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Abstract

Deep neural networks are one of the most promising technologies in the IoT field, never-
theless they require a high number of operations to be executed. IoT application devel-
opment is often subject to strict limitations in terms of hardware resources, which makes
it complex to use deep machine learning techniques on edge devices. Additionally, edge
computing often requires low execution times, in order to be suitable for real-time ap-
plications. The above contrasting requirements place a challenging technology problem,
which can be addressed by deploying deep neural networks on an efficient and optimised
hardware. Field programmable gate array (FPGA) can be a viable alternative to GPUs
to accelerate deep neural network inference, even on edge devices. In this thesis, we
propose an assessment of ConvNets performance, achieved through Vitis-AI on a Zynq
UltraScale+ MPSoC. The assessment is done by testing a set of Mobilenets, which has
been obtained by varying the width multiplier and the input resolution, on different
FPGA configurations, that are obtained by varying the allocated resources to the deep
learning processing unit. On one hand the results show a high throughput, which is
compatible with real-time application, even on the smallest available FPGA architecture.
On the other hand, all models suffer a large accuracy reduction, that is due to the need
to use the post-training quantization technique. Although, taking into account, as an
upper-bound, the achievable accuracy using a quantization aware-training technique, the
results show that the deployment of deep neural networks on FPGA is a viable option.



Contents

1 Introduction 5
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11
2.1 Mobilenet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Width Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Resolution Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Field Programmable Gate Array - FPGA . . . . . . . . . . . . . . . . . . 12
2.3 Zynq UltraScale+ MPSoC Overview . . . . . . . . . . . . . . . . . . . . . 13
2.4 PYNQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Xilinx Vitis AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Deep learning Processing Unit - DPU . . . . . . . . . . . . . . . . . . . . 18

3 Assessment Organization 21
3.1 DPU overlay generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Post-training quantization . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Quantization aware-training . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Quantized models evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Models compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Deployment on the Zynq UltraScale+ MPSoC ZCU104 board . . . . . . . 28

3.5.1 CPU and FPGA workload . . . . . . . . . . . . . . . . . . . . . . . 28

4 Experimental Results 31
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 B4096 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 B512 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Other Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Lookup Table Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Rules of thumb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



5 Conclusions 37

Bibliography 39

3



4



Chapter 1

Introduction

1.1 Context
Nowadays a massive amount of data is made from sensors and smart devices and the
increase of computing power is bringing a change in the data analysis field, more and
more services and algorithms are run on the edge rather than exclusively in the cloud.
Specifically, deep learning models are bringing the greatest innovations, concerning the
data analysis areas [28]. We live in a connected world thanks to the spreading of stor-
age and computing devices, such as data centers, personal computers, smartphones and
wearable devices. According to the Statista document [26], There are 13.1 billion con-
nected devices at the end of 2022, meanwhile the installed ones are much more with a
number evaluation of 42.62 billion. Furthermore, the forecasted number of connected
devices in 2030 is 29.4 billion, which means a 350% increase in a decade according to [26].
The thriving increase in the data sources for big data pushes for a paradigm shift: from
a centralized data analysis on large-scale data centers to a decentralized computing on
edge-smart devices. Nevertheless, the decentralized paradigm creates severe challenges
on the network capacity [2]. In addition to the network workload increasing, there are
some applications that have tight latency constraints and security availability require-
ments, which are incompatible with a long range communication with a cloud server;
such applications require the edge computing paradigm for the implementation [7].

Given the above reasoning, edge computing is a promising technology to be used as an
alternative to the cloud computing [21], specifically, for the time constrained applications.
Although, the hybrid approach using both cloud and edge computing brings major ad-
vantages such as: reduced network usage, response speed improvement and cloud backups
[18].

The increased computation power and data availability has allowed a considerable
diffusion and use of deep learning techniques, these algorithms have had a major impact
in the fields of computer vision and natural language processing [3], [17]. Although, same
special application domains, such as autonomous driving and the more general concept
know as Internet of Vehicles are limited due to the following factors [28]:

• Communication cost: constant communication between edge devices and cloud
servers without splitting the computing phase over both devices lead to a massive
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amount of stress on the network infrastructure.

• Latency: There are not guarantees that the access time to a cloud server is al-
ways below a given threshold and might exceed the time requirement for critical
applications as cooperative platooning or cooperative autonomous driving [16].

• Reliability: In presence of network failure the access to a cloud service it is not
guarantee, which is a major issue for many industrial application.

• Privacy: Sending data acquired from sensors and required for deep learning appli-
cations could pose security and privacy issues.

The above mentioned challenges of the IoT and deep learning can be relieved by
edge computing since its proximity to the users. The convergence of edge computing
and artificial intelligence is pushed since they benefit each other by providing an edge
intelligence. The aim is to achieve edge intelligence, which will push the transition from
the cloud to the edge computation [28]. This approach brings multiple benefits:

• A little-big design can be used with a small deep learning model deployed near the
final user and a big neural model deployed on the cloud server ready to be used
when additional computing power is required, thus reducing the network usage and
the application latency [14].

• The reliability of the application is increased since the edge intelligence can be
exploited, even in the presence of network failures.

• Privacy issues can be relieved, as data can be saved on the edge or can be aggregated
prior to transmission.

