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Summary

The increasing adoption of the Cloud Computing paradigm made Kubernetes the
de facto standard for most service providers. Kubernetes is an open source orches-
trator platform to easily coordinate, manage and scale containerized workloads and
services running in pods. A pod is a wrapper containing one or more tied containers
designed to collaborate in pursuing a common goal. Since the pod represents the
smallest scheduling unit, its integrity verification becomes necessary, to react fast
to certain types of tampering, attack, or unexpected execution on a cluster node.
The importance of such verification relies upon the final user concernment, which
cannot take security assurance for granted: another user of the Cloud, an attacker,
or even the Cloud provider itself, can gain access to the nodes and pods running
its applications. Moreover, the COVID-19 pandemic drastically changed how peo-
ple live and work, increasing, even more, the use of the Cloud infrastructure and
consequently the number of cyber attacks. The technique exploited to perform a
trustworthiness analysis of a physical node is called Remote Attestation, a process
in which the job is delegated to an external (i.e. remote) entity commonly known
as the verifier. Remote Attestation works well to validate the integrity of physical
systems and nowadays it is a well-established technique. However, focusing the
attention on containers, and more in general on pods, this process still possesses
criticalities and open challenges. Several solutions have been proposed in recent
years, but they are limited because either they rely on an outdated Trusted Plat-
form Module version, such as DIVE and Container-IMA, or they are specific to a
single container runtime, such as the Docker Container Attestation. This thesis
work exposes a new solution to address exactly the continuous remote attestation
of pods, meaning that the integrity of the underlying host and each pod running
within it is periodically checked and validated, regardless of the container runtime
used. The main goal reached is the possibility to detect rapidly unrecognized ex-
ecutions, intrusions, or tampering in a pod: whenever this happens, the pod is
terminated and rescheduled with a fresh and uncompromised version, without af-
fecting the integrity of the whole node, hence without rebooting the system and
guaranteeing service continuity. Furthermore, the presented solution can be easily
integrated into the Kubernetes control plane, which makes it a valuable starting
point for future work. The solution proposes an attestation framework Trusted
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Computing Group compliant, that relies upon the Trusted Platform Module 2.0,
and it uses a custom version of the Linux ”Integrity Measurement Architecture”
module.
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Chapter 1

Introduction

Over the last few years, there has been an exponential increase in Cloud Computing
adoption, thanks to its numerous advantages. Companies stop buying their own
servers and start migrating towards a new form of elasticity where they pay and
afford resources just according to their needs, getting more flexibility and reducing
the associated cost. Theoretically, these resources are unlimited, they are always
on, any time and any place, increasing the reliability by replicating data across dif-
ferent servers [1]. As a consequence of the Internet of Things (IoTs) diffusion, also
Edge and Fog Computing paradigms start to be employed to cooperate with Cloud
Computing. IoTs are basic devices that transmit over the internet a huge amount
of sensor-collected data for specific purposes. If this data is directly transmitted
to the Cloud Infrastructure, it can potentially lead to an overload of the network.
For this reason, the data is first processed almost locally on edge nodes, which are
physically placed near the devices. Then, the data is sent to the Cloud Infras-
tructure through fog nodes, which perform a second analysis and act as a bridge
between the two. In this way, also IoTs can take advantage of the Cloud Computing
model, with the real-time data analysis they require and without massive overhead.

On one hand, these solutions based on the ”Infrastructure as a Service” model
(IaaS) and the microservices architectural pattern bring a lot of benefits, but on
the other one, they represent a new challenge from the security perspective. Final
users, which in this context are commonly known as tenants, are concerned about
taking security assurance from their cloud provider at face value [2]. In this new
scenario, the applications are not executed anymore in the hardware kept by the
final user, hence it is possible that a third party (i.e. other tenants, attackers, or
even the cloud provider itself) gains easily direct access to private data. According
to the 2022 Verizon Data Breach Investigations Report, system intrusion breaches
are growing through stolen credentials four times more likely than exploiting vul-
nerabilities [3].

The lightweight virtualization technique offers containers as the standard way for
deploying software in the cloud. If a successful attack on a node takes place, either
tampering with the underlying kernel or with any container running on it, then it
could be easily spread across different containers (i.e. applications) belonging to
different tenants. The attack surface of container technologies is made large by the
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Introduction

variety of core components involved: images, registries, orchestrators, containers,
and the host operating system itself [4]. As an example, images could contain vul-
nerabilities and the secrets hard-coded within them can be discovered by malicious
users. Moreover, even though this year misconfigured cloud storage has seen a slight
leveling out, it still represents a dominant trend [3]. In addition, the minimal nature
of IoTs makes them less protected and the perfect target for malware injections.
It is crucial to emphasize that container adoption should be always coupled with
security best practices and a proper orchestration system because even if originally
a container is assumed to be trusted, it could be the target of any kind of software
attack at any time.

For the reasons mentioned above, the run-time integrity verification of the whole
cloud environment began a fundamental process, making the Trusted Computing
(TC) technology a hot topic. Trusted Computing is based on a hardware solution
that consent the remote attestation process, offering a hardware root of trust to
protect the computing infrastructure and billions of endpoints [5]. The organiza-
tion in charge to develop and maintaining the tools and documentation related to
the TC technology is the Trusted Computing Group (TGC), which has established
the Trusted Platform Module (TPM) chip as its core component.

Nowadays Kubernetes has become widespread, due to its open-source nature and
as a consequence of the benefits introduced by Cloud Computing, becoming the
de-facto standard for the orchestration technology. Within Kubernetes, the ”con-
tainer” concept is replaced by means of ”pod”, the smallest scheduling unit, which
can be composed of one or more containers. Datadog’s 2021 Container Report
shows that over the past year the number of pods per organization has doubled [6],
underling the impressive growth that Kubernetes is having.

This thesis work aimed to address the problem of pod integrity verification, based
on the previously proposed solutions. In particular, a new Integrity Measurement
Architecture (IMA) template has been developed to allow discrimination between
measurements entry produced by the host system and by a specific pod. This was
done by exploiting the control group path of the process that generates the entry,
which contains the pod ID. The Keylime framework has been used for the remote
attestation, and it has been extended to provide the related functionalities. Specifi-
cally, it was made able to understand the new IMA template and was provided with
new REST APIs. Finally, the solution has been validated with a testbed composed
of one verifier machine and two attesters.

The thesis’s structure follows this schema. The content of chapter 2 focuses on
the concept of microservices and on the state of the art of the most used container
runtimes, providing also an overview of the Kubernetes architecture. Chapter 3
provides an overview of Trusted Computing, the TPM 2.0 as its anchor technology,
and the Remote Attestation process. The starting point of the proposed solution
is underlined in chapter 4, with the explanation of three solutions developed for
implementing the remote attestation of containers. Chapters 5 and 6 represent the
core of the thesis work, with the design and the implementation of the solution.
Finally, chapter 7 provides the test and validation phase, while chapter 8 contains
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the conclusions and future work.
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Chapter 2

Kubernetes and Container
Orchestration

Currently, the concept of monolithic application has been exceeded by the one of-
fered by microservices: while a monolithic application is self-contained and provides
itself the steps needed to achieve a particular goal, in the microservices paradigm
the application is split into smaller pieces that have to cooperate all together to of-
fer the whole service. Inspired by the successful adoption of tech giants, also many
small companies and startups begin to adopt microservices as a game changer [7].
From the software engineering perspective, the main problems which have been ad-
dressed with this transition are related to modularity, scalability, maintainability,
and fault tolerance of deployed applications [7], since now they can be seen as a set
of separate executable files.

Microservices are weakly associated with each other to guarantee that a change
in a single microservice has a poor impact on another one. To obtain such an isola-
tion degree, many researchers evaluated different virtualization techniques through
performance analysis, pointing out that the best choice was container exploitation
[8]. Containers, entities that emerged with the lightweight virtualization technique,
provide an Operating System-level virtualization method with the same properties
(such as scalability, elasticity, and isolation) offered by full virtualization, with-
out the overhead and the complexity associated with it. For instance, they provide
higher performance, less memory requirement, and a cheaper infrastructure cost [8].

In a Cloud Computing scenario, where hundreds or thousands of applications are
running, some automated system is needed to establish in which physical machine
of the cluster a single container (a single microservice) should run, eventually with
one or more replicas, and to monitor and control the whole containerized envi-
ronment. This is where Kubernetes comes into play, an orchestration system that
today is extensively adopted.
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2.1 Microservices

In the microservices architecture, an application is divided into collaborating mi-
croservices, which is the idea behind the Cloud Computing model. This results in
interesting advantages [9]:

• Technology heterogeneity : the possibility to adopt different programming lan-
guages for each microservice belonging to the application, guaranteeing great
flexibility.

• Resilience: if one microservice fails then it does not affect the whole appli-
cation. In this case, either the offered service is no longer available but the
application is still running, or there is the chance to run multiple instances of
the same microservice on different machines so that if a machine running the
specific microservice is down, there is the assurance that the service is still
guaranteed.

• Scalability : only the microservices that need actual scaling can be run in
multiple instances. If a single microservice is CPU-consuming or its memory
consumption is high, a common solution is to split the load between different
machines and improve the computational power. Increasing or decreasing the
number of instances of a given microservice is also called elastic deployment.

• Ease of deployment : given this new architectural model, a simplified software
upgrade has been reached, thanks to the development agility which consent
to easily switch from an old version of the software to a new one and vice
versa.

On the contrary, from a disadvantageous point of view, the architectural pattern
of microservices introduces additional difficulties, since scaling and monitoring of
a microservices-based application is a more complex task than in the case of a
monolithic one [7]. As an example, in case of a failure derived from a chain of calls
to different microservices, ad-hoc debugging techniques are required. Then, the
necessity to redesign the existing applications and develop the new ones in order
to make them distributed, makes also observability and tracing difficult jobs, hav-
ing independent components of the application running on different machines and
exchanging messages through the network. Being the network significantly more in-
volved in consent also the correspondence between microservices, new entry points
of attack come up, giving birth to security criticalities in which a perimeter-focused
solution is no longer possible. ”Defense in depth as a concept of placing multiple
security mechanisms on different levels throughout the system becomes more feasible
with microservices” [10].

2.2 Container Runtimes

The common solution for creating microservices is the usage of containers. Con-
tainers represent a valuable way to package and run pieces of an application because
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their nature allows to easily start, replace and isolate them, with the lowest overhead
possible. Agile development, environmental consistency and compartmentalization,
and the possibility to scale depending on the load at a given point in time are all
benefits resulting from their adoption [4].
To be able to run containers in a host operating system a software component that
can act as a container engine is needed, for instance, something which will be re-
sponsible for managing the life cycle of the containerized environment. Loading the
images from a repository, creating and launching the containers themselves, and
monitoring the available system resources, are all tasks of this container engine,
which is commonly called ”container runtime”. While a container orchestrator
such as Kubernetes is managing containers inside clusters (so containers that are
running on different physical servers), a container runtime is managing the con-
tainers running on an individual physical machine. Of course, different container
runtimes can cooperate and work together, so that you can have different container
runtimes on different nodes of your cluster, and different container runtimes on the
same node too.

2.2.1 Open Container Initiative

The Open Container Initiative (OCI) is a Linux Foundation Project developed in
2015 for creating container standards that currently provide two specifications. The
first specification is called runtime-spec, and it is related to how to run a filesystem
bundle, while the second specification is called image-spec and is related to how to
get a filesystem bundle [11]. A bundle is basically a directory in the file system
that wraps the container metadata, configuration data, and the root file system,
and it is created by following the image-spec. So, the image-spec is specifying how
to download and unpack in a bundle a container image together with its configu-
ration data. Then, following the runtime-spec, such a bundle can be received by
any OCI compliant runtime, which will be in charge to run it [12]. Actually, with
the runtime-spec, an engine seed called runc has been implemented, as a common
starting point in the container runtime development process. Additional functions
can be added to runc, and it is commonly defined as a low-level container runtime.
In other words, runc is defining the primitives that can be used to deal with con-
tainers (start, stop, destroy, and so on), and can be used internally to develop other
container runtimes on top of it. On the other hand, systems that implement the
image-spec and internally use runc, are commonly defined as high-level container
runtimes. The importance of OCI introduction lies in the development of standard
container runtimes by programmers. Consequently, it is possible to have containers
able to run in any OCI-compatible container runtime.

The following paragraphs will provide a brief overview of the most used container
runtimes, showing in the end a comparison between the trends of the last two years.

14



Kubernetes and Container Orchestration

2.2.2 Docker

Architecture

Docker is an open-source platform that uses OS-level virtualization to deliver ap-
plications inside containers. Originally it was developed as a monolithic applica-
tion, and after the introduction of the OCI standard, it has been decoupled into
independent components, as shown in figure 2.1. In the original docker architec-
ture, everything was done by the Docker Engine. Nowadays it is used only as a
high-level component to initiate the container creation, while containerd and runc
provide the actual container runtime functionality (respectively as image-spec and
runtime-spec). The shim process is needed to decouple the container from the
runtime, to avoid long-running runtime processes [12].

Figure 2.1. Docker components. (Source: [12]

Main Concepts

Containerd provides the management of the container’s life cycle at a high level,
dealing with the image recovery from a registry. In the case of Docker, typically
the registry is Docker Hub, which offers read-only templates exploited to get a fully
portable container. Containerd will be explained more in detail in section 2.2.3.
Docker uses the concept of automatic build, where a Dockerfile is provided to build
a single image and create one container. The content of a Dockerfile is similar to
a recipe where a list of commands is issued in sequence and developers are free to
use any combination of them.

Currently, starting from version 1.24 of Kubernetes (k8s) Docker Engine has been
deprecated due to the presence of the Docker shim process, even though it was
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the first container runtime used. Containerization became an industry standard
and the necessity to have multiple container runtimes and a Container Runtime
Interface (CRI) to handle all of them emerged [13]. Nowadays Docker Engine can
be used in Kubernetes only with the additional service cri-dockerd.

2.2.3 Containerd

Containerd is a high-level container runtime created by Docker, and for this reason,
it has most of Docker’s characteristics. Specifically, it is a daemon that runs in
the background for handling each container’s life cycle. Containerd internally uses
runc as runtime-spec, hence it starts by pulling a container image from a repository,
creates a bundle, and then it forwards the latter to runc. Runc can then start, stop,
and destroy the container. Containerd is OCI-compliant, and after its creation, it
was donated to the Cloud Native Computing Foundation as a basis for developing
also new solutions [14]. A disadvantage of this container runtime is that being a
daemon if it is restarted then all the containers managed by him will be restarted
too.

2.2.4 Podman

Podman is an open-source, daemon-less, and Linux-native container engine de-
veloped by Red Hat. To be daemon-less means that there is no program in the
background for handling processes since all the containers and pods are launched
as child processes following the fork/exec model[15]. Podman is OCI-compliant and
works with the pod concept: pod definitions can be directly exported to YAML
files, guaranteeing compatibility with Kubernetes. Actually, Podman is one com-
ponent in the containerization scenario, since it works together with other tools:
Buildah which is used to build the containers, Skopeo which acts as an inspector
for the images, runc to run the containers, and, optionally, crun to get more flexi-
bility and control. An interesting feature is that Podman permits running rootless
containers, which means building, launching, and maintaining containers without
the need for root privileges on the host, and this is the case where the runtime crun
can be useful. All the mentioned tools that cooperate with Podman work with any
other OCI-compatible container engine, which makes very easy the transition from
other container runtimes. Starting from June 8, 2022, Podman is available also for
Windows systems [16].

2.2.5 CRI-O

CRI-O is an alternative container runtime OCI-compatible, specifically created to
work with Kubernetes. When Kubernetes wants to launch a pod, it contacts the
CRI-O daemon that first will retrieve the related image (or images) from a con-
tainer registry. The latter operation is done by exploiting the container/image
library, while to manage the images on disk CRI-O uses the container/storage li-
brary. Then, the daemon generates a JSON file with a description of how to run
the containers. This file is forwarded by default to runc, which is in charge of
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actually launching the containers within the file, but this is not mandatory since
CRI-O also supports other low-level OCI-compliant container runtimes [17]. CRI-O
is considered an implementation of the Kubernetes CRI, explained more in detail
in section 2.3.5. A benefit resulting in the usage of the CRI-O daemon is that when
it is restarted, containers are not. This happens because actually there is another
component, called ”conmon”, in charge to monitor all the containers.

On the other hand, CRI-O has no default tool for image management, and like
Podman, it collaborates with Buildah or Skopeo.

2.2.6 Usage Trend

According to the 2021 Sysdig Container Security And Usage Report and as shown
in figure figure 2.2, during the past year there has been a clear shift in choosing
the container runtimes. Organizations start to move away from Docker in favor of
newer and OCI-compliant container runtimes, such as containerd and CRI-O [18].
However, it is worth noting that Docker still being the most used container runtime
among organizations, it dipped below 50% for the first time in five years only in
2022 [19], as shown in figure 2.3.

Figure 2.2. Container Runtimes Trend in 2021 (Source: [18])

2.3 Kubernetes

The deployment of containers requires some orchestration software to coordinate,
manage and scale the total workload. Kubernetes is an open-source system initially
developed by Google with this specific purpose. Today, according to the 2022 Sysdig
Cloud-Native Security And Usage Report, if orchestrators based on Kubernetes like
Red Hat OpenShift are included, Kubernetes is used 96% of the time [19]. In the
following paragraphs, a brief overview will be presented.
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Figure 2.3. Container Runtimes Trend in 2022 (Source: [19])

2.3.1 Architecture

In the Kubernetes architecture, there is a distinction between master nodes and
worker nodes. A master node is in charge of running an actual control plane
to monitor and control the cluster, so it is responsible to manage the status of
the pods that are currently running within the cluster. A pod is the smallest
scheduling unit that can be handled by Kubernetes, a sort of wrapper which can be
composed of one or more separate highly coupled containers. The usage of the pod
concept brings the advantage of context sharing in terms of storage and network
resources. On the contrary, a worker node is in charge of running the pods that are
scheduled by the master, starting from YAML configuration files. YAML is a data
serialization language that in this case is used to communicate new deployments to
the orchestration system, as explained in section 2.3.2.

Master Node

A master node implements the control plane of the cluster, and being the general
controller it should run in multiple instances to ensure availability and load bal-
ancing. Starting from the desired state specified by the tenant, a master node is
continuously checking it against the actual state of the cluster. Each master node
is composed of four main components [13]:

• Kube API Server: All the interactions with the cluster pass through the
API server, which represents the entry point for monitoring, changing, and
controlling the cluster status.

• Kube Scheduler: It is the component in charge of scheduling the pods of
an application, by selecting the corresponding worker nodes based on the
currently available resources (memory, CPU, and so on).

• Kube Controller Manager: It is the control loop logical component, which
is in charge to watch the status of the cluster through controllers. Each
controller is triggered and reacts by communicating with the kube API server
when the actual state does not match the desired one.
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• Cloud Controller Manager: It is a component used to handle specific
cloud provider controllers used to allow communication between the cloud
platform and the cluster.

• Etcd: It is the database of the cluster that provides consistency by exploiting
the Raft Consensus Algorithm. It stores each desired state, to make Kuber-
netes intervene when any of them changes.

Worker Node

Worker nodes are responsible to execute the pods scheduled by the master, and
they are composed of three key components [13]:

• Kube-proxy: It is the component responsible to handle the networking re-
lated to the services concept, explained in 2.3.3.

• Kubelet: It is the agent in charge to run and control the pods by interacting
with the container engine and keeping the master node updated.

• Container engine: It is the container runtime that manages the execution
of containers. A node can have multiple container engines: as stated in
paragraph 2.3.5 Kubernetes supports different container runtimes as long as
they are OCI-compatible.

Figure 2.4. Kubernetes Architecture (Source: [13]

2.3.2 Workload Resources

Kubernetes offers a set of workload resources that can be used together to create
and manage pods on behalf of the tenant. In the Kubernetes context, a workload
is a running application for which the desired state has been specified. The job of
workload resources is to configure the controllers handled by the kube controller
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manager in master nodes. In the following sections, the two main workload re-
sources provided natively by Kubernetes will be presented. However, thanks to its
extensible nature, Kubernetes permits to add a custom resource definition to get
additional behaviors that are not part of Kubernetes’ core [13].

