.

Audio Feature + Playlist feature + Context Spotify + Context YouTube + Reaction features (Comments only)

R2 score 0.001 0.03 0.05 0.54 0.82

Mean square metric 1.62 1.58 1.55 0.75 0.29

F1 score 0.76 0.77 0.77 0.84 0.92

AUC metric 0.51 0.54 0.54 0.70 0.87

Table 3.2: Accuracy and error on the prediction of the score (continous and discrete). As we can see,
big improvements appear when the model is trained considering YouTube context.
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Figure 3.23: Scatter plot of the YT views of each song vs its number of comments in log-log scale.
Notice how the two quantities show a great statistical correlation.
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Chapter 4

Discussion and conclusion

The music industry is undergoing a great change in the conception of music
production, led by streaming (Spotify, YouTube, etc.) and music video platforms
(YouTube). In this new scenario, a lot of new data about music consumption
has surfaced, creating the premises for a more data-driven approach to this
field. In this study, we focused on the analysis of a genre-emerging pattern
for temporal publication data and on the prediction of success. For the first
objective, we obtained no correlation between song’s release date and their genre,
even though we found that a higher number of songs was released in certain times
of the year (i.e. February/March and September/October). For the second
objective, we were able to produce a model that could predict the success score
of a song with good accuracy and noted that, for YouTube ordered views, the
YouTube-contextual information presented was relevant to the refinement of the
prediction, thus showing the influence of video counts and channel subscribers
to the view number for a song’s video.

Our findings entails two results: first, we defined a metric of success that
discounts the contribution of an artist’s past performance; second, we assessed
the predictive potential of track features grouped by availability over time, thus
providing a reference of how predictable success is during the life cycle of a song.

Future research could establish how the prediction of success could be im-
proved before the release date of a song. For instance, more audio features
(presently obtained from Spotify API) could be engineered to provide a better
description of the sound qualities, including, for example, the presence of spe-
cific melodic patterns (e.g. the millennial whoop), instrumental devices (e.g.
auto-tune), or even lyrics characteristics.

Moreover, information about music advertisement and promotion, especially
on social media, would likely provide insights about the success score. Social
networks have gained a big influence on society in the last years and have enabled
artists to establish a more direct relationship with their the public. TikTok, in
particular, is regarded as the platform where many new talents emerge and
songs become popular together with their viral video. Therefore, quantifying
how often a track is embedded in videos, or how many citations a song (or its
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artist) received in social media, could be relevant to improve success prediction
before the publication date.
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