The effort to bring neural networks to the edge is justified by the daring increase in
research in this area in recent years. A set of different models, such as Convolutional
Neural Network (CNN or CovNets) and Recurrent Neural Networks (RNN) have been
developed and tested for image, speech and video recognition tasks. The state-of-the-
art models have reached a classification accuracy, object detection capability and feature
extraction proficiency such as to allow their implementation within finished and usable
software products.In general, neural networks and specifically deep learning models have
a high approximation capability which makes them a perfect candidate for a wide range
of tasks and a promising solution for many artificial intelligent applications [27]. The high
approximation capability is fundamental in order to be subject to the required techniques
for the implementation on edge devices.

Although, deep neural networks require a high storage and computational capacity.
Take as an example the largest state-of-the-at model, the Megatron-Turing NLG 530B
with 530 billion parameters [22]. Therefore, in addition to the advantages, the combined
use of AI and edge computing poses new implementation challenges such as the hardware
choice.

The hardware used to enable the edge intelligence range from general purpose com-
puter components to special purpose devices and boards that can be configured or de-
signed specifically for the aim:
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• Graphics Processing Unit (GPU) is the most spread technology, since its compati-
bility and performance.

• Field Programmable Gate Array (FPGA) which is an efficient programmable hard-
ware usually used as a prototyping environment.

• Application Specific Integrated Circuit (ASIC) is special purpose hardware, each
ASIC has a custom design specifically for the aim application.

CPUs are not in the above list because they perform from 10 up to 100 GFLOP per
second, but they have a low power efficiency, that is usually less than 1 GOP/J, therefore
they are not used for deep learning both on cloud or edge computing. Alternatively, the
performance offered by the GPUs, with peak operations up to 11 TFLOP/s, makes them
an ideal candidate for deep learning applications. In addition, GPUs are becoming the
main choice for deep neural networks since the major frameworks such as Tensorflow,
Pytorch and Caffe, support them with easy to use interfaces [27]. Nevertheless, GPUs
use a significant amount of energy during the computation, which is a key performance
metric for edge computing. ASIC design guarantees high throughput and low energy
consumption, but they require a very long development time and high cost compared
with other hardware solutions. Consequently, FPGAs are an excellent trade off between
low power consumption, high throughput and configurability at a reasonable cost [5].

1.2 Challenges

The first challenge encountered deploying neural networks on FPGAs is the need to
compress the network. It is especially necessary for ConvNets as they require a significant
amount of memory. Furthermore, deep learning models are usually trained with weights
and activations stored with floating point representation on 32-bit. Often, in order to
achieve high efficiency, it is necessary to transform the data representation into 8-bit fixed
points, at the same time reducing the memory occupation of the model.

The above is a hardware challenge since not all the FPGAs have all the necessary
memory or do not allow floating point computation. However, the greatest challenge
is due to the lack of widespread tools for implementing deep learning on FPGAs. As
mentioned, neural networks need some steps to be used on acceleration hardware boards,
but there are not standard solutions that provide the necessary flow. Development flow
tools are provided by hardware manufacturers and need to be explored and standardized
to promote the use of FPGAs in the field of smart edge computing.

Finally, there is not an extensive literature available that directly concerns the analysis
and creation of a stable flow for the implementation of deep neural networks on FPGAs.

1.3 Motivations

This thesis work proposes FPGAs as an efficient alternative to GPUs. Thanks to their
high parallelism, FPGAs are an excellent hardware option for the implementation of
deep neural networks, because they are more energy efficient with respect to GPUs [5].
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Moreover, ConvNets hardware accelerators are going towards FPGAs rather than GPUs
accelerators for two reasons. The first reason is that FPGAs are showing high capabilities
for edge intelligence application [1]. The second one is their customization potential as
FPGAs are a configurable hardware accelerator cable to satisfy very different design
constraints. Therefore, this hardware technology is an exciting solution for all embedded
applications that need energy saving and high computation performance at the same time
[4]. Surely the possibility of being reprogrammed makes the FPGA a technology that will
be exploited more and more in the research field, but also in the industrial applications.
This is because the only more efficient and performing alternative is the design of an
ASIC which for obvious reasons is a non-versatile technology, complex to design and with
high access costs.

Finally, this research work was carried out because at the moment there are no stan-
dardized development flows for the deployment of deep neural networks on FPGAs. The
absence of standardized tools is certainly a limitation to the spread of edge computing
as reported in the survey [28]. The presence of tools for the deployment of neural net-
works on FPGAs such as TFlite is for microcontrollers would be a great incentive for the
diffusion of this technology in the edge computing field.

1.4 Contributions

This thesis work proposes a development flow that accepts as input a state-of-the-art con-
volutional neural network pre-trained on the Imagenet dataset and reproduces as output
an executable model which can be deployed on a Xilinx FPGA, the Zynq UltraScale+
MPSoC. The proposed flow is made over the Xilinx Vitis AI environment and the Ten-
sorflow framework and it deals with all the aspects necessary for the treatment of the
models. Here are listed all the phases of the developed flow:

• The retrieval of the models required through the Tensorflow framework. The soft-
ware is optimized to download and stores all the Mobilenet models that we have
used during the thesis work, but other Convnets can be optimized by the flow as
well.

• The preparation of the validation datasets starting from the Imagenet validation
dataset by applying the required pre-processing and selecting the images for the
quantization phase.

• The quantization of the models according to the post-training quantization tech-
nique and the storing of the intermediate models representation which still are able
to be evaluated through the Tensorflow framework.

