
POLITECNICO DI TORINO
in collaboration with

UNIVERSITÄT ZU KÖLN

Master’s Degree Thesis
ICT for Smart Societies

Machine Learning Algorithms for
Radiogenomics: Application to Prediction

of the MGMT promoter methylation
status in mpMRI scans

Data Science Lab at University Hospital Cologne

Candidate
Mostafa KARAMI

Supervisor at Polito
Prof. Monica VISINTIN

Supervisor at UC
Prof. Liliana CALDEIRA

October 2022

Abstract

Glioblastomas are the most aggressive and destructive forms of solid brain tumors
of the central nervous system. Despite aggressive multimodal treatment approaches,
the overall survival period is reported to be less than 15 months after diagnosis.
MGMT gene silencing is a potentially proper predictive element in determining the
mortality rate for glioblastoma patients undergoing chemotherapy. Analyzing the
correlation between different medical image characteristics and MGMT promoter
methylation status through machine learning tools could play an essential role in
the automatic aided diagnosis approach.

By doing data preprocessing and transformation, this thesis aims to extract
features from data provided by the Radiological Society of North America (RSNA)
and investigate this relationship with various classification methods like Logistic
Regression (LR), Support Vector Machine (SVM), and Multi-Layer Perceptron
(MLP). Using Pyradiomics, an open-source python package, 1153 features have
been extracted from the images, their segmented forms, and Laplacian of Gaussian
(LoG) and Wavelet filters to get features with more details. The Extreme Gradient
Boosting (XGBoost) classifier is used since it is desirable to reduce the number
of features to improve performance and identify the optimal number for the most
relevant results.

The model used nested cross-validation (CV) to prevent information leakage and
obtain better outcomes by finding the best set of hyperparameters for the chosen
models. This approach is also exclusively applied to different MRI sequence types
such as Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted pre-contrast
(T1), T1-weighted post-contrast (T1ce), and T2-weighted (T2) in order to point
out the importance of each for final user support and future research purposes.
Different statistical metrics such as accuracy, F1 score, and confusion matrix are
considered for each classification algorithm.

This study demonstrated acceptable performance by the proposed feature ex-
traction, feature selection methods, and machine learning classification algorithms.
Although the deep learning approach would result in better performance metrics,
considering computational load and time-space trade-off, using radiomics features
and performing classification lead to valuable results in quicker time for the final
user. Undoubtedly, better results can be obtained by accessing more extensive data,
which points out the importance of data quantity. Analyzing different optimal
features also would be a good starting point for future research to focus on the
most critical aspect of brain tumor MRI images.

Acknowledgements

I would first like to thank my thesis advisor, Dr. Caldeira, at the University of
Cologne. She consistently steered me in the right direction whenever she thought I
needed it. I would also like to thank Dr. Visintin, my thesis advisor from the
Polytechnic University of Turin, for accepting me as her student and letting me be
part of this journey.

I must express my deepest gratitude to my parents and my two wonderful brothers,
Morteza and Alireza, for providing unfailing support and continuous encourage-
ment throughout my years of study and through researching and writing this thesis.
This accomplishment would not have been possible without them.

Mostafa Karami

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Goals . 2
1.3 Related Studies . 3

2 Materials & Methods 6
2.1 Dataset . 6
2.2 Visualization . 7
2.3 Feature Extraction . 11
2.4 Dimensionality Reduction . 12
2.5 Classification . 14

2.5.1 Logistic Regression . 14
2.5.2 Support Vector Machine . 18
2.5.3 Multi-layer Perceptron . 19

3 Results 21
3.1 Performance Evaluation . 21

3.1.1 FLAIR . 24
3.1.2 T1 . 26
3.1.3 T1ce . 28
3.1.4 T2 . 30

3.2 Comparison . 32

4 Conclusion and Future Works 33
4.1 Summary and Conclusion . 33

iii

4.2 Future Works . 34

A Technicalities 35

Bibliography 85

iv

List of Tables

3.1 A 2x2 confusion matrix structure 21
3.2 Final results for LR classification 22
3.3 Final results for SVM classification 23
3.4 Final results for MLP classification 23
3.5 List of top-ranked features for the best outcome 24

v

List of Figures

2.1 Data distribution according to the target variable, MGMT value . . 6
2.2 FLAIR MRI image in different planes 8
2.3 FLAIR original MRI image with the segmented form of the tumor

in the best-projected views - Patient’s ID: 00003 8
2.4 T1ce original MRI image with the segmented form of the tumor in

the best-projected views - Patient’s ID: 00014 9
2.5 T1ce original MRI image with the segmented form of the tumor in

the best-projected views - Patient’s ID: 00070 9
2.6 T2 original MRI image with the segmented form of the tumor in the

best-projected views - Patient’s ID: 00267 10
2.7 Overview of the pyradiomics process [21] 11
2.8 Correlation heatmap of top 12 ranked features of all mixed datasets

used for the model . 13
2.9 Process of nested CV . 15
2.10 Logistic Sigmoid activation function 16
2.11 Classification of data by (SVM) . 18
2.12 Multi-layer Perceptron (MLP) [27] 20

3.1 FLAIR - Confusion Matrix for LR with 10 selected features 24
3.2 FLAIR - Confusion Matrix for SVM with 16 selected features . . . 25
3.3 FLAIR - Confusion Matrix for MLP with 14 selected features . . . 25
3.4 T1 - Confusion Matrix for LR with 19 selected features 26
3.5 T1 - Confusion Matrix for SVM with 16 selected features 27
3.6 T1 - Confusion Matrix for MLP with 16 selected features 27
3.7 T1ce - Confusion Matrix for LR with 3 selected features 28
3.8 T1ce - Confusion Matrix for SVM with 5 selected features 29
3.9 T1ce - Confusion Matrix for MLP with 4 selected features 29
3.10 T2 - Confusion Matrix for LR with 6 selected features 30
3.11 T2 - Confusion Matrix for SVM with 5 selected features 31
3.12 T2 - Confusion Matrix for MLP with 6 selected features 31

vi

Acronyms

GBM
Glioblastomas

MGMT
O2-methylguanine DNA methyltransferase+

MRI
Magnetic Resonance Imaging

FLAIR
Magnetic Resonance Imaging

T1
T1-weighted pre-contrast

T1ce
T1-weighted post-contrast

T2
T2-weighted

DICOM
Digital Imaging and Communications in Medicine

NIFTI
Neuroimaging Informatics Technology Initiative

mpMRI
multi-parametric MRI

viii

AI
Artificial Intelligence

ML
Machine Learning

IoT
Internet of Things

CV
cross-validation

SVM
Support Vector Machine

MLP
Multi-Layer Perceptron

LR
Logistic Regression

std
Standard Deviation

CNN
Convolutional Neural Network

LoG
Laplacian of Gaussian

XGBoost
Extreme Gradient Boosting

PR
Precision Recall

TR
True Positive

ix

FP
False Positive

TN
True Negative

FN
False Negative

x

Chapter 1

Introduction

1.1 Background

Brain Glioblastomas (GBM) tumors represent about 50% of all primary brain
tumors [1], and due to the fact that it is the most aggressive and exceptionally
invasive type of brain tumor, the treatment of GBM has still been believed to
be the most challenging job in clinical oncology. GBM suffers an unfavorable
prognosis despite all the worldwide efforts such as surgical excision, chemotherapy,
and radiotherapy [2].

O2-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme that
removes the guanine-alkyl group induced by alkylating agents such astemozolomide
(TMZ) [3]. The methylation of the MGMT promoter, which epigenetically silences
the MGMT gene, has become a reliable prognostic and predictive biomarker of the
World Health Organization (WHO) [4–6]. Accordingly, measurement of MGMT
promoter methylation status would be a proper approach to consider for clinical
evaluation of glioma patients. The typical implementation of MGMT methylation
status in clinical practice is challenging even though substantial evidence emphasiz-
ing its role in prognosis. Some mentionable controversial scenarios specifying the
statuses of MGMT are the optimal cut-off methods and definitions by pyrosequenc-
ing in glioblastoma. The main significant challenge is a variation in diagnostic
methods, which are not the same between different laboratories.

One of the most effective tools for diagnosis and monitoring the treatment is
Magnetic Resonance Imaging (MRI) which plays a vital role in glioma prognosis
studies. In recent years, MRI-imaging features have been considered as predictive
objective indications of the medical state of GBM. According to studies, imaging
characteristics such as the extent of edema, preoperative tumor volume, degree of

1

Introduction

contrast enhancement, and necrosis have particular GBM predictive value [7]. That
is why to illuminate the meaningful link between imaging features and survival
or GBM genomic alterations, the accurate and reproducible measurement of MR
features is required [8].

Radiogenomic analysis connected the MR characteristics to gene expression profiles
in GBM, and by extracting them, the molecular properties of tumors could be
predicted [9]. However, since these characteristics are often considered qualitatively,
interpretation becomes crucial. To clarify the relevant relationship between imaging
characteristics and survival or GBM genomic mutations, precise and repeatable
evaluation of MR features is essential [10].

As stated by [11], remote-controlled robots will become more widespread in various
fields in the near future. Recent studies demonstrate the engagement of several
researchers in wireless communication [12], [13], and [14] improve an existing
system by addressing pertinent difficulties. Machine learning (ML) and other
data analysis techniques are being developed to process medical data analysis.
The integration of Machine Learning and other technologies, such as the Internet
of Things (IoT), resulted in the smart hospital development project developed
by [15] in order to efficiently manage hospitalized patients. ML is equivalent to the
research and creation of models and algorithms for automated gaining knowledge
from massive, complex data sets. Most biological studies that analyze enormous
amounts of data consider using computational techniques like ML. These methods
have several advantages, including the ability to exploit complicated correlations
in high resolution and enable the quantification of tumor approaches that rely on
imaging.

1.2 Motivation and Goals
To predict the MGMT value (indicator for the presence of MGMT promoter
methylation), in this study, several features have been extracted using the Brain
Tumor Segmentation (BraTS) dataset provided by the Radiological Society of
North America (RSNA) [16]. All BraTS multiparametric MRI (mpMRI) scans
are accessible in Digital Imaging and Communications in Medicine (DICOM) files
(.dcm) for Task 2 (Prediction of the MGMT promoter methylation status) and
NIfTI files (.nii.gz) for Task 1 (Brain Tumor Segmentation in mpMRI scans.) The
dataset for each task provided is regarded separately, and that is why 26 patients
from task 2 have not segmented form. Hence they are excluded from the dataset
for this study since the segmented form is essential for the feature extraction stage.
These mpMRI images were obtained using various clinical procedures and scanners

2

Introduction

from several institutions which describe the following sequence types:

• Fluid Attenuated Inversion Recovery (FLAIR), fluid suppression by
setting an inversion time that nulls fluids.

• T1-weighted pre-contrast (T1), measuring spin–lattice relaxation by using
a short repetition time (TR) and echo time (TE).

• T1-weighted post-contrast (T1ce), providing a novel approach to optimal
myocardial nulling for late gadolinium enhancement imaging.

• T2-weighted (T2), measuring spin–spin relaxation by using long TR and
TE times.

Following the same annotation process, one to four raters manually segmented
all imaging datasets, and expert board-certified neuroradiologists confirmed their
annotations. Annotations comprise the GD-enhancing tumor (ET—label 4), the
peritumoral edematous/invaded tissue (ED—label 2), and the necrotic tumor core
(NCR—label 1). Visualizing the images and segmented area is a crucial aspect,
that covered in this thesis. The best view of the tumor for each sequence typed
has been found and presented to the final users.

By using the original images, the filtered versions (Laplacian of Gaussian and
Wavelet), and their segmented form, raw data has been obtained using pyradiomics,
an open-source python package for extracting radiomics features from medical
imaging. The output data is formed by 11336 number of subjects and 1155 features,
which are separated into different segmented areas for each MRI sequence type.
Extreme Gradient Boosting (XGBoost) classifier is used for feature selection in
different files that eliminate unnecessary and worthless features and keeps only
those that are relevant. The top 20 features were separated as a means to associate
MGMT methylation status with glioma progression. Various classification models
such as LR, SVM, and MLP are used to investigate the statistical metrics such as
accuracy, F1 score, confusion matrix and etc.