Deployments

A deployment is a resource used to describe the desired state of an application. It
packages all the related information within a YAML file which will be translated into
API requests from the kubectl component. The kubectl is the Kubernetes command-
line tool. In the deployment is provided the application life cycle, specifically, for
each pod is present:

• the name, the image, and the port of each container that constitutes it, in-
formation that will be passed to the container engine component.

• the number of replicas that it should have, guaranteeing the horizontal scal-
ability to facilitate more load. This information is managed internally by the
ReplicaSet resource, as stated in 2.3.2.

• the way in which it should be updated. This consents to pause or continue
one deployment and to perform a roll back to a previous version.

ReplicaSet

ReplicaSet is the Kubernetes resource in charge to replicate a given pod. It ensures
that the set of replicas specified in the deployment is running at any time. This
can be seen as three different tasks:

• Initially, when a new deployment is provided, ReplicaSet is responsible to
instantiate the proper number of replicas for each pod.

• When any kind of error occurs in a pod, ReplicaSet is responsible to replace
the entire set with a new one to be spawned.

• When the life cycle of a pod terminates, ReplicaSet is responsible to eliminate
the entire set associated with it.

2.3.3 Service

Containers within a pod share the network namespace and for this reason, they see
the same pod IP address. This results in easily enabling communication between
each other via the loopback network interface. However, pods are non-permanent
resources, meaning that they unpredictably change their IP address. Any time a
pod is either updated or deleted and rescheduled, it changes its IP address. For this
reason, a mechanism to establish how to connect and interact with the application
was needed. Kubernetes services are an abstraction that solves this problem by
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assigning the workload pods to a logical set, which has a fixed IP address. In other
words, services consent to expose applications executed in a set of running pods.
The default option to expose is through ClusterIP, which makes the application
reachable only within the cluster. If the application needs to be reachable from the
outside, the solutions proposed by Kubernetes are the usage of a load balancer or a
node port [13]. The latter requires knowing in advance which port to contact. Each
pod is bound to its service through a selector field specified in the YAML file.

2.3.4 Network Plugins

In Kubernetes, the networking is managed by network plugins called Container
Network Interface (CNI). While the kube-proxy component is responsible to reflect
services by managing IP tables, the CNI plugins implement the overlay network.
CNI plugins interact with the container runtimes any time a network operation is
needed. Specifically, the CNI plugins follow this execution flow [20]:

• The container runtime needs a network operation so it calls the CNI plugin
specifying the expected command to be executed.

• If it is already present a network configuration, it is sent from the container
runtime to the CNI plugin, along with the needed container data.

• The CNI plugin executes the command and returns the result.

In the specific case of Kubernetes, the execution flow works in this way. When
kubelet needs to make network operations on a pod, it does not interact directly
with the CNI, rather it communicates with CRI and consequently with the container
runtime. The container runtime is responsible to load the CNI plugin to implement
the k8s network model. Then, the CNI is called twice: one to set up the loopback
interface, and the other to set up the eth0 interface. It is possible to choose among
different CNI plugins in the Kubernetes ecosystem, and when none of them is
specified the default CNI plugin is noop [13].

2.3.5 Container Runtimes Interaction

In a deployment (i.e. in a YAML configuration file) are specified the container
images that a pod should run, not the details related to how they should run.
As a result, Kubernetes worker nodes need a container engine, as stated in 2.3.2.
The agent able to communicate both with the control plane and with the specific
container runtimes running on the node is Kubelet. Kubelet communicates with
different container runtimes through the Container Runtime Interface (CRI). CRI
is a protocol developed both to overcome the difficulties of integration between
container runtimes and Kubernetes code and to specify the functions that a con-
tainer runtime should have and perform on behalf of Kubernetes. CRI specification
gives the possibility to communicate with all the container runtimes in a standard-
ized way, without any hard-coded support and reliance on just one of them. The
main functions that a container runtime should have according to the CRI can be
summarized as follows [13]:
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Figure 2.5. Kubernetes CRI interacting with CRI-O (Source: [21]

• Being able to start and stop a pod.

• Being capable to perform any operation to deal with a single container (start,
pause, stop, delete, and kill).

• It should be able to pull the images from a registry and create the associated
containers within a pod.

• It should supply the control plane with log files and metrics.

CRI supports only the container runtimes which are OCI-compliant, and from a
technological point of view, it consists of protocol buffers and gRPC API.

As an example, in figure 2.5 can be seen the logical flow of interaction between
CRI and the container runtime CRI-O:
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1. When kubelet is asked to start a pod, the Container Runtime Interface is
called.

2. CRI is configured to call the specific container runtime that is used in the
worker node, that in this case is the CRI-O daemon.

3. CRI-O daemon, as stated in 2.2.5, first pulls the container images from a reg-
istry through the library container/image, then it stores them on disk through
the library container/storage, and then calls runc to run the containers.

4. runc is responsible to contact the Linux Kernel which will start the container
processes in the specified namespace or cgroup.

Figure 2.6. k3s Architecture

2.3.6 K3s

K3s is the lightweight distribution of Kubernetes developed by Rancher and it
is Cloud Native Computing Foundation (CNCF) certified. It comes packaged in
a single small binary, less than 50 MB, which makes it perfect for systems with
limited resources, such as IoT devices. It is very easy to be installed and configured,
Rancher itself claims that less than 30 seconds are required [22], and it represents
a valid alternative in development scenarios in which the complexity of Kubernetes
can be put aside in favor of another ultimate goal.

Architecture

From a technological point of view, k3s reflects reliably the Kubernetes architecture
described in section 2.3.1, as shown in figure 2.6. For simplicity, the image refers to
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a single-server setup with an embedded SQLite database. A master node is defined
as a machine running the k3s server command, while a worker node is defined as
a machine running the k3s agent command [23]. The default container runtime
used by k3s is containerd, while the default CNI is Flannel.
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Chapter 3

Trusted Computing, TPM 2.0 and
RA

Due to the incredible increase of cyberattacks, trying to protect the software by
exploiting the software itself was not enough anymore. The idea behind the Trusted
Computing technology was born having in mind that some hardware point of trust
was needed since hardware attacks require physical presence and in this way, a bet-
ter defense would be achieved. For this reason, the Trusted Platform Module was
standardized and adopted, allowing the remote attestation process which is fun-
damental to evaluating a platform state. A platform cannot provide and claim its
state, because if it has been tampered with, then any self-analysis will fail. Rather,
it can report it to an external entity which is commonly called verifier.

This chapter focuses on the Trusted Computing technology, the architecture of
the TPM 2.0 chip, and the remote attestation process.

3.1 Overview

The Trusted Computing technology emerged in the 90’ s, at the hands of the
Trusted Computing Group (TCG), to overcome the necessity to establish trust in a
device. Being a trusted platform means behaving exactly in the expected way when
any operation is performed on the platform itself, or, in other words, the detected
behavior needs to be verified against the expected one. This can be achieved by
equipping the platform with at least three basic fundamental features [24]:

• the protected capabilities, which are a series of operations that allow accessing
the so-called shielded locations, places in memory such as hardware registers,
where is possible to safely operate on data. The protected capabilities are the
only commands that possess this permission over the platform.

• the integrity measurements, which is the procedure from which the measures
of the platform are retrieved and stored in the shielded locations. A measure is
obtained by applying a cryptographic hash function to something meaningful
to get the integrity status, so it is basically a digest.
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• the integrity reporting, which is the process that consents the remote attesta-
tion of the platform. Through integrity reports, which are exchanged securely
between the platform and a remote entity, it is possible to get evidence of the
platform’s trustworthiness.

According to the TCG specifications and as stated in paragraph 3.2, each one of
these features is associated with the correspondent Root of Trust, which must be
trusted by definition because their misbehavior might be undetected.

3.2 Roots of Trust

The specific purpose for having Root of Trust components is to get a chain of trust.
In fact, in the integrity measurements process, everything is based on a simple as-
sumption: each component has to measure the next one, before execution. This
transitive trust is giving birth to a chain, and, since the starting point of the chain
must be trusted by default, RoTs are needed to guarantee reliance.

According to TCG guidelines, as a minimum, a Trusted Platform should have
one root of trust for each fundamental feature of the platform:

• Protected capabilities associated with the Root of Trust for Storage (RTS)

• Integrity Measurements associated with the Root of Trust for Measurements
(RTM)

• Integrity Reporting associated with the Root of Trust for Reporting (RTR)

TCG provides also a hardware implementation of the RTS and RTR through the
TPM 2.0 chip, a cheap component that is capable among other things of storing
and reporting the measurements, as explained in section 3.3. The RTM cannot
be implemented through the TPM alone, but it can be used together with other
technologies to supply this lack.

3.2.1 Root of trust for Storage

The Root of Trust for Storage is the computing engine responsible to hold in a secure
way both the integrity measurements and the keys used by the Trusted Platform
to perform cryptographic operations, so it is implementing the concept of shielded
locations. A shielded location can contain either sensitive data, such as the private
part of a key pair, or non-sensitive data which does not require protection from
disclosure, such as integrity digests. Of course, only the non-sensitive information
can be reported through the RTR.
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3.2.2 Root of trust for Measurements

The Root of trust for Measurements is the computing engine responsible to make
integrity measurements and send them to the RTS. Typically the RTM is initiated
by the Core Root of Trust for Measurements (CRTM) at the boot phase, which
guarantees the measured boot, a procedure to establish the integrity of the system
when it is switched on. The integrity measurements can concern either program
code or embedded data, on which a digest is calculated through a cryptographic
hash function.

3.2.3 Root of trust for Reporting

The Root of Trust for Reporting is the computing engine responsible for securely
reporting the data maintained within the RTS and attesting its legitimacy to ex-
ternal entities. This procedure is performed by making integrity reports, which are
digests calculated over some shielded locations and digitally signed to prove the
platform identity.

3.2.4 Trusted Platform Building Blocks

Roots of Trust are composed also of parts that do not have shielded locations
or protected capabilities, known as Trusted Building Blocks (TBB) [24]. TBB
includes platform specific-functions, such as RTM initialization or the connection
between the TPM and the motherboard. Roots of trust and TBB provide together
the minimum trust boundary, which is the collection of trusted components that
a platform has at a given point in time. The trust boundary is extended every
time a new component is added to the chain of trust, so every time a component
is first measured and then executed. As an example, in figure 3.1 can be seen the
extension of the trust boundary at system boot with three additional components.
The CRTM (which is part of the TBB) together with the Roots of Trust starts
the measured boot of the platform in this way: first, it measures the Operating
System Loader code, which then is executed. Now, the OS Loader is part of the
trust boundary and has to measure the next component before execution, which is
the Operating System code. Once the Operating System code has been measured it
can be executed, becomes a new trusted component, and repeats the process with
the Application code.

3.3 TPM 2.0

The Trusted Platform Module chip is the core hardware component of the Trusted
Computing technology, and it could be either added within the CPU or embedded
in the device’s motherboard. Nowadays the latter is the common case since most
devices that have been shipped in the last years are directly equipped with the chip.
Originally the TPM was presented in version 1.2, which today has been superseded
by the newer 2.0, which offers more functionalities. For this reason, and since the
thesis work relies upon it, the following introduction is related to its latest version.
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Figure 3.1. Transitive Trust applied to system boot (Source: [24])

3.3.1 Features

The main TPM features can be summarized as follow:

• It can be used as a cryptographic co-processor since it contains a hardware
random number generator and it can securely generate encryption keys, of-
fering platform data protection.

• It can be exploited as an implementation of the RTS and RTR to consent the
remote attestation process, explained in detail in paragraph 3.4.

• It can perform data binding, a feature more powerful than pure encryption:
the data bound to the TPM can be decrypted only by the TPM itself since
the used RSA key is unique and it descends from a storage key.

• It can perform data sealing. Again, it is a feature more powerful than pure
encryption, because the data is encrypted with a key that is stored only within
the TPM, but additionally, it is also specified the state in which the system
must be to unseal (e.i. decrypt) the data.

• Each TPM has a unique and secret Endorsement Key (EK) that was created
when the chip was manufactured, which together with the X.509 certificate
represents its identity. This feature allows the support to hardware device
authentication.

3.3.2 Architecture

From an architectural point of view, the TPM’s main components can be seen in
figure 3.2:
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Figure 3.2. TPM 2.0 Architecture. Source: [25]

• The I/O buffer consents communication between the host system and the
TPM chip: the host system sends command data in the buffer, while the
TPM puts the corresponding response.

• As the names suggest, the asymmetric engine, hash engine, symmet-
ric engine, key generation and Random Number Generator compo-
nents, are all related to the cryptographic functions which can be called either
through the Execution Engine or the Authorization module.

• The Power Detection module is responsible to handle the power state of
the TPM that can be ON or OFF. When the platform power state changes
this module must be notified to react accordingly.

• The Random Access Memory contains the TPM temporary data and a
portion of the I/O buffer. This data includes Platform Configuration Register
(PCR) banks explained in section 3.3.3, keys and data loaded from external
memory, and authorization sessions. When the power state of the TPM is
turned OFF, RAM data may be lost depending on the implementation.

• In the non-volatile memory is included the information related to TPM
persistent state. Data within non-volatile memory can concern either private
data meant to remain secret (keys, seeds, and so on) or data that a caller can
read, such as monotonic counters. The implementation exploits an index-
based data structure, that allows discrimination between TPM’s indexes (to
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access locations related to TPM specifications) and user-defined indexes (to
access locations defined by a user).

• When a TPM command needs access to shielded locations that require au-
thorization, the Authorization module is invoked twice, before and after
the command execution. Before the execution is checked if the proper autho-
rization is provided, while after is generated a response.

3.3.3 Platform Configuration Registers

Platform configuration Registers are a set of hardware registers that implement
shielded locations. They are involved in the process of storing and validating the
platform measurements made by the RTM, so they are an integral part of the RTS
and RTR implementation. According to the TPM 2.0 specification at least 24
registers must be present, each one used to store measurements of specific modules.
As an example, in figure 3.3 can be seen the PCR Mapping of some modules. The

Figure 3.3. PCR Mapping of UEFI Components (Source: [26])

value stored in a PCR can be modified only through two operations, reset and
extend. The reset operation brings all the PCRs to their default value, usually all-
zeros, and it happens any time the platform is switched on. The extend operation
is used to update their content following this procedure:

PCRnew = Hash(PCRold||Measure) (3.1)
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The updated value of the PCR is obtained by performing a secure hash function
over its old value concatenated with the new measure. The extend operation con-
sents to store a big number of measurements in a single PCR, and since it is involved
a hash function in the computation, it is irreversible, a fundamental feature for the
evaluation of the platform integrity. Starting from the current value of a PCR,
if the list of measurements that have been brought to that specific digest is not
known it is impossible to establish it, and it is really hard to obtain the same digest
performing the extend on a different list.

PCRs are grouped within a bank : a bank is the set of PCRs that are extended
with the same hash algorithm. For this reason, the 24 PCRs mentioned above are
present in all the enabled banks. The TPM 2.0 specification expects at least the
presence of the SHA-1 and SHA-256 banks.

3.4 Remote Attestation

The Remote Attestation (RA) is the process through which the state of a platform
called prover, is evaluated by a remote entity called verifier. As specified by TCG,
to be evaluated the prover has to be equipped with a hardware technology that
acts as the RTS and RTR, such as the TPM chip, and it has to provide an RTM.

3.4.1 Execution Flow

The logical flow of the process can be summarised as follow:

1. The verifier contacts the prover by sending a Challenge Request together with
a nonce. A nonce is ”a number used only once” to ensure freshness and avoid
replay attacks. In the requests are specified the shielded locations values that
the prover has to send back.

2. The prover asks the RTR to retrieve the shielded location values from the
RTS. This can be done only by exploiting the protected capabilities functions.
Then, is generated a response, which will contain also the nonce. The response
will be signed with the device’s key to ensure hardware device authentication.
If the TPM is used as anchor technology, this response is called quote and it
contains the PCR values specified in the Challenge Request, and it is signed
with the private part of the TPM’s Attestation Identity Key (AIK). AIKs are
keys generated by the TPM starting from its EK.

3. If the prover has not just been asked to provide evidence of its trusted status at
the boot phase, the RTM has to be further involved to provide a measurement
log, before the generation of the integrity report from the RTR. This happens
because measurements performed after the boot phase leads to unpredictable
PCR values, due to the dynamic nature of the operations in a system. This
concept will be explained in detail in chapter 4 with the introduction of the
Linux Integrity Measurement Architecture module.
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4. The RTR generates the integrity report, which will contain the shielded lo-
cations, the nonce, and, if specified in the request, the measurement log, and
it sends it to the verifier.

5. The verifier first checks the authenticity of the sign and the freshness of the
report. If it has to check only the trusted status at the boot phase, it will
check the value of the involved shielded locations against golden values, which
are the expected ones to consider the prover to be trusted. Instead, if a
measurement log was asked, the verifier has also to check the integrity of the
log itself and then verify that the reported measurements are valid and lead
to the provided value calculated through the extend operation.

4. Integrity_Report( (shield_loc, nonce)    , ML)

1. ChReq(nonce,values)

4. ChResp(Integrity_Report)

    5. Integrity Check

2. Values_Req(nonce,values)

3. ML_req

3. ML_resp

2. Protected_Cap(nonce,values)
 

2. Values_Resp(shield_loc, nonce)

Verifier Prover RTR RTS RTM

Figure 3.4. Remote Attestation Schema

The process is continuously repeated to detect as soon as possible any kind of
anomaly. For instance, for the most critical systems, an integrity report may be
sent every one or two seconds.

3.4.2 Architectures

Device Identifier Composition Engine

From an architectural point of view, the TCG proposed a layered RA solution
named Device Identifier Composition Engine (DICE). DICE splits the system into
layers: when the latter is booted, the first layer to be executed is the one containing
an Unique Device Secret (UDS). RoTs are based on the UDS, which is the starting
point of the layered attestation. The current layer computes a secret and attests the
next one by signing the evidence of its trustworthiness. One evidence is a message
containing assertions from the prover [27], so it is the response that is sent when
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a verifier requests a challenge. DICE is mostly targeting IoT devices, in which an
anchor technology such as the TPM may be unfeasible due to hardware requirement
limitations.

Remote Attestation Procedures

As an alternative, an accurate collection of architecture workflows can be found
in the Remote Attestation Procedures (RATS) Archive [28], which is maintained
by the Internet Engineering Task Force (IETF). Specifically, it consists of a series
of draft documents, meaning that they are temporary. Their validity is extended
to a maximum of six months due to their state-of-the-art nature and continuous
updating, but they still represent a valid source to consult, present, and exchange
mechanisms to perform RA.

3.4.3 Use Cases

The RA process consents to establish the integrity of a system, hence to establish
its trustworthiness for a variety of use cases[29]:

• Authentication: getting evidence that the underlying system and its authen-
tication mechanisms have not been tampered with, brings to make trust au-
thentication decisions by knowing that the correct identities are used.

• Release of sensitive information: when there is the need to exchange sen-
sitive information with a remote entity, by implying RA the risk of broken
confidentiality damage is greatly reduced.

• Network Access control : adding integrity information about the system that
provides some kind of credentials can be useful in taking an authorization
decision. This can concern multiple scenarios, from evaluating if a system
can join a closed network to a simple web request.

• Assessing Network resources : as a provider can be concerned about taking an
authorization decision, a client of the service can be concerned about having
evidence of the provider’s worthiness as well. This permits the detection of a
compromised server or any other malicious network device.

• Remote host monitoring : monitoring systems aims to report data to be an-
alyzed to a remote server. Coupling the data with integrity evidence brings
better assessments and responses.

