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Summary

This document describes a new class of credentials focused on privacy, called
privacy-preserving or anonymous credentials, based on BBS+ signatures. The main
features needed to be such are data minimization and unlinkability, which is the
ability to be non-correlatable when presented. BBS+ signatures offer these prop-
erties because they are multi-message signatures that allow a credential holder to
select which attributes to disclose when generating an unlinkable zero-knowledge
proof of knowledge of the credential and its signature. Furthermore, the designed
and developed system has also the capabilities to bind credentials to their holders
and to revoke credentials, all in a private manner. These privacy-preserving cre-
dentials can be perfectly integrated into the Self-Sovereign Identity model and the
W3C standard of Verifiable Credentials, which enable humans, organizations, and
things to have complete control of their identity.
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Chapter 1

Introduction

“On the Internet, nobody knows you’re a dog”, says an iconic cartoon published
by The New Yorker in 1993 [1]. The author of the cartoon, Peter Sneier, got the
point of one of the Internet’s biggest open issues. The Internet does not have an
identity layer, a way to understand and verify who or what you are connecting to
[2], because it was designed and developed to interconnect machines, for which a
network-level identifier (i.e. the IP address) was enough, initially. But that does not
add anything about the person, organization, or thing responsible for the machine
that is communicating [3]. Also, the concept of trust was not undertaken, because
the designers of the original architecture of the Internet knew and trusted each
other [4]. Everything changed when the Internet opened up to the masses, gaining
exponential success, directly proportional to the growth of its problems regarding
security, privacy, and trust.

Digital interactions require trust between the parties involved. The introduction
of digital identity can support gaining trust and thus limit cybercrime problems and
attacks such as shadow server, connection hijacking, and phishing. These problems
have one thing in common: their countermeasure. To mitigate them, strong authen-
tication must be enforced. A digital identity solution must also focus on privacy:
it is crucial to verify and authenticate the party with whom one is communicating,
but it is also important to minimize data shared and not learn unnecessary details.
In addition, the party should not be traceable when presenting its identity.

In this document, self-sovereign identity and verifiable credentials are intro-
duced. In order to achieve privacy-preserving credentials, zero-knowledge
proofs and BBS+ signatures have been integrated into verifiable credentials.

The topics are organized as follows:

• Chapter 1 is the current introduction.

• Chapter 2 covers digital identity and self-sovereign identity.

• Chapter 3 addresses zero-knowledge proofs.

• Chapter 4 is about the BBS+ signature scheme and its building blocks.
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Introduction

• Chapter 5 discusses the designed and developed anonymous credential system.

• Chapter 6 draws conclusions about this work.

• Appendix A contains the user’s manual for installing and running the devel-
oped code.

• Appendix B contains the developer’s manual to learn the technical details of
the code.
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Chapter 2

Digital Identity

2.1 What is a digital identity?

A digital identity is a set of claims, i.e., assertions of the truth of some attributes,
about a digital subject, which is a person, an organization, or a thing existing in
the digital ecosystem that is being described, made by another digital subject or
by themself [2]. This set of claims may be stored in one or more digital credentials.
Furthermore, an identity may collect attributes that can be categorized into three
broad groups [5]:

• Inherent attributes. They are intrinsic to a subject and are not defined
by relationships to external subjects. E.g., date of birth (for individuals),
industry (for organizations).

• Accumulated attributes. They are received or developed and stacked over
time, during which they may update. E.g., university degrees (for individu-
als), business records (for organizations), ownership history (for things).

• Assigned attributes. They are associated with the subject but are not
related to its intrinsic nature. E.g., telephone number (for individuals), iden-
tifying number (for things).

In a digital identity ecosystem there are specific roles with defined functions [5]:

• User. It is the entity for which the system provides the identity, the subject.

• Identity provider (IdP). It is the entity that has users’ attributes, attests
to their truthfulness, and gives the users identity. It may perform operations
involving the users’ identity on their behalf.

• Relying party (RP). It is the entity that receives attestations from identity
providers or users to verify. If the verification is successful, then it grants
access to the users.

11



Digital Identity

These parties interact with each other and form the foundation of the ecosystem
in which digital identity is shaped.

A good digital identity system, capable of being widely used on an Internet-
scale scenario, must comply with some fundamental laws [2]. The identity system
must only disclose information identifying a user with the user’s consent and must
disclose the least amount of it. Moreover, the identifying information must be
revealed only to parties with a necessary and justifiable need. The identity system
must support both “omnidirectional” identifiers, which are public, invariant, and
well-known and “unidirectional” identifiers, which are private and used just in a
single relationship, to avoid correlation.

During an interaction that needs to identify the two parties involved, which
do not have an already existing connection, there will be an identity transaction
composed of three main aspects [5]:

• Authorization. The relying party determines the requirements for transac-
tion eligibility and requests certain attributes.

• Attributes. The subject presents its proof of attributes in the response.

• Authentication. The relying party determines whether the attributes match
the rules and policies defined, while, in addition, it verifies the authenticity
of the attributes. If both checks are successful, the interaction can proceed.

An interaction for which the identity transaction described above is needed may
require different Levels of Assurance (LoA). A level of assurance [6] is a degree of
confidence that parties have in the truthfulness of the identity being presented. To
determine the assurance level required, three main elements must be considered:

• Enrolment. How the process for obtaining the identity is accomplished.
This is related to the application and registration phase.

• Management. How the identity is managed and designed. This is about
how many and which authentication factors are used:

– knowledge-based, e.g., a password;

– possession-based, e.g., a cryptographic key;

– inherent, e.g., biometric data.

In addition, it refers to specifications for issuance, delivery, activation, sus-
pension, revocation, reactivation, renewal, and replacement.

• Authentication. How the authentication through the identity is performed.
This is focused on the strength of the authentication mechanisms and the
threats associated with them.

From these elements, three levels of assurance are extracted: low, substantial, and
high. The digital identity is necessary to establish and reinforce the level of trust
between participants in a relationship, even with a low level of assurance.
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2.2 Identity models

Concerning trust, it is possible to abstract several Internet trust models which will
be helpful to list the main identity models [7].

• Sole Source. A party issues identities and only trusts identities issued by
itself, acting as a service provider (relying party) and as an identity provider.
This single-party defines governance, privacy, and technical aspects for all
participants. It may be used when the service provider has confidential in-
formation or valuable assets, for which a high level of assurance is needed.
On the other hand, the service provider takes the management cost of the
identity life cycle and the user is forced to create a whole new identity to
access the service offered.

• Peer-to-Peer Identity. No central identity provider or governance agree-
ment is present, each peer has the same powers, asserts its own identity, and
decides who to trust. This model is very flexible and if the security require-
ments are low, it can grow very large.

• Centralized Token Issuance, Distributed Enrolment. A trusted central
provider provides identity hardware tokens which are used by the subject to
enroll in service providers. This can achieve strong authentication and provide
a high level of assurance but it is expensive, complex and dependent upon a
trusted third party.

• Pairwise Agreement. Two parties trust identities issued by one another.
It may be highly customizable but time-consuming, complex, and expensive
to negotiate.

• Three-Party Model. An identity provider issues identities to both the
requester and service provider, which must agree to trust the same identity
provider (trusted third party).

• Federation. It provides a set of contracts that allow service providers to
recognize identities issued by one another, without having to negotiate indi-
vidual agreements with every party. It can scale very high but it cannot be
customized.

• Four-Party Model. The requester of the service and the service provider
can use different identity providers. In this model, the service provider will
ask to check the identity of the requester to its identity provider, which will
then ask the requester’s identity provider.

• Individual Contract Wrappers. The requester provides information to
a service provider together with the terms for how that information can be
used.
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• Open Trust Frameworks. The specification is publicly available and de-
scribes a set of identity proofing, security, and privacy policies. It is authored
by experts with the intent that compliance can be assessed. The identity
provider may implement a Trust Framework, which may be verified by an
assessor.

From the work cited above [7], it is possible to extract three main digital iden-
tity models that sum up the different architectures available nowadays [3]: the
centralized identity, the federated identity, and the decentralized identity.

2.2.1 Centralized identity model

It is the first model, the original form of the internet identity, longly used and
still in use today. In this model, the user registers an account with a service, es-
tablishing an identity only valid for the relationship. The service provider is the
owner of the user’s identity and all the data about the user belongs to the service
provider, outside the user’s control, even deleting the account. In addition, there
are many problems including the user load of managing usernames and passwords,
the differences in security and privacy policies in every service, and the presence of
centralized databases of personal data. Because the identity is just for the relation-
ship, which is good to enhance both security and privacy as long as usernames and
passwords are never reused, none of the user’s identity data is portable or reusable.
Looking at trust models, it is possible to place it in the Sole Source model, where
the identity provider and the relying party are the same party.

2.2.2 Federated identity model

The idea of the second model is to add an identity provider as a third party in the
middle of the relation between the user and the service provider. In this way, it is
possible to have a single account with the identity provider which can be used to
log the user in and share basic identity data with any service that uses that identity
provider. The federation is the set of all the services that use the same identity
provider, while every service provider is the relying party. Because of this, it is
possible to obtain the single sign-on (SSO) feature, allowing a user to log in with
a single identity to any of several related services. It simplifies authentication by
reducing usernames and passwords, and by improving the user’s experience. The
issues from the federated model come because the identity providers have to work
with many service providers, and so they have to lower their security and privacy
common policies. Due to that, these identity providers cannot be used to share
valuable personal data in high-trust environments. Besides, the most used identity
providers become some of the biggest targets for cybercrime. Since there is not one
identity provider that works with every service, users need accounts with multiple
identity providers, which are not portable like centralized identity accounts. Also,
this model does not work well for organizations or things, because it is designed for
individuals.
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2.2.3 Decentralized identity model

The third, new model is designed starting from the paradigm introduced by Dis-
tributed Ledger Technologies (DLT), e.g., blockchain, which wants to remove the
unnecessary third parties. Hence, this model is no longer based on accounts but
it is based on a direct relationship between two parties acting as peers in a peer-
to-peer private connection. The connection is shared and not owned by anyone,
and it is decentralized because any peer is able to connect to any other, without
any external help required. The distributed ledger is employed to store the public
keys and to build a Decentralized Public Key Infrastructure (DPKI). The public
keys are used to verify the signature on the digital identity credentials that peers
exchange to provide proof of their identity. These credentials define and prove at
least four important things:

• Who or what is the issuer;

• To whom or what it was issued;

• Whether it has been altered;

• Whether it has been revoked.

They can be issued and signed by any individual, organization, or thing and
used anywhere they are trusted. Also, they may be self-issued and self-signed.
With this model, the identity is as strong as the credentials it holds, so it may
be employed in high-trust environments. It has the same flexibility and scalability
as the Peer-to-Peer Identity, while it is close to the concepts introduced by the
Individual Contract Wrappers and the Open Trust Frameworks. The decentralized
identity is also called Self-Sovereign Identity (SSI) because the user is in control of
their own identity, which is interoperable and portable.

2.3 Self-Sovereign Identity

Self-Sovereign Identity (SSI) is a solution built upon two major W3C (World Wide
Web Consortium) specifications: Decentralized Identifiers (DIDs) [8] and Verifiable
Credentials (VCs) [9]. Having two well-written and reviewed standards by W3C is
the key to obtaining interoperability and making this technology mature. The SSI
core concept is that the information regarding a user’s identity must be controlled
by the user. To achieve this, decentralized identifiers allow them to handle their
cryptographic keys, while verifiable credentials introduce mechanisms to control the
flow of information.

Both the DIDs and VCs definitions under the W3C are a standard, currently
marked as a “Recommendation”. This means that:
“It is a specification or set of guidelines or requirements that, after extensive consensus-
building, has received the endorsement of W3C. It has been formally reviewed by
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W3C Members, software developers, W3C Groups, and interested parties. W3C rec-
ommends the wide deployment of a Recommendation as a standard for the Web.”
[10]

2.3.1 Decentralized Identifiers (DIDs)

DIDs [8] are identifiers that refer to a subject determined by the controller of
the DID, which may be the subject itself or someone else. DIDs are decoupled
from centralized registries, identity providers, and certificate authorities. They
are designed to be generated by their controller, which may be an individual, an
organization, or a thing. Other parties may be involved to perform utility functions
such as retrieving information from a DID, but the controller of a DID is able to
prove control over it without requiring permission from anyone. Each controller
(or subject) may have multiple DIDs to separate its identities and interactions so
that the use of a DID is scoped to a specific context. Therefore, a DID may be
“omnidirectional” or “unidirectional”.

The DID is a URI (Uniform Resource Identifier) [11] that points to a DID doc-
ument associated with a DID subject and stored on a verifiable data registry, such
as a distributed ledger, a decentralized file system, or a distributed database. The
DID document contains cryptographic material, such as public keys, and verifica-
tion methods or services, which allow the DID controller to prove control of the
DID and to enable trusted interactions. It may be encoded in JavaScript Object
Notation (JSON) [12] or JSON-LD [13], which is a JSON-based format used to
serialize Linked Data, a pattern for hyperlinking machine-readable data sets to
each other, with the @context property. The DID methods are the mechanism to
create, read (resolve), update, and deactivate (revoke) the DID and its associated
DID document by interacting with their verifiable data registry.

Eventually, a DID is a text string composed of three parts divided by colons:

Figure 2.1. An example of a DID string.

• The DID URI scheme identifier;

• The DID method identifier;
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• The DID method-specific identifier.

E.g., did:example:c276e12ec21ebfeb1f712ebc6f1.

While an example of a DID document associated with the above DID is the
following JSON-LD document:

{

"@context": [

"https://www.w3.org/ns/did/v1",

"https://w3id.org/security/suites/ed25519-2020/v1"

],

"id": "did:example:c276e12ec21ebfeb1f712ebc6f1",

"authentication": [{

"id": "did:example:c276e12ec21ebfeb1f712ebc6f1#keys-1",

"type": "Ed25519VerificationKey2020",

"controller": "did:example:c276e12ec21ebfeb1f712ebc6f1",

"publicKeyMultibase":

"zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"

}]

}

Listing 2.1. Example of a DID document in JSON-LD format from [8]

Where the id property denotes the DID of the DID subject, and the authentication
object describes the verification method, a set of parameters useful to verify a
proof. Inside of it, there are its identifier in id, the DID of the DID controller in
controller, the type of the key in type, which defines the cryptographic algorithm
where the key will be used, and then the actual public key in publicKeyMultibase.

2.3.2 Verifiable Credentials (VCs)

Verifiable Credential [9] is a data model that provides a way to express every sort
of credential on the web in a cryptographically secure, privacy-respecting, and
machine-verifiable manner. They allow any entity to say anything about any other
entity, because of their extensibility. A verifiable credential can represent the same
information that a physical credential represents but is encoded in JSON or JSON-
LD format. The information consists of:

• Information related to identifying the subject of the credential;

• Information related to the issuing authority;

• Information related to the type of credential;

• Information related to specific attributes or properties being asserted by the
issuing authority about the subject;
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• Information related to constraints on the credential (e.g., expiration date,
terms of use).

Verifiable credentials are tamper-evident and trustworthy because they include
digital signatures done by issuers. Holders of verifiable credentials can generate
Verifiable Presentations (VPs) to wrap the VCs and then share them with verifiers
to prove they possess credentials with certain characteristics. They are called “ver-
ifiable” because any verifier is able to verify them, thanks to the digital signature
attached. The verifiability of a credential does not imply the veracity of claims
contained, which must come from a trusted issuer.

The verifiable credentials ecosystem is composed of the so-called trust triangle
[4], which involves three primary roles:

• Issuers. They are the source of credentials. They assert claims about one or
more subjects, creating a VC from these claims, and transmitting the VC to
a holder. In the general digital identity ecosystem, they may be defined as
identity providers.

• Holders. They request credentials from issuers, hold them in their storage,
and present them when requested by verifiers. Usually, they are the subject
of the VC. In the general digital identity ecosystem, they are the users.

• Verifiers. They want trust assurance about the holder of a credential. They
request the credentials they need and then follow their policy to verify the cre-
dential’s authenticity and validity. In the general digital identity ecosystem,
they are the relying parties.

Figure 2.2. The verifiable credentials trust triangle from [4].
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A credential can be used to establish trust only if the verifier has some degree
of trust in the issuer and its policies, processes, and technologies. In the verifiable
credentials trust triangle, a verifiable data registry is included to store public keys
and credentials schemas. Firstly, the issuer writes a DID together with its public
key to a verifiable data registry. Secondly, the issuer digitally signs a verifiable
credential with its private key and issues it to a holder. This process does not
involve any interaction with a verifiable data registry, so it is confidential between
the issuer and the holder. Thirdly, a verifier requests a digital proof of one or more
credentials from the holder, which generates and sends them. In the final, fourth
step, the verifier gets the issuer’s public key from the verifiable data registry and
verifies the proof. Even if the self-sovereign identity technology stack makes use of
DIDs and VCs, W3C-compliant verifiable credentials do not require decentralized
identifiers. The issuer may also use conventional PKI-based digital certificates.

Examples

A simple example of a verifiable credential is the following JSON-LD document:

{

"@context": [

"https://www.w3.org/2018/credentials/v1",

"https://w3id.org/security/suites/ed25519-2020/v1"

],

"id": "https://example.edu/credentials/1872",

"type": ["VerifiableCredential", "AlumniCredential"],

"issuer": "did:example:c276e12ec21ebfeb1f712ebc6f1",

"issuanceDate": "2022-06-01T19:23:24Z",

"expirationDate": "2023-06-01T19:23:24Z",

"credentialSubject": {

"id": "did:example:ebfeb1f712ebc6f1c276e12ec21",

"name": "John Doe",

"alumniOf": {

"id": "did:example:c276e12ec21ebfeb1f712ebc6f1",

"name": "Example University",

}

},

"proof": {

"type": "Ed25519Signature2020",

"created": "2022-06-01T19:23:25Z",

"proofPurpose": "assertionMethod",

"verificationMethod":

"did:example:c276e12ec21ebfeb1f712ebc6f1#keys-1",

"proofValue": "zeEdUoM7m9cY8ZyTpey83yBKeBcmcvbyrEQzJ19rD2[...]"