Another essential ideal of the thesis is to evaluate the result for each MRI se-
quence type as a different scenario and compare the outcome to provide a better
interpretation of the dataset for final users.

1.3 Related Studies
A few surveys addressing the topic of Machine Learning-based processes for MGMT
methylation status prediction have been proposed in recent years. This section

3

Introduction

provides an overview of relevant research and explains the critical points of previous
surveys. One of the noticeable research in this area is MRI-based machine learning
for determining quantitative and qualitative characteristics affecting the survival
of glioblastoma multiforme [17]. In this article, it has been shown that MGMT
promoter methylation is related to better outcomes in glioblastoma (GBM) patients
and may be a measure of chemotherapy sensitivity. It has been shown that
MGMT promoter methylation is related to better outcomes in glioblastoma (GBM)
patients and may be a measure of chemotherapy sensitivity. MRI scans from
GBM patients were retrospectively analyzed. ML techniques were used to create
multivariate prediction models, which were then evaluated using information from
The Cancer Genome Atlas (TCGA) database. Accuracy of up to 73.6% was
achieved in predicting the methylation status of the MGMT promoter. According
to experimental investigation, the most critical factors affecting the level of MGMT
promoter methylation in GBM were:

• The edema/necrosis volume ratio.

• Tumor/necrosis volume ratio.

• Edema volume.

• Tumor location and enhancement features.

The acquired findings provide further proof that MGMT methylation status in
GBM and common preoperative MRI variables are related. The following research
is MRI-based machine learning for determining quantitative and qualitative charac-
teristics affecting the survival of glioblastoma multiforme [18] that aims to examine
the image biomarkers taken from MRI pictures to see how they affect the survival
of individuals with glioblastoma multiforme (GBM). Finding its biomarker aids in
improved illness management and therapy evaluation. Imaging characteristics have
been shown to be potential biomarkers. This research aims to examine the correla-
tion between MRI and clinical characteristics as a biomarker for GBM survival.
Five clinical factors, 10 pre-operative MRI imaging features, and six quantitative
features derived from the BraTumIA software were taken into consideration for 55
patients. To identify key variables, ANN, C5, Bayesian, and Cox models were run
in two stages. The first stage has chosen the quality features that appear in at least
three models and are quantitative in two models. The probability value of variables
in each model was then determined in the second part, which revealed that the
greatest sizes of the breadth and length, radiation, the volume of enhancement, the
volume of nCET, enhancing margin, and age feature are vital characteristics.

In the subsequent study, Machine learning-based radiomic evaluation of treatment
response prediction in glioblastoma [19], ML-based models that include clinical,

4

Introduction

radiomic, and genomic data have been investigated to differentiate between genuine
early progression (tPD) and pseudoprogression (psPD) in patients with glioblas-
toma. Following chemoradiotherapy for glioblastoma, 76 patients (46 tPD, 30
psPD) with the early enhancing illness underwent a retrospective study. Following
patients for six months after chemoradiotherapy, the result was assessed. In early
post-chemoradiotherapy contrast-enhanced T1-weighted imaging (T1), T2-weighted
imaging (T2), and apparent diffusion coefficient (ADC) maps, enhancing disease
and perilesional oedema masks were used to extract 307 quantitative imaging
features. These models also included clinical characteristics and the status of the
(MGMT) promoter’s methylation. A random forest approach was used for feature
selection inside bootstrapped cross-validated recursive feature removal. The re-
sultant model was validated using a naive Bayes five-fold cross-validation procedure.

In summary, evaluating different sequence types in mentioned research remains
a nontrivial task. Therefore, in this work, the dataset went through specific
preparation to separate each sequence and its association with MGMT value by
exploiting only the top selected features.

5

Chapter 2

Materials & Methods

2.1 Dataset

The 559 MRI images that were taken into consideration for this study create the
dataset. A five-digit number uniquely identifies each separate case’s specific folder,
which is the patient’s ID number. Within each of these case folders, four sub-folders
correspond to the structural multi-parametric MRI (mpMRI) scans in DICOM
format. The header and image data are both contained in a single file in the
DICOM format. The amount of header information affects how big the header will
be. The patient’s ID, patient name, modality, and other information are included
in the header. It also specifies the resolutions and the number of frames that are
included. Many DICOM files will be generated for a single acquisition.

Figure 2.1: Data distribution according to the target variable, MGMT value

6

Materials & Methods

One of the other formats used to store brain imaging data obtained using MRI
is Neuroimaging Informatics Technology Initiative (NIFTI), which originates in
neuro-imaging but can be used in other fields as well. A major feature is that the
format contains two affine coordinate definitions which relates each voxel index
(i, j, k) to a spatial location (x, y, z).

The primary distinction between DICOM and NIfTI is that NIfTI saves the raw
image data as a 3D picture, whereas DICOM uses 2D image slices. Because NIFTI
is represented as a 3D picture, it may be more suitable for ML applications than
with respect to the DICOM format. Aslo, it is simpler to manage a single NIFTI
file than several hundred DICOM files. Unlike DICOM, which uses several files for
each 3D picture, NIFTI only uses two.

In this thesis, by using dicom2nifti and nibabel python packages, all the dataset
have been converted to NIFTI format for further process.

2.2 Visualization
Medical visualization research to date has focused primarily on supporting physi-
cians in diagnosis and treatment and, to a lesser extent-medical students, particu-
larly for anatomy education [21]. That is why representing medical data clearly
and effectively is a primary step before any processing.

The converted dataset to NIFTI format, was used to project 3D images in 3 planes,
which are axial in an X-Y, sagittal in a Y-Z, and coronal in X-Z. Fig. 2.2 shows an
MRI image of the patient’s ID 00009. One of the privileges of the used dataset is
the presence of segmented images that are not only used for feature extraction but
also have a positive representation point for the final user. To better understand
the original images and the segmented forms, it is a good idea to find the best
view in each projected plane that shows more tumor area. A searching algorithm
identifies different voxel values as tumor labels, and the best-projected view is
found. The figs. 2.3 to 2.6 display the best view of the original and the whole
segmented tumor for the different patient’s ID, and different sequence types.

7

Materials & Methods

Figure 2.2: FLAIR MRI image in different planes

Figure 2.3: FLAIR original MRI image with the segmented form of the tumor in
the best-projected views - Patient’s ID: 00003

8

Materials & Methods

Figure 2.4: T1ce original MRI image with the segmented form of the tumor in
the best-projected views - Patient’s ID: 00014

Figure 2.5: T1ce original MRI image with the segmented form of the tumor in
the best-projected views - Patient’s ID: 00070

9

Materials & Methods

Figure 2.6: T2 original MRI image with the segmented form of the tumor in the
best-projected views - Patient’s ID: 00267

10

Materials & Methods

2.3 Feature Extraction
Increasing evidence suggests the strong impact of intra-tumor and inter-tumor
heterogeneity on cancer treatment response. Radiomics aims to capture this hetero-
geneity by quantifying the tumor phenotype using high throughput mathematical
algorithms applied to medical imaging data. These algorithms are either defined
using engineered features requiring expert domain knowledge or deep learning
methods that can automatically learn the feature representations from the data.

Figure 2.7: Overview of the pyradiomics process [21]

The pyradiomics package in python provides a pipeline to extract radiomic fea-
tures from medical imaging data. It contains features for first-order [20] statistics
as well as descriptors of the texture and shape of the region of interest. These
features can either be extracted from the image directly or from images derived
from the original image using a choice of available filters.

One of the filters used in this study is wavelet transformation which can provide
comprehensive spatial and frequency distributions for characterizing intratumoral
and peritumoral regions in terms of low and high-frequency signals. These proper-
ties may improve the performance of the radiomic model in term of compression,
noise reduction and detection [23,24]. Another filter is Laplacian of Gaussian (LoG)
which is associated with image noise reduction and can improve the utility of the
heterogeneity measures [25].

Once all features are extracted, results are combined and returned as a CSV file

11

Materials & Methods

which is used for prospective data processing.

2.4 Dimensionality Reduction
A dimensionality reduction technique is needed to transform the dataset from a
high-dimensional space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the original dataset. The vari-
ance threshold is a feature selector that removes all the low variance features from
the dataset without significant modeling benefits. In the first step, the outcome of
the feature extraction stage would be cleaned up by keeping only numerical features
and applying a low variance threshold to reduce the number of features to 841. Since
the number of features is still too high, the XGBoost classifier as a dimensionality re-
duction technique has been used, which will reduce the complexity of the model and
remove some of the data noise. It also assists in reducing overfitting in this approach.

As part of its ensemble learning, the XGBoost classifier employs regularized learning
and cache-aware block structure tree learning. L represents the loss function; ft

represents the tree and t − th tree and Ω(ft) is regularized term. The second-order
Taylor series of L at the t − th iteration is:

L(t) ≃
kØ

i=1

5
l

1
yi, y

(t−1)
i

2
+ gift (xi) + 1

2hif
2
t (x)

6
+ Ω (ft) (2.1)

Gain is utilized to choose the best split node during XGBoost training where gi

and hi stand for the first and second order gradients.

gain = 1
2


1q

i∈IL
gi

22

q
i∈IL

hi + λ
+

1q
i∈IR

gi

22

q
i∈IR

hi + λ
− (q

i∈I gi)2q
i∈I hi + λ

 − γ (2.2)

I = IL ∪ IR (2.3)

Where IL and IR, respectively, represent samples of the left and right nodes after
segmentation and γ and I are a penalty parameters. Gain is the score assigned
to each split of a tree, and the average gain is used to determine the final feature
importance score. The average gain equals the sum of all tree gains divided by the
sum of feature splits. The matching feature is considered to be more significant
and impactful the higher the feature significance score of XGBoost is. In order
to describe MGMT status, the top-ranked features are acquired based on feature
relevance.

12

Materials & Methods

Figure 2.8: Correlation heatmap of top 12 ranked features of all mixed datasets
used for the model

13

Materials & Methods

Fig. 2.8 shows correlation heatmap for the top 12 selected features in a mixed
dataset containing all the MRI sequence types. These features will be used in
binary classification to build the predictive model.

2.5 Classification
In this thesis, nested CV is considered as a splitting technique for evaluating the
performance of ML algorithms. Nested CV is often used to train a model that
needs its hyperparameters to be tuned. The generalization error of the underlying
model and its hyperparameters search is estimated via nested CV. By selecting
parameters that maximize non-nested CV, the model is biased toward the dataset
and produces an excessively positive result.

The same data are used to adjust model parameters and assess model performance
in model selection without a nested CV. As a result, the model may overfit the
data, and information may leak into it. The size of the dataset and the model’s
stability has the most effects on the amount of this impact.

Nesting CV successfully uses a succession of train/validation/test set splits to
get around this issue. The score is roughly maximized in the inner loop by
fitting a model to each training set before being directly maximized by choosing
hyperparameters across the validation set. The test set scores from various dataset
splits are averaged in the outer loop to assess generalization error.
As it is shown in fig. 2.9, the whole dataset has been split in a way that the training
part has 90% and the test 10%. The training part will go through a nested CV,
in which the outer loop has 10 folds, and for the inner loop, 5 folds have been
considered. The outer loop train the model with the best hyperparameters obtained
with the inner loop and test on the held-back-test dataset. All average statistical
measurements are reported separately for each classification approach through the
outer loop iteration. In the following, a summary of applied classification methods
has been reviewed.

2.5.1 Logistic Regression
Logistic Regression is a statistical learning technique in the category of supervised
Machine Learning (ML) for classification problems. It is frequently used to calculate
the likelihood that a certain instance belongs to a certain class. If the estimated
probability exceeds 50%, the model predicts that the instance belongs to the positive
class labeled "1". Otherwise, it predicts it belongs to the negative class labeled
"0". This makes it a binary classifier. The Logistic Regression model computes a

14

Materials & Methods

Figure 2.9: Process of nested CV

15

Materials & Methods

weighted sum of the input features (plus a bias term), and the output is equation
2.4:

p̂ = hθ(x) = σ
1
x⊤θ

2
(2.4)

The logistic is a sigmoid function which is like an S-shaped that outputs a number
between 0 and 1. It is defined as shown in equation 2.5 and fig. 2.10.

σ(t) = 1
1 + e−(β0+β1x) (2.5)

Figure 2.10: Logistic Sigmoid activation function

The Logistic Regression model could easily predict once it has calculated the
probability p̂ = hθ(x), which, an instance x, belongs to the positive class.