• System assessments : being able to demonstrate the integrity of a system,
lead to proof that the system is worthy of the goal it is being used for. This
is really important, especially in Cloud Environments, where the runtime
integrity data shows that neither the cloud provider nor any other actor, has
access to the system.
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3.4.4 Trusted Execution Environment

The TPM 2.0 chip was born as a foundation element for the Trusted Computing
technology, as stated in 3.3. However, alternative anchor technologies can be used
to consent the Remote Attestation process, such as the Trusted Execution Envi-
ronment (TEE). TEE is a tamper-resistant processing environment that runs on a
separation kernel [30]. The concept of separation kernel was introduced to emulate
a distributed node, where multiple systems coexist in the same platform. Basically,
a separation kernel divides its regions guaranteeing high isolation between them
and allowing communication only via a protected and monitored interface. This
consents to get a specific area where arbitrary code can be executed in a secure and
authentic way, collaborating with the RoTs established by the TC. Since TEE is
able to provide the integrity system at runtime, it can be exploited to perform the
RA process. TEE is a different technology with respect to the TPM because it is
not a physically separated chip: it is an area of the processor.
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Chapter 4

Integrity Verification of
Distributed Nodes: state of the
art

4.1 Overview

The Cloud Computing environment is composed of clusters of distributed nodes,
each one executing applications within containers, exploiting the lightweight vir-
tualization. The Remote Attestation process explained in chapter 3 has been con-
solidated and it works well for physical nodes. However, there is still more than
one open challenge related to the containerized scenario. This chapter aims to
present the Integrity Measurement Architecture Module as RTM and the Keylime
attestation framework, to expose the problem of the remote attestation of a dis-
tributed node, and some practical solutions which have been proposed to address
the container attestation issue, which represent the starting point of the thesis work.

In the following sections, if not differently specified, the TPM 2.0 chip is assumed
to be used as anchor technology in the RA process.

4.2 Integrity Measurement Architecture

To verify the trusted status of a platform, the whole measurement process has to
start at the very beginning, specifically when the platform is switched on, as stated
in 3.2.2. Checking that the BIOS and the operating system have been loaded
correctly is undeniably important because it represents the foundation on which
the platform will perform any other computation. However, in this scenario there
is a crucial assumption to take in mind: all the components needed to boot the
system are called in a specific and predefined order. This results in knowing a priori
two things:

• the precise order of the components in the chain of trust,
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• the precise values that the involved PCRs should have in the end.

In this specific case, we speak of Static Root of trust for Measurements, where
the measurement process is deterministic. If performing the extend operation over
the chain, are obtained the expected PCRs’ values, then the platform has not been
tampered with.

Once the system is booted and it is in a trusted state, the RTM is responsible
to perform a measure anytime an event occurs, all the way up into the application
layer. An event is any kind of meaningful operation that is happening on the plat-
form (execution of scripts, delete, create or update a file, and so on). Of course, the
dynamic nature of the events does not consent to establishing an order as in the
boot phase. For this reason, in this case, is needed a Dynamic Root of Trust
for Measurements, and the Linux Integrity Measurements Architecture (IMA)
module is providing one implementation.

4.2.1 Introduction

The IMA module is one Root of Trust for Measurement implementation, both static
and dynamic, and it is part of the Linux kernel since 2009. To keep track of the
execution order of the events, the platform requires a Measurement Log (ML) file.
Any time a new event is detected, the IMA module performs two operations:

• it stores the measure of the event inside the ML, according to a specific
template;

• it extends the new measure to a PCR specifically intended to provide appli-
cation support [26]. Usually, this PCR corresponds to the number 10, and it
is also called IMA PCR. IMA PCR protects the integrity of the ML.

In this way, during the RA when a verifier challenges a prover at runtime, it gets the
ML and the IMA PCR, so that the extend operation is performed over the content
of the ML, entry by entry, and the result can be compared to the IMA PCR value.
If they match, then the ML has not been tampered with, and each entry can be
individually analyzed. The system will be considered in a trusted status if each
measure in the ML, being compared against a list of acceptable values, has brought
the system to an expected state. The involvement of a nonce during the RA ensures
the ML is fresh, while the ML integrity ensures its completeness and immutability.

4.2.2 Design

The IMA module has been developed with three collaborating components which
together consent the RA process: [31]:

• The Measurement Mechanism that is the main component in charge to
establish what files to measure in the prover, when performing the measures,
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and maintaining the ML by filling and protecting it. All the latter operations
are performed according to a policy that can be customized. The Measure-
ment Mechanism stores the ML as an ordered list in the kernel and performs
the related extension to the TPM. The first element of the ML is always the
boot aggregate, guaranteeing the Static Root Of Trust functionality.

• The Integrity Validation Mechanism that is the component responsible
to compare each measure in the ML against a list of acceptable values. An
acceptable value is an expected value for that measure, meaning that it is
considered to be a trusted digest for that specific event. All the acceptable
values are grouped within a whitelist for that event. This component verifies
also the integrity and freshness of the ML, so it consents to validate the
trustworthiness of the prover system.

• The Integrity Challenge Mechanism is the component that allows a ver-
ifier to challenge a prover when the RA starts. Through the Integrity Chal-
lenge Mechanism, the verifier retrieves the ML together with the TPM signed
integrity report.

4.2.3 IMA Templates

The ML is filled by the Measurement Mechanism using a specific template. Each
template establishes the entry fields which characterized the event that generates
the measure. Specifically, the IMA Template Management Mechanism has been
introduced to simplify the template management and decouple it from the rest of
the code. The Template Management Mechanism defines two data structures: a
template descriptor, that establish what kind of event information should be in
the ML, and a template field to generate and show data of a certain type [32]. In
other words, a template descriptor has a name and a format string through which
are identified the involved template fields, separated by the — character. Each
template field and each template descriptor can be consulted through the docu-
mentation.

For instance, the default template descriptor used by IMA is called ima-ng, and it
is composed of the following format string: d-ng—n-ng. The template field d-ng
is referring to the event digest calculated with an arbitrary hash function, while
the template field n-ng is referring to the event name without size limitations [32].
As shown in table 4.1, a ML line created using the ima-ng template will have five
template fields:

PCR template-hash template-name file-hash file-path
10 dc3b9[...]5f88b ima-ng sha1:1ba[...]0ef49 /usr/bin/cp

Table 4.1. A Measurement Log entry created with the ima-ng template
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• The field PCR refers to the PCR number used to extend the current entry.

• The field template-hash contains the digest calculated over the template fields
of the current entry. This digest is extended in the PCR specified in the first
field. The SHA-1 algorithm is used.

• The field template-name specifies the template descriptor used for the entry.

• The field file-hash contains the digest of the file specified in the last field: it
is the actual measure of the event. The SHA-1 algorithm is used by default.

• The field file-path contains the file pathname.

The first three template fields are mandatory. With the introduction of the Tem-
plate Management Mechanism it is possible to define new template descriptors,
either customizing the format string with the existing template fields or eventually
adding new ones.

4.2.4 ML Integrity Verification and Entries Validation

The IMA Integrity Challenge Mechanism starts the RA: the verifier challenges a
prover and retrieves the integrity report containing the signed TPM quote and the
ML. The verifier first checks the validity of the sign and then, through the IMA
Validation Mechanism, it has to perform two macro operations in order to establish
if the system is in a trusted state or not.
The first macro operation is the integrity check of the ML itself, so that if it has
been tampered with, it is not complete, or it is not fresh, this will be immediately
detected and the system considered untrusted. As shown in figure 4.1, this process
starts by taking the template-hash field of the first ML entry, which is related to
the boot aggregate. The template hash is concatenated with the digest of all zeros,
and a digest over the result is calculated. From this point on, the extend operation
is performed entry by entry, until the ML finishes and the result can be compared
with the IMA aggregate, which usually is stored in PCR 10.

Once the integrity of the ML has been verified, the second macro operation con-
cerns the validation of each entry. Each entry corresponds to an event, and each
event has a whitelist associated with it. The whitelist contains the file-path and
the list of file-hashes considered trusted for that event. If the file-path associated
with the event is not present in the whitelist means that an unrecognized program
has been executed on the prover and it is considered untrusted. If the file-path
is present in the whitelist but the file-hash of the entry is not present among the
acceptable values it is possible that there has been an attack and the platform is
considered untrusted as well. When the system is found untrusted, it is the job of
the verifier to take the corresponding actions according to a policy. If the file-path
and the file-hash of each ML entry are present in the whitelist, then the system is
successfully evaluated as trusted.
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Figure 4.1. IMA ML Integrity Verification (Source: [33])

4.3 Keylime Framework

Nowadays several remote attestation frameworks have been developed and adopted.
In this section will be presented Keylime, an open-source and CNCF-certified tool
originally developed by the Massachusetts Institute of Technology (MIT). Keylime
framework consents the RA in distributed environments, offering a simple way to
adopt the trusted computing in the cloud infrastructure. It uses the TPM 2.0 chip
as RTR and RTS, while it uses the IMA module as RTM. Keylime is based on the
assumptions that an attacker is not able to gain physical access on the platforms
and that the cloud provider is semi-trusted. Being semi-trusted means that the
cloud provider is assumed to put in place some kind of control systems and policies
to reduce the consequences of an attack, but he could still have access to tenants’
confidential data which could be dangerous in case of a malicious administrator[33].

From an architectural point of view, in the following subsections will be presented
the major components involved in the RA process.

Keylime Agent

In the Keylime architecture, the prover system (i.e. the targeting of the RA) is
named ”attester”. Each attester machine runs a Keylime Agent, responsible to
send the integrity reports needed to evaluate the integrity state. The Keylime
Agent is identified through Universally Unique Identifiers (UUIDs), and when it is
kicked off the Registration Protocol starts.
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Keylime Registrar

The Keylime Registrar is in charge to perform the Registration Protocol for the
cloud nodes which are running the Keylime Agent, as explained in section 4.3.1. It
retrieves and stores the TPM public AIKs, which are needed to perform the quote
validation. It sends the TPM credentials with a server authenticated TLS channel
to the Verifier component.

Keylime Tenant

The Keylime Tenant represents the human or the organization that is starting
and using the services within one or more cloud nodes. It communicates with the
Keylime Agent of the node either through a Command Line Interface or REST
APIs. After the end of the Registration Protocol of the node, the Three Party
Bootstrap Key Derivation Protocol starts, which involves the Agent, the Tenant,
and the Verifier. The latter aims to offer secure payloads, used to provide encrypted
data to an enrolled node [34]. Basically, the Tenant creates a bootstrap key, which
will be cryptographically split into two parts, U and V. The V part is sent to the
Verifier, while the U part is sent to the Agent. The Agent will retrieve the V
part from the Verifier in a secure way, so it can compose the key. Once the key is
established, the tenant sends an encrypted payload to the Agent, that specifies the
services he wants to deploy in a secure way. The Keylime Tenant communicates
also with the Keylime Verifier, to provide the information needed to attest the
cloud nodes that are running its services, such as the whitelists.

Keylime Verifier

The Keylime verifier is the component in charge to evaluate the integrity status
of each Keylime Agent (i.e. cloud node). It retrieves the public AIKs from the
Keylime Registrar to validate the quotes present in the integrity report.

Software Certification Authority

The Keylime Software Certification Authority (CA) has the specific purpose to
avoid having each cloud service TC aware, by propagating the trustworthiness from
the hardware RoTs to higher level services.

Keylime Revocation Service

The Keylime Revocation Service collaborates with the Keylime Software CA by
sending a revocation event any time a cloud node is detected untrusted. Since a
cloud node is providing some kind of service, also the nodes that are registered for
the service should be notified of the revocation event: this is done by exploiting a
Certificate Revocation List (CRL) maintained by the software CA.
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4.3.1 Registration Protocol

The Registration Protocol involves the Attester Machine that is running the Keylime
Agent and the Keylime Registrar, as shown in figure 4.2. The steps are the follow-
ing:

1. The Keylime Agent sends to the Registrar its Universal Unique Identifier to-
gether with the public parts of the Endorsement and Attestation Identity RSA
Keys. In addition, is sent also the EK X509 certificate. The Endorsement
Key is permanent and certifies a valid TPM, while the Attestation Identity
Key is the one used to sign the quotes. The AIK is not fixed to the hardware,
meaning that it changes at TPM reset.

2. The Keylime Registrar checks that the EK certificate is signed by an actual
TPM manufacturer and then challenges the Agent to decrypt with the private
part of the EK key an ephemeral key Ke.

3. When the Keylime Agent solves the challenge, it proves to possess the private
counterpart of the Endorsement Key, so it can send back to the Registrar the
keyed-hash message authentication code (HMAC) calculated with the UUID
and the Ke.

Once this procedure has terminated, the Registrar store the AIK of the Agent.

Figure 4.2. Keylime Registration Protocol
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4.3.2 Continuous Remote Attestation

After the delivery and the decryption of the encrypted payload, the services start
on the node and the remote attestation process can begin. As shown in figure 4.3,
the Keylime Verifier starts to continuously poll the Agent to retrieve the integrity
reports, ensuring that the system stays trusted over time. For each integrity report,
the Verifier will check:

• The signature of the quote, validating it with the TPM AIK retrieved from
the registrar.

• The freshness of the quote, checking it with the provided nonce.

• The presence of all the PCRs specified in the PCR mask.

• The integrity of the ML, by computing the extend operation, and comparing
the result with PCR 10.

• The validity of each measure, by comparing with the whitelist.

By default, the time interval between one attestation and the other is two seconds,
but this can be set differently. If the system is detected untrusted, the Keylime
Revocation Service is triggered by the Verifier and the Software CA component
updates its CRL. Each node registered to the services running on the untrusted
one is free to take action accordingly to the revocation event.

Figure 4.3. Keylime Continuous Attestation
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4.4 Container Attestation

The RA process based on Trusted Computing Technology works well to validate
the integrity of physical systems. However, the Linux IMA module is built to take
and store the measures in a unique ML. If the physical system is a cloud node,
it will run services of more than one tenant within containers. The IMA module
is not allowing discrimination between ML entries related to the underlying sys-
tem and the containers, bringing a privacy issue. Tenants should be aware only
about the integrity status of their services, following the need-to-know and least
privilege security principles. Furthermore, if a specific container measure is found
to be untrusted, this will result in considering the whole prover system untrusted
as well. A better strategy could consider that it is sufficient to terminate only the
untrusted containers, avoiding the system restarting and improving the efficiency
of the offered infrastructure. Moreover, according to the Application Container
Security Guide of the National Institute of Standards and Technology, the attack
surface of container technologies is made large by the variety of core components
involved: images, registries, orchestrators, containers, and the host operating sys-
tem itself [4]. A successful attack against any container running on the system
can be spread toward other tenants’ containers, or worse, to the host system itself,
making integrity verification a fundamental process.

In the following paragraphs will be presented three solutions developed to over-
come this issue, underlying their advantages and disadvantages, as a prelude to the
solution implemented during the thesis work.

4.4.1 Container-IMA

Container-IMA is a solution for the container attestation developed by Peking Uni-
versity. The main goal of this solution was to overcome the privacy issue related to
the multi-tenancy nature of a cloud node. When following the traditional RA pat-
tern for physical nodes, the verifier gets the whole content of the prover ML, even
if it has been asked to validate only the containers of a given tenant. This results
in giving benefits to potential attackers since they can explore the vulnerabilities
of the prover and begin capable of stealing container information of other tenants
[35]. For this reason, Container-IMA proposes a modified version of the Linux IMA
module, to consent division of the ML entries according to the specific container
that generates them.

New IMA Components

To realize the ML subsets related to a given container, Container-IMA enhances
the IMA module by adding three components [35]:

• The Split Hook component. Since the lightweight virtualization is based on
the namespace feature to isolate the system resources, each container should
belong to a different namespace. The Split Hook is in charge to inspect the
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system call related to the namespace creation, to notifying the kernel of an
event for ML partitioning.

• The Namespace Parser is the component that retrieves the namespace num-
ber of the process that generates an event to be measured. In this way,
when an event occurs it is possible to collocate it in different ML partitions
according to its namespace number (i.e. container that generates the event).

• The container-PCR Module (cPCR) is a kernel data structure that simulates
the host TPM PCRs to protect each ML partition. Specifically, each cPCR
has three fields: the value obtained by applying the extend operation over the
container applications partition, the namespace number, and a secret. The
secret is used to prevent a verifier from retrieving other tenants’ container
data.

Architecture

Container-IMA Architecture works with two mechanisms: themeasurement and the
attestation. The measurement mechanism is executed on the prover machine and
relies upon the modified IMA module. It involves two procedures, the Namespace
Register Procedure that splits the ML using the Split Hook and the Namespace
Parser, and the Measurement Procedure that stores each event in the correct ML
partition, using also the auxiliary cPCR for the extend operation. On the other
hand, the attestation mechanism consent the RA of a specific container, exploiting
a modified Attestation Agent that identifies in the prover only the ML partitions
of interest. Specifically, if the challenge sent to the Attestation Agent contains the
nonce and only one container to be attested, the integrity report will contain [35]:

• the TPM’s quote, containing the value of PCRs 0-7, 11, and 12.

• the old value of PCR 12 and the content of the cPCR XORed with its se-
cret. Since the xor operation is the reverse of itself, this is done to prevent
disclosure.

• four involved ML partitions, one for the prover measured boot, one for the
container measured boot, one for the container dependencies on the prover
machine, and one for the container applications.

Since only the needed ML partitions are sent in the integrity report, the attestation
procedure guarantees multi-tenant privacy, and since it requires as well the presence
of a signed TPM quote, the trustworthiness can be determined with hardware
RoTs base. Once the validity of the sign and the freshness of the TPM’s quote is
checked, the first step on the verifier machine is to check the integrity status of each
ML partition by using the content of physical PCRs, with the extend operation.
Specifically, with PCR 0-7 is checked the integrity of the prover measured boot
partition, with PCR 11 is checked the integrity of the container measured boot
partition, and with PCR 12 is checked the integrity of the cPCR value (and, for
this reason, also its old value is sent). Only if the ML partitions related to the
container dependencies and applications are authentic, the verifier starts to validate
their content, comparing their content against the expected values.
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Considerations

Container-IMA solves the problem of tenant privacy in the containerized scenario,
reducing the latency of the RA process, and without the need to modify the con-
tainer architectures. However, some challenges still remain open. First of all,
Container-IMA relies upon the TPM 1.2 specification, which nowadays is consid-
ered deprecated. Another crucial point is that this solution assumes that the RA
of the whole prover system is not needed, while the underlying environment should
be always checked as it represents the foundation on which the containers are run-
ning. Furthermore, Container-IMA does not support containers that share the same
namespace, as it happens in the Kubernetes architecture for containers belonging
to the same pod.

4.4.2 Docker Integrity Verification Engine (DIVE)

DIVE is another solution for container attestation, developed by the Polytechnic
of Turin. It specifically targets the whole underlying system and the containers
launched on it through the Docker container runtime, offering a complete integrity
verification. Each node of cloud infrastructure can be analyzed through DIVE, as
long as it owns a TPM chip. DIVE solution can replace the compromised containers
without stopping the whole system, which makes it usable in real scenarios and
improves the efficiency of the RA. This is realized by adding a new IMA template,
which adds in the ML entries the field device identifier. The device identifier is
assigned by the Docker’s Device Mapper storage driver, and it is different for each
container. This additional field bound an event to be measured to the container
(or the host) that generates it, hence allowing the discrimination in the ML.

Architecture

The overall architecture of DIVE includes three main components [36]:

• The Attester, that is the node to be attested. It is equipped with a TPM
chip, uses IMA as RTM, and runs containers through the Docker engine. The
Attester runs also a RA agent to handle the RA process.

• TheVerifier is the component in charge to make decisions about the integrity
state of each attester and the containers hosted on it.

• The Infrastructure Manager that is the component responsible to keep
track of the Universal Unique Identifiers (UUID) of the attesters and con-
tainers.

When the tenant of the cloud wants to retrieve integrity information about one
of its services, the Infrastructure Manager contacts the Verifier and sends the list
of the containers and attesters that are running them. The Verifier communicates
with the RA Agents of the involved nodes, retrieving the integrity reports. Since the
Verifier possesses the list of the containers, it will be able to check the ML entries
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related to them through the device identifier field and validate their content against
a whitelist. Finally, the Verifier sends an attestation report to the Infrastructure
Manager. If the attestation manager finds out that the involved nodes are trusted
but some containers are not, then it is in charge to replace them without stopping
the service.