}

}

Listing 2.2. Example of a Verifiable Credential in JSON-LD format from [9]
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Where @context establishes the special terms that will be used in the JSON-
LD document, such as issuer and alumniOf, using the static data available at
the listed URIs. The id field specifies the unambiguous identifier for the credential
as URI, type declares what data to expect in the credential through interpreta-
tion of the @context property, issuer defines the entity that issued the credential
as URI. The remaining metadata are issuanceDate and expirationDate, which
specify when the credential was issued and when the credential will expire. Then
there is the credentialSubject object, which contains the claims about the sub-
ject of the credential: id, name, and alumniOf. Attached at the end there is the
digital proof that makes the credential tamper-evident. The proof object contains
its type, which specifies the cryptographic signature suite used to generate the sig-
nature, the signature creation date under created, the purpose of the proof under
proofPurpose, the verificationMethod to identify the public key to verify the
signature, and finally the digital signature value under proofValue.

Whilst a simple example of a verifiable presentation of the previous verifiable
credential is the following JSON-LD document:

{

"@context": [

"https://www.w3.org/2018/credentials/v1"

],

"type": "VerifiablePresentation",

"verifiableCredential": [{

...

}],

"proof": {

"type": "RsaSignature2018",

"created": "2022-06-24T21:19:10Z",

"proofPurpose": "authentication",

"verificationMethod":

"did:example:ebfeb1f712ebc6f1c276e12ec21#keys-1",

"challenge": "1f44d55f-f161-4938-a659-f8026467f126",

"domain": "4jt78h47fh47",

"proofValue": "eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsIm[...]"

}

}

Listing 2.3. Example of a Verifiable Presentation in JSON-LD format from [9]

Where the verifiable credential to present is in verifiableCredential and the
digital signature of the presentation in proof contains the fields challenge and
domain to protect against replay attacks.

Authorization

Verifiable credentials can be used to implement Role-Based Access Controls (RBACs)
and Attribute-Based Access Controls (ABACs). These authorization layers can rely
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on subject identification provided by verifiable credentials as a means of authorizing
subjects to access resources.

In the Role-Based Access Control [14], access permissions are associated with
roles and users are made members of appropriate roles within the system. Every
user who holds the same role has the same set of permissions. This approach to
access control is heavy to manage because capabilities must be associated directly
with users or their roles or groups. Also, roles are often insufficient in the ex-
pression of complex access control policies. An alternative is the Attribute-Based
Access Control [15], which grants or denies access requests by evaluating arbitrary
attributes or various combinations of a set of attributes. The ABAC methodology
allows for a more granular and flexible access control policy, two features that fit
verifiable credentials very well.

2.3.3 Design goals

The design goals for decentralized identifiers and verifiable credentials, which are
the pillars of self-sovereign identity, are collected in the DIDs specification [8] and
summarized as follows:

• Decentralization. Remove the requirement for centralized authorities and
single points of failure in identifiers management.

• Control. Give entities the power to control their identifiers without depend-
ing on external authorities.

• Privacy. Enable entities to handle the privacy of their information.

• Security. Enable sufficient security to rely on DID documents and verifiable
credentials for the required level of assurance.

• Proof-based. Enable DID controllers and VCs issuers and holders to gener-
ate cryptographic proofs.

• Discoverability. Let entities discover DIDs for other entities.

• Interoperability. Use interoperable standards to scale globally.

• Portability. Be independent of any system.

• Simplicity. Make technology easy to understand, develop, and deploy.

• Extensibility. Enable the possibility to extend the data models without
compromising interoperability, portability, and simplicity.
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2.4 Privacy-related issues

2.4.1 Privacy

The approach of self-sovereign identity and DIDs and VCs standards described so
far may be harmful to the user’s privacy. The holder of a credential has to share
the complete credential with the verifier, which may learn much more information
than necessary.

First of all, it is important to use mechanisms that protect the data while
storing and transporting VCs, such as TLS [16] to protect data while in transit as
well as encryption or data access control to protect data while at rest. Also because
verifiable credentials often contains personally identifiable information (PII) stored
in the credentialSubject field.

The best practice for preventing privacy violations is to limit the disclosure of
information to the minimum necessary. This practice follows the principle of data
minimization [17], which can be expanded into three types:

• Content minimization. The amount of shared data should be strict to the
minimum necessary in order to successfully accomplish the task.

• Temporal minimization. The data should be stored for the least amount
of time necessary to execute the task.

• Scope minimization. The data should only be used for the strict purpose
of the active task.

Besides, another important privacy enhancement related to data minimization
is selective disclosure. Selective disclosure [17] is the ability of a holder to granu-
larly decide what information to share. There are different solutions for selective
disclosure of verifiable credentials [18]:

• Just in time issuance. Contact the issuer at request time to get a spe-
cific assertion. The infrastructure burden is proportional to the number of
identities issued by the issuer, which must be highly available to handle it.

• Trusted witness. Use a trusted witness between the holder and the verifier.
The witness receives the information and presents an assertion with only the
information required by the verifier. This model requires a highly available
and highly trusted third party.

• Cryptographic solutions. Use a cryptographic algorithm to disclose a
subset of information to a larger assertion. The most common approach is
using Zero-Knowledge Proofs, which will be explained in the next chapter of
this document and will be employed to achieve privacy-preserving credentials.

22



2.4 – Privacy-related issues

After the activation of data minimization policies and selective disclosure, pro-
gressive trust enhancement can be applied. Progressive trust [17] is the procedure
for gradually increasing the amount of data revealed as the communication pro-
ceeds and the trust is built. Hence, it is an escalation of data minimization and
selective disclosure, proportional to the trust increase.

2.4.2 Unlinkability

Linkability is the ability to link data from multiple interactions to a single user. The
interactions involve DIDs and verifiable credentials, and the user is the holder of
these credentials. Linkability may also be called correlation and it can be performed
by a verifier, by issuers and verifiers colluding, or by a third party observing the
network. It is a way to collect data about a holder without their consent.

In certain SSI systems, unlinkability is a desired property. Unlinkability [19]
ensures that a user may use multiple times resources or services without others
being able to link these uses together. From an attacker’s perspective, two actions
made by users with the same anonymity set are unlinkable for him if the prob-
ability that these two actions are made by the same user is sufficiently close to
1

N
with N number of users within the system [20]. Data minimization and selec-

tive disclosure may reduce correlation, by sharing only the information required to
complete a transaction. A way, which can be accomplished through data minimiza-
tion directly from the issuer or selective disclosure done by the holder, is to make
each interaction unique by removing unique identifiers from credentials. Subjects
of VCs are identified using the credentialSubject.id field, which creates a great
risk of correlation, even greater when the identifiers are long-lived or used in mul-
tiple credentials. Similarly, the credential identifier in id allows malicious parties
to correlate the holder. Another way to avoid linkability through identifiers is to
use pairwise DIDs that are unique to each relationship and issue single-use verifi-
able credentials. With this solution, a holder could still be correlated by means of
information in other attributes.

Furthermore, a verifiable credential holder may be linked by means of the signa-
ture value in the proof field. The properties in this field create a risk of correlation
when the same values are used across more than one session or domain, and the
value does not change. To solve this problem, it is possible to generate a random
proof from a signature, to avoid signature-based correlation. This property will be
further explored later in this document.

Finally, an unlinkability-related issue is that which concerns the revocation of
verifiable credentials. Since credentials are claims made by an authority, the issuer
should be able to revoke them. A revoked credential notifies verifiers that the
credential should not be accepted. Classical revocation methods require verifiers to
check the unique identifier of the credential against a public revocation list, which
means, again, linkability. Regarding this topic, there will be a dedicated section in
this document.
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2.4.3 Binding

If an adversary gets an unprotected verifiable credential when in transit or at rest,
then they will be able to reuse it in a replay attack and gain authorization to access
a resource. A replay attack [21] is an attack in which the attacker is able to replay
previously captured messages (in this case, credentials) to masquerade as one of
the parties involved. Thereby, the attacker may produce an unauthorized effect or
gain unauthorized access.

To achieve replay resistance, the VCs standard includes a holder identifier in the
credentialSubject.id field. Then, having the holder DID within the credential, it
is possible to bind them together and verify the binding with a challenge-response
protocol through the verifiable presentation and its proof object. A challenge-
response protocol [21] is an authentication protocol where the verifier sends the
user a challenge (random value or nonce) that the user combines with a secret by
applying a private key operation to the challenge to generate a response that is
sent to the verifier. The verifier can verify the response by performing a public key
operation on the response and establishing that the user possesses and controls the
secret. The drawback is that the presence of unique identifiers inside a verifiable
credential that may be exchanged multiple times with different verifiers leads to
linkability, as discussed in the previous section.

The final solution for binding a credential to its holder is private holder binding.
Holder binding is the process of showing that a credential was issued to a particular
holder, while private holder binding allows holders to prove that credentials were
issued to them without revealing anything else. Thus, the latter does not create a
correlating factor for the holder that needs to be revealed during the presentation.
This solution is implemented with a mechanism called Linked Blinded Secret, which
will be explained in its own section.
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Chapter 3

Zero-Knowledge Proofs

3.1 What is a ZKP?

A Zero-Knowledge Proof (ZKP) [22] is a cryptographic primitive which allows a
prover to convince a verifier that a statement is true, without revealing any other
information. It is a theorem-proving procedure to communicate a probabilistic
proof. Having an n-bit long statement, a verifier may be erroneously convinced of

its correctness with a very low probability, like
1

2n
, and rightfully convinced of its

correctness with a very high probability, like 1 − 1

2n
. To verify the correctness of

a statement, the verifier of the proof must interactively ask questions and receive
answers from the prover. Hence, these proofs are called “interactive”. Moreover,
it is possible to prove a theorem without communicating additional knowledge,
because adding interaction to the process decreases the amount of knowledge that
must be provided to prove a theorem. To summarize, a zero-knowledge proof must
satisfy three properties:

• Completeness. If the statement is true, the honest prover must be able to
convince the verifier.

• Soundness. If the statement is false, the malicious prover must not be able
to convince the verifier that the statement is true, except for a negligible
probability.

• Zero-knowledge. The verifier must not learn any information from the
proof, except that the statement is true.

Furthermore, there are two types of statements that may be proved in zero-
knowledge:

• Statements about the truthfulness of facts, e.g., “a specific graph has a three
coloring”;

• Statements about personal knowledge, e.g., “I know a three coloring for this
graph”.
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The proof on the second type of statement is called proof of knowledge [23],
which proves that the prover knows the secret information about the statement.
This secret information is called witness.

3.1.1 Formal definitions

In this section, the properties of a proof system such as completeness, soundness,
and zero-knowledge, are defined rigorously and mathematically. These definitions
are expressed in the paper by Goldwasser, Micali, and Rackoff [22] and simplified
in [24].

A model of computation is needed to formally express what an interaction be-
tween two computing machines is. In cryptography, it is often used the Turing
machine.

Interactive Turing Machine

An interactive Turing machine (ITM) [22] is a multi-tape Turing machine. The
tapes are a read-only input tape, a read-only random tape, a read-and-write work
tape, a write-only output tape, a pair of communication tapes (one read-only and
one write-only), and a read-and-write switch tape. In addition, it is associated with
a single bit, called identity. The ITM is active if the content of its switch tape is
equal to its identity, otherwise, the ITM is idle. While in idle mode, the machine’s
state, the heads on tapes, and the contents of tapes are not modified. The content
of the input tape is called input, the content of the random tape is called random
input, the content of the output tape is called output, and the contents of the
communication tapes are called message sent and message received.

Figure 3.1. An interactive Turing machine from [22].
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Now, there are two ITMs: a machine M1 which is the prover P , and a machine
M2 which is the verifier V . The machines need to understand a language L to
properly interact, thus the statement that the prover P wants to prove must be
encoded in a particular language L. A language L is a set of strings over some finite
alphabet with some rules. During the setup phase of a communication protocol,
the interacting parties agree upon a specific language, if it was not defined yet.

(x,w) is a proof statement, where x is a public value and w (the witness) is
private and only known by the prover P . If (x,w) ∈ L, the proof is correct, while
if (x,w) /∈ L, the proof is incorrect.

Interactive Proof System

A pair of interactive Turing machines (P, V ) is an interactive proof system for a
language L if the prover P has infinite power, the verifier V is polynomial-time,
and the following conditions hold:

• Completeness. For all (x,w) in language L, the probability that a prover
P , which knows x and w, can convince an honest verifier V , which knows x,
is significant (non-negligible).

∀(x,w) ∈ L : Probability[〈P (x,w), V (x)〉 = 1] ≥ 1− negligible

• Soundness (Unforgeability). For all (x,w) not in language L, the proba-
bility that a cheating prover P ′, which knows only x, can convince an honest
verifier V , which knows x, is negligible.

∀(x,w) /∈ L : Probability[〈P ′(x), V (x)〉 = 1] ≤ negligible

An algorithm runs in polynomial time if to compute a solution it performs a
number of steps bounded by a polynomial function of n, p(n), where n is the length
of the algorithm’s input [25].

Proof of knowledge protocols must satisfy an additional property:

• Soundness (Knowledge extractability). For all (x,w) in language L,
there exists a polynomial-time algorithm E (the extractor) such that the
witness w can be extracted from interactions between prover P and verifier
V .

∀(x,w) ∈ L,∃E :

Probability[E〈P (x,w), V (x)〉 = w] ≥ 1− negligible

The prover P , which knows the witness w, must have used it in a hidden way
during the protocol execution to successfully convince the verifier. Then, the ex-
tractor E attests to the witness usage in the protocol execution. The extractor E
is a Turing machine that computes the witness from the observation of the commu-
nications between the prover P and the verifier V . Hence, since the extractor has

27



Zero-Knowledge Proofs

extracted the witness only known by the prover, then the witness must have been
used during the protocol execution.

In any case, eavesdropping on the communications does not leak any information
about the witness w, because the protocol satisfies the zero-knowledge property:

• Zero-knowledge. For all (x,w) in language L, there exists for all verifiers a
simulator S such that no polynomial-time distinguisher D can distinguish an
execution of the simulated protocol from the execution of a real interaction
between the prover P and the verifier V .

∀(x,w) ∈ L,∀V ∃S : Probability[D〈P (x,w), V (x)〉 = 1]

− Probability[D〈S(x)〉 = 1] ≤ negligible

The distinguisher D is a decision-making algorithm that compares the inter-
action of the prover P and verifier V with the execution of a simulator S and
formalizes the concept of indistinguishability. In the real interaction, the prover P
makes use of its witness w, while in the simulated one, the simulator S has only
the public value x. If the simulator produces a transcript of the interaction equal
to the real one, then the two executions are indistinguishable. Since the simulator
does not know the witness, its simulated transcript does not leak any information
about it. Therefore, if the real and the simulated transcript are indistinguishable,
then the interaction between the prover P and the verifier V does not leak any
information about the witness w and thus it is zero-knowledge.

3.1.2 Real-world examples

The Strange Cave

The following example is described in [26]. There are two parties, Peggy the prover
P and Victor the verifier V . Peggy found a cave that contains a door that opens up
only by using a secret word, which Peggy knows. The cave is shaped like a circle,
with the entrance on one side and the door blocking the opposite side. Victor does
not believe that Peggy possesses the secret, so Peggy will prove that she knows the
secret word without telling to Victor. Peggy goes into a random branch of the cave
(left or right, called A and B), without Victor knowing which branch she chose.
Victor, which is at the entrance of the cave to not hear nor see the secret, tells Peggy
a random branch to come out of. If Peggy knows the secret word, then she can do
whatever Victor wants every time, using the door if necessary. Otherwise, if Peggy
does not know the secret word, she has a 50% chance of initially fooling Victor. By
repeating this protocol many times, Peggy’s chance of cheating on Victor decreases

until it becomes negligible. The probability of Peggy fooling Victor is
1

2n
, where n

is the number of rounds of this interactive protocol.

In the end, Victor is convinced that Peggy can open the door because she knows
the secret, but no additional information flowed to him during the execution of the
protocol.
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Figure 3.2. The strange cave from [26].

Graph Three-Colorability

A graph is a structure composed of a set of objects that may be linked to each
other. More formally, a graph is a pair G = (V,E), where V is a set of vertices (the
objects) and E is a set of edges (the links to two objects).

Graph three-colorability (G3C) is a special case of graph coloring, which is
a way of coloring the vertices of a graph so that no two adjacent vertices have
the same color. Hence, a graph G(V,E) is three-colorable [27] if there exists a
mapping φ : V → {1,2,3} (called proper coloring) such that each (u, v) ∈ E satisfies
φ(u) /= φ(v). It is an interesting problem because, for some graphs, it can be hard
to find a solution, or even determine if a solution exists. The decision problem of
whether a given graph supports a solution with three colors is in the complexity
class NP-complete.

In this scenario, Peggy the prover P wants to convince Victor the verifier V that
she knows a three-coloring for a certain graph, without revealing such coloring. The
prover will prove it by performing a protocol of |E2| steps (where E is the set of
edges and |E| is the number of edges in the set), each of which involves the following
actions [27]:

• Peggy permutes the three colors at random and hides the coloring from Victor.

• Victor chooses an edge of the graph at random.

• Peggy reveals the colors of the two nodes for which the selected edge is inci-
dent.
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• Victor confirms that the two colors are valid because are different.

If the graph is three-colorable and Peggy knows a certain coloring, then Victor
will never select an edge between two vertices that are not colored correctly. Other-

wise, if the graph is not three-colorable or Peggy is cheating, there is a
1

|E|
chance

on each step that Peggy’s attempt will be discovered. The probability becomes
negligible after |E2| steps. Also, Victor gains no additional knowledge from the
execution of the protocol, except that the graph is three-colorable, thus the system
is zero-knowledge.

Figure 3.3. A three-colorable graph.

Since any problem in the class NP can be translated into an instance of the
G3C problem, which is in the class NP-complete, this example proves that efficient
zero-knowledge proofs exist for every statement with language in NP.

3.2 Commitment schemes

It is necessary to define which action is performed when the verb “to hide” is used
during the execution of a protocol to get a zero-knowledge proof for NP languages.
This hiding function is obtained through the use of commitments.

Commitment schemes [28] are used to enable a party to commit itself to a value
while keeping it secret. If a commitment is opened, the hidden value is revealed,
and it is guaranteed that the revealed value is the one that was committed during
the committing phase. The opening phase is called this way because commitment
schemes may be seen as the equivalent of non-transparent sealed envelopes.
To sum up, a commitment scheme is a two-party protocol composed of two phases:
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• Commitment phase. A party called A has a secret s that wants to commit
in order to send the commitment value c to another party B. The value c is
the output of c = Commit(s, r), where r is a random value.