ŷ =
I

0 if p̂ < 0.5
1 if p̂ ≥ 0.5 (2.6)

Equation 2.6 that σ(t) < 0.5 when t < 0, and σ(t) ≥ 0.5 when t ≥ 0, so a Logistic
Regression model predicts 1 if xT θ is positive and 0 if it is negative.
The sklearn.linear_model.LogisticRegression from sikit-learn package in
Python has been used for creating LR model. The logistic model is penalized for
having too many variables. As a regularization, this brings the coefficients of the
less significant variables closer to zero. In this study, for specifying the norm of

16

Materials & Methods

penalty, four parameters have been considered:

"penalty": ["none", "l1", "l2", "elasticnet"]

• "none": no penalty is added.

• "l1": penalizes the sum of absolute values of the weights.

• "l2": regularization penalizes the sum of squares of the weights.

• "elasticnet": penalized linear regression model that includes both the L1 and
L2 penalties during training.

The second parameter is "C," which stands for the inverse regularization parameter.
This control variable is positioned in the opposite direction from the Lambda
regulator and maintains the regularization’s strength modification.

C = 1
λ

(2.7)

The relationship would be that lowering C would strengthen the Lambda regulator.
The values considered for it are:

"C": [0.001, 0.009, 0.01, 0.09, 1, 5, 10, 25, 50, 75, 100]

The third parameter is "solver," which allows for different gradient descent algo-
rithms to set the βi [26] in equation 2.5. Three solvers method has been taken into
account:

• "newton-cg": Newton’s technique that essentially employs an improved quadratic
function minimization.

• "lbfgs": Limited-memory BFGS approximates the Broyden–Fletcher–Goldfarb–
Shanno algorithm (BFGS) using a limited amount of computer memory.

• "liblinear": It is Library for Large Linear Classification, which uses a coordinate
descent algorithm that is based on minimizing a multivariate function by
solving univariate optimization problems in a loop.

17

Materials & Methods

2.5.2 Support Vector Machine
A separating hyperplane is the formal definition of a Support Vector Machine
(SVM), as a discriminative classifier. In other words, the method produces an
optimum hyperplane that classifies fresh samples when given labeled training data
(supervised learning). This hyperplane divides a plane into two halves in two-
dimensional space, with one class lying on either side of the line.

Equation 2.8 is of a hyperplane where w is a vector normal to the hyperplane and
b is an offset.

w.x + b = 0 (2.8)

Defining a decision rule to classify a point as negative or positive is an essential
step.

y =
I

+1 if X⃗ · w⃗ + b ≥ 0
−1 if X⃗ · w⃗ + b < 0

(2.9)

To calculate ‘d’, as fig. 2.11 shows, the equation of L1 and L2 is needed. The
assumption is that the equation of L1 is w.x + b = 1, and for L2, it is w.x + b = −1.

Figure 2.11: Classification of data by (SVM)

The sklearn.svm.SVC package from sikit-learn in Python is used for SVM clas-
sification. Parameters considered for the classification are "C," the same as the
LR parameters, "gamma," and "kernel." "gamma" defines how far the influence of a

18

Materials & Methods

single training example reaches, and the values for it are:

"gamma": [1, 0.1, 0.01, 0.001, 0.0001]

The "kernel" parameters are used as a tuning parameter to improve the classification
accuracy which are:

"kernel": ["rbf", "poly", "sigmoid"]

• "rbf": Radial Basis Function (RBF), has been utilized with great success in
SVMs to differentiate across classes.

• "poly": To enable the learning of non-linear models, it denotes the similarity of
vectors (training samples) in a feature space over polynomials of the original
variables.

• "sigmoid": This function may be used to activate artificial neurons and is
equal to a two-layer perceptron neural network model.

2.5.3 Multi-layer Perceptron

The feed forward neural network is supplemented by the multi-layer perceptron
(MLP). As seen in fig. 2.12, it has three different kinds of layers: an input layer,
an output layer, and a hidden layer. The input layer is where the input signal
for processing is received. The output layer completes the necessary task, such as
classification and prediction. The real computational engine of the MLP consists of
an arbitrary number of hidden layers that are placed between the input and output
layers. Data travels from the input to the output layer of an MLP in the forward
direction, much like a feed forward network. With the help of the back propagation
learning method, the MLP’s neurons are trained. MLP may resolve issues that are
not linearly separable since they are made to approximate any continuous function.

19

Materials & Methods

Figure 2.12: Multi-layer Perceptron (MLP) [27]

The parameters for MLP classifier are "batch_size", "momentum," "learning_rate_init,"
"solver", same as LR and SVM, "alpha," and "learnin_rate."

• "batch_size": The number of samples processed before the model is updated
is 256.

• "momentum": The variant of the stochastic gradient descent. It replaces the
gradient with a momentum which is an aggregate of gradients. 0.9 and 0.99
are considered for its values.

• "learning_rate_init": As initial learning rate, it controls the step size in
updating the weights, which 0.001, 0.01, and 0.1 are considered for it.

• "alpha":

• "learnin_rate": It controls how quickly the model is adapted to the prob-
lem. ["constant", "adaptive"] are the hyper-parameters. ‘constant’ is
a constant learning rate given by ‘learning_rate_init’. ‘adaptive’ keeps the
learning rate constant to ‘learning_rate_init’ as long as training loss keeps
decreasing [28].

20

Chapter 3

Results

3.1 Performance Evaluation
Reporting the final results for each classification method needs statistical tools to
demonstrate the details in each scenario. For this thesis, in contrast to accuracy,
the confusion matrix, precision, recall, and F1 score provide a deeper understanding
of the results of the prediction. By getting the confusion matrix, other evaluation
metrics could be obtained.

Predicted
Total population Positive (P) Negative (N)

True Positive (P) True positive (TP) False negative (FN)
Negative (N) False positive (FP) True negative (TN)

Table 3.1: A 2x2 confusion matrix structure

Table 3.1 shows a 2x2 confusion matrix structure that consists of:

• True Positive (TP): model correctly predicts the positive class

• True Negative (TN): model correctly predicts the negative class

• False Positive (FP): model gives the wrong prediction of the negative class

• False Negative (FN): model wrongly predicts the positive class

Precision and recall are both essential for information retrieval, with positive class
having a greater impact than negative. The goal of precision is to determine what
proportion of all anticipated positives is actually positive. The precision value
ranges from 0 to 1.

21

Results

Precision = TP

TP + FP
(3.1)

The goal of recall is to determine what proportion of overall positives are predicted
positives.

Recall = TP

TP + FN
(3.2)

The harmonic mean of recall and precision is the F1 score. It accounts for both
false positives and false negatives. As a result, it works well with an unbalanced
dataset. F1 score gives the same weigh to recall and precision.

F1score = 2
1

P recision
+ 1

Recall

= 2 ∗ (Precision ∗ Recall)
(Precision + Recall) (3.3)

The final results for each classification methods are shown in tables 3.2, 3.3 and
3.4. Each table’s first column shows the ideal combination of features that results
in a higher F1 score with the average F1 score in each outer loop of the nested CV.
The second column in the tables shows the average Standard Deviation (std) of
the F1 score in each outer loop of nested CV.

num. of features / F1-score for LR std for LR
All mixed dataset 12 / 0.57 0.018

FLAIR 10 / 0.55 0.01
T1 19 / 0.59 0.2

T1ce 3 / 0.57 0.009
T2 6 / 0.55 0.046

Table 3.2: Final results for LR classification

As table 3.2 demonstrates, the highest F1 score belongs to the T1 sequence type
with 0.59 for the LR method. The optimal number of features to reach the result
is 19. Although the T1ce type has the F1 score of 0.57, the optimal number of
features is the least among all the other types with only 3 features, which also is
the more stable result with an std of 0.009.

22

Results

num. of features / F1-score for SVM std for SVM
All mixed dataset 10 / 0.6 0.021

FLAIR 16 / 0.58 0.048
T1 16 / 0.68 0.07

T1ce 5 / 0.6 0.067
T2 5 / 0.59 0.063

Table 3.3: Final results for SVM classification

The T1ce type has the best F1 score with 0.68 in SVM outcome according to
table 3.3. The lowest number of the optimal selected features is for both T1ce and
T2 types, which is 5. The most stable result, considering the std, is for the FLAIR
type, which is equal to 0.58 F1 score.

num. of features / F1-score for MLP std for MLP
All mixed dataset 12 / 0.59 0.035

FLAIR 14 / 0.6 0.055
T1 16 / 0.59 0.09

T1ce 4 / 0.55 0.011
T2 6 / 0.62 0.066

Table 3.4: Final results for MLP classification

The outcome for the MLP approach shows the best result considering the F1 score
for the T1 type, but the std for it is the highest with respect to others, which is
equal to 0.09. The lowest std and number of optimal features needed to reach the
better result belong to the T1ce type, which are 4 features and 0.011.
The following will report the confusion matrix for each MRI sequence type.

Table 3.5 shows the list of top-ranked features used for the SVM classifier and
has the best outcome for T1ce. This is a sample for presenting the results to the
radiologists as final users.

23

Results

Rank Feature Class Feature Name Image Type
1 Gray Level Dependence Matrix (GLDM) Dependence Variance (DV) Wavelet - Tumor Edematous
2 First Order Features Mean Wavelet - Enhancing Tumor
3 First Order Features Entropy LoG - Tumor Edematous
4 First Order Features 90th percentile LoG - Whole Tumor’s Core
5 Gray Level Run Length Matrix (GLRLM) Long Run Emphasis (LRE) Wavelet - Enhancing Tumor
6 Gray Level Dependence Matrix (GLDM) Dependence Non-Uniformity (DN) LoG - Enhancing Tumor
7 First Order Features Median LoG - The Whole Image
8 First Order Features Range LoG - Tumor Edematous
9 First Order Features Mean Wavelet - Tumor Edematous
10 First Order Features Mean LoG - Tumor Edematous
11 First Order Features Median Wavelet - Whole Tumor’s Core
12 Shape Features (3D) Maximum 3D diameter Original - Enhancing Tumor
13 Gray Level Dependence Matrix (GLDM) Large Dependence High Gray Level Emphasis (LDHGLE) Wavelet - Tumor Edematous
14 Gray Level Co-occurrence Matrix (GLCM) Features Contrast Wavelet - The Whole Image
15 First Order Features Kurtosis Wavelet - Tumor Edematous
16 First Order Features Mean LoG - Tumor Edematous

Table 3.5: List of top-ranked features for the best outcome

3.1.1 FLAIR
The confusion matrix related to each binary classification approach’s result are
shown in the figs. 3.1 to 3.3.

Figure 3.1: FLAIR - Confusion Matrix for LR with 10 selected features

The first number for each cell of the confusion matrix is the number of patients
classified as TP, TN, FP, or FN.
The best selected hyperparameters for LR are:
[’C’: 0.09, ’penalty’: ’l2’, ’solver’: ’liblinear’]

24

Results

Figure 3.2: FLAIR - Confusion Matrix for SVM with 16 selected features

The best selected hyperparameters for SVM are:
[’C’: 10, ’gamma’: 0.1, ’kernel’: ’rbf’]

Figure 3.3: FLAIR - Confusion Matrix for MLP with 14 selected features

25

Results

The best selected hyperparameters for MLP are:
[’alpha’: 0.0001, ’batch_size’: 256, ’learning_rate’: ’constant’,
’learning_rate_init’: 0.1, ’momentum’: 0.9, ’solver’: ’adam’]

3.1.2 T1

The confusion matrix related to each binary classification approach’s result are
shown in the figs. 3.4 to 3.6.

Figure 3.4: T1 - Confusion Matrix for LR with 19 selected features

The best selected hyperparameters for LR are:
[’C’: 1, ’penalty’: ’l1’, ’solver’: ’liblinear’]

26

Results

Figure 3.5: T1 - Confusion Matrix for SVM with 16 selected features

The best selected hyperparameters for SVM are:
[’C’: 10, ’gamma’: 1, ’kernel’: ’poly’]

Figure 3.6: T1 - Confusion Matrix for MLP with 16 selected features

27

Results

The best selected hyperparameters for MLP are:
[’alpha’: 0.0001, ’batch_size’: 256, ’learning_rate’: ’constant’,
’learning_rate_init’: 0.01, ’momentum’: 0.9, ’solver’: ’adam’]

3.1.3 T1ce

The confusion matrix related to each binary classification approach’s result are
shown in fig. 3.7, fig. 3.8, and fig. 3.9.

