POLITECNICO DI TORINO

Department of Electronics and Telecommunications

Master of Science Degree

in

Communications and Computer Networks Engineering

Analysis of Innovative automated warehouses through discrete event simulation

Advisor:

Prof. GIULIA BRUNO **Co-Advisor:** Prof. FRANCO LOMBARDI Dott. FAVETO ALBERTO Laureandi POOSA AKHILA 240753

Academic Year:2020-2021

ABSTRACT

Order picking (OP) is the most costly and labour-intensive action in warehouses. Some scholars argue that OP could employ up to fifty five percent of overheads in a warehouse for firms handling large volumes of items that are shipped frequently.

It is becoming increasingly challenging for order picking systems designers because of increases in labour costs, limited space, and increasingly frequent small orders with short delivery times. Consequently, considerable effort is devoted to developing new, innovative picking solutions that reduce operation costs, increase productivity, optimize space utilization, and improve customer service levels.

This project aims to provide a new solution for order picking and innovative ideas about evaluating and comparing different autonomous vehicle storage and retrieval systems (AVS/RS) through a simulation study of the systems operation in an automated warehouse. Eurofork, an Italian company that makes handling equipment, proposed the project. After several years of hard work, Eurofork has become a reference in the logistic automation field because of its ability to make high-quality machinery.

The first step in developing this study was to carry out an analysis of theoretical background regarding the warehouse process, focusing on the order picking process, classification of the order picking systems and automated systems. Further referenced in the literature were studies concerning automated storage and retrieval systems (ASRS) modelling and simulation, also the topics on research done on Robotic picking performance in comparison to different sorts in development, and the demand for mixed pallets and problems building them. There are three chapters culminating with the new order picking system and simulation models followed by experiment results, conclusions, and references.

Keywords: Order Picking Process, Autonomous Vehicle storage and Retrieval system, , Robotic Arm, , ASRS vehicle, Mixed pallet, Flexsim Simulation, Robot picking, Order picking inside the warehouse, Order picking outside the warehouse.

Acknowledgements

I would like to extend my gratitude to Professor Guilia Bruno and my co-advisor, Professor Franco Lombardi, for providing this opportunity for me to conduct this master thesis and for providing me with valuable feedback and constructive suggestions.

I would like to extend my heartiest thanks to Dr. Alberto Faveto for guiding me to develop the model in FlexSim software, patiently answering the questions I had, and setting a pathway for me to learn quickly and efficiently the principles necessitated by this study.

Last, but certainly not least, I would like to express my deep gratitude to my family and friends who have supported me unfailingly and relentlessly throughout my years of study.

Synopsis

Chapter 1

INTRODUCTION10
1.1 Background10
1.2 Warehouse Automation11
1.3 Order Picking Process12
1.4 Classification of order picking systems14
Chapter 2
LITERATURE REVIEW17
2.1 Automated storage and retrieval systems17
2.2 ASRS executing picking process19
2.3 Mixed Palletizing22
2.4 Research Results23
2.5 Research Papers
Chapter 3
3.1 Statement of the problem41
3.2 Objective of thesis42
Chapter4
4.1 Eurofork's system43
4.2Components and requirements45
4.3 System operating47
Chapter 5
5.1 Model conceptualization49
5.2 Explanation of 3D simulation model50
5.3 Order picking inside the warehouse50

5.4 Order picking outside the warehouse	•54
Chapter 6	
6.1 Analysis of experiments	59
6.2 Experiment Results	.60
6.3 Evaluation of Performance Measures	67
6.4 Comparison between the simulation models	.75
7.Conclusions	.76
8.REFERENCES	

9.Appendix

List of Figures

Fig 1. Classification of automated picking systems	11
Fig 2. Design and control of warehouse order picking	.12
Fig 3. Stages of ACCPS operating principle	.14
Fig4. Classification of the Order picking Systems	.15
Fig.5. Classification of the Order Picking Systems	.16
Fig 6. Overview of Automated storage and Retrieval System AS/RS	.18
Fig 7. Main components of AVS/RS	.20
Fig 8. Mixed Palletizing	22
Fig 9. Robotic ARM	.24
Fig 10. High Sku count mixed case palletizing	.25
Fig 11. Traditional solutions for automated picking	25
Fig 12. Mobile robot explosion	25
Fig 13. LOCUS ROBOT	26
Fig 14. Amazon Robots in Warehouse	27
Fig 15. Amazon Robots order picking	27
Fig 16. inVia Runner and picker with a suction cup from article robotics and Automatio	28
Fig 17. Skypod robot in Warehouse	28
Fig 18. The Pick-One robotic arm from Plus-One Robotics is a view of what the robot sees.	.29
Fig19. Swift Robot	.30
Fig 20. Carry star Process Description	.30
Fig 21. Carry star storage area	.31
Fig 22. Carry AGV and it taking the mixed pallet to the wrapping area	32
Fig 23. Autostore robot moving across the top of grid ItemPiQ Robot	32
Fig 24. Toru robot is picking and storing items from rack	33
Fig 25. Warehousing and Logistics Robots	34
fig 26. Mixed pallet build system	35
Fig 27. The robotic Automated Storage and Retrieval System (AS/RS)	36
Fig 28. Mixed pallet build system at loading/unloading area	37
Fig 29. mixed pallet build system in which each rack contains multi-deep pallets of item in	
every rack	37

Fig 31. Robot picking in a shuttle system	38
Fig 32. front elevation of an AGV system	39
Fig 33. AGV planted to service a station performing batch picking	40
Fig 34. AGV planted to service a station performing batch picking	40
Fig 36. Esmart Shuttle used in AVS/RS performing loading/unloading a pallet	43
Fig37. An example of new technique with Robotic Arm attached to ASRS vehicle	45
Fig38. mixed palletizing snapshot	45
Fig 39. Flowchart of new order picking system	48
Fig 40. 3D layout of of order picking inside the warehouse	51
Fig 41. Arrivals slot check	52
Fig 42. Random order creation and OP in the warehouse	53
Fig 43. 3D layout of of order picking outside the warehouse (Cache Zone)	55
Fig 44. Cache initialization	56
fig 45. Cache Refill	57
Fig 46. Random order creation and OP outside the warehouse	58
Fig 47. Analysis of Experiment Results	59
Fig 50. Clustered Column Chart Effects of 16 Scenarios	63
Fig 53. Clustered column chart effects of 21 scenarios	66
Fig 55. Box Chart of Replications for Scenarios and Tests	69
Fig 56. Histogram Chart for Frequency of Scenarios	69
Fig 58. Clustered Column Chart of Mean I/O of Exp-1	71
Fig 59. Clustered Column Chart of Standard Deviation I/O of Exp-1	71
Fig 63. Line Chart Results of Test In and Test Out	73
Fig 65. Clustered Column Chart of Mean I/O of Exp-2	74
Fig 66. Clustered Column Chart of Standard Deviation I/O of Exp-2	75

List of Tables

Fig 48. Experiment 1 Picking Inside the Warehouse Results61
Fig 49. Experiment 1 Picking Outside the Warehouse Results
Fig 51. Experiment 2 Picking Inside the Warehouse Results
Fig 52. Experiment 2 Picking Outside the Warehouse65
Fig 53. Clustered column chart effects of 21 scenarios
Fig 54. Mean Service Time Data table of Exp-168
Fig 57. Mean and standard deviation results of Exp-170
Fig 60. Test Results of Service time72
Fig 61. Test Results of Picking time72
Fig 62. Test Results of Inside and Outside Picking72
Fig 64. Mean and standard deviation results of Exp-274.

List of Abbreviations

OP-Order Picking

OPP-Order Picking Process

OPS-Order Picking System

ASRS-Automated Storage and Retrieval Systems

AGV-Automated Guided Vehicle

ACP-Automated Case Picking

ACCPS-Automated Cellular Case Picking System

CBS-Conveyor Based Solutions

WCS-Warehouse Control Systems

WMS-Warehouse Management Systems

LIFO-Last In First Out

AMR-Autonomous Mobile Robots

SKU-Stock Keeping Unit

FIFO-First in First Out

CPS-Case Picking Systems

INTRODUCTION

Chapter 1

The following chapters explain warehouse automation, order picking processes, classification of order picking systems, and how to improve order picking efficiency.

1.1 Background

Optimizing the performance of a supply chain can occur when all milestones of that chain are executing as efficiently as possible. 'Logistics,' thus, is the management of products and services, including all aspects of the flow between vendors and consumers. Storage points or warehouses are used in supply chains for fluctuating lengths of time. For this reason, warehouses are incredibly important (1).

Warehouses no longer have limited roles in storing or buffering items such as raw materials, in-process items and finished goods. Currently, warehouses offer such features as product consolidation, quality-checking, packaging, and information services in addition to handling merchandise and storing it.

Taking a look at (2), these storage areas can be described as places where products are paused to better match supply and demand or to consolidate them to reduce transportation costs and to provide customer service.

Types of Warehouses

The three main types of warehouses are (3)

- 1. Distribution warehouses (products from one or many suppliers to many customers).
- 2. Production warehouses (for raw materials, semi-finished products and finished products in production plant).
- 3. Contract warehouses (servicing one or more customers).

According to review (4) the main warehouse activities can be classified in four stages.

- 1. Receiving
- 2. Storage
- 3. Order picking
- 4. Shipping.

1.2 Warehouse Automation

Automation of warehouses started around 1960 through automated storage and retrieval systems (AS/RS) which executed the storage processes in German warehouses. Although the picking process was still manual, it can now be fully automated by some systems. (5) The compound annual growth rate (CAGR) of the automated storage and retrieval system market between 2019 and 2024 is estimated to be 7.7%, growing from USD 7.6 billion to USD 11.0 billion (6).

In the ensuing years multiple automated picking systems have been developed, and they have been categorised as shown in Figure 1. Nevertheless, as pointed out by the author (5), most of them have not been studied in academic literature, even though their use in warehouses increases.

Fig 1. Classification of Automated picking systems Credit: Azadeh, Koster e Roy (2019)

1.3 Order Picking Process

Order picking, also known as Order Picking (OP), is one of our most common warehouse activities. The purpose of Order Picking is to retrieve the requested items from storage location so that the customer's wish can be fulfilled. The order picking process (OPP) is a very labour-intensive process in manual systems and a very expensive one in automated systems (7). It may take up to sixty percent of all work tasks in the warehouse (8). In a typical warehouse, the price of the OPP may be as much as fifty five percent of the total operating cost of the warehouse.

Fig 2. Design and control of warehouse order picking Credit: De Koster, R., Le-Duc, T., and Roodbergen, K. (2007).

Following the review cited in "Design and Control of Warehouse Order Picking" (9). Fig 2 stated that order picking costs are projected to be as much as fifty five percent of the overall warehouse operating expenses. Therefore, underperformance in order picking will lead to unsatisfactory customer service and high operating costs. In this paper, we provide an overview of the literature on typical design and control problems faced in manual order-picking processes, particularly in regard to optimal layout design, storage allocation methods, routing methods, order batching and zone allocation. Picking operators execute physical operations manually, semi-automated or fully automated. In manual picking operations, the picker moves to product storage locations and gathers the items desired by the customer. When using mechanical pick and place systems, the products are transported mechanically to the picker's position, and the picker gets the items he wants, products-to-picker. In an automatic pick and place system, the products are mechanically transported and picked up without any manual involvement.

In recent reviews (10) high expenses, constraints of the application domain, and the limited availability of OPSs have led to an absence of research on automated OPS. (3) the author argue that automation and robotic picking systems can only be used in unique situations, for example, when handling valuable, small, or delicate items.

This article (11) includes detailed information concerning the reasons for investing in picking process automation and offers a complete view of a variety of automated systems. There are a wide variety of automated equipment for case picking (ACP) such as traditional automated case picking, robot-based automated guided vehicle (AGV)/mobile robot case picking (CPS), conveyor-based solutions, automated storage and retrieval system (ASRS), gantry robot-based solutions and vertical cascading order release system, The warehouse management systems (WMS) and warehouse control systems (WCS) check on stock location and move inventory, overseeing materials flow, and controlling everything from order placement to delivery.

Based on review (9) they define order picking as a process in which goods must be assembled, and then ordered by customers, placing the stock directly in order lines, releasing the order downstream, and picking at the right time and place. So, OP is order fulfilment, which ranges from withdrawing items from storage to fulfilling a number of customer orders.

They describe (3) that the OPS within warehouses can be classified into three mains types with respect to level of automation.

- 1. Manual warehousing systems-picker-to-parts
- 2. Automated warehousing systems-parts-to-picker
- 3. Automatic warehousing systems-picker-less systems

In the review (Designing a Cellular based Fully Automated Case Picking System) (12) discussed in detail about Automatic cellular case picking system (ACCPS). ACCPS is a

new ACPS where all OP activities are wholly automated. It is designed for labouring with products in plastic crates, bins, boxes, or bins on a daily basis, and must meet exceptionally high-speed requirements. The methodology to solve OPS design problem by the author (13) and (11) which is used as the basis to solve the proposed ACCPS design problem.

The ACCPS design is based on the cases of incoming pallets with only one SKU per pallet. However, each pallet contains many stacks, and each stack contains many crates. Every four full stacks are gathered on one pallet by an automated palletizer.

When a customer order is positioned on the main conveyor, the stacks emerge from it in batches, and the structure and time of each batch depends on the product availability in the cells and the customer order. The assumption is that only one type of product is stored in the storage cell, and a replenishment is performed if the cell is empty, with the number of crates in the replenished pallet depending on the cell's capacity. The anticipated required pallets are prepared near the input point of the ACCPS. A new full pallet is fed to the entrance of the ACCPS. see fig. 3.

Fig 3. Stages of ACCPS operating principle Credit: Mohammed Ruzayqat (2016)

1.4 Classification of order picking systems.

Without a uniform classification of order picking systems, there are different classification grounds based on which order picking systems can be categorized. (9) reviewed a system that has a taxonomy based on the dynamic elements in the system, with a basic employing structure that employs both humans and machines. See Fig. 4.

Fig 4. Classification of the Order picking Systems

Credit: De Koster et al., (2007)

In Figure 4, a new classification using the four major decisions was proposed. who picks the goods-humans/machines, who is in the picking area-pickers/goods, whether conveyors link each picking zone and what picking policy is with (picking by order or by item) see Figure 5.

Fig.5 Classification of the Order Picking System Credit: Dallari et al., (2009)

A number of order picking technologies and concepts are available today, and many solutions are available for improving accuracy, improving productivity, and boosting throughput. Nevertheless, there is still a great need for more improvements, more automation, and more strategies. Securing the best systems, the best technologies and the best processes remains the biggest challenge for OPS users.

Chapter 2

The chapter describes the literature review of ASRS in detail regarding its picking process and mixed palletizing. An explanation of research results and papers has also been included in this chapter.

2.Literature review

2.1 Automated storage and retrieval systems

The author (14) summarizes an automatic storage and retrieval system (AS/RS) as a type of storage system that is exploited for laying products in storage and retrieving those products from storage in distribution and distribution environments. ASRS systems utilize a variety of computer-controlled technologies to handle pallets and store them in the warehouses. The fully automated, fully customizable system can handle pallets without human assistance.

In their explication, the authors also highlight some of the shortcomings of the new design, including the requirement of higher investments, and the inflexibility to change the physical layout (14).

ASRS comprises mainly of racks, which store goods; cranes, which transport, pick up, and return items; aisles, connecting spaces where cranes can cross over; input/output points, locations where retrieved goods are left and those to be stored are picked, pick positions, where the ordered goods can be picked from retrieved packages. There are many possible configurations for these components of the system, resulting in several types of AS/RS, as discussed in (14).

FIGURE 6 shows two alternatives in regard to the crane's movement and structure for loading and unloading. With respect to the equipment, it can be capable of handling only one load, termed a single shuttle, or deal with two loads at once, dual shuttle. They move the equipment between aisles, and the equipment in aisle-captive cranes travels between aisles, so each aisle requires one crane as well. Alternatively, aisle changers can transit goods across aisles. AVS/RS (14) is a special case of this in which autonomous vehicles may be retrieved in the case of a failure.

When it comes to AVS/RS, there are two options as to the shuttle movement. Tier-totier or Tier-captive. In the tier-to-tier system, vehicles can travel from one tier to another using the lift. However, in tier-captive systems vehicles are only allowed to travel from one tier to another and the lift only moves the loads, not the vehicles (15). One vehicle for each tier necessitates more vehicles, thereby making the tier-captive system more expensive, but it also has a higher performance compared to tier-to-tier system due to the independence of vehicles and lift. Allegedly, more efficient products are tier-captive single-aisle configurations according to the review (16). In terms of the storage and retrieval components of the system, there are three options: two for the type of load stored and one for the way it is stored. It is possible to perform the picking activity by a person conveyed by the crane who will later pick the item up at the load's placement, sometimes called person-on-board. When the AS/RS is used, it can be at the picking location where the retrieved load is dropped off and the items of the customer's order gathered, this scenario is called an End-of-Aisle process, or AS/RS can deal with pallet or bin loads only, in which case the customer orders the whole load, thus there is no need to separate and separate items at the last moment. Also, depending on which type of load is being transported and handled, the AS/RS might be alluded to as a mini load AS/RS (14).

2.2 ASRS executing picking process.

In (17), the author recommended that one of the most useful ways to model ASRS is with simulation approaches.

On the one hand, warehouse systems can be best modelled using simulation techniques and on the other hand: using an analytical approach in order to simplify complex calculations and to achieve more accurate results, while modelling using simulation entails much more time to conceptualize and design. Significantly, performance is more reliably measured by the analytical models, even though they are not as precise as the simulation-based ones. Consequently, when numerous configurations need to be analysed, the analytical technique is preferred (5).

Regarding the review (18), they used simulation to help with the design, they emphasize that it is important to design the right autonomous vehicle storage and retrieval system from the start, since it is hard to modify it later due to its lack of elasticity. They achieved this by constructing a simulation model of the system on Arena 12.0 and reviewing the average cycle time for 21 simulated use cases.

To facilitate the design of the system, (19) author applied simulation to answer design questions. To design a rack, they built an optimal simulation model that can be reconfigured separately based on how many elevators and racks are needed. The authors used a virtual-reserve rack configuration to determine the throughput and cycle time of 81 various racks within 48 hours, for distinct retrieval rates. By developing a research by the author (16), (20) not only the impact of diverse rack configurations was resolved, but also impacted by two other aspects: the velocity profiles of shuttle carriers and the table of gravity in elevators on the performance of a shuttle base storage system.

A Discrete event simulation was enacted to analyse the performance of the system by realizing the number of transactions happened in time on each scenario. The cases were created with 3 levels of aisles and 3 times the number of tiers and two distinct velocity profiles for the shuttle and the lift. According to the authors, the system's performance is substantially determined by two factors: the number of aisles and the throughput of the lift. Furthermore, the team noticed that although in general the bottlenecks are the lifts' lifting tables, when the number of columns is too high the shuttles could be the bottleneck depending on their pace.

Fig 7. Main components of AVS/RS Credit: EKREN, Banu Y. et al (2010)

Another study examining optimal designs by simulation was implemented by the author (18), with the peculiarity being that they seek to obtain an optimal combination of lifts and autonomous vehicles (AVs), taking into account some pre-specified rack configurations. Arena 12.0 was used for the simulation analysis. Seven rack arrangements were considered, along with two arrival rates, and nine or ten possible arrival rates for each rate.

The authors computed the average cycles of storage and retrieval transactions and the average utilization for lifts and elevators by simulating these transactions. They came to a better understanding of the system's performance under several scenarios and found the best technique for attaining maximum efficiency without surpassing the limits set by the system.

In the literature, an additional approach to improving operations involves evaluating the system's performance under different conditions. In the review, (21) attempted to assess the performance of a mini-load multi-shuttle order picking system when the order structure varies. For evaluation purposes, they collected data about the system's throughput and average cycle time per order as well as other simulation results. After employing simulation and analytical tools (2), Giulia Bruno and D' Antonio assessed the warehouse's performance across several scenarios. The assessment in this case took into consideration the system's usage, the average time invested in queue by the unit loads, and the average number of queued units.

Based on the review, simulation was another tool used to compare different solutions in the literature. (22) devised an analytical model to maximize storage placement, taking into consideration the energy consumed for loading and unloading the units. After the evaluation was completed, the decision made by the analytical model and the original storage configuration were modelled and simulated on Flexsim software, which resulted in data about the stay time, congestion time, unloading quantity, and no-load period.

2.3 Mixed Palletizing

From the website (23) Palletizing mixed goods means placing products that are different sizes and types in a single container on a pallet. Because of the rising costs of transportation and logistics, it is becoming more common to use multiple pallets to accommodate as many items as possible.

Fig 8. Mixed Palletizing Credit: Optimized logistic solutions.

Mixed Pallets made of multiple products, such as blends and bars, are produced in order to serve a single customer. The objective of giving these pallets is to cater to clientesses who need lesser volumes of products than a full pallet. The review concluded (24) at that time, there was already a tendency toward ordering uniform pallets to attend a certain period of time, to ordering mixed pallets for supplying the same interval at a greater frequency. Mixing pallets may be used by customers who want to order more often or because they are too low to order full pallets. On the other hand, vendors can use mixed pallets to infiltrate small markets more efficiently.

(24) author yaman helped a liquor producer to solve the issue of the need to produce mixed pallets. As the producer was selling numerous brands not all of which were well known, orders of certain brands did not reach full pallets of them. One of the primary barriers to offering customized pallets was the limited ability to offer mix pallets, so the customer chose either one of the few mix pallets, better accommodating their needs. This solution proved effective; it had lower inventory and backlog costs than was feasible with just full pallets.

According to review (24) there were some restrictions that hindered the option of creating customized pallets for each client; the authors write that there is no technology and the manual production would be too complex. In a previous article, it was emphasized that automation increases efficiency and that manual execution of the process might result in more damage and errors. Even though mixing pallets may be beneficial over time, warehouses and distribution centres may hesitate when they build it.

2.4 Research Results

In this section magazines, articles, research papers and related information are mostly focused on different kind of robots and their picking operations.

Robotic Arm

In their publication 'Warehouse and Distribution Science' (25) explains that ASRS requires that human laborers be substituted by robotic vehicles that move in each aisle in the warehouse. These devices allow for movement in horizontal and vertical directions through a single command cycle or a dual command cycle, which enable the unit being stored or being recovered to be transferred.

Common robots used in manufacturing are the robotic arms. These metal arms have 4-6 joints, making them useful in many manufacturing processes, such as material handling and material removal.

Robots share many features with human arms – they have three joints – large wrist, petite wrist, elbow, and shoulder. The six-axis arm can move in six different ways, unlike an arm, which only has two joint places.

Fig 9. Robotic ARM Credit: VectorStock

Manufacturing with an industrial robot arm not only increases the speed of a process, but it also additionally enhances accuracy. These robotic arms reduce the employee error rate and labour expenses of manufacture. A robot arm is built by uniting two or more joints. It usually consists of steel and cast-iron material. Motors are affixed to each joint through a robotic controller. Some large arms applied to lift heavy payloads are mechanically manipulated.