Considerations

DIVE is a valid solution for implementing the Docker container attestation process
since it relies upon trusted computing techniques. Modifications on the container
architectures and the Verifier system are not required, the only ones needed to
implement the solution concern the cloud node (i.e. the Attester). Furthermore,
the performance impact of this solution is almost negligible, consenting usage in real
applications. Unfortunately, also DIVE uses the deprecated TPM 1.2 specification,
and it cannot provide protection against in-memory attacks [36]. An additional
limitation of this solution is that a previously used device id may be assigned to
another container. Specifically, this can happen when a container terminates its
life cycle, resulting in the presence of a new container inheriting the ML entries of
an old one. Of course, this can eventually bring attestation failures.

4.4.3 Docker Container Attestation

The generic name ”Verification of Software Integrity in Distributed Systems” refers
to the latest solution for the Docker Container Attestation developed by Polytechnic
of Turin. This work is based on the identification of the ML entries related to
containers. As DIVE, the implementation of the solution has been done through
an additional IMA template, but in this case, the TPM 2.0 specification is used. In
this case, the field template-hash is computed using the SHA-256 hash algorithm,
to exploit the powerful functionalities offered by TPM 2.0. Keylime is the RA
framework involved, which has been affected by some modifications needed to make
it capable to register containers and understanding the new template.

IMA template

The new IMA template was needed to bind an event to be measured to the container
that generates it. Control groups are a Linux kernel feature exploited to organize
the processes into hierarchies, to guarantee the resource limitations needed in the
lightweight virtualization technique. In the Linux kernel, every process within a
container inherits the same control groups of the process that generates the con-
tainer, which is called init process. It was observed that for the init process, the
Docker engine automatically assigns the container-full-identifier in various control
group names, meaning that processes within a container can be identified by any
one of their control group names. For this reason, two additional fields were added:
the control group name and the dependencies of the process, following the template
descriptor dep—cgn—d-ng—n-ng.
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Adding this new template permits a Verifier to bind an ML entry to a container
only if:

• it has the control group name field filled with a container-full-identifier,

• it has a container runtime in the dependencies list field,

otherwise, the entry will be considered as belonging to the host system.

Keylime Modifications

The Keylime Modifications concerned the Agent, Verifier, and Tenant components,
since the operation involved by the presence of the new IMA template were the
registration of the containers at the Verifier and the IR creation and validation. In
this solution, the registration of the containers in the Verifier can happen either
at the moment of the Agent registration or later and expects to be provided with
the container IDs and whitelists. In this way, to be evaluated each container can
be treated exactly like the host, discriminating its ML entries and comparing the
measures against its whitelist. In this sense, the validation of the integrity report
was affected. Finally, the IR creation has been affected to send just a portion of
the ML, since the used Keylime version was sending the whole content of the ML
at each attestation cycle.

Considerations

This solution permits the RA of individual containers, meaning that whenever a
container is found untrusted there is no need to reset the whole platform. Fur-
thermore, the solution takes advantage of the powerful SHA-256 algorithm offered
by the TPM 2.0 chip and reduces the latency of the attestation by sending only a
portion of the ML. This work represents a valuable starting point to realize other
solutions for the container attestation, because can be adapted and integrated with
the Kubernetes scenario, in which as stated in 2.3.1 the smallest scheduling unit is
not the container.
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Chapter 5

Remote attestation of a
Kubernetes cluster - Design

This chapter proposes the design of the implemented solution. In the beginning, an
overview of the problem statement in the cloud scenario will be exposed, explicitly
targeting the Kubernetes orchestrator as motivation for the thesis work carried
out. Then, the approach to solving the problems faced will be presented, following
a step-by-step approach. The starting point will be the discrimination of each
Measurement Log entry between the attester system and pods, followed by the
Keylime integration. The description of the high-level architecture of the proposed
solution will be provided to underline how the various components communicate
with each other and to show how they can be integrated with the Kubernetes ones.
Finally, will be exposed the application of the solution to multiple nodes (i.e. to a
cluster) together with some final considerations concerning the used approach.

5.1 Problem Statement

The solutions exposed in chapter 4 are not always suitable for every scenario, espe-
cially when we consider the current situation. Container-IMA and DIVE are solu-
tions that rely upon TPM 1.2 specification, which nowadays should be replaced by
the newer 2.0. The Docker Container Attestation solution works fine and uses the
2.0 specification, but targets the Docker container runtime which is slowly being
superseded by newer and OCI-compliant container runtimes, as stated in section
2.2.6. Moreover, since nowadays Kubernetes represents the de-facto standard for
the orchestration technology, the need to implement a solution for the remote at-
testation that targets the pod and no longer the container emerged. The reason
is that Kubernetes does not work with containers, since the smallest scheduling
unit is represented by the pod, as stated in section 2.3. Containers within a pod
share the same namespace, and the Container-IMA solution does not offer this
kind of support. Furthermore, within a pod, it is sufficient to have at least one
compromised container to affirm that the pod is untrusted, hence there is no more
the necessity to identify the specific container which causes the problem. Simply,
whenever one of the pod’s containers is performing unexpected executions, the pod
is knocked down and rescheduled with a fresh and uncompromised version, without
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affecting the integrity of the host system. So, the first thing to underline is that to
develop an efficient solution the attention has to focus on the pod concept and on
the variety of container runtimes that can be used to launch it.

In a cloud environment handled by the Kubernetes orchestrator, there are hun-
dreds of nodes where pods have to be instantiated. Each node is hosting pods
for running applications belonging to different tenants. To guarantee the privacy
and make possible the remote attestation of each one of them, there should be a
bind between the pod itself and the specific tenant who asked for it. In this way,
the tenant requiring an assurance proof of the nodes of interest (i.e. the nodes
running its applications), could retrieve only the information about its own pods
and nobody else’s. This kind of information can be retrieved by the orchestrator,
with a proper integration in the control plane which knows exactly this kind of bind.

Once established that the privacy issue could be easily superseded, can be ob-
served that another important problem is represented by the ephemeral nature of
pods, meaning that they change their identifiers any time they are rescheduled. For
instance, the latter situation can happen when a node needs to be restarted, and
in that case, not only the identifier changes but also the physical node in which the
pod will run, growing the complexity of the problem exponentially. This is repre-
senting a migration problem to be solved, because a tenant who possesses the lists
of its pod identifiers and nodes in which they are running, at some point in time
could find these lists completely changed, losing control of the integrity check on
the infrastructure. Of course, the updated lists can be retrieved dynamically from
the orchestrator as well, but from the point of view of a node, how can a Verifier
know a priori which pods are allowed and which are not, if they are continuously
changing their location?

A possible solution to the migration problem is to put a constraint: physical nodes
have to stay synchronized, to guarantee simpler management. In this context, be-
ing synchronized means having a general list of allowed pods, the ones specified by
each tenant of the cloud. In this way, whatever node of the cloud is selected to run
the pod, the pod will be considered as allowed (i.e. put within the list of allowed
pods) as long as at least one tenant specifies that pod. Of course, a solution like
this lacks in terms of optimization but consents to avoid the underlying node be-
ing considered untrusted at the moment when a new pod is rescheduled within it.
In other words, identifying a pod and solving the migration problem is one of the
biggest advantages of a solution like this. However, why this solution lacks in terms
of optimization? On one hand, we can consider that the pod list resides in Verifier
nodes which in general are fewer than the nodes to be attested, but on the other,
each pod is associated with its own specific whitelist of golden values to be used in
the verification process. For instance, if a node is running 50 different pods, then
the Verifier must have that 50 pods in the list and 50 different whitelists, one for
each pod. If we add another node, with 50 additional different pods, the whitelists
on the Verifier side pass from 50 to 100, and so on. The number of whitelists grows
very quickly and easily, with a huge waste of memory and with the growth of the
attack surface, because in each Verifier node are present whitelists of pods that are
actually not running.
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Then, going more in-depth with the reasoning, how to bind an event to be an-
alyzed to the entity that generates it? For instance, the objective is to treat the
host and pods separately, to allow a node to remain trusted even when one of the
pods may not be. This means that an event can be verified either against the host
whitelist or any whitelist among those of the pods. So, the question is: the event
that occurs on the platform, was it triggered by a pod or by the host system? Fol-
lowing the DIVE and Docker Container Attestation approaches, this can be done
using a patched version of the kernel with a new template to fill the Measurement
Log. However, a solution that assumes the usage of a patched kernel possesses strict
requirements and from the management point of view is inconvenient, since has a
considerable impact on the cloud infrastructure. In fact, being strongly linked to
a specific kernel version brings physical changes to the nodes of the infrastructure,
which cannot always be a suitable choice. On one hand, this represents one of the
most important drawbacks derived from choosing a new template, but on the other,
adding a new template that is also able to identify the specific container runtime
that launched that pod consents compliance of the solution with any of them.

Finally, talking about the hash algorithm to be used in the measures of the events,
it would be better to have a flexible choice that consents to pass easily from one
algorithm to another one, according to the specific device to be attested. This can
be done again by intervening on the kernel, with a command line parameter, with
the same issues reported for a patched kernel. In other words, it is not that easy
to scale the cloud infrastructure, and each proposed solution has its own pros and
cons to be evaluated before taking a decision.

5.2 Proposed Solution

The Linux IMA module was born when the Root Of Trust for Measurement and the
remote attestation process was targeting almost only physical systems, so it was not
developed thinking about splitting the measures into more ML files. Examining a
unique ML is enough to establish the trustworthiness of a physical system, but this
is not an applicable solution for the cloud environment. The choice of an efficient
strategy to overcome this IMA limitation represented the first problem to face dur-
ing the thesis work. To consent to an untampered cloud node to run properly and
without interruptions even if a pod is evaluated untrusted, the ML has to provide
in some way a method to establish if each entry has been generated by the prover
system or by a pod running within it. The solution proposed by Container-IMA
added new components to split the ML file, to get container-specific MLs. However,
the latter was not considering the integrity verification of the underlying platform,
a fundamental requisite in the cloud scenario. For this reason, as for DIVE and
Docker Container Attestation, the choice fell on implementing a new IMA template
that consents to affirm with certainty the entity that generates the ML entry, as
explained in section 5.3.

A second choice to make was represented by the Remote Attestation framework
to be used: since Keylime is an open source framework and it relies upon the TPM
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2.0 specification, it was a good fit for the work purpose. Of course, the framework
had to be modified to understand the new IMA template and work accordingly in
the validation of the ML, as stated in section 5.4.

The last choice to be made regarded the cluster set-up, specifically for the testing
phase. Once the new template has been defined, works with the Keylime frame-
work, and the remote attestation works for a single node that is running pods, it
was time to check if a Kubernetes Master Node running the Keylime Verifier was
able to attest at least two Kubernetes Worker Nodes running the Keylime Agent.
For this last purpose, due to the complexity of Kubernetes and to avoid investing
too much time, the lightweight k3s version has been chosen to focus the attention
on the main objective of the work. The Cluster Set Up will be explained in section
5.6 with the application of the solution to multiple nodes.

In the following sections will be presented the solution development following a
step-by-step approach.

5.3 Measurement Log Discrimination
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Figure 5.1. Schema Of The Result to be Achieved

The starting point of the work concerned the association of one ML entry to the
entity that generates it. In this case, the entity may be either the attester system
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(i.e. the Kubernetes worker node) or any pod running within it, and the default
IMA templates do not consent to make such discrimination. In figure 5.1 can be
seen the schema with the result to be achieved. To think about a solution and
bounding an event to a specific pod, was useful to study and take into account the
previously proposed approaches. The ML is filled with a different entry whenever
a new operation is performed by a process. A process is a running instance of a
generic program: for instance, a container is seen by the physical system exactly as
a process. As a result, the first observation made by Docker Attestation developers
was that in the dependencies of the process that generates a container-related en-
try, there should be some hint about the container runtime that launched it. This
means that the dependencies of the process that generates the entry are the first
IMA template field to take into consideration, to make a preliminary skimming: if
a container runtime is present, then it is unlikely an entry that belongs to the host
system, as shown in figure 5.2. Then, a docker container can be uniquely identified

  

DEPENDENCIES OF THE PROCESS ENTITY THAT GENERATES IT

swapper/0:swapper/0 Host

/usr/bin/bash:/usr/bin/containerd-shim-runc-v2:/usr/lib/
systemd/
systemd:swapper/0

Container

runc:/var/lib/rancher/k3s/data/
8c2b0191f6e36ec6f3cb68e2302fcc4be850c6db31ec5f8a74e
4b3be4031
01d8/bin/containerd-shim-runc-v2:/usr/lib/systemd/
systemd:swapper/0

Container

kworker/u8:3:kthreadd:swapper/0 Host

Figure 5.2. Depedencies Field

either through its device identifier, if we consider DIVE, or through its container
identifier, if we consider Docker Container Attestation. At this point of the rea-
soning was observed that the latter strategy was the better, since there were no
problems related to containers inheriting previously used identifiers, as happened
with DIVE and the device identifiers. Moreover, the container identifier is not a
Docker-specific characteristic. So, the problem passes to ”what is the unique char-
acteristic of a pod, that can be inserted within an entry?”. Obviously, the answer
was found in the pod identifier. Specifically, in Kubernetes, every object is assigned
with a different universally unique identifier (UUID) to distinguish between histor-
ical occurrences of similar entities [13].

Once established that the pod UUID was needed, the next problem was how to
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retrieve and put it in an IMA template field. By examining the control group fea-
ture offered by the Linux kernel, was observed that the control group path related
to a pod handled by Kubernetes, starts always with the same string, and it contains
exactly the pod UUID, as shown in figure 5.3. Exactly as the container processes

  

CONTROL GROUP PATH POD UUID

/kubepods/burstable/pod35dff828-7fe0-4cb6-
b498-c4320fb061ff/
841f62eabfdc59a14626dad33395714aea4ee7482
b00ced12088d1ad046767b0

35dff828-7fe0-4cb6-b498-c4320fb061ff

/kubepods/besteffort/pod785da7e9-8892-4aac-
8588-982a051e41cb/
281f69d88e5025e27cf95ce72e8fae54b768dd3ab3
73188b6ee67a84cf4f78ce

785da7e9-8892-4aac-8588-982a051e41cb

/kubepods/besteffort/pod2eb8cc34-dc20-4832-
8a3c-3bad06824f3e/
879ec8fd57e4fb749172c609b6e6ca486d966df0fb
06c9bd10ec5e2db8d4fdb9

2eb8cc34-dc20-4832-8a3c-3bad06824f3e

/kubepods/besteffort/pod5f5e4ef5-22f0-4ff5-a693-
0497e43e58a9/8f2dcd659173cf3453856cf5fce98d
82ad309637ec951593bf7cb65babad43a1

5f5e4ef5-22f0-4ff5-a693-0497e43e58a9

Figure 5.3. Control Group Path Field

inherit the control group name of the process that generates the container, each
container belonging to a pod inherits the same control group path.

In the end, two additional IMA template fields were added:

• The dependencies, to have extra assurance in the discrimination of the entry.

• The control group path, to be sure to analyze a pod entry and retrieve the
pod UUID.

The new template descriptor ima-cgpath was defined, which will be explained more
in detail in chapter 6. Specifically, if an entry of the ML has the dependencies field
containing the orchestrator dependencies, which in the case of k3s is identified with
/rancher/k3s, and the control group path starts with kubepods, then the entry is
related to a pod and its pod UUID can be retrieved from the control group path
field.

5.4 Keylime Integration

Once the new IMA template was put in place, the next step was to make the re-
mote attestation framework able to understand and use it. The first consideration
to make is that the Keylime Verifier, Tenant, and Registrar components should run
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in a Kubernetes Master Node, while the Keylime Agent should run in a Kuber-
netes Worker Node, as explained in section 5.5. As a reminder, the execution flow
provided by Keylime is represented by the following steps:

1. First, when the Keylime Agent is kicked off, the registration protocol of the
node against the Registrar component begins.

2. Once the node has proven its identity, it has to be registered against the
Verifier Component, a phase that involves also the Tenant Component in the
Three Party Bootstrap Key Derivation Protocol.

3. Finally, when the node is registered at the Verifier, the remote attestation
can be continuously performed.

Phase 1 has not been affected by modifications, as explained in the following para-
graphs, while phases 2 and 3 have been modified accordingly. Of course, in the first
phase of the integration, the objective was to make the remote attestation works
with the physical system taking measures with the new template, only in the end
the pods’ support was added.

5.4.1 Worker Node

In the attester machine, which corresponds to a Worker Node, the IMA module
will be responsible to fill the ML to be sent in the Integrity Report with the new
IMA cgpath template. This is the only modification required in the Keylime Agent,
which simply sends the Integrity Report at each attestation cycle.

5.4.2 Master Node

In the verifier machine, which corresponds to a Master Node, the Keylime Regis-
trar component is in charge to establish the hardware device authentication of the
platform, by evaluating the genuineness of the TPM’s EK. The Keylime Registrar
has not been affected by modifications and performs the registration protocol as
usual. When the Keylime Tenant component has to perform the registration of
the host system to the Keylime Verifier, there will be an additional operation to
be done: the pods’ registration. Pods’ registration is needed to detect if there are
unknown pods running in the node, hence if only expected pods are running and in
the expected way. The registration happens by providing the list of the pod UUIDs
which are expected to run in the node, which can be retrieved by the orchestrator.
So, each specific-tenant pod running in a worker node must be put in a list and be
accompanied by its associated whitelist, to be evaluated and to be assigned with a
status. The status of a pod could be:

• START, if the pod is waiting for the first integrity check;

• TRUSTED, if the pod has a trusted state;

• UNTRUSTED, if the pod has an untrusted state.
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In the beginning, each pod is assigned with the START state, since the transition
can be done only by the Keylime Verifier component during the evaluation process.
The latter will be responsible to validate the trustworthiness of the pods, exactly
with the same logic as the host machine. After having established the integrity of
the ML against PCR 10, the validation of the host system happens together with
the validation of the pods. The main logic related to pod follows this reasoning:

• Once established that the ML entry is related to a pod, the pod UUID is
retrieved from the control group path field.

• If the pod UUID is not belonging to the list of registered pods, then the host
system is evaluated untrusted and the validation stops because an unknown
pod is performing executions.

• If the pod UUID is present in the list, then its whitelist is retrieved and its
measures are evaluated one by one, as it happens with the host. In the end,
each pod status can pass either to trusted or untrusted. If a registered pod
is found untrusted, then the host system stays trusted, in order to avoid the
whole platform to be restarted.

Each possible outcome of the remote attestation process will be explained in detail
in the next chapter.

5.5 Architecture of the Proposed Solution

In the Kubernetes architecture, the main distinction is between master and worker
nodes, as stated in 2.4. For this reason, the idea behind the thesis work was to try to
integrate directly in the Kubernetes control plane the Keylime components involved
in the remote attestation process. The overall architecture can be seen in figure 5.4,
where the blue lines indicate the communication of the Kubernetes components,
while the green ones are related to the Keylime framework. For simplicity, in the
figure are pictured only one master and one worker node. The overall process can
be seen as three separate phases:

• an initial one in which is performed the set-up of the cloud environment ;

• a second phase regarding the periodic remote attestation;

• a third phase concerning the life cycle management.

During the initial phase, the needed worker nodes are instantiated by a master
node to run the pods specified by the user, and the Keylime Agent is registered
at the Keylime Registrar. Once the cluster is active and properly running, the
periodic remote attestation can be launched by the user by sending an attestation
request to the Keylime Tenant, which will provide the registration of the Agent at
the Keylime Verifier. Having all the needed data, the Keylime Verifier can proceed
with the periodic remote attestation. Finally, the third phase begins and from this
point on, different kinds of situations can arise, as explained in section 5.5.3.
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Verifier
 Node

Attester
 Node

Figure 5.4. Architecture of the proposed solution

5.5.1 Setting up the Cloud Environment

The initial phase of the process can be seen in figure 5.5. When a remote user
specifies a new deployment to the API server (1), the desired state is stored inside
the etcd database (2), the controller manager instantiates the needed controllers,
and the scheduler selects the physical nodes in which the pods should run (3). For
simplicity of explanation, let us assume that only one worker node is selected by
the scheduler. When the worker node is chosen, kubelet communicates with CRI
which will instantiate the pods through a container runtime (4). At this point, the
cluster is ready and working to maintain the actual state to match the desired one.