• The evaluation of the quantized models and non-quantized models in terms of ac-
curacy. All the evaluations are executed on the previously mentioned validation
dataset.

• The compilation of the quantized models in the instruction set of the FPGA. Each
model is compiled for each FPGA hardware configuration that was tested.
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1.4 – Contributions

• The deployment of the compiled models on the board and the evaluation of the
models in terms of throughput.

During the thesis eight different FPGA hardware configurations are made and eval-
uated over the Zynq UltraScale+ MPSoC. The proposed architectures are generated by
selecting different resource utilization on the FPGA.

Thanks to the proposed development flow sixteen different Mobilenets are tested for
each FPGA hardware configuration. The testing phase had the objective to evaluate the
performance obtained in terms of inference speed and the accuracy by the models once
run on the board.
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Chapter 2

Background

2.1 Mobilenet
The Mobilenet model is an efficient convolutional neural network, which is developed by
Google Inc. and it is designed for the image recognition task. The main purpose of the
model is to be a flexible, small and low latency model that can be easily shaped to meet
the design constraints for embedded vision and edge mobile applications [6].

The Mobilenet main objective is optimizing the latency. In order to reach its goal the
neural network is built of depthwise separable filters, which are an alternative version of
the standard convolution layers. The depthwise separable convolution splits the filter and
the combination phases in two different layers, as opposed to the traditional convolution.
Thanks to this technique, which is extremely efficient, the Mobilenet significantly reduces
both the model size and the number of operations for each layer [6]. In table 2.1 the
Mobilenet topology is shown.

The above reasoning shows how the model achieves low latency, instead the flexibility
is guaranteed by two parameters the α so called width multiplier and the resolution
multiplier.

2.1.1 Width Multiplier

The task of the width multiplier parameter also known as α is to shrink the Mobilenet
uniformly at each layer. For a given layer holds the formula (2.1) provided by [6], where
Df is the width and height of the input feature map, Dk is the dimension of a square
kernel, M is the number of the input channels, N is the number of output channels and
α ∈ (0,1]. By varying the width multiplier parameter can be applied a trade off between
accuracy and latency and in this thesis the set [1, 0.75, 0.5, 0.25] is used.

Dk · Dk · αM · Df · Df + αM · αN · Df · Df (2.1)
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Figure 2.1: Mobilenet Architecture from [6]

2.1.2 Resolution Multiplier

The other parameter is the resolution multiplier also known as input image resolution,
because in practice it is set by the input resolution. By changing this parameter all the
Mobilenet layers are reduced by the same multiplier. For a given layer holds the formula
(2.2) provided by [6], where ρ is the resolution multiplier. In this thesis the resolution
parameter is used with these values: 224, 192, 160 and 128.

Dk · Dk · αM · ρDf · ρDf + αM · αN · ρDf · ρDf (2.2)

2.2 Field Programmable Gate Array - FPGA

FPGAs are a flexible hardware device for implementing custom functionality at a low
design and production cost. In order to be an off-the-shelf programmable device, they
are made by a set of programmable logic cells, also known as configurable logic blocks.
The cells are linked by an interconnection network, which can be programmed as the logic
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2.3 – Zynq UltraScale+ MPSoC Overview

blocks. Additionally, around the device, there are a set of input and output connections
in order to link the programmable logic with the outside system. The programmable logic
is also equipped with other components, such as digital signal processing (DSP) blocks,
which are the embedded blocks in charge of compute intensive arithmetic operation,
such as convolution operations for the deep learning algorithms. The memory on-chip
is composed of block RAMs (BRAM), lookup tables (LUT) and flip-flops (FF). Finally,
there are other essential hardware components, such as the clock management unit and
high speed I/O links [20]. Figure 2.2 shows the structure described above.

Figure 2.2: FPGA basic schema

FPGAs are an optimum hardware solution for both battery operated devices and cloud
servers and can be considered a deep learning accelerator as they have high hardware
parallelism and associative operations. Moreover they are candidates for edge computing
and edge intelligence applications, thanks to the high efficiency and flexibility. In addition,
the possibility to make deep pipeline and multi thread firmware is the perfect spot for
the feed forward step execution in neural networks [20].

2.3 Zynq UltraScale+ MPSoC Overview

The Zynq UltraScale+ MPSoC ZCU104 is an evaluation board whose purpose is to en-
able the design and testing of embedded machine learning vision tasks and applications,
figure 2.3. The board is meant to build, prototype and test accelerated software applica-
tions such as drones and medical imaging, Advanced Driver Assistance Systems (ADAS)
and surveillance.

The diagram shown in figure 2.4 represents the on board microchip Zynq UltraScale+
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Figure 2.3: Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC photo taken from [13]

XCZU7EV-2FFVC1156 MPSoC. It is composed of a Processing System (PS) and a Pro-
grammable Logic (PL). The processing system is equipped with 2 GB DDR4 RAM and
three processors:

• Application Processing Unit which is a quad-core Arm Cortex-A53 ,with a frequency
up to 1.5 GHz

• Real-time Processing Unit (RPU) which is a dual-core Arm Cortex-R5, with a
maximum frequency of 600 MHz

• Graphics Processing Unit (GPU) which is a Arm Mali-400 MP2, with a frequency
up to 667 MHz

In addition, it is equipped with high speed connectivity such as DisplayPort v1.2a, USB
3.0, SATA 3.1, PCIe 1.0/2.0 and PS-GTR. Finally, the processing system is equipped
with general connectivity such as GigE, USB 2.0, CAN, UART, SPI, quand SPI NOR,
NAND and SD/eMMC [12].