With robotic arms, manufacturers manoeuvre the end effector from one position to another, easily taking down and putting up pieces or eliminating the entire equipment. These robotic arms can be designed to do a number of different tasks, or one specific task, based on the manufacturer regulations. They also use these robots to lift heavy objects.

1.Robots in warehousing

According to the document Robotics in Production presented by (26) Larry M. Sweet PhD, also an executive of Symbotic LLC in Orlando Marriot Centre, the robot's purpose is to assist manufacturing tasks.

Fig 10. High Sku count mixed case palletizing. Credit: Larry M. sweet (2013)

Fig 11. Traditional solutions for automated pickingFig 12. Mobile robot explosionCredit: Larry M. sweet (2013)

Mobile robots' characteristics:

- 1. easy to re-configure.
- 2. 2D vs. 3D layout topologies
- 3. Variable vs. fixed storage spacing.
- 4. Manual vs. automated product handling
- 5. Sequencing vs. non sequencing product flow

2. Robotics in the Warehouse: Changing the Fulfilment Paradigm from Logistics management magazine. (27)

Article by Locus Robotics August 27, 2019: Locus Robotics CEO Rick Faulk describes how robots can change the productivity and structure of any fulfilment centre and why thinking outside the box can engender better results.

This ground-breaking methodology is driving today's revolutionary change and illustrates the significant productivity gains and scalability advantages of multi-bot picking.

Locus Robotics offers autonomous mobile robots (AMR) for fulfilment warehouses which can be disassembled and moved very easily. Each robot carries out part of the picking and transporting as the humans carry out all of the carrying. Each employee fills an order on multiple robots as they proceed to line up to pick online orders.

Fig 13. LOCUS ROBOT

Credit: Logistics Management (2019)

An employee using conventional carts or a similar motorized follow bot-style cart is limited to the orders they can physically carry in a single robot. Furthermore, using a multi-bot model, everybody is free to work on their skill set. Because they can pick to any robot, pick volume is not hindered by the capacity of a single robot.

3. Warehouse robots for retail Automation

Amazon Robots

According to (28), Amazon put retail automation technology in the spotlight with the 2012 acquisition of Kiva Systems. This company, based in Boston, developed warehouse robots, and related technologies, and it was acquired for \$775 million. Autonomous mobile robots that combine the effects of sophisticated control software, language perception, power control, computer vision, depth-sensing, machine learning, object identification, and semantic comprehension of user demands.

Fig 14. Amazon Robots in Warehousefig 15. Amazon Robots order pickingCredit: Amazon Robots

Today's tech startups are attempting to fill the vacuum generated by Amazon's buyout of Kiva and some have been profiled in their feature on industrial warehouse robots. Companies like invia robotics, an emerging innovator against warehouse automation and the brains behind cobots (cooperative robots), are developing warehouse robots that can function right alongside humans.

Invia Robotics

From the website (29) Since its foundation in 2015, InVia Robotics has rendered the next generation of warehouse automation solutions. They have taken in an undisclosed amount of financing to optimize a simple, intuitive, and inexpensive warehouse system while further enhancing your employees work environment.

Fig 16. inVia Runner and picker with a suction cup from article robotics and Automation Credit: Invia Robots

The inVia Picker and the inVia Runner are two distinct robots that manage logistics. The Runner is able to literally transport items from one place to another, which either an individual can do or a robot will do. The Picker gets stuff by draining it up using suction cups. Taking robots as an example, inVia Robotics Management Software was designed to automate the workplace procedures between people and robots with artificial intelligence by generating all the itineraries that increase efficiency in both parties.

Skypod

Exoctec (30) based in Pittsburgh, was started in 2015 by former robotic and software engineers. Its robot armies can move like the Wonkavator, shifting up and down, sideways and slantways, in all directions, as well as frontways and squareways. It is also similar to the AVS/RS operation see fig 17. Technically, this can do this without having any intricate structures to support the robots.

Fig17. Skypod robot in Warehouse Credit: Exoctec

Well, it is able to use a laser scanner to help it gather data across three-dimensional spaces, and that is how it can convert itself from horizontal to vertical. Skypod can ascend five times higher and move four times faster than traditional shelf-moving robots, it also can pick up twice as many items per hour and inhibit warehouse workers from walking at least 10 miles daily.

Arming warehouse robots

A startup company (31) based in San Antonio, Texas, has developed a robot arm that can move dynamically, almost quite naturally, to pick up packages, unlike the average warehouse robot arm that normally does repeated actions from a static position.

Fig18. The Pick-One robotic arm from Plus-One Robotics is a view of what the robot sees. Credit: Plus One Robots

Digital cameras, developed into the Pick One's digital cameras, are capable of transmitting scans of made in China footwear in fractions of a second to select the right pick position for the arm, which can apply 25 picks per minute like a human.

Swift Warehouse robots

In 2012, Pittsburgh-based IAM Robotics (32) was established. The company recently secured just under \$1 million for a warehouse robot based on the same platform and RobotiQ technology as Plus One Robotics. Swift is the firm's mobile control robot. It can travel through the warehouse autonomously and locate and locate products. It can then pick them up utilizing any of numerous grasping extensions that can lift up to 15 pounds.

Furthermore, their system encompasses SwiftLink software, which traces and supervises the robots, and Flash, a hightech inventory instrument that records a product's barcode, 3D dimensions, weight and a high-resolution image of any item stored within it.

Fig19. Swift Credit: IAM Robotics

Swisslog Carry star & itempiQ

Swisslog (33) is a leading corporation amongst the Kuka group. They created a carrystage order fulfillment system. See figure 20, on how transporting orders works.

Fig 20. Carry star Process Description Credit: Swiss Log (2019)

Carry Star utilizes no conveyor technology or automatic equipment on-site, thus being a fully automated system. This design opportunity is optimal, as it allows for a large number of alternatives for order fulfillment. The pallet builder robot will fabricate mixed pallets in roughly 200-300 layers an hour, and it can easily be configured on the basis of volume and product type.

Warehouse storage are able to receive pallets and retain carry star cells, although there is a lesser storage area near the building area then is utilized for pallet building. See Figure 21. Once the picking is done and the order is packed, locating the pallets for storage is not essential. They can be kept in the scheduled compartment until desired.

Fig 21. Carry star storage area Credit: Swiss Log (2019)

Additionally, the system integrates the Carry robots, guided vehicles for the aim of transporting pallets around the area, and the wrapping machine. The Carry robots follow the pathways in Figure 16. At the exit of the system is the wrapping machine. The robots advance the pallets they have prepared to the wrapping machine. The pallets are constructed and wrapped, then sent to the container.

Fig 22. Carry AGV and it taking the mixed pallet to the wrapping area Credit: Swiss Log (2019)

A Swisslog crew also supplied insights into how automation will generate increased productivity. During a recent automation project for AutoStore, the robots revolving up and down throughout the grid collaborate with each other to compensate for any downtime. In fact, ItemPiQ uses robotic automation technology used in challenging industrial environments. Blended with ItemPiQ, these systems offer the flexibility, availability and uninterrupted operation essential for 24/7 performance.

Fig 23. Autostore robot moving across the top of grid ItemPiQ Robot. Credit: Swiss Log (2019)

ItemPiQ is intended for speed and reliability. Picking from an AutoStore bin and placing it in a target bin or carton, the robot runs at up to 1000 transactions per hour under ideal conditions. More conveyor systems will permit automatic relocation of the destination bin. Because ItemPiQ and AutoStore operate with the same platform, Swisslog's Sync, the system seamlessly interfaces. ItemPIQ has a standard interface that enables it to communicate with any WMS system accessible.

The grippers in SynQ are wise enough to understand through experience. When they encounter an item for the first time, they will automatically decide on the optimum way to grab it for them. In addition, the system would endeavor to recollect the last time the item was picked successfully and operate to develop upon the system in a way that results in a shorter cycle time and bigger pick success rates the longer the system has been running.

Toru Robot

In the Interview (34) Toru Robots of Magazino authored last year, Moritz Tenorth was interviewed, a founder and CEO of MitiGi, an inventive startup for mobile pick-and-place robots that are then used to conduct specific item-level logistics operations. The Magazino team has constructed perception control-based mobile robots that could be exploited in warehouses or manufacturing plants. The TORU robot consists of a mobile base, a retractable shelf, and a retractable and rotatable column with a gripping mechanism. It can identify objects using 3D and 2D cameras. It can handle rectangular items for example shoe boxes and lexicons, store them on shelves, then deliver them to wherever the robot selects it is necessary.

Fig24. Toru robot is picking and storing items from rack Credit: Magazine by Toru Robots

Here's where TORU differs significantly from other systems: it does not demand custom warehouses or for manufacturers to retrofit existing warehouses to accommodate robots. Certainly, robots might indeed integrate into warehouses that already exist.

4.Warehousing and logistics Robot Shipments

A market intelligence business, Tractica (35) is part of Informa. It focuses on rapidly emerging technologies.

The following figure 25 depicts Tractica Analysis survey of the warehouse and logistic robot's market. The report claims, (27) the warehouse and logistic robot's market is projected to expand by nearly 10% over the 2016-2021 period. In addition to valuing the most critical aspects that will influence the market, the report gives an analysis of the key market drivers and threats.

2.5 Research Papers

According to the paper "Performance evaluation of a new intralogistics systems" the author (36) had clearly discussed about the review of robot picking and building mixed pallets.

Robotic automated storage and retrieval system mixed pallet build system.

Bastian Solutions is an independent material handling system integrator supplying automated solutions for distribution, manufacturing, and order fulfilment centres around the globe. Its current patent (37) describes a robot that can generate several types of pallets and integrates them into single pallets.

We use a mixed pallet-build system in fig 36, that involves a series of pallet racks with multi segment dividers to store distinct assets and items. Most of the pallets will be the same items, but also the pallets can have varying stuff or be mixed. Further, different pallet build systems have robotic carts which can be moved vertically and horizontally among the racks in order to develop mixed pallets. Figure 27 shows a carriage that has an interior which can accommodate multiple pallets.

fig 26. Mixed pallet build system.

Credit: Patent by Bastian Solution LLC (2014)

Fig 27. The robotic Automated Storage and Retrieval System (AS/RS) Credit: Patent by Bastian Solution LLC (2014)

As each mixed pallet is assembled, the AS/RS carriage returns to the unloading area. Conveyors are activated to discharge the pallet onto the floor from the carriage AS/RS. With the assistance of pallet trucks and conveyors, pallets can be unloaded from the system discharge point or other mechanism. The turntables are installed on a threedimensional robotic AS/RS carriage with rollers, drag chains, locating grippers, or other conveying mechanisms. Pallets are stored on conveyor belts, which are loaded on by forklifts. The forklift unloads pallets, and then reverses the process to replenish other products. Several aisles of robotic AS/RS can be used concurrently for throughput.

Fig 28. Mixed pallet build system at loading/unloading area Credit: Patent by Bastian Solution LLC (2014)

Fig 29. mixed pallet build system contains multi-deep pallets of items in every rack Credit: Patent by Bastian Solution LLC (2014)

In this design, which is like the one demonstrated in figure 26, the rack can manage more than one pallet of identical, similar items. In other words, instead of a single pallet, there are several boxes at each level. Nevertheless, the function is the same as described above in figure 29. This invention saves time since it does not demand to break down pallets, buffers or sequence each item. It furthermore assists save space in the warehouse, since complete pallets do not have to be crushed and mixed pallets are made of partial ones. It has also been demonstrated to be more cost-effective than other equivalent methods of the same type.

Robot in a pallet support shuttle

Upon reading the review (38), from the patent by Axium Inc., which includes a shuttle to transport the pallets and possesses a robot that picks up items from full pallets kept in neighbouring stations. One of our primary concerns is that the system can only move horizontally along its path, needing the warehouse to harvest pallets from the shelves and place them along the feed conveyors that are situated near the shuttle's path. Although the robot can grab objects of varying sizes from pallets and use different implements, including vacuums, side grippers, forks, etc. this flexibility is beneficial to efficiency.

Fig 31. Robot picking in a shuttle system. Credit: Morency (2008)

Automated Guided Vehicle (AGV) with Batch picking robotic arm

It was first patented by Bastian (39) in March 2017 using automated guided vehicles (AGV) which are deployed in warehouses and production environments to perform

various material handling functions without human interference. Commonly, these types of aids are exploited to improve safety and minimise overhead by reducing the number of employees needed to complete specific material handling duties.

Fig 32. Front elevation of an AGV system. Credit: Patent by Bastian Solution LLC (2017)

This figure 32 depicts the Drive Control System is equipped with a transport system for loading and discharging materials, such as totes, boxes, storage containers, SKUs, and other items, from and to the automated warehouse. The mechanism is constructed from a frame upon which a loader and an actuator can move in a vertical orientation, with the actuator containing (EoAT) engagement tools that grasp or otherwise engage the environment, Totes, for example, are put by the Robotic arm on the freight table. The robots have electro-mechanical grippers to load, unload, and reposition the totes on the loading table. The robots use detectors such as vision systems for smooth motion and exchanges with objects.

It mounts a loading table on the AGV. It is configured to accommodate several storage boxes. A frame stretches from the AGV, attaching the robot to that frame. The robotic

arm's frame is built from a gantry which allows it to revolve in relation to the rest of the AGV, and the arm can also move toward or away from the gantry. AGV's can hold multiple storage containers, making picking or placing easier. The gantry is handy for hands-on manipulation.

Fig 33. AGV planted to service a station performing batch picking. Credit: Patent by Bastian Solution LLC (2017)

In reality see fig 34 of an AGV, which are the examples produced by Bastian Solutions, the robotic batch picking, and the robot palletized.

Fig 34. batch picking by Robot and AGV picking with robotic arm. Credit: Bastian solutions

Chapter 3

In this chapter the statement of problem, objective of thesis and about methodology is discussed.

3.1 Statement of the problem

It has been previously studied by literature and research results relating to the storage and retrieval of products in warehouses. But the innovative project now emerges from Eurofork, which is innovating an intralogistics system that no one has seen before. ASRS delivered one new system which wholly utilized the shuttle and neither shuttle nor ASRS is needed anymore. A robot arm attached to shuttle will be deployed instead of shuttle up until transport as in current mobile devices.

Another company is wondering whether or not it would benefit from switching systems since multiple factors affect the economy of a system, such as the number of stock keeping units (SKUs), the number of orders and the length of time the ordering operation takes.

The purpose of this thesis is to compare the performance of automatic storage and retrieval systems in various scenarios. The aim of these comparisons is to assess if there is a better performance presented by the new system in multiple scenarios set in a synthetic atmosphere.

Given the early stages of the product development, the system has not been tested in a real-world environment. Accordingly, the problem addressed in this thesis is a comparison of two types of automated storage and retrieval systems under different scenarios. The thesis is formatted to make it simpler to read.

The proposed model is addressed as Eurofork's system, the other as new. For comparison, the models are described as OP for inside and outside the warehouse, respectively.

3.2 Objective of Thesis

The Italian company Eurofork offers an intriguing innovation, they propose a new way of making mixed pallets which is called a mixed pallet scheme. Because Eurofork is an Italian company that generates automated warehouses they are skilled in handling. The company's expertise in the area of manufacture of telescopic forks and its ability to produce a large quantity of telescopic forks sets it apart from the competition amongst its competitors. Further, it has developed its Esmart-shuttle division which practices the design and engineering of warehouse shuttle systems.

The ultimate objective of this thesis will be to model and develop a new innovative order picking system with an automated storage and retrieval system vehicle with a robotic arm that permits the construction of mixed pallets in the automated warehouse in order to fulfill orders.

There are two distinct objectives that will be elaborated in this study. One of the goals of this project is to evaluate new picking systems against Eurofork's one. The other aims to evaluate and compare the performance of two autonomous vehicle storage and retrieval system, which is building a mixed pallet inside the warehouse and outside of it.

As a means of achieving this objective, a warehouse storage and its operation will be simulated in a software program, Flexsim, providing performance measures as outputs. After obtaining all the required results, a comparison in between two ASRS simulation models will be then permitted to verify which one performs better.

Chapter 4

In this chapter, Eurofork's system, new system, components and requirements are discussed.

4.1 Eurofork's System

Several warehouses have racks that contain shelving with similar pallets and boxes. When the customer requests an order, the picking process starts by picking multiple pallets. Once the multiple pallets are picked, they are clustered into a single pallet. Since the Eurofork (40) Company has AVS/RS with shuttle-based system for order picking can be seen the figure 36.

Fig 36. Esmart Shuttle used in AVS/RS is loading/unloading a pallet. Credit: Eurofork

System description

Three main types of vehicles are used in the AVS/RS:

- 1. A vertical lift that moves vertically and allows access to different rack tiers.
- 2. A shuttle making its way through the aisle of the operating tier.
- 3. A satellite drives itself through the channels in the rack to store and retrieve pallets.

The satellite loads the pallet into the rack for storage, and the shuttle follows. Consequently, the two vehicles travel under the lift, which moves vertically in the direction of the final destination at which point the shuttle departs the lift. After traveling through the aisle, the shuttle gradually pulls the satellite along the channel towards the destination, then pulls out of the channel. As the satellite starts moving forward along the channel towards the destination, chosen according to a LIFO protocol, the satellite drops the pallet as soon as it reaches the location. The automated shuttles transfer similar pallets from rack space to the picking station, where the robot collects the ordered items from similar pallets and assembles the pallet.

New system

Esmart-shuttle is an intralogistics system that makes picking less complicated and makes the process simpler and faster. As more pallets are being constructed with mixed contents rather than full pallets, here we will discuss a method not based on shuttles.

The ASRS vehicle will find the pallets on its location with an attached robotic arm, assembling the products according to their positions rather than retrieving them to picking stations. See figure [37] & [38]. Therefore, it intends to speed up the delivery process by eliminating the need for retrieving the entire pallet and then storing it again once the product is picked. Besides that, it aims to increase the system throughput and reduce transit charges.

Order fulfilment process

- 1. The client requests an order.
- 2. The ASRS vehicle advances to the destination rack with empty pallets.
- 3. An ASRS vehicle with an attached robot arm begins to pick products from similar pallets on a rack and place them on the empty pallet.
- 4. After the robot picked the products, the empty pallet is loaded with various products, thus forming the mixed pallet.
- 5. The customer will receive a mixed pallet from the shipping department once it has been processed to fulfill your order.

6. A simulation tool, Flexsim, can be used for the development of a process in this type.

Fig37. An example of new technique with Robotic Arm attached to ASRS vehicle.

Credit: Flexsim

Fig38. mixed palletizing snapshot Credit: Flexsim

4.2 Components and Requirements

As part of an automated warehouse considering our new ASRS system, there are a few components, which were used for the development of the simulation models in software flexsim. They are described below.

- 1. Rack
- 2. ASRS Vehicle
- 3. Robotic Arm
- 4. Pallet
- 5. SKU's

Rack

Storage and racking is an integral component of warehouse infrastructure, as it can obstruct or accelerate warehouse operations. Warehouse layout influences racking greatly by defining aisle widths, shipping areas, and storage space. Warehouse racking system configurations include selective racks, drive-in and drive-through systems, pushback, and flow-rack systems.

A software flexsim rack is stationary and double deep. The main features of the rack are its dimensions, which describes the height and depth of the rack, number of arrays in X and Z directions, number of rows per bay, and the width of the slots and bays. Order picking takes place in the rack.

ASRS vehicle

As the name suggests, the automated storage and retrieval system works with racks. ASRS vehicles are specific types of vehicles developed for operating with racks. They can glide back and forth between the racks picking items up or dropping them off. They implement offset travel by only traveling along their own x-axis. As the offset travels, it will reach perpendicular with the destination location, lifting its platform too. If the offset travel is for a load or unload task, then as soon as the offset travel is complete, the flow item will continue on its platform, or off of its platform to its destination spot, using the user-specified loading/unloading time.

The new system uses the task executor to retrieve loads from the destination rack using a robotic arm.

Robotic Arm

The robot must lift flow items from their starting points and place them at their ending points. Commonly, the base of the robot cannot move. Instead, six joints revolve the flow items. In addition, it executes multiple tasks that require a rotation of its joints. In the Aspect system it is attached to the ASRS vehicle to attain the destination rack to carry out order picking and to place the items on the pallet in order to build mixed pallets.

Pallet

Pallets are flat fragments of wood used to lay down foundations for the distribution of goods. The pallet stores protects and transports goods that are handled by the materials handling equipment such as forklifts and pallet jacks.

Pallets are bulky goods units that can be stacked on top of each other and stored in racks with the same piece of product, depending on the amount ordered. In the new system, the order picking process is done by ASRS vehicle with robotic arm to mix SKUs into pallets to meet client requirements.

SKU

Inventory management relies on an SKU to keep track of inventory items, notably color, size, and variants. Inventory management in conjunction with an SKU helps to identify inventory items over lists, invoices, manufacturing orders, and purchase orders.

With the new system, we have 20 distinct types of SKUs, which symbolize 20 different types of boxes, and they are stacked in their assigned slots with their corresponding quantities.

The FlexSim software was used to develop a simulation model based on the five component requirements, their interactions, and the packaging and palletizing requirements. According to Euroforks Inc., palletizing is a crucial procedure for the manufacturing process. In the new system it does not require palletizing area to execute the process of shipping to another pallet since the trolley picks all the items ordered and assembles the pallets.

4.3 System Operating

As such, it is a task that is similar to ASRS vehicles and robotic systems in its design, but order picking system is a devilishly tricky undertaking due to the enormous amount of design limitations and variables. Solving these difficulties requires integrating information about the number of sku's, number of orders, order filling times, and internal constraints into each process step from the moment the product arrives at the warehouse to the moment the product departs for shipment. It focuses on the pallets that are stored on the rack with the same sku per pallet and builds mixed pallets with different sku's for the individual orders.

The flowchart Fig 39 illustrates the way order picking occurs as shown in the receiving procedure in the flexsim software. The process starts at receiving and begins with laying homogeneous pallets with a given quantity and in a specific slot in a particular bay and area. Whenever the order picking operation takes off, the volume on the pallets will decrease. As a result, the rack filling process is implemented in the same periods of time as the FCFS method, ensuring that the rack never runs empty.

Fig 39. Flowchart of new order picking system.

Credit: Author

This flow chart suggests that the customer order request starts the process and then all the steps need to be completed. In the process, we assumed a robotic arm is connected to the ASRS vehicle to pick the items from stored pallets, as it would not be so convenient to execute manually. During the journey, the robotic arm picks the empty pallet from the picking area and places it on its platform. Meanwhile, along with the vehicle asrs, a robotic arm can pick the ordered sku from stored pallets and place them on the pallet.

ASRS containerized vehicles travel horizontally throughout aisles, pulling their platforms to the target bay and level of the rack for order picking. Once all the items are picked, an empty pallet is put together from various kinds of items, then put into a mixed pallet that will be stored next to the packaging area for storage.

Chapter 5

This chapter is all about Model conceptualization and explanation of 3D simulation models which implements new order picking.

4.3 Model Conceptualization

Conceptualizing the model is important to the development of a realistic model and the goal of the project. It involves many elements that are necessary to evaluate the performance of the new simulation model.

In this thesis, there are two simulation models developed using software flexsim to perform a pick-and-place operation in an automated warehouse. An excellent 3D simulation provided by flexsim, a powerful, versatile, and user-friendly tool, allows you to model and enhance existing and proposed systems. This software is employed in manufacturing industries in assorted production, assembly line, job shop and in material handling such as conveyor systems and material handling machinery, AGV, packaging, warehousing, mining, logistics etc.