At the same time which the worker node was powered on, the Registration Proto-
col between the Keylime Agent and the Keylime Registrar starts (1), in order to
enable the hardware device authentication offered by the TPM. The Registration
Protocol has not undergone any changes, as stated in paragraph 5.4. On the other
hand, the Registration of the Keylime Agent to the Keylime Verifier is the first
step to consent the remote attestation, and it happens when the remote user wants
to retrieve the integrity proof of the worker node running its pods (5). The latter
operation needs to be integrated to support the pod registration, specifically by
using a pod list containing the expected UUIDs and the associated whitelists, one
for each pod, as explained in the following section.
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Figure 5.5. Set Up of the Cloud Environment

5.5.2 Periodic Remote Attestation

After the conclusion of the preliminary phase, when the user wants to know the
integrity status of its pods, it communicates with the Keylime Tenant and the
Registration of the Keylime Agent to the Keylime Verifier happens. The user has
first to contact the orchestrator to retrieve its pod identifiers since they are dynamic
objects that could change over time. As an example, the worker node can be subject
to a failure and switched off: as a consequence, the pods will be rescheduled with
different pod UUIDs and may run in one or more different worker nodes. After
having retrieved the pod UUIDs, the user contacts the Keylime Tenant to make its
Attestation Request, providing the data shown in table 5.6.

Workflow

When the Keylime Tenant has retrieved from the User the needed data to be
forwarded to the Verifier, the workflow is the one shown in figure 5.7:

1. The user makes an Attestation Request to the Keylime Tenant, providing all
the needed data.

2. The Three Party Bootstrap Key Derivation protocol starts, so the Keylime
Tenant creates and splits the bootstrap key Kb into U and V, sending V to
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FIELD DESCRIPTION

The Keylime Agent UUID It is the UUID of the Keylime Agent running in the worker
node, which is established in the initial phase.

The IP address It is the IP address of the worker node.

The Host System Whitelist It is the whitelist needed to evaluate the status of the worker
node.

The Host System Exclude List It is the exlude list of the worker node. It is an optional field.

The Pod UUIDs list It is the list of allowed pods in the worker node. It is retrieved
from the orchestrator.

The Pod Whitelists They are the whitelists associated with each pod.

The TPM policy It is needed to specify the PCRs which must be present in the
quote.

Figure 5.6. Data provided in the Attestation Request

the Keylime Verifier. The Tenant sends to the Verifier also the data received
from the user, because it will be in charge to monitor the host system and
the pods. At this point, the new Keylime Agent is registered at the Verifier.

3. The Keylime Agent retrieves the U part of the bootstrap key from the Tenant,
together with an encrypted payload.

4. The Agent retrieves the V part of the bootstrap key from the Verifier, to
recompose the bootstrap key and be able to decrypt the securely exchanged
payloads received from the Tenant.

5. The Verifier starts the continuous remote attestation, providing a nonce and
a policy, and receiving the integrity report.

6. The user retrieves the attestation results.

5.5.3 Life Cycle Management

Once phases 1 and 2 are completed, the periodic remote attestation is enabled and
performed continuously. However, after these two phases, some kind of event can
happen during the life cycle of the nodes. For instance:

• a Worker Node may be shut down, causing the death of the pods within it.
Each pod has to be rescheduled;

• a new pod can be added to a Worker Node, so it has to be registered in the
list and its associated whitelist should be provided;
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Figure 5.7. Workflow of the proposed solution

• the whitelist of a pod can be subject to an update to allow new kinds of
operations;

• also the whitelist of the host can be updated.

Except for the last point, any of these events fall into the category of the migration
problem, which considers that at a certain point in time a node can run dynamically
any of the possible pods, according to the Kubernetes scheduler decisions. How
these situations can be handled is reported in the next section 5.6.

5.6 Application of the Solution to Multiple Nodes

It is worth notice that the solution described in the previous sections was developed
having in mind exactly a simple scenario: each tenant has running pods in a unique
worker node, and each tenant has to retrieve its specific pod UUID list from the
orchestrator. However, these first assumptions were too simplified to be used as
they were in a real-world scenario. As already mentioned, when a worker node is
switched off, every pod which was running within it is rescheduled with a different
pod UUID. If any pod is found untrusted, then it has to be isolated and replaced
with a new, fresh, and uncompromised version, which will have, again, a differ-
ent pod UUID. Moreover, pods to be rescheduled can be potentially instantiated
in a different worker node than the original one, based on the currently available
resources. In the real case scenario, each tenant has running pods in more than
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Attester Node Attester Node 

Verifier Node

Figure 5.8. Kubernetes Cluster with two worker nodes. Each tenant is executing
its pods within a single node.

one worker node, and, in each worker node, are running pods belonging to different
tenants. Due to this complexity, an actual integration in the Kubernetes Control
Plane is needed, which will be part of the future work, as explained in chapter 8.
To overcome these limitations, at this point of the development and contextually
with the k3s cluster set-up, was decided to add the assumption that within each
worker node of the Kubernetes cluster are allowed all the possible pods, for each
tenant, hence all the possible pods are registered in each Master Node. This choice
was made for simplicity, because the Kubernetes scheduler can arbitrarily change
the worker node in which a pod is executed, bringing, in fact, migration issues.

The final version of the solution was applied and tested in a cluster architecture
represented in figure 5.8 and figure 5.9: for instance, if the tenant one has pods A
and B, while tenant two has pods C and D, then in a master node which is run-
ning the Keylime Verifier, the pod list will contain pods A, B, C, and D and there
will be all their related whitelists. Instead, in a worker node that is running the
Keylime Agent, will be possible and allowed the presence of pods A, B, C, and D.
Of course, it is possible that none of the pods between A, B, C, and D are executing
in that specific node, but this does not affect drastically the overall performance,
since each pod will remain with state START, as shown in figures. Remaining in
START state means that they are not evaluated, because the first evaluation of a
pod entry is performed when that specific pod UUID is found in the Measurement
Log. If the pod is not executing in that node, the ML contained in the Integrity
Report provided by the Keylime Agent cannot contain measures related to that pod.
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Attester Node Attester Node

Verifier Node

Figure 5.9. Kubernetes Cluster with two worker nodes. Each tenant is executing
its pods within more nodes.

The workflow is the following:

1. The user specifies a new deployment.

2. The deployment is stored in etcd and the controllers instantiated.

3. The scheduler selects the worker nodes to be used. In figure 5.8 is selected
node X for tenant one and node Y for tenant two, while in figure 5.9 both
nodes are selected for both tenants.

4. The pods are instantiated through a container runtime.

5. The users ask a Remote Attestation Request.

6. The users retrieve the Remote Attestation Results.

In this way, whenever a new pod has to be added, the orchestrator has just to
provide its UUID and associated whitelist to the Keylime Verifier. When a Worker
Node is switched off, the migration of each pod that was running within it is allowed
in any of the other Worker Nodes. When a pod wants to perform a new kind of
operation which was not originally planned, its whitelist can be updated on the
Verifier side, without causing any problem. To forbid the execution of a previously
registered pod, it is sufficient to delete its UUID and whitelist from the Verifier. In
other words, the migration problem is completely solved with this assumption, but
as explained in section 5.1, it lacks in terms of optimization.
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5.7 Considerations

The proposed solution is not only lacking in terms of optimization, but it is not
taking into account the privacy issue as well, since a tenant can retrieve the status
of the pods belonging to another one. For this reason, the purpose of the future
work is also to overcome this limitation, since by integrating the Keylime Tenant’s
APIs directly into the API server, it is possible to retrieve the specific list of the
tenants’ pods and physical nodes in which they are running in a dynamic way, in
order to attest only those of interest and to solve dynamically also the migration
issue. In this way, the orchestrator could exploit directly the Keylime Framework
by providing it with the needed data related to specific-tenant pods, to consent the
usage of real lists in the process.

Finally, from the point of view of the whitelists associated with pods, they could be
built starting from the container images that reside within them, and memorized at
the Verifier without involving the user, as long as any different operation is required
on the system.

Despite of the underlined drawbacks, the proposed solution reached its main goal
of be able to shut down and rescheduled only the compromised pods, without af-
fecting the integrity of the host system which can stay on and grant all the other
services evaluated as trusted.
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Chapter 6

Remote attestation of a
Kubernetes cluster -
Implementation

This chapter exposes in detail the implementation of the proposed solution. In the
first section is presented the explanation of the new proposed IMA template, which
has been used in patched Linux Kernels running on Ubuntu Server 20.04 LTS. The
second section exposes the changes related to the Keylime framework, where the
Keylime Agent is meant to run in a Kubernetes Worker Node and the Tenant,
Verifier, and Registrar components in a Kubernetes Master Node. Specifically, it
was chosen Keylime version 6.3.0, in which at each attestation cycle is sent only
a portion of the ML, the one not yet attested, reducing the overall latency, as
observed also by the Docker Container Attestation developers. Finally, the third
section provides the ML validation results, with the possible outcomes provided by
the Verifier during the Remote Attestation process.

6.1 IMA Template

The new IMA template was defined in order to make possible the discrimination
in the ML between an entry related to the host system and an entry related to
a pod. The new template descriptor is called ima-cgpath with a format string
”dep—cg-path—d-ng—n-ng”. As shown in figure 6.1, the template fields used are:

• PCR that refers to the PCR number used to extend the current entry;

• template-hash that contains the digest calculated over the template fields of
the current entry. This digest is extended in the PCR specified in the first
field, and the SHA-256 algorithm is used;

• template-name that specifies the template descriptor used for the entry, which
in this case is ima-cgpath;

• dependencies that specifies the dependencies of the process that created the
entry;
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• cgroup-path that specifies the control group path;

• file-hash that contains the digest of the file specified in the last field: it is the
actual measure of the event. The SHA-256 algorithm is used.

• file-path that contains the file pathname.

The fields PCR, template-hash, and template-name are the mandatory ones, while
the field dependencies and cgroup-path have been introduced. It is worth notice

  

PCR template-hash template-name dependencies cgroup-path file-hash file-path

10 sha256:6b79219[...
]8

ima-cgpath swapper/0:swapper/0  / sha256:7b643
6b0[...]1

boot_aggregate

... ... … ... ... ... ...

10 sha256:ab34[...]74
4

ima-cgpath runc:/var/lib/rancher/k3s/
data/
8c2b0191f6e36ec6f3cb
68e2302fcc4be850c6d
b31ec5f8a74e4b3be40
3101d8/bin/containerd-
shim-runc-v2:/usr/lib/
systemd/
systemd:swapper/0

/kubepods/
burstable/
pod5c6ae4d3-475b-
4897-b1e4-
eb6367716cbd/
5aeab4fc9a54050ca
b3f08b5e6e9b95661
16e47716cb4a657b
909a1e6a0ce188

sha256:8c768[
...]fd29

/coredns

10 sha256:fb60ae24fd
fb3[...]ae17  

ima-cgpath /bin/busybox:/var/lib
/rancher/k3s/data/
8c2b0191f6e36ec6f3cb
68e2302fcc4be850c6d
b31ec5f8a74e4b3be40
3101d8/bin/containerd-
shim-runc-v2:/usr/lib/
systemd/
systemd:swapper/0 

/kubepods/
besteffort/
pod5f5e4ef5-22f0-
4ff5-a693-
0497e43e58a9/8f2d
cd659173cf3453856
cf5fce98d82ad3096
37ec951593bf7cb65
babad43a1 

sha256:abadfff
2f[...]0 

/lib/ld-musl-x86_64.so.1

10 Sha256:0[...]42c54
17e114f633e1b17a  

ima-cgpath /usr/bin/dash:/usr/bin/
dash:/usr/lib/systemd/
systemd:swapper/0

/system.slice/
keyboard-
setup.service

sha256:874bf4
84f8[...]32ea2

/etc/console-setup/
cached_setup_keyboar
d.sh

... ... ... ... ... ... ...

Figure 6.1. Example of ML with ima-cgpath template

that the algorithm used for the template-hash field is SHA-256, while the IMA
module uses by default SHA-1. This result has been achieved by the Docker Con-
tainer Attestation developers and it has been exploited also in this solution. The
latter is a flexible choice since it is possible to set the algorithm back to SHA-1
through the ima template hash kernel parameter.

By looking if the field cgroup-path starts with the string /kubepods is possible to
determine uniquely if the entry has been generated by the host system or a pod.
The pod UUID needed to evaluate its status can be retrieved from the same field.
The dependencies of the process that generates the entry can be used to provide
extra assurance of its origin. In fact, if the orchestrator dependency identified with
/rancher/k3s is present then the entry is related to a pod, and the container run-
time used to launch it can be retrieved. By default k3s uses containerd, as stated
in section 2.3.6 and as shown in figure 6.1. The implementation details of the new
template can be found in the Developer’s manual, section B.1.
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6.2 Keylime Modifications

The Keylime modifications concerned two main aspects. The first one was to make
the framework understand and use the new IMA template, while the second was
about adding the support needed to make and handle the pod registrations at the
Verifier. Then, also the validation of the IR makes necessary changes in the Verifier.
It is worth notice that the overall architecture has not been modified, rather the
components Keylime Agent, Tenant, and Verifier have been integrated with new
functionalities, as explained in the following sections.

6.2.1 Keylime Agent

The Keylime Agent is in charge of periodically sending an Integrity Report to the
Keylime Verifier. The Integrity Report contains also the Measurement Log, so the
code portion affected by modifications is the one that is handling the interaction
with the IMA module. Specifically, a new class called ima-cgpath was added,
containing the fields explained in section 6.1, and used to fill the ML in case the
new template ima-cgpath is used.

6.2.2 Keylime Tenant

The interaction between the user and the Keylime Tenant to consent the regis-
tration at the Keylime Verifier and the related attestation procedure can be done
either via Command Line Interface or REST APIs. The modifications needed were
related to the macro-operations:

• status, to retrieve the operational state of the Keylime Agent (i.e. the Kuber-
netes Worker Node) and the pods’ states running within it. The pods’ states
are explained in 5.4.2, while the possible operational states of the Keylime
Agent could be seen in table 6.2.

• add, to register a new Keylime Agent at the Verifier with the additional data
of pods list and pod whitelists. The whole data to be provided to perform
this operation is shown in table 5.6.

• update, to update an already registered Keylime Agent at the Verifier, of
course, with different data than the one passed during the add operation.

• delete, to delete an Agent from the Keylime Verifier.

Specifically, some new REST APIs have been added and some have been modified
accordingly. The detail of the implementation can be retrieved in the User’s manual,
section A.7.
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STATE DESCRIPTION

Registered if the Agent has only been registered at the Registrar with Registration 
Protocol

Start if the system is not yet attested

Saved if the first attestation is started but not yet completed

Get Quote if the previous evaluations are completed and the system is trusted

Get Quote Retry if the last TPM quote has not been received by Verifier

Provide V if the Agent is retrieving the V part of the Bootstrap Key from Verifier

Provide V Retry if the Agent is trying again to retrieve the V part of the Bootstrap Key
from Verifier

Failed if some kind of failure occurred during the process

Terminated if the attestation procedure has been stopped

Invalid Quote if the system has been found untrusted in the last evaluation 

Tenant Failed if the Tenant component has failed

Figure 6.2. Possible Operational States of the Keylime Agent

6.2.3 Keylime Verifier

The Keylime Verifier has to be modified in order to be able to understand and vali-
date the new data received from the Keylime Tenant. Specifically, at the moment of
the add and update operations, it fills a Database in which the Keylime Agent pods
list and whitelists have to be stored together with the usual data. Specific-Agent
data stored within the Database has to be removed when the delete operation is
performed. At the moment of the status operation, the Verifier has to retrieve the
operational state of the specified Keylime Agent and related pods.

The Keylime Verifier uses a new IMA validator for the class ima-cgpath, which was
needed to check the integrity of the whole ML against IMA PCR. After the integrity
validation of the whole ML, the Keylime Verifier proceeds with the validation of
each ML entry, using the host whitelists and the pods’ whitelists accordingly. All
the possible outcomes given by the Verifier are explained in the following sections.

6.3 Remote Attestation Outcomes

This section provides the possible results of the remote attestation process applied
to a Kubernetes Worker Node.

6.3.1 Attester system evaluated as trusted

Whether the attester has registered pods or not, it is evaluated as trusted by the
Keylime Verifier if:
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• the quote is fresh and the signature is valid;

• all the PCR provided in the mask are present in the quote;

• the ML is not tampered with and the measures match the ones in the whitelist;

while in the specific case of registered pods, the attester system stays trusted if the
previous constraints remain satisfied and in the ML are not detected unregistered
pods. In figure 6.3, can be seen a screenshot taken from the Keylime web application
picturing two attesters evaluated trusted (i.e. with the operational state set to Get
Quote).

Figure 6.3. Two Attesters Evaluated Trusted

6.3.2 Attester system evaluated as untrusted

Whether the system to be evaluated has registered pods or not, it is evaluated as
untrusted by the Keylime Verifier if:

• the quote is not fresh or the signature is not valid;

• one or more PCR provided in the mask is not present in the quote;

• the validation of ML integrity fails or one or more measures does not match
the ones present in the whitelist.

If in the attester system there are registered pods, it is evaluated as untrusted if in
the ML are present unregistered pods. In figure 6.4 can be seen a screenshot taken

Figure 6.4. One Attester Evaluated Untrusted

from the Keylime web application picturing two attesters, one evaluated trusted
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and the other untrusted (i.e. with the operational state set to Invalid Quote). As
an example, if the attester is evaluated untrusted because one measure of the ML
does not match its whitelist, from the log file of the verifier a message like this can
be retrieved:

Warning: Hashes for file /usr/bin/getent don’t match

3e774af1026aeac946858c0b6d99ec7e423fdd2d7dca2267b4b203fd4a2cb8da

while if the reason is an unregistered pod:

Error: Unknown pod found in Measurement List, pod ID:

35dff828-7fe0-4cb6-b498-c4320fb061ff

6.3.3 Attester system evaluated as trusted with registered
pods

While the Keylime Verifier is establishing the ML integrity, it can associate the
entry either to the attester or to a pod, by looking at the dependencies and cgroup-
path fields. If the dependencies field contains a container runtime and the cgroup-
path field contains a pod identifier, then the entry is related to a pod and it can
be evaluated against a pod-specific whitelist. The process of evaluation is exactly
the same as the attester system and its own whitelist. When the validation of the
attester system gives a positive result, it is evaluated as trusted, and there are three
possible cases related to the registered pods, each one explained in the following
sections.

Each registered pod is trusted

  

Keylime Tenant - INFO AGENT:   Get Quote

Keylime Tenant - INFO POD 785da7e9-8892-4aac-8588-982a051e41cb “Trusted”

Keylime Tenant - INFO POD 2eb8cc34-dc20-4832-8a3c-3bad06824f3e “Trusted”

Keylime Tenant - INFO POD 5c6ae4d3-475b-4897-b1e4-eb6367716cbd “Trusted”

Keylime Tenant - INFO POD 5f5e4ef5-22f0-4ff5-a693-0497e43e58a9 “Trusted”

Keylime Tenant - INFO POD 35dff828-7fe0-4cb6-b498-c4320fb061ff “Trusted”

Figure 6.5. The attester system and each registered pod are trusted

When the evaluation process finishes for each registered pod, the best outcome is
represented by having all of them as trusted. In figure 6.5 can be seen the output

68



Remote attestation of a Kubernetes cluster - Implementation

related to this case displayed by the tenant Command Line Interface when the
command status is asked. As the attester system, a pod is evaluated as trusted
if each related measure present in the ML belongs to its whitelist and its value is
among those expected.