The programmable logic is a 16nm FinFET+ FPGA that is the home of the Deep
learning Processing Unit (DPU) [11][8]. It is equipped with a Block RAM that is the
standard on-chip random access memory for FPGA, useful to process big data amounts
without access to the processing system DDR4 RAM. Furthermore, the Ultrascale+ de-
vices are equipped with a Ultra RAM that is a larger and flexible memory block. This
new type of memory block provides up to 500 Mb of excess data storage directly available
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on-chip [9]. Finally, the programmable logic has a video codec unit which incorporates
the standards H.264 and H.265 and it is linked with the processing system with a high
speed connectivity PCe Gen4 [12].

Figure 2.4: Hardware diagram of the Zynq UltraScale+ MPSoC

15



Background

2.4 PYNQ
PYNQ is an embedded open-source python project made by Xilinx in order to be deployed
on several Xilinx platforms and it is installed on the Zynq board by means of a bootable
linux image.

Figure 2.5: PYNQ application schema

This project enabled software developers without hardware design experiences to ac-
cess the potential of the XIlinx Programmable Logic and Deep learning Processing Unit.
The key features of PYNQ which allows an easy use of the Programmable Logic is the
PYNQ overlays combined with the possibility to code in Python language. These over-
lays are ready to use hardware libraries made by hardware engineers, which are provided
to embedded developers, as software libraries are provided to application developers.
Therefore overlays are FPGA designs that provide a software python interface which
links together the software running on the processing system and the firmware running
on the programmable logic that is hardware accelerated. Using the PYNQ overlays it
is possible to make a hardware accelerated application without hardware expertise using
premade python wrappers of FPGA designs. The starting point of a PYNQ software that
uses overlays is the loading of the base overlay which is the reference design of the board
made by the Xilinx Vitis AI platform. The base overlay is composed by three files:

• a bitstream file in order to shape the FPGA connections.

• a Vivado design file to set up the programmable logic IP

• a bit file that provides the python wrappers

The configuration files of the base overlay are made by the Vitis AI environment when a
new deep learning processing unit is created.
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2.5 Xilinx Vitis AI
The Vitis AI development environment is the set of tools and libraries given by Xilinx in
order to deploy deep neural networks on the Xilinx boards. It is distributed by a Docker
system which includes machine learning frameworks, Vitis AI models, development mod-
ules and DPU overlays.

Figure 2.6: Xilinx Vitis AI block schema

The frameworks made available are: Tensorflow 1 and Tensorflow 2, PyTorch and
Caffe. Any framework has its own development flow inside the development environment
and its own Vitis AI Classes and Methods. The neural network models can be taken
by the Vitis AI model zoo which contains a selection of pre-optimized models already
quantized and ready to be deployed on the Xilinx devices, on the other hand custom
models can be imported inside the development environment and optimized by the user.
The Vitis AI development kit provides multiple software utilities useful to transform a
custom model into a deployable model on a Xilinx board or device. These utilities are
[10]:

• AI Optimizer: An optional utility that reduces the model complexity by pruning
its neurons

• AI Quantizer: It is a fundamental step in order to deploy the model on the DPU.
It transforms a floating point model into a fixed point 8-bit integer model and it
supports post-training quantization and quantization aware-training. Following the
Tensorflow 2 flow the quantizer is a Python class able to load a float model either
in h5 format or saved model format and it requires a representative calibration
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dataset which is used to calibrate the model weights. The dataset can be a subset
of the train or validation one, we used 4096 images taken by the imagenet validation
dataset.

• AI Compiler: It is the utility which transforms the quantized model in a format
that is compatible with the DPU microarchitecture. Both the tensorflow 1 and 2
made available a compiler that is callable from a shell command. The command
requires as input the quantized model by Vitis AI and an arch file containing the
fingerprint of the target DPU.

• AI Profiler: It is a built-in utility that analyze efficiency of the model

• AI Library: It is an API able to link the code written by the software developer
with the DPU through the Vitis AI Runtime.

2.6 Deep learning Processing Unit - DPU

Figure 2.7: DPU hardware diagram

The Deep learning Processing Unit is the fundamental feature of the board, it is a set of
parameterizable IP cores that are implemented on the programmable logic of the Xilinx
board. The DPU has a specialized instruction set designed in order to accelerate the
software application for computer vision as deep neural networks [8]. As an example the
above mentioned instruction set supports a set of layers such as: convolution, depthwise
convolution, max pooling and fully connected. The DPU designed for the board Zynq
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UltraScale+ MPSoC ZCU104 is called DPUCZDX8G which means it is designed for CNN
layer, that the quantization method is DECENT, that it is in 8 bit and it is for general
purpose instead of high throughput, low latency or cost optimized [10].
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Chapter 3

Assessment Organization

In this chapter the proposed deployment flow will be analyzed in detail. Here a generic
introduction to its functioning is made and in the following sections each phase is analyzed
point by point.

By observing the figure 3.1 it can be immediately understood that the flow is divided
into three main phases: the model building, the hardware building and the deployment
phases.