It largely contributes to enhancing the effectiveness of products, staffing, resource allocation, floor design, and asset management in an enterprise, and many companies have been implementing the software to improve techniques for allocating resources efficiently and also to reduce expenditures. A final profit is that a stakeholder communication tool delivers an effective manifestation of new proposed changes to a business system. Comparison implies both simulation models must perform experiments to get the results determining the performance through their output.

Process simulations can be constructed in Flexsim that work with process flows. Process flows include tools in flexsim that help us define logic in a project. This spares us hundreds of hours in project simulation and helps us model complex systems quickly.

If you are in the early stages of an improvement project, it is difficult to know what model you should chase. Michael Belote says, "You can get an idea at the high-level of which brainstormed idea will provide the best output, and then you can do detailed models in a much more focused way".

As you use Process Flow, the logic can be placed in one location, using its library attributes like Task sequences, Shared assets, Task Executors, etc. As you create logic with Process Flow, connectors may be created to carry it out correctly, allowing the 3D simulation model to function correctly.

5.2 Explanation of 3D simulation model

The main objective of the project is to perform "order picking to build mixed pallets" to accomplish this goal simulation models are used to run their experiments and compare results to choose which model had better performance. Two simulations have been developed but are not yet implemented.

- 1. Order picking inside the warehouse.
- 2. Order picking outside the warehouse.

5.3 Order picking Inside the warehouse.

This model performs order picking inside the warehouse to build the mixed pallet by using the logic created with process flow see figure 40.

Fig 40: 3D layout of order picking inside the warehouse.

Credit: Flexsim

The layout of order picking inside the warehouse 3D simulation implemented with the process flow technique which has the following steps.

- 1. Arrival slot check
- 2. Random order creation
- 3. Order picking in the warehouse.

In the first stage, the rack storage can be the first step. See figure 41. In the flow chart of arrival slot check, the entire process of fulfilment is described in step by step. In our model, the rack has 20 bays with 10 levels and 2 slots per bay, each. We would be wondering how to store the sku's in the rack, right? Initially, the simulation starts with two arrivals defined in the source of quantity with the quantity of thousand items of twenty kinds of sku's per source.

There are thousand items which will be divided into ten bays and get placed in their designated slots approximately after 30 seconds of delay. Furthermore, they will remain at the same destination location in its own respective SKU over the whole duration of the delay.

Fig 41. Arrivals slot check Credit: Flexsim

The quantities of items are decreased when order requests are served, in consequence the sku's quantities are also reduced. In this system the quantity is updated as items are picked from the stored pallets in their place of delivery. When the quantity reaches zero, it is set back to the number of items available in a full pallet.

On the basis of this logic the arrival slot check process will again repeat the same logic to fill the rack by following all the steps starting from, locating a place to store the sku's with the same quantity, choosing the destination bay and slot and transferring the items into their storage slots.

Fig 42. Random order creation and OP in the warehouse Credit: Flexsim

In fig 42., you can see the synopsis of order creation and order picking is a snapshot of it as integrated in Flexsim (https://www.flexsim.com) to minimize the computational time, the process flow tool was applied. An interactive flowchart environment that can be used to develop model simulations in a short time with negligible computational effort. The top operation is ordering which handles order requests.

Every 70 seconds, orders are produced randomly using a random order seed used to create only one order at a time; once it has been created it is assigned with an order number and different type of sku along with quantity, and all the order data will be automatically presented and saved in an order history.

In order to execute order picking in the warehouse, there are three main resources: the pallet area, the picker, and the Arm. These three assets work together to complete the picking process. Picking area is where the pallet is picked, and picker is an ASRS vehicle and Arm is the robot. Once the order has been produced, the pallet is established at the picking area, and then picker (ASRS vehicle) will travel to the picking area and reach for the pallet.

We assumed that this arm was an ASRS component attached to the retrieval vehicle, thus starting the retrieval process along with the vehicle following the FIFO procedure. The vehicle enters the zone and then loads the item onto the pallet which is on the platform. It only displays one item at a time once picking all the ordered sku's from stored pallets. After picking all of them it then leaves the zone and makes the mixed pallet.

The sub flow will have order data such as order number, sku type, sku quantity, and order completion time. In this model, each order contains the maximum quantity of 1 unit to 4 units per sku. All these data are compiled in order history for every order and batch them to form a cycle. Cycle times are used to compute performance measures under different scenarios. Picking order inside the warehouse will be done when the mixed pallet is ready to be removed from the vehicle and later is placed into the pallet storage area to be shipped.

5.4 Order picking outside the warehouse

To build the mixed pallet, this model utilizes the logic set up in the process flow to pick orders outside the warehouse. This process has cache zones to organize order picking.

Within the design of order picking inside the warehouse, the 3D simulation was implemented with the process flow technique with additional steps.

- 1. Cache initialization
- 2. Arrival slot check
- 3. Cache Refill
- 4. Random order creation

5. Order picking in the cache zone

Figure 44 illustrates the system's initialization with cache initialization see description. The cache is a separate storage environment used to store all the SKU types in the warehouse. With initial simulations running, the cache zone is filled with the quantity of 12 items of each sku type, based on the sub flow. Each sku type was assigned with a different color, so we have entirely 20 sku types with 20 colors.

Cache initialization

While the cache is being filled, the rack storage will begin the process with one arrival with the quantity of 2500 items (as shown in the fig 42) in 20 sku types and all the quantity will be dispersed into 10 bays and get stored in their storage slots within 30 seconds of delay time and we assume those are the stored pallets where each pallet contains twelve items. Additionally, the SKUs remain the same throughout the entire simulation. Once the quantity reaches zero and the pallet is empty, the pallet content is set back to the number of items that are available in a full pallet.

When the cache zone is empty, that is the process of refilling it. First, in each slot of the cache, a pallet is stored with the quantity of 12 items including the sku type. when order picking is being done, all the quantity data of the sku is batched in a cache slot, which clearly shows what type of sku is being picked and its quantity.

When the quantity in cache zone reaches zero, the ASRS vehicle drives in the aisle and picks up the pallets. Then it loads the quantity of 12 items of the SKU type on its platform according to the FIFO policy. After that, it waits for the slot to become empty. Once the slot is empty, it unloads the pallet into the destination slot. This process continues until all the orders are observed.

Fortunately, this process flow allows the picking of orders outside the warehouse to build mixed pallets. Since orders have been created randomly by random seed see fig 46, it only allows one order at a time to be created. Once the cache initialization is complete, it will be filled with different sku's at the given quantity.

Orders will be generated randomly following uniform distribution, with the variety of items between 1 to 10 and the minimum of 1 sku to 10 sku types from 20 sku's. Each time an order is generated, the robotic arm will pick the pallet from the picking area and begin loading the items from stored pallets from the cache zone and unload them to the mixed pallet by following FIFO policy.

By the same token, the ASRS vehicle will load the items from the storage rack to the cache zone as well to unload them. Both work at once only when the slots are empty. Once the Mixed pallet is ready with ordered sku's outside the warehouse (cache zone), it will be moved to the final pallet storage to perform shipping. Every order data will be stored and batched automatically in an order history to measure the cycle time.

Chapter 6

In this chapter complete analysis of experiments of two simulation models are explained with the results.

6.1 Analysis of Experiments

We used two simulation models developed to evaluate performance measurements. See fig 47. Analysis of experiment results is a step-by-step process used to retrieve raw data and show how results from the experiments are interpreted in flexsim.

Fig 47. Analysis of experiment results

Credit: Author

In a nutshell, an experiment means a set of variables, replications and situations that are repeated using the same simulation model. We have performed two experiments for both inside and outside the warehouse simulation models using different scenarios.

What is a Scenario?

In a simulation every time a simulation model is run, a scenario is defined. This means it's important to know how the variables will change. In our first experiment we are using five different variables with 32 different scenarios for two simulation models and 10 replications for each configuration. For the second experiment, variables were the same for two simulation models with 42 different scenarios and 15 replications of each configuration.

So, we have defined some fixed variables related to the system configuration for both the simulation models.

- 1. Number of Maximum Different SKU
- 2. Number of Maximum SKU
- 3. Order inter arrival time
- 4. Picking time
- 5. Number of Minimum Different SKU
- 6. Number of Minimum SKU

How the above-mentioned variables were used in scenarios and experiment tests will be discussed in the following sections.

6.2 Experiment Results

• Experiment 1

Picking inside and outside the warehouse with 32 scenarios

• Experiment 2

Picking inside and outside the warehouse with 42 scenarios

The two experiments we have done both were done for comparisons of the two simulation models from different scenarios, as opposed to the aforementioned outside Warehouse simulation model. See Fig 48. Picking inside the warehouse, below table illustrates that 16 different scenarios where defined, with 6 different variables each, and three variables changing four levels each, they are; number of maximum different sku (2,4,8,12) number of maximum sku (2,4,8,12) and the order inter arrival time in seconds (200,400,800,1200).

Starting from one pallet being built per time, robot picking time is (0) which means inside the warehouse, and the minimum number of different sku and the minimum number of sku variables are ranked as (1). Different dimensions of an order were used to lead the simulation from order arrival to the order fulfillment.

Scenarios	Number of Maximum Different SKU	Number of Maximum SKU	Order Inter Arrival Time	Picking Time	Number of Minimum Different SKU	Number of Minimum SKU
1	2	2	200	0	1	1
2	2	4	400	0	1	1
3	2	8	800	0	1	1
4	2	12	1200	0	1	1
5	4	2	200	0	1	1
6	4	4	400	0	1	1
7	4	8	800	0	1	1
8	4	12	1200	0	1	1
9	8	2	200	0	1	1
10	8	4	400	0	1	1
11	8	8	800	0	1	1
12	8	12	1200	0	1	1
13	12	2	200	0	1	1
14	12	4	400	0	1	1
15	12	8	800	0	1	1
16	12	12	1200	0	1	1

fig 48. Experiment 1 Picking inside the warehouse results.

Consider the scenario 1 to 16, where the quantity of the item was chosen randomly from minimum and maximum values for a single order which ranges from 1 to 12. Table 1 - Scenario 1 and Column 4 - Using exponential distribution to calculate order inter-arrival time divide it by the number of consecutive orders. Then we find the average 200 seconds that each order takes. As outlined earlier, scenario (4,8,12,16) has the highest order completion time, 1200 seconds, when compared to the others because, as the quantity of sku has increased simultaneously, order arrival rate has increased. For these simulations, the minimum time required to complete the order is 200 seconds and the maximum is 1200 seconds for each scenario.

The figure 49 shows the picking outside the warehouse. It involves building a mixed pallet outside the warehouse, while using 16 simulation runs with 16 variables and 16 scenarios. All the dimensions of an order were the same when picking outside the warehouse but the robot picking time is intialised as (1). In the simulations, on average the minimum time required to complete an order is 200 seconds and the maximum time is 1200 seconds. As the number of skus has grown, the time needed to complete an order has grown as well.

Scenarios	Number of Maximum Different SKU	Number of Maximum SKU	Order Inter Arrival Time	Picking Time	Number of Minimum Different SKU	Number of Minimum SKU
17	2	2	200	1	1	1
18	2	4	400	1	1	1
19	2	8	800	1	1	1
20	2	12	1200	1	1	1
21	4	2	200	1	1	1
22	4	4	400	1	1	1
23	4	8	800	1	1	1
24	4	12	1200	1	1	1
25	8	2	200	1	1	1
26	8	4	400	1	1	1
27	8	8	800	1	1	1
28	8	12	1200	1	1	1
29	12	2	200	1	1	1
30	12	4	400	1	1	1
31	12	8	800	1	1	1
32	12	12	1200	1	1	1

Fig 49. Experiment 1-Picking outside the warehouse results.

Fig 50. Clustered column chart effects of 16 scenarios

The above figure 50 shows the effects of three variables of experiment 1 performance in clustered column charts., related to the first three vertical columns in figures 48 and 49. The green line, which represents the order inter arrival time, yellow line is the number of maximum sku and orange line is the number of maximum different sku indicates the performance of the system by the interaction of all three variables considered in the analysis. Thus, these variables are critical to evaluate the system's performance.

Scenarios	Number of Maximum Different SKU	Number of Maximum SKU	Order Inter Arrival Time	Picking Time	Number of Minimum Different SKU	Number of Minimum SKU
1	2	4	400	0	1	1
2	2	8	800	0	1	1
3	2	12	1200	0	1	1
4	4	4	400	0	1	1
5	4	4	400	0	1	1
6	4	8	800	0	1	1
7	8	12	1200	0	1	1
8	2	12	1200	0	1	1
9	2	4	400	0	1	1
10	2	8	800	0	1	1
11	4	12	1200	0	1	1
12	4	4	400	0	1	1

13	4	8	800	0	1	1
14	8	12	1200	0	1	1
15	20	12	1200	0	1	1
16	20	12	1200	0	1	1
17	4	4	400	0	2	2
18	4	8	800	0	2	4
19	4	12	1200	0	2	6
20	8	12	1200	0	4	6
21	20	12	1200	0	10	6

Fig 51; Experiment 2-Picking inside the warehouse results.

In Experiment 2, there are 42 scenarios divided into 21 scenarios in which half the data is utilized for within the warehouse and half of the data is utilized for outside the warehouse which automatically shows the difference regarding the picking time. If the picking time is "0" then it is considered picked inside the warehouse and if it is "1" then it is considered picked outside the warehouse. It is clearly shown in both Fig 51 and 52.

Additionally, there are significant differences between the system's performance in terms of its results compared to experiment one: 21 different scenarios were defined with 6 different variables as in experiment one, and each of the 5 variables were changing at different levels, they are number of maximum different sku (2,4,8,20) number of maximum sku (4,8,12) order inter arrival time in seconds (400,800,1200) number of minimum different sku (1,2,4,10) number of minimum sku (1,2,4,6).

In regard to scenarios, every scenario has different order dimensions with different variables to fulfill a single order. It has been discussed earlier that whenever the quantity of sku has been increased, simultaneously the order inter arrival time has increased. As a special case, take a scenario where the number of sku's are 20 and the maximum quantity is 12, and in scenario 14, the number of sku's are 8 and the maximum quantity is 12.

For both the scenarios 14 and 15, there is still no difference in order inter arrival time since both scenarios are executed in 1200 seconds, since it is verified that it does not impact the order cycle time since the cycle time is computed from the moment the ASRS vehicle starts processing the order not from the time the order arrives.

The scenario 17 demonstrated that the number of different and minimum sku was not the same, they altered depending on the order dimensions but in relation to the effect of the number of sku's stored, they observe that the higher the quantity of sku as the longer the order cycle time. Even though variables were changing between order dimensions, the order cycle time remained unchanged. It was higher when the quantity of sku had increased and lower when the quantity of sku was decreased.

Scenarios	Number of Maximum Different SKU	Number of Maximum SKU	Order Inter Arrival Time	Picking Time	Number of Minimum Different SKU	Number of Minimum SKU
22	2	4	400	1	1	1
23	2	8	800	1	1	1
24	2	12	1200	1	1	1
25	4	4	400	1	1	1
26	4	4	400	1	1	1
27	4	8	800	1	1	1
28	8	12	1200	1	1	1
29	2	12	1200	1	1	2
30	2	4	400	1	1	4
31	2	8	800	1	1	6
32	4	12	1200	1	1	2
33	4	4	400	1	1	4
34	4	8	800	1	1	6
35	8	12	1200	1	1	6
36	20	12	1200	1	1	1
37	20	12	1200	1	1	6
38	4	4	400	1	2	2
39	4	8	800	1	2	4
40	4	12	1200	1	2	6
41	8	12	1200	1	4	6
42	20	12	1200	1	10	6

Fig 52; Experiment 2-Picking outside the warehouse

If you examine the scenarios 22 to 42, the order dimensions are similar. However, the picking was carried out outside the warehouse. Therefore, there is no difference between scenarios 1 to 22. However, if you look at scenario 29, variable 6 of the table of fig52, the number of minimum sku has changed from 1 to 2 and it has been increasing its value to 6 until scenario 42.

As a consequence, both scenarios 21 and 42 have the highest order dimensions including a maximum of 20 different sku's and a minimum of 10 different skus. For a maximum quantity of 12, the order interval time is 1200 seconds, a maximum value as per our order dimensions.

Significantly, the order cycle time was the same between scenarios 21 and 42 for picking inside and outside warehouses with same order dimensions. While there is no major difference between picking by robots and placing an order, it is anticipated that the number of the mixed pallets is set to increase, therefore the ASRS vehicle will have to travel to the rack locations to pick and store all the items ordered.

Fig 53. Clustered column chart effects of 21 scenarios

As we see the above fig 53, the effects of three variables of experiment 2 performance are illustrated in the clustered column charts., in relation to the first three vertical columns of fig 51 and 52. Considering the green line which is the order inter arrival time, yellow line is no. of max sku and orange line is no. of max different sku shows their performance by all three variables considered in the analysis. See the Scenarios 15,16 and 21 has the max sku limit is '20' and the order arrival time curve has been changing from higher to lower and from lower to higher depending upon the quantity of sku's. The least order cycle time to complete a single order is 400 seconds and highest is 1200 seconds for different scenarios in both inside and outside the warehouse simulations.

6.3 Evaluation of Performance Measures

Finally, four different performances measures were collected they are:

1.ASRS Distance

2.Mean Service Time

3.Output

4.Mean Picking time

The above four are the key performance indicators (Kpi's) used to get the statistical outputs for two simulation models. For every kpi, the raw data has been gathered and transformed into a data table that was generated by statistics collector. Usually, A statistic collector would gather the raw data from the objects and events which were specified during a simulation run. Replication plots and frequency histogram graphs have been generated by using the data table for all the kpi's.

For comparison, we used only Mean service time data for two experiments to evaluate the performance of both inside and outside warehouse simulation models. Other kpi's data tables were collected and presented in the Appendix section below for the reference. After the data collection, it was carried an analysis of mean and variance to identify the factors that impacts the performance, Finally, the data were exported and recorded into an Excel file. Using this data, it was verified if the inside or outside warehouse picking method was equal or higher after comparison process finished.

	Summary							
	Me	an (90% Conf	ide	nce)	Sample Std Dev	Min	Max
Scenario 1	133.5	<	141.2	<	149.0	14.9	116.4	171.9
Scenario 2	128.4	<	137.5	<	146.5	17.5	110.7	169.4
Scenario 3	160.3	<	169.2	<	178.1	17.2	139.9	204.0
Scenario 4	194.1	<	212.8	<	231.5	36.1	148.3	279.7
Scenario 5	240.1	<	263.5	<	286.8	45.0	199.1	344.6
Scenario 6	225.3	<	240.6	<	255.8	29.4	203.5	309.3
Scenario 7	257.3	<	287.1	<	317.0	57.5	184.6	362.0
Scenario 8	326.9	<	359.2	<	391.6	62.4	272.8	465.0
Scenario 9	785.3	<	979.0	<	1172.8	373.7	464.6	1462.6
Scenario 10	537.1	<	604.8	<	672.5	130.5	414.8	854.5
Scenario 11	537.7	<	661.2	<	784.7	238.2	371.0	1314.5
Scenario 12	544.0	<	731.7	<	919.3	361.9	365.1	1738.3
Scenario 13	1666.8	<	1959.3	<	2251.9	564.2	1009.9	2707.4
Scenario 14	872.4	<	1130.0	<	1387.6	496.8	408.3	1954.3
Scenario 15	853.0	<	1148.6	<	1444.3	570.3	588.1	2239.3

Scenario 16	875.2	<	1209.1	<	1542.9	643.9	454.9	2446.9
Scenario 17	51.7	<	54.8	<	57.9	6.0	48.1	69.0
Scenario 18	67.6	<	74.6	<	81.6	13.5	58.5	105.4
Scenario 19	115.7	<	139.7	<	163.7	46.3	76.0	236.3
Scenario 20	166.9	<	191.3	<	215.7	47.0	128.0	254.7
Scenario 21	102.0	<	133.1	<	164.2	60.0	71.2	257.6
Scenario 22	135.1	<	166.3	<	197.5	60.3	83.6	291.6
Scenario 23	229.0	<	258.8	<	288.6	57.5	198.5	354.4
Scenario 24	324.8	<	354.2	<	383.7	56.9	262.8	497.5
Scenario 25	373.0	<	505.7	<	638.5	256.1	195.8	944.1
Scenario 26	367.7	<	452.1	<	536.5	162.9	223.2	735.2
Scenario 27	446.3	<	510.9	<	575.5	124.6	368.3	730.7
Scenario 28	596.1	<	752.2	<	908.4	301.2	436.6	1495.8
Scenario 29	897.5	<	1065.2	<	1232.8	323.4	584.9	1712.8
Scenario 30	797.1	<	993.1	<	1189.2	378.2	414.3	1472.9
Scenario 31	902.6	<	1077.3	<	1251.9	336.9	485.1	1796.0
Scenario 32	1073.8	<	1275.8	<	1477.9	389.7	982.2	2294.4
TEST1	392.2	<	431.4	<	470.6	75.6	315.3	572.6
TEST2	345.2	<	422.2	<	499.3	148.6	265.9	754.1

Fig 54. Mean Service time data table of experiment 1

Considering the data of above fig 54; There were four factors used for statistics called Mean, sample standard Deviation, Minimum and maximum. The mean service time is the time where number of mixed pallets have been served under a fixed time period. Basically, in statistics, The confidence level indicates the probability. So, here the confidence interval is 90% that implies that we expect 90% of the interval which estimates there would be a statistically significant difference between the data. Sample standard deviation is the measurement of a distance between each data point and the mean. Simply we can say how much our sample data is distributed over the mean time.

At last, two statistical tests have done which is a way of mathematically proving that a certain statistic is reliable. It is to make a decision based upon the experiment result and the main intention is to determine whether we have got enough evidence to reject or accept a conclusion.

Replications Plot

Fig 55. Box chart of replications for scenarios and tests

Replications are nothing but getting the exact result when an experiment is repeated and also it is a single run of a simulation for a specific scenario. we have run the experiment with 32 scenarios and two statistical tests to verify whether the same result was obtained to detect smaller changes if needed. For each scenario, the data of maximum and minimum values ranging from o to 2500 were clearly shown in fig 54; by using box chart.

Fig 56. Histogram chart for frequency of scenarios

From fig 54; The data of the second column was taken as 'Mean' until scenario 16 which was considered as the picking inside the warehouse and from 17 to 32 as picking outside the warehouse. Same applies for standard deviation see the fig 55.