Figure 3.7: T1ce - Confusion Matrix for LR with 3 selected features

The best selected hyperparameters for LR are:
[’C’: 1, ’penalty’: ’l2’, ’solver’: ’newton-cg’]

28

Results

Figure 3.8: T1ce - Confusion Matrix for SVM with 5 selected features

The best selected hyperparameters for SVM are:
[’C’: 10, ’gamma’: 1, ’solver’: ’rbf’]

Figure 3.9: T1ce - Confusion Matrix for MLP with 4 selected features

29

Results

The best selected hyperparameters for MLP are:
[’alpha’: 0.05, ’batch_size’: 256, ’learning_rate’: ’constant’,
’learning_rate_init’: 0.01, ’momentum’: 0.9, ’solver’: ’adam’]

3.1.4 T2

The confusion matrix related to each binary classification approach’s result are
shown in fig. 3.10, fig. 3.11, and fig. 3.12.

Figure 3.10: T2 - Confusion Matrix for LR with 6 selected features

The best selected hyperparameters for LR are:
[’C’: 1, ’penalty’: ’l2’, ’solver’: ’liblinear’]

30

Results

Figure 3.11: T2 - Confusion Matrix for SVM with 5 selected features

The best selected hyperparameters for SVM are:
[’C’: 100, ’gamma’: 1, ’solver’: ’rbf’]

Figure 3.12: T2 - Confusion Matrix for MLP with 6 selected features

31

Results

The best selected hyperparameters for MLP are:
[’alpha’: 0.0001, ’batch_size’: 256, ’learning_rate’: ’constant’,
’learning_rate_init’: 0.001, ’momentum’: 0.9, ’solver’: ’adam’]

3.2 Comparison
There are some points to b considered as a comparison between the different type’s
results:

• Considering the average statistical measurement for each MRI sequence type,
T1 has shown to be more informative for predicting MGMT value.

• The T1ce and T2 types need fewer number of features to get their best results
compare to FLAIR and T1 types.

• Although T1ce does not have the best result, it has the most stable outcomes
by having the lowest std among all types.

• In average for all the types, the SVM classifier’s results are superior with
respect to other methods.

32

Chapter 4

Conclusion and Future
Works

4.1 Summary and Conclusion
This study demonstrates the application of radiomics-based machine learning mod-
els to predict MGMT promoter methylation status in mpMRI scans. By extracting
features through pyradiomics package, using Wavelet and LoG filters, the whole
output metadata was analyzed and prepared for applying ML binary classification
method. The data preparation stage focused on feature selection techniques in
order to reduce the dimension by the XGBoost classifier. Three classification
approaches were considered for the prediction: Logistic Regression, Support Vector
Machine, and Multi-layer Perceptron.

Different evaluation metrics have been taken into account for analyzing the results,
mainly focused on the confusion matrix, precision, recall, and F1 score, which
deliver additional insights into the prediction than accuracy performance metrics.
The proposed solution could reach 68.7% of the F1 score with the Support Vector
Machine method for the T1ce MRI sequence type, which also has more acceptable
outcomes in Deep Learning classification methods among all the MRI sequence
types [29].

Using a 2-D Convolutional Neural Network (CNN) for the same dataset provided
by the Radiological Society of North America (RSNA) results in better outcomes
(74.8%) comparing to the ML-based radiomics approach [31]. The ML classification
model, however, is a promising technique for identifying brain cancers when taking
into account the data at hand. In the future, results might be more reliable by using
a larger dataset with well-balanced and high-quality data to improve performance.

33

Conclusion and Future Works

4.2 Future Works
To compare the outcomes of this work and enhance the performance of the model, it
could be useful to take into account larger datasets. The effectiveness of a machine-
learning model is closely correlated with the quality, and quantity of the data,
making it a crucial component of any AI or ML application. This effect is more
noticeable in radiology research related to a computer-aided approach. As a study
shows [32], 1016 diffuse glioma patients were collected retrospectively from Beijing
Tiantan Hospital in China. Deep convolutional neural networks (DCNN)-based
predictive models and radiomics-based predictive models were created, respectively,
and their effectiveness was evaluated. In conclusion, both the radiomics and DCNN
models could preoperatively predict the molecular subtypes of diffuse glioma. This
emphasizes the data quality since different medical protocols produce MRI images,
and various scanners are used to obtain them.

Dealing with high dimensional data, which refers to the number of attributes or
features a data collection may contain, is one of the major challenges in machine
learning. Besides the XGBosst classifier, this study could process various fea-
ture selection algorithms, such as Recursive Feature Elimination, Cross-Validated
(RFECV), and compare the results with the current ones.

Moreover, the segmented tumor images used in this study could be obtained directly
from the task 2 dataset to guarantee the consistency and quality of the images,
which leads to a more accurate outcome in the feature extraction stage.

34

Appendix A

Technicalities

Pre-processing class is used for different purposes:

• Converesion which is used to change the DCIOM datatype to NIFTI.

• Best View which is used to get the most informative view of the pictures.

• Visualization which is used to represent the data in JPG or PNG.

• Image Info which is used to extract the volume and size of images.

1 """
2 libraries : data pre - processing
3 """
4 import os
5 import dicom2nifti
6 import pandas as pd
7 import matplotlib .pyplot as plt
8 import nibabel as nib
9 import numpy as np

10

11 """ train_df : patients lables
12 patientID : list of patiend ’s ID in input

folder
13 train_path : DICOM format path
14 train_path_nifti : NIFTI format path -->

output for conversion function
35

Technicalities

15 visualization_path : JPG format path -->
output for visualization function

16 sequence_types : sequence type of mMRI
pictures as a list of string

17 """
18

19

20 class PreProcess :
21 def __init__ (
22 self ,
23 train_df ,
24 patientID ,
25 train_path ,
26 train_path_nifti ,
27 visualization_path ,
28 sequence_types ,
29):
30

31 self. train_df = pd. read_csv (
32 "...[path to patient labels]"
33)
34 self. patientID = os. listdir (
35 "... [list of patients ’s ID]"
36)
37 # self. train_path = (
38 # "...[path to raw dataset DICOM

format]"
39 #)
40 # self. visualization_path = "... [path

to save the visualized images]"
41 # self. train_path_nifti = "... [path to

convertd dataset to NIFTI format]"
42 self. sequence_types = ["FLAIR", "T1w",

"T1wCE", "T2w"]

36

Technicalities

43

44 """<<conversion >> is iterating over patient
’s ID and the sequence type (inner iteration
)

45 to convert each picture into NIFTI format
and save it in " converted_path "

46 """
47

48 def conversion (self , original_path ,
converted_path):

49

50 for patient in self. patientID :
51 try:
52 for types in self.

sequence_types :
53 os. makedirs (
54 converted_path +

patient + "/" + types + "/", exist_ok =True
55)
56 dicom2nifti .

dicom_series_to_nifti (
57 original_path + patient

+ "/" + types ,
58 os.path.join(
59 converted_path ,
60 patient + "/" +

types + "/" + patient + types ,
61),
62)
63 except:
64 continue
65

37

Technicalities

66 """<<visualization >> is iterating over
patient ’s ID and the sequence type (inner
iteration)

67 to convert each picture into JPG format and
save it in " jpg_path " for visualization

68 containing : MGMT_value status for each one
69 """
70

71 def visualization (self , nifti_path ,
jpg_path):

72

73 for patient in self. patientID :
74 try:
75 for types in self.

sequence_types :
76 img = nib.load(
77 os.path.join(
78 nifti_path ,
79 patient + "/" +

types + "/" + patient + types + ".nii",
80)
81)
82 img_data = img. get_fdata ()
83

84 # extracting different
slice of the brain for three dircetion views

85 slice_0 = img_data [img.
shape [0] // 2, :, :]

86 slice_1 = img_data [:, img.
shape [1] // 2, :]

87 slice_2 = img_data [:, :,
img.shape [2] // 2]

88

89 # plotting 3 views

38

Technicalities

90 fig , axes = plt. subplots (1,
3)

91 fig. set_figheight (17)
92 fig. set_figwidth (40)
93 axes [0]. imshow(
94 slice_0 .T, cmap="gray",

origin="lower", aspect="auto"
95)
96 axes [0]. set_title (" Sagittal

", fontsize =30, fontweight ="bold")
97 axes [1]. imshow(
98 slice_1 .T, cmap="gray",

origin="lower", aspect="auto"
99)

100 axes [1]. set_title (" Coronal "
, fontsize =30, fontweight ="bold")

101 axes [2]. imshow(
102 slice_2 .T, cmap="gray",

origin="lower", aspect="auto"
103)
104 axes [2]. set_title ("Axial",

fontsize =30, fontweight ="bold")
105 plt. suptitle (
106 f"Axial , Sagittal and

Coronal view of the patient ’s brain \n
Patient ID : { patient } MGMT_value : {int(
self. train_df .loc[self. train_df [’BraTS21ID ’]

== int(patient)][’MGMT_value ’])} Type: {
types} ",

107 fontsize =38,
108 fontweight ="bold",
109)
110 os. makedirs (jpg_path +

patient + "/" + types + "/", exist_ok =True)

39

Technicalities

111 fig. savefig (# saving the
jpg format with info.

112 jpg_path
113 + patient
114 + "/"
115 + types
116 + "/"
117 + patient
118 + types
119 + ".jpg",
120 dpi =300 ,
121)
122 except:
123 continue
124

125 """
126 <<best_view >> finds the best postion view

in each direction of sagittal ,
127 coronal and axial. It is done by counting

all the non -zero cell and storing the
128 maximum value for each direction .
129

130 Args:
131 img : NIFTI image as an input
132

133 return --> best_postions as a list containg
the best postion view for visualization

134 """
135

136 def best_view (self , img):
137

138 img_data = img. get_fdata ()
139 count_sag , count_axi , count_cor = [],

[], []

40

Technicalities

140

141 for i in range (0, img.shape [0]):
142 count_sag .append(np. count_nonzero (

img_data [i, :, :]))
143

144 for j in range (0, img.shape [1]):
145 count_cor .append(np. count_nonzero (

img_data [:, j, :]))
146

147 for k in range (0, img.shape [2]):
148 count_axi .append(np. count_nonzero (

img_data [:, :, k]))
149

150 position_cor = np.argmax(count_cor)
151 position_sag = np.argmax(count_sag)
152 position_axi = np.argmax(count_axi)
153

154 return [position_sag , position_cor ,
position_axi]

155

156 """ <<image_info >> function extracts the
volume and size of images + single

157 vocxel in each one and store it in a
csv file.