The pod measure does not match the pod whitelist

Another outcome is that a pod is found untrusted. One of the possible reasons is
that the measured file contained in the ML is present in its whitelist, but its hash
value does not match any of those expected. In this case, the output reported by
the Verifier will indicate the files which do not match the measure under the string
”FILE-HASH ERRORS”, as shown in figure 6.6.

  

Keylime Tenant - INFO AGENT:   Get Quote

Keylime Tenant - INFO POD 785da7e9-8892-4aac-8588-982a051e41cb “Trusted”

Keylime Tenant - INFO POD 2eb8cc34-dc20-4832-8a3c-3bad06824f3e “Trusted”

Keylime Tenant - INFO POD 5c6ae4d3-475b-4897-b1e4-eb6367716cbd 

FILE-HASH ERRORS:
/pause

“Untrusted”

Keylime Tenant - INFO POD 5f5e4ef5-22f0-4ff5-a693-0497e43e58a9 “Trusted”

Keylime Tenant - INFO POD 35dff828-7fe0-4cb6-b498-c4320fb061ff “Trusted”

Figure 6.6. One pod is evaluated untrusted. The file /pause is present in its
whitelist but the measure is not among those expected.

The measured pod file is not in the pod whitelist

The last outcome case is given when a pod is evaluated untrusted because the file
is not present in its whitelist. In this case, the output reported by the Verifier
will indicate the files which are not present in the whitelist under the string ”FILE
NOT FOUND”, as shown in figure 6.7.

6.4 Considerations

The outcomes represented in figures 6.6 and 6.7 shown as the attester system stays
with operational state Get Quote, that was the work objective. In fact, to be able
to shut down and reschedule only the compromised pod, the prover system has to
be considered trusted.
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Keylime Tenant - INFO AGENT:   Get Quote

Keylime Tenant - INFO POD 785da7e9-8892-4aac-8588-982a051e41cb “Trusted”

Keylime Tenant - INFO POD 2eb8cc34-dc20-4832-8a3c-3bad06824f3e “Trusted”

Keylime Tenant - INFO POD 5c6ae4d3-475b-4897-b1e4-eb6367716cbd “Trusted”

Keylime Tenant - INFO POD 5f5e4ef5-22f0-4ff5-a693-0497e43e58a9

FILES NOT FOUND:
usr/local/bin/traefik

“Untrusted”

Keylime Tenant - INFO POD 35dff828-7fe0-4cb6-b498-c4320fb061ff “Trusted”

Figure 6.7. One pod is evaluated untrusted. The file /usr/local/bin/traefik
is not present in its whitelist.

These results can be obtained in two ways. The first one is by changing ”by hand”
the hashes in the pod whitelists or deleting the contained files. The second way,
more efficient, is to simulate a real attack against a pod, by entering it from the
Worker Node and changing its binaries. The attester system stays trusted because
the event ”unauthorized execution from a registered pod” is extended as well in
IMA PCR, so the Keylime Verifier does not complain about the integrity status of
the ML against the value of the IMA PCR.
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Test and Validation

This chapter provides the test and validation phase of the proposed solution. Specif-
ically, functional tests were made to evaluate if the Keylime framework was able
to correctly perform the remote attestation process, while performance tests were
made to establish the timing and resources required during the process.

7.1 Testbed

The testbed put in place to test the solution was composed of three machines:

• One Kubernetes Master Node, running the Keylime Tenant, Registrar, and
Verifier components. The OS used is Ubuntu server 20.04 LTS.

• Two Kubernetes Worker Nodes, running the Keylime Agent component. The
OS used is Ubuntu server 20.04 LTS with a patched Linux kernel based on
version 5.13 and using the new IMA template explained in section 6.1.

All the used machines are Intel NUC equipped with an Intel Core i5-5300U Pro-
cessor, 16 GB of RAM, and a TPM 2.0 chip.

The appendix A shows the steps to configure the testbed and to turn it into a
k3s cluster.

7.2 Functional Tests

Functional tests were made to evaluate if the proposed solution works as expected.
As a reminder, in each Worker Node are registered all the allowed pods, hence a
pod could have:

• operational state set to 0, which corresponds to START;

• operational state set to 1, which corresponds to TRUSTED;
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• operational state set to 2, which corresponds to UNTRUSTED.

All pods running on a Worker Node other than the one being evaluated will keep
their operational state set to 0.

The cases treated in functional tests include:

• tests with trusted node and pods;

• tests with trusted node and untrusted pod;

• tests with untrusted node.

7.2.1 Tests with trusted node and pods

If the host system and each pod running within it match the corresponding whitelist
values, it is expected that the Keylime Verifier will evaluate as trusted both the
host system and each pod.

On one of the Kubernetes Worker Nodes, the Keylime Agent has been launched
with UUID ”d432fbb3-d2f1-4a97-9ef7-75bd81c00000”, which is the default one, and
the node has been labeled with the command:

kubectl label nodes torsec-k3s-nuc-01 disktype=ssd

The label was needed just to force the Kubernetes Scheduler to launch the pods
exactly in this specific Worker Node and not in the other one. The attester system
has been provided with 5 pod replicas with base image Nginx, through the file
nginx-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas: 5

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.14.2

ports:
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- containerPort: 80

nodeSelector:

disktype: ssd

As explained in A.3, once the registration phase is completed, the Keylime Verifier
starts the RA. By interacting with the Tenant Web app with a GET request at
https://<Verifier_ip_ address>:<Tenant_Webapp_port>/agents/

d432fbb3-d2f1-4a97-9ef7-75bd81c00000, the following response is provided:

1 "code": "200"

2 "status": "Success"

3 "results": {

4 "operational_state": "3"

5 "v": "Sh9TjR38VTeW8H9ZQk0HSRKCsoZjPqe/6a/RVS4dkFw="

6 "ip": "192.168.0.100"

7 "port": "9002"

8 ...

9 "pods": [

10 {

11 "pod": "58164ca4-f0b8-49fc-9067-3ed46a98d9a1",

12 "operational_state": "0"

13 "allowlist": {...}

14 "exclude": []

15 "fnf": []

16 "filehash_err": []

17 },

18 {

19 "pod": "226aed86-763b-4a3e-925b-82e50146171e"

20 "operational_state": "1"

21 "allowlist": {...}

22 "exclude": []

23 "fnf": []

24 "filehash_err": []

25 },

26 {

27 "pod": "bead1494-a2ff-4b2b-bead-97f911a0039f"

28 "operational_state": "1"

29 "allowlist": {...}

30 "exclude": []

31 "fnf": []

32 "filehash_err": []

33 },

34 {

35 "pod": "b50d69cd-1ce9-4f4b-a577-3d87328c9810"

36 "operational_state": "1"

37 "allowlist": {...}

38 "exclude": []

39 "fnf": []

40 "filehash_err": []
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41 },

42 {

43 "pod": "27d3b7c7-c23c-4e6d-a46c-0ac8c9be7ec1"

44 "operational_state": "1"

45 "allowlist": {...}

46 "exclude": []

47 "fnf": []

48 "filehash_err": []

49 },

50 {

51 "pod": "e4e20e81-9fe0-4ab5-832b-0a7230bca31e "

52 "operational_state": "1"

53 "allowlist": {...}

54 "exclude": []

55 "fnf": []

56 "filehash_err": []

57 },

58 {

59 "pod": "dd5e909a-f74a-407d-99a5-1f97020099b8"

60 "operational_state": "1"

61 "allowlist": {...}

62 "exclude": []

63 "fnf": []

64 "filehash_err": []

65 },

66 ]

67 "id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000"

68 }

where:

• the operational state of the host system is set to 3, which corresponds to GET
QUOTE;

• the operational state of each pod running within agent d432fbb3-d2f1-4a97-
9ef7-75bd81c00000 is set to 1, which corresponds to TRUSTED;

as expected. The only pod with operational state equal to 0, which corresponds to
START, is the one with UUID 58164ca4-f0b8-49fc-9067-3ed46a98d9a1, since it is
running in the other Worker Node.

As shown, the Keylime Verifier was able to evaluate correctly the integrity of the
Worker Node.

7.2.2 Tests with trusted node and untrusted pod

As a first test, let us execute in an Nginx pod some software that is not part of its
whitelist. In the examined Worker Node, open a bash on one of the Nginx pods
running within it through the command:
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k3s kubectl exec <pod_name> -n <namespace> -it -- bash

and then launch the command ls. Since the Nginx associated whitelist allows nei-
ther the bash nor the ls command, what is expected is that the Keylime Verifier
will evaluate untrusted the pod, while the host system will remain in GET QUOTE.

By interacting with the TenantWeb app with a GET request at https://<Verifier_ip_
address>:<Tenant_Webapp_port>/agents/

d432fbb3-d2f1-4a97-9ef7-75bd81c00000, the following response is provided:

1 "code": "200"

2 "status": "Success"

3 "results": {

4 "operational_state": "3"

5 "v": "Sh9TjR38VTeW8H9ZQk0HSRKCsoZjPqe/6a/RVS4dkFw="

6 "ip": "192.168.0.100"

7 "port": "9002"

8 ...

9 "pods": [

10 {

11 "pod": "58164ca4-f0b8-49fc-9067-3ed46a98d9a1",

12 "operational_state": "0"

13 "allowlist": {...}

14 "exclude": []

15 "fnf": []

16 "filehash_err": []

17 },

18 {

19 "pod": "226aed86-763b-4a3e-925b-82e50146171e"

20 "operational_state": "1"

21 "allowlist": {...}

22 "exclude": []

23 "fnf": []

24 "filehash_err": []

25 },

26 {

27 "pod": "bead1494-a2ff-4b2b-bead-97f911a0039f"

28 "operational_state": "1"

29 "allowlist": {...}

30 "exclude": []

31 "fnf": []

32 "filehash_err": []

33 },

34 {

35 "pod": "b50d69cd-1ce9-4f4b-a577-3d87328c9810"

36 "operational_state": "1"

37 "allowlist": {...}

38 "exclude": []

39 "fnf": []
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40 "filehash_err": []

41 },

42 {

43 "pod": "27d3b7c7-c23c-4e6d-a46c-0ac8c9be7ec1"

44 "operational_state": "2"

45 "allowlist": {...}

46 "exclude": []

47 "fnf": [

48 "/bin/bash/",

49 "/lib/x86_64-linux-gnu/libtinfo.so.5.9",

50 "/bin/ls",

51 "/lib/x86_64-linux-gnu/libselinux.so.1",

52 ],

53 "filehash_err": []

54 },

55 {

56 "pod": "e4e20e81-9fe0-4ab5-832b-0a7230bca31e "

57 "operational_state": "1"

58 "allowlist": {...}

59 "exclude": []

60 "fnf": []

61 "filehash_err": []

62 },

63 {

64 "pod": "dd5e909a-f74a-407d-99a5-1f97020099b8"

65 "operational_state": "1"

66 "allowlist": {...}

67 "exclude": []

68 "fnf": []

69 "filehash_err": []

70 },

71 ]

72 "id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000"

73 }

where the compromised pod has the operational state set to 2 (UNTRUSTED), its
”files not found” list has the unrecognized measured files, and the host operational
state is set to 3 (GET QUOTE), as expected.

Now, let us add a new entry within the Nginx pod whitelist: a file called wrong hash,
which corresponds to the measure of some script. Since the file /bin/bash/wrong hash
is measured, by executing it with different content, what is expected is that the
file will be put within the list ”file hash error” and the pod considered as untrusted.

By interacting with the TenantWeb app with a GET request at https://<Verifier_ip_
address>:<Tenant_Webapp_port>/agents/

d432fbb3-d2f1-4a97-9ef7-75bd81c00000, the following response is provided:

1 "code": "200"
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2 "status": "Success"

3 "results": {

4 "operational_state": "3"

5 "v": "Sh9TjR38VTeW8H9ZQk0HSRKCsoZjPqe/6a/RVS4dkFw="

6 "ip": "192.168.0.100"

7 "port": "9002"

8 ...

9 "pods": [

10 {

11 "pod": "58164ca4-f0b8-49fc-9067-3ed46a98d9a1",

12 "operational_state": "0"

13 "allowlist": {...}

14 "exclude": []

15 "fnf": []

16 "filehash_err": []

17 },

18 {

19 "pod": "226aed86-763b-4a3e-925b-82e50146171e"

20 "operational_state": "1"

21 "allowlist": {...}

22 "exclude": []

23 "fnf": []

24 "filehash_err": []

25 },

26 {

27 "pod": "bead1494-a2ff-4b2b-bead-97f911a0039f"

28 "operational_state": "1"

29 "allowlist": {...}

30 "exclude": []

31 "fnf": []

32 "filehash_err": []

33 },

34 {

35 "pod": "b50d69cd-1ce9-4f4b-a577-3d87328c9810"

36 "operational_state": "1"

37 "allowlist": {...}

38 "exclude": []

39 "fnf": []

40 "filehash_err": []

41 },

42 {

43 "pod": "27d3b7c7-c23c-4e6d-a46c-0ac8c9be7ec1"

44 "operational_state": "2"

45 "allowlist": {...}

46 "exclude": []

47 "fnf": [

48 "/bin/bash/",

49 "/lib/x86_64-linux-gnu/libtinfo.so.5.9",
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50 "/bin/ls",

51 "/lib/x86_64-linux-gnu/libselinux.so.1",

52 ],

53 "filehash_err": [

54 "/bin/bash/wrong_hash",

55 ]

56 },

57 {

58 "pod": "e4e20e81-9fe0-4ab5-832b-0a7230bca31e "

59 "operational_state": "1"

60 "allowlist": {...}

61 "exclude": []

62 "fnf": []

63 "filehash_err": []

64 },

65 {

66 "pod": "dd5e909a-f74a-407d-99a5-1f97020099b8"

67 "operational_state": "1"

68 "allowlist": {...}

69 "exclude": []

70 "fnf": []

71 "filehash_err": []

72 },

73 ]

74 "id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000"

75 }

where the compromised pod has operational state set to 2 (UNTRUSTED), its ”file
hash error” list has the unrecognized measured file, and the host operational state
is set to 3 (GET QUOTE), as expected.

7.2.3 Tests with untrusted node

Finally, either by executing an unauthorized script in the host system or by execut-
ing an unregistered pod, what is expected is that the system will get an operational
state set to INVALID QUOTE. First, let us create a new deployment.yaml file with
content:

apiVersion: apps/v1

kind: Deployment

metadata:

name: alpine-deployment

spec:

selector:

matchLabels:
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app: alpine

replicas: 1

template:

metadata:

labels:

app: alpine

spec:

containers:

- name: alpine

image: alpine

ports:

- containerPort: 10000

nodeSelector:

disktype: ssd

and then apply it with: kubectl apply -f deployment.yaml.
By interacting with the TenantWeb app with a GET request at https://<Verifier_ip_
address>:<Tenant_Webapp_port>/agents/

d432fbb3-d2f1-4a97-9ef7-75bd81c00000, the following response is provided:

1 "code": "200"

2 "status": "Success"

3 "results": {

4 "operational_state": "9"

5 "v": "Sh9TjR38VTeW8H9ZQk0HSRKCsoZjPqe/6a/RVS4dkFw="

6 "ip": "192.168.0.100"

7 "port": "9002"

8 ...

9 "pods": [...]

10 "id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000"

11 }

where the operational state of the host is set to 9 (INVALID QUOTE), as expected.
The same result has been observed by executing inside the /usr/bin/ directory of
the host system an arbitrary script that was not present in its whitelist, showing
that the keylime Verifier evaluates correctly the integrity status of the host system
and stops polling the Keylime Agent.

7.3 Performance Tests

The metrics used for the performance evaluation were:

• the time required by the Keylime Verifier for an attestation cycle;

• the CPU consumption of the Worker Node with and without the RA;

• the RAM consumption of the Worker Node with and without the RA.
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The values associated with the previous metrics were measured taking into account
an increasing number of pods, starting from 1 up to 110. By default, Kubernetes
configures nodes on standard clusters to run no more than 110 pods: for this rea-
son, performance beyond 110 pods was not evaluated.

In figure 7.1 is depicted the RAM consumption of the Worker Node calculated
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Figure 7.1. RAM consumption with and without RA

over a 10 minutes time window. As shown, the Remote Attestation procedure does
not affect the overall performance, since the two graphs overlap regardless of the
number of pods. The figure 7.2 shows the CPU consumption of the Worker Node
calculated over a 10 minutes time window. As shown, in this case, there is an
impact of almost 1,23%, which remains constant as the number of pods changes.
This increase in the CPU usage is due to the Keylime Agent which is continuously
polled by the Keylime Verifier to provide an Integrity Report.

Finally, in figure 7.3 are depicted the time values of the quote operation and the
whole attestation procedure calculated on the average of 200 attestations. As can
be seen, the quote operation requires almost all of the overall time, while time
required by the whole attestation cycle includes:

• the time required by the TPM to perform the quote operation;

• the time needed to read and insert the ML file in the Integrity Report by the
Keylime Agent;

• the time required to transfer the IR over the network;

• the time to verify the integrity and validate the content of the IR by the
Keylime Verifier.
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Figure 7.2. CPU consumption with and without RA
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Figure 7.3. RA latency assessed as pods grow

As can be seen in the figure, both times are stable with almost 2.4 seconds for
the quote operation and 2.5 seconds for all the cycle. From these results it can
be deduced that the proposed solution to perform the RA of a Worker Node and
the pods running within it is efficiently scalable, and, having been considered an
increasing number of pods, it can be said that the overall impact is negligible.
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Conclusions

The purpose of this thesis work was to implement an efficient solution for allow-
ing the remote attestation of applications deployed in pods, the smallest scheduling
units in the Kubernetes ecosystem. The introduction of the new IMA template with
the additional fields to uniquely identify the entries associated with pods made it
possible to achieve the desired goal. Since it relies upon the TPM 2.0 specification,
Keylime was the selected attestation framework for developing the solution. The
latter has been modified accordingly to work with the new template and to intro-
duce the possibility of a single-pod remote attestation. Furthermore, Keylime was
also provided with additional APIs to support the registration of the pods associ-
ated with each Keylime Agent.

Previously proposed solutions, such as DIVE, Container-IMA, and Docker Con-
tainer Attestation, targets the container concept and possess a series of drawbacks
to be addressed. This thesis proposes a new way to allow the remote attestation of
pods, considering each one of them as a separate entity and the variety of container
runtimes that can be used to launch them. As demonstrated with the performance
tests performed in the laboratory, the proposed solution is scalable, can be adapted
with any container runtime allowed by Kubernetes, and has a negligible impact
as the number of pods increases. The time required for a whole attestation cycle
is heavily influenced by the time required for the quote operation, hence either
by working on the TPM chip performance or using a different anchor technology,
a significant improvement can be achieved. As shown in section 7.3, the CPU
latency grows evenly as the number of pods increases, remaining around 1,23%,
which makes the solution applicable in a real case scenario.

The developed solution represents a valuable starting point for future work, mostly
because it can be easily integrated into the Kubernetes control plane. However,
some challenges and criticalities remain open, which can be addressed and solved
in the future by increasing the objectives to be achieved. The privacy issue in a
multi-tenant cloud environment, in which a node is executing applications of differ-
ent users, can be solved by making an actual integration in the Kubernetes control
plane, to allow a real-time bind between the pod and the specific user who is ex-
ploiting it. The latter represents also a way both to automate the generation of
the pod list for a specific user and a complete solution for the migration problem,
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addressing some optimization issues present in the single-tenant developed solu-
tion. Another observation for future work is that the solution is strongly linked
to a specific kernel version, hence there is a need for kernel changes to the nodes
of the infrastructure, which cannot always be a suitable choice. Exploring new
mechanisms to identify the specific pod and the specific container runtime used
to launch it, or including the IMA patch directly in the source code, is definitely
a starting point to keep in mind. Despite the underlined points of reflection, the
proposed solution reached its main goal regardless of the complexity of the cloud
infrastructure, allowing the identification of the possible compromised portions of
an application running in a cloud node and granting the services deployed in the
other portions.
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Appendix A

User’s manual

This appendix provides the steps needed to configure and use a testbed composed
of two nodes, one Attester (which will be the target of the remote attestation and
runs the pods) and one Verifier.