	Mean			Standard Deviation		
Scenarios	Inside	Outside	Mean I/O	Inside	Outside	Std.Dev I/O
1	141.2	54.8	258%	14.9	6	248%
2	137.5	74.6	184%	17.5	13.5	130%
3	169.2	139.7	121%	17.2	46.3	37%
4	212.8	191.3	111%	36.1	47	77%
5	263.5	133.1	198%	45	60	75%
6	240.6	166.3	145%	29.4	60.3	49%
7	287.1	258.8	111%	57.5	57.5	100%
8	359.2	354.2	101%	62.4	56.9	110%
9	979	505.7	194%	373.7	256.1	146%
10	604.8	452.1	134%	130.5	162.9	80%
11	661.2	510.9	129%	238.2	124.6	191%
12	731.7	752.2	97%	361.9	301.2	120%
13	1959.3	1065.2	184%	564.2	323.4	174%
14	1130	993.1	114%	496.8	378.2	131%
15	1148.6	1077.3	107%	570.3	336.9	169%
16	1209.1	1275.8	95%	643.9	389.7	165%

Fig 57. Mean and standard deviation results of experiment 1

As per the data table of Fig 57. Mean and standard deviation results of experiment 1, it clearly shows in the 4th column "Mean I/O" and 7th column "Std.Dev I/O" about the percentage level of both inside and outside warehouse picking. If we compare the percentage of both mean and standard deviation of each scenario, we consider below or equal to 100% is best to perform picking inside the warehouse and more than 100% is best for outside picking.

Looking at the scenario 16, it has got 96% which is best among all and scenario 12, 8, are also showing better results. We can also consider the scenarios 4, 7, and 15, But if we take a look on standard deviation scenario 3 has almost 37% which is faster to perform picking inside the warehouse. Also, the scenarios, 4,5,6,7 and 10 are showing

better results. If we compare the results of both mean and variance together scenario 7 has best output results.

Fig 58: Clustered column chart of Mean I/O of Exp-1

Fig 59: Clustered column chart of Standard Deviation I/O of Exp-1

At last, two statistical tests have done which is a way of mathematically proving that a certain statistic is reliable. It is to make a decision based upon the experiment result and the main intention is to determine whether we have got enough evidence to reject or accept a conclusion.

Test 1	392	431	471	76	315	573
Test 2	345	422.2	499	149	266	754

Fig 60: Test Results of Service Time

Test 1	204	205	206	2	201	208
Test 2	214.5	222.6	230.8	16	202	261

Fig 61: Test Results of Picking Time

Regarding the results of service time and picking time in fig 60&61, we got the same statistical output for two tests in service time i.e., 0.183013 then there is no significant difference. But we see the different output for picking time i.e., -3.670097 is for test 1 and 3.670097 is for test 2.

TEST 1 IN	TEST 2 OUT
204	203
204	221
207	226
204	224
206	212
206	261
204	223
207	232
207	220
201	202
203	202
207	202

Fig 62: Test results of Inside and Outside picking
From the fig 63. To perform the tests for both inside and outside simulation models, order dimensions are same and the real time to pick the object is also same for two models. See the fig 64; blue line is the result of test in and orange line is the result of test out. According to the line chart outside picking is a bit faster compare to the inside picking.

63. Line chart results of Test In and Test Out

See the fig 64; Results of experiment 2 which is creating a pallet outside the warehouse. The data of mean and standard deviation has taken from the experimentation report of service time provided in appendix. As verified by the results, it is considered that if mean and standard deviation I/O result is below 100% then it is better to perform picking inside the warehouse or it is greater than 100% it will be best to perform picking outside the warehouse.

				Stan	dard	
	Me	ean		Devia	ation	
			Mean			Std.Dev
Scenarios	Ins	ide	I/O	Ins	I/O	
1	143.7	85.3	168%	10.9	11	99%
2	183.1	141	130%	19.1	25	76%
3	225.5	195.9	115%	26.8	36.3	74%
4	253	167	151%	34.7	25	139%
5	301.2	264.5	114%	43.1	53.9	80%
6	374	372	101%	61.2	100.3	61%
7	770 709.4		109%	225.3	216.4	104%
8	143.7 104.5		138%	10.9	13.6	80%

9	183.1	195.3	94%	19.1	22.2	86%
10	225.5	280.7	80%	26.8	38.5	70%
11	295.4	222.8	133%	48.1	43.2	111%
12	393.7	375.7	105%	56	77.4	72%
13	506.8	511.4	99%	81	121	67%
14	1162.4	1087.8	107%	409.1	380.9	107%
15	2797.4	2568.8	109%	933.5	1152.9	81%
16	3979.3	3750	106%	1315.8	1576.6	83%
17	351.3	256.5	137%	49.6	36.6	136%
18	458.8	427.4	107%	61.7	78.2	79%
19	609.8	582	105%	74.5	131.4	57%
20	1879.8	1493.1	126%	676.7	404.8	167%
21	5546.8	5428	102%	1172.4	1085.7	108%

Fig 64. Mean and standard deviation results of Experiment 2

Looking at the data table, scenario until 21 which was considered as the picking inside the warehouse and from 22 to 42 as picking outside the warehouse. Same applies for standard deviation. Scenario 10 has 80% of mean and 70% of variance among all the scenarios, it has best results. In this case it is best to perform picking both inside and outside because most of the scenarios has better results. But comparing to the mean standard deviation results are showing best output and almost 80 percent of the scenarios are showing below 100%.

Fig 65: Clustered column chart of Mean I/O of Exp-2

6.4 Comparison between the simulation models

Comparing the results of both simulation models when perform order picking, it was verified that both the models shown better results but picking outside the warehouse simulation presents a better performance than the picking inside the warehouse simulation in all scenarios analysed. Additionally, the picking outside the warehouse simulation model is less impacted by an increase in the number of SKU's stored. Which shows that this model works better than the other model in warehouses that deals with a higher number of SKU's.

Regarding the order inter arrival time as verified by the results, it also shows a higher performance than the first model when the order arrival rate increases. For smaller arrival rate the system does not present good performance in relation to the quantity of orders completed. This happens because both the models are able to build the mixed pallets during the interval between arrivals. The higher the arrival rate the more performance is shown.

About the robotic arm picking, it is a crucial variable for both the models to measure the performance. As the travelling process are connected to the picking and palletizing the items from the rack. When the results are verified it has shown that robotic arm picking items and making a mixed pallet outside the warehouse has better performance than the inside the warehouse, because storing the items in the cache zone and picking the ordered items from the cache zone happens simultaneously. So, this model can execute both the process at the same time.

Besides, in the simulation model maximum and minimum number of sku's are stored based on the order requirements. As a conclusion both the simulation models were developed in this study, the results show that the second model tends to work better than the first one when the operation involves a high quantity of SKU's.

7.Conclusions

This study was designed to compare the features of euro fork's system with the new autonomous vehicle storage and retrieval system (AVS/RS) system and evaluate their performance to make comparisons between the two simulation models. As the demand for mixed pallets by warehouse customers increases, a new system was developed and designed. The "Eurofork" an Italian company wishes to combine the picking and palletizing processes in a better way to streamline the warehouse operations.

On both systems, order picking operations are mandatory and are performed by robotic arm. In the new system the order picking process occurs in front of storage racks and in the cache zone. In the new system, picking operations show impact on overall performance compared to eurofork's system as two simulation models are used to build mix pallets inside and outside the warehouse.

This is why the new system's performance was measured through simulation to perform its operation in a virtual warehouse, and the experiment results were used to make comparison and evaluation between the two simulation models to verify whether the new system will outperform the euro fork's system. Simulations were conducted under different scenarios to see how the variables impact on its performance and how the performance measures were calculated to get the output data to be compared.

In the end, experiments were conducted on two simulation models in order to compare which model gave better results. A quantitative analysis was done in determining which of the simulation models performs better, taking into consideration the data from all the scenarios and performance measures. Their results demonstrate that the new system has demonstrated superior results in order picking both inside and outside the warehouse. However, the picking outside of the warehouse simulation model has better performance than the inside warehouse as it involves order picking operation with high quantity of sku. However, both the simulation models are equally good as they are not manually tested and examined, so we can implement both the models as per company needs.

However, the picking outside of the warehouse simulation model has better performance than the inside warehouse as it involves order picking operation with high quantity of sku. However, both the simulation models are equally good as they are not manually tested and examined, so we can implement both the models as per company needs.

References

1. Edward, F. Supply Chain Strategy: The Logistics of Supply Chain Management. New Delhi : McGraw-Hill Education, 2002 .

2. Flexible reconfiguration of AVS/RS operations for improved integration with manufacturing processes,. Giulia Bruno, Gianluca D'Antonio. s.l. : ELSEVIER, 2018. Vol. 78.

3. Models for warehouse management: Classification and examples. van den Berg, J.P., van den Berg, J.P. and Zijm, Willem H.M. 0925-5273, s.l. : Elsevier, 1999, Vol. 59. 1-3.

4. Warehouse Design and Control: a framework and a literature review. B. Rouwenhorst, B. Reuter, V. Stockrahm, Geert-Jan van Houtum, Ronald Mantel, Willem H.M. Zijm. 122, s.l. : European journal of operational research, 2000, Vol. 122.

5. Robotized Warehouse Systems: Developments and Research Opportunities. Kaveh Azadeh, M. Koster, D. Roy. s.l. : ERIM report series research in management Erasmus Research Institute of Management, 2017.

6. Automated Storage and Retrieval System Market Insights. s.l. : MArkets and Markets, 2019.

7. CLASSIFICATION AND DESIGN OF ORDER PICKING. GOETSCHALCKX, M. and ASHAYERI, J. s.l. : Logistics World, 1 February 1989, Vol. 2. 99-106.

8. Drury, Jolyon. Towards More Efficient Order Picking. s.l. : Institute of Materials Management, 1988.

9. Design and control of warehouse order picking: A literature review. René de Koster, Tho Le-Duc, Kees Jan Roodbergen. 2, s.l. : European Journal of Operational Research, 2007, Vol. 182.

10. Automated case picking . Holste, Dan Gilmore and Cliff. s.l. : Supply chain digest, October 15, 2009.

11. Design of order picking system. Dallari, F., Marchet, G. & Melacini, M. May 2009, s.l. : The International Journal of Advanced Manufacturing Technology, 2008, Vol. 42.

12. DESIGNING A CELLULAR BASED FULLY AUTOMATED CASE PICKING SYSTEM . Ruzayqat, Mohammed. s.l. : Duisburg-Essen, june 2016.

13. A structured procedure for analysis and design of order pick systems. SHARP, CHANG S. YOON & GUNTER P. 1994.

14. A survey of literature on automated storage and retrieval systems. Vis, Kees Jan Roodbergen and Iris F.A. Rotterdam, Amsterdam : European Journal of Operational Research , April 2009.

15. Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS). Manzini, Riccardo. 14, s.l. : International Journal of Production Research, 09 Feb 2016, Vol. 54.

16. SIMULATION ANALYSIS OF SHUTTLE BASED STORAGE AND RETRIEVAL SYSTEMS. T. Lerher,

Y. B. Ekren, Z. Sari. s.l. : International Journal of Simulation Modelling, 2015 .

17. Models for automated storage and retrieval systems: a literature review. Jean Philippe Gagliardi, Jacques Renaud and Angel Ruiz. 24, s.l. : International Journal of Production Research, 08 Dec 2011, Vol. 50.

18. Simulation-based regression analysis for the rack configuration of an autonomous vehicle storage and retrieval system. Heragu, Banu Yetkin Ekren anda Sunderesh S. 21, Louis Ville : International Journal of Production Research, 07 Dec 2009, Vol. 48.

19. An efficient simulation model for rack design in multi-elevator shuttle-based storage and retrieval system. Zhao Ning, Luo Lei, Zhang Saipeng, Gabriel Lodewijks. Beijing, Xueyuan Road 30, Haidian District, Beijing 100083, PR China : Elsevier, 2016, Vol. 67.

20. Design of Experiments for Identifying the Throughput Performance of Shuttle-Based Storage and Retrieval Systems. Lerher, Tone. Celje, Slovenia : Elsevier, 2017, Vol. 187.

21. Simulation -Based Performance Analysis of a Miniload Multishuttle Order Picking System. M. Güller, T. Hegmanns. s.l. : Procedia CIRP, 2014, Vol. 17.

22. Design and Simulation of Storage Location. Mao, Guiliang Zhou and Lina. Huaian, China : I.J. Intelligent Systems and Applications, 2010, Vol. 2.

23. https://mixedpalletizing.com/en-gb. [Online] OPTIMIZED LOGISTIC SOLUTIONS, August 2018.

24. Manufacturer's mixed pallet design problem. Hande Yaman, Alper Sen. s.l. : European Journal of Operational Research, 2008.

25. WAREHOUSE & DISTRIBUTION SCIENCE. John J. BARTHOLDI, III, Steven T. HACKMAN. Atlanta : European journal operational Research, 19 August 2014.

26. Robots in Warehousing. Larry M. Sweet, PhD. Orlando, Florida USA : Orlando World Marriott Center, February 20-22, 2013.

27. Robotics in the Warehouse: Changing the Fulfillment Paradigm. Robotics, Locus. s.l. : Logistics Management Magazine, August 27, 2019.

28. Nanalyze. 7 Warehouse Robots for Retail Automation. s.l. : The Nanalyze Disruptive Tech Portfolio Report, August 3, 2018.

29. https://www.inviarobotics.com/our-system/. Invia Robotics. [Online] 2015.

30. https://www.exotec.com/. Exotec. [Online] 2015.

31. https://plusonerobotics.com/. Plus one Robotics . [Online] Arming Warehouse Robots.

32. https://www.iamrobotics.com/. IAM Robotics . [Online] Swift Warehouse Robots, 2012.

33. https://www.swisslog.com/en-us/newsroom/news-press-releases-blogposts/2019/04/the-automation-dream-team---blog-post. Swis Log. [Online] The Automation Dream Team: How Robotic Item Picking Works with AutoStore to Increase Speed and Productivity, April 25, 2019.

34. Tenorth, Dr Moritz. Toru Robots. Toru Robots, with Dr. Moritz Tenorth. 21 jan 2017.

35. Tractica. https://www.tractica.com/about/overview/. Tractica . [Online] 2017.

36. CECHIM, RAYANE GIULIANA DE OLIVEIRA. Performance evaluation of a new intralogistics systems. san paulo : http://pro.poli.usp.br/wp-content/uploads/2020/03/TF_RAYANECECHIM_V7.pdf, 2019.

37. II William A, Britt Calloway, Bastian. Bastian Solution LLC. Robotic automated storage and retrieval system mixed pallet build system. November 2014.

38. Sylvain-Paul Morency, Axium, Inc. Order picking system. US20080267759A1 2008.

39. BASTIAN, II, WILLIAM A., JONES, AARON M., BASTIAN SOLUTIONS, LLC. Automated guided vehicle (AGV) with batch picking robotic arm. US10137566 27 November 2018.

40. https://www.eurofork.com/en. [Online] Eurofork.

Appendix

```
int Nrack = 1;
int Nbays = 20;
int Nlevels = 10;
int Nslots = 2;
string SNodeA;
string SNodeB;
int value;
for(int Crack=1;Crack<=Nrack;Crack++)</pre>
£
for(int Cbays=1; Cbays<=Nbays; Cbays++)</pre>
 {
      for(int Clevels=1; Clevels<=Nlevels; Clevels++)</pre>
      ł
             for(int Cslots=1; Cslots<=Nslots; Cslots++)</pre>
             ł
             value = duniform(1,20);
             SNodeA =
concat("/Rack",numtostring(Crack),">variables/bays/",numtostring(Cbays),"/levels/",
numtostring(Clevels),"/slots/",numtostring(Cslots),"/slotLabels/Sku");
             treenode NodeA = model().find(SNodeA);
             NodeA.value = value;
             SNodeB =
concat("/Rack", numtostring(Crack), ">variables/bays/", numtostring(Cbays), "/levels/",
numtostring(Clevels),"/slots/",numtostring(Cslots),"/resetLabels/Sku");
             treenode NodeB = model().find(SNodeB);
             NodeB.value = value;
             }
      }
}
}
return 0;
int Nrack = 2;
int Nbays = 20;
int Nlevels = 10;
int Nslots = 2;
string SNodeA;
string SNodeB;
int value;
for(int Crack=1; Crack<=Nrack; Crack++)</pre>
ł
      for(int Cbays=1; Cbays<=Nbays; Cbays++)</pre>
      ł
             for(int Clevels=1; Clevels<=Nlevels; Clevels++)</pre>
```

```
{
                    for(int Cslots=1; Cslots<=Nslots; Cslots++)</pre>
                    {
                    value = Cbays;
                    SNodeA =
concat("/Rack",numtostring(Crack),">variables/bays/",numtostring(Cbays),"/levels/",
numtostring(Clevels),"/slots/",numtostring(Cslots),"/slotLabels/Sku");
                    treenode NodeA = model().find(SNodeA);
                    NodeA.value = value;
                    SNodeB =
concat("/Rack",numtostring(Crack),">variables/bays/",numtostring(Cbays),"/levels/",
numtostring(Clevels),"/slots/",numtostring(Cslots),"/resetLabels/Sku");
                    treenode NodeB = model().find(SNodeB);
                    NodeB.value = value;
                    }
             }
      }
}
return 0;
```

Experimentation Report

Number of Scenarios:	34
Number of Replications Per Scenario:	12
Warmup Time:	0

	ASRS distance														
	Summary														
	Mean (90% Con				lence)	Sample Std Dev	Min	Max							
Scenario 1	735	<	818	<	901	160	615	1172							
Scenario 2	351	<	390	<	430	76	301	533							
Scenario 3	167	<	203	<	239	69	111	331							
Scenario 4	141	<	168	<	194	51	92	275							
Scenario 5	1072	<	1146	<	1219	142	1006	1417							
Scenario 6	543	<	595	<	647	101	450	724							
Scenario 7	273	<	318	363	87	194	457								
Scenario 8	212	<	265	317	102	95	443								
Scenario 9	1485	<	1551	<	1617	127	1328	1692							

Scenario 10	922	<	1005	<	1088	161	749	1264
Scenario 11	454	<	528	<	603	143	299	846
Scenario 12	345	<	448	<	552	199	191	849
Scenario 13	1569	<	1617	<	1666	93	1462	1738
Scenario 14	1012	<	1119	<	1227	207	756	1461
Scenario 15	601	<	723	<	845	236	381	1099
Scenario 16	465	<	568	<	670	198	251	962
Scenario 17	2	<	23	<	45	42	0	148
Scenario 18	3	<	14	<	26	23	0	63
Scenario 19	23	<	62	<	101	75	0	250
Scenario 20	57	<	92	<	127	68	0	210
Scenario 21	126	<	204	<	282	150	20	434
Scenario 22	96	<	160	<	224	123	0	370
Scenario 23	111	<	165	<	218	103	32	298
Scenario 24	163	<	216	<	270	103	24	407
Scenario 25	501	<	592	<	683	175	340	788
Scenario 26	394	<	497	<	599	198	199	774
Scenario 27	314	<	437	<	560	237	189	909
Scenario 28	393	<	529	<	665	262	149	1001
Scenario 29	805	<	873	<	940	130	673	1146
Scenario 30	655	<	767	<	880	217	454	1053
Scenario 31	639	<	775	<	912	264	273	1028
Scenario 32	690	<	781	<	873	176	528	1041
TEST1	498	<	574	<	650	146	362	787
TEST2	1298	<	1428	<	1558	251	1032	1786

	Raw Data														
	1	2	3	4	5	6	7	8	9	10	11	12			
Sce nari o 1	614.6 83348	898.3 83348	873.7 83348	770.1 33348	746.0 33348	987.9 83348	704.5 33348	684.5 33348	927.9 33348	1172. 38334 8	660.4 33348	778.1 33348			
Sce nari o 2	300.8 33348	476.0 83348	412.4 83348	431.2 83348	332.7 83348	470.9 83348	360.1 83348	327.8 83348	400.7 83348	533.2 08348	330.4 83348	305.5 83348			
Sce nari o 3	123.7 33348	219.9 33348	331.4 83348	270.6 83348	110.6 83348	257.3 33348	171.4 83348	144.8 83348	189.6 33348	282.1 33348	158.8 33348	170.0 33348			
Sce nari o 4	92.13 3348	231.7 83348	275.4 83348	155.3 08348	98.53 3348	168.8 33348	151.6 33348	157.2 83348	139.7 83348	194.2 33348	156.6 83348	192.7 83348			
Sce nari o 5	1009. 43334 8	1234. 83334 8	1256. 18334 8	1035. 68334 8	1005. 78334 8	1241. 78334 8	1062. 23334 8	1040. 33334 8	1329. 88334 8	1416. 75834 8	1089. 33334 8	1025. 23334 8			

Sce nari o 6	449.7 33348	723.7 33348	678.8 33348	636.5 83348	481.6 33348	714.4 33348	488.9 83348	465.3 83348	606.7 33348	670.8 33348	653.6 33348	571.7 83348
Sce nari o 7	206.7 33348	302.1 83348	374.3 83348	341.6 83348	231.2 83348	404.6 83348	419.7 83348	239.9 33348	306.9 83348	457.1 83348	193.9 83348	337.1 33348
Sce nari o 8	151.1 83348	242.0 33348	442.6 83348	265.7 33348	95.48 3348	317.4 33348	417.1 83348	257.9 33348	188.8 33348	306.4 33348	192.2 33348	297.0 33348
Sce nari o 9	1327. 63334 8	1624. 80834 8	1665. 70834 8	1692. 28334 8	1377. 93334 8	1688. 23334 8	1469. 13334 8	1550. 93334 8	1635. 03334 8	1652. 23334 8	1434. 58334 8	1491. 68334 8
Sce nari o 10	748.9 33348	1109. 23334 8	1047. 08334 8	858.9 33348	846.5 83348	1263. 73334 8	863.8 33348	971.2 83348	1110. 93334 8	1248. 78334 8	974.5 83348	1016. 78334 8
Sce nari o 11	371.1 33348	579.1 83348	846.1 33348	444.0 33348	377.6 83348	604.2 83348	551.3 83348	529.5 33348	593.3 83348	546.4 08348	299.4 83348	598.6 83348
Sce nari o 12	194.0 33348	423.1 33348	849.4 33348	276.7 83348	260.5 33348	540.1 33348	582.6 33348	561.7 83348	389.9 83348	468.4 83348	191.2 83348	641.9 33348
Sce nari o 13	1462. 23334 8	1542. 63334 8	1737. 48334 8	1738. 13334 8	1555. 93334 8	1624. 23334 8	1691. 53334 8	1644. 73334 8	1635. 38334 8	1619. 58334 8	1469. 38334 8	1688. 33334 8
Sce nari o 14	756.1 83348	1282. 98334 8	1461. 13334 8	1215. 28334 8	902.7 83348	1212. 63334 8	976.7 83348	914.9 83348	1202. 18334 8	1314. 78334 8	988.3 83348	1204. 68334 8
Sce nari o 15	520.4 83348	1007. 58334 8	1098. 63334 8	693.5 33348	380.7 33348	943.0 83348	849.2 33348	503.9 33348	644.7 83348	913.2 83348	451.1 33348	669.6 33348
Sce nari o 16	457.8 83348	692.0 83348	962.4 83348	386.7 33348	318.7 33348	665.2 33348	710.1 83348	569.3 33348	533.9 83348	556.6 83348	250.9 33348	710.8 33348
Sce nari o 17	0	34.33 8348	0	0	0	0	23.93 8348	19.53 8348	21.33 8348	147.9 68348	0	34.33 8348
Sce nari o 18	0	3.333 348	63.34 8348	7.733 348	0	19.53 8348	0	21.47 1652	0	57.48 1652	0	0
Sce nari o 19	0	142.7 68348	249.9 88348	23.93 8348	19.53 8348	95.75 8348	100.1 58348	0	19.53 8348	66.88 1652	0	26.53 8348
Sce nari o 20	19.53 8348	159.1 68348	209.7 78348	0	19.53 8348	118.1 58348	100.7 58348	57.14 8348	150.9 01652	19.53 8348	103.0 86652	144.5 68348
Sce nari o 21	75.34 8348	308.5 03348	322.5 36652	227.1 16652	69.34 8348	422.0 28348	82.45 3348	154.7 73348	293.4 93348	433.8 33348	19.73 8348	36.93 8348
Sce nari o 22	77.48 1652	370.3 23348	207.9 11652	195.9 78348	0	351.2 08348	60.54 8348	31.73 8348	224.9 88348	237.1 88348	103.6 91652	55.54 8348