158 """
159

160 def image_info (self):
161

162 df = pd. DataFrame (
163 columns =[
164 "image",
165 "voxel volume",
166 "voxel size",
167 "image volume",

41

Technicalities

168 "image size",
169]
170)
171

172 for patient in self. patientID :
173 try:
174 for types in self. sqtypes_task2

:
175 # img = nib.load(
176 # train_path_nifti
177 # + patient
178 # + "/"
179 # + patient
180 # + ’_’
181 # + types
182 # + ". nii.gz"
183 #)
184 img = nib.load(
185 os.path.join(
186 self.

train_path_nifti ,
187 patient + "/" +

types + "/" + patient + types + ".nii",
188)
189)
190

191 voxel_size = list(img.
header. get_zooms ())

192 voxel_volume = np.prod(img.
header["pixdim"][1:4])

193

194 image_shape = list(img.
shape)

42

Technicalities

195 voxel_count = np.
count_nonzero (img. get_data ())

196 image_volume = voxel_volume
* voxel_count

197 image_size = (
198 image_shape [0] *

voxel_size [0],
199 image_shape [1] *

voxel_size [1],
200 image_shape [2] *

voxel_size [2],
201)
202

203 df = df.append(
204 {
205 "image": patient +

types ,
206 "voxel volume":

voxel_volume ,
207 "voxel size":

voxel_size ,
208 "image volume":

image_volume ,
209 "image size":

image_size ,
210 },
211 ignore_index =True ,
212)
213 except:
214 continue
215

216 df.to_csv("
imageInfo_resampled_task2_data .csv", index=
False)

43

Technicalities

libraries_pre.py

Pyradiomics class separates the different areas of the segmented images and
generates a csv file containing all the dataset and segmented images directory. The
primary function is the feature extractor which gets all the radiomics features as
a csv file:

1 """
2 libraries : Pyradiomics
3 """
4 import os
5 import collections
6 import csv
7 import logging
8 import SimpleITK as sitk
9 import radiomics

10 from radiomics import featureextractor
11 import glob
12 import numpy as np
13

14 """ path_result : storing the result in a
specific directory

15 seg_path : different segmented images
16 patientID : list of patiend ’s ID - Task 1/2
17 train_task1 : NIFTI images for task 1

dataset
18 sequence_types : sequence type of mMRI

pictures
19 """
20

21

22 class Pyradiomics :
23 def __init__ (self , path_result , seg_path ,

train_task1 , sequence_types , patientID):
44

Technicalities

24

25 self. path_result = r"...[path to store
the result]"

26 self. seg_path = r"... [path to
segmented dataset]"

27 self. train_task1 = r"path to task 1
dataset "

28 self. sequence_types = ["flair", "t1", "
t1ce", "t2"]

29 self. patientID = os. listdir (
30 r"... [path to list of patient ’s ID

of task 1/2]"
31)
32

33 """ <<generate_csv >> function generate a
csv file with two columns : Image and Mask

34 directory of different sequence type
and different segmented brain

35 tumor will be added as a new row to the
csv file.

36

37 outcome :
38 create a csv file with original

image and different masks.
39 """
40

41 def generate_csv (self):
42 with open(
43 os.path.join(self.path_result , "

radiomics_features_task1 .csv"),
44 "a",
45 newline ="",
46) as csvfile :
47

45

Technicalities

48 # creating the column heads
49 writer = csv.writer(csvfile)
50 writer. writerow (["Image", "Mask"])
51

52 # filling each cell with the path
of image and mask

53 try:
54 for patient in self. patientID :
55 for types in self.

sequence_types :
56

57 img = os.path.join(
58 self.train_task1 ,
59 patient + "\\" +

patient + "_" + types + ".nii.gz",
60)
61

62 mask = os.path.join(
63 self.train_task1 ,

patient + "\\" + patient + "_seg.nii.gz"
64)
65 mask_ED = os.path.join(
66 self.train_task1 ,
67 patient + "\\" +

patient + " _seg_ED .nii.gz",
68)
69 mask_ET = os.path.join(
70 self.train_task1 ,
71 patient + "\\" +

patient + " _seg_ET .nii.gz",
72)
73 mask_NCR = os.path.join

(
74 self.train_task1 ,

46

Technicalities

75 patient + "\\" +
patient + " _seg_NCR .nii.gz",

76)
77

78 writer. writerow ([img] +
[mask])

79 writer. writerow ([img] +
[mask_ED])

80 writer. writerow ([img] +
[mask_ET])

81 writer. writerow ([img] +
[mask_NCR])

82 except:
83 pass
84

85 """ Separating the segmented images of task
1 into four parts:

86 1. image with the whole tumor (labes :
1+2+4)

87 2. image with necrotic (NCR) parts of
the tumor (labes : 1)

88 3. image with peritumoral edematous /
invaded tissue (ED) (labes : 2)

89 4. image with enhancing tumor (ET) (
labes : 4)

90 5. image with tumor core (COR) (labels
: 1+4)

91 """
92

93 def separate_seg (self):
94 #%% loop through the input path folder

to separate different area
95 # and relable it to 1 for feature

extraction

47

Technicalities

96

97 for patient in self. patientID :
98

99 # reading the original image
100 img = sitk. ReadImage (
101 os.path.join(
102 self.train_task1 ,
103 patient + "/" + patient + "

_seg.nii.gz",
104)
105)
106

107 # getting the image data
108 img_data = sitk. GetArrayFromImage (

img)
109

110 # relabel the whole tumor to 1
111 img_whole_data = np.where ((img_data

!= 0), 1, img_data)
112

113 # keeping the nerotic part of the
tumor and removing the rest

114 img_NCR_data = np.where ((img_data
!= 1), 0, img_data)

115

116 # extracting the edema (label 2)
and relabel it to 1

117 img_ED_data = np.where(
118 (np.where ((img_data != 2), 0,

img_data) == 2),
119 1,
120 np.where ((img_data != 2), 0,

img_data),
121)

48

Technicalities

122

123 # extracting the enhacing part of
the tumor (label 4) and relabel it to 1

124 img_ET_data = np.where(
125 (np.where ((img_data != 4), 0,

img_data) == 4),
126 1,
127 np.where ((img_data != 4), 0,

img_data),
128)
129

130 # extracting the core of the tumor
(label 1 & 4) and relabel it to 1

131 img_COR_data = (
132 np.where ((img_data == 2), 0,

img_data)
133 & np.where ((img_data == 1), 1,

img_data)
134 & np.where ((img_data == 4), 1,

img_data)
135)
136

137 # getting the metadata of the
original image and assign it to

138 # new segmented area as NIFTI file
139 img_whole = sitk. GetImageFromArray (

img_whole_data)
140 img_whole . CopyInformation (img)
141 img_NCR = sitk. GetImageFromArray (

img_NCR_data)
142 img_NCR . CopyInformation (img)
143 img_ED = sitk. GetImageFromArray (

img_ED_data)
144 img_ED. CopyInformation (img)

49

Technicalities

145 img_ET = sitk. GetImageFromArray (
img_ET_data)

146 img_ET. CopyInformation (img)
147 img_COR = sitk. GetImageFromArray (

img_COR_data)
148 img_COR . CopyInformation (img)
149

150 # saving all the nifti files in
output path

151 sitk. WriteImage (
152 img_whole ,
153 os.path.join(
154 self.train_task1 , patient +

"/" + patient + " _seg_whole .nii.gz"
155),
156)
157

158 sitk. WriteImage (
159 img_NCR ,
160 os.path.join(
161 self.train_task1 , patient +

"/" + patient + " _seg_NCR .nii.gz"
162),
163)
164

165 sitk. WriteImage (
166 img_ED ,
167 os.path.join(
168 self.train_task1 , patient +

"/" + patient + " _seg_ED .nii.gz"
169),
170)
171

172 sitk. WriteImage (

50

Technicalities

173 img_ET ,
174 os.path.join(
175 self.train_task1 , patient +

"/" + patient + " _seg_ET .nii.gz"
176),
177)
178

179 sitk. WriteImage (
180 img_COR ,
181 os.path.join(
182 self.train_task1 , patient +

"/" + patient + " _seg_COR .nii.gz"
183),
184)
185

186 """ <<feature_extraction >> function uses
the csv file which contains the

187 directory to segmented images and
differemt masks in order to extract

188 radiomics features of each nifti image.
189

190 outcome :
191 create a csv file with all the

features related to origanl images (and
192 its filters)
193 """
194

195 def feature_extraction ():
196

197 os.chdir(r"... [path to save the
pyradiomics results]")

198 outPath = r"... [path to save the
pyradiomics results]"

199

51

Technicalities

200 filescsv = glob.glob("
radiomics_features_task1 .csv")

201

202 # filescsv =glob.glob(’ Radiomics_ *.csv ’)
203 for inFile in filescsv [:]:
204 inputCSV = os.path.join(outPath ,

inFile)
205 outputFilepath = os.path.join(

outPath , " Results_ " + inFile)
206 progress_filename = os.path.join(

outPath , " pyrad_log .txt")
207 params = os.path.join(outPath , "

exampleSettings ", "Params.yaml")
208

209 # Configure logging
210 rLogger = logging . getLogger ("

radiomics ")
211

212 # Set logging level
213 # rLogger . setLevel (logging .INFO) #

Not needed , default log level of logger is
INFO

214

215 # Create handler for writing to log
file

216 handler = logging . FileHandler (
filename = progress_filename , mode="w")

217 handler . setFormatter (
218 logging . Formatter ("%(levelname)

s:%(name)s: %(message)s")
219)
220 rLogger . addHandler (handler)
221

52

Technicalities

222 # Initialize logging for batch log
messages

223 logger = rLogger . getChild ("batch")
224

225 # Set verbosity level for output to
stderr (default level = WARNING)

226 radiomics . setVerbosity (logging .INFO
)

227

228 logger.info(" pyradiomics version : %
s", radiomics . __version__)

229 logger.info(" Loading CSV")
230

231 flists = []
232 try:
233 with open(inputCSV , "r") as

inFile:
234 cr = csv. DictReader (inFile ,

lineterminator ="\n")
235 flists = [row for row in cr

]
236 except Exception :
237 logger.error("CSV READ FAILED",

exc_info =True)
238

239 logger.info(" Loading Done")
240 logger.info(" Patients : %d", len(

flists))
241

242 if os.path.isfile(params):
243 extractor = featureextractor .

RadiomicsFeatureExtractor (params)
244 else: # Parameter file not found ,

use hardcoded settings instead

53

Technicalities

245 settings = {}
246 # settings [’binWidth ’] = 25
247 # settings [’

resampledPixelSpacing ’] = [0.75 , 0.75 , 1] #
[3 ,3 ,3]

248 # settings [’interpolator ’] =
sitk. sitkBSpline

249 # settings [’correctMask ’] =
True

250 settings [" geometryTolerance "] =
1

251 # settings [’ enableCExtensions ’]
= True

252

253 extractor = featureextractor .
RadiomicsFeatureExtractor (** settings)

254 # extractor . enableInputImages (
wavelet = {’level ’: 2})

255

256 # logger.info(’ Enabled input
images types: %s’, extractor .
enabledImageTypes)

257 # logger.info(’ Enabled features : %
s’, extractor . enabledFeatures)

258 # logger.info(’ Current settings : %
s’, extractor . settings)

259

260 headers = None
261

262 for idx , entry in enumerate (flists ,
start =1):

263

264 logger.info(

54

Technicalities

265 "(%d/%d) Processing Patient
(Image: %s, Mask: %s)",

266 idx ,
267 len(flists),
268 entry["Image"],
269 entry["Mask"],
270)
271

272 imageFilepath = entry["Image"]
273 maskFilepath = entry["Mask"]
274 label = entry.get("Label", None

)
275

276 if str(label). isdigit ():
277 label = int(label)
278 else:
279 label = None
280

281 if (imageFilepath is not None)
and (maskFilepath is not None):

282 featureVector = collections
. OrderedDict (entry)

283 featureVector ["Image"] = os
.path. basename (imageFilepath)

284 featureVector ["Mask"] = os.
path. basename (maskFilepath)

285

286 try:
287 featureVector .update(
288 extractor . execute (

imageFilepath , maskFilepath , label)
289)
290

55

Technicalities

291 with open(
outputFilepath , "a") as outputFile :

292 writer = csv.writer
(outputFile , lineterminator ="\n")

293 if headers is None:
294 headers = list(

featureVector .keys ())
295 writer. writerow

(headers)
296

297 row = []
298 for h in headers :
299 row.append(

featureVector .get(h, "N/A"))
300 writer. writerow (row

)
301 except Exception :
302 logger.error(" FEATURE

EXTRACTION FAILED", exc_info =True)

libraries_pyradiomics.py

DataProcess class tries to generate a clean dataset before applying any Machine
Learning classification method. numeric_data will keep only numerical data type
and remove the other unusable types. The other functions such as mean_conf or
make_confusion_matrix used to get confusion matrix in proper way through
different nested folds algorithms. top_features functions and also low_variance
considered for choosing best and the most informative features.