A.1 Attester Machine

The first thing to do is to configure the host system which will be the attester
machine in the RA process. As a prerequisite, a TPM 2.0 chip must be present.

A.1.1 Install k3s

After the installation of the OS, which is Ubuntu Server 20.04 LTS, install Lightweight
Kubernetes:

curl -sfL https://get.k3s.io | sh -

Check if the node is ready through the command:

k3s kubectl get node

You should see:

NAME STATUS ROLES AGE VERSION

torsec Ready control-plane,master 11s v1.23.6+k3s1

If you need it, from the official website (https://k3s.io) you can retrieve the docs
for a detailed installation.
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A.1.2 Patching the Linux Kernel

Clone the git repository of the stable Linux Kernel:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux-stable.git

After this operation, the directory linux-stable will be created. Select the latest
stable release branch:

$ cd linux-stable

$ git checkout linux-5.13.y

Then, to obtain the custom Linux kernel, apply the patches provided with the
thesis source code:

$ git config --global user.email "you@example.com"

$ git config --global user.name "Your Name"

$ git am --signoff < /patches_dir/0001-ima_cgn_template.patch

$ git am --signoff < /patches_dir/0002-ima_mns_template.patch

$ git am --signoff < /patches_dir/0003-entry_hash_256_bit.patch

$ git am --signoff < /patches_dir/0004-ima_dep_cgn_template.patch

$ git am --signoff < /patches_dir/0005-ima_cache_clp_patch.patch

$ git am --signoff < /patches_dir/0006-ima_cgpath_template.patch

A.1.3 Preliminary Steps

In order to proceed with the kernel compilation, you first need to perform some
steps. The first one is to install the dependencies:

$ sudo apt-get update

$ sudo apt-get install git fakeroot build-essential ncurses-dev

xz-utils libssl-dev bc flex libelf-dev bison dwarves

Copy the current kernel configuration file:

$ cp -v /boot/config-$(uname -r) .config

And then customize it:

$ make menuconfig

In the menu select:

Security Options -> Integrity Measurement Architecture (IMA)
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And then choose:

Default template -> ima-cgpath

Default integrity hash algorithm -> SHA256

Default template hash algorithm -> SHA256

Save the modifications and exit. Now open the configuration file:

$ sudo nano .config

And in order to avoid compilation errors comment the following lines (in the section
Certificates for signature checking):

CONFIG_MODULE_SIG_KEY="certs/signing_key.pem"

CONFIG_SYSTEM_TRUSTED_KEYS="debian/canonical-certs.pem"

CONFIG_SYSTEM_REVOCATION_KEYS="debian/canonical-revoked-certs.pem"

Now you are ready to compile the kernel and to make things faster you can run:

$ sudo make localmodconfig

which will skip unneeded drivers and will speed up the compilation process.

A.1.4 Kernel Compilation

The kernel compilation and installation can be done through the following com-
mands:

$ sudo make -j 6

$ sudo make modules

$ sudo make modules_install

$ sudo make install

this operation will require some time. Reboot and add a custom IMA policy in a
file called /etc/ima/ima-policy, for example:

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

After rebooting again you should be able to see the patched IMA module working,
by looking in the file:

/sys/kernel/security/ima/ascii_runtime_measurements
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A.1.5 Keylime Installation

First of all install the following dependencies:

$ sudo apt install libssl-dev swig python3-pip

The Keylime framework needs a version of libtss2 >= 2.4.0, and since Ubuntu
20.04 has by default the version 2.3.2, you need first to uninstall it:

$ sudo apt remove libtss2-esys0

$ sudo apt autoclean && sudo apt autoremove

Now you can manually build and install libtss2 version >= 2.4.0, but first,
install the following dependencies:

$ sudo apt install autoconf autoconf-archive libglib2.0-dev libtool

pkg-config libjson-c-dev libcurl4-gnutls-dev

Now you are ready to install all the tools required to manage the TPM 2.0 chip.

• Installation of libtss2

$ git clone https://github.com/tpm2-software/tpm2-tss.git

$ cd tpm2-tss

$ ./bootstrap

$ ./configure --prefix=/usr

$ make

$ sudo make install

• Installation of tpm2-tools

$ git clone https://github.com/tpm2-software/tpm2-tools.git

$ cd tpm2-tools

$ ./bootstrap

$ ./configure --prefix=/usr/local

$ make

$ sudo make install

• Installation of tpm2-abrmd

$ git clone https://github.com/tpm2-software/tpm2-abrmd.git

$ cd tpm2-abrmd

$ ./bootstrap

$ ./configure --with-dbuspolicydir=/etc/dbus-1/system.d \

--with-systemdsystemunitdir=/lib/systemd/system \

--with-systemdpresetdir=/lib/systemd/system-preset \

--datarootdir=/usr/share
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$ make

$ sudo make install

$ sudo ldconfig

$ sudo pkill -HUP dbus-daemon

$ sudo systemctl daemon-reload

Configure TPM Command Transmission Interface (TCTI):

$ export TPM2TOOLS_TCTI="tabrmd:bus_name=com.intel.tss2.Tabrmd"

Start the Access Broker Resource Manager service:

$ sudo service tpm2-abrmd start

And check if it is working:

systemctl status tpm2-abrmd.service

You should read ”active (running)”. To check also if the tpm2 tools are working
properly, you can run the command:

$ tpm2_pcrread

Which will show to you the content of the PCRs banks. Now you can finally install
the framework, so move into the directory ’keylime’ provided with the thesis source
code, install the script and copy the configuration file:

$ cd keylime

$ sudo pip3 install . -r requirements.txt

$ sudo cp keylime.conf /etc/

A.1.6 Keylime Agent Configuration

To configure the agent on the attester machine, open the configuration file:

sudo nano /etc/keylime.conf

you can see that the file is divided into sections and each section has several pa-
rameters. For the Agent configuration, you need to modify only the [general] and
the [cloud agent] sections. In the [general] tag, find the receive revocation ip pa-
rameter and put the IP address of the attester machine, for example:

receive_revocation_ip = 192.168.0.100

In the [cloud agent] tag set the cloudagent ip which is the IP address of the at-
tester machine, the registrar ip which is the IP address of the registrar, and the
agent uuid, for example:
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cloud_agent_ip = 192.168.0.100

registrar_ip = 192.168.0.114

agent_uuid = d432fbb3-d2f1-4a97-9ef7-75bd81c00000

Note that the agent uuid shown in the example is the default one. Then set the
hash algorithm:

tpm_hash_alg = sha256

A.1.7 Installation of the systemd service

Now you can install the keylime agent as a systemd service. From the keylime
directory move into /services and edit the file installer.sh in this way:

# prepare keylime service files and store them in systemd path

sed "s|KEYLIMEDIR|$KEYLIMEDIR|g" $BASEDIR/keylime_agent.service.template

> /etc/systemd/system/keylime_agent.service

#sed "s|KEYLIMEDIR|$KEYLIMEDIR|g"

$BASEDIR/keylime_registrar.service.template

> /etc/systemd/system/keylime_registrar.service

#sed "s|KEYLIMEDIR|$KEYLIMEDIR|g"

$BASEDIR/keylime_verifier.service.template

> /etc/systemd/system/keylime_verifier.service

# set permissions

chmod 664 /etc/systemd/system/keylime_agent.service

#chmod 664 /etc/systemd/system/keylime_registrar.service

#chmod 664 /etc/systemd/system/keylime_verifier.service

chmod 666 /etc/systemd/system/keylime_agent_secure.mount

# enable at startup

systemctl enable keylime_agent.service

#systemctl enable keylime_registrar.service

#systemctl enable keylime_verifier.service

systemctl enable keylime_agent_secure.mount

Launch the following commands:

$ sudo groupadd keylime

$ sudo useradd keylime

And then run the script:
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$ sudo ./installer.sh

Finally, start the service and check if it is working:

$ sudo systemctl start keylime_agent.service

$ sudo systemctl status keylime_agent.service

You should see ”active(running)”.

A.2 Verifier Machine

Now we are going to configure the system which will be the verifier machine in the
RA process. For simplicity, the components Verifier, Registrar, and Tenant of the
Keylime Framework will be put all together in the same machine. In this case, a
TPM 2.0 chip is not mandatory, it may be just emulated. The first thing to do
is to install the OS, which again is Ubuntu Server 20.04 LTS. Then, follow the
instructions for the Keylime installation indicated in section A.1.5.

A.2.1 Registrar

Open the configuration file:

$ sudo nano /etc/keylime.conf

and find the [registrar] tag. Then customize the registrar ip by putting the IP
address of the verifier machine, for example:

registrar_ip = 192.168.0.114

A.2.2 Verifier

Open the configuration file:

$ sudo nano /etc/keylime.conf

and find the [cloud verifier] tag. Then customize the cloudverifier ip, the regis-
trar ip, and the revocation notifier ip, by putting the IP address of the verifier
machine, for example:

cloudverifier_ip = 192.168.0.114

registrar_ip = 192.168.0.114

revocation_notifier_ip = 192.168.0.114
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A.2.3 Tenant

Open the configuration file:

$ sudo nano /etc/keylime.conf

and find the [tenant] tag. Then customize the cloudverifier ip and the registrar ip
by putting the IP address of the verifier machine, for example:

cloudverifier_ip = 192.168.0.114

registrar_ip = 192.168.0.114

Then, from the attester machine retrieve the PCRs values with indexes 0-9 of the
SHA256 bank, through the command:

$ sudo tpm2_pcrread

and copy them in the tpm policy parameter in one line, as a JSON object, like:

tpm_policy = {"0": ["47D..."], "1":["25C..."], ..., "9":["4C3..."]}

Finally, go into the Keylime directory and copy the content of tpm cert store
directory in /var/lib/keylime/tpm cert store/:

$ sudo mkdir /var/lib/keylime/tpm_cert_store

$ sudo cp -r ./tpm_cert_store /var/lib/keylime/tpm_cert_store

A.2.4 Installation as systemd services

Now you can install the keylime registrar and the keylime verifier as systemd ser-
vices. From the keylime directory move into /services and edit the file installer.sh
in this way:

# prepare keylime service files and store them in systemd path

#sed "s|KEYLIMEDIR|$KEYLIMEDIR|g"$BASEDIR/keylime_agent.service.template

> /etc/systemd/system/keylime_agent.service

sed "s|KEYLIMEDIR|$KEYLIMEDIR|g"

$BASEDIR/keylime_registrar.service.template

> /etc/systemd/system/keylime_registrar.service

sed "s|KEYLIMEDIR|$KEYLIMEDIR|g"

$BASEDIR/keylime_verifier.service.template

> /etc/systemd/system/keylime_verifier.service

# set permissions
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#chmod 664 /etc/systemd/system/keylime_agent.service

chmod 664 /etc/systemd/system/keylime_registrar.service

chmod 664 /etc/systemd/system/keylime_verifier.service

chmod 666 /etc/systemd/system/keylime_agent_secure.mount

# enable at startup

#systemctl enable keylime_agent.service

systemctl enable keylime_registrar.service

systemctl enable keylime_verifier.service

systemctl enable keylime_agent_secure.mount

Launch the following commands:

$ sudo groupadd keylime

$ sudo useradd keylime

And then run the script:

$ sudo ./installer.sh

Finally, start the services and check if they are working:

$ sudo systemctl start keylime_verifier.service

$ sudo systemctl start keylime_registrar.service

$ sudo systemctl status keylime_verifier.service

$ sudo systemctl status keylime_registrar.service

You should see ”active(running)” for both.

A.3 Starting RA process

In order to start the RA, you need to compute the whitelists related to the host
system and pods. You can create the one related to the host system through the
program whitelist generator.cpp, while the ones related to pods are provided with
the thesis source code in the folder pod whitelists . By way of information, only
the whitelists of configuration pods and the whitelist associated with base image
nginx are provided. In the Attester machine compile the program:

$ g++ -std=c++17 -L/usr/lib/x86_64-linux-gnu/ \

-o whitelist_generator whitelist_generator.cpp -lssl -lcrypto

If you want to create the whitelist associated with the folder /usr/bin/ launch:

$ ./whitelist_generator /usr/bin/
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A file called ”whitelist” will be generated. Now you have to create the pod list in
the format pod UUID - whitelist path. You can retrieve the pod UUID list through
the command:

kubectl get pods --all-namespaces -o

custom-columns=PodName:.metadata.name,PodUID:.metadata.uid

while the whitelist path corresponds to the pod whitelist folder. Now you can send
to the Verifier Machine the whitelist file just generated and the folder containing
the pod list and one whitelist for each pod.

In the Verifier Machine, create also the exclude list associated with the host:

nano exclude_l

and put the content of the following regular expression:

^(?!/usr/bin/).* $

which means ”you have to exclude any file except for those present in /usr/bin/”.
You have also to create an empty file called ”payload”:

nano payload

which will be encrypted with the bootstrap key generated during the three-party
bootstrap key derivation protocol.

Now you are ready to launch the command:

$ sudo keylime_tenant -c add -u <UUID> -t <IP>

-f payload --allowlist whitelist --exclude exclude_l

--pod_list pods_list

You should see the message:

" QUOTE from <IP > validated "

which indicates that the RA started. From now on you can use the Keylime CLI
explained in the next section to communicate with the framework and monitor the
attestation results.

A.4 Keylime CLI

This section provides the commands offered by the Keylime CLI to interact with
the framework. Each command respects the format:

keylime_tenant -c [command]

where the -c option can take one of the following keywords.
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A.4.1 Status

The Status command is the one that consents to retrieve the status of a registered
agent. Of course, the registration has to be done both at the Registrar and the
Verifier machines. An example of this command is:

$ sudo keylime_tenant -c status -u [UUID]

where the placeholder [UUID] represents the agent UUID. If not specified, the de-
fault UUID is used, which corresponds to d432fbb3-d2f1-4a97-9ef7-75bd81c00000.
Optionally, if more than one Verifier is used, can be specified also the specific verifier
IP address in which the agent is registered, through the option:

$ sudo keylime_tenant -c status -u [UUID] -v [Verifier_IP]

A.4.2 Add

The Add command is the one used to register an agent at the Verifier. It enables
the periodic remote attestation and can take the following parameters:

• -u [UUID].

Placeholder [UUID] is the agent UUID to be added. If not specified, the default
UUID is used, which corresponds to d432fbb3-d2f1-4a97-9ef7-75bd81c00000.

• -v [Verifier IP].

Placeholder [Verifier IP] is the IP address of the Verifier machine where the agent
has to be registered. If not specified, it is used the IP address inserted into:

/etc/keylime.conf.

• -t [Agent IP].

Placeholder [Agent IP] is the IP address of the agent to be added.

• -f [payload].

Placeholder [payload] is a file to be encrypted with the bootstrap key.

• –exclude [exclude list].

Placeholder [exlude list] is the file containing a regular expression with the files to
be excluded in the validation process of the ML.

• –allowlist [whitelist].
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Placeholder [whitelist] is the file containing the golden values used to validate ML
entries.

• –pods list [pod list].

Placeholder [pod list] is a file containing the pod UUIDs to be considered al-
lowed in any Attester machine. The entry format follows the schema: podUUID
/whitelist path.

An example of this command is:

$ sudo keylime_tenant -c add -u 90e71d86-13e0-4bd3-9ec4-1521f10a5194

-t 192.168.0.103 -f payload --exclude exclude_host

--allowlist whitelist2 --pods_list pods_list2

A.4.3 Update

The Update command is the one used to update an already registered agent. It
follows the same logic as the add command, so it uses the same parameters. An
example of this command is:

$ sudo keylime_tenant -c update -u

d432fbb3-d2f1-4a97-9ef7-75bd81c00000

-t 192.168.0.100 -f payload --exclude exclude_host

--allowlist whitelist --pods_list pods_list

A.4.4 Delete

The Delete command is the one used to remove a registered Agent from the Verifier.
It can take parameters:

• -u [UUID].

Placeholder [UUID] is the agent UUID to be removed. If not specified, the default
UUID is used, which corresponds to d432fbb3-d2f1-4a97-9ef7-75bd81c00000.

• -v [Verifier IP].

Placeholder [Verifier IP] is the IP address of the Verifier machine where the agent
has to be deleted. If not specified, it is used the IP address inserted into:

/etc/keylime.conf. An example of this command is:

$ sudo keylime_tenant -c delete -u

d432fbb3-d2f1-4a97-9ef7-75bd81c00000

-t 192.168.0.100
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A.4.5 Pods

Pods is a new command added during the thesis work. It can take the following
parameters:

• -u [UUID].

Placeholder [UUID] is the agent UUID in which the pods to be checked are running.
If not specified, the default UUID is used, which corresponds to d432fbb3-d2f1-4a97-
9ef7-75bd81c00000.

• -v [Verifier IP].

Placeholder [Verifier IP] is the IP address of the Verifier machine where the agent
has been registered. If not specified, it is used the IP address inserted into:

/etc/keylime.conf.

• –pod id [POD UUID]

Placeholder [POD UUID] represents one of the registered pods for the specified
agent.

• –allowlist [path/new pod whitelist]

Placeholder [path/new pod whitelist] represents the path of a new whitelist related
to the pod specified via –pod id.

• –exclude [path/new pod exclude list]

Placeholder [path/new pod exclude list] represents the path of a new exclude list
of the pod specified via –pod id.

Examples

Some examples of this command.

$ sudo keylime_tenant -c pods

it shows the list of registered pods for default agent d432fbb3-d2f1-4a97-9ef7-
75bd81c00000.

$ sudo keylime_tenant -c pods --pod_id

226aed86-763b-4a3e-925b-82e50146171e

It shows:
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• the operational state (among START, TRUSTED, UNTRUSTED)

• the allowlist

• the exclude list

for default agent d432fbb3-d2f1-4a97-9ef7-75bd81c00000 and pod 226aed86-763b-
4a3e-925b-82e50146171e.

keylime_tenant -c pods --pod_id

226aed86-763b-4a3e-925b-82e50146171e

--allowlist /home/torsec/pod_whitelists/nginx

it consents to update the allowlist related to default agent d432fbb3-d2f1-4a97-9ef7-
75bd81c00000 and pod 226aed86-763b-4a3e-925b-82e50146171e.

A.4.6 Reglist

The command Reglist is the one used to retrieve the list of agents registered at the
Registrar component. It does not take parameters. An example of this command
is:

$ sudo keylime_tenant -c reglist

A.4.7 Regdelete

The command Regdelete is the one used to delete a registered agent from the
Registrar. It takes as parameter:

• -u [UUID].

Placeholder [UUID] is the agent UUID to be removed from the Registrar. If not
specified, the default UUID is used, which corresponds to d432fbb3-d2f1-4a97-9ef7-
75bd81c00000.

An example of this command is:

$ sudo keylime_tenant -c regdelete -u

90e71d86-13e0-4bd3-9ec4-1521f10a5194

A.4.8 Cvlist

The command Cvlist is the one used to retrieve the list of agents currently registered
at the Verifier component. If more than one Verifier is used, the verifier IP address
to be checked can be specified through the option:

• -v [Verifier IP].

If not specified, it is used the verifier IP address inserted into /etc/keylime.conf.
An example of this command is:

$ keylime_tenant -c cvlist -v 192.168.0.114
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A.4.9 Reactivate

The command Reactivate can be used only when an agent has been terminated or
has failed its periodic attestation, otherwise, it is considered a forbidden operation.
It uses parameters:

• -u [UUID].

Placeholder [UUID] is the agent UUID to be reactivated. If not specified, the default
UUID is used, which corresponds to d432fbb3-d2f1-4a97-9ef7-75bd81c00000.

• -v [Verifier IP].

Placeholder [Verifier IP] is the IP address of the Verifier machine where the agent
has been registered. If not specified, it is used the IP address inserted into:

/etc/keylime.conf. An example of this command is:

$ sudo keylime_tenant -c reactivate -u

90e71d86-13e0-4bd3-9ec4-1521f10a5194

A.5 Keylime Web app

As an alternative to the CLI, the Keylime framework offers also a Web app that
works with REST APIs.