Sce nari o 23	80.54 8348	286.1 31652	268.9 98348	101.7 58348	62.54 8348	274.3 98348	105.4 91652	31.73 8348	261.7 98348	298.1 98348	77.94 8348	125.9 58348
Sce nari o 24	23.93 8348	407.0 28348	335.8 08348	168.7 06652	147.1 68348	255.1 93348	274.5 98348	236.5 88348	193.5 78348	224.5 78348	87.54 8348	240.3 88348
Sce nari o 25	340.0 08348	754.3 13348	745.9 08348	730.3 03348	355.6 46652	715.6 08348	379.4 28348	482.3 81652	761.1 08348	787.5 18348	525.2 53348	526.1 96652
Sce nari o 26	198.7 11652	722.7 36652	546.8 53348	540.5 53348	457.3 43348	715.8 98348	326.3 13348	202.3 78348	621.1 78348	774.3 08348	523.6 53348	333.0 08348
Sce nari o 27	211.7 11652	552.4 91652	866.1 18348	476.5 43348	404.8 18348	314.4 08348	333.9 51652	189.1 78348	441.0 38348	908.7 28348	307.5 98348	236.3 21652
Sce nari o 28	364.3 51652	1001. 34834 8	976.6 33348	387.7 51652	148.5 01652	365.8 46652	450.6 28348	386.9 41652	405.6 18348	792.0 08348	494.8 38348	571.0 58348
Sce nari o 29	673.1 26652	991.1 63348	1145. 98834 8	975.8 63348	795.7 56652	896.1 43348	739.4 08348	761.5 18348	825.9 28348	936.1 43348	907.8 43348	821.5 28348
Sce nari o 30	453.5 43348	1053. 47334 8	969.3 96652	811.3 23348	539.8 58348	788.3 18348	792.7 08348	537.6 58348	934.9 76652	1005. 26334 8	862.1 33348	459.4 43348
Sce nari o 31	400.7 66652	1008. 65834 8	980.3 48348	948.5 48348	273.3 31652	806.1 13348	955.4 53348	413.3 33348	898.0 33348	1028. 26334 8	816.1 18348	775.8 46652
Sce nari o 32	604.8 63348	1040. 96334 8	1021. 75334 8	754.3 36652	528.2 91652	645.5 73348	880.2 28348	643.6 11652	636.4 06652	976.3 48348	748.6 31652	893.8 61652
TES T1	362.1 33348	786.5 83348	644.2 83348	489.7 83348	464.0 83348	717.9 33348	435.2 83348	498.6 33348	774.0 83348	694.2 33348	429.1 33348	594.9 83348
TES T2	1031. 75834 8	1659. 90665 2	1785. 71665 2	1370. 36665 2	1164. 38834 8	1641. 36334 8	1220. 59834 8	1304. 83665 2	1678. 97334 8	1680. 68834 8	1207. 72165 2	1388. 33334 8

Mean S	Mean Service Time														
				Sı	ummar	Ъ									
	Mea	n (9	90% Con	fide	ence)	Sample Std Dev	Min	Max							
Scenario 1	133.5	<	141.2	<	149.0	14.9	116.4	171.9							
Scenario 2	128.4	<	137.5	<	146.5	17.5	110.7	169.4							
Scenario 3	160.3	<	169.2	<	178.1	17.2	139.9	204.0							
Scenario 4	194.1	<	212.8	<	231.5	36.1	148.3	279.7							
Scenario 5	240.1	<	263.5	<	286.8	45.0	199.1	344.6							

Scenario 6	225.3	<	240.6	<	255.8	29.4	203.5	309.3
Scenario 7	257.3	<	287.1	<	317.0	57.5	184.6	362.0
Scenario 8	326.9	<	359.2	<	391.6	62.4	272.8	465.0
Scenario 9	785.3	<	979.0	<	1172.8	373.7	464.6	1462.6
Scenario 10	537.1	<	604.8	<	672.5	130.5	414.8	854.5
Scenario 11	537.7	<	661.2	<	784.7	238.2	371.0	1314.5
Scenario 12	544.0	<	731.7	<	919.3	361.9	365.1	1738.3
Scenario 13	1666.8	<	1959.3	<	2251.9	564.2	1009.9	2707.4
Scenario 14	872.4	<	1130.0	<	1387.6	496.8	408.3	1954.3
Scenario 15	853.0	<	1148.6	<	1444.3	570.3	588.1	2239.3
Scenario 16	875.2	<	1209.1	<	1542.9	643.9	454.9	2446.9
Scenario 17	51.7	<	54.8	<	57.9	6.0	48.1	69.0
Scenario 18	67.6	<	74.6	<	81.6	13.5	58.5	105.4
Scenario 19	115.7	<	139.7	<	163.7	46.3	76.0	236.3
Scenario 20	166.9	<	191.3	<	215.7	47.0	128.0	254.7
Scenario 21	102.0	<	133.1	<	164.2	60.0	71.2	257.6
Scenario 22	135.1	<	166.3	<	197.5	60.3	83.6	291.6
Scenario 23	229.0	<	258.8	<	288.6	57.5	198.5	354.4
Scenario 24	324.8	<	354.2	<	383.7	56.9	262.8	497.5
Scenario 25	373.0	<	505.7	<	638.5	256.1	195.8	944.1
Scenario 26	367.7	<	452.1	<	536.5	162.9	223.2	735.2
Scenario 27	446.3	<	510.9	<	575.5	124.6	368.3	730.7
Scenario 28	596.1	<	752.2	<	908.4	301.2	436.6	1495.8
Scenario 29	897.5	<	1065.2	<	1232.8	323.4	584.9	1712.8
Scenario 30	797.1	<	993.1	<	1189.2	378.2	414.3	1472.9
Scenario 31	902.6	<	1077.3	<	1251.9	336.9	485.1	1796.0
Scenario 32	1073.8	<	1275.8	<	1477.9	389.7	982.2	2294.4
TEST1	392.2	<	431.4	<	470.6	75.6	315.3	572.6
TEST2	345.2	<	422.2	<	499.3	148.6	265.9	754.1

Replications Plot

	Raw Data														
	1	2	3	4	5	6	7	8	9	10	11	12			
Sce nari o 1	135.8 65109	149.6 54143	142.8 25734	143.7 16831	127.1 28866	147.5 73463	149.4 50287	142.2 99865	147.4 83646	171.9 16126	116.3 96688	120.6 88766			
Sce nari o 2	122.8 23783	138.6 70235	123.9 31895	152.6 44735	132.8 00473	140.6 01962	142.8 0229	146.1 51495	155.2 23947	169.3 94727	110.7 04455	113.7 22836			
Sce nari o 3	139.9 467	176.3 16886	204.0 37555	175.9 27227	165.8 19749	178.3 68495	162.9 55511	156.0 81063	184.7 1135	178.2 09577	156.3 04819	151.6 76241			
Sce nari o 4	148.2 57776	252.7 23898	255.6 86159	193.8 91456	180.4 22677	220.2 08465	206.5 46645	199.5 31581	279.7 16064	218.1 60694	189.5 92783	209.0 41856			
Sce nari o 5	249.9 73539	344.5 50141	318.4 45357	225.0 84045	217.0 68598	267.3 10532	232.0 25294	292.7 54155	249.6 99919	314.0 396	251.8 1335	199.0 51101			
Sce nari o 6	227.8 07248	255.1 07936	272.3 13668	253.8 54917	215.5 88946	309.2 73205	212.0 77283	240.4 28671	225.4 44031	227.0 01328	244.2 93891	203.4 90248			

Sce nari o 7	211.3 8151	252.5 97634	292.7 69277	296.8 71671	306.8 91115	339.0 4996	358.3 70386	297.5 722	361.9 92125	319.0 99659	184.6 41828	224.2 02045
Sce nari o 8	370.9 43109	288.2 85244	384.3 15077	465.0 30612	272.8 02415	328.5 00173	427.4 36586	399.2 46995	386.8 328	304.6 32287	283.0 06447	399.4 76161
Sce nari o 9	464.6 39664	1145. 15874 1	1332. 03528 3	941.6 10497	871.3 08672	1399. 56651 4	491.4 3515	789.5 20616	1462. 60429 5	1447. 61441 7	546.1 91189	856.4 03419
Sce nari o 10	493.6 81725	528.7 68591	607.2 02425	414.8 25882	525.6 3113	839.7 48984	609.2 00442	854.5 11622	602.4 30832	670.6 6502	545.9 16013	564.9 2483
Sce nari o 11	635.2 49286	614.4 60684	642.2 51317	371.0 48932	597.7 35313	692.8 87543	659.4 24172	1314. 53634 9	848.5 78334	476.4 67047	483.4 85693	598.3 50179
Sce nari o 12	423.4 23249	497.0 55655	761.6 96275	524.4 79112	650.2 81663	613.9 36992	794.2 05611	1738. 33507	856.2 32691	611.9 30055	365.0 82101	943.3 43283
Sce nari o 13	1009. 91720 5	2632. 74284 1	2707. 39350 5	2105. 83110 9	1435. 95078 1	2349. 77768 4	1616. 32801 1	1255. 87266 7	2172. 06288 7	2595. 19153 7	1681. 47074 9	1949. 53692 9
Sce nari o 14	408.3 155	1942. 32337	1954. 26624 7	809.6 4983	875.9 85762	1683. 39264 5	614.4 11506	1117. 14905 3	1126. 49159 5	1223. 02204 5	861.8 22317	943.0 90111
Sce nari o 15	892.8 22131	2239. 32243 4	1909. 11454 2	791.7 92967	597.3 22049	1559. 93135 1	1179. 70043	1736. 02058 3	908.1 13784	635.5 64115	745.8 02471	588.1 29185
Sce nari o 16	869.4 39639	2274. 89488 9	1759. 00607 2	730.3 75096	815.7 15863	888.5 77624	1327. 48794 7	2446. 91802 6	1264. 82416 3	586.5 43595	454.9 20531	1089. 91545 8
Sce nari o 17	48.07 4273	58.68 7995	52.95 2607	54.09 0987	59.05 5277	48.66 1247	68.97 0813	55.33 0041	50.98 8697	59.70 4011	49.40 7533	51.95 5687
Sce nari o 18	60.33 1746	74.38 6686	105.3 84526	67.35 8546	61.03 3449	73.58 8304	70.62 9772	78.63 7485	75.84 9428	92.46 1547	76.99 4875	58.51 8219
Sce nari o 19	76	217.2 39995	236.2 61575	116.2 04089	129.2 5	149.9 61924	153.3 42676	118.1 25514	113.2 43746	150.1 6846	109.2	107.5 38462
Sce nari o 20	149.3 33333	254.7 00262	251.7 46614	128	168.6 66667	168.8 08646	167.4 92566	195.8 75856	241.1 24296	128	198	243.6
Sce nari o 21	96.70 4291	220.0 90931	134.1 02903	122.0 19012	95.08 0445	198.2 95423	116.1 21675	82.57 2518	121.8 70077	257.6 07478	81.64 2223	71.21 624
Sce nari o 22	168.7 55529	244.9 67805	202.3 8744	139.1 11945	83.64 377	291.5 99763	132.0 79595	129.1 44624	189.1 02835	181.9 09564	137.5 19289	95.42 5789
Sce nari o 23	208.2 56394	329.8 38454	252.7 0093	222.5 70253	198.5	339.4 71619	206.6 27995	205.6 25639	296.5 92728	354.4 29991	265.7 50581	225.3 67532

Sce nari o 24	368.3 46122	497.4 52412	377.1 33837	333.1 42857	373.6 66667	324.3 27648	385.4 80782	319.8 48613	363.3 46518	322.0 92484	262.7 89014	323.1 67205
Sce nari o 25	274.0 30115	944.0 87388	673.7 19293	764.8 55086	195.7 79254	626.5 7681	301.1 76287	277.0 15606	727.9 56256	691.0 35905	252.5 36929	340.1 89611
Sce nari o 26	259.3 76724	649.9 71545	355.6 96006	477.5 92919	525.4 11717	638.5 20814	288.1 82799	375.2 64664	451.6 30323	735.2 42355	445.1 77837	223.2 07134
Sce nari o 27	537.5 06394	590.7 0308	727.2 9418	484.0 49632	548.3 26457	428.0 60729	374.1 04882	392.5 27326	518.2 29574	730.6 63359	368.3 0154	431.1 54003
Sce nari o 28	794.0 12788	1495. 80745	1088. 43951 5	621.7 33391	436.5 83496	564.7 45448	597.4 9574	449.9 89989	589.7 19374	937.0 19646	750.9 69363	700.2 00774
Sce nari o 29	584.9 45988	1324. 91412 8	1171. 66554 6	1030. 01579 2	888.8 83345	1220. 62597 4	842.1 96311	879.5 74228	1712. 84910 5	1367. 15171 6	634.0 03731	1125. 08830 1
Sce nari o 30	765.3 44101	1464. 86852 4	1308. 01505 3	1472. 90024 2	838.9 52655	1282. 47197 5	703.9 94038	461.8 20647	1364. 31389 1	999.8 1683	840.6 66388	414.3 26935
Sce nari o 31	584.2 93022	1796. 00989 8	1185. 45239 2	1129. 36859 2	485.1 45133	1120. 59471 7	1384. 27917 7	998.2 63262	1032. 28403 1	1057. 70786 3	1173. 73824 6	979.8 7041
Sce nari o 32	982.2 11036	2294. 41424 9	1059. 77101 7	1777. 31716 6	1018. 28784	1331. 86371 7	1184. 89973	1358. 95044 9	1106. 66080 7	1084. 52108	1023. 6	1087. 55497 1
TES T1	315.2 80537	449.2 39835	572.6 24224	505.7 36614	422.9 53169	422.1 02604	370.3 70707	443.7 42972	418.6 13539	522.3 57357	329.5 51951	403.7 62488
TES T2	265.9 095	414.1 82787	484.9 04491	445.7 60914	318.9 79218	651.3 76257	329.8 24879	430.3 49897	364.1 24984	754.1 30073	317.3 44561	290.0 93148

Output

Summary														
	Mean	(9	0% Cor	fid	ence)	Sample Std Dev	Min	Max						
Scenario 1	47.59	<	51.25	<	54.91	7.06	43.00	66.00						
Scenario 2	23.10	<	25.33	<	27.57	4.31	18.00	32.00						
Scenario 3	11.01	<	12.67	<	14.33	3.20	8.00	18.00						
Scenario 4	8.20	<	9.50	<	10.80	2.50	6.00	14.00						
Scenario 5	46.20	<	50.17	<	54.13	7.65	40.00	67.00						
Scenario 6	23.05	<	25.17	<	27.29	4.09	18.00	31.00						
Scenario 7	11.00	<	12.58	<	14.17	3.06	8.00	17.00						
Scenario 8	8.02	<	9.33	<	10.65	2.53	6.00	14.00						
Scenario 9	40.06	<	41.58	<	43.11	2.94	37.00	47.00						

Scenario 10	21.81	<	23.92	<	26.02	4.06	18.00	30.00
Scenario 11	10.82	<	12.42	<	14.02	3.09	8.00	17.00
Scenario 12	7.82	<	9.08	<	10.34	2.43	5.00	13.00
Scenario 13	30.30	<	31.08	<	31.86	1.51	29.00	34.00
Scenario 14	19.12	<	21.00	<	22.88	3.62	16.00	29.00
Scenario 15	10.18	<	11.42	<	12.66	2.39	8.00	15.00
Scenario 16	7.16	<	8.17	<	9.18	1.95	5.00	11.00
Scenario 17	48.01	<	51.83	<	55.65	7.37	44.00	69.00
Scenario 18	23.10	<	25.33	<	27.57	4.31	18.00	32.00
Scenario 19	11.08	<	12.75	<	14.42	3.22	8.00	18.00
Scenario 20	8.27	<	9.58	<	10.90	2.54	6.00	14.00
Scenario 21	47.73	<	50.83	<	53.93	5.98	44.00	63.00
Scenario 22	22.95	<	25.00	<	27.05	3.95	18.00	31.00
Scenario 23	10.98	<	12.58	<	14.18	3.09	8.00	17.00
Scenario 24	8.08	<	9.42	<	10.75	2.57	6.00	14.00
Scenario 25	40.60	<	43.75	<	46.90	6.08	33.00	56.00
Scenario 26	21.59	<	23.17	<	24.74	3.04	18.00	27.00
Scenario 27	10.66	<	12.08	<	13.51	2.75	8.00	17.00
Scenario 28	7.58	<	8.67	<	9.76	2.10	5.00	12.00
Scenario 29	35.19	<	38.17	<	41.15	5.75	29.00	48.00
Scenario 30	18.29	<	19.92	<	21.55	3.15	13.00	25.00
Scenario 31	9.49	<	10.67	<	11.84	2.27	7.00	16.00
Scenario 32	6.71	<	8.00	<	9.29	2.49	5.00	13.00
TEST1	28.69	<	31.58	<	34.48	5.58	23.00	41.00
TEST2	28.84	<	31.42	<	33.99	4.96	23.00	38.00

Replications Plot

Raw Data														
1 2 3 4 5 6 7 8 9 10 11 12														
Scenario 1	43	57	55	50	45	55	47	46	59	66	46	46		
Scenario 2	18	30	28	28	22	30	22	21	26	32	24	23		
Scenario 3	8	14	17	13	8	15	13	10	13	18	10	13		
Scenario 4	6	10	14	8	6	11	12	9	9	12	7	10		
Scenario 5	43	54	55	49	40	54	44	46	58	67	46	46		
Scenario 6	18	29	28	28	22	30	22	21	26	31	24	23		
Scenario 7	8	14	17	13	8	15	13	10	13	17	10	13		
Scenario 8	6	10	14	7	6	10	12	9	9	12	7	10		
Scenario 9	39	43	46	43	37	42	42	41	39	47	39	41		

Scenario 10	18	27	28	26	20	28	21	19	26	30	23	21
Scenario 11	8	14	17	11	8	15	13	10	13	17	10	13
Scenario 12	6	10	13	7	5	10	11	9	9	12	7	10
Scenario 13	30	30	32	29	31	31	33	31	32	34	29	31
Scenario 14	18	22	25	21	16	23	21	17	22	29	19	19
Scenario 15	8	11	15	10	8	11	13	10	13	15	10	13
Scenario 16	6	9	11	6	5	10	9	9	8	10	6	9
Scenario 17	44	57	55	50	46	55	47	46	59	69	46	48
Scenario 18	18	30	28	28	22	30	22	21	26	32	24	23
Scenario 19	8	14	17	13	8	15	13	10	14	18	10	13
Scenario 20	6	10	14	8	6	11	12	9	9	12	7	11
Scenario 21	44	56	55	50	46	55	47	45	56	63	46	47
Scenario 22	18	27	28	28	22	30	22	21	26	31	24	23
Scenario 23	8	14	17	12	8	15	13	10	14	17	10	13
Scenario 24	6	10	14	7	6	11	12	9	9	12	7	10
Scenario 25	37	43	48	45	33	48	40	40	47	56	41	47
Scenario 26	18	25	27	25	20	26	21	20	25	27	22	22
Scenario 27	8	13	17	11	8	14	13	10	13	15	10	13
Scenario 28	6	10	12	8	5	9	9	9	9	11	6	10
Scenario 29	29	39	41	40	32	48	38	31	37	45	43	35
Scenario 30	17	21	23	19	13	23	20	19	20	25	18	21
Scenario 31	7	11	16	10	8	12	11	9	11	12	10	11
Scenario 32	5	9	13	6	5	8	9	9	8	11	5	8
TEST1	23	35	37	30	26	37	28	28	36	41	26	32
TEST2	23	35	37	31	26	35	28	29	36	38	26	33

Mean Picking Time

Summary														
	Mea	ın (90% Cor	nfid	ence)	Sample Std Dev	Min	Max						
Scenario 1	77.5	<	79.4	<	81.3	3.7	73.4	85.0						
Scenario 2	97.3	<	100.9	<	104.6	7.0	89.3	112.6						
Scenario 3	141.9	<	148.1	<	154.3	11.9	130.0	168.8						
Scenario 4	177.7	<	192.3	<	206.9	28.1	139.5	238.6						
Scenario 5	132.1	<	135.7	<	139.2	6.9	122.9	143.2						
Scenario 6	171.7	<	179.0	<	186.2	14.0	158.7	205.9						
Scenario 7	245.3	<	263.4	<	281.4	34.8	204.2	311.5						
Scenario 8	325.3	<	351.0	<	376.7	49.6	288.6	449.1						

Scenario 9	237.7	<	244.7	<	251.7	13.5	216.0	264.6
Scenario 10	329.9	<	346.0	<	362.1	31.0	286.9	387.9
Scenario 11	487.1	<	521.7	<	556.4	66.9	413.2	640.8
Scenario 12	589.0	<	653.8	<	718.6	125.0	425.5	790.0
Scenario 13	346.9	<	355.0	<	363.2	15.7	321.9	372.6
Scenario 14	452.9	<	474.8	<	496.7	42.2	396.1	529.2
Scenario 15	660.6	<	703.9	<	747.1	83.4	538.7	837.5
Scenario 16	882.2	<	951.8	<	1021.4	134.2	696.2	1158.5
Scenario 17	49.7	<	50.8	<	51.9	2.1	47.5	54.2
Scenario 18	69.3	<	75.4	<	81.5	11.8	64.1	106.0
Scenario 19	123.7	<	142.2	<	160.8	35.8	86.4	203.8
Scenario 20	176.6	<	200.7	<	224.8	46.5	140.7	271.6
Scenario 21	87.9	<	95.2	<	102.5	14.1	74.9	118.9
Scenario 22	135.3	<	150.2	<	165.1	28.8	107.1	201.3
Scenario 23	229.1	<	253.4	<	277.7	46.8	175.4	333.4
Scenario 24	338.2	<	370.8	<	403.3	62.8	267.7	519.5
Scenario 25	182.5	<	193.2	<	203.8	20.6	160.9	220.1
Scenario 26	282.5	<	300.2	<	317.9	34.2	253.5	356.0
Scenario 27	471.2	<	500.8	<	530.4	57.1	428.8	599.2
Scenario 28	604.6	<	696.0	<	787.3	176.1	417.3	1003.0
Scenario 29	281.3	<	294.1	<	307.0	24.8	262.1	347.2
Scenario 30	434.2	<	468.1	<	502.1	65.5	344.5	544.1
Scenario 31	684.2	<	738.0	<	791.8	103.8	590.6	889.1
Scenario 32	948.5	<	1018.0	<	1087.5	134.1	780.7	1206.6
TEST1	204.1	<	205.1	<	206.1	1.9	201.4	207.5
TEST2	214.5	<	222.6	<	230.8	15.7	202.0	261.4