1 """
2 libraries : data processing and applying ML

algorithms
3 """
4 import os
5 import pandas as pd
6 import numpy as np

56

Technicalities

7 from sklearn .tree import DecisionTreeClassifier
8 from sklearn . model_selection import KFold
9 from xgboost import XGBClassifier

10 from sklearn . feature_selection import
VarianceThreshold

11 import matplotlib .pyplot as plt
12 from sklearn . model_selection import

StratifiedKFold
13 import seaborn as sns
14 from sklearn . feature_selection import RFE
15 from sklearn . feature_selection import RFECV
16

17 """ separated_extracted_data_list : list of
separated csv file names

18 separated_extracted_data_path : path of
separated csv file names

19 """
20

21 class DataProcess :
22 def __init__ (
23 self , separated_extracted_data_list ,

separated_extracted_data_path , save_path
24):
25

26 self. separated_extracted_data_list = os
. listdir (

27 r"... [path to list of separateed
csv files name]"

28)
29 self. separated_extracted_data_path = (
30 r"...[path to directory of the

separated csv files]"
31)

57

Technicalities

32 self. save_path = r"... [path to store
the result]"

33

34 def numeric_data (self , file_name):
35

36 """<<numeric_data >>: this function help
to eliminate the columns which does not

have
37 numeric type of data:
38

39 parameter --> file (csv)
40 return --> output dataset with only

numerical data type
41 """
42

43 df_raw = pd. read_csv (self.
separated_extracted_data_path + file_name)

44

45 # excluding the image IDs
46 df = df_raw.drop (["Image"], axis =1)
47

48 # excluding all the object types of
data + adding back the ID column

49 df_numeric = df. select_dtypes (exclude ="
object")

50 df_numeric .insert (0, "Image", df_raw["
Image"])

51

52 return df_numeric
53

54 def low_variance (self , file_name):
55

56 """

58

Technicalities

57 <<low_variance >>: this function check
feathurs ’ variance and based on

58 the defined threshold , remov the low
variance features which give less

59 information about the data (the numeric
data that has obtained .)

60 """
61

62 # getting numerical data with
numeric_data function

63 df_numeric = DataProcess . numeric_data (
file_name)

64

65 # Removing both constant and quasi -
constant features

66 var_thr = VarianceThreshold (threshold
=0.25)

67 var_thr .fit(df_numeric)
68

69 concol = [
70 column
71 for column in df_numeric . columns
72 if column not in df_numeric . columns

[var_thr . get_support ()]
73]
74 df_numeric = df_numeric .drop(concol ,

axis =1)
75

76 # save the new updated dataset
77 df_numeric .to_csv(os.path.join(self.

save_path , " cleaned_ " + file_name))
78

79 def mean_conf (self , confusion_matrix):
80

59

Technicalities

81 """
82 <<mean_conf >> simply gets the mean of

each element in confiusion matrixs
83 which are the outcome in each k-subset

cross validaion .
84

85 return --> mean of all confision
matrics

86 """
87 # empty lists to fill up every elements

of the different confusion matrics
88 e1 , e2 , e3 , e4 = [], [], [], []
89 for i in range (0, len(confusion_matrix)

):
90 e1.append(confusion_matrix [i

][0][0])
91 e2.append(confusion_matrix [i

][0][1])
92 e3.append(confusion_matrix [i

][1][0])
93 e4.append(confusion_matrix [i

][1][1])
94 # getting mean of each element
95 mean_matrix = [
96 [round(np.mean(e1)), round(np.mean(

e2))],
97 [round(np.mean(e3)), round(np.mean(

e4))],
98]
99 return mean_matrix

100

101 def make_confusion_matrix (cf , group_names ,
categories , title):

102 """

60

Technicalities

103 This function will make a pretty plot
of an sklearn Confusion Matrix cm using

104 a Seaborn heatmap visualization .
105

106 Parameters
107 ---------
108 cf: confusion matrix to be

passed in
109 group_names : List of strings that

represent the labels row by row to be shown
in each square.

110 categories : List of strings
containing the categories to be displayed on

the x,y axis.
111 cmap: Colormap of the values

displayed from matplotlib .pyplot.cm.
112 See http :// matplotlib .

org/ examples /color/ colormaps_reference .html
113 title: Title for the heatmap .
114

115 Returns
116 -------
117 None
118 """
119

120 group_labels = ["{}\n".format(value)
for value in group_names]

121

122 group_percentages = [
123 "{:.2f}".format(value) for value in

cf. flatten () / np.sum(cf)
124]
125 group_counts = [f"{ round (559* value)}\n"

for value in cf. flatten ()]

61

Technicalities

126

127 box_labels = [
128 f"{v1}{v2}{v3 }". strip ()
129 for v1 , v2 , v3 in zip(group_labels ,

group_counts , group_percentages)
130]
131 box_labels = np. asarray (box_labels).

reshape (cf.shape [0], cf.shape [1])
132

133 # Accuracy is sum of diagonal divided
by total observations

134 accuracy = np.trace(cf) / float(np.sum(
cf))

135

136 # Metrics for Binary Confusion Matrices
137 precision = cf[1, 1] / sum(cf[:, 1])
138 recall = cf[1, 1] / sum(cf[1, :])
139 f1_score = 2 * precision * recall / (

precision + recall)
140 stats_text = "\n\ nAccuracy ={:0.3f}\

nPrecision ={:0.3f}\ nRecall ={:0.3f}\ nF1 Score
={:0.3f}".format(

141 accuracy , precision , recall ,
f1_score

142)
143

144 # Make the heatmap visualization
145 plt.figure(figsize =None)
146 sns. heatmap (
147 cf ,
148 annot=box_labels ,
149 fmt="",
150 cmap="Blues",
151 cbar=True ,

62

Technicalities

152 xticklabels ="auto",
153 yticklabels =categories ,
154 vmin =0,
155 vmax =1,
156)
157

158 plt.ylabel("True label")
159 plt.xlabel(" Predicted label" +

stats_text)
160

161 plt.title(title)
162

163 def correlation_map (df , list_im_feat ,
save_path =None , title=None):

164 """
165 Parameters
166 ----------
167 df: DataFrame
168 dataframe as an input
169 list_im_feat : List
170 set of features name extracted from

a dataframe (by feature selectors)
171 save_path : str
172 directory to save the output as a

JPG (default is None)
173 title: str
174 title for the heatmap (default is

None .)
175

176 Returns
177 -------
178 None.
179

180 """

63

Technicalities

181 # dividing the whole dataframe into the
small part containing only top features

182 selected_df = df[list_im_feat]. copy ()
183

184 fig , ax = plt. subplots (figsize =(15 , 12)
)

185

186 # plotting correlation heatmap
187 dataplot = sns. heatmap (
188 selected_df .corr (), cmap="YlGnBu",

annot=True , vmin =-1, vmax =1
189)
190

191 if save_path != None and title != None:
192 plt.title(title)
193 plt. savefig (save_path , dpi =300 ,

bbox_inches ="tight")
194

195 # displaying heatmap
196 plt.show ()
197

198 def top_features_XGB (self , df , number_feat ,
target_var):

199

200 """
201 This function finds common top i

features (by XGBoost classifier) and
202 returns them as a list of strings that

are the features ’ names.
203

204

205 Parameters
206 ----------
207 df: DataFrame

64

Technicalities

208 dataframe as an input
209 number_feat : int
210 number of features needed to be

ranked
211 target_var : str
212 target variable
213

214 Returns
215 -------
216 im_feat : list
217 list of i top -ranked features
218 """
219

220 # defining the target value and
separate it

221 y = df[target_var]
222 X = df.drop ([target_var], axis =1)
223

224 kf = KFold(n_splits =5, shuffle =True)
225 for train_index , test_index in kf.split

(X):
226 X_train , X_test = X.iloc[

train_index , :], X.iloc[test_index , :]
227 y_train , y_test = y.iloc[

train_index], y.iloc[test_index]
228

229 # declare parameters
230 params = {
231 " objective ": "binary: logistic ",
232 " max_depth ": 4,
233 "alpha": 10,
234 " learning_rate ": 1.0,
235 " n_estimators ": 100,
236 }

65

Technicalities

237

238 # instantiate the classifier
239 xgb_clf = XGBClassifier (** params)
240

241 # fit the classifier to the
training data

242 xgb_clf .fit(X_train , y_train)
243

244 # list of features name
245 feat_names = list(X_train . columns)
246

247 feats = {} # a dict to hold
feature_name : feature_importance

248 for feature , importance in zip(
feat_names , xgb_clf . feature_importances_):

249 feats[feature] = importance #
add the name/value pair

250 # appending the dictionary of
features with their scores by each k subset

251 feats.update ({x: y for x, y in
feats.items () if y != 0})

252

253 # sort the features based on their
importance

254 im_feat = sorted(feats.items (), key=
lambda feats: feats [1], reverse =True)[

255 : number_feat
256]
257 # im_feat .sort(key = lambda x: x[1],

reverse =True)
258 im_feat = [item for sublist in im_feat

for item in sublist]
259 im_feat = [elm for elm in im_feat if

isinstance (elm , str)]

66

Technicalities

260

261 # the list of most i-th top ranked
features

262 return im_feat
263

264 def top_features_RFE (self , df , number_feat ,
target_var):

265 """
266 This function finds top features using

the Recursive Feature Elimination
267 approach and returns a list of str.
268

269 Parameter
270 ---------
271 df: DataFrame
272 dataframe as an input
273 number_feat : int
274 number of features needed to be

ranked
275 target_var : str
276 target variable
277

278 Return
279 ------
280 best_feat : list
281 list of top features ’ name
282

283 """
284

285 # defining the target value and
separate it

286 y = df[target_var]
287 X = df.drop ([target_var], axis =1)
288

67

Technicalities

289 best_feat = [] # list of faetures ’
name

290

291 rfe = RFE(
292 estimator = DecisionTreeClassifier (),

step =1, n_features_to_select = number_feat
293)
294

295 # fit RFE
296 rfe.fit(X, y)
297

298 # get the score for the top selected
features

299 feature_importance = rfe. estimator_ .
feature_importances_

300 # sort the reanking out with its index
number (first one is the best feature)

301 feature_importance_sorted = sorted(
302 enumerate (feature_importance), key=

lambda x: x[1], reverse =True
303)
304 # extract the index of ranking among

the top features
305 top_n_idx = [idx for idx , _ in

feature_importance_sorted [:]]
306

307 # based on index get the name of the
features

308 top_n_feat_idx = [rfe. get_support (1)[i]
for i in top_n_idx]

309

310 for item in top_n_feat_idx :
311 best_feat .append(X.iloc [:, int(item

)]. name)

68

Technicalities

312

313 return best_feat [: number_feat]
314

315 def top_features_RFECV (self , df ,
number_feat , target_var):

316 """
317 This function finds top features using

the Recursive Feature Elimination
318 in a cross - validation loop to find the

optimal number of features and returns
319 them as a list of str.
320

321 Parameter
322 ---------
323 df: DataFrame
324 dataframe as an input
325 number_feat : int
326 number of features needed to be

ranked
327 target_var : str
328 target variable
329

330 Return
331 ------
332 best_feat : list
333 list of top features ’ name
334

335 """
336

337 # defining the target value and
separate it

338 y = df[target_var]
339 X = df.drop ([target_var], axis =1)
340

69

Technicalities

341 best_feat = [] # list of faetures ’
name

342

343 # define RFECV
344 rfecv = RFECV(
345 estimator = DecisionTreeClassifier (),
346 cv= StratifiedKFold (5) ,
347 scoring =" accuracy ",
348 min_features_to_select =number_feat ,
349)
350

351 # fit RFECV
352 rfecv.fit(X, y)
353

354 # get the score for the top selected
features

355 feature_importance = rfecv. estimator_ .
feature_importances_

356 # sort the reanking out with its index
number (first one is the best feature)

357 feature_importance_sorted = sorted(
358 enumerate (feature_importance), key=

lambda x: x[1], reverse =True
359)
360 # extract the index of ranking among

the top features
361 top_n_idx = [idx for idx , _ in

feature_importance_sorted [:]]
362

363 # based on index get the name of the
features

364 top_n_feat_idx = [rfecv. get_support (1)[
i] for i in top_n_idx]

365 for item in top_n_feat_idx :

70

Technicalities

366 best_feat .append(X.iloc [:, int(item
)]. name)

367

368 return best_feat [: number_feat]

libraries_data.py

1 #%% main part
2 """ Splitting the dataset and applying k-fold

cross validation
3 Feature selection by XGBoost method
4 Fitting different model: SVM ,