A.5.1 Installation

Move into the Verifier Machine and open the Keylime Configuration file located in
/etc/keylime.conf. The section [Tenant] has been already configured as explained
in section A.2.3, while in the section [Webapp] set the following parameters:

webapp_ip = <VERIFIER_IP>

webapp_port = 444

the port needs to be set to 444 because 443 is the one chosen by the k3s server (if
you want to set up a cluster, as explained in the following section). Now you can
run:

keylime_webapp

to launch the Web app which will be reachable at the URI:

https://<webapp_ip>:<webapp_port>/webapp/
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A.6 Cluster Set Up

If you want to turn the testbed into a k3s cluster, you have to move into the Verifier
Machine and install k3s with the following command:

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC=’server

--cluster-init

--write-kubeconfig-mode=644’ sh -s

The Verifier Machine will run as Master Node. Then, move in the Attester Machine
and first, you have to install the Kubectl component:

curl -LO "https://dl.k8s.io/release/$(curl -L -s

https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/

kubectl"

Download the kubectl checksum file:

curl -LO "https://dl.k8s.io/$(curl -L -s

https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/

kubectl.sha256"

And validate it:

echo "$(cat kubectl.sha256) kubectl" | sha256sum --check

If valid, you should see a message like this:

kubectl: OK

Install it:

sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

and check if the configuration is good by looking at the cluster state through the
command:

kubectl cluster-info

You should see a URL response. Then retrieve the token from:

# cat /var/lib/rancher/k3s/server/node-token

copy and place it in the placeholder <TOKEN> in the commands below, while the
<VERIFIER_IP> is the IP address of the Verifier machine:
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curl -sfL https://get.k3s.io | K3S_URL=

https://<VERIFIER_IP>:6443 K3S_TOKEN=${<TOKEN>}

K3S_KUBECONFIG_MODE="644" sh -

sudo k3s agent --server https://<VERIFIER_IP>:6443

--token ${<TOKEN>::server:9200aee61eb292ee60cfdb6cd25cfc02}

Now from the Verifier move in:

/etc/rancher/k3s/k3s.yaml

and change the server IP with the Verifier IP address. Now copy from the Verifier
to the Attester the content of:

cat /etc/rancher/k3s/k3s.yaml

inside:

/root/.kube/config

Now, from the Verifier run:

k3s kubectl get node -o wide

You will see two machines, one with ROLE ”control-plane, etcd, master” corre-
sponding to the Verifier machine, and the other with ROLE ”<none>” correspond-
ing to the Attester machine. In the field KERNEL-VERSION, you will see that
the Attester machine has the patched kernel version. Now you have successfully
created a cluster with a Master Node running the Keylime Verifier, Tenant and
Registrar components, and a Worker Node running the Keylime Agent.

A.6.1 Add a Deployment

To add a deployment meant to run the specified pods in the Worker you have to
add a label. So, from the Attester machine run the command:

kubectl label nodes torsec-k3s-nuc-01 disktype=ssd

you should see an output like this:

node/torsec-k3s-nuc-01 labeled

which means that the node has been successfully labeled. Now save into a file called
nginx-deployment.yaml the following manifest:
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apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas: 5

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.14.2

ports:

- containerPort: 80

nodeSelector:

disktype: ssd

and then run the command:

kubectl apply -f nginx-deployment.yml

Now to check if everything is good run:

kubectl get pods -l app=nginx --output=wide

you should see that 5 nginx pods are correctly running in the Worker node (i.e.
Attester node). If you want to add new deployments and retrieve the pod UUID
of all the pods currently running in the Worker node, you can run the command:

kubectl get pods -o custom-columns=PodName:.metadata.name,

PodUID:.metadata.uid

the output, since there is only one worker node, will display exactly the pod UUID
list to be given to the verifier.

A.6.2 Test The Solution

Now you can check if the Remote Attestation is working properly.
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One pod untrusted in a trusted attester system

Login to any of the pods with the command:

kubectl exec <pod_name> -n <pod_namespace> -it -- bash

if the related /bin/bash/ measured was not present in the associated whitelist, the
pod will be immediately found untrusted and the file /bin/bash put within the
”files not found” list. The Keylime Verifier will find out that the chosen pod has
been compromised while the Attester system and the other pods stay trusted. As
an alternative to obtain the same result, it is possible to change by hand the pod-
associated whitelist, either deleting a file or changing its measure. It is also possible
to test the solution by adding a measure within the pod whitelist, associated with
a simple script like:

#!/bin/bash

echo "Hello World"

The measure can be retrieved after the execution from the file:

/sys/kernel/security/ima/ascii_runtime_measurements

and put in the format: measure /bin/bash/wrong measure. Login to the pod to be
tested and run:

cd /bin/bash

echo ’#!/bin/bash echo’ > wrong_hash

chmod +x wrong_hash

./wrong_hash

The Keylime Verifier will find out that the chosen pod has been compromised while
the Attester system and the other pods stay trusted. The file wrong hash will be
put in the list ”file hash errors”.

Untrusted attester system

It is possible to check also that the integrity of the host system has been evaluated
correctly. Since it is the only folder taken into consideration, move into:

$ cd /usr/bin

and create a script:

$ nano hello.sh

with the content:
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#!/bin/bash

echo "Hello World"

Change the executable permission:

chmod +x hello.sh

and run the script:

./hello.sh

Now you will see that the operational state passes from ”Get Quote” to ”Invalid
Quote” and the periodic remote attestation terminates. This happens because the
file ”hello.sh” does not belong to the whitelist associated with the host. As an
alternative, you can also modify the pod list associated with the host, by deleting
a valid pod UUID that is actually running on the host. In this case, the host system
will be evaluated as untrusted because in the Measurement Log there will be entries
associated with the deleted pod, which will be considered as an unknown one. To
obtain the latter behavior it is also possible to create a new deployment:

nano deployment.yaml

with content:

apiVersion: apps/v1

kind: Deployment

metadata:

name: alpine-deployment

spec:

selector:

matchLabels:

app: alpine

replicas: 1

template:

metadata:

labels:

app: alpine

spec:

containers:

- name: alpine

image: alpine

ports:

- containerPort: 10000

nodeSelector:

disktype: ssd

and run:
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kubectl apply -f deployment.yaml

Now there will be an unregistered alpine pod which causes the system to be con-
sidered untrusted (i.e. with operational state set to INVALID QUOTE).

To delete the new alpine deployment you can run:

kubectl delete deployment alpine-deployment

A.7 Keylime REST APIs - CLI

This section provides the Keylime REST APIs modified and added during the
thesis work. The existing APIs affected by modifications are presented in the first
paragraph, while the new ones are in the second. You can find the related code
in the ”Keylime/keylime/” folder provided in the thesis source code, specifically
within files:

• tenant.py, for the Kelylime CLI

• tenant webapp.py, for the Keylime Webapp

A.7.1 Existing REST APIs

GET /v2/agents/{agent_id:UUID}

This GET API is in charge to provide the status operation for an agent already
registered at the verifier. The modification is concerned with showing also the pods’
status, specifically for each one of the pods is present:

• The operational state, which could be 0 (START), 1 (TRUSTED), or 2 (UN-
TRUSTED).

• The whitelist.

• The exclude list.

• The list of files present in the ML but not found in the whitelist.

• The list of files present in the ML, in the whitelist, but with a wrong measure.

The response JSON object is composed of the following fields, where the field pods
is the new one:

• operational state, that corresponds to the current state of the requested
Keylime Agent.

• v, that is the V part of the bootstrap key.

107



User’s manual

• ip, that is the IP address of the Keylime Agent

• port, that is the port used by the Keylime Agent to connect to the Keylime
Verifier.

• tpm policy, that is used to specify the PCRs that must be included in each
TPM quote contained in the IR.

• vtpm policy, that is used as the tpm policy when virtual PCRs are involved.

• meta data, that specifies the Keylime Agent-related metadata.

• allowlist len, that corresponds to the number of lines in the whitelist asso-
ciated with the physical system.

• mb refstate len, that corresponds to the length of the policy associated
with the measured boot.

• accept tpm hash algs, that specifies the list of the hash algorithms ac-
cepted by the TPM.

• accept tpm encryption algs, that specifies the list of the encryption algo-
rithms accepted by the TPM.

• accept tpm signing algs, that specifies the list of the signing algorithms
accepted by the TPM.

• hash alg, that is the actual hash algorithm used by the TPM.

• enc alg, that is the actual encryption algorithm used by the TPM.

• sign alg, that is the actual signing algorithm used by the TPM.

• verifier id, that is a unique identifier for each verifier instances.

• verifier ip, that is the IP address of the Keylime Verifier server binds to.

• verifier port, that is the port of the Keylime Verifier server binds to.

• severity level, that in case of a failure corresponds to the severity of the
failure.

• last event id, which is the identifier of the last failure event with maximum
severity.

• pods, that is a JSON object that specifies the pods registered in the Keylime
Agent. Each pod is described through a JSON object containing the fields
specified above.

POST /v2/agents/{agent_id:UUID}
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This POST API is in charge to provide the add operation for registering an agent
at the verifier. The modification is concerned with providing in the request the ad-
ditional data needed for the proposed solution, which are the pod list and whitelists.

The request JSON object is composed of the following fields, where the field pods
is the new one:

• v, that is the V part of the bootstrap key.

• cloudagent ip, that is the IP address of the Keylime Agent for the Keylime
Verifier.

• cloudagent port, that is the port used by the Keylime Agent to connect to
the Keylime Verifier.

• tpm policy, that is used to specify the PCRs that must be included in each
TPM quote contained in the IR.

• vtpm policy, that is used as the tpm policy when virtual PCRs are involved.

• meta data, that specifies the Keylime Agent-related metadata.

• allowlist, that corresponds to the whitelist associated with the physical sys-
tem.

• mb refstate, that corresponds to the policy associated with the measured
boot.

• ima sign verification keys, that corresponds to the list of IMA public keys
for signature verification.

• revocation key, which corresponds to the RSA private key to be used by
the Keylime Verifier to sign a revocation message for this Keylime Agent.

• accept tpm hash algs, that specifies the list of the hash algorithms ac-
cepted by the TPM.

• accept tpm encryption algs, that specifies the list of the encryption algo-
rithms accepted by the TPM.

• accept tpm signing algs, that specifies the list of the signing algorithms
accepted by the TPM.

• pods, that is a JSON object that specifies the pods to be registered in the
Keylime Agent. Each pod is specified through its UUID and a JSON object
that contains the allowlist and the exclude list.
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A.7.2 New REST APIs

The new REST APIs added to the framework with the thesis work are presented
in this section.

GET /v2/agents/{agent_id:UUID}/pods

This GET API is in charge to show the pod UUIDs list of the registered pods
for the Keylime Agent specified through the {agent id:UUID} placeholder. The
response JSON object will contain:

• the UUID of the Keylime Agent

• the list of the pod UUIDs registered for that Keylime Agent

An example of the response could be:

{

code: 200,

status: "OK",

results: {

uuid: "d432fbb3-d2f1-4a97-9ef7-75bd81c00000",

pod_ids:

0: "226aed86-763b-4a3e-925b-82e50146171e",

1: "bead1494-a2ff-4b2b-bead-97f911a0039f",

...

}

}

POST /v2/agents/agent_id:UUID/pods

This POST API is in charge to add at the Keylime Verifier the pod UUIDs list
associated with the Keylime Agent specified through the {agent id:UUID} place-
holder. The pod list is a dictionary of pod UUIDs, each one associated with its
whitelist and (optionally) exclude list.

The Request JSON object will contain a dictionary of pod identifiers, each one
associated with a JSON object containing the fields:

• allowlist

• exclude list

PUT /v2/agents/{agent_id:UUID}/pods
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This PUT API is in charge to modify at the Keylime Verifier the pod UUIDs list
associated with the Keylime Agent specified through the {agent id:UUID} place-
holder.

The Request JSON object will contain a dictionary of pod identifiers, each one
associated with a JSON object containing the fields:

• allowlist

• exclude list

GET /v2/agents/{agent_id:UUID}/pods/{pod_id}

This GET API is in charge to show the status of a registered pod specified through
the {pod id} placeholder. Specifically, in the response JSON object, there will be:

• the pod UUID;

• the pod operational state;

• the pod whitelist;

• the pod exclude list (if present).

• The list of files present in the ML but not found in the whitelist.

• The list of files present in the ML, in the whitelist, but with a wrong measure.

PUT /v2/agents/{agent_id:UUID}/pods/{pod_id}

This PUT API is in charge to modify the whitelist or the exclude list of the pod
specified through the {pod id} placeholder.

The Request JSON object will contain:

• the allowlist of the {pod id}

• the exclude list of the {pod id}

DELETE /v2/agents/{agent_id:UUID}/pods/{pod_id}

This DELETE API is in charge to remove the pod specified through {pod id} from
the Keylime Agent identified through {agent id:UUID}.

GET /v2/agents/{agent_id:UUID}/pods/{pod_id}/allowlist

111



User’s manual

This GET API is in charge to show the whitelist associated with the pod specified
through the {pod id} placeholder.

PUT /v2/agents/{agent_id:UUID}/pods/{pod_id}/allowlist

This PUT API is in charge to substitute the whitelist associated with the pod
specified through the {pod id} placeholder, with the new whitelist provided in the
request body.

The Request JSON object will contain the new whitelist for the {pod id}

GET /v2/agents/{agent_id:UUID}/pods/{pod_id}/exclude

This GET API is in charge to show the exclude list associated with the pod speci-
fied through the {pod id} placeholder.

PUT /v2/agents/{agent_id:UUID}/pods/{pod_id}/exclude

This PUT API is in charge to substitute the exclude list associated with the pod
specified with the {pod id} placeholder, with the new exclude list provided in the
request body.

A.8 Keylime REST APIs - Tenant Webapp

GET /v2/agents/{agent_id:UUID}

The response JSON object of this API has the same format as the API GET

/v2/agents/{agent_id:UUID}, with an additional field id representing the agent
UUID.

POST /v2/agents/{agent_id:UUID}

This POST API is in charge to register a Keylime Agent at the Keylime Verifier,
providing an encrypted payload to the agent UUID. The request JSON object has
the following fields:
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• agent ip, that is the Keylime Agent IP address.

• ptype, that is the payload type. It can assume values 0 (FILE), 1 (KEY-
FILE), or 2(CA DIR).

• file data, that is the payload. If the field ptype is equal to 0, then it is
encrypted by the Keylime Tenant with a random bootstrap key. If the field
ptype is equal to 1, then it is encrypted with the bootstrap key specified
within keyfile data.

• keyfile data, this field contains a bootstrap key which is used when the field
ptype is equal to 1.

• include dir data, this field is needed when the field ptype is equal to 2, and
it contains a list of data to be sent in a zip to the Keylime Agent.

• include dir name, this field is needed when the field ptype is equal to 2,
and it contains the names of file data specified in the include dir data.

• ca dir, this field is needed when the field ptype is equal to 2, and it contains
the path of the directory on which the Keylime Tenant is running.

• ca dir pw, this field is needed when the field ptype is equal to 2, and it
contains the CA password.

• tpm policy, that is used to specify the PCRs that must be included in each
TPM quote contained in the IR.

• vtpm policy, that is used as the tpm policy when virtual PCRs are involved.

• a list data, that is the whitelist of the host system.

• e list data, that is the exclude list of the host system.

• ima sign verification keys, that corresponds to the list of IMA public keys
for signature verification.

• mb refstate, that is the policy associated with the measured boot.

• pods, that represents a JSON object for each pod to be registered in the
Keylime Agent. The JSON object contains the a list data for the whitelist,
and the e list data for the exclude list.

All the other APIs are not reported because they are internally invoking the ones
exposed by the CLI.
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B.1 IMA patch

This section provides the steps needed to create the IMA patch used in the proposed
work. By way of information, the starting point has been implemented by the
TORSEC research group of Polytechnic of Turin.

B.1.1 ima-cgpath template implementation

As explained in chapters 5 and 6, the ima-cgpath template has an additional field
for the control group path that is unsupported by IMA, so the first thing to do is
to move into the Linux kernel source code directory and open:

$ nano ./security/integrity/ima/ima_template.c

Then add to the array called supported fields the following content:

static const struct ima_template_field supported_fields[] = {

...

{.field_id = "cg-path", .field_init =

ima_eventcg_path_init,

.field_show = ima_show_template_string},

};

where:

1. ”cg-path” represents the field identifier

2. ”ima eventcg path init” represents the function used to initialize the field
value for the Measurement Events

3. ”ima show template string” represents the function used to write the field
value in the Measurement Logs

Then in the same file define a new builtin template named ”ima-cgpath” with
format string ”dep—cg-path—d-ng—n-ng”:
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static struct ima_template_desc builtin_templates[] = {

...

{.name = "ima-cgpath", .fmt = "dep|cg-path|d-ng|n-ng"},

};

the ”dep” field represents the dependencies of the process that created the entry,
and it has been defined by TORSEC research group of Polytechnic of Turin since
also this parameter was not among those supported by IMA. The field ”cg-path” is
the control group path (needed to establish the pod UID), while ”d-ng” and ”n-ng”
are respectively the file digest and the file path.

The next operations to do are to put the prototype of the function ima eventcg path init
within the file ima template lib.h:

int ima_eventcg_path_init(struct ima_event_data *event_data,

struct ima_field_data *field_data);

and to put its definition in the file ima template lib.c:

/*

* ima_eventcg_path_init - include the current task’s cgroup

path as part of the

* template data

*/

int ima_eventcg_path_init(struct ima_event_data *event_data,

struct ima_field_data *field_data)

{

char *cgroup_path_str = NULL;

struct cgroup *cgroup = NULL;

int rc = 0;

cgroup_path_str = kmalloc(PATH_MAX, GFP_KERNEL);

if (!cgroup_path_str)

return -ENOMEM;

cgroup = task_cgroup(current, 1);

if (!cgroup)

goto out;

rc = cgroup_path(cgroup, cgroup_path_str, PATH_MAX);

if (!rc)

goto out;

rc = ima_write_template_field_data(cgroup_path_str,

strlen(cgroup_path_str), DATA_FMT_STRING, field_data);

kfree(cgroup_path_str);

return rc;

out:

return ima_write_template_field_data("-", 1,

DATA_FMT_STRING, field_data);

}

The function ima eventcg path init uses three local variables:
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• cgroup path str (line 9) which will represent the buffer for the control group
path,

• cgroup (line 10) which will represent the cgroup data structure,

• rc (line 11) which will represent the return value.

The function kmalloc() is invoked to reserve the needed memory to contain the
cgroup path, having as parameters:

• PATH MAX, that is a define that specifies the bytes to be allocated, and
you can find it in the file /include/uapi/linux/limits.h:

#define PATH_MAX 4096 /* # chars in a path name including nul */

• GFP KERNEL needed for kernel allocation.

Then, if the allocation is successful, the function task cgroup will get the con-
trol group associated to hierarchy ID = 1 for the current Linux task specified
in current. A this point, the function cgroup path will set the path of the
cgroup which was earlier put into the variable cgroup path path str. Now the
function ima write template field data will be invoked to write the template
value within the field data parameter, with data formatDATA FMT STRING.
The definition of ima write template field data can be found inside the file
ima template lib.c.

Finally, open the Kconfig file and add the highlighted content, which consents
to add the ima-cgpath template. In this way will be possible to use it as the de-
fault IMA template before proceeding with the kernel compilation, through the
make menuconfig command, as explained in A.1.3:

choice

prompt "Default template"

default IMA_NG_TEMPLATE

depends on IMA

...

config IMA_DEP_CGN_TEMPLATE

bool "ima-dep-cgn"

config IMA_CGPATH_TEMPLATE

bool "ima-cgpath"

endchoice

config IMA_DEFAULT_TEMPLATE

string

depends on IMA

default "ima" if IMA_TEMPLATE

...

default "ima-dep-cgn" if IMA_DEP_CGN_TEMPLATE

default "ima-cgpath" if IMA_CGPATH_TEMPLATE
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