Figure 3.1: The proposed deployment flow

The hardware building phase is done on the host computer. The objective is the
creation of different DPU overlays in order to program the hardware configuration of the
FPGA. These overlays are made with the DPU-PYNQ environment, which creates the
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DPU specifically for the PYNQ environment that is installed on the Zynq board. The
two main results of this flow are the overlay files and the fingerprint file. This phase is
the first one that must be executed, because the resulting files are mandatory to execute
the other two flows.

The second phase is the model building one, which is also executed on the host com-
puter. The main operations are the quantization and the compilation that are paramount
to have a deployable deep neural network graph. These steps are done by the proposed
Python building script, thanks to the Vitis AI library. It is important to notice that the
compiler requires the fingerprint file created in the previous flow.

The last flow is the deployment on the Zynq Ultrascale+ MPSoC, obviously this is the
last phase to be done as it requires the compiled model from the model building flow and
the DPU overlay files from the hardware building flow. During this phase is executed the
testing script in Python that evaluates the inference throughput of the compiled model
on the FPGA.

3.1 DPU overlay generation

The first step in order to deploy a neural network on the programmable logic of the
embedded device is the creation of the PYNQ DPU overlay. The overlay is made on
the host computer of the developer thanks to the Vitis AI environment which uses the
Vitis Software Platform in order to synthesize the hardware description. All the DPU
configuration knobs can be modified by a configuration file on the development docker
system by setting the corresponding flag. All available configuration parameters are listed
below:

• Architecture of the DPUCZDX8G

– This knob is related to the level of parallelism of the convolution unit.
– The available preconfigured designs are: B4096, B3136, B2304, B1600, B1152,

B1024, B800, B512.
– The above mentioned numbers in the architecture’s names are the peak op-

eration clock that is possible on the given architecture. As a result of the
parallelism the B512 has a peak operation/clock of 512.

• Number of cores

– This knob sets the number of DPU instantiated and the maximum of four IP
cores can be configured.

– It is set by default to 1.

• Ram usage

– This knob selects the amount of on-chip memory (BRAM) used in the DPU
architecture which stores the intermediate data as weights, biases and activa-
tions.
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– The available options are high or low. They correspond to a fixed amount of
BRAM for a given DPU architecture.

• DSP usage

– This knob can be set high or low.
– The low configuration will use DSP only for multiplication in the convolution.
– The high configuration will use DSP for both multiplication and accumulation.

• Low power mode

– This option can be on or off and it disables the PE clock when the DPU is
idle.

• Extra operations

– Channel augmentation
– Depth wise convolution
– Average pooling
– Element wise multiplication
– ReLU type
– Softmax

The compilation makes the three overlay files descripting the FPGA hardware, the
hardware description fingerprint file that is the input of the Vitis AI compiler and a
report with all the features of the DPU. The report shows useful parameters in order
to compare the different DPU architectures such as lookup table, lookup table used as
memory, registers, BRAM cells, URAM cells and digital signal processor number.

LUT LUTasMem REG BRAM URAM DSP
B4096 102319 11355 195936 168 92 1380
B3136 87435 7676 157763 146 84 1096
B2304 78380 6663 136841 124 76 844
B1600 70699 5744 116418 102 68 624
B1152 61818 5108 92833 36 76 424
B1024 63380 4832 94259 90 30 436
B800 56357 4428 80137 30 68 314
B512 51371 3740 67278 26 30 220

Table 3.1: DPU hardware features

It can be seen in table 3.1, that in general, reducing the number of operations re-
quired per clock results in a reduction in the use of all seven different types of resources.
However, the B1152 architecture has an increase in URAM compared to the B1600 and
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unexpectedly has fewer LUTs, REGs, BRAMs and DSPs than the B1024. This peculiar-
ity will have an effect on the final results which can be appreciated in particular in the
figure 4.3.

The other DPU options are taken constant during the experiments and they are set
as follow: The core number is set to one, the RAM usage is set to low, the DPS usage
is set to high, the low power option is disabled, the channel augmentation is enabled,
the depth wise convolution is enabled, the average pooling is enabled, the element wise
multiplication is disabled and the ReLU leaky option is enabled.

3.2 Quantization

Neural networks are trained with a 32-bit floating point representation for both weights
and activations. Inference is usually performed with this floating point representation,
nevertheless, both tasks can be performed with a reduced numerical representation with
a small accuracy loss. Quantization can be applied to either weights or weights and
activation (3.2) and the target representation can be a smaller float format such as 16-bit
float, a fixed representation such as 8-bit integer, or a custom representation. There are
three types of benefits using the quantization technique:

• Time and energy cost reduction to access the memory.

• Since operations can be performed on small, fast and efficient hardware, better
performance is achieved even in the computation phase.

• The appropriately quantized model can be run on hardware platforms without the
floating point unit (FPU), allowing deployment in otherwise impossible environ-
ments.

Given the above reasoning the 8-bit integer representation is the most used option,
since the computations can be performed by the ALU without a FPU. it is also the min-
imum unit register format inside the CPU and the RAM is byte addressed. A smaller
representation would require either custom hardware support or custom packing/unpack-
ing drivers. Finally, as shown in figure 3.2, the quantization technique can be applied in
two different ways that are presented below.