LogisticRegression , Random forest , NN
5 Changing the numbere of features to see the

idieal number
6 """
7 # defining a new empty dataframe to fill with

different metrics
8 metrics = pd. DataFrame (
9 columns =[

10 " features_number ",
11 " mean_accuracy_NN ",
12 " std_accuracy_NN ",
13 " mean_f1score_NN ",
14 " std_f1score_NN ",
15 " confusion_NN ",
16 " mean_accuracy_SVM ",
17 " std_accuracy_SVM ",
18 " mean_f1score_SVM ",
19 " std_f1score_SVM ",
20 " confusion_SVM ",
21 " mean_accuracy_LR ",
22 " std_accuracy_LR ",
23 " mean_f1score_LR ",
24 " std_f1score_LR ",

71

Technicalities

25 " confusion_LR ",
26 " mean_accuracy_MLP ",
27 " std_accuracy_MLP ",
28 " mean_f1score_MLP ",
29 " std_f1score_MLP ",
30 " confusion_MLP ",
31]
32)
33

34 # defining a new empty dataframe for filling
best parameters in each iteration

35 parameters = pd. DataFrame (
36 columns =[
37 " features_number ",
38 " Nearest Neighbor ",
39 " Support Vector Machine ",
40 " Logistic Regresion ",
41 "Multi -layer Perceptron ",
42 "Best Selected Features ",
43]
44)
45

46 # copy the dataframe for mean and std of
metrics

47 train_metrics = metrics .copy ()
48 test_metrics = metrics .copy ()
49

50 # reading and splitting the edataset into train
and test

51 df = pd. read_csv ("/ content /drive/ MyDrive /data/
all_best_data .csv")

52

53 # getting the top features

72

Technicalities

54 list_im_feat = top_features_XGB (df , 20, "
MGMT_value ")

55 print("check here:", list_im_feat)
56

57 # defining the target value and separate it
58 y = df[" MGMT_value "]
59 X = df.drop ([" MGMT_value ", " Unnamed : 0"], axis

=1)
60

61

62 # dataset with best features
63 X = X[list_im_feat]. copy ()
64

65 # splitting the whole dataset into train (80%)
and test (20%)

66 X_tr , X_ts , y_tr , y_ts = train_test_split (X, y,
test_size =0.2 , random_state =0)

67

68 # transform data: final test
69 scaler = MinMaxScaler ()
70 X_ts = scaler. fit_transform (X_ts)
71

72 # convert the test set to the dataframe in
order to use it in the while loop

73 X_ts = pd. DataFrame (X_ts , columns =X_tr. columns)
74

75 # applying k-fold cross validation (K=10) -->
outer loop

76 cv_outer = KFold(n_splits =10, shuffle =True)
77

78 # iteration over number of features i
79 i = 20
80 while i != 0:
81

73

Technicalities

82 # defining performance metrics lists for
training

83 conf_NN_tr , conf_SVM_tr , conf_LR_tr ,
conf_MLP_tr = [], [], [], []

84 acc_NN_tr , acc_SVM_tr , acc_LR_tr ,
acc_MLP_tr = [], [], [], []

85 f1_NN_tr , f1_SVM_tr , f1_LR_tr , f1_MLP_tr =
[], [], [], []

86

87 # defining performance metrics lists for
test

88 conf_NN_ts , conf_SVM_ts , conf_LR_ts ,
conf_MLP_ts = [], [], [], []

89 acc_NN_ts , acc_SVM_ts , acc_LR_ts ,
acc_MLP_ts = [], [], [], []

90 f1_NN_ts , f1_SVM_ts , f1_LR_ts , f1_MLP_ts =
[], [], [], []

91

92 # defining best paramters list to store for
traing\test

93 best_par_NN , best_par_SVM , best_par_LR ,
best_par_MLP = [], [], [], []

94

95 # configuring thee cross - validation outer
loop

96 for train_index , test_index in cv_outer .
split(X_tr):

97 X_train , X_test = X_tr.iloc[train_index
, :], X_tr.iloc[test_index , :]

98 y_train , y_test = y_tr.iloc[train_index
], y_tr.iloc[test_index]

99

100 # configuring the cross - validation
procedure (inner loop)

74

Technicalities

101 cv_inner = KFold(n_splits =5, shuffle =
True , random_state =1)

102

103 # keep the most top i ranked features
104 X_train = X_train [list_im_feat [:i]].

copy ()
105 X_test = X_test[list_im_feat [:i]]. copy

()
106 X_ts = X_ts[list_im_feat [:i]]. copy ()
107

108 # transform data
109 X_train = scaler. fit_transform (X_train)
110 X_test = scaler. fit_transform (X_test)
111

112 #%% Nearst neighbor :
113 # Create and train the

KNeighborsClassifier on the train\test set
114 model_NN = KNeighborsClassifier ()
115

116 # Set up possible values of parameters
to optimize over

117 parameters_NN = {
118 " n_neighbors ": [3, 5, 11, 19],
119 " weights ": [" ubiform ", " distance "],
120 "metric": [" euclidean ", " manhattan "

],
121 }
122

123 # define search
124 classifier_NN = GridSearchCV (
125 model_NN , parameters_NN , scoring ="

accuracy ", cv=cv_inner , refit=True
126)
127

75

Technicalities

128 # execute search
129 result_NN = classifier_NN .fit(X_train ,

y_train)
130

131 # get the best performing model fit on
the whole training \test set + save the best
parameters

132 best_model_NN = result_NN .
best_estimator_

133 best_par_NN .append(classifier_NN .
best_params_)

134

135 # make a prediction on the validation
set and then check model performance (train)

136 y_pred_NN = best_model_NN . predict (
X_train)

137

138 acc_NN_tr .append(accuracy_score (y_train
, y_pred_NN))

139 conf_NN_tr .append(confusion_matrix (
y_train , y_pred_NN , normalize ="all"))

140 f1_NN_tr .append(f1_score (y_train ,
y_pred_NN))

141

142 # make a prediction on the validation
set and then check model performance (test)

143 y_pred_NN = best_model_NN . predict (X_ts)
144

145 acc_NN_ts .append(accuracy_score (y_ts ,
y_pred_NN))

146 conf_NN_ts .append(confusion_matrix (y_ts
, y_pred_NN , normalize ="all"))

147 f1_NN_ts .append(f1_score (y_ts ,
y_pred_NN))

76

Technicalities

148

149 #%% Support Vector Machine :
150 # build the SVM classifier and train it

on the entire training \test data set
151 model_SVM = SVC ()
152

153 # Set up possible values of parameters
to optimize over

154 parameters_SVM = {
155 "C": [0.1 , 1, 10, 100, 1000] ,
156 "gamma": [1, 0.1, 0.01 , 0.001 ,

0.0001] ,
157 "kernel": ["rbf", "poly", " sigmoid "

],
158 }
159

160 # define search
161 classifier_SVM = GridSearchCV (
162 model_SVM , parameters_SVM , scoring =

" accuracy ", cv=cv_inner , refit=True
163)
164

165 # execute search
166 result_SVM = classifier_SVM .fit(X_train

, y_train)
167

168 # get the best performing model fit on
the whole training \test set + save the best
parameters

169 best_model_SVM = result_SVM .
best_estimator_

170 best_par_SVM .append(classifier_SVM .
best_params_)

171

77

Technicalities

172 # get predictions on the test set and
store the performance metrics (train)

173 y_pred_SVC = best_model_SVM . predict (
X_train)

174

175 acc_SVM_tr .append(accuracy_score (
y_train , y_pred_SVC))

176 conf_SVM_tr .append(confusion_matrix (
y_train , y_pred_SVC , normalize ="all"))

177 f1_SVM_tr .append(f1_score (y_train ,
y_pred_SVC))

178

179 # get predictions on the test set and
store the performance metrics (test)

180 y_pred_SVC = best_model_SVM . predict (
X_ts)

181

182 acc_SVM_ts .append(accuracy_score (y_ts ,
y_pred_SVC))

183 conf_SVM_ts .append(confusion_matrix (
y_ts , y_pred_SVC , normalize ="all"))

184 f1_SVM_ts .append(f1_score (y_ts ,
y_pred_SVC))

185

186 #%% Logistic Regession :
187 # build the classifier and fit the

model
188 model_LR = LogisticRegression ()
189

190 # Set up possible values of parameters
to optimize over

191 parameters_LR = {
192 " penalty ": ["none", "l1", "l2", "

elasticnet "],

78

Technicalities

193 "C": [0.001 , 0.009 , 0.01 , 0.09 , 1,
5, 10, 25, 50, 75, 100] ,

194 "solver": ["newton -cg", "lbfgs", "
liblinear "],

195 }
196

197 # define search
198 classifier_LR = GridSearchCV (
199 model_LR , parameters_LR , scoring ="

accuracy ", cv=cv_inner , refit=True
200)
201

202 # execute search
203 result_LR = classifier_LR .fit(X_train ,

y_train)
204

205 # get the best performing model fit on
the whole training set + save the best
parameters

206 best_model_LR = result_LR .
best_estimator_

207 best_par_LR .append(classifier_LR .
best_params_)

208

209 # prediction and store performance
metrics (train)

210 y_pred_LR = best_model_LR . predict (
X_train)

211

212 acc_LR_tr .append(accuracy_score (y_train
, y_pred_LR))

213 conf_LR_tr .append(confusion_matrix (
y_train , y_pred_LR , normalize ="all"))

79

Technicalities

214 f1_LR_tr .append(f1_score (y_train ,
y_pred_LR))

215

216 # prediction and store performance
metrics (test)

217 y_pred_LR = best_model_LR . predict (X_ts)
218

219 acc_LR_ts .append(accuracy_score (y_ts ,
y_pred_LR))

220 conf_LR_ts .append(confusion_matrix (y_ts
, y_pred_LR , normalize ="all"))

221 f1_LR_ts .append(f1_score (y_ts ,
y_pred_LR))

222

223 #%% Neural Network :
224 # create a MLPClassifier and fit the

model
225 model_MPL = MLPClassifier (
226 solver="lbfgs", alpha =1e-5,

hidden_layer_sizes =(6 ,) , random_state =1
227)
228

229 # Set up possible values of parameters
to optimize over

230 parameters_MLP = {
231 " batch_size ": [256] ,
232 " momentum ": [0.9 , 0.99] ,
233 " learning_rate_init ": [0.001 , 0.01 ,

0.1] ,
234 "solver": ["adam"],
235 "alpha": [0.0001 , 0.05] ,
236 " learning_rate ": [" constant ", "

adaptive "],
237 }

80

Technicalities

238

239 # define search
240 classifier_MLP = GridSearchCV (
241 model_MPL , parameters_MLP , scoring =

" accuracy ", cv=cv_inner , refit=True
242)
243

244 # execute search
245 result_MLP = classifier_MLP .fit(X_train

, y_train)
246

247 # get the best performing model fit on
the whole training set + save the best
parameters

248 best_model_MLP = result_MLP .
best_estimator_

249 best_par_MLP .append(classifier_MLP .
best_params_)

250

251 # prediction and store preformance
metrics (train)

252 y_pred_NN = best_model_MLP . predict (
X_train)

253

254 acc_MLP_tr .append(accuracy_score (
y_train , y_pred_NN))

255 conf_MLP_tr .append(confusion_matrix (
y_train , y_pred_NN , normalize ="all"))

256 f1_MLP_tr .append(f1_score (y_train ,
y_pred_NN))

257

258 # prediction and store preformance
metrics (test)

81

Technicalities

259 y_pred_NN = best_model_MLP . predict (X_ts
)

260

261 acc_MLP_ts .append(accuracy_score (y_ts ,
y_pred_NN))

262 conf_MLP_ts .append(confusion_matrix (
y_ts , y_pred_NN , normalize ="all"))

263 f1_MLP_ts .append(f1_score (y_ts ,
y_pred_NN))

264

265 # storing result of evaluation metrics in
dataframe for furthre anlysis

266 # trainging results
267 train_data_to_store = {
268 " features_number ": f"{i}",
269 " mean_accuracy_NN ": np.mean(acc_NN_tr),
270 " std_accuracy_NN ": np.std(acc_NN_tr),
271 " mean_f1score_NN ": np.mean(f1_NN_tr),
272 " std_f1score_NN ": np.std(f1_NN_tr),
273 " confusion_NN ": mean_conf (conf_NN_tr),
274 " mean_accuracy_SVM ": np.mean(acc_SVM_tr

),
275 " std_accuracy_SVM ": np.std(acc_SVM_tr),
276 " mean_f1score_SVM ": np.mean(f1_SVM_tr),
277 " std_f1score_SVM ": np.std(f1_SVM_tr),
278 " confusion_SVM ": mean_conf (conf_SVM_tr)