Frequency Histogram

	Raw Data														
	1	2	3	4	5	6	7	8	9	10	11	12			
Scen ario 1	73.430 053	81.581 351	80.050 465	79.379 568	77.323 454	84.53 212	79.130 159	74.918 366	78.61 3703	84.97 1822	75.68 1144	82.641 007			
Scen ario 2	103.28 0532	95.051 585	97.745 541	95.604 992	104.18 053	100.2 39526	101.92 7936	112.64 6643	103.7 72304	112.6 23501	89.27 1646	94.987 551			
Scen ario 3	130.00 1348	154.52 8658	168.75 7378	166.91 4099	155.34 8948	150.5 57588	136.94 5029	135.26 8703	148.5 27295	141.5 87921	144.9 85197	143.62 3189			
Scen ario 4	139.51 0117	238.58 9899	222.58 0454	195.40 7996	176.45 0836	187.1 90134	172.49 4549	182.98 4116	229.4 16398	198.1 99955	166.6 95967	198.21 5625			

Scen ario 5	143.23 7412	130.60 1995	141.06 914	122.91 1922	139.83 5704	141.2 77368	138.16 2383	139.40 8914	130.6 53211	124.6 8433	141.4 00753	134.71 6827
Scen ario 6	180.77 5912	173.68 146	186.12 6434	162.19 147	172.94 3376	195.6 3463	178.84 4053	185.65 4214	158.7 48703	162.6 90628	205.9 29431	184.36 1095
Scen ario 7	214.37 1773	253.35 191	246.70 1888	262.88 2315	311.52 8532	267.4 98146	296.83 2642	275.04 468	296.8 22706	299.7 03689	204.1 75297	231.55 9703
Scen ario 8	342.00 96	288.55 8596	348.96 9087	449.09 4624	298.12 8341	329.2 20822	388.93 8062	369.73 3544	322.9 55411	376.4 4424	290.2 16346	407.93 8228
Scen ario 9	234.48 6535	251.51 3298	242.30 6666	245.21 6753	249.69 4953	264.6 19957	228.99 6279	250.71 9092	261.2 85912	215.9 87203	241.0 44763	250.63 0309
Scen ario 10	361.60 8443	330.48 5044	308.77 4079	286.94 8924	345.52 6955	357.7 33996	364.74 8128	387.85 622	361.4 8245	306.5 54356	374.2 923	366.17 1976
Scen ario 11	573.04 8281	558.48 5756	546.93 7213	413.16 6286	640.80 5854	516.7 30191	534.73 0838	536.32 2901	558.1 07437	415.2 78411	447.4 78986	519.46 2547
Scen ario 12	425.45 5971	572.96 6353	767.86 692	554.76 8495	787.76 722	750.2 51764	668.24 5871	789.98 3393	675.7 7409	561.6 57076	512.5 501	777.84 4919
Scen ario 13	366.13 8921	359.91 8272	372.59 1415	369.33 9907	360.21 7926	349.1 04761	334.89 8798	366.83 9154	340.6 56724	321.8 74589	352.1 92894	366.77 4481
Scen ario 14	409.71 1743	481.58 8874	497.78 3217	491.91 0066	503.40 5923	486.2 47444	396.08 2824	505.47 4186	503.7 30864	423.9 31466	468.2 35723	529.23 3719
Scen ario 15	744.41 9195	837.48 5687	765.02 5123	696.50 088	666.43 053	799.2 10579	747.13 8574	711.25 7101	622.9 07223	620.3 65641	538.6 90481	697.21 5052
Scen ario 16	945.53 2448	1024.7 89545	1074.6 06464	916.91 3025	975.71 0732	935.7 11143	1052.1 56857	1036.7 0084	856.4 08569	748.7 48145	696.1 50305	1158.5 15243
Scen ario 17	47.770 492	52.021 978	51.846 154	49.272 727	52.666 667	47.46 3415	52.657 143	54.169 014	49.06 9767	50.90 566	49.52 9412	51.729 73
Scen ario 18	67.043 478	70.734 694	106	65.024 39	66	72.29 7872	71	83.696 97	76.8	84.74 5098	77.28 2051	64.068 966
Scen ario 19	86.444 444	199.75	203.84	112.94 7368	163.09 0909	166.9 09091	150.18 1818	131.6	114.8	137.6 2963	123	116.58 8235
Scen ario 20	142	267.75	229.04 7619	140.66 6667	200.22 2222	187.7 77778	153.66 6667	211.84 6154	238	152.1 17647	213.3 33333	271.64 7059
Scen ario 21	79.019 231	106.69 6296	98.715 328	101.07 2	88.150 943	111.9 34211	92.163 934	84.361 905	105.8 62595	118.8 93082	80.57 9439	74.932 039

Scen ario 22	162.47 619	201.30 8642	168.78 7879	135.75	107.14 2857	190.9 09091	129.86 2069	127.01 9608	167.6 61538	148.8 76712	143.9 68254	118.65 1163
Scen ario 23	209.65 2174	305.21 2121	275.76 7442	250	252.28 5714	333.4 5	203	175.4	277.5 55556	293.3 48837	254.3 57143	210.91 6667
Scen ario 24	375.86 6667	519.53 8462	330.83 871	401.78 9474	420.4	326.2 5	374.23 0769	335.90 9091	398	331	267.7 14286	367.61 5385
Scen ario 25	166.74 6479	218.60 5769	220.13 0841	198.71 028	174.19 5804	213.2 25225	173.06 3291	190.16	207.5 14019	204.1 04348	160.8 57143	190.68 9266
Scen ario 26	253.46 6667	356.01 626	269.63 6364	284.86 7925	314.12 2449	343.4 24242	272.39 0244	300.02 6667	309.4 23423	344.6 08	292.4 70588	262
Scen ario 27	558.77 7778	522.56 6667	527.30 5556	479.26 087	599.22 7273	465.5 41667	428.77 2727	435.74 359	522.6 89655	570.1 29032	454.0 97561	445.25
Scen ario 28	790.8	1003.0 38462	785.2	615.29 7297	500.78 2609	577.2 66667	545.35 7143	417.27 2727	617	893.8 36735	765.5 55556	840.10 8108
Scen ario 29	287.86 6667	292.05 9072	284.83 8951	272.89 8437	297.57 8475	262.0 98113	280.16 8142	314.65 0485	347.1 76923	266.4 92308	299.1 87739	324.38 2222
Scen ario 30	424.25 2252	528.38 5093	504.05 5556	517.85 0932	544.12 1212	445.8 69565	485.75	344.54 902	507.0 57971	455.0 31447	505.9 53125	354.60 177
Scen ario 31	590.60 4651	889.05 4054	647.75 8242	794	627.72 7273	701.9 70149	794.61 7284	639.14 2857	670.2 57143	872.0 27027	846.5 45455	782.22 2222
Scen ario 32	1044.4 24242	1135.3 96226	780.65 5738	1206.5 95745	1123.6 75676	1005. 625	842.19 6078	1058.9 38776	820	1037. 5	1088. 04878	1072.6 27451
TES T1	204.48 5748	204.37 9114	206.57 1311	203.91 6561	205.71 9991	205.6 71978	203.62 2258	207.48 0216	207.4 59721	201.4 24293	203.2 12035	207.46 7359
TES T2	202.86 9565	221.42 8571	226.32 4324	224	211.61 5385	261.4 28571	222.74 0741	232	219.7 77778	232	215.4 61538	202

Experimentation Report

Number of Scenarios: 42

Number of Replications Per Scenario: 15

Warmup Time: 0

ASRS distance

Summary													
	Mean	ı (9	0% Cor	lence)	Sample Std Dev	Min	Max						
Scenario I,1	571	<	633	<	695	136	426	845					
Scenario I,2	311	<	358	<	404	102	211	526					
Scenario I,3	203	<	237	<	272	76	130	380					
Scenario E,1	90	<	138	<	187	107	20	359					
Scenario E,2	110	<	149	<	187	84	0	311					
Scenario E,3	128	<	168	<	208	88	21	279					
Scenario I,4	863	<	189	634	1324								
Scenario I,5	449	<	514	<	578	142	308	768					
Scenario I,6	303	<	361	<	419	127	175	599					
Scenario E,4	409	<	492	<	575	183	145	913					
Scenario E,5	370	<	471	<	572	222	146	926					
Scenario E,6	371	<	498	<	625	280	106	1116					
Scenario I,7	545	<	650	<	755	231	311	1145					
Scenario E,7	893	<	1155	<	1417	576	306	2512					
Scenario I,1A	571	<	633	<	695	136	426	845					
Scenario I,2A	311	<	358	<	404	102	211	526					
Scenario I,3A	203	<	237	<	272	76	130	380					
Scenario E,1A	163	<	217	<	271	118	20	506					
Scenario E,2A	241	<	297	<	354	124	141	520					
Scenario E,3A	260	<	318	<	377	129	105	476					
Scenario I,4A	912	<	1007	<	1102	209	649	1441					
Scenario I,5A	506	<	574	<	642	150	352	849					
Scenario I,6A	352	<	419	487	148	177	674						
Scenario E,4A	587	<	689	<	791	224	206	1151					

Scenario E,5A	589	<	724	<	860	299	269	1185
Scenario E,6	580	<	748	<	915	367	154	1497
Scenario I,7A	645	<	760	<	875	252	394	1274
Scenario E,7A	1393	<	1767	<	2142	823	408	3572
Scenario I,8	1167	<	1282	<	1397	253	743	1642
Scenario E,8	2319	<	2633	<	2948	692	1329	3516
Scenario I,8A	1181	<	1247	<	1314	146	897	1465
Scenario E,8A	2892	<	3086	<	3279	426	2113	3535
Scenario I,4B	1059	<	1176	<	1293	257	896	1864
Scenario I,5B	597	<	703	<	808	232	439	1216
Scenario I,6B	458	<	543	<	628	187	275	951
Scenario E,4B	731	<	837	<	943	233	503	1205
Scenario E,5B	748	<	900	<	1052	335	410	1412
Scenario E,B	712	<	908	<	1104	431	171	1589
Scenario I,7B	882	<	1002	<	1121	263	497	1332
Scenario E,7B	1967	<	2284	<	2601	697	1194	3412
Scenario I,8B	1253	<	1286	<	1319	73	1174	1409
Scenario E,8B	3486	<	3556	<	3625	152	3081	3705

Frequency Histogram

Scenario I,1 Scenario I,2 Scenario I,3 Scenario E,1 Scenario E,2 Scenario E,3
Scenario I,4 Scenario I,5 Scenario I,6 Scenario E,4 Scenario E,5 Scenario E,6
Scenario I,7 Scenario E,7 Scenario I,1A Scenario I,2A Scenario I,3A Scenario E,1A
Scenario E,2A Scenario E,3A Scenario I,4A Scenario I,5A Scenario I,6A Scenario E,4A
Scenario E,5A Scenario E,6 Scenario I,7A Scenario E,7A Scenario I,8 Scenario E,8
Scenario I,8A Scenario E,8A Scenario I,4B Scenario I,5B Scenario I,6B Scenario E,4B
Scenario E,5B Scenario E,8 Scenario I,7B Scenario E,7B Scenario I,88 Scenario E,88

							Ra	w Data							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sce nari o I,1	431.2 8334 8	652.1 3334 8	758.6 8334 8	578.6 8334 8	426.1 8334 8	771.7 0834 8	519.4 8334 8	600.0 3334 8	840.5 8334 8	845.0 3334 8	463.6 8334 8	617.7 8334 8	718.2 5834 8	612.6 5834 8	652.6 8334 8
Sce nari o I,2	239.3 3334 8	388.7 3334 8	480.0 8334 8	302.1 3334 8	262.9 3334 8	445.0 3334 8	359.4 8334 8	275.6 3334 8	441.9 3334 8	526.4 8334 8	289.7 0834 8	327.8 8334 8	510.1 3334 8	304.3 8334 8	210.5 8334 8
Sce nari o I,3	130.0 8334 8	226.2 8334 8	337.1 3334 8	205.7 8334 8	139.0 3334 8	293.4 8334 8	229.9 8334 8	192.3 3334 8	250.8 3334 8	379.5 3334 8	184.8 8334 8	217.5 3334 8	352.4 3334 8	260.7 3334 8	162.1 8334 8
Sce nari o E,1	19.53 8348	208.9 7834 8	177.3 6834 8	19.53 8348	71.94 8348	146.1 6834 8	65.08 1652	103.5 5834 8	225.1 2165 2	358.6 1834 8	21.47 1652	115.8 9165 2	255.8 9334 8	264.9 8834 8	21.33 8348
Sce nari o E,2	155.7 6834 8	310.9 9834 8	59.88 1652	103.3 5834 8	119.9 5834 8	190.6 7334 8	230.5 2165 2	67.54 8348	226.7 2165 2	158.3 6834 8	69.48 1652	106.9 5834 8	249.3 8834 8	182.1 7834 8	0
Sce nari o E,3	29.13 8348	278.9 9834 8	159.3 0165 2	201.9 7834 8	71.94 8348	244.1 2165 2	153.9 6834 8	112.9 5834 8	276.3 9834 8	265.9 9834 8	110.4 9165 2	121.0 9165 2	241.3 8834 8	225.7 8834 8	21.33 8348
Sce nari o I,4	633.5 3334 8	958.2 3334 8	1200. 5833 48	824.3 3334 8	698.9 8334 8	1095. 9583 48	821.4 3334 8	818.7 3334 8	1121. 6833 48	1324. 4833 48	828.6 3334 8	889.9 3334 8	997.4 0834 8	1054. 3583 48	955.7 8334 8

Sce nari o I,5	342.5 3334 8	587.4 8334 8	745.7 3334 8	464.7 3334 8	368.0 8334 8	542.4 3334 8	551.5 8334 8	307.6 8334 8	599.4 8334 8	768.3 3334 8	597.9 0834 8	426.0 8334 8	587.0 8334 8	481.0 8334 8	332.9 8334 8
Sce nari o I,6	188.7 3334 8	317.0 3334 8	509.2 3334 8	390.7 3334 8	174.7 3334 8	310.2 3334 8	435.5 3334 8	208.9 3334 8	372.7 8334 8	598.8 8334 8	361.5 8334 8	281.7 8334 8	477.8 3334 8	507.1 8334 8	277.1 3334 8
Sce nari o E,4	144.9 0165 2	451.4 3834 8	673.4 2165 2	508.8 4834 8	244.9 8834 8	480.2 4834 8	447.6 3834 8	476.8 3834 8	605.8 0165 2	913.2 4334 8	425.0 2834 8	450.5 7165 2	674.4 7834 8	358.8 1834 8	525.2 4834 8
Sce nari o E,5	145.7 0165 2	538.2 4834 8	925.8 7165 2	449.6 3834 8	208.1 7834 8	515.0 5834 8	523.8 5834 8	287.3 9834 8	470.3 7165 2	740.8 9834 8	509.7 8165 2	397.7 5165 2	797.7 0834 8	289.3 9834 8	259.5 8834 8
Sce nari o E,6	105.9 9635 2	431.6 2834 8	1116. 1583 48	596.2 6834 8	155.9 6834 8	637.2 1165 2	609.0 6834 8	175.9 0165 2	569.9 9165 2	788.5 0834 8	354.9 4165 2	485.5 7165 2	828.5 0834 8	320.4 0834 8	294.7 3165 2
Sce nari o I,7	310.8 8334 8	761.2 8334 8	976.0 3334 8	656.3 3334 8	393.6 8334 8	521.6 8334 8	630.4 8334 8	496.5 3334 8	672.7 3334 8	1145. 3333 48	597.2 8334 8	670.8 8334 8	886.4 8334 8	697.5 3334 8	336.7 8334 8
Sce nari o E,7	305.9 9834 8	1269. 1983 48	1635. 4783 48	1469. 8383 48	544.0 5834 8	1691. 8016 52	1112. 5683 48	600.2 0165 2	1311. 6413 52	2512. 4183 48	737.0 9834 8	878.4 6165 2	1518. 0433 48	1188. 9216 52	553.6 5834 8
Sce nari o I,1 A	431.2 8334 8	652.1 3334 8	758.6 8334 8	578.6 8334 8	426.1 8334 8	771.7 0834 8	519.4 8334 8	600.0 3334 8	840.5 8334 8	845.0 3334 8	463.6 8334 8	617.7 8334 8	718.2 5834 8	612.6 5834 8	652.6 8334 8
Sce nari o I,2 A	239.3 3334 8	388.7 3334 8	480.0 8334 8	302.1 3334 8	262.9 3334 8	445.0 3334 8	359.4 8334 8	275.6 3334 8	441.9 3334 8	526.4 8334 8	289.7 0834 8	327.8 8334 8	510.1 3334 8	304.3 8334 8	210.5 8334 8
Sce nari o I,3 A	130.0 8334 8	226.2 8334 8	337.1 3334 8	205.7 8334 8	139.0 3334 8	293.4 8334 8	229.9 8334 8	192.3 3334 8	250.8 3334 8	379.5 3334 8	184.8 8334 8	217.5 3334 8	352.4 3334 8	260.7 3334 8	162.1 8334 8
Sce nari o E,1 A	19.53 8348	206.3 7834 8	220.5 1165 2	135.1 6834 8	202.1 7834 8	244.7 8834 8	110.4 9165 2	135.3 6834 8	278.3 3165 2	506.0 4834 8	115.5 5834 8	282.7 3165 2	312.2 0834 8	339.4 0834 8	142.7 6834 8
Sce nari o E,2 A	155.7 6834 8	474.2 3834 8	375.1 5165 2	240.5 8834 8	239.7 8834 8	386.2 1834 8	316.9 4165 2	174.8 7334 8	361.3 5165 2	519.6 5334 8	158.3 6834 8	200.5 1165 2	444.0 3834 8	268.5 9834 8	140.9 6834 8

Sce nari o E,3 A	127.7 5834 8	334.8 0834 8	461.4 3834 8	329.6 0834 8	191.7 7834 8	375.9 5165 2	312.0 0834 8	159.1 6834 8	394.2 2334 8	476.2 3834 8	207.1 7834 8	391.8 1834 8	439.6 2834 8	469.2 3834 8	105.1 5834 8
Sce nari o I,4 A	649.0 8334 8	1078. 2833 48	1273. 1333 48	914.3 8334 8	717.1 8334 8	1116. 6583 48	858.9 8334 8	854.2 8334 8	1194. 5333 48	1440. 7833 48	917.8 3334 8	931.5 3334 8	1035. 5083 48	1141. 7083 48	980.1 3334 8
Sce nari o I,5 A	398.7 8334 8	712.9 8334 8	848.6 3334 8	555.7 3334 8	370.6 3334 8	622.5 8334 8	667.2 3334 8	351.7 8334 8	596.0 8334 8	792.2 3334 8	623.7 0834 8	485.4 8334 8	621.5 8334 8	549.6 3334 8	412.6 3334 8
Sce nari o I,6 A	221.2 3334 8	416.4 3334 8	653.9 3334 8	488.1 8334 8	177.3 3334 8	394.2 8334 8	466.2 8334 8	289.1 3334 8	405.6 8334 8	674.1 8334 8	437.8 8334 8	293.9 8334 8	507.3 8334 8	576.7 8334 8	287.5 3334 8
Sce nari o E,4 A	206.1 8334 8	589.4 6334 8	866.5 6665 2	802.3 0834 8	324.6 0834 8	674.8 8834 8	657.8 8834 8	684.6 8834 8	769.6 4165 2	1150. 6933 48	610.6 6834 8	767.6 4165 2	897.3 2334 8	627.6 7834 8	705.0 8834 8
Sce nari o E,5 A	303.9 4165 2	843.7 1834 8	1185. 3216 52	587.4 6834 8	268.5 9334 8	891.3 3834 8	819.6 1334 8	448.0 3834 8	1033. 8916 52	1089. 5733 48	773.0 4165 2	582.1 9165 2	1080. 1583 48	544.0 5834 8	415.9 5165 2
Sce nari o E,6	154.1 6834 8	790.7 0834 8	1496. 6283 48	796.1 0834 8	254.5 8834 8	1029. 2916 52	892.9 2834 8	305.7 9834 8	733.6 2665 2	947.1 3834 8	570.7 9165 2	764.6 3165 2	1257. 0933 48	789.6 9834 8	429.8 2834 8
Sce nari o I,7 A	450.2 8334 8	1106. 3833 48	1064. 3833 48	746.3 3334 8	510.5 8334 8	599.7 3334 8	825.3 8334 8	559.7 3334 8	816.0 8334 8	1274. 0333 48	721.9 8334 8	793.0 8334 8	917.6 0834 8	619.4 3334 8	393.8 8334 8
Sce nari o E,7 A	408.0 1834 8	1870. 1183 48	2745. 0683 48	2229. 8783 48	927.7 3834 8	2349. 9216 52	1986. 5283 48	1049. 1683 48	2156. 2633 48	3572. 3933 48	1120. 5883 48	1418. 2283 48	2148. 9583 48	1619. 9016 52	907.1 2834 8
Sce nari o I,8	742.8 3334 8	1499. 6833 48	1641. 6333 48	1006. 4333 48	1179. 9333 48	1448. 7833 48	1451. 5833 48	1310. 0333 48	1099. 7333 48	1532. 4833 48	1104. 3333 48	1569. 3333 48	1350. 5833 48	1273. 6333 48	1017. 8833 48
Sce nari o E,8	2104. 5683 48	3336. 9966 52	3277. 8683 48	1912. 8713 52	1328. 8283 48	2687. 8016 52	3445. 3883 48	2297. 0083 48	3055. 5283 48	3515. 9033 48	2245. 1883 48	3219. 0533 48	2641. 3916 52	2817. 2933 48	1615. 8116 52
Sce nari o	896.9 8334 8	1334. 9333 48	1465. 4833 48	1030. 2333 48	1274. 2833 48	1259. 1833 48	1150. 7333 48	1374. 5083 48	1129. 5833 48	1357. 4833 48	1362. 9833 48	1321. 6333 48	1265. 7833 48	1239. 8833 48	1246. 2333 48