3.2.1 Post-training quantization

The quantization performed during this thesis is called post train quantization which
means that the model is trained in the normal floating point format and after the train-
ing phase the weights and activations are recast to a lower precision format that in this
case is the fixed point integer over 8 bit. The advantages of this method are its simplicity,
the possibility that the model does not need to be retrained and the labels of the train
or validation dataset are not necessary. This advantage was necessary because the train-
ing of a state-of-the-art network on the imagenet dataset would have been impossible
given the computational limitations encountered and the timing of the thesis work. The
disadvantage is a significant accuracy drop on complex tasks, especially for small neural
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Figure 3.2: Quantization methods

networks, as they have a reduced approximation capacity, compared to larger models,
which are more redundant.

There are many conversion techniques to represent a real number using an integer.
The Xilinx Vitis AI quantizer is based on the tensorflow one, therefore it is an affine
quantizer [25] that executes an asymmetric integer quantization. This method is designed
to deal with the ReLU activation, which has not a centered distribution.

realvalue = (int8value − z) · ∆ (3.1)

int8value = realvalue

∆ + z (3.2)

The formulas (3.1) and (3.2) are the implementation of the quantization on Tensor-
flow, where the 8-bit values are in two’s complement. The zero point and the scale factor
are computed either for each tensor or for each channel. Additionally, the zero point is
zero for weights and the 8 bit range is [-127,127], although the zero point is in the range
[-128,127] for the activations, therefore the activation 8 bit range is [-128,127]. [25]

Activations ∆ = amax − amin

2Nbit − 1 z = amax − amin

2

Weights ∆ = 2 · max(|amax|, |amin|)
2Nbit − 1 z = 0

Table 3.2: How to determine ∆ and z

Let be amax and amin the minimum and maximum floating point values in a tensor a,
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the table 3.2 shows how to compute ∆ and z for that tensor. Given the above formulas ∆
and z can be computed for the weights by reading the weights from the neural networks,
instead for the activations these two parameters depend on the input dataset distribution.
Therefore, during the quantization step a calibration dataset is made from the imagnet
validation dataset by selecting 4096 images without their labels and are stored in a
tensorflow format, ready to be input of the Vitis AI quantizer. The calibration dataset
is a set of representative input images that is used to compute amax and amin of the
activation tensors.

Finally, since weights and activations are mapped to 8-bit starting from floating point,
the main layer operation w · x can overflow, therefore the intermediate results must be
stored in a bigger integer representation and then converted back to 8 bit [19].

3.2.2 Quantization aware-training

As mentioned, the post-training quantization technique has the disadvantage of a signifi-
cant accuracy reduction. A solution is found by resorting to quantization-aware training,
i.e. quantizing the model during training, so that the gradient descent based algorithm
takes into account the limited representation of the data on 8 bits and modifies the
weights of the neural network accordingly. However, the quantization during the training
phase generates problems to the gradient descent algorithm, specially with small weights
updates that are converted to zero during back propagation, making it impossible to con-
verge. A solution is adding fake quantization nodes to the models, figure 3.3, therefore
quantization is used only in the forward pass, where the added nodes simulate the quan-
tization effect, but the actual computation is done in float, then for the back propagation
step it is used a differentiable function in order to avoid the quantization nodes [19].

Figure 3.3: Fake quantization node positioning
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In the figure 3.3 can be seen where the nodes for the fake quantization have been
inserted both for the weights and for the activations, in particular thanks to the node
for the quantization of the activations it is possible to directly store the values amax and
amin so ∆ and z can be computed without needing a quantization dataset.

3.3 Quantized models evaluation

To evaluate the accuracy of the quantized models, the entire validation dataset of im-
agenet was used, which includes 50,000 images, 1,000 classes and 50 images per class.
The dataset was pre-processed and saved in a TFrecord data structure, so that it could
be read easily by the validation script executed within the Vitis AI environment. The
dataset thus read from the TFrecord file has undergone a further pre-processing in order
to reflect the pre-processing originally performed to train the Mobilenets [15]. The met-
ric selected for the evaluation was the categorical accuracy provided by Tensorflow and
evaluated in the two variants top-1 and top-5 [24].

3.4 Models compilation

The purpose of the Vitis AI compiler is to convert the instruction set of the quantized
network graph to a DPU instruction set by applying optimization techniques. The Vitis
AI environment compriend a family of compiler ables to target any Xilinx DPUs for
different boards.

Figure 3.4: Xilinx AI Compiler detailed schema

Figure 3.4 shows the compiler steps in order to convert the instruction set. The
first step is the parsing of the quantized network graph aiming to create an intermediate
representation (IR). During the second step on the IR are applied multiple optimization
techniques, such as node fusion, inherent parallelism exploiting and data reuse. The last
step generates the Xilinx model, which is compatible with the selected DPU architecture
and is based on the DPU instruction set, that in this thesis is the DPUCZDX8G [10].

Among the available compilers we used the Tensorflow 2 one, which requires as input
the graph of a neural network originally created and trained with Tensorflow 2 and then
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quantized with the Xilinx quantizer. The quantized model is still in the pb format and
it is converted in the xilinx model format thanks to the above mentioned procedure.
Additionally, the file containing the DPU fingerprint with json extension is also required.
There is one fingerprint file for each DPU and they were generated when the DPU was
created.

3.5 Deployment on the Zynq UltraScale+ MPSoC ZCU104
board

The deployment of the neural networks on the board starts by uploading the base overlay,
which is the reference design of the board made by the Xilinx Vitis AI platform. The
base overlay is made up of three files: the bitstream file, the Vivado design file and the
bit file that provides the python wrappers. They are made during the DPU generation
and there are a specific trio of files for any DPUs. Other than configuration files, also
the neural networks obtained from the compilation process must also be uploaded on the
Zynq board. The neural models are in the Xilinx format after the compilation, which is
a single graph file with extension xmodel.