,
279 " mean_accuracy_LR ": np.mean(acc_LR_tr),
280 " std_accuracy_LR ": np.std(acc_LR_tr),
281 " mean_f1score_LR ": np.mean(f1_LR_tr),
282 " std_f1score_LR ": np.std(f1_LR_tr),
283 " confusion_LR ": mean_conf (conf_LR_tr),
284 " mean_accuracy_MLP ": np.mean(acc_MLP_tr

),

82

Technicalities

285 " std_accuracy_MLP ": np.std(acc_MLP_tr),
286 " mean_f1score_MLP ": np.mean(f1_MLP_tr),
287 " std_f1score_MLP ": np.std(f1_MLP_tr),
288 " confusion_MLP ": mean_conf (conf_MLP_tr)

,
289 }
290

291 # test results
292 test_data_to_store = {
293 " features_number ": f"{i}",
294 " mean_accuracy_NN ": np.mean(acc_NN_ts),
295 " std_accuracy_NN ": np.std(acc_NN_ts),
296 " mean_f1score_NN ": np.mean(f1_NN_ts),
297 " std_f1score_NN ": np.std(f1_NN_ts),
298 " confusion_NN ": mean_conf (conf_NN_ts),
299 " mean_accuracy_SVM ": np.mean(acc_SVM_ts

),
300 " std_accuracy_SVM ": np.std(acc_SVM_ts),
301 " mean_f1score_SVM ": np.mean(f1_SVM_ts),
302 " std_f1score_SVM ": np.std(f1_SVM_ts),
303 " confusion_SVM ": mean_conf (conf_SVM_ts)

,
304 " mean_accuracy_LR ": np.mean(acc_LR_ts),
305 " std_accuracy_LR ": np.std(acc_LR_ts),
306 " mean_f1score_LR ": np.mean(f1_LR_ts),
307 " std_f1score_LR ": np.std(f1_LR_ts),
308 " confusion_LR ": mean_conf (conf_LR_ts),
309 " mean_accuracy_MLP ": np.mean(acc_MLP_ts

),
310 " std_accuracy_MLP ": np.std(acc_MLP_ts),
311 " mean_f1score_MLP ": np.mean(f1_MLP_ts),
312 " std_f1score_MLP ": np.std(f1_MLP_ts),
313 " confusion_MLP ": mean_conf (conf_MLP_ts)

,

83

Technicalities

314 }
315

316 # store best parametrs
317 par_to_store = {
318 " features_number ": f"{i}",
319 " Nearest Neighbor ": best_par_NN ,
320 " Support Vector Machine ": best_par_SVM ,
321 " Logistic Regresion ": best_par_LR ,
322 "Multi -layer Perceptron ": best_par_MLP ,
323 "Best Selected Features ": list_im_feat

[:i],
324 }
325

326 train_metrics = train_metrics .append(
train_data_to_store , ignore_index =True)

327 test_metrics = test_metrics .append(
test_data_to_store , ignore_index =True)

328 parameters = parameters .append(par_to_store
, ignore_index =True)

329

330 # reducing number of features for next
iteration

331 i -= 1
332

333 # save the data as a csv file
334 train_metrics .to_csv("... [path to save

training result]")
335 test_metrics .to_csv("... [path to save tst

result]")
336 parameters .to_csv("... [path to save best

hypreparametre]")

libraries_result.py

84

Bibliography

[1] M. Tovi, MR imaging in cerebral gliomas analysis of tumour tissue components,
Acta Radiologica. Supplementum, vol. 384, pp. 1, 1993.

[2] S. Lapointe, A. Perry, N.A. Butowski, Primary brain tumours in adults, Lancet
(London, England) 392 (10145) (2018) 432–446.

[3] M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller,
J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O.
Mirimanoff, J.G. Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing
and benefit from temozolomide in glioblastoma, The New England journal of
medicine 352 (10) (2005) 997–1003.

[4] E.H. Bell, P. Zhang, B.J. Fisher, D.R. Macdonald, J.P. McElroy, G.J. Lesser,
J. Fleming, A.R. Chakraborty, Z. Liu, A.P. Becker, D. Fabian, K.D. Aldape,
L.S. Ashby, M. Werner-Wasik, E.M. Walker, J.P. Bahary, Y. Kwok, H.M. Yu,
N.N. Laack, C.J. Schultz, H.J. Gray, H.I. Robins, M.P. Mehta, A. Chakravarti,
Association of MGMT Promoter Methylation Status With Survival Outcomes
in Patients With High-Risk Glioma Treated With Radiotherapy and Temo-
zolomide: An Analysis From the NRG Oncology/RTOG 0424 Trial, JAMA
oncology (2018).

[5] W. Wick, C. Hartmann, C. Engel, M. Stoffels, J. Felsberg, F. Stockhammer,
M.C. Sabel, S. Koeppen, R. Ketter, R. Meyermann, M. Rapp, C. Meisner,
R.D. Kortmann, T. Pietsch, O.D. Wiestler, U. Ernemann, M. Bamberg, G.
Reifenberger, A. von Deimling, M. Weller, NOA-04 randomized phase III
trial of sequential radiochemotherapy of anaplastic glioma with procarbazine,
lomustine, and vincristine or temozolomide, Journal of clinical oncology :
official journal of the American Society of Clinical Oncology 27 (35) (2009)
5874–5880.

[6] T. Gorlia, M.J. van den Bent, M.E. Hegi, R.O. Mirimanoff, M. Weller, J.G.
Cairncross, E. Eisenhauer, K. Belanger, A.A. Brandes, A. Allgeier, D. Lacombe,
R. Stupp, Nomograms for predicting survival of patients with newly diagnosed
glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-
22981/ CE.3, The Lancet. Oncology 9 (1) (2008) 29–38.

[7] Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, et al. Prognostic

85

Bibliography

imaging biomarkers in glioblastoma: development and independent validation
on the basis of multiregion and quantitative analysis of MR images. Radiology
2016;278(2):546–53.

[8] Rios Velazquez E, Meier R, Dunn Jr W, et al. Fully automatic GBM segmen-
tation in the TCGA-GBM dataset: prognosis and correlation with VASARI
features. Sci Rep 2015;5:16822.

[9] Gutman DA, Dunn Jr WD, Grossmann P, et al. Somatic mutations associ-
ated with MRI-derived volumetric features in glioblastoma. Neuroradiology
2015;57(12):1227–37.

[10] Rios Velazquez E, Meier R, Dunn Jr W, et al. Fully automatic GBM segmen-
tation in the TCGA-GBM dataset: prognosis and correlation with VASARI
features. Sci Rep 2015;5:16822.

[11] Akbarzadeh, Omid. “Evaluating Latency in a 5G Infrastructure for
Ultralow Latency Applications - Webthesis.“ webthesis.biblio.polito.it.
www.webthesis.biblio.polito.it/id/eprint/22652.

[12] Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer
based on CSRR and interdigital loaded microstrip coupled lines for LTE
application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021.
doi:10.2528/PIERC20112307

[13] Khosravi MR, Samadi S, Akbarzadeh O (2017) Determining the optimal range
of angle tracking radars. In: IEEE International Conference on Power, Control,
Signals and Instrumentation Engineering (ICPCSI 2017), pp 3132–3135

[14] S. Keshavarz, H. M. Kadry and D. L. Sounas, "Four-port Spatiotemporally
Modulated Circulator with Low Modulation Frequency," 2021 IEEE Texas
Symposium on Wireless and Microwave Circuits and Systems (WMCS), 2021,
pp. 1-4, doi: 10.1109/WMCS52222.2021.9493276.

[15] Hamzehei, Sahand. “Gateways and Wearable Tools for Monitor-
ing Patient Movements in a Hospital Environment - Webthesis.”,
www.webthesis.biblio.polito.it/id/eprint/22711.

[16] www.med.upenn.edu/cbica/brats2021/
[17] Vasileios G. Kanas, Evangelia I. Zacharaki, Ginu A. Thomas, Pascal O. Zinn,

Vasileios Megalooikonomou, Rivka R. Colen, Learning MRI-based classification
models for MGMT methylation status prediction in glioblastoma, Computer
Methods and Programs in Biomedicine, Volume 140, 2017, Pages 249-257,
ISSN 0169-2607,

[18] Mahdie Jajroudi, Milad Enferadi, Amir Azar Homayoun, Reza Reiazi, MRI-
based machine learning for determining quantitative and qualitative character-
istics affecting the survival of glioblastoma multiforme, Magnetic Resonance
Imaging, Volume 85, 2022, Pages 222-227, ISSN 0730-725X.

[19] M. Patel, J. Zhan, K. Natarajan, R. Flintham, N. Davies, P. Sanghera, J.
Grist, V. Duddalwar, A. Peet, V. Sawlani, Machine learning-based radiomic

86

Bibliography

evaluation of treatment response prediction in glioblastoma, Clinical Radiology,
Volume 76, Issue 8, 2021, Pages 628.e17-628.e27, ISSN 0009-9260.

[20] www.pyradiomics.readthedocs.io/en/latest/features.html
[21] Monique Meuschke, Laura A. Garrison, Noeska N. Smit, Benjamin Bach, Sarah

Mittenentzwei, Veronika Weiß, Stefan Bruckner, Kai Lawonn, Bernhard Preim,
Narrative medical visualization to communicate disease data,Computers &
Graphics, Volume 107, 2022, Pages 144-157,ISSN 0097-8493.

[22] “Radiomics.” Radiomics, www.radiomics.io/pyradiomics.html.
[23] Majeed Alneamy JS, A Hameed Alnaish Z, Mohd Hashim SZ, Hamed Alnaish

RA. Utilizing hybrid functional fuzzy wavelet neural networks with a teaching
learning-based optimization algorithm for medical disease diagnosis. Comput
Biol Med. 2019;112:103348.

[24] Das DK, Dutta PK. Efficient automated detection of mitotic cells from
breast histological images using deep convolution neutral network with
wavelet decomposed patches. Comput Biol Med. 2019;104:29–42. doi:
10.1016/j.compbiomed.2018.11.001.

[25] Ganeshan B, Hosur A, Skogen K, Tasker F, Dizdarevic S, Miles KA. Multi-
parametric FDG PET-CT in thoracic malignancies: opportunities for combined
prognostic imaging biomarkers. Presented at: UK Radiological Congress 2012,
Manchester, UK.

[26] R.O. Sinnott, H. Duan, Y. Sun, Chapter 15 - A Case Study in Big Data
Analytics: Exploring Twitter Sentiment Analysis and the Weather, Editor(s):
Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, Big Data,
Morgan Kaufmann, 2016, Pages 357-388.

[27] www.javatpoint.com/multi-layer-perceptron-in-tensorflow
[28] www.scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
[29] Chen S, Xu Y, Ye M, Li Y, Sun Y, Liang J, Lu J, Wang Z, Zhu Z, Zhang X,

Zhang B. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using
Deep Learning with Radiomics. J Clin Med. 2022 Jun 15;11(12):3445. doi:
10.3390/jcm11123445. PMID: 35743511; PMCID: PMC9224690.

[30] www.kaggle.com/code/juliojuse/single-model-0-747-2dcnn-inference
[31] www.kaggle.com/code/juliojuse/single-model-0-747-2dcnn-inference
[32] Li, Y., Wei, D., Liu, X., Fan, X., Wang, K., Li, S., Zhang, Z., Ma, K., Qian,

T., Jiang, T., Zheng, Y. and Wang, Y., 2022. Molecular Subtyping of Diffuse
Gliomas Using Magnetic Resonance Imaging: Comparison and Correlation
Between Radiomics and Deep Learning. Beijing Neurosurgical Institute, Capital
Medical University;7 No. 119 South Fourth Ring West Road;8 Beijing 100070,
China;

87

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Motivation and Goals
	Related Studies

	Materials & Methods
	Dataset
	Visualization
	Feature Extraction
	Dimensionality Reduction
	Classification
	Logistic Regression
	Support Vector Machine
	Multi-layer Perceptron

	Results
	Performance Evaluation
	FLAIR
	T1
	T1ce
	T2

	Comparison

	Conclusion and Future Works
	Summary and Conclusion
	Future Works

	Technicalities
	Bibliography

