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Abstract

In the field of Deep Learning, and more specifically Computer Vision, one of
the tasks that covers quite a lot of interest is that of Super-Resolution: a set of
techniques used to improve the resolution of digital images. Super-Resolution
techniques have found room for application in many fields, among which one of
the most interesting is that of remote sensing and earth observation; this is amply
evidenced by the very numerous challenges on the subject organized by space
entities such as ESA and NASA.

Being able to improve the spatial resolution, i.e. the physical measurement
(meters) that represents the size of a pixel, of a satellite image can be particularly
useful for a number of reasons including being able to make object classification and
detection tasks easier to solve, or again, to monitor at a greater level of detail the
earth’s surface. High spatial resolution images, however, are produced by remote
sensing satellites less frequently than low spatial resolution ones, which is why
having models available that allow one to increase resolution from one or more low
resolution images turns out to be a critically important task.

PIUnet is a model that performs MultiTemporal Image Super Resolution, created
by a research group at Politecnico di Torino as a result of a challenge convened by
ESA, which increases the spatial resolution of images from the Proba-V satellite
from 300 to 100 meters. Starting from the existing Super-Resolution architecture
PIUnet, the purpose of this thesis is to evaluate how the Super-Resolution task
can be performed using images from two different missions, Proba-V and Sentinel-
2. Specifically, we want to make sure that the low-resolution model training
images remain those from Proba-V while the ones used as Ground-Truth (i.e., high
resolution) are instead selected from Sentinel-2.

To do this, the work presented was divided into several phases: a first phase
of creation of the dataset comprising low-resolution images from Proba-V and
high-resolution images from Sentinel-2, a second phase consisting in the training of
the model on the new dataset, a third phase of evaluating the results obtained from
the standard version of PIUnet, and finally a fourth phase of modifying PIUnet
to make it suitable for working with images from two different satellites. Each of
these stages is described in details within this thesis. Furthermore, at the end of
this work, both the results obtained using the standard version of PIUnet and the
results obtained from the modified version of PIUnet are also presented, analyzed,
and compared in depth, showing how the changes made on PIUnet resulted in
better quality, radiometrically-consistent, super-resolved images.
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Chapter 1

Introduction

In recent years, applications of Deep Learning, and more specifically Computer
Vision, have been gaining popularity in many fields of research due to their capability
to solve very complex tasks more quickly, accurately and easily than the traditional
programming-based approach of computer science. Among the many Computer
Vision techniques subject to study and research, those of Super-Resolution are
of particular interest, especially in the fields of space, remote sensing and earth
observation. Super-resolution techniques aim to improve the quality (i.e., resolution)
of digital images; it is therefore clear that having access to accurate techniques of
this kind can be particularly useful in the field of remote sensing since the spatial
resolution, i.e., the physical measurement representing the size (in meters) of a
pixel, of a satellite image is a crucial parameter in determining the overall quality
of the image and, thus, leading to more or less accurate analyses.

Starting from an existing Super-Resolution architecture called PIUnet, created
by a research group at Politecnico di Torino as a result of a challenge convened by
ESA, the purpose of this thesis is to evaluate how the Super-Resolution task can
be performed on the same architecture using images from two different missions,
Proba-V and Sentinel-2, and possibly improve the results by modifying the network
itself. In fact, in its initial and original implementation, PIUnet was designed to
work with, and increase the resolution of images from, only one satellite: Proba-V,
while with this work we want to make sure that the low-resolution model training
images remain those from Proba-V while the ones used as Ground-Truth (i.e., high
spatial resolution) are instead selected from Sentinel-2. The choice of these two
missions is mainly due to two considerations:

1. Sentinel-2’s data are sufficiently consistent with Proba-V in terms of overpass
time, radiometry and spectral coverage in the visible and near-infrared spectral
range; this, in theory, should ensure a smooth data fusion process, at the same
time, however, it should be considered that the two satellites have different
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Introduction

sensors, spatial resolutions and, in general, different characteristics, so the
result obtained using the standard PIUnet architecture could present various
problems and thus not be accurate.

2. Sentinel-2’s images achieve, in the near-infrared and visible range, a spatial
resolution of 10 meters while Proba-V data reach up to a maximum of 100
meters, consequently the spatial resolution of Super-Resolved images could be
further improved in the future (compared with standard PIUnet architecture,
which increases the spatial resolution of images from 300 to 100 meters).

1.1 Structure of the document
The following thesis is structured as follows:

• Chapter 1, Introduction, contains a brief introduction to the thesis.

• Chapter 2, Remote Sensing and Earth Observation, aims to introduce the
reader to some fundamental concepts about remote sensing and earth obser-
vation. This is made necessary by the fact that the thesis makes strong use
of terms, concepts and techniques of remote sensing; it is therefore crucial
to understand what are