The communication with the Xilinx board takes place via the ethernet cable, through
which it is connected to the server. Once a connection with the development server
has been established, the board can be reached with the internet browser. The Zynq
operating system and the PYNQ application expose a Jupyter Notebook environment
thanks to which it is possible to control the device. Therefore, the uploading operations
of the files to the device, viewing and executing Python source code and executing bash
commands via a linux shell are possible thanks to the Jupyter Notebook environment.

On board of the Zynq UltraScale+ MPSoC device a Python script was executed in
order to test all the mobilenets with all the DPU architectures. The software we created
accepts as input the hyper parameters of the mobilenet model that must be tested and
the name of the DPU on which you want to test. Then the script performs the latency
test by submitting 200 images of the imagenet validation dataset to the neural network
and calculates the preprocessing time, the inference time and the total time of both
the operations. The tests were performed with 200 images because these guarantee an
accuracy of 99% on the measurement of the inference time, of 95% on the measurement
of the preprocessing time and of 96% on the total time. The confidence interval was
evaluated with a confidence level of 99%.

3.5.1 CPU and FPGA workload

It is important to note that not all the code executed on the Zynq device is executed on the
FPGA areas. All the normal Python code is executed on the quad-core Arm Cortex-A53,
instead only the hardware accelerated code is executed on the programmable logic. The
software we have deployed on the Zynq board executes the preprocessing of the images
and the computation of the timing measurement on the CPU, instead the Mobilenet feed
forward pass is executed on the FPGA specially configured by the selected DPU.

Furthermore, it should be noted that all the computations performed on the CPU can
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be performed in 32-bit floating point, while only the operations performed on the FPGA
need to be performed in 8-bit fixed point format. For this reason, the Arm Cortex-A53
processor is also in charge of converting the incoming and outgoing data to the neural
network.

By analyzing the graph of the neural networks in the Xilinx format, it is possible to
see the exact position of the nodes where the conversion of the data from floating point
to integer is done. As you can see in the figure 3.5 these nodes are called upload and
download and they refer to the upload operation of the data on the FPGA and to the
download operation of the result of the inference on the CPU.

Finally, as can seen from the figure 3.5 the softmax node is not executed on the
FPGA and for this reason this node has been implemented by us in Python code within
the testing script and it is also executed on the CPU.

Figure 3.5: Input and output section of the Mobilenet 1.0 224 model graph
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Chapter 4

Experimental Results

4.1 Methodology

The images used for the quantization and validation of the quantized models were taken
from the ILSVRC 2012 imagenet validation dataset. Starting from this dataset, the
quantization dataset was generated by shuffling the order of the original images (seed 42)
and then extracting the first 4096 images. Instead, the validation of the quantized models
was done on the entire validation dataset of imagenet ILSVRC 2012 which contains 50,000
images. All the operations listed above were performed by the tf2_makeDatasets.py script
which saved the result inside the TFrecord data structures. This script was run inside
a virtual environment containing Python version 3.7.5 The quantization, validation and
compilation of the models are instead performed by the Python script tf2_vai_flow2.py
executed within the docker environment of Vitis AI version 1.3.2. The hardware design of
the DPUs was performed within the xilinx/vitis-ai docker:1.3.411 in conjunction with the
Xilinx Vitis Unified Software Platform 2020.2 development environment and the Xilinx
Runtime Library (XRT) 2020.2. The electronic board used is the Xilinx Zynq UltraScale+
EK-U1-ZCU104-G on which PYNQ v2.6 has been installed. With this configuration, the
version of Python available on the board is 3.6.5, thanks to which the test_mobilenet.py
script was executed to perform the latency tests of the mobilenet v1. Latency tests were
done with 200 images from the ILSVRC 2012 imagenet validation dataset.

4.2 Results

Here will be analyzed a set of graphs, each for any DPU architectures. Any graph has a
Pareto frontier in order to focus the attention on the efficient choices. The first two will
be the best and the worst DPU architectures in terms of hardware resources availability,
that will be analyzed in detail, then the remaining architectures will be presented. In all
the following graphs the conventional measure of accuracy is shown which is called Top-1
accuracy, with this measurement the response expected from the model must be exactly
the one with the highest probability value. Sometimes references are made to the Top-5
accuracy, which instead refers to a measurement that considers the network response
correct if the expected response is present in the five classes with greater probability.
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Furthermore, the number of frames per second indicated in the graphs is calculated from
the total of the preprocessing and inference times.

On one hand the results show a high throughput, which is compatible with real-time
applications, even on the smallest available FPGA architecture. On the other hand, all
models suffer a large accuracy reduction, if the proposed post-training quantization tech-
nique is used. Although, taking into account, as an upper-bound, the achievable accuracy
using a quantization aware-training technique, the results show that the deployment of
deep neural networks on FPGA is a viable option.

Finally, it is important to notice that the throughput results expressed in FPS are
taken from the measurements done on the Zynq UltraScale+ MPSoC within the testing
script proposed by us. Instead the showed accuracy results are an achievable upper-bound
obtained by Tensorflow developers thanks to the quantization aware-training technique
[23] on which the Vitis AI quantizer is based.