• Opening phase. A sends to B, which has already received the commitment
c, the former secret s and the randomness r so B can check b = Open(c, s, r),
where b is true if and only if c = Commit(s, r).

A secure commitment scheme must have two properties:

• Hiding property. It is hard to compute any information about the secret s
given the commitment c. This property, also called secrecy requirement, must
be satisfied even if the receiver B tries to cheat.

• Binding property. For a given commitment c, it is hard to compute a
different pair of secret and randomness (s′, r′) whose commitment is c. This
property, also called unambiguity requirement, must be satisfied even if the
sender A tries to cheat.

By introducing a commitment scheme into the previous example about graph
three-colorability, the prover generates commitments to each vertex coloring. Then,
these commitments are sent to the verifier. When the verifier chooses an edge, the
prover reveals (opens) the committed values corresponding to the two vertices linked
by the chosen edge.

3.2.1 Pedersen commitment scheme

The Pedersen commitment scheme [29] is a discrete logarithm problem-based scheme.
It is defined in a group Gq of prime order q, where the discrete logarithm problem
is infeasible. In this document, the discrete logarithm problem will reoccur and it
will be explored further, as well as the Pedersen commitment scheme. For now,
let’s simply define that, given an exponentiation c = ab, it must be hard to find the
logarithm b = loga(c).

The Pedersen commitment is computed as c = Commit(m, r) = gmhr, where m
is the message, r is the randomness, and g, h are two random public generators of
the group. The first term gm commits the message, while the second term hr works
as a blinding factor to protect and randomize the commitment.

Moreover, the Pedersen commitment is homomorphic for the addition. This
means that for two messages m1, m2 and two randomness r1, r2, we have:

Commit(m1, r1) · Commit(m2, r2) = (gm1hr1)(gm2hr2)

= (gm1gm2)(hr1hr2)

= gm1+m2hr1+r2

= Commit(m1 +m2, r1 + r2)
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This property is useful because it allows commitments not only to be used
to hide values but also to perform operations on them, while hidden. Pedersen
commitments are not fully homomorphic, though, as they are homomorphic only
for the addition and not for the multiplication.

3.3 Proof of Knowledge protocols

As previously described, proof of knowledge guarantees that a prover knows a secret
about a statement. Additionally, if it is a zero-knowledge proof of knowledge, it
does not reveal any information about the secret. This proof may be used to prove
the knowledge of a discrete logarithm, such as a Pedersen commitment. Thereby, a
prover P can prove that it knows the secret message m (or s) behind the commit-
ment c, without revealing the secret message, which may also be called the witness
w.

3.3.1 Schnorr identification protocol

The Schnorr identification protocol [30] performs a proof of knowledge of a discrete
logarithm. As noted in the name, its purpose was to identify a party, which means
that the party has to prove knowledge of the secret key corresponding to a certain
public key.

The protocol (simplified in [24]) is defined for a cyclic group Gq of order q with
public generator g. The prover P interacts with the verifier V to prove knowledge
of w = logg(x), where w is the witness and x is the public value, as follows:

1. The prover P commits a randomness r ∈ {1, ..., q − 1}, generating the com-
mitment c = gr, which is sent to the verifier V .

2. The verifier V picks a random challenge e ∈ {1, ..., q − 1} and sends it to the
prover P .

3. The prover P replies to the challenge with the response y = r + ew.

4. The verifier V accepts the response, convinced by the proof, if and only if

c =
gy

xe
.

This is a valid proof of knowledge because there is an extractor E that performs
the following steps:

1. It gets the prover to output the commitment c = gr.

2. It chooses a randomness e1 and inputs it to the prover, which outputs y1 =
r + e1w.
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3. It rewinds the prover to the state of step 1, generates a different randomness
e2, and inputs it to the prover, which outputs y2 = r + e2w.

4. It outputs the differences of the challenge-response pairs
y1 − y2
e1 − e2

.

Then, the output of the extractor E is the witness w, because
y1 − y2
e1 − e2

=

(r + e1w)− (r + e2w)

e1 − e2
= w

(e1 − e2)
(e1 − e2)

= w. The extraction fails if e1 = e2, which

may happen with probability
1

q
. This is why their difference is specified. Since

the extractor extracts the witness, the Schnorr identification protocol satisfies the
special soundness requirement for proof of knowledge protocols.

Whilst, the Schnorr identification protocol does not fully satisfy the zero-knowledge
property, because it works in the honest verifier zero-knowledge (HVZK) model.
This means that, if a dishonest verifier V ′ does not choose a challenge e randomly,
then it can learn something about the witness w. Under this simplification, the
simulator S does not need to predict in advance an arbitrary behavior of the ver-
ifier. Instead, the simulator S can simulate a random choice of the challenge e.
Thus, the simulator S acts as follows:

1. It chooses the prover’s response y and the verifier’s challenge e at random.

2. It computes the prover’s commitment as c =
gy

xe
.

3. It simulates the prover’s response y.

At the end of this simulation, it holds that cxe =
gy

xe
xe = gy.

Protocols such as this one, which have three moves for sending and receiving
a commitment, a challenge, and a response, are called sigma protocols (or Σ −
protocols).

The Schnorr identification protocol is used as a building block later in this
document.

3.4 Non-Interactive ZKPs

The interactive protocols are useful, but they only work if the verifier is online
and willing to interact with the prover. It is possible to transform interactive
ZKPs into non-interactive zero-knowledge (NIZK) proofs, which allow having only
a single message sent by a prover to a verifier. The interaction between a prover and
a verifier is simulated by the prover, thus direct communication with the verifier is
unnecessary and proof generation can be done offline.
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3.4.1 Fiat-Shamir heuristic

Non-interactive zero-knowledge proofs can be obtained using the Fiat-Shamir heuris-
tic, also appointed as Fiat-Shamir transformation [31]. According to this technique,
it is possible to replace the verifier’s random challenge with the output value of a
cryptographic hash function, whose inputs are the public values exchanged in the
preceding steps.

By applying the Fiat-Shamir transformation to the Schnorr identification pro-
tocol, the public values to encode and concatenate before being entered as input to
the cryptographic hash function H() are the generator g, the public value x, and
the commitment c.

The prover P , which knows g, w, and x, is modeled as follows:

Prover P (g, w, x = gw):

1. It picks a random value r.

2. It generates the commitment c = gr.

3. It calculates the digest e = H(g||x||c), where H() is a cryptographic hash
function and || means concatenation.

4. It calculates y = r + ew

5. It outputs π = (c, e, y)

While the verifier V , which knows g, x and receives the proof π from the prover P ,
is modeled as follows:

Verifier V (g, x = gw, π = (c, e, y)):

1. It calculates the digest e = H(g||x||c), where H() is a cryptographic hash
function and || means concatenation.

2. It checks if gy = cxe.

The Fiat-Shamir heuristic is secure against chosen message attacks in the ran-
dom oracle model (ROM) [32]. A random oracle [33] responds to every query with
a uniformly random response. If identical queries are repeated, it responds the
same way each time. One-time functions, such as cryptographic hash functions,
can be modeled as random oracles. If a system is proven secure when every hash
function is replaced by a random oracle, it means that the system needed it to
satisfy strong randomness assumptions about the hash function’s output. Thereby,
the system is secure under the random oracle model, which is a weaker model than
the standard one. It is not known whether random oracles exist. In the negative
case, the Fiat-Shamir heuristic is proven to be insecure [34].
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3.4.2 ZKPs in digital signatures

Schnorr noted [30] that also a message m can be entered as an additional input to
the cryptographic hash function H(). Therefore, he obtained a proof of knowledge
of a witness w and also a commitment to a message m that is cryptographically
linked to the NIZK proof. If the proof is correct, then only a party that knows
the witness could have committed that message. This is what defines a digital
signature, where the witness w is the private key, x = gw is the public key, and m
is the signed message. Hence, digital signatures are non-interactive zero-knowledge
proofs. In fact, the Schnorr signature scheme is obtained by employing the Fiat-
Shamir transformation to the Schnorr identification protocol.

3.4.3 General-purpose ZKPs

An extension of the work done by Fiat and Shamir is the common reference string
(CRS) [35]. The common reference string is a value shared between the prover
and the verifier to build non-interactive zero-knowledge proofs, and thus without
requiring a challenge from the verifier. The common reference string may be gener-
ated by a trusted third party or through a secure multi-party computation (MPC)
[36].

ZKP systems can be used to provide privacy in many fields and applications.
Since there are multiple different general-purpose non-interactive zero-knowledge
proof schemes, the main characteristics to distinguish and identify them are the
following [37]:

• Succinctness. It is about the size of the proofs and the amount of time
needed to verify them. If a system is succinct, then the proofs it produces are
short (in the order of hundreds of bytes) and fast (in the order of milliseconds)
to verify.

• Transparency. It is about the initial setup to agree on a set of parameters
and common values, which are part of the common reference string. There
are two types of setup:

– Trusted. It means that the party that created the CRS has access to
secrets that allow to forge proofs. Thereby, the party must be trusted.
As mentioned before, the multi-party computation can decrease the risk
because many participants compute these parameters, and if a single
participant is honest and deletes its keys after the so-called “ceremony”,
then no one can forge proofs.

– Transparent. It means that no trusted third party is needed to create
the parameters of the system.

• Quantum-resistance. It is about the cryptographic primitives used to build
the system, and whether they are resistant to quantum computers or not.
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Nowadays, the most popular general-purpose ZKPs are zk-SNARKs, zk-STARKs,
and Bulletproofs.

zk-SNARKs

The most used among the three listed above are zk-SNARKs (Zero-Knowledge
Succinct and Non-interactive ARguments of Knowledge) [38], which include many
different schemes. They are non-interactive schemes with zero knowledge and suc-
cinctness. Furthermore, they require a trusted setup. It is important to notice
that they are not proofs of knowledge but arguments of knowledge. The differ-
ence between proofs and arguments is about their soundness [39]. A proof system
has statistical soundness, where even a computationally unbounded prover cannot
convince a verifier of a false statement, except for a negligible probability. On
the other hand, an argument system has computational soundness, where only a
polynomial-time prover cannot convince a verifier of a false statement. The com-
puting complexity for proving (and verifying) a proof about a specific statement
depends on the number of operations N needed to generate (or verify) the proof.
The cryptographic security assumptions behind zk-SNARKs are strong: discrete
logarithm problem and secure bilinear pairing (which will be explained in the next
chapter). Having these assumptions, zk-SNARKs are not post-quantum secure.

zk-STARKs

The ZKP scheme zk-STARK (Zero-Knowledge Succinct and Transparent ARgu-
ment of Knowledge) [40] is transparent, thus it does not require a trusted setup.
Although its succinctness, the zk-STARK proof size is much higher than the zk-
SNARKs one. The unique characteristic of this scheme is that it is supposed to
be post-quantum secure. The quantum-resistance property is obtained through the
use of collision-resistant hash functions (CRHF) as security assumptions.

Bulletproofs

Bulletproofs [41] is a succinct non-interactive zero-knowledge proof protocol with-
out a trusted setup. This scheme is well suited for efficient range proofs on com-
mitted values. A range proof allows a party to prove that a certain value behind
a commitment lies in a given range. Beyond range proofs, Bulletproofs provides
short zero-knowledge proofs for general-purpose statements. Since it relies on the
discrete logarithm assumption, it is not quantum-resistant.
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Here is a summary table1 of the three general-purpose ZKP systems:

zk-SNARKs zk-STARKs Bulletproofs

Prover complexity O(N logN) O(Npoly logN)) O(N logN)
Verifier complexity ∼ O(1) O(poly logN) O(N)
Proof size 200 B 45-135 kB 1.5-2.5 kB
Trusted setup Yes No No
Post-quantum No Yes No

Table 3.1. Comparison of general-purpose ZKPs.

1Table from https://github.com/matter-labs/awesome-zero-knowledge-proofs.
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Chapter 4

BBS+ Signatures

4.1 Building blocks

This section introduces necessary algebra concepts for defining and comprehending
BBS+ signatures.

4.1.1 Algebra fundamentals

First of all, it is helpful to briefly review two algebraic structures that underlie
cryptographic operations: groups and fields [42].

Groups

A group G is a set of elements with an operation ◦ which combines two elements
of G. It has the following properties:

• Closure. The group operation ◦ is closed, thus for all a, b ∈ G, it holds that
a ◦ b = c ∈ G.

• Associativity. The group operation ◦ is associative, thus for all a, b, c ∈ G,
it holds that a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• Identity. For each a ∈ G there exists an element 1 ∈ G, called the neutral
element or identity element, such that a ◦ 1 = 1 ◦ a = a.

• Inverse. For each a ∈ G there exists an element a−1 ∈ G, called the inverse
of a, such that a ◦ a−1 = a−1 ◦ a = 1.

The group operation ◦ denotes multiplication in multiplicative groups and ad-
dition in additive groups.

A group G is abelian if it satisfies the four properties above, plus the following
additional property:
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• Commutativity. The group operation ◦ is commutative, thus for all a, b ∈
G, it holds that a ◦ b = b ◦ a.

A group G is finite if it has a finite number of elements. The cardinality or
order of the group G is denoted as |G|.

The order ord(a) of an element a ∈ G is the smallest positive integer k such
that ak = a ◦ a ◦ ... ◦ a (k times) = 1.

A group G is cyclic if contains an element a with maximum order ord(a) = |G|.
Elements with maximum order are called generators, because every element b ∈ G
is a power of this element for some i, ai = b. This means that the generator
generates the entire group.

A subgroup S of a group G is a subset of the elements of the group (S ⊆ G)
and it is itself a group.

Groups allow to abstract many different structures, such as R, C, Z, to work
with them in a general way.

Fields

A field F is a set of at least two elements, with two operations: ⊕ (addition) and
� (multiplication). It satisfies the following axioms:

• F forms an abelian group (where identity = 1) under the operation ⊕.

• F∗ = F\{0} = {a ∈ F, a /= 0} forms an abelian group (where identity = 0)
under the operation �.

Moreover, a field F has the following property:

• Distributivity. For all a, b, c ∈ F, it holds that (a⊕ b)� c = (a� c)⊕ (b� c).

A field F is finite if it has a finite number of elements. It may be referred to as
Galois field (GF).

Fields are needed to have all four basic arithmetic operations (i.e., addition, sub-
traction, multiplication, division) in a single structure, which contains an additive
and a multiplicative group.

4.1.2 Discrete Logarithm problem

The hard problem at the basis of the algorithms that will be introduced is the
discrete logarithm problem (DLP), which is the underlying one-way function of the
Diffie-Hellman Key Exchange protocol [42].

40



4.1 – Building blocks

Given a finite cyclic group G with the group operation ◦ and cardinality n, a
generator g ∈ G and an element y ∈ G, the discrete logarithm problem is finding
the integer x, where 1 ≤ x ≤ n, such that y = g ◦ g ◦ ... ◦ g (x times) = gx.

Usually, it is defined over Z∗p of order p−1, where p is a prime, and the problem
is to determine the integer 1 ≤ x ≤ p− 1 such that gx ≡ y mod p.

The assumption is that it is infeasible to find x such that y = gx. It is important
to note that there are cyclic groups in which the discrete logarithm problem is not
difficult and thus it is not a one-way function.

4.1.3 Elliptic Curves

An elliptic curve E is a curve on a plane with points (x, y), where x and y are the
coordinates. It is described by its equation y2 = x3 + ax + b, called Weierstrass
equation, where a, b are defined such that 4a3 +27b2 /= 0. Hence, an elliptic curve is
a set of points that are solutions to its equation. In addition to them, there exists
an imaginary point called point at infinity 0 [42].

Usually, elliptic curves are considered over a finite field Fq, where all arithmetic
is performed modulo a prime q. They are noted as E(Fq). Formally, an elliptic
curve E(Fq) can be defined as follows:

{(x, y) ∈ (Fq)
2 : y2 ≡ x3 + ax2 + b (mod q),

4a3 + 27b2 /≡ 0 (mod q)} ∪ {0}

Elliptic curves are abelian groups, where the elements of the group are the points
of the elliptic curve. Elliptic curves satisfy the same properties of abelian groups:

• Closure. The addition of two points, elements of the elliptic curve, generates
a point that belongs to that curve.

• Associativity and commutativity. The addition is both associative and
commutative. Given three aligned points P,Q,R, then P + Q + R = P +
(Q+R) = Q+ (P +R) = R + (P +Q) = ... = 0.

• Identity. The identity element is the point at infinity 0.

• Inverse. The inverse of a point is the one symmetric on the x-axis.

The group operation is the addition +, but it is possible to define another
operation, the scalar multiplication, which is kP = P +P + ...+P (k times), where
k is an integer and P is a point of the elliptic curve.

The order (or cardinality) of an elliptic curve group, noted as |E|, is the number
of points in the elliptic curve.
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Elliptic Curve Discrete Logarithm problem

Elliptic curves have a similar problem to the discrete logarithm problem: the elliptic
curve discrete logarithm problem (ECDLP). It is the problem of finding the number
k, where 1 ≤ k ≤ |E|, given an elliptic curve E with a generator point P ∈ E and
another point Q ∈ E, such that Q = kP .

In fact, translating an operation on elliptic curves means performing multipli-
cation instead of exponentiation and addition instead of multiplication.

4.1.4 Bilinear Maps

Let G1, G2, and GT groups of prime order p. A map e : G1 × G2 → GT must
satisfy the following properties [43]:

• Bilinearity. For all g1 ∈ G1, g2 ∈ G2 and x, y ∈ Zp, it holds that e(gx1 , g
y
2) =

e(g1, g2)
xy.

• Non-degeneracy. For all generators g1 ∈ G1 and g2 ∈ G2, it holds that
e(g1, g2) /= 1 and it generates an element in GT .

• Efficiency. There exists an efficient algorithm that outputs the bilinear
group (p,G1,G2,GT , e, g1, g2) and an efficient algorithm to compute e(a, b)
for any a ∈ G1, b ∈ G2.

There are three types of bilinear maps, also called pairings [44]:

• Type-1. It has a symmetric setting, where G1 = G2.

• Type-2. It has an asymmetric setting, where G1 /= G2, with an efficiently
computable isomorphism ψ : G2 → G1.

• Type-3. It has an asymmetric setting, where G1 /= G2 and there is no
efficiently computable isomorphism ψ.

Note that an isomorphism is a function to compare similarities between two
groups. If there exists an isomorphism between two groups, then they are iso-
morphic, which means that they have the same properties and need not be distin-
guished.

While type-1 pairings can be used to reduce a hard problem in a group to an eas-
ier problem in another group, type-3 pairings are used to build many cryptographic
systems.

Usually, G1,G2 are cyclic subgroups of elliptic curves over a finite field, while
the target group GT is a multiplicative subgroup over a large field.
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4.1.5 q-Strong Diffie-Hellman problem

The q-Strong Diffie-Hellman problem (qSDH) has two versions based on different
pairing types.

The first version, called “Eurocrypt version”, is defined in type-1 and type-2
pairings [45]:

Given a q+ 2-tuple (g1, g2, g
x
2 , g

x2

2 , ..., g
xq

2 ) ∈ G1×Gq+1
2 with g1 = ψ(g2),

the q-SDH problem is to output a pair (c, g
1/(x+c)
1 ) ∈ Z∗p ×G1.

The second version, called “Journal of Cryptography (JOC) version”, is defined
in type-3 pairings [46]:

Given a q + 3-tuple (g1, g
x
1 , g

x2

1 , ..., g
xq

1 , g2, g
x
2 ) ∈ Gq+1

1 × G2
2, the q-SDH

problem is to output a pair (c, g
1/(x+c)
1 ) ∈ Zp\{−x} ×G1.

The assumption is that it is infeasible to find a random x ∈ Zp and output

(c, g
1/(x+c)
1 ), where c ∈ Zp and g

1/(x+c)
1 ∈ G1.

4.2 BLS12-381 Elliptic Curve

The BBS+ signature is a pairing-based digital signature implemented over the
BLS12-381 elliptic curve. In order to build a pairing-based cryptographic system
over elliptic curves, it is necessary to design these elliptic curves in such a way that
the pairing is secure. To achieve this, the discrete logarithm problems in the elliptic
curve group E(Fq) and in the pairing target group F∗q must both be computationally
infeasible [47]. A pairing-friendly elliptic curve must have a small embedding degree
(which will be explained later) to allow efficient pairings, but not too small, to be
safe against attacks that can efficiently resolve the discrete logarithm problem, such
as the MOV attack [48]. The embedding degree k must be in the range 6 < k < 100.
In addition, the elliptic curve must have a large prime-order subgroup.

The pairing-friendly elliptic curve BLS12-381 is part of the curves family BLS
from Barreto, Lynn, and Scott [49]. Specifically, BLS12-381 is designed by Bowe
[50] and a good primer about it is written in [51].

4.2.1 Parameters

The curve equation is y2 = x3 + 4, thus the values from the general elliptic curve
equation are a = 0 and b = 4. Since the curve belongs to the BLS family, its
parameters are set using a single parameter x that is selected to give the curve
desired properties for implementation.

The design goals for BLS12-381 are the following:
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• The BLS parameter x must have a low Hamming weight, which means that
it is an integer with a low number of bits set to 1. This is important for
the efficiency of the Miller loop, the algorithm used in implementations to
calculate pairings.

• The field modulus q must be a prime number and have 383 bits or fewer. It
is 381-bits long due to the selected x. This means that the number of bits
needed to represent coordinates on the curve is 381, which is good for the
efficiency of arithmetic operations on it.

• The order of the subgroups r must be a prime number and have 255 bits or
fewer, for the same efficiency reason as above.

• The curve must target the 128-bits security level.

The BLS parameter is x = −263−262−260−257−248−216 = -0xd201000000010000,
which gives both a large q and a low Hamming weight. The field modulus is

q =
1

3
(x − 1)2(x4 − x2 + 1) + x and the subgroup order is r = x4 − x2 + 1. Their

values are calculated by substituting the x in their formulas with the value of the
BLS parameter.

4.2.2 Field extensions

The field Fq is composed of field elements that are integers modulo q, from 0 to
q− 1. The field Fq2 is the quadratic extension of Fq and its field elements are first-
degree polynomials, e.g., a0 + a1x. A coefficient x2 will appear in multiplications,
so the polynomials must be reduced following a rule. The rule must be a degree k
polynomial, in this example k = 2, and it must be irreducible. If there exists an
irreducible k-degree polynomial in Fq, then it is possible to extend the field to Fqk

and represent its elements as degree k−1 polynomials, e.g, a0+a1x+ ...+ak−1x
k−1.

Large extension fields such as Fq12 , which is used by BLS12-381, can be imple-
mented as towers of smaller extensions.

4.2.3 Curves, subgroups and twists

BLS12-381 comprises two curves that are defined over different fields. The first
curve E(Fq) is defined over the finite field Fq with equation y2 = x3 + 4. The
second curve E ′(Fq2) is defined over an extension of Fq to Fq2 with equation y2 =
x3 + 4(1 + i). This curve is much bigger (|E ′| ∼ q2) than the first one (|E| ∼ q)
because the curve equation has more solutions when the domain is extended to
complex numbers.

The presence of two curves is needed to have two distinct groups to define a
pairing. The simple curve E(Fq) has only a single large subgroup of order r, which
is G1. Therefore, the field over which E is defined is extended to find a curve
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E ′(Fqk) with more subgroups of order r, from which one is selected to be G2. The
amount k needed to extend the base field to find the second group is called the
embedding degree of the curve, which in BLS12-381 is k = 12.

Doing arithmetic operations in Fq12 is inefficient, but it is possible to transform
the curve E ′(Fq12) into a curve defined over a lower degree field using a twist.
BLS12-381 uses a “sextic twist”, which reduces the degree of the extension field by
a factor of six. This means that G2 can be defined over Fq2 instead of Fq12 .

4.2.4 Embedding degree

The embedding degree k is the smallest positive integer such that r divides (qk−1)
and it gives the smallest field extension Fqk that satisfies the following conditions:

• Fqk must contain more than one subgroup of order r, to construct G2.

• Fqk must contain all the rth roots of unity, to construct GT . Roots of unity
form a subgroup in Fq12 of order r, which is the group GT .

The embedding degree is a tradeoff between security and efficiency: a higher
embedding degree makes the discrete logarithm problem harder to solve in GT ,
but it increases the number of arithmetic operations to perform and so it decreases
efficiency. Currently, the embedding degrees that are being used are k = 12, k = 24,
k = 48 [52].

4.2.5 Security level

In elliptic curve cryptography, security refers to making the discrete logarithm
problem hard enough. For pairing-friendly curves, the DLP must be hard in all
three groups G1, G2, GT .

The security level is a measure of the strength achieved by a cryptographic
primitive, an elliptic curve in this case. It is expressed in bits and n-bit security
means that the attacker must perform 2n operations to be successful.

BLS12-381 was intended to offer a 128-bit security level but a report [53] showed
that the actual security level is between 117 and 120 bits. Nevertheless, the security
decrease is minimal and it does not raise concerns, thus the security level of the
curve is adequate.

4.3 BBS+ Signature Scheme

The BBS signature scheme is a digital signature scheme that provides short group
signatures. Group signatures [54] provide anonymity for signers in a group with
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many members. A member of the group can sign messages but the resulting sig-
nature cannot reveal information about the signer because it is verified with the
group’s public key.

Firstly, the BBS signature scheme was defined by Boneh, Boyen, and Shacham
in 2004 [55]. Then, it was modified to achieve a signature scheme with efficient
protocols, similar to the one developed by Camenisch and Lysyanskaya [56] but not
based on RSA [57]. It was described to build an anonymous authentication system
by Au, Susilo, and Mu in 2006 [58], and it was referred to as BBS+ signature since
it was a modification to the original scheme. Later, the new scheme was used in a
direct anonymous attestation system for trusted platform modules by Camenisch,
Drijvers, and Lehmann in 2016 [43]. The proof of knowledge of a BBS+ signature
has been modified by them in order to secure it in type-3 pairings and under the
JOC version of the q-SDH assumption. This allows proofs to be defined over G1

instead of GT , which means more efficiency.

The BBS+ signature scheme provides data integrity and verifiable authenticity.
It is employed in this work as a digital signature for digital credentials, such as
verifiable credentials, because it has unique features to increase the privacy level
of self-sovereign identity solutions. Since BBS+ allows signers to sign multiple
messages while producing a single signature, each attribute of a credential is handled
as a message to sign. In particular, the three key properties of BBS+ signatures
are the following [59]:

• Selective disclosure. A signer can sign multiple messages and produce a
single constant-size signature. A prover that possesses the messages and the
signature can generate a proof whereby they can select which messages to
disclose, while no information about the undisclosed messages is revealed.
The proof maintains the integrity and authenticity of the disclosed messages
as they are signed by the signer.

• Unlinkable proofs. The proofs are zero-knowledge proofs of knowledge
of the signature. This means that a verifier that receives a proof cannot
determine which signature was used to generate the proof. Therefore, two
proofs generated from the same signature are unlinkable.

• Proof of possession. The proofs prove to a verifier that the prover was
in possession of a signature, together with the signed messages. The scheme
supports binding a presentation header to the generated proof, which may
be a cryptographic nonce, to provide freshness to the proof and avoid replay
attacks.

This scheme specifies that the signatures and the proofs are defined in G1, to
make the operations involved in both algorithms more efficient. On the other hand,
public keys are defined in G2.

Each signed message m1, which is an integer after being output from a crypto-
graphic hash function, is paired with a specific generator H1, which is an elliptic
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curve point in G1. In addition to message generators, the scheme uses two addi-
tional generators: Hs and Hd. The generator Hs signs the blinding value s of the
signature, while Hd signs the signature’s domain, which binds the signature (and/or
the generated proof) to a specific context and may protect additional information.

The BBS+ signature scheme is going through the process of standardization
and it has been divided into two parts: a core draft [59], which has been submitted
to IETF, and an extension draft [60], which is still in an early stage. The core
draft provides a specification for the following operations: key generation, sign,
signature verification, proof generation, and proof verification. Whilst the exten-
sion draft specifies other operations needed to perform blind signatures : Pedersen
commitment, zero-knowledge proof of knowledge of committed messages generation
together with its verification, blind sign, and unblind signature.

All the major algorithms will be described in the following sections as a mix of
the reference paper by Camenisch et al. [43] and the two drafts. The operations
are performed on elliptic curves, specifically over the BLS12-381 curve, so there
will be additions and multiplications. Even if not specified, membership checks
in verification algorithms must be done to ensure that a public key or points in
signatures or proofs are elements of a prime-order subgroup.

4.3.1 Core

Key generation

The private key or secret key (sk) is chosen randomly as a sample in the range
0 < sk < r, while the public key (pk) is calculated by multiplying P2, a public
generator point in G2, with the secret key. Lastly, the generators are taken as
random points in G1. Note that L is the number of messages to sign.

KeyGen ()

1 : sk←$Zr

2 : pk = W ← P2 · sk
3 : (Hs, Hd, H1, ...,HL)←$G1

4 : return sk, pk, (Hs, Hd, H1, ...,HL)

Sign

The sign operation computes a signature from a secret key over a vector of messages
and/or a header included in the domain value. Note that P1 is a public generator

point in G1 and the fraction
1

sk + e
is the modular inverse (sk + e)−1 mod r. This

fraction is the link to the q-SDH assumption explained above. Moreover, each input
of the cryptographic hash function hash is in bytes, while the output is an integer.
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Sign (sk, pk, (Hs, Hd, H1, ..., HL), (m1, ...,mL), header)

1 : domain← hash(pk‖L‖Hs‖Hd‖H1‖...‖HL‖header)
2 : e, s←$Zr

3 : B ← P1 +Hs · s+Hd · domain +

L∑
i=1

Hi · hash(mi)

4 : A← B · 1

sk + e

5 : return σ = (A, e, s)

Signature verification

The verify operation checks that a signature is valid against a public key. To
accomplish this, pairings e are used. Note that for a valid signature, the pairings
multiplication must be equal to 1, which is the identity in GT (Fq12).

V erify (pk, signature, (Hs, Hd, H1, ..., HL), (m1, ...,mL), header)

1 : (A, e, s) = signature

2 : W = pk

3 : domain← hash(pk‖L‖Hs‖Hd‖H1‖...‖HL‖header)

4 : B ← P1 +Hs · s+Hd · domain +
L∑
i=1

Hi · hash(mi)

5 : if e(A,W + P2 · e) · e(B,−P2) = 1 then

6 : return true

7 : else

8 : return false

9 : fi

Proof generation

The proof generation computes a zero-knowledge proof of knowledge of a signature
and the signed messages, with the possibility of selectively disclosing messages from
the set of signed messages. To specify the disclosed messages, their indexes from the
original set are supplied as a list (i1, ..., iR), where R means revealed. Whilst the list
of the undisclosed messages is referred to as (i1, ..., iU), where U means unrevealed.
In addition, a presentation header (ph) may be included to provide freshness to
the generated proof. This proof is also called signature proof of knowledge (SPK).
Note that an operation (−a) is a modular operation −a mod r. The value c is the
digest needed by the Fiat-Shamir transformation to make this proof non-interactive.
However, interaction is introduced if a presentation header is supplied.
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ProofGen (pk, signature, (Hs, Hd, H1, ..., HL),
(m1, ...,mL), header, (i1, ..., iR), ph)

1 : (i1, ..., iU ) = (1, ..., L)\(i1, ..., iR)

2 : (A, e, s) = signature

3 : domain← hash(pk‖L‖Hs‖Hd‖H1‖...‖HL‖header)
4 : r1, r2, ẽ, r̃2, r̃3, s̃←$Zr

5 : m̃j1, ..., m̃jU ←$Zr

6 : B ← P1 +Hs · s+Hd · domain +

L∑
i=1

Hi · hash(mi)

7 : r3 ← r−11 mod r

8 : A′ ← A · r1
9 : Ā← A′ · (−e) +B · r1

10 : D ← B · r1 +Hs · r2
11 : s′ ← r2 · r3 + s mod r

12 : C1 ← A′ · ẽ+Hs · r̃2

13 : C2 ← D · (−r̃3) +Hs · s̃+
U∑

j=1

Hj · hash(m̃j)

14 : c← hash(A′‖Ā‖D‖C1‖C2‖R‖i1‖...‖iR‖mi1‖...‖miR‖domain‖ph)

15 : ê = c · e+ ẽ mod r

16 : r̂2 = c · r2 + r̃2 mod r

17 : r̂3 = c · r3 + r̃3 mod r

18 : ŝ = c · s′ + s̃ mod r

19 : for j in (j1, ...jU)

20 : m̂j ← c · hash(mj) + m̃j mod r

21 : endfor

22 : return π = (A′, Ā,D, c, ê, r̂2, r̂3, ŝ, (m̂j1, ..., m̂jU ))

Proof verification

The proof verify operation checks whether a proof is valid against a public key used
to generate the original signature. Pairings e are employed here too. Note that the
if-clause A′ = 1 checks that the point A′ is not equal to the identity point in G1.
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ProofV erify (pk, proof, L, (Hs, Hd, H1, ..., HL), (m1, ...,mR),
header, (i1, ..., iR), ph)

1 : (A′, Ā,D, c, ê, r̂2, r̂3, ŝ, (m̂j1, ..., m̂jU )) = proof

2 : W = pk

3 : domain← hash(pk‖L‖Hs‖Hd‖H1‖...‖HL‖header)
4 : C1 ← (Ā−D) · c+A′ · ê+Hs · r̂2

5 : T ← P1 +Hd · domain +
R∑
i=1

Hi · hash(mi)

6 : C2 ← T · c−D · r̂3 +Hs · ŝ+

U∑
j=1

Hj · m̂j

7 : cv ← hash(A′‖Ā‖D‖C1‖C2‖R‖i1‖...‖iR‖mi1‖...‖miR‖domain‖ph)

8 : if c /= cv then

9 : return false

10 : fi

11 : if A′ = 1 then

12 : return false

13 : fi

14 : if e(A′,W ) · e(Ā,−P2) /= 1 then

15 : return false

16 : fi

17 : return true

4.3.2 Extension

Pedersen commitment

The commit operation performs a Pedersen commitment to blind messages that,
when signed, are unknown to the signer. The algorithm returns a Pedersen com-
mitment from a vector of messages and a generated blinding factor that will be
used to unblind the blind signature. This operation is also called Pre-BlindSign.

Commit ((Hs, Hd, H1, ..., HL), (m1, ...,mU), (i1, ..., iU))

1 : s′←$Zr

2 : commitment← Hs · s′ +
U∑
i=1

Hi · hash(mi)

3 : return s′, commitment
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Commitment proof generation

The commitment proof generation computes a zero-knowledge proof of knowledge of
committed messages. It may be included a nonce in the proof, which will provide
freshness to the generated proof while making it interactive. The commitment
proof is also called blind messages proof and is needed before performing a blind
signature.

CommitmentProofGen (commitment, s′,
(Hs, Hd, H1, ..., HL), (m1, ...,mU), (i1, ..., iU), nonce)

1 : s̃←$Zr

2 : for i in (1, ..., U)

3 : r̃i←$Zr

4 : endfor

5 : Ũ ← Hs · s̃+
U∑
i=1

Hi · r̃i

6 : c← hash(commitment‖Ũ‖nonce)
7 : ŝ← s̃+ c · s′ mod r
8 : for i in (1, ..., U)

9 : r̂i ← r̃i + c · hash(mi) mod r

10 : endfor

11 : return π = (c, ŝ, r̂)

Commitment proof verification

The commitment proof verify operation checks whether a proof of knowledge of
committed messages is valid.

CommitmentProofV erify (commitment, proof,
(Hs, Hd, H1, ..., HL), (i1, ..., iU), nonce)

1 : (c, ŝ, r̂) = proof

2 : Û ← commitment · (−c) +Hs · ŝ+
U∑
i=1

Hi · r̂i

3 : cv ← hash(commitment‖Û‖nonce)
4 : if c = cv then

5 : return true

6 : else

7 : return false

8 : fi
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Blind sign

The blind sign operation computes a blind signature from a secret key over a
commitment, known messages, and/or a header included in the domain value. The
signer should validate the commitment before signing it, verifying the received
proof of knowledge of committed messages. Note that K is the number of known
messages.

BlindSign (sk, pk, (Hs, Hd, H1, ..., HL),
(m1, ...,mK), (i1, ..., iU), header, commitment)

1 : L = K + U

2 : (i1, ..., iK) = (1, ..., L)\(i1, ..., iU )

3 : domain← hash(pk‖L‖Hs‖Hd‖H1‖...‖HL‖header)
4 : e, s′′←$Zr

5 : B ← commitment + P1 +Hs · s′′ +Hd · domain +

K∑
j=1

Hi · hash(mi)

6 : A← B · 1

sk + e

7 : return σ = (A, e, s′′)

Unblind signature

The unblind signature operation unblinds the received blind signature with the
blinding factor returned by the Pedersen commitment. The unblinded signature is
a valid signature over the messages that were committed and the known messages.
The resulting signature should be verified after the unblinding.

UnblindSignature (blind signature, s′)

1 : (A, e, s′′) = blind signature

2 : s← s′ + s′′ mod r

3 : return σ = (A, e, s)

4.3.3 Scheme design and implementation

The BBS+ signature scheme is implemented over the BLS12-381 pairing-friendly
elliptic curve. Since the scheme is based on pairings and elliptic curves, several
classes and methods have been developed to deal with fields, field extensions, elliptic
curve points, and pairings.

Elliptic curve points can be defined with different coordinate systems as follows
[51]:
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• Affine coordinates. The traditional point representation with two coordi-
nates, (x, y).

• Projective coordinates. They introduce a third coordinate to represent a

point as (x, y, z). A Projective point represents the Affine point (
x

z
,
y

z
).

• Jacobian coordinates. They introduce a third coordinate too. A Jacobian

point (x, y, z) represents the Affine point (
x

z2
,
y

z3
).

In this implementation work, in addition to Affine coordinates, Jacobian co-
ordinates are employed for optimization reasons, so that point addition does not
require slow modular inversion.

To perform pairings, Miller loop and final exponentiation algorithms have been
developed. The Miller loop [61] is a double-and-add algorithm employed to calculate
a pairing, while the final exponentiation is used to map the result of the Miller
loop to a unique element of Fq12 . To optimize the verification operations that
multiply two pairings, a multi-pairing algorithm can be developed. This algorithm
allows multiplying the two results of Miller loops and performing only one final
exponentiation. With such optimization that saves a final exponentiation call, a
performance improvement by a factor of 1.7 is obtained. Therefore, the verification
time is almost halved.

Where the cryptographic hash function hash is specified in the schema, it is im-
plemented with the primitive from the SHA-3 family SHAKE256 [62]. SHAKE256
is an extendable-output function (XOF), which is different from hash functions be-
cause it produces a variable-size output but it is possible to use it similarly in order
to output fixed-size values.

Generators points (Hs, Hd, H1, ..., HL) are chosen as random points in G1. To
implement this, hashing to the elliptic curve is required and it is done by using the
simplified SWU algorithm [63] applied to the BLS12-381 curve [64]. Hence, random
points are obtained by hashing (mapping) random bytes to points in G1 (or G2, in
other possible cases).

4.3.4 Results

The implementation of the BBS+ signature scheme was done in Python while
following the current standardization draft [59]. The performance values are means
of n = 30 iterations and are computed with one message (one credential attribute).
They are high because the programming language Python is slower than other
high-level languages since it manages the memory itself and the code is interpreted
run-time instead of being compiled. Moreover, no optimized libraries that wrap C
code to Python were employed. Note that the tests were run on a machine with a
Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz and a 8 GB RAM.
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Performance table

Operation Time (in milliseconds)

Key generation 151.81 ms
Sign 57.02 ms
Proof generation 353.62 ms
Proof verify 3478.74 ms

Table 4.1. Performance values of BBS+ scheme with BLS12-381 in Python.

Sizes table

Element Size (in bytes)

Private key 32 B
Public key 96 B
Elliptic curve point 48 B
Signature 112 B
Proof 304 B + 32 B/msg

Table 4.2. Size values of BBS+ scheme with BLS12-381.

4.4 Comparison with CL Signatures

Before BBS+ signatures, Camenisch-Lysyanskaya signatures [56] were the reference
digital signature for implementing a scheme with selective disclosure, blind signa-
tures, and zero-knowledge proofs, which are all useful features for signing digital
credentials. The CL signature scheme allows for the efficient implementation of two
protocols:

• A protocol for computing a digital signature in a two-party computation way,
which allows a signer to issue a signature without knowing all the messages
being signed.

• A protocol for proving knowledge of a digital signature in a zero-knowledge
way, which allows a signature holder to prove its possession of a signature
and signed messages, without revealing them.

Both protocols can be developed with BBS+ signatures, where the first one is
the blind signature operation and the second one is the zero-knowledge proof of
knowledge of a signature. Moreover, in the BBS+ scheme, there is no need to use
range proofs, which are required by the CL scheme.

The CL signature scheme is based on RSA, which is based on the prime factor-
ization problem. Given two prime numbers p, q and the resulting n = pq, the prime
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factorization problem is to find two numbers p′, q′ such that n = p′q′. Hence, RSA
signatures and CL signatures are based on the assumption for which it is difficult
to factorize n. Schemes based on this problem require very large prime numbers to
be secure. This leads to the following two issues:

• Largeness. Keys need to be large to be secure and signatures become big
too.

• Slowness. The key generation is slow because it is difficult to find large prime
numbers. Due to largeness, signing is slower than other signature schemes.

On the other hand, BBS+ keys, signatures, and proofs are smaller and the
BBS+ signature scheme is more performant than the CL signature scheme.

Here are two comparison tables1 between CL signatures and BBS+ signatures.
The performance values are means of n = 30 iterations and are computed with one
message (one credential attribute). The BBS+ size values from the resource are
different from the ones of the implementation related to this work. Anyway, they
are similar enough to get a valid comparison with CL signatures.

Performance table

CL signatures BBS+ signatures

Key generation 8800 ms 2.69 ms
Sign 93 ms 1.43 ms
Proof generation 13 ms 5.61 ms
Proof verify 11 ms 4.61 ms

Table 4.3. Performance comparison between CL and BBS+ schemes.

Sizes table

CL signatures BBS+ signatures

Private key 256 B 48 B
Public key 771 B + 257 B/msg 293 B + 97 B/msg
Signature 672 B 193 B
Proof 696 B + 74 B/msg 312 B + 104 B/msg

Table 4.4. Size comparison between CL and BBS+ schemes.

1From https://docs.google.com/presentation/d/1JRzlzS3Y3NTm_NPzxlnud7xIDmGL_

9aHHX55MMwvtlU.
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Chapter 5

Privacy-Preserving Credentials

5.1 Anonymous Credentials

Prior to the introduction of self-sovereign identity, verifiable credentials, and their
focus on privacy, a research topic that studies how to preserve or possibly enhance
privacy in digital credentials was already present in the literature. Users have many
relationships, which are made of interactions that generate data about users, with
different parties. In these relationships, the parties may be identified through two
extreme approaches. The first one requires users to show unique identifiers that
can authenticate them, while the second one lets users be anonymous and protect
their privacy.

A digital credentials solution where parties can authenticate themselves while
preserving privacy is possible [65]. This type of credentials is called anonymous
credentials or zero-knowledge credentials. In this work, these credentials are consid-
ered verifiable credentials, thus the ecosystem consists of the trust triangle: issuer,
holder, and verifier. The goal is to remove the ability to identify and track holders
(users) to even colluding issuers and verifiers. In addition, holders should be able
to control their identities and credentials.

5.1.1 Design goals and choices

An anonymous credential system should achieve the following features regarding
security, privacy, and usability [66]:

• Unforgeability. Holders cannot forge issuer-generated credentials.

• Unlinkability. One or more verifiers cannot link the activities of holders
across them.

• Minimal disclosure. Holders can selectively reveal only the necessary in-
formation to establish relationships with verifiers.
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• Predicates. Holders can prove they hold valid information on conditions
requested by verifiers, without revealing them. E.g., given a holder’s birthdate
in the credential, it is presented only the information that the holder’s age is
greater than 18.

• Private holder binding. Holders can be bound to their credentials without
creating a correlating factor that needs to be revealed upon presentations.

• Privacy against issuers. Issuers cannot learn whether holders have inter-
acted with verifiers, or with a certain verifier.

• Revocability. Issuers can revoke previously-issued credentials without in-
teractions with holders.

• Offline verification. Verifiers can verify whether a credential is authentic
and not-revoked (valid) without any cooperation.

• Efficiency. All the operations involved in the issuance, management, pre-
sentation, and verification of anonymous credentials must be efficient.

The implemented anonymous credential system obtains unforgeability because
BBS+ signatures and proofs are unforgeable according to security analysis.

Unlinkability is firstly achieved by blinding the issuer’s signature, which is ran-
domized when the signature proof of knowledge is generated by the holder. Hence,
the static and unique value of the digital signature inside the credential is avoided.
Secondly, along with minimal disclosure, the selective disclosure property of BBS+
signatures enables the non-disclosure of unnecessary or unique information that
may lead to correlation. Moreover, for each relationship, the holders use one or
more different keypairs (different secret keys and public keys associated with dif-
ferent DIDs).

Predicates proofs are not supported by the BBS+ signature scheme as it is
and are not included in the implementation. At the moment, their function may
be replaced by issuers adding an extra attribute in credentials, according to what
verifiers would like to check. E.g., issuers may add an attribute isOver18: {true,
false} together with an attribute birthdate, which may not be revealed. To
develop predicates, other zero-knowledge proofs algorithms may be employed, such
as zk-SNARKs or Bulletproofs.

Private holder binding is a fundamental feature for verifying the ownership of
credentials. It is achieved with the Linked Blinded Secret mechanism, which will be
explained in the next section. The mechanism adds some steps to the credentials
issuance protocol and it is omitted in this section for simplicity reasons.

In this construction, issuers do not learn anything about holders’ interactions
if the information being shared with verifiers, with which they may collude, is as
generic as possible.

The revocation of credentials by issuers, as well as the verification of whether
credentials are authentic and valid by verifiers, can be done without interactions.
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There are different approaches to privacy-preserving revocation that will be dis-
cussed in more detail in this chapter.

Regarding efficiency, the BBS+ signature scheme has short keys, signatures,
and proof, whilst the execution times are in the order of units of milliseconds, thus
are acceptable.

5.1.2 Protocols

The stages of the protocols of the anonymous credential system are described be-
low. The interaction between an issuer and a holder, which corresponds to the
credential issuance, is simplified because the private holder binding and the revo-
cation mechanisms are omitted for now. All the steps present in these protocols
may be automated.

Credential issuance

The credential issuance phase involves an issuer and a holder. It may start upon
a request from the holder or directly from the issuer. The holder identification
may be accomplished in a variety of ways: through the presentation of another
credential from a trusted issuer, after an action by the holder, in person in the case
of humans, or by a system administrator in the case of things. Then, the issuer
creates a credential with claims about the holder, signs the credential, and sends
it as a verifiable credential (VC) to the holder. The holder, once the credential is
received, verifies the signature on it and finally stores both of them.

Issuer-Holder interaction

Issuer Holder

(1) Issue VC

(2) Sign VC

(3) VC + Signature

(4) Verify Signature

(5) Store VC

Credential presentation

The credential presentation phase involves a holder and a verifier. When the holder
wants to access a certain resource offered by the verifier, it gets the authorization
to do it by presenting a credential issued by a trusted issuer. The holder starts
sending a request to the verifier, who responds with a cryptographic nonce. The
nonce is used by the holder to generate a signature proof of knowledge (SPK),
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which proves the knowledge of the issuer’s signature on the credential and the
signed attributes without revealing either of them. A truly anonymous credential
should not disclose any attributes but, in some cases, it is necessary to disclose a
small subset of them. Then, the holder sends the selectively disclosed credential
as a verifiable presentation (VP) and the proof to the verifier. The verifier verifies
the proof with the issuer’s public key and checks whether the credential is valid or
revoked before granting or denying access to the requested resource.

Holder-Verifier interaction

Holder Verifier

(6) Resource Request

(7) Generate Nonce

(8) Nonce

(9) Generate SPK

(10) VP + SPK

(11) Verify SPK

(12) Verify Validity

(13) Grant/Deny Access

5.1.3 Known weaknesses

In this anonymous credential system, there may be known weaknesses that can be
mitigated, depending on the use cases. Some of these weaknesses are inherent in
any system with such features [66].

• Malicious issuer. A malicious issuer may issue false credentials or revoke
a credential without justifications. A list of trusted issuers should be main-
tained.

• Malicious verifier. A malicious verifier may ask for many unnecessary
credential attributes. The final decision on whether or not to share some
attributes, after the requests of verifiers, should be up to the holders.

• Credentials sharing. A holder may give a personal credential to another
peer. In case a credential should not be sharable, the holder’s secret used
during the Linked Blinded Secret protocol to obtain the binding between a
holder and a credential may limit this weakness. It may limit even more if
the secret is stored inside a secure element, whence it could not be read to be
shared.
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• Issuer leakage. Anyone with access to an issuer’s database can learn in-
formation about holders and their credentials. This weakness may be pre-
vented by issuers storing as little information as possible and encrypting their
databases.

• Holder leakage. Anyone with access to a holder’s system, where the holder
may be a human, an organization, or a thing, can learn information about
the holder and its credentials. Encryption of credentials while at rest, as
well as while they are in transport, may mitigate this problem. Moreover,
cryptographic secret keys, which include also the secret of the Linked Blinded
Secret, may be compromised if they are not stored in a tamper-resistant secure
element.

• Bad randomness usage. The randomness used during the protocols may
be from untrusted sources and feasible to brute force. In this system, the
randomness must be infeasible to guess and generated from a secure and
trusted source, such that signatures and proofs are harder to forge or break.

• Issuer-Verifier collusion. When an issuer and a verifier collude with each
other, they may identify a holder if it shares with the verifier identifiable
information that is obviously known by the issuer.

• Verifier-Verifier collusion. When verifiers collude with each other, they
may correlate the activities and the relationships of a certain holder if it shares
with them a static attribute that can be traced.

• Linkable issuance. An issuer that issues few credentials may lead to holders’
linkability when colluding with a verifier. The issuers should be active and
issue many credentials with information as generic as possible.

5.2 Linked Blinded Secret

The Linked Blinded Secret (LBS), also called link secret [56], [67], enables more
trusted interactions with verifiable credentials because it gives verifiers the ability
to check that a credential was issued to the holder presenting it.

The Linked Blinded Secret is a large random number, a master secret, which is
then committed using a cryptographic commitment algorithm. The commitment
allows the holder to prove it knows the secret without revealing it. The commit-
ment is sent by the holder to the issuer that signs it together with the credential
attributes, while the secret is never shared. It is called this way because of its
features:

• Linked. The same master secret is inserted and signed in different creden-
tials for two purposes: to link the holder to its credentials and to link the
credentials to each other in case it is needed.
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• Blinded. The master secret is opaqued and randomized by a blinding com-
mitment algorithm at every credential issuance.

• Secret. The master secret is kept private and is never revealed by the
holder. Only commitments and proofs of knowledge of the committed se-
cret are shared.

As mentioned before, the Linked Blinded Secret has two purposes:

• Proof of holder binding. Since the holder is the only one who knows
the master secret, no one else is able to generate a proof to present the
credential. The secret is not shared, thus no linkable attributes such as DIDs
are forwarded: private holder-credential binding is achieved.

• Proof of credential linking. The master secret is the same across all
credentials owned by the same holder, which may combine more credentials
in a single presentation. Each credential contains a different Linked Blinded
Secret but the holder can prove that the secret behind those values is the
same, without revealing it. This shows that all the credentials presented are
linked to the same holder without producing a correlatable identifier.

The second purpose, proof of credential linking, is not supported by the system
implemented in this work. This decision was made since it was not a required
feature. Nevertheless, it may be added by implementing a proof of equality of
discrete logarithms. Which is, in other words, an algorithm that proves that the
secret behind different commitments is the same.

5.2.1 Protocol design and implementation

The private holder binding feature obtained with the Linked Blinded Secret adds
some steps to the basic version of the credential issuance protocol. Whilst the
credential presentation protocol remains the same for both the messages exchanged
and the operations to be performed. The only difference is that the secret must be
in the set of undisclosed messages when generating a signature proof of knowledge.

In this protocol, the holder has a master secret that must not be revealed.
The holder computes a Pedersen commitment to the secret and then sends the
commitment to the issuer. The issuer wants to verify whether the holder knows the
secret behind the commitment, thus it generates and sends a nonce to the holder.
The holder computes and sends a zero-knowledge proof of knowledge (ZKPoK) of
committed messages with the received nonce, where the message is the secret. The
issuer verifies the proof and, if it is successful, issues the verifiable credential (VC)
with a blind signature. The issuer blind signs the credential because it knows all the
attributes except the commitment, which is a “blind attribute”. When the holder
receives the verifiable credential, it unblinds the blind signature in order to obtain
a valid signature over all the attributes plus the secret behind the commitment. In

62



5.3 – Revocation

fact, to generate a signature proof of knowledge, the secret must be known, not
the commitment. Finally, the holder verifies the unblinded signature and stores the
verifiable credential.

Issuer-Holder interaction

Issuer Holder

(1) Commit Secret

(2) Commitment

(3) Generate Nonce

(4) Nonce

(5) Generate ZKPoK

(6) ZKPoK

(7) Verify ZKPoK

(8) Issue VC

(9) Blind Sign VC

(10) VC + Signature

(11) Unblind Signature

(12) Verify Signature

(13) Store VC

Due to this protocol, only the holder can generate the signature proof of knowl-
edge to present the credential because it is the only one who knows the secret, which
has been blinded and linked. The issuer knows the random commitment, while the
verifier knows nothing. Moreover, only the holder knows the valid signature over
the credential attributes and the secret because the issuer knows the blind signature
(never reused), while the verifier knows the random signature proof. In this way,
private holder binding and unlinkability are achieved.

5.3 Revocation

Anonymous credential systems bring authentication to access digital resources or
services while preserving privacy. Issuers provide holders with credentials that
certify their attributes and permissions. When using credentials to access a resource
or a service, it is necessary to ensure their validity, in addition to checking the
information they contain and their authenticity.

The revocation of a credential must be supported for many reasons [68]: the
holder may have lost its permissions, the secrets underlying the credential (secret
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key and master secret) may have been compromised, or the claims may have become
outdated. Though, the privacy requirement makes the development of a revocation
mechanism more difficult.

In order to design a revocation mechanism, the number of total users, the fre-
quency of credential usage, and the revocation speed are parameters that must be
taken into account.

5.3.1 Accumulator

In non-anonymous credential systems, where privacy is not a concern, a possible
solution to revocation is a revocation list. It is a list of all the serial numbers
of revoked credentials, similar to a certificate revocation list (CRL) [69], which
can be queried both online and offline. This solution cannot work for anonymous
credentials, because revealing a unique serial number would lead to linkability. The
general idea may still be applied if holders prove that the credential’s serial number
is among the list of valid numbers, without revealing it.

Dynamic accumulators [70] accumulate all the valid serial numbers into a single
value that is published by issuers. Moreover, they provide an algorithm that enables
holders to prove that the serial numbers of their credentials are contained in the
accumulated value. Whenever a credential is revoked, the accumulator value is
updated by removing the credential’s serial number and then the new value is
published.

Accumulator-based schemes require that holders maintain the accumulator value
updated to be able to generate the validity proofs. In addition to proving the pos-
session of the presented credential, holders have to prove also its validity by referring
to the accumulator.

5.3.2 Signature update

A different approach is to limit credentials lifetime by specifying a validity time
frame as a date and periodically re-issue non-revoked and non-expired credentials
[68]. The credentials are valid only for a specific period, called epoch, which may
be days, hours, or even minutes, depending on the requirements.

Issuers and holders run the credential issuance protocol only once and then the
issuer may update some credential attributes, including the validity time frame, and
publish them. Holders can retrieve the new values and the new BBS+ signature,
which only changed for the value A from the triplet (A, e, s). Therefore, holders
recompute their credentials to make them valid again. Verifiers do not need to
check any external revocation list, thus the presentation of credentials is efficient.

This solution introduces an additional burden on the issuers’ infrastructure in
terms of bandwidth, computational power, and availability. Though, the required
work for issuers is comparable to other solutions because issuers may pre-compute
the update offline and then periodically publish the new values.
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Very short epochs, e.g. one hour, demand a lot of activity from the issuers
because they have to provide updates for all non-revoked credentials. A fine gran-
ularity should be preferred to have more flexibility and speed of action. To handle
it, holders could request updates from issuers only when needed, instead of issuers
publishing updates.

The update signature algorithm implemented with the BBS+ signature scheme
is performed by issuers that know their secret key, the signature to be updated, the
generators, the old attribute to be replaced and its index within the array. Then,
the new value A of the signature (A, e, s) is computed by removing the old attribute
and adding the new one. Note that, in order to know where to put the valid time
frame attribute, a credential schema must be agreed upon between issuers and
verifiers. Eventually, the schema may be published on a verifiable data registry.

UpdateSignature (sk, signature, (H1, ..., HL),mold,mnew, index)

1 : (A, e, s) = signature

2 : B ← A · (sk + e mod r)

3 : B ← B − (Hindex · hash(mold)) + (Hindex · hash(mnew))

4 : A← B · 1

sk + e

5 : return A

5.4 Use cases

There are several use cases for anonymous credentials. They have the same applica-
tion scenarios as verifiable credentials, but with increased emphasis and additional
focus on privacy. They are useful in digital contexts and relationships, where it
is possible to automate some steps and improve usability, security, and privacy of
services that require credentials. These credentials, as well as self-sovereign identity
in general, can be applied to both human-related and thing-related systems.

The following is a list of different use cases for anonymous verifiable credentials
in human-related scenarios:

• Identity card. Credentials can be used to verify the holders’ identity by
revealing only the information needed by verifiers. It may be enough to know
that the credential was issued by a certain country.
E.g. An individual wants to access a European-only online service. They can
authenticate themselves by showing that their ID card is issued by a certain
country, which is part of the European Union.

• Employment certificate. Credentials can be used to verify current and
past employment, where the holders are the employees and the issuers are
the employers.
E.g. An individual wants to apply for a new job. They prove the skills they
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acquired during their past jobs, without revealing their salary to prospective
employers.

• Educational certificate. Credentials can be used to certify attending a
course, passing an exam, or acquiring a degree.
E.g. An individual wants to show that they have a master’s degree in a certain
subject without revealing their name and their grade.

• Sign-up and Login. Credentials can be used to quickly sign up for services.
Then, service providers may issue credentials to users to enable them to a
quick and password-less login.

While the following list contains use cases related to things and machines:

• TPM attestation. Anonymous credentials with BBS+ signatures [43] can
be used during the direct anonymous attestation (DAA) protocol [71]. This
protocol performs remote authentication of the trusted platform module (TPM)
[72], which is a hardware module that securely creates and stores crypto-
graphic keys and confirms that the operating system and firmware are what
they are supposed to be.

• Security token. Anonymous verifiable credentials can be used as security
tokens such as JWT-based [73] access tokens used in the OAuth 2.0 protocol
[74], which is an authorization framework that enables a third-party applica-
tion to obtain access to an HTTP service. They would provide unlinkability
as well as replay protection.

• IoT identity. Credentials can be used to secure Internet of things (IoT)
devices, such as automobiles, thermostats, sensors, medical devices, and door
locks. They may be exchanged in several IoT scenarios: machine-to-machine
communication, machine-to-person communication, and digital twin. Self-
sovereign identity would be useful for identifying and authorizing devices,
managing device updates, maintaining secure communications, and ensuring
data privacy and integrity.

5.5 Future work

The work done on the project associated with this document resulted in the imple-
mentation of an anonymous credential system with holder binding and revocation.

The next steps to improve the work may introduce predicates proofs employ-
ing zk-SNARKs or Bulletproofs and proofs of credential linking using the Linked
Blinded Secret. In addition, a second revocation mechanism with accumulators
would be useful to have more flexibility depending on system requirements. Even-
tually, the code could be optimized by developing it in another programming lan-
guage and then integrated into a platform or application to provide a full-stack
self-sovereign identity with anonymous verifiable credentials.
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Conclusions

The growing concern about privacy and centralization in a cyber-world has led to
the creation of self-sovereign identity, a decentralized user-centric digital identity
solution. However, self-sovereign identity alone is only a paradigm, which must be
supported by data formats, cryptographic algorithms, protocols, and standardiza-
tions.

Verifiable credentials play an important role. They are a mechanism for rep-
resenting digital credentials in a secure, privacy-respecting, and machine-verifiable
way. To make them truly privacy-friendly, zero-knowledge proofs need to be intro-
duced.

The required proofs are implemented using the BBS+ signature scheme, which
supports properties such as selective disclosure and unlinkable zero-knowledge proofs
of knowledge. BBS+ signatures are crucial to the development of the work carried
out in this document. They are the basis of the developed anonymous creden-
tial system that enables parties to have more trusted digital interactions with each
other. Trust can be established while preserving privacy through data minimization
and unlinkability. In addition to these features, the developed anonymous creden-
tial system has a focus on security: signatures on credentials cannot be forged,
credentials can be revoked by issuers, and credentials are bound only to their ac-
tual holders. Particular effort was put into this last property, the holder binding,
which requires the use of several cryptographic algorithms included in the BBS+
signature scheme and its extension.

The goal of this work was to create a system for issuing, presenting, and veri-
fying credentials that would preserve the privacy of their holders. The developed
anonymous credential system achieves this goal if it is used by the parties involved
with caveats. The problem is that it could lead to excessive anonymity, even where
there should not be as it might be useful to track malicious behaviors. However,
even though this system was developed following the privacy by design principle,
it is a flexible tool that can be shaped according to different requirements.
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Installation and execution

Install the code

The code developed during this work is written in Python 3.10, thus the user needs
to install it on its machine. Once the user has the directory with the code, some
steps must be done to install it with its dependencies and run it.

Firstly, the user has to open a terminal and has to change its working directory
to the one with the code, by entering:

cd BBSPlus

Then, the user must install the external dependencies that are not included in
the Python Standard Library. They can do it by using pip, the package installer
for Python.

pip install pycryptodome

pip install base58

Alternatively, instead of installing the external libraries one by one, the user
can type the following command to automatically install all the requirements:

pip install -r requirements.txt

Use the code

To integrate BBS+ signatures developed in this code into a novel or existing project
it is necessary to have the bbs folder.

Then, it is possible to import the class with the BBS+ signatures-related func-
tions, which is in the file bbs.py, by typing:

from bbs.bbs import BBS

After that, the user can call the functions they want to use.
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bbs.py

It contains operations from the BBS+ signature scheme and its extension.

class BBS:
This class defines the BBS+ signature scheme and contains the functions it de-
scribes.

def keyGen(self, ikm):
Generate a secret key (private key).
Input : ikm, input key material, a stream of bytes
Output : Private key

def skToPk(self, sk):
Generate a public key from a secret key and a generator in G2.
Input : sk, secret key (private key)
Output : Stream of bytes

def keyValidate(self, PK):
Check if a public key is valid.
Input : PK, public key, a stream of bytes
Output : Boolean

def createGenerators(self, dst, seed, length):
Create a set of generators in G1.
Input :

• dst, domain separation tag, a stream of bytes
• seed, a stream of bytes
• length, an integer

Output : List of jacobian points

def sign(self, sk, PK, H s, H d, messages, H, header):
Compute a signature from a secret key and an array of messages plus an optional
header.
Input :

• sk, secret key (private key)
• PK, public key, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• messages, a list of bytes
• H, a list of jacobian points
• header, a stream of bytes

Output : signature, a stream of bytes

def verify(self, PK, H s, H d, signature, messages, H, header):
Check that a signature is valid.
Input :

• PK, public key, a stream of bytes
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• H s, a jacobian point
• H d, a jacobian point
• signature, a stream of bytes
• messages, a list of bytes
• H, a list of jacobian points
• header, a stream of bytes

Output : Boolean

def spkGen(self, PK, H s, H d, signature, messages, H, revealed, header,

ph):
Compute a zero-knowledge proof of knowledge of a signature, while optionally se-
lectively disclosing messages from the signed set.
Input :

• PK, public key, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• signature, a stream of bytes
• messages, a list of bytes
• H, a list of jacobian points
• revealed, a list of integers
• header, a stream of bytes
• ph, presentation header, a stream of bytes

Output : spk, a stream of bytes

def spkVerify(self, PK, H s, H d, spk, messages, H, revealed, header,

ph):
Check that a zero-knowledge proof of knowledge of a signature is valid. Only the
disclosed messages are in the input.
Input :

• PK, public key, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• spk, a stream of bytes
• messages, a list of bytes
• H, a list of jacobian points
• revealed, a list of integers
• header, a stream of bytes
• ph, presentation header, a stream of bytes

Output : Boolean

def preBlindSign(self, H s, messages, H, unrevealed):
Blind messages with Pedersen commitment for blind signatures.
Input :

• H s, a jacobian point
• messages, a list of bytes
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• H, a list of jacobian points
• unrevealed, a list of integers

Output : Tuple

• s prime, an integer
• commitment, a jacobian point

def blindMessagesProofGen(self, H s, commitment, s prime, messages, H,

unrevealed, nonce):
Compute a zero-knowledge proof of committed messages to be verified before com-
puting blind signatures.
Input :

• H s, a jacobian point
• commitment, a jacobian point
• s prime, an integer
• messages, a list of bytes
• H, a list of jacobian points
• unrevealed, a list of integers
• nonce, a stream of bytes

Output : nizk, a stream of bytes

def blindMessagesProofVerify(self, H s, commitment, H, unrevealed, nizk,

nonce):
Check that a zero-knowledge proof of committed messages is valid.
Input :

• H s, a jacobian point
• commitment, a jacobian point
• H, a list of jacobian points
• unrevealed, a list of integers
• nizk, a stream of bytes
• nonce, a stream of bytes

Output : Boolean

def blindSign(self, sk, PK, H s, H d, commitment, messages, H, unrevealed):
Compute a blind signature from a secret key, a commitment, and an array of known
messages.
Input :

• sk, secret key (private key)
• PK, public key, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• commitment, a jacobian point
• messages, a list of bytes
• H, a list of jacobian points
• unrevealed, a list of integers

72



User’s manual

Output : blind signature, a stream of bytes

def unblindSign(self, blind signature, s prime):
Unblind a blind signature to make it valid.
Input :

• blind signature, a stream of bytes
• s prime, an integer

Output : signature, a stream of bytes

def octetsToSignature(self, signature octets):
Decode an octet string (bytes) into a signature.
Input : signature octets, a stream of bytes
Output : Tuple

• A, a jacobian point
• e, an integer
• s, an integer

def signatureToOctets(self, A, e, s):
Encode a signature into an octet string (bytes).
Input :

• A, a jacobian point
• e, an integer
• s, an integer

Output : Stream of bytes

def octetsToSpk(self, proof octets):
Decode an octet string (bytes) into an SPK.
Input : proof octets, a stream of bytes
Output : Tuple

• A prime, a jacobian point
• A bar, a jacobian point
• D, a jacobian point
• c, an integer
• e cap, an integer
• r2 cap, an integer
• r3 cap, an integer
• s cap, an integer
• m cap, a list of integers

def spkToOctets(self, proof):
Encode an SPK into an octet string (bytes).
Input : proof, a tuple

• A prime, a jacobian point
• A bar, a jacobian point
• D, a jacobian point
• c, an integer
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• e cap, an integer
• r2 cap, an integer
• r3 cap, an integer
• s cap, an integer
• m cap, a list of integers

Output : Stream of bytes

def octetsToNizk(self, proof octets):
Decode an octet string (bytes) into a NIZK proof.
Input : proof octets, a stream of bytes
Output : Tuple

• c, an integer
• s cap, an integer
• r cap, a list of integers

def nizkToOctets(self, nizk):
Encode a NIZK proof into an octet string (bytes).
Input : nizk, a tuple

• c, an integer
• s cap, an integer
• r cap, a list of integers

Output : Stream of bytes

def updateSignature(self, sk, signature, old message, new message, H,

index):
Update a signature with a new message. This function is not present in the IETF
standardization.
Input :

• sk, secret key (private key)
• signature, a tuple (A, e, s)
• old message, a stream of bytes
• new message, a stream of bytes
• H, a list of jacobian points
• index, an integer

Output : Stream of bytes (A)

Run the tests

There are some tests written in Python to verify and collect the results obtained
in terms of performance and size. In addition, there is a script to test the specific
features offered by BBS+ signatures and the developed module.

To retrieve performance data about the operations that BBS+ signatures offer,
the user must execute the following command:

python test performance.py
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Note that the data produced by this test are used to populate the table 4.1.

To retrieve data regarding the sizes of the elements produced by BBS+ signa-
tures, such as keys, elliptic curve points, signatures, and proofs, the users must
execute the following command:

python test sizes.py

Note that the data produced by this test are used to populate the table 4.2.

The main.py file contains functions to try and test all the BBS+ signature
scheme operations developed for the anonymous credential system. To inspect the
data produced, a log file main.log is created. Type the following command to run
the script:

python main.py -<option>

Where <option> is a number from the following options list:

1. Signature

2. Proof of knowledge of a signature

3. Proof of knowledge of committed messages

4. Blind signature

5. Linked Blinded Secret

6. Update signature

Run the demo

A demonstration of the usage of the anonymous credential system has been devel-
oped. It consists of three scripts that perform the three roles in the ecosystem,
the verifiable credentials trust triangle: issuer, holder, and verifier. To inspect the
data produced, a log file for each script (issuer.log, holder.log, verifier.log)
is created. In Microsoft Windows, it is possible to run the demo by executing the
following command:

python demo.py

Alternatively, the user can start the three scripts from three different terminals
(or tabs), in this order:

python issuer.py

python verifier.py

python holder.py
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Demo explanation

The issuer is initialized by generating its secret key and public key, together with
the generators (Hs, Hd, H1, ..., HL), where L is the number of attributes of the
credentials it issues. Then, it publishes its public key and generators on a verifiable
data registry. Moreover, the issuer maintains a list of issued credentials, which is
regularly updated, and a list of credential statuses, to know whether a credential is
valid or not. The policies about expiration and revocation of credentials are that
the expiration date is after one year and the validity time frame is one minute, for
demonstration purposes.

The verifier is initialized by retrieving the issuer’s public key and generators
from the verifiable data registry.

The holder is initialized by generating the master secret for the Linked Blinded
Secret and retrieving the issuer’s public key and generators.

The demo consists of three different situations between the issuer, the holder,
and the verifier:

1. The holder requests a credential from the issuer by sending a commitment and
the related zero-knowledge proof. The issuer issues the credential and blind
signs it. The holder uses the credential by revealing some attributes with the
signature proof of knowledge to access a resource offered by the verifier. If
the credential is authentic and valid, the verifier grants access to the holder.

2. After a while, the holder re-uses the same credential to access a resource of
the verifier. In this case, the credential is revoked because the validity time
frame is elapsed, thus the verifier denies access to the holder.

3. The holder requests the issuer to update its signature over the credential with
a new validity time frame. After a check, the issuer updates the signature and
the credential. Then, the holder presents again the credential to the verifier
and receives the authorization to access the requested resource.
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Modules

Multiple modules are used to provide functionalities and make the code work. Some
of them have been developed, while others are included in the Python Standard
Library or installed externally.

Python libraries

Among the modules in the Python Standard Library (version 3.10.6), the following
are used:

• secrets. It generates cryptographically strong random numbers. It is used
to generate randomness in BBS+ scheme functions and utility functions.

• copy. It is used to copy objects without creating a binding between the source
and the destination.

• json. It exposes functions to handle JSON objects used in the demo.

• time. It provides time-related functions. It is used in the demo to make the
holder sleep for demonstration purposes.

• datetime. It supplies functions to manipulate dates and times. It is used in
the demo to define issuance dates, expiration dates, and validity time frames.

• logging. It implements a flexible event-logging system. It is used to build
the logger in logger.py, which logs the main operations performed and their
results during the demo.

• threading. It constructs a high-level threading interface. It is used in the
demo on the issuer’s side to deploy two different servers, one for credentials
issuance and one for signatures update.
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• socket. It provides a socket interface to make the issuer, the holder, and the
verifier communicate in the demo.

• typing. It supports the definition of functions’ input and output types.

• os, sys. They offer operating system-related and interpreter-related utility
functions.

External libraries

External dependencies are as few as possible but the following two were necessary
to achieve functionalities absent in the Python Standard Library:

• pycryptodome. It is a package of low-level cryptographic primitives. It is
used to convert long integers to bytes and for SHAKE256.

• base58. It is used to encode bytes to strings and decode strings to bytes.
Base58 is similar to base64 but it avoids both non-alphanumeric characters
and letters which might look ambiguous when printed.

BBS

In the bbs folder there are all the modules needed to implement the BBS+ signature
scheme based on the BLS12-381 elliptic curve. The bbs.py module, which contains
operations from the BBS+ signature scheme and its extension, has already been
explained in the user’s manual.

Note that the implementations of the cryptographic libraries ec.py, fields.py,
pairing.py, key.py, and hashes.py are taken and modified from Chia Network1.
Whilst the implementation of the optimized simplified SWU map to BLS12-381 G1

opt swu g1.py is taken from Algorand2.

bls12381.py

It defines the class that implements the BLS12-381 elliptic curve.

class BLS12 381:
This class defines BLS12-381, a pairing-friendly elliptic curve. It contains its pa-
rameters, which are returned by two functions.

def parameters(self):
Return the parameters for the normal elliptic curve (for points in G1).

1Chia Network repository https://github.com/Chia-Network/bls-signatures.
2Algorand repository https://github.com/algorand/bls_sigs_ref.
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Input : None
Output : Object with the normal elliptic curve values

def parameters twist(self):
Return the parameters for the sextic twist elliptic curve (for points in G2).
Input : None
Output : Object with the sextic twist elliptic curve values

ec.py

It defines classes and methods for elliptic curve points, arithmetics, and twists.

class AffinePoint:
This class defines an affine point. It contains several functions, including the ones to
perform arithmetic operations (add, subtract, multiply, negate, equal), conversions,
copies, and checks.

def init (self, x, y, infinity, ec):
Input :

• x, a field element (x coordinate)
• y, a field element (y coordinate)
• infinity, a boolean to specify whether the point is at infinity
• ec, an elliptic curve

Output : Affine point object

def is on curve(self):
Check if the point is on the curve, so that y2 = x3 + ax+ b.
Input : None
Output : Boolean

def to jacobian(self):
Convert the affine point to a jacobian point.
Input : None
Output : Jacobian point

class JacobianPoint:
This class defines a jacobian point. It contains several functions, including the
ones to perform arithmetic operations (add, subtract, multiply, negate, equal),
conversions, copies, and checks.

def init (self, x, y, z, infinity, ec):
Input :

• x, a field element (x coordinate)
• y, a field element (y coordinate)
• z, a field element (z coordinate)
• infinity, a boolean to specify whether the point is at infinity
• ec, an elliptic curve
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Output : Jacobian point object

def is on curve(self):
Check if the point is on the curve, so that y2 = x3 + ax+ b.
Input : None
Output : Boolean

def subgroup check g1(self):
Check if the point is on the G1 subgroup.
Input : None
Output : Boolean

def subgroup check g2(self):
Check if the point is on the G2 subgroup.
Input : None
Output : Boolean

def to affine(self):
Convert the jacobian point to an affine point.
Input : None
Output : Affine point

Then, there are generic functions called by internal functions of the two classes.

def sign Fq(element, ec):
Check the sign of a field (Fq) element.
Input :

• element, a field element
• ec, an elliptic curve

Output : Boolean

def sign Fq2(element, ec):
Check the sign of a field (Fq2) element.
Input :

• element, a field element
• ec, an elliptic curve

Output : Boolean

def point to bytes(point j, ec, FE):
Convert a point to bytes.
Input :

• point j, a jacobian point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Bytes

def bytes to point(buffer, ec, FE):
Convert bytes to a point.
Input :
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• buffer, a stream of bytes
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Jacobian point

def y for x(x, ec, FE):
Solve y =

√
x3 + ax+ b.

Input :

• x, a field element (x coordinate)
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Bytes

def double point(p1, ec, FE):
Perform an affine point doubling.
Input :

• p1, an affine point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Affine point

def add points(p1, p2, ec, FE):
Perform an addition between two affine points.
Input :

• p1, an affine point
• p2, an affine point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Affine point

def double point jacobian(p1, ec, FE):
Perform a jacobian point doubling.
Input :

• p1, a jacobian point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Jacobian point

def add points jacobian(p1, p2, ec, FE):
Perform an addition between two jacobian points.
Input :

• p1, a jacobian point
• p2, a jacobian point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)
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Output : Jacobian point

def scalar mult(c, p1, ec, FE):
Perform a scalar multiplication between an integer and an affine point.
Input :

• c, an integer
• p1, an affine point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Affine point

def scalar mult jacobian(c, p1, ec, FE):
Perform a scalar multiplication between an integer and a jacobian point.
Input :

• c, an integer
• p1, a jacobian point
• ec, an elliptic curve
• FE, a field type (Fq or Fq2)

Output : Jacobian point

def G1Generator(ec):
Return the generator point in G1.
Input : ec, an elliptic curve
Output : Jacobian point

def G2Generator(ec):
Return the generator point in G2.
Input : ec, an elliptic curve
Output : Jacobian point

def G1Infinity(ec):
Return the point at infinity in G1.
Input : ec, an elliptic curve
Output : Jacobian point

def G2Infinity(ec):
Return the point at infinity in G2.
Input : ec, an elliptic curve
Output : Jacobian point

def untwist(point, ec):
Convert a twisted point (in Fq2) to an untwisted point (in Fq12).
Input :

• point, an affine point
• ec, an elliptic curve

Output : Affine point

def twist(point, ec):
Convert an untwisted point (in Fq12) to a twisted point (in Fq2).
Input :
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• point, an affine point
• ec, an elliptic curve

Output : Affine point

def eval iso(P, map coeffs, ec):
Evaluate the isogeny over jacobian coordinates for hashing to the BLS12-381 elliptic
curve.
Input :

• P, a jacobian point
• map coeffs, an isogeny map
• ec, an elliptic curve

Output : Jacobian point

def mx chain(P):
Perform an addition chain for multiplication.
Input : P, a jacobian point
Output : Jacobian point

def mx chain(P):
Perform a fast cofactor clearing.
Input : P, a jacobian point
Output : Jacobian point

fields.py

It defines classes and methods to work with fields and field extensions.

class Fq:
This class defines an element of a finite field modulo a prime q. It contains sev-
eral functions, including the ones to perform arithmetic operations (add, subtract,
multiply, power, negate), comparisons, conversions, and copies.

def init (self, Q, value):
Input :

• Q, an integer
• value, an integer

Output : Field element object

class FieldExtBase:
This class defines an element of an extension of a field. It contains several functions,
including the ones to perform arithmetic operations (add, subtract, multiply, power,
negate), comparisons, conversions, and copies. Its main variables are:

• extension, an integer
• embedding, an integer
• basefield, a field
• Q, an integer
• root, a field element of the basefield
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class Fq2:
This class defines an element of the extension field Fq2 . It is a subclass that inherits
from the superclass FieldExtBase with:

• extension = 2

• embedding = 2

• basefield = Fq

class Fq6:
This class defines an element of the extension field Fq6 . It is a subclass that inherits
from the superclass FieldExtBase with:

• extension = 6

• embedding = 3

• basefield = Fq2

class Fq12:
This class defines an element of the extension field Fq12 . It is a subclass that inherits
from the superclass FieldExtBase with:

• extension = 12

• embedding = 2

• basefield = Fq6

Then, there are other variables useful to compute operations, such as:

• roots of unity, used for computing square roots in Fq2

• frob coeffs, Frobenius coefficients for raising elements to qi

hashes.py

It contains methods to perform hash functions.

class shake 256:
This class defines the SHAKE256 function.

def init (self, m):
Input : m, a message (string or bytes)
Output : Updated SHAKE256 context

def update(self, m):
Continue hashing of a message by consuming the next chunk of data.
Input : m, a message (string or bytes)
Output : Updated SHAKE256 context

def read(self, n):
Compute the next piece of XOF output.
Input : n, an integer (number of bytes to return)
Output : Stream of bytes

Then, there are other hashing-related functions.

def shake256 hash(m):
Perform a simple SHAKE256 hashing with a 64 bytes-long output.
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Input : m, a message (string or bytes)
Output : Stream of bytes

def hkdf extract(salt, ikm):
Perform the HKDF extraction phase.
Input :

• salt, a stream of bytes
• ikm, input keying material, a stream of bytes

Output : prk, pseudorandom key, a stream of bytes

def hkdf expand(L, prk, info):
Perform the HKDF expansion phase.
Input :

• L, length, an integer
• prk, pseudorandom key, a stream of bytes
• info, additional information, a stream of bytes

Output : okm, output key material, a stream of bytes

def I2OSP(val, length):
Convert a non-negative integer to an octet string (stream of bytes).
Input :

• val, an integer
• length, an integer

Output : Stream of bytes

def OS2IP(octets):
Convert an octet string (stream of bytes) to a non-negative integer.
Input : octets, a stream of bytes
Output : Integer

def expand message xmd(msg, DST, len in bytes, hash fn):
Produce a uniformly random byte string using a cryptographic hash function.
Input :

• msg, a stream of bytes
• DST, domain separation tag, a stream of bytes
• len in bytes, an integer
• hash fn, a cryptographic hash function

Output : Stream of bytes

def expand message xof(msg, DST, len in bytes, hash fn):
Produce a uniformly random byte string using an extensible-output function (XOF).
Input :

• msg, a stream of bytes
• DST, domain separation tag, a stream of bytes
• len in bytes, an integer
• hash fn, an extensible-output function
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Output : Stream of bytes

def hash to field(msg, count, dst, modulus, degree, blen, expand fn, hash fn):
Compute the hash of a message into one or more elements of a field.
Input :

• msg, a stream of bytes
• count, an integer
• dst, domain separation tag, a stream of bytes
• modulus, an integer (q)
• degree, an integer (1 for G1, 2 for G2)
• blen, an integer
• expand fn, an expand message function
• hash fn, an extensible-output function

Output : Integer

def hash to scalar(msg, n):
Compute the hash of a message into scalars.
Input :

• msg, a stream of bytes
• n, number of scalars, an integer

Output : Array of integers

def map message to scalar as hash(msg, dst):
Compute the hash of a message into a scalar.
Input :

• msg, a stream of bytes
• dst, domain separation tag, a stream of bytes

Output : Integer

key.py

It handles private key operations.

class PrivateKey:
This class defines a private key, which is a random integer between 1 and the group
order r. It contains several functions, including the ones to perform comparisons,
conversions, and get public keys.

def init (self, value):
Input : value, an integer
Output : Private key object

opt swu g1.py

It implements the optimized simplified SWU map to BLS12-381 G1.
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def sgn0(x):
Return the sign of a field Fq element.
Input : x, a field element
Output : Integer (1 or -1)

def osswu help(t):
Perform the simplified SWU map by mapping a field Fq element to the curve .
Input : t, a field element
Output : Jacobian point

def iso11(P):
Compute a 11-isogeny map.
Input : P, a jacobian point
Output : Jacobian point

def opt swu map(t, t2):
Map from field Fq elements to point in G1 subgroup.
Input :

• t, a field element
• t2, a field element

Output : Jacobian point

def map2curve osswu(alpha, dst):
Map from bytes to point in G1 subgroup.
Input :

• alpha, a stream of bytes
• dst, domain separation tag, a stream of bytes

Output : Jacobian point

Then, there are other variables useful to compute operations, such as:

• sqrt mxi 1 cubed, distinguished non-square in Fq for SWU map
• EllP a, EllP b, 11-isogenous curve parameters
• xnum, xden, ynum, yden, 11-isogeny map coefficients

pairing.py

It contains the Miller loop and the final exponentiation functions, among others,
to work with pairings.

def int to bits(i):
Convert integers to bits.
Input : i, an integer
Output : List of integers

def double line eval(R, P, ec):
Evaluate an equation for a line tangent to R at the point P.
Input :
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• R, an affine point
• P, an affine point
• ec, an elliptic curve

Output : Field element

def add line eval(R, Q, P, ec):
Evaluate an equation for a line between R and Q at the point P.
Input :

• R, an affine point
• Q, an affine point
• P, an affine point
• ec, an elliptic curve

Output : Field element

def miller loop(T, P, Q, ec):
Perform a “double and add” algorithm for the ate pairing.
Input :

• T, an integer
• P, an affine point
• Q, an affine point
• ec, an elliptic curve

Output : Field element (Fq12)

def final exponentiation(element, ec):
Map the result of the Miller loop to a unique field Fq12 element.
Input :

• element, a field element (Fq12)
• ec, an elliptic curve

Output : Field element (Fq12)

def ate pairing(P, Q, ec):
Perform one ate pairing.
Input :

• P, a jacobian point
• Q, a jacobian point
• ec, an elliptic curve

Output : Field element (Fq12)

def ate pairing multi(Ps, Qs, ec):
Perform multiple ate pairings at once.
Input :

• Ps, a list of jacobian points
• Qs, a list of jacobian points
• ec, an elliptic curve

Output : Field element (Fq12)
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parameters.py

It contains the BBS+ signature scheme public parameters:

• ciphersuite id (csid) = "BBS BLS12381G1 XOF:SHAKE-256 SSWU RO "

• xof no of bytes = 64

• octet scalar length = 32

• octet point length = 48

• INITSALT = "BBS-SIG-KEYGEN-SALT-"

• hash to curve g1 dst = "BBS BLS12381G1 XOF:SHAKE-256 SSWU RO "

• hash to field dst = "BBS BLS12381FQ XOF:SHAKE-256 SSWU RO "

• message generator seed = csid + "MESSAGE GENERATOR SEED"

• blind value generator seed = csid +

"SIGNATURE BLINDING VALUE GENERATOR SEED"

• sig domain generator seed = csid + "SIGNATURE DST GENERATOR SEED"

util.py

It provides utility functions needed to use the BBS+ signature scheme.

def generateSecret():
Generate a random secret.
Input : None
Output : Stream of bytes

def generateNonce():
Generate a random nonce.
Input : None
Output : Stream of bytes

def get messages(messages, indices):
Return selected messages from an array.
Input :

• messages, a list of bytes
• indices, a list of integers

Output : List of bytes

def get messages(messages, indices):
Return selected messages from an array.
Input :

• messages, a list of bytes
• indices, a list of integers

Output : List of bytes

def get remaining indices(length, indices):
Return the remaining indices from the length of an array.
Input :
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• length, an integer
• indices, a list of integers

Output : List of integers

def flatten json(json data):
Flatten a JSON object.
Input : json data, a JSON object (dict)
Output : JSON object (dict)

def unflatten json(flat json):
Unflatten a flat JSON object.
Input : flat json, a JSON object (dict)
Output : JSON object (dict)

def attributes to indices(json data, attributes):
Return the indices of the attributes of a JSON object.
Input :

• json data, a JSON object (dict)
• attributes, a list of bytes

Output : List of integers

def get selected attributes(json data, indices):
Return the selected attributes from a JSON object.
Input :

• json data, a JSON object (dict)
• indices, a list of integers

Output : JSON object (dict)

def json to array(json data):
Convert and normalize a JSON object to an array of bytes.
Input : json data, a JSON object (dict)
Output : List of bytes

def b58 encode(data):
Encode bytes in a base58 string.
Input : data, a stream of bytes
Output : String

def b58 decode(data):
Decode a base58 string in bytes.
Input : data, a string
Output : Stream of bytes

Network

In the network folder there are the modules that allow communication between
parties via sockets and simulate storing and retrieving data on a verifiable data
registry, such as the IOTA Tangle.
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connect.py

It contains a function to connect via socket.

def connect(address, port, callback applogic):
Connect via socket to an address and a port.
Input :

• address, a string
• port, an integer
• callback applogic, a function

Output : None

netmessage.py

It defines classes and methods for communications over a network.

class NetMessage:
This class defines a message to be exchanged over a network. It contains several
functions to send and receive data, lines, and messages.

def init (self, channel, message type, message buffer size, fragment size,

socket buffer size):
Input :

• channel, a socket connection
• message type, a string
• message buffer size = 64 KB, an integer
• fragment size = 1 KB, an integer
• socket buffer size = 8 KB, an integer

Output : NetMessage object

def send data(self, data, debug log):
Send data via socket.
Input :

• data, a stream of bytes
• debug log, a boolean

Output : None

def recv data(self, data length, timeout sec, debug log):
Receive data of a given size via socket.
Input :

• data length, an integer
• timeout sec, a floating-point number
• debug log, a boolean

Output : Stream of bytes
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server.py

It contains a class to instantiate and run a server.

class Server:
This class defines a server with an address and a port. It contains a function to
start a socket for listening and accepting connections.

def init (self, address, port, logger):
Input :

• address, a string
• port, an integer
• logger, a logger object

Output : Server object

def run(self, callback applogic):
Start a socket for listening and accepting connections.
Input : callback applogic, a function
Output : None

tangle.py

It contains functions to simulate read and write operations on a verifiable data
registry, such as the IOTA Tangle.

def read I PK fromTangle():
Read the issuer’s public key from the Tangle.
Input : None
Output : Tuple

• W, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• H, a list of jacobian points

def write I PK onTangle(W, H s, H d, H):
Write the issuer’s public key on the Tangle.
Input :

• W, a stream of bytes
• H s, a jacobian point
• H d, a jacobian point
• H, a list of jacobian points

Output : None
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Demo

The demo is composed of three parties: issuer, holder, and verifier.

The elements they produce, such as signatures and proofs, are serialized and
deserialized following the BBS+ signature scheme IETF specification [59]. The el-
liptic curve points, such as public keys, generators, and commitments, are serialized
and deserialized following the pairing-friendly curves IETF specification [52].

Moreover, to perform multi-messages BBS+ operations over a credential, the
parties must canonicalize the JSON credential and its attributes must become an
array of messages. A proposal at the W3C Credentials Community Group [75]
specifies how to flatten a JSON by using the JSON Pointer Normalization [76].

In this way, the following JSON object:

{

"name": "John Doe",

"university": {

"name": "Politecnico di Torino",

"faculty": "Computer Engineering",

"role": "Student"

},

"courses": ["Cybersecurity", "Cryptography"]

}

Listing B.1. Example of a credential to be flattened

Becomes the following array:

[

"/name:John Doe",

"/university/name:Politecnico di Torino",

"/university/faculty:Computer Engineering",

"/university/role:Student",

"/courses/0:Cybersecurity",

"/courses/1:Cryptography"

]

Listing B.2. Example of a flattened credential

Customization

The data used during the demo can be customized by modifying the values in
the data.py file. It is possible to change the credential, its attributes, and which
attributes to disclose.

93



94



Bibliography

[1] P. Sneier, “On the Internet, nobody knows you’re a dog”, The New Yorker,
vol. 69, July 1993

[2] The Laws of Identity, https://www.identityblog.com/stories/2005/05/

13/TheLawsOfIdentity.pdf

[3] A. Preukschat and D. Reed, “Self-Sovereign Identity: Decentralized digital
identity and verifiable credentials”, Manning Publications Co., 2021, ISBN:
9781617296598

[4] Introduction to Trust Over IP (v2.0), https://trustoverip.org/

wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf

[5] World Economic Forum - A Blueprint for Digital Identity, https://www3.

weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf

[6] “Commission implementing regulation (EU) 2015/1502 of 8 September 2015
on setting out minimum technical specifications and procedures for assurance
levels for electronic identification means pursuant to Article 8(3) of Regulation
(EU) No 910/2014 of the European Parliament and of the Council on electronic
identification and trust services for electronic transactions in the internal mar-
ket”, Official Journal of the European Union, vol. L 235/7, September 2015,
pp. 4–14

[7] A Field Guide to Internet Trust, https://identitywoman.net/wp-content/
uploads/TrustModelFieldGuideFinal-1.pdf

[8] M. Sporny, D. Longley, M. Sabadello, D. Reed, O. Steele, and C. Allen, “De-
centralized Identifiers (DIDs) v1.0”, W3C Recommendation, July 2022

[9] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials Data Model
v1.1”, W3C Recommendation, March 2022

[10] Documents published at W3C, https://www.w3.org/standards/types
[11] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, “Uniform Re-

source Identifier (URI): Generic Syntax”, RFC-3986, January 2005, DOI
10.17487/RFC3986

[12] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format”,
RFC-8259, December 2017, DOI 10.17487/RFC8259

[13] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, P.-A. Champin, and N. Lid-
ström, “JSON-LD v1.1”, W3C Recommendation, July 2020

[14] D. Ferraiolo, J. Cugini, and R. Kuhn, “Role-Based Access Control (RBAC):
Features and Motivations”, 11th Annual Computer Security Applications
Conference, New Orleans, Louisiana, United States, December 11-15, 1995,
pp. 241–248

95

https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
https://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
https://identitywoman.net/wp-content/uploads/TrustModelFieldGuideFinal-1.pdf
https://identitywoman.net/wp-content/uploads/TrustModelFieldGuideFinal-1.pdf
https://www.w3.org/standards/types
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC8259


Bibliography

[15] C. T. Hu, D. Ferraiolo, D. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and
K. Scarfone, “Guide to Attribute Based Access Control (ABAC) Defini-
tion and Considerations”, Special Publication (NIST SP), National Insti-
tute of Standards and Technology, Gaithersburg, MD, August 2019, DOI
10.6028/NIST.SP.800-162

[16] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3”, RFC-
8446, August 2018, DOI 10.17487/RFC8446

[17] B. Zundel, I. Hernandez, C. Allen, Z. Larson, and K. Dow, “Engineering Pri-
vacy for Verified Credentials”, W3C Draft Community Group Report, April
2022, https://w3c-ccg.github.io/data-minimization

[18] Selective Disclosure - Handling Personal Information, https://learn.mattr.
global/docs/concepts/selective-disclosure (Accessed on 2022-07-14)

[19] ISO, “Evaluation criteria for IT security - Part 1: Introduction and general
model”, ISO/IEC 15408-1:2009, 2009

[20] A terminology for talking about privacy by data minimization: Anonymity,
Unlinkability, Undetectability, Unobservability, Pseudonymity, and Iden-
tity Management, https://dud.inf.tu-dresden.de/literatur/Anon_

Terminology_v0.34.pdf

[21] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital Identity Guidelines”,
Special Publication (NIST SP), National Institute of Standards and Technol-
ogy, Gaithersburg, MD, June 2017, DOI 10.6028/NIST.SP.800-63-3

[22] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of In-
teractive Proof-Systems”, Proceedings of the Seventeenth Annual ACM Sym-
posium on Theory of Computing, New York, NY, USA, 1985, pp. 291–304,
DOI 10.1145/22145.22178

[23] M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge”, Advances
in Cryptology — CRYPTO ’92 (E. F. Brickell, ed.), Berlin, Heidelberg, 1993,
pp. 390–420, DOI 10.1007/3-540-48071-4 28

[24] On Interactive Proofs and Zero-Knowledge: A Primer, https://medium.com/
magicofc/interactive-proofs-and-zero-knowledge-b32f6c8d66c3

[25] P versus NP problem, https://www.britannica.com/science/

P-versus-NP-problem

[26] J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. C. Guil-
lou, M. A. Guillou, G. Guillou, A. Guillou, G. Guillou, S. Guillou, and T. A.
Berson, “How to explain zero-knowledge protocols to your children”, Advances
in Cryptology — CRYPTO ’89, 9th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, 1990,
pp. 628–631, DOI 10.1007/0-387-34805-0 60

[27] O. Goldreich, S. Micali, and A. Wigderson, “Proofs That Yield Nothing but
Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems”,
J. ACM, vol. 38, July 1991, pp. 690–728, DOI 10.1145/116825.116852

[28] O. Goldreich, “Foundations of Cryptography”, vol. 1, Cambridge University
Press, 2001, ISBN: 0-521-79172-3

[29] T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”, Advances in Cryptology — CRYPTO ’91 (J. Feigenbaum,
ed.), Berlin, Heidelberg, 1992, pp. 129–140, DOI 10.1007/3-540-46766-1 9

96

https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.17487/RFC8446
https://w3c-ccg.github.io/data-minimization
https://learn.mattr.global/docs/concepts/selective-disclosure
https://learn.mattr.global/docs/concepts/selective-disclosure
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-48071-4_28
https://medium.com/magicofc/interactive-proofs-and-zero-knowledge-b32f6c8d66c3
https://medium.com/magicofc/interactive-proofs-and-zero-knowledge-b32f6c8d66c3
https://www.britannica.com/science/P-versus-NP-problem
https://www.britannica.com/science/P-versus-NP-problem
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/3-540-46766-1_9


Bibliography

[30] C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards”, Ad-
vances in Cryptology — CRYPTO ’89 Proceedings (G. Brassard, ed.), New
York, NY, 1990, pp. 239–252, DOI 10.1007/0-387-34805-0 22

[31] A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems”, Advances in Cryptology — CRYPTO ’86
(A. M. Odlyzko, ed.), Berlin, Heidelberg, 1987, pp. 186–194, DOI 10.1007/3-
540-47721-7 12

[32] D. Pointcheval and J. Stern, “Security Proofs for Signature Schemes”, Ad-
vances in Cryptology — EUROCRYPT ’96 (U. Maurer, ed.), Berlin, Heidel-
berg, 1996, pp. 387–398, DOI 10.1007/3-540-68339-9 33

[33] M. Bellare and P. Rogaway, “Random Oracles Are Practical: A Paradigm for
Designing Efficient Protocols”, Proceedings of the 1st ACM Conference on
Computer and Communications Security, New York, NY, USA, 1993, pp. 62–
73, DOI 10.1145/168588.168596

[34] S. Goldwasser and Y. Kalai, “On the (In)security of the Fiat-Shamir
paradigm”, 44th Annual IEEE Symposium on Foundations of Computer Sci-
ence, 2003. Proceedings., 2003, pp. 102–113, DOI 10.1109/SFCS.2003.1238185

[35] M. Blum, P. Feldman, and S. Micali, “Non-Interactive Zero-Knowledge and
Its Applications”, Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, New York, NY, USA, 1988, pp. 103–112, DOI
10.1145/62212.62222

[36] S. Bowe, A. Gabizon, and I. Miers, “Scalable Multi-party Computation for
zk-SNARK Parameters in the Random Beacon Model”, Cryptology ePrint
Archive, Paper 2017/1050, 2017, https://eprint.iacr.org/2017/1050

[37] D. Wong, “Real-World Cryptography”, Manning Publications Co., 2021,
ISBN: 9781617296710

[38] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From Extractable
Collision Resistance to Succinct Non-Interactive Arguments of Knowledge,
and Back Again”, Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference, New York, NY, USA, 2012, pp. 326–349, DOI
10.1145/2090236.2090263

[39] M.-H. Nguyen, S. J. Ong, and S. Vadhan, “Statistical Zero-Knowledge Argu-
ments for NP from Any One-Way Function”, 2006 47th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’06), October 2006, pp. 3–14,
DOI 10.1109/FOCS.2006.71

[40] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity”, Cryptology ePrint
Archive, Paper 2018/046, 2018, https://eprint.iacr.org/2018/046

[41] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More”, 2018
IEEE Symposium on Security and Privacy (SP), May 2018, pp. 315–334, DOI
10.1109/SP.2018.00020

[42] C. Paar and J. Pelzl, “Understanding Cryptography: A Textbook for Students
and Practitioners”, Springer Publishing Company, Incorporated, 1st ed., 2009,
ISBN: 3642041000

97

https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1145/62212.62222
https://eprint.iacr.org/2017/1050
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1109/FOCS.2006.71
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2018.00020


Bibliography

[43] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous Attestation Us-
ing the Strong Diffie Hellman Assumption Revisited”, Trust and Trustworthy
Computing (M. Franz and P. Papadimitratos, eds.), Cham, 2016, pp. 1–20,
DOI 10.1007/978-3-319-45572-3 1

[44] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptogra-
phers”, Discrete Applied Mathematics, vol. 156, no. 16, 2008, pp. 3113–3121,
DOI 10.1016/j.dam.2007.12.010 Applications of Algebra to Cryptography

[45] D. Boneh and X. Boyen, “Short signatures without random oracles”, Advances
in Cryptology - EUROCRYPT 2004 (C. Cachin and J. L. Camenisch, eds.),
Berlin, Heidelberg, 2004, pp. 56–73, DOI 10.1007/978-3-540-24676-3 4

[46] D. Boneh and X. Boyen, “Short Signatures Without Random Oracles and the
SDH Assumption in Bilinear Groups”, Journal of Cryptology, vol. 21, 2008,
pp. 149–177, DOI 10.1007/s00145-007-9005-7

[47] D. Freeman, M. Scott, and E. Teske, “A Taxonomy of Pairing-Friendly
Elliptic Curves”, Journal of Cryptology, vol. 23, 2010, pp. 224–280, DOI
10.1007/s00145-009-9048-z

[48] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing elliptic curve logarithms
to logarithms in a finite field”, IEEE Transactions on Information Theory,
vol. 39, no. 5, 1993, pp. 1639–1646, DOI 10.1109/18.259647

[49] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves with
prescribed embedding degrees”, Proceedings of the 3rd International Con-
ference on Security in Communication Networks, Berlin, Heidelberg, 2002,
pp. 257–267

[50] BLS12-381: New zk-SNARK Elliptic Curve Construction, https://

electriccoin.co/blog/new-snark-curve

[51] BLS12-381 for the rest of us, https://hackmd.io/@benjaminion/bls12-381
(Accessed on 2022-07-29)

[52] Y. Sakemi, T. Kobayashi, T. Saito, and R. S. Wahby, “Pairing-Friendly
Curves”, IETF draft-irtf-cfrg-pairing-friendly-curves-10, July 2021, Work in
Progress

[53] “Zcash Overwinter Consensus and Sapling Cryptography Review”,
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_

Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf

[54] D. Chaum and E. van Heyst, “Group signatures”, Advances in Cryptology –
EUROCRYPT ’91 (D. W. Davies, ed.), Berlin, Heidelberg, 1991, pp. 257–265,
DOI 10.1007/3-540-46416-6 22

[55] D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures”, Advances
in Cryptology – CRYPTO 2004 (M. Franklin, ed.), Berlin, Heidelberg, 2004,
pp. 41–55, DOI 10.1007/978-3-540-28628-8 3

[56] J. Camenisch and A. Lysyanskaya, “A Signature Scheme with Efficient Pro-
tocols”, Security in Communication Networks (S. Cimato, G. Persiano, and
C. Galdi, eds.), Berlin, Heidelberg, 2003, pp. 268–289, DOI 10.1007/3-540-
36413-7 20

[57] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems”, Commun. ACM, vol. 21, feb 1978,
pp. 120–126, DOI 10.1145/359340.359342

98

https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1109/18.259647
https://electriccoin.co/blog/new-snark-curve
https://electriccoin.co/blog/new-snark-curve
https://hackmd.io/@benjaminion/bls12-381
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1145/359340.359342


Bibliography

[58] M. H. Au, W. Susilo, and Y. Mu, “Constant-Size Dynamic k-TAA”, Security
and Cryptography for Networks (R. De Prisco and M. Yung, eds.), Berlin,
Heidelberg, 2006, pp. 111–125, DOI 10.1007/11832072 8

[59] T. Looker, V. Kalos, A. Whitehead, and M. Lodder, “The BBS Signa-
ture Scheme”, IETF draft-irtf-cfrg-bbs-signatures-00, October 2022, Work in
Progress

[60] Blind Signatures extension of the BBS Signature Scheme, https://identity.
foundation/bbs-signature/draft-blind-bbs-signatures.html

[61] S. programs for functions on curves, https://crypto.stanford.edu/miller/
miller.pdf

[62] M. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions”, Federal Inf. Process. Stds. (NIST FIPS), National In-
stitute of Standards and Technology, Gaithersburg, MD, August 2015, DOI
https://doi.org/10.6028/NIST.FIPS.202

[63] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi, “Ef-
ficient indifferentiable hashing into ordinary elliptic curves”, Advances in Cryp-
tology – CRYPTO 2010 (T. Rabin, ed.), Berlin, Heidelberg, 2010, pp. 237–254,
DOI 10.1007/978-3-642-14623-7 13

[64] R. S. Wahby and D. Boneh, “Fast and simple constant-time hashing to the
BLS12-381 elliptic curve”, Cryptology ePrint Archive, Paper 2019/403, 2019,
DOI 10.13154/tches.v2019.i4.154-179, https://eprint.iacr.org/2019/403

[65] D. Chaum, “Showing credentials without identification transferring signatures
between unconditionally unlinkable pseudonyms”, Advances in Cryptology —
AUSCRYPT ’90 (J. Seberry and J. Pieprzyk, eds.), Berlin, Heidelberg, 1990,
pp. 245–264, DOI 10.1007/BFb0030366

[66] M. Chase, E. Ghosh, S. Setty, and D. Buchner, “Zero-knowledge
credentials with deferred revocation checks”, July 2020, https:

//github.com/decentralized-identity/snark-credentials/blob/

master/whitepaper.pdf

[67] How does a verifier know the credential is yours?, https://www.evernym.com/
blog/how-does-a-verifier-know-the-credential-is-yours

[68] J. Camenisch, M. Kohlweiss, and C. Soriente, “Solving revocation with efficient
update of anonymous credentials”, Security and Cryptography for Networks
(J. A. Garay and R. De Prisco, eds.), Berlin, Heidelberg, 2010, pp. 454–471,
DOI 10.1007/978-3-642-15317-4 28

[69] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “In-
ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile”, RFC-5280, May 2008, DOI 10.17487/RFC5280

[70] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application
to efficient revocation of anonymous credentials”, Advances in Cryptology
— CRYPTO 2002 (M. Yung, ed.), Berlin, Heidelberg, 2002, pp. 61–76, DOI
10.1007/3-540-45708-9 5

[71] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation”, Pro-
ceedings of the 11th ACM Conference on Computer and Communications Se-
curity, New York, NY, USA, 2004, pp. 132–145, DOI 10.1145/1030083.1030103

99

https://doi.org/10.1007/11832072_8
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.html
https://crypto.stanford.edu/miller/miller.pdf
https://crypto.stanford.edu/miller/miller.pdf
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.13154/tches.v2019.i4.154-179
https://eprint.iacr.org/2019/403
https://doi.org/10.1007/BFb0030366
https://github.com/decentralized-identity/snark-credentials/blob/master/whitepaper.pdf
https://github.com/decentralized-identity/snark-credentials/blob/master/whitepaper.pdf
https://github.com/decentralized-identity/snark-credentials/blob/master/whitepaper.pdf
https://www.evernym.com/blog/how-does-a-verifier-know-the-credential-is-yours
https://www.evernym.com/blog/how-does-a-verifier-know-the-credential-is-yours
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.17487/RFC5280
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1145/1030083.1030103


Bibliography

[72] ISO, “Trusted Platform Module Library - Part 1: Architecture”, ISO/IEC
11889-1:2015, 2015

[73] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT)”, RFC-
7519, May 2015, DOI 10.17487/RFC7519

[74] D. Hardt, “The OAuth 2.0 Authorization Framework”, RFC-6749, October
2012, DOI 10.17487/RFC6749

[75] BBS+ Signature Suite for LDP using JSON Pointer Normalization,
https://github.com/trinsic-id/json-bbs-signatures/blob/main/

ldp-bbs-jpn.md

[76] P. C. Bryan, K. Zyp, and M. Nottingham, “JavaScript Object Notation
(JSON) Pointer”, RFC-6901, April 2013, DOI 10.17487/RFC6901

100

https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC6749
https://github.com/trinsic-id/json-bbs-signatures/blob/main/ldp-bbs-jpn.md
https://github.com/trinsic-id/json-bbs-signatures/blob/main/ldp-bbs-jpn.md
https://doi.org/10.17487/RFC6901

	Introduction
	Digital Identity
	What is a digital identity?
	Identity models
	Centralized identity model
	Federated identity model
	Decentralized identity model

	Self-Sovereign Identity
	Decentralized Identifiers (DIDs)
	Verifiable Credentials (VCs)
	Design goals

	Privacy-related issues
	Privacy
	Unlinkability
	Binding


	Zero-Knowledge Proofs
	What is a ZKP?
	Formal definitions
	Real-world examples

	Commitment schemes
	Pedersen commitment scheme

	Proof of Knowledge protocols
	Schnorr identification protocol

	Non-Interactive ZKPs
	Fiat-Shamir heuristic
	ZKPs in digital signatures
	General-purpose ZKPs


	BBS+ Signatures
	Building blocks
	Algebra fundamentals
	Discrete Logarithm problem
	Elliptic Curves
	Bilinear Maps
	q-Strong Diffie-Hellman problem

	BLS12-381 Elliptic Curve
	Parameters
	Field extensions
	Curves, subgroups and twists
	Embedding degree
	Security level

	BBS+ Signature Scheme
	Core
	Extension
	Scheme design and implementation
	Results

	Comparison with CL Signatures

	Privacy-Preserving Credentials
	Anonymous Credentials
	Design goals and choices
	Protocols
	Known weaknesses

	Linked Blinded Secret
	Protocol design and implementation

	Revocation
	Accumulator
	Signature update

	Use cases
	Future work

	Conclusions
	User's manual
	Developer's manual
	Bibliography