I,8 A															
Sce nari o E,8 A	2889. 2983 48	3534. 8366 52	3312. 9883 48	2788. 0933 48	2113. 1783 48	2931. 2738 29	3424. 7833 48	3405. 1983 48	3388. 9933 48	3489. 5033 48	2908. 6133 48	3393. 9883 48	3219. 4633 48	3154. 9483 48	2332. 5133 48
Sce nari o I,4B	895.5 3334 8	1226. 7833 48	1270. 8833 48	1142. 9833 48	981.5 8334 8	1424. 7083 48	925.7 3334 8	944.5 3334 8	1411. 1333 48	1864. 3333 48	920.7 3334 8	1065. 8333 48	1276. 8333 48	1156. 4583 48	1129. 9333 48
Sce nari o I,5B	499.0 8334 8	812.4 8334 8	1090. 4833 48	597.5 3334 8	476.0 3334 8	709.5 8334 8	774.8 8334 8	439.2 3334 8	793.1 3334 8	1215. 9333 48	650.9 0834 8	532.5 3334 8	899.7 8334 8	569.5 3334 8	477.4 8334 8
Sce nari o I,6B	274.5 8334 8	545.3 3334 8	797.4 3334 8	533.0 8334 8	302.8 3334 8	538.4 8334 8	664.6 8334 8	341.6 8334 8	550.5 3334 8	950.5 8334 8	436.5 8334 8	495.7 8334 8	731.4 8334 8	595.9 8334 8	390.7 8334 8
Sce nari o E,4 B	502.8 4834 8	768.8 9834 8	921.2 8165 2	781.7 0834 8	554.6 5834 8	932.3 3834 8	585.1 6334 8	813.9 1834 8	1200. 3216 52	1204. 6983 48	529.0 4834 8	777.8 4165 2	1147. 1883 48	877.9 2834 8	959.8 8165 2
Sce nari o E,5 B	506.2 4834 8	901.3 2834 8	1330. 3516 52	861.5 2834 8	409.9 2834 8	1221. 5266 52	1011. 0533 48	630.4 7334 8	1160. 2166 52	1325. 6133 48	751.2 3165 2	815.4 5165 2	1411. 6383 48	739.6 8834 8	419.3 6165 2
Sce nari o E,B	348.4 0834 8	887.8 5165 2	1455. 4283 48	792.3 0834 8	171.3 6834 8	1000. 8816 52	1159. 5683 48	550.7 9165 2	1176. 9116 52	1588. 8483 48	665.4 1165 2	809.7 0834 8	1573. 6683 48	963.3 3834 8	480.0 3834 8
Sce nari o I,7B	496.8 8334 8	1137. 1833 48	1298. 3333 48	957.2 8334 8	634.0 8334 8	1129. 5333 48	1256. 6833 48	899.7 8334 8	1124. 2333 48	1332. 2833 48	906.5 8334 8	1122. 1333 48	1234. 8833 48	897.7 3334 8	596.7 3334 8
Sce nari o E,7 B	1330. 8183 48	2669. 4583 48	3161. 7283 48	1936. 2233 48	1193. 9883 48	2719. 9966 52	2829. 2683 48	1699. 0583 48	2735. 0683 48	3412. 4533 48	1832. 3083 48	2271. 5883 48	2802. 5833 48	2317. 9216 52	1348. 6083 48
Sce nari o I,8B	1188. 5333 48	1313. 9333 48	1328. 7583 48	1241. 0833 48	1230. 1833 48	1337. 2333 48	1290. 5333 48	1249. 7333 48	1280. 1333 48	1293. 0833 48	1173. 5833 48	1369. 0333 48	1390. 7833 48	1200. 2333 48	1408. 7333 48
Sce nari o E,8 B	3081. 3583 48	3551. 9516 52	3643. 8333 48	3556. 1133 48	3601. 6083 48	3448. 9266 52	3443. 4083 48	3704. 5283 48	3657. 4383 48	3571. 6183 48	3545. 0083 48	3609. 9616 52	3643. 2333 48	3704. 4233 48	3570. 9233 48

Mean Service Time

Summary Mean (90% Confidence) Sample Std Dev Min Max													
	Mean	(9	0% Con	fid	ence)	Sample Std Dev	Min	Мах					
Scenario I,1	138.8	<	143.7	<	148.7	10.9	121.2	165.1					
Scenario I,2	174.5	<	183.1	<	191.8	19.1	156.5	217.0					
Scenario I,3	213.3	<	225.5	<	237.7	26.8	185.1	280.9					
Scenario E,1	80.3	<	85.3	<	90.3	11.0	69.1	104.0					
Scenario E,2	129.7	<	141.0	<	152.4	25.0	99.8	187.3					
Scenario E,3	179.4	<	195.9	<	212.4	36.3	129.3	260.6					
Scenario I,4	237.2	<	253.0	<	268.7	34.7	202.1	336.6					
Scenario I,5	281.7	<	301.2	<	320.8	43.1	246.7	399.5					
Scenario I,6	346.1	<	374.0	<	401.8	61.2	294.1	496.0					
Scenario E,4	155.6	<	167.0	<	178.3	25.0	110.8	198.1					
Scenario E,5	239.9	<	264.5	<	289.0	53.9	173.2	371.5					
Scenario E,6	326.4	<	372.0	<	417.6	100.3	168.0	497.6					
Scenario I,7	667.5	<	770.0	<	872.4	225.3	434.1	1201.4					
Scenario E,7	611.0	<	709.4	<	807.8	216.4	289.5	1131.7					
Scenario I,1A	138.8	<	143.7	<	148.7	10.9	121.2	165.1					
Scenario I,2A	174.5	<	183.1	<	191.8	19.1	156.5	217.0					
Scenario I,3A	213.3	<	225.5	<	237.7	26.8	185.1	280.9					
Scenario E,1A	98.3	<	104.5	<	110.7	13.6	86.4	129.7					
Scenario E,2A	185.2	<	195.3	<	205.4	22.2	162.4	229.8					
Scenario E,3A	263.2	<	280.7	<	298.2	38.5	202.3	331.7					
Scenario I,4A	273.6	<	295.4	<	317.3	48.1	227.5	409.7					
Scenario I,5A	368.3	<	393.7	<	419.2	56.0	306.0	481.8					
Scenario I,6A	470.0	<	506.8	<	543.6	81.0	342.8	628.2					
Scenario E,4A	203.1	<	222.8	<	242.4	43.2	135.9	292.9					
Scenario E,5A	340.5	<	375.7	<	410.9	77.4	227.5	485.9					
Scenario E,6	456.4	<	511.4	<	566.4	121.0	244.5	675.2					
Scenario I,7A	976.4	<	1162.4	<	1348.4	409.1	599.1	1897.4					
Scenario E,7A	914.6	<	1087.8	<	1261.0	380.9	385.8	1756.5					
Scenario I,8	2372.9	<	2797.4	<	3221.8	933.5	1318.0	4319.6					
Scenario E,8	2044.6	<	2568.8	<	3093.1	1152.9	1203.2	4979.0					
Scenario I,8A	3381.0	<	3979.3	<	4577.6	1315.8	1896.8	5979.9					
Scenario E,8A	3033.2	<	3750.0	<	4466.8	1576.6	1776.1	6615.1					
Scenario I,4B	328.8	<	351.3	<	373.9	49.6	307.4	462.0					
Scenario I,5B	430.8	<	458.8	<	486.9	61.7	381.4	571.0					
Scenario I,6B	575.9	<	609.8	<	643.6	74.5	498.4	726.7					
Scenario E,4B	239.9	<	256.5	<	273.2	36.6	208.8	341.5					

Scenario E,5B	391.9	<	427.4	<	462.9	78.2	304.8	541.7
Scenario E,B	522.3	<	582.0	<	641.7	131.4	390.5	845.1
Scenario I,7B	1572.2	<	1879.8	<	2187.5	676.7	994.9	3539.9
Scenario E,7B	1309.0	<	1493.1	<	1677.1	404.8	1035.7	2510.2
Scenario I,8B	5013.7	<	5546.8	<	6079.9	1172.4	3556.6	7630.1
Scenario E,8B	4934.3	<	5428.0	<	5921.6	1085.7	3831.5	7273.5

	Raw Data														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sce nari o I,1	130.9 6528 6	151.7 8040 4	165.1 3021 4	148.7 1913	121.2 0937 7	138.4 5380 2	145.2 1755 3	140.4 1337 7	141.9 4899 7	155.6 7944 2	135.7 6925 1	135.8 7542 6	153.8 5778 9	142.6 1302 8	148.2 9590 9
Sce nari o I,2	197.4 6950 3	178.5 4913 5	217.0 2683 8	169.4 5400 3	193.1 5090 6	167.7 8558	178.2 0203 1	188.7 0636 1	188.2 2364 5	211.5 4383 8	168.6 6513 5	165.5 2609 5	206.3 5434 1	156.5 1146 7	159.8 6607 1
Sce nari o I,3	205.2 8630 7	185.0 6086 9	280.9 0223 7	205.5 3968 1	232.2 1216 4	202.4 7733 3	227.8 1499 6	243.4 7912 5	238.9 9705 5	266.4 9474 9	243.1 4986 4	206.1 2915 9	217.9 7031 6	194.0 1839 4	232.3 9016 8
Sce nari o E,1	76.45 2784	94.84 8857	83.79 8141	75.66 0243	84.26 0549	83.30 9096	91.97 2275	80.65 4169	84.15 7303	102.1 2479 9	69.10 0951	75.75 2202	103.9 7239 2	100.1 6944 8	73.49 5019

Sce nari o E,2	139.8 3783 1	166.3 5369 9	106.0 9230 9	115.1 9829 3	156.3 2361	122.6 0922 2	187.2 9250 2	141.3 3483	154.3 5000 6	170.4 5775 7	124.2 3529 4	127.3 3333 3	147.8 2895 5	156.4 7378 9	99.84 6154
Sce nari o E,3	147.2 5	216.1 4285 7	158.5 5656 4	180.0 7536 4	194.7 5	195.4 0955 2	235.6 5307	188.9 7548 1	260.6 2574 8	249.3 9077 4	189.6	174.7 6923 1	217.2 3377 6	200.7 5710 1	129.3 3333 3
Sce nari o I,4	202.1 2248 6	267.5 7292 4	263.9 7491 4	233.8 5079 9	216.0 0944 8	250.1 0727 8	266.7 3871 9	227.7 2460 7	233.7 3890 6	301.2 2242 3	252.1 7595 7	234.7 3568	228.2 2315 9	336.6 0409 9	279.6 7365 2
Sce nari o I,5	259.2 7822 5	326.5 1249 5	296.1 6035 5	287.3 7603	289.1 7781 4	279.2 8716 6	330.4 9581 9	266.2 9438	270.9 6998 6	399.4 7947	320.5 1574 7	246.7 2029	296.2 7818 9	377.8 7436 3	272.2 6397 8
Sce nari o I,6	334.7 8765 7	333.8 6737 8	368.5 7415 1	390.9 4597	327.0 7034 8	297.9 7241 2	457.4 2804 1	353.0 4023 1	359.8 9940 2	496.0 3066 9	391.4 0967 4	294.1 3160 7	383.3 5558 5	477.8 2265 7	342.9 9477 4
Sce nari o E,4	131.0 9096 9	150.0 0096 6	195.9 2911 1	193.1 3740 6	110.8 0377 4	149.2 4566 2	171.1 0430 1	184.8 8964	172.3 7786 9	198.0 8444 9	158.5 3719 3	161.0 5415 8	191.1 0739 8	176.6 0823 8	160.4 8546 7
Sce nari o E,5	209.1 7116 4	269.3 3964 4	371.4 9702 2	244.9 3057 9	173.2 1507 6	236.3 0124 2	301.0 2560 3	248.3 4600 3	265.4 2761 8	289.4 7473 8	281.8 5328 3	232.0 1039 4	371.3 6628 5	243.5 4427	229.4 2186 6
Sce nari o E,6	168	272.5 9234 6	487.0 0146 8	410.0 7536 4	213.5	379.0 0800 9	497.5 9163 6	329.6 7470 6	428.7 1226	487.7 8132 5	389.1 2587 2	343.2 0717 7	484.2 1546 2	347.1 1357 4	342.5 0411 1
Sce nari o I,7	494.5 8769 7	862.1 4596 3	864.9 903	528.5 2002 4	621.4 1896 1	434.1 0630 7	619.8 7471 5	1035. 7463 99	882.5 0775 7	955.2 7277 6	855.1 8967 6	695.4 2927 6	954.6 0606 6	1201. 4176 78	543.9 2187 8
Sce nari o E,7	289.5	676.5 1890 8	842.7 2251 5	749.7 4996 7	526.7 5	950.7 4828 7	959.8 5352 2	659.1 0697 3	873.2 0496 9	1131. 7134 1	517.6 8382 4	529.1 5148 5	722.9 5273 9	659.2 6592 6	551.9 0501 6
Sce nari o I,1 A	130.9 6528 6	151.7 8040 4	165.1 3021 4	148.7 1913	121.2 0937 7	138.4 5380 2	145.2 1755 3	140.4 1337 7	141.9 4899 7	155.6 7944 2	135.7 6925 1	135.8 7542 6	153.8 5778 9	142.6 1302 8	148.2 9590 9
Sce nari o I,2 A	197.4 6950 3	178.5 4913 5	217.0 2683 8	169.4 5400 3	193.1 5090 6	167.7 8558	178.2 0203 1	188.7 0636 1	188.2 2364 5	211.5 4383 8	168.6 6513 5	165.5 2609 5	206.3 5434 1	156.5 1146 7	159.8 6607 1
Sce nari o I,3 A	205.2 8630 7	185.0 6086 9	280.9 0223 7	205.5 3968 1	232.2 1216 4	202.4 7733 3	227.8 1499 6	243.4 7912 5	238.9 9705 5	266.4 9474 9	243.1 4986 4	206.1 2915 9	217.9 7031 6	194.0 1839 4	232.3 9016 8

Sce nari o E,1 A	86.39 7526	102.8 2888 2	89.52 9007	98.75 5377	109.7 7151 5	93.84 1082	104.3 7227 5	101.6 0232 6	103.6 8824 5	129.7 4231 3	98.24 9323	115.1 7344 2	128.1 2701 2	119.0 2505 8	87.09 5019
Sce nari o E,2 A	190.1 0449 8	205.6 7711 5	178.7 7211 6	177.0 9724 4	203.2 0386 8	176.6 4762 6	212.6 3792 9	194.1 2559 6	210.7 3873 4	229.7 6544 9	164.8 2352 9	176.7 7777 8	217.7 2307 7	229.1 9544 7	162.4 3737 4
Sce nari o E,3 A	202.2 5	274.2 2024 5	242.5 827	288.2 2921	256.2 5	268.6 6922 6	318.5 2573 5	261.4 6375 2	328.5 8274 8	322.3 5384 6	294.5 2587 2	291.3 8461 5	303.8 7664 4	331.7 0221 4	225.9 0501 6
Sce nari o I,4 A	227.4 7310 5	327.8 1270 6	311.5 1307 5	281.8 3994 6	243.4 0656 6	277.5 8765 5	311.1 6766 2	251.4 1463 9	267.7 0618 9	358.0 0548 5	300.7 5883 7	276.2 0488 1	255.4 5715 4	409.6 5323 5	331.1 8544 7
Sce nari o I,5 A	334.3 5477 3	456.2 5861 8	429.1 9780 3	390.3 3798 8	355.1 7733 7	367.2 6828 7	468.4 0608 2	372.6 0264 6	340.6 2294 6	472.2 2821 2	408.1 6636 6	305.9 5125 1	350.5 0848 3	481.7 6199 4	373.0 2545 5
Sce nari o I,6 A	446.0 8454 5	520.2 2911 2	520.6 5805 2	572.5 3436 4	415.8 4577	438.8 8122 4	628.2 3535 7	541.3 5993 1	481.3 3645 3	615.1 4924 1	515.7 7487 8	342.8 4867	474.7 7017 1	620.1 0093 9	468.2 3528 3
Sce nari o E,4 A	135.9 3294	187.6 1555 4	221.2 8909 3	252.3 2940 9	160.5 1622 3	196.3 4965 6	237.2 6298 9	280.1 6384 8	213.2 8925 9	292.9 0652	218.6 8977 4	225.9 4977 2	234.6 0563	207.5 0560 8	277.4 6697 5
Sce nari o E,5 A	283.8 3783 1	402.3 9500 4	475.3 3754 4	366.9 7062 4	227.5 0079 1	344.4 3226 4	485.9 2740 5	331.8 1703 7	450.2 8976 4	427.6 6771 6	361.4 0281 9	296.0 5006 5	460.2 8936 2	412.2 3777	308.8 4805 1
Sce nari o E,6	244.5	402.3 1169 9	671.8 0980 7	578.1 5565 9	325	529.6 3173 5	675.1 7106 9	476.2 1870 3	561.3 4436 1	568.7 8132 5	525.9 2587 2	446.4 0011 9	626.7 5983 3	568.2 6592 6	471.1 7077 7
Sce nari o I,7 A	743.4 3352 2	1703. 3239 51	1494. 1542 88	658.6 2111	821.3 8383 6	599.0 9798 3	891.2 4713 6	1897. 3564 8	1257. 3183 28	1425. 7446 4	1428. 5636 99	979.2 7464 8	1524. 4983 45	1231. 1347 94	780.6 9765 2
Sce nari o E,7 A	385.7 5	1020. 2404 84	1756. 4706 42	1090. 6731 37	767.0 378	1410. 4354 64	1435. 2381 37	997.8 2391 9	1251. 8769 75	1745. 6323 54	870.3 4396 9	747.9 2071 6	1116. 8194 06	971.2 1714 8	749.9 0501 6

Sce nari o I,8	1317. 9926 51	3185. 3938 69	3880. 0864 51	1955. 6127 79	2088. 7049 17	2945. 8733 25	3981. 2023 53	4268. 7893 31	1984. 7492 81	4319. 5839 85	2247. 3030 01	2700. 3695 68	2503. 7670 59	2286. 8303 8	2294. 1928 16
Sce nari o E,8	1737. 0681 64	4206. 9886 98	3473. 9271 57	1203. 1527 21	1293. 4677	1657. 7301 23	4092. 0371 57	3035. 1374 24	2355. 7663 25	4978. 9574 32	2428. 8186 49	2493. 4568 87	1871. 7193 73	2137. 4256 74	1567. 0794 62
Sce nari o I,8 A	1896. 7510 94	5930. 1315 65	5194. 3749 3	2875. 6407 25	3521. 9124 89	3951. 0895 5	4958. 9997 54	5612. 3183 91	2331. 1719 17	5979. 8847 18	3422. 1882 58	4484. 8840 13	2801. 7669 6	3101. 1427 84	3626. 9118 25
Sce nari o E,8 A	2680. 2159 54	5836. 0408 32	5272. 4372	1776. 0813 09	1852. 4893 97	2232. 4921 55	5320. 6827 25	5205. 7637 09	3896. 1313 43	6615. 0858 51	2797. 3599 82	4215. 0969 39	2219. 4881 95	3495. 1802 99	2835. 4044 88
Sce nari o I,4B	325.4 3625 9	338.7 1972 9	388.4 8319 5	336.3 8901 4	314.2 6726 5	342.2 3813 9	307.4 0005 8	326.7 1080 3	322.5 2485 3	391.2 1922	309.8 2264 5	324.6 4426 9	327.3 0572	452.8 7337 1	461.9 5990 6
Sce nari o I,5B	397.4 4354 4	432.6 9289 9	571.0 1397 8	395.2 7113 2	381.3 7173 4	395.4 6594 6	491.0 9344 7	455.7 5376	454.2 6414	565.2 1795 7	452.5 5799 1	401.3 1950 8	510.1 7567 6	520.5 2907 9	458.3 5749 3
Sce nari o I,6B	547.8 5605 3	538.2 5400 7	697.5 6006	540.4 7399 1	554.7 1624 5	498.4 0559 8	726.7 1984 4	610.0 0019 4	691.1 7147	632.6 3021 7	577.2 8542	531.5 6138 7	665.7 4156 5	706.8 5837 9	627.1 5708 1
Sce nari o E,4 B	208.7 5939 3	252.3 2110 6	255.0 6787 4	240.8 1020 6	218.3 9600 8	233.0 1153 8	259.3 6683 6	259.1 8404 8	321.4 3181 9	264.5 2052 6	213.9 1057 1	238.0 3767 8	277.7 4863 9	264.0 8868 4	341.5 1456 2
Sce nari o E,5 B	304.7 7316 6	422.5 4855 5	541.6 8543 7	387.5 8011	369.5 4517 8	477.8 0899 7	507.4 7401 3	449.6 8181 6	495.9 4678 8	520.5 1080 3	348.4 5506 1	337.5 6302 4	509.6 9393 2	397.9 6201 2	339.6 8961 8
Sce nari o E,B	390.5 0959 1	526.8 3294 9	679.0 9777 7	599.3 8642 8	404.3 6468 5	491.2 9301 7	725.3 6777 4	621.0 9653 5	845.0 5112 3	700.8 8708 5	546.8 0908 9	471.2 1977 8	717.3 2091 7	545.9 9166 6	464.5 7168 3
Sce nari o I,7B	994.9 3304 1	1609. 3454 86	3539. 9334 79	1361. 5908 51	1265. 9058 78	1755. 9993 69	2587. 0859 58	2969. 6223 52	1860. 4710 81	2076. 3734 42	1862. 5908 79	1521. 9842 78	1757. 1612 3	1472. 7900 85	1561. 8011 17
Sce nari o E,7 B	1114. 8181 64	1532. 7366 32	2510. 1696 89	1123. 8398 03	1035. 6799	1222. 2993 11	2023. 2646 24	1872. 5374 24	1640. 0333 89	1707. 8466 96	1413. 8186 49	1170. 0949 22	1392. 9453 16	1420. 4125 17	1215. 5589 67
Sce nari o I,8B	3939. 4582 72	6007. 4035 49	7051. 3337 61	4507. 0184 43	5721. 0496 17	4216. 4513 03	6275. 0324 9	7630. 0734 06	5490. 1021 54	5863. 5339 07	6054. 0139 56	5727. 0160 72	4562. 1787 8	3556. 6202 8	6600. 4170 17
------------------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	--------------------	---------------------	---------------------
Sce nari o E,8 B	3847. 0104 45	5589. 5918 71	7273. 5418 24	6048. 6504 99	3831. 5386 31	4938. 7905 38	6311. 7228 86	7266. 0177 19	5033. 3667 73	6094. 9807 81	4341. 3025 94	5122. 4639 03	5313. 3177 4	4412. 7132 58	5994. 4119 56

Output

			9	Sui	nmar	y		
	Mean	(9	0% Cor	fid	ence)	Sample Std Dev	Min	Max
Scenario I,1	35.50	<	38.53	<	41.57	6.67	29.00	52.00
Scenario I,2	17.52	<	19.60	<	21.68	4.58	13.00	27.00
Scenario I,3	11.44	<	13.00	<	14.56	3.42	8.00	18.00
Scenario E,1	35.60	<	38.60	<	41.60	6.59	29.00	52.00
Scenario E,2	17.60	<	19.60	<	21.60	4.39	13.00	26.00
Scenario E,3	11.44	<	13.00	<	14.56	3.42	8.00	18.00
Scenario I,4	35.25	<	38.27	<	41.28	6.63	28.00	51.00
Scenario I,5	17.02	<	19.00	<	20.98	4.36	13.00	26.00
Scenario I,6	11.40	<	12.93	<	14.47	3.37	8.00	18.00
Scenario E,4	35.60	<	38.53	<	41.46	6.45	29.00	51.00
Scenario E,5	17.39	<	19.40	<	21.41	4.42	13.00	26.00
Scenario E,6	11.44	<	13.00	<	14.56	3.42	8.00	18.00
Scenario I,7	11.13	<	12.60	<	14.07	3.22	8.00	18.00
Scenario E,7	11.20	<	12.53	<	13.86	2.92	8.00	17.00
Scenario I,1A	35.50	<	38.53	<	41.57	6.67	29.00	52.00
Scenario I,2A	17.52	<	19.60	<	21.68	4.58	13.00	27.00
Scenario I,3A	11.44	<	13.00	<	14.56	3.42	8.00	18.00
Scenario E,1A	35.50	<	38.53	<	41.57	6.67	29.00	52.00
Scenario E,2A	17.28	<	19.33	<	21.39	4.51	13.00	26.00
Scenario E,3A	11.51	<	13.07	<	14.63	3.43	8.00	18.00
Scenario I,4A	35.04	<	37.93	<	40.83	6.36	28.00	50.00
Scenario I,5A	17.02	<	19.00	<	20.98	4.36	13.00	26.00