4.2.1 B4096 Architecture

Figure 4.1: B4096 is the best performing DPU architecture

Figure 4.1 shows the results obtained with the best performing DPU architecture
in terms of number of operations per clock. As you can see from the graph, the four
neural networks with the alpha parameter equal to 1 are the choice to be made if you
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want to maximize accuracy. As you can see in the figure 4.4, this feature is shared with
all architectures except the B512. It is interesting to note that with the performances
offered by this DPU, even the most accurate network (70.1 % top-1 and 88.9 % top-5),
and therefore also the most demanding of resources, is able to exceed the threshold of 35
FPS considering both preprocessing and inference. This result guarantees the possibility
of using this architecture with the most accurate model even in a real-time environment.
In addition, it should be noted that the fastest network on each architecture, which is
Mobilenet 0.25 128, on the B4096 is capable of reaching a throughput of 61 FPS. This
is the maximum result obtained in terms of speed, taking into account the total time
including preprocessing and inference.

4.2.2 B512 Architecture

Figure 4.2: B512 is the DPU architecture with less resources

After the best performing DPU it is interesting to analyze the smallest one, the so-
called B512 architecture. As can be seen in figure 4.2, the fastest model and the more
accurate one remains the same as on the B4096 architecture. With the B512 architecture,
however, the most accurate network does not allow to obtain a minimum of 30 FPS,
therefore to exceed this threshold you have to sacrifice a bit of accuracy by reducing the
size of the input image. It is interesting to notice the best throughput, that is equal
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to 60 FPS, because it is not far from the result obtained on the B4096, therefore if
the hardware resources optimization is taken into account, the best choice is the B512
architecture. Finally, this architecture is the only one that does not have all the networks
on the Pareto frontier in common with the other architectures. Specifically, Mobilenet
1.0 160 is replaced by Mobilenet 0.75 192.

4.2.3 Other Architectures

Analyzing the results obtained on the remaining architectures, figures 4.4, it is observed
that, on the one hand, considering the lightest and fastest network, the Mobilenet 0.25
128, the performance in terms of latency does not vary much between one architecture
and one other. On the other hand, if we consider the slower, but more accurate model,
the Mobilenet 1.0 224, it can be seen in table 4.1 that the latency varies significantly with
the architecture. Therefore, if execution speed and resource savings is prefered, the B512
architecture is the best choice from every point of view, if instead accuracy is the primary
target, the choice of architecture must be chosen based on the latency requirement.

B512 B800 B1024 B1152 B1600 B2304 3136 B4096
Min FPS 26.28 29.08 30.95 27.05 34.08 35.32 36.17 37.64
Max FPS 60.74 60.88 61.34 61.13 61.34 61.38 61.45 61.45

Table 4.1

4.2.4 Lookup Table Analysis

Figure 4.3 shows the number of FPS in relation to the number of lookup tables available
to each DPU. For this reason, each curve is made up of eight points, each of which
represents the number of lookup tables available for the given architecture. For practical
reasons, the performances of four different models are shown, obtained by varying the
width multiplier parameter. The figure 4.3 shows an interesting fact; switching between
DPU architectures leads to a different increase, in terms of FPS, depending on the alpha
parameter of the model. Lower is the alpha parameter, lower is the FPS increase by
changing the architecture; Higher is the alpha parameter, higher is the FPS increase by
changing the architecture.
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Figure 4.3: The graph shows the variation of FPS obtained by varying the number of
LUTs available on the DPU

4.3 Rules of thumb
Here are some general considerations regarding the outcomes deriving from the analysis
of all the graphs and numerical outputs, that can summarize the results obtained and
provide a quick starting point for the choice of the most suitable networks and FPGA
configurations in function of the desired system:

• If the goal is to have the highest accuracy, it is necessary to keep the width multiplier
equal to one and select how many FPS to obtain thanks to the size of the input
image. By varying the image size parameter, a very high increase in inference speed
is obtained at the expense of a small loss of accuracy.

• If the aim is to exceed the threshold of 50 FPS it is necessary to lower the width
multiplier, thanks to which it is possible to exceed the threshold of 60 FPS. However,
this increase in preprocessing and inference speed leads to a notable decrease in
accuracy.

• Speaking of architectures, choosing a DPU with a high number of resources is
advantageous only if you want to use a high width multiplier parameter, instead
with a neuron number decreasing there is no saving by using a DPU with a high
number of resources, in these conditions it is better to opt for the architecture that
uses the least number of possible resources.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4
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Conclusions

In the research carried out during this thesis, we implemented and tested a deployment
flow for hardware accelerated deep neural networks on FPGA. The proposed development
flow that deals with model preparation, programmable logic configuration and testing,
allowed us to execute different Mobilenets topologies on the FPGA on board of the Zynq
UltraScale+ MPSoC.

The accelerated implementation of the Mobilenets on the FPGA has got excellent
performance on all the DPU configurations. The fastest model has a throughput of 61
FPS on the best performing DPU and 60 FPS on the smallest DPU configuration, with a
top-1 accuracy of 39.5%. Instead, the more accurate model, which is also the slowest, has
a throughput of 38 FPS on the fastest DPU and 26 FPS on the smallest one, with a top-1
accuracy of 70.1%. The results show a high throughput, which is compatible with real-
time edge applications, even on the smallest available FPGA architecture. Therefore, it
can be said that the deployment of deep neural networks on FPGA is an excellent design
choice, although it is necessary to be very careful in the quantization phase to avoid
excessive accuracy reduction of the models.
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