Scenario I,6A	11.35	<	12.87	<	14.38	3.34	8.00	18.00
Scenario E,4A	35.18	<	38.07	<	40.96	6.35	28.00	51.00
Scenario E,5A	17.17	<	19.20	<	21.23	4.48	13.00	26.00
Scenario E,6	11.33	<	12.80	<	14.27	3.23	8.00	18.00
Scenario I,7A	10.74	<	12.07	<	13.39	2.91	8.00	17.00
Scenario E,7A	11.06	<	12.33	<	13.60	2.79	8.00	17.00
Scenario I,8	8.90	<	9.60	<	10.30	1.55	7.00	13.00
Scenario E,8	9.79	<	10.53	<	11.28	1.64	8.00	14.00
Scenario I,8A	7.55	<	8.00	<	8.45	1.00	6.00	10.00
Scenario E,8A	7.75	<	8.33	<	8.92	1.29	7.00	11.00
Scenario I,4B	34.80	<	37.73	<	40.66	6.44	28.00	51.00
Scenario I,5B	16.63	<	18.73	<	20.84	4.64	13.00	26.00
Scenario I,6B	11.36	<	12.80	<	14.24	3.17	8.00	17.00
Scenario E,4B	35.07	<	38.00	<	40.93	6.44	28.00	51.00
Scenario E,5B	16.83	<	18.93	<	21.03	4.62	13.00	26.00
Scenario E,B	11.33	<	12.80	<	14.27	3.23	8.00	18.00
Scenario I,7B	10.27	<	11.27	<	12.26	2.19	8.00	14.00
Scenario E,7B	10.64	<	11.87	<	13.09	2.70	8.00	17.00
Scenario I,8B	5.49	<	5.87	<	6.25	0.83	4.00	7.00
Scenario E,8B	5.86	<	6.07	<	6.27	0.46	5.00	7.00

					Ra	aw C	Data								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Scenario I,1	29	40	43	39	31	44	30	34	45	52	31	36	45	39	40
Scenario I,2	15	23	25	18	15	24	19	14	22	27	17	18	26	18	13
Scenario I,3	8	14	17	13	8	15	13	10	13	18	10	13	18	16	9
Scenario E,1	29	40	43	39	31	44	31	34	45	52	31	36	45	39	40
Scenario E,2	15	23	25	18	15	24	19	15	22	26	17	18	26	18	13
Scenario E,3	8	14	17	13	8	15	13	10	13	18	10	13	18	16	9
Scenario I,4	28	40	43	39	31	44	30	34	45	51	31	36	45	39	38
Scenario I,5	15	23	25	17	14	22	18	14	21	25	17	17	26	18	13
Scenario I,6	8	14	17	13	8	15	13	10	13	18	10	13	18	15	9
Scenario E,4	29	40	43	39	31	44	31	34	45	51	31	36	45	39	40
Scenario E,5	15	23	25	18	15	23	18	14	22	26	17	18	26	18	13
Scenario E,6	8	14	17	13	8	15	13	10	13	18	10	13	18	16	9
Scenario I,7	8	14	17	12	8	15	13	10	13	17	10	13	18	12	9
Scenario E,7	8	14	17	13	8	14	13	10	13	17	10	13	15	14	9
Scenario I,1A	29	40	43	39	31	44	30	34	45	52	31	36	45	39	40
Scenario I,2A	15	23	25	18	15	24	19	14	22	27	17	18	26	18	13
Scenario I,3A	8	14	17	13	8	15	13	10	13	18	10	13	18	16	9
Scenario E,1A	29	40	43	39	31	44	30	34	45	52	31	36	45	39	40
Scenario E,2A	15	23	25	17	14	23	19	14	22	26	17	18	26	18	13
Scenario E,3A	8	14	17	13	8	15	13	10	14	18	10	13	18	16	9
Scenario I,4A	28	39	42	39	31	44	30	34	44	50	31	36	45	39	37
Scenario I,5A	15	23	25	17	14	22	18	14	21	25	17	17	26	18	13

Frequency Histogram

Scenario I,6A	8	14	17	13	8	15	13	10	13	18	10	13	18	14	9
Scenario E,4A	28	39	40	39	31	44	31	34	45	51	31	36	44	39	39
Scenario E,5A	15	23	25	18	14	22	18	14	22	26	17	17	26	18	13
Scenario E,6	8	14	17	13	8	15	13	10	13	18	10	13	17	14	9
Scenario I,7A	8	14	17	11	8	15	13	10	12	16	10	13	15	10	9
Scenario E,7A	8	14	17	12	8	14	13	10	13	16	10	13	15	13	9
Scenario I,8	8	12	13	9	8	9	10	10	9	9	10	11	10	7	9
Scenario E,8	8	11	14	11	8	11	11	10	12	10	10	12	12	9	9
Scenario I,8A	8	9	10	9	7	7	7	8	8	8	8	8	8	6	9
Scenario E,8A	7	7	11	10	8	9	8	8	9	7	7	9	10	7	8
Scenario I,4B	28	40	41	38	31	44	30	34	44	51	31	36	44	39	35
Scenario I,5B	13	23	25	16	14	22	18	13	21	26	17	17	25	18	13
Scenario I,6B	8	14	17	13	8	15	13	10	13	17	10	13	17	15	9
Scenario E,4B	28	40	42	38	31	44	30	34	44	51	31	36	44	39	38
Scenario E,5B	13	23	25	17	14	22	18	14	21	26	17	17	26	18	13
Scenario E,B	8	14	17	13	8	15	13	10	13	18	10	13	17	14	9
Scenario I,7B	8	13	14	11	8	13	13	10	11	14	10	13	13	10	8
Scenario E,7B	8	14	17	12	8	13	13	10	12	15	10	13	14	11	8
Scenario I,8B	6	6	6	7	5	6	6	5	6	5	4	6	7	6	7
Scenario E,8B	6	6	6	6	6	7	7	6	6	5	6	6	6	6	6

Mean Picking Time

				Su	mmary	/		
	Mea	n (9	0% Con	fide	ence)	Sample Std Dev	Min	Max
Scenario I,1	92.0	<	94.1	<	96.3	4.7	85.0	100.9
Scenario I,2	135.8	<	141.0	<	146.2	11.4	115.6	156.7
Scenario I,3	177.4	<	186.6	<	195.8	20.2	152.4	216.9
Scenario E,1	72.7	<	76.0	<	79.4	7.4	65.2	89.9
Scenario E,2	120.8	<	128.4	<	136.0	16.7	99.8	158.3
Scenario E,3	168.6	<	179.6	<	190.6	24.2	129.3	218.2
Scenario I,4	147.6	<	154.3	<	161.0	14.8	132.7	178.1
Scenario I,5	211.0	<	222.4	<	233.8	25.0	188.6	278.4
Scenario I,6	277.2	<	295.8	<	314.4	40.8	239.8	366.3
Scenario E,4	122.3	<	129.1	<	135.9	15.0	102.8	156.6
Scenario E,5	207.3	<	222.1	<	236.8	32.4	159.0	287.6

Scenario F 6	282.8	~	311.8	~	340.9	63.9	168.0	407.2
Sconario I 7	197.0	`	572.1	`	558.0	79.9	257.2	686.6
Sconario E 7	407.2	`	525.1)	530.9	20.0 20.2	200 E	600.0
Scenaria I 1A	491.0	`	04.1	`	06.2	65.5 4 7	209.5	100.0
	92.0	<	94.1	`	90.5	4.7	05.0	100.9
Scenario I,2A	135.8	<	141.0	<	146.2	11.4	115.6	156.7
Scenario I,3A	177.4	<	186.6	<	195.8	20.2	152.4	216.9
Scenario E,1A	87.0	<	90.9	<	94.9	8./	79.1	102.6
Scenario E,2A	167.8	<	173.1	<	178.4	11.7	156.5	193.1
Scenario E,3A	242.2	<	253.6	<	265.0	25.1	202.3	292.4
Scenario I,4A	166.3	<	174.0	<	181.6	16.8	152.0	206.4
Scenario I,5A	268.6	<	283.5	<	298.4	32.8	227.9	340.0
Scenario I,6A	367.5	<	393.3	<	419.1	56.8	302.1	484.6
Scenario E,4A	150.3	<	159.3	<	168.3	19.8	112.9	185.6
Scenario E,5A	276.6	<	293.4	<	310.1	36.8	206.7	336.5
Scenario E,6	383.3	<	413.3	<	443.3	65.9	244.5	511.9
Scenario I,7A	649.2	<	696.1	<	743.0	103.1	478.5	912.3
Scenario E,7A	664.3	<	716.7	<	769.2	115.3	385.8	905.6
Scenario I,8	1155.1	<	1245.0	<	1335.0	197.8	1036.7	1659.2
Scenario E,8	1077.3	<	1151.1	<	1224.9	162.3	910.7	1428.6
Scenario I,8A	1527.7	<	1642.3	<	1756.8	251.9	1324.8	2124.3
Scenario E,8A	1439.1	<	1582.2	<	1725.4	314.8	1082.6	2092.6
Scenario I,4B	196.6	<	200.6	<	204.5	8.7	189.0	218.3
Scenario I,5B	321.3	<	331.9	<	342.5	23.3	283.6	373.5
Scenario I,6B	450.7	<	467.2	<	483.7	36.3	394.7	529.7
Scenario E,4B	176.0	<	181.0	<	186.0	11.0	166.6	201.5
Scenario E,5B	323.8	<	335.2	<	346.7	25.2	299.7	369.0
Scenario E,B	446.4	<	473.0	<	499.7	58.5	360.0	572.5
Scenario I,7B	927.3	<	959.7	<	992.0	71.2	817.8	1063.9
Scenario E,7B	860.2	<	882.4	<	904.5	48.7	793.8	959.5
Scenario I,8B	2210.4	<	2349.5	<	2488.6	305.9	1987.9	3043.5
Scenario E,8B	2190.1	<	2249.4	<	2308.6	130.3	2005.4	2515.6
£								

Replications Plot

							Rav	v Data							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sce nari o I,1	95.2 6157	91.7 9586	100. 4569 79	90.0 4887	84.9 7698 2	93.9 8943 7	95.4 6927 5	100. 8999 59	97.0 1550 7	96.6 2223 2	92.6 9509 5	100. 3973 61	93.1 6105 6	86.3 8616 4	92.7 6917 3
Sce nari o I,2	156. 6826 08	129. 7405 23	150. 7268 36	140. 2047 21	154. 5286 69	135. 3724 34	131. 6950 88	151. 6327 69	141. 2202 65	155. 1447 34	138. 9340 46	140. 4034 5	141. 5389 64	115. 5566 46	131. 7469 6

Sce nari o I,3	180. 1636 63	159. 7484 88	216. 8879 7	180. 4170 36	207. 0895 19	175. 8547 97	178. 8873 58	201. 4108 87	175. 7453	200. 9307 6	215. 5477 89	181. 0065 14	166. 2301 81	152. 3743 01	207. 2675 23
Sce nari o E,1	70.9 6551 7	86.6	71.9 0697 7	66.2 0512 8	78.9 6774 2	76.0 4545 5	79.7 3333 3	74.7 6470 6	78.0 4444 4	80.1 5384 6	65.2 2580 6	69.5 5555 6	84	89.8 9743 6	68.4 5
Sce nari o E,2	127. 7333 33	148. 0869 57	102. 64	111. 3333 33	144. 9333 33	118. 75	158. 3157 89	128. 1333 33	141. 6190 48	134. 1538 46	124. 2352 94	127. 3333 33	118. 6153 85	140. 5555 56	99.8 4615 4
Sce nari o E,3	147. 25	216. 1428 57	152	170. 3076 92	194. 75	191. 7333 33	186. 3076 92	178. 2	218. 1538 46	197. 8888 89	189. 6	174. 7692 31	170. 4444 44	177. 125	129. 3333 33
Sce nari o I,4	144. 1614 94	139. 1742 34	170. 8687 81	132. 6543 65	141. 1783 81	152. 1164 69	171. 6826 48	149. 6446 02	143. 5248 8	166. 0624 41	178. 1317 6	167. 5509 07	137. 0365 85	167. 5170 48	153. 2424 46
Sce nari o I,5	214. 5988 92	212. 9094 01	232. 0857 99	225. 0750 99	227. 7815 95	204. 2080 38	235. 1884 38	188. 6460 01	189. 6010 04	247. 8297 3	278. 3867 97	211. 7260 11	191. 5802 09	252. 5471 35	223. 7589 96
Sce nari o I,6	309. 6650 12	248. 0053 65	296. 6848 65	323. 8496 59	290. 0938 21	239. 8308 6	330. 2168 77	255. 1696 17	256. 4897 41	350. 1469 93	366. 2870 29	256. 5960 21	269. 1398 44	344. 0154 55	300. 7257 79
Sce nari o E,4	104. 9285 71	117. 45	145. 4418 6	141. 1282 05	102. 7741 94	114. 8636 36	136. 1290 32	156. 6470 59	133. 0222 22	136. 0392 16	135. 4193 55	134. 7222 22	136. 1333 33	119. 0256 41	122. 7179 49
Sce nari o E,5	175. 7333 33	209. 7391 3	287. 6	241	159	206. 7826 09	236	230. 9230 77	227. 5454 55	225. 7692 31	266. 3529 41	219. 55555 56	233. 6153 85	188. 4444 44	223. 2307 69
Sce nari o E,6	168	266. 7142 86	407. 1764 71	373. 3846 15	213. 5	324	370. 3076 92	299. 4	329. 0769 23	340. 1111 11	348. 6	329. 8461 54	339. 5555 56	244. 75	322. 6666 67
Sce nari o I,7	456. 8867 23	529. 5031 5	486. 1625 94	499. 8257 66	596. 2963 16	357. 2475 39	479. 8677 26	531. 9699 01	517. 3813 95	602. 1741 13	686. 6431 37	547. 9061 91	518. 4696 74	595. 3338 79	440. 2060 69
Sce nari o E,7	289. 5	514. 5714 29	585. 7647 06	637. 8461 54	526. 75	587. 1428 57	532. 6153 85	514. 4	592. 3076 92	690	515	481. 2307 69	539. 0666 67	495. 5714 29	484. 4444 44
Sce nari o I,1A	95.2 6157	91.7 9586	100. 4569 79	90.0 4887	84.9 7698 2	93.9 8943 7	95.4 6927 5	100. 8999 59	97.0 1550 7	96.6 2223 2	92.6 9509 5	100. 3973 61	93.1 6105 6	86.3 8616 4	92.7 6917 3
Sce nari	156. 6826 08	129. 7405 23	150. 7268 36	140. 2047 21	154. 5286 69	135. 3724 34	131. 6950 88	151. 6327 69	141. 2202 65	155. 1447 34	138. 9340 46	140. 4034 5	141. 5389 64	115. 5566 46	131. 7469 6

o I,2A															
Sce nari o I,3A	180. 1636 63	159. 7484 88	216. 8879 7	180. 4170 36	207. 0895 19	175. 8547 97	178. 8873 58	201. 4108 87	175. 7453	200. 9307 6	215. 5477 89	181. 0065 14	166. 2301 81	152. 3743 01	207. 2675 23
Sce nari o E,1 A	80.1 4285 7	92.5 5	79.1 1627 9	80.4 1025 6	98.1 2903 2	85.5 9090 9	88.9 3333 3	94.9 4117 6	95.6	99.6 5384 6	84.9 0322 6	102. 5555 56	100. 4	101. 5384 62	79.6 5
Sce nari o E,2 A	170. 5333 33	184. 1739 13	158. 96	156. 4705 88	192. 2857 14	168. 7826 09	175. 7894 74	183. 1428 57	193. 0909 09	174. 0769 23	164. 8235 29	176. 7777 78	164. 4	176. 1111 11	157. 2307 69
Sce nari o E,3 A	202. 25	269. 8571 43	224. 5882 35	244. 7692 31	256. 25	257. 3333 33	254. 3076 92	239. 4	271. 3846 15	258	292. 4	291. 3846 15	249. 3333 33	273	219. 7777 78
Sce nari o I,4A	160. 6462 39	161. 5547 04	189. 4576 83	155. 6822 61	159. 2474 74	169. 1819 4	196. 0063 4	164. 2897 89	162. 9769 85	187. 6815 65	206. 3975 35	185. 5839 82	152. 0158 63	189. 0756 82	169. 7171 15
Sce nari o I,5A	279. 9423 93	282. 1288 94	305. 0673 28	292. 0965 66	277. 1427 27	258. 7668 41	336. 4805 88	254. 5568 01	238. 3268 26	294. 3362 25	340. 0036 38	256. 0624 67	227. 8908 05	310. 0454 12	300. 1666 74
Sce nari o I,6A	417. 4391 16	369. 7841 86	403. 0817 9	446. 7105 28	362. 9622 27	327. 1075 77	462. 1056 2	354. 7008 59	335. 7673 67	445. 1132 7	484. 6181 48	302. 0501 06	331. 7674 94	446. 4895 03	409. 4421 4
Sce nari o E,4 A	112. 9285 71	138. 1538 46	166. 35	170	136. 9032 26	151. 5454 55	184. 7741 94	185. 6470 59	155. 6444 44	174. 7058 82	172. 7096 77	164. 6666 67	165. 0454 55	142. 9230 77	167. 7435 9
Sce nari o E,5 A	229. 4666 67	284. 6956 52	336. 48	334. 2352 94	206. 7142 86	288. 4545 45	323	307. 6923 08	325. 0909 09	297. 2307 69	326	281	293. 4615 38	273. 3333 33	293. 5384 62
Sce nari o E,6	244. 5	368. 4285 71	511. 8823 53	487. 3846 15	325	419. 6	462. 1538 46	414. 2	399. 2307 69	397. 8888 89	476	417. 6923 08	431. 7647 06	417. 7142 86	426. 2222 22
Sce nari o I,7A	687. 4830 87	785. 3341 57	644. 6733 7	582. 8028 32	793. 6476 52	478. 4661 03	651. 7617 81	689. 0919 87	658. 7286 84	784. 8432 74	912. 3244 66	724. 2233 3	737. 3934 24	702. 6320 88	607. 7885 79
Sce nari o	385. 75	702. 1428 57	774. 5882 35	830	750. 5	748. 4285 71	760. 6153 85	703. 4	799. 2307 69	905. 625	710. 2	640. 6153 85	728. 6666 67	651. 0769 23	660. 2222 22

E,7 A															
Sce nari o I,8	1036 .709 061	1074 .792 87	1095 .506 245	1041 .346 384	1511 .306 29	1326 .900 675	1448 .178 39	1323 .437 777	1121 .034 621	1453 .723 187	1057 .748 56	1219 .454 056	1193 .449 06	1659 .247 814	1112 .614 701
Sce nari o E,8	1282 .5	1324 .545 455	989. 1428 57	910. 7272 73	981. 75	1077 .454 545	1349 .636 364	1149 .2	1141 .666 667	1428 .6	1099	1099 .166 667	1057 .833 333	1374 .666 667	1000 .888 889
Sce nari o I,8A	1326 .236 378	1530 .939 587	1428 .659 792	1324 .778 621	2049 .021 731	1703 .365 227	1907 .361 977	1674 .167 362	1358 .757 3	1795 .208 16	1683 .192 789	1734 .861 187	1509 .973 218	2124 .290 381	1482 .956 506
Sce nari o E,8 A	1728 .857 143	1963 .142 857	1288 .727 273	1082 .6	1288	1239 .333 333	1791 .25	1586	1644 .888 889	2092 .571 429	1777 .142 857	1617 .111 111	1225	2001 .142 857	1407 .75
Sce nari o I,4B	218. 3266 2	188. 9539 8	202. 0813 39	193. 5482 08	213. 9278 31	195. 5604 11	198. 8639 89	193. 5220 6	199. 1381 95	198. 7015 19	200. 9235 44	199. 7916 51	193. 5572 08	195. 8760 05	215. 6925 56
Sce nari o I,5B	353. 2243 28	301. 4673 45	349. 9508 39	342. 4374 25	327. 1147 63	283. 6415 35	340. 5432 87	304. 0124 81	337. 4844 29	358. 5254 73	373. 5449	329. 4253 54	322. 6256 29	326. 0674 09	328. 7510 35
Sce nari o I,6B	485. 0587 14	430. 0867 23	486. 7955 55	474. 0158 46	501. 8327 01	394. 7384 89	496. 3592 6	415. 6758 57	485. 7399 37	495. 8225 44	529. 6671 54	471. 8288 33	443. 4013 44	446. 4301 3	450. 3323 75
Sce nari o E,4 B	166. 5714 29	171. 6	191. 9024 39	173. 2105 26	178. 5161 29	168. 9090 91	180. 8666 67	191. 4117 65	201. 4545 45	176. 1960 78	170. 9677 42	185. 9444 44	192. 3181 82	171. 0769 23	193. 6315 79
Sce nari o E,5 B	299. 6923 08	305. 8260 87	361. 92	332. 2352 94	313. 4285 71	352. 9090 91	356. 7777 78	363. 1428 57	369. 0476 19	358. 7692 31	334	333. 2941 18	344. 2307 69	302. 4444 44	300. 9230 77
Sce nari o E,B	360	432. 5714 29	513. 5294 12	497. 3846 15	391. 75	425. 2	513. 2307 69	506	572. 4615 38	520. 3333 33	511. 8	463. 8461 54	523. 2941 18	439. 8571 43	424. 4444 44
Sce nari o I,7B	817. 7657 38	877. 8681 72	949. 3318 94	990. 0693 87	1033 .766 35	946. 4395 91	1058 .573 772	1063 .858 16	1002 .300 19	971. 5667 54	1015 .430 796	972. 4697 47	885. 8147 39	911. 0152 72	898. 7653 24
Sce nari o E,7 B	946	897. 4285 71	825. 7647 06	823. 5	866. 5	899. 3846 15	936. 3076 92	838. 2	959. 5	923. 8666 67	912. 2	870. 7692 31	863. 5714 29	878. 7272 73	793. 75

Sce nari o I,8B	2161 .370 033	2398 .456 272	2452 .166 749	1993 .676 404	2647 .439 855	2177 .927 968	2193 .883 604	2862 .579 274	2238 .285 609	2369 .846 01	3043 .470 26	2363 .020 456	1987 .889 327	2325 .212 786	2027 .445 958
Sce nari o E,8 B	2234	2271 .333 333	2370 .333 333	2212 .666 667	2236 .666 667	2046 .571 429	2005 .428 571	2383 .333 333	2183 .333 333	2515 .6	2306	2247 .333 333	2139 .666 667	2356. 66666 7	2231. 33333 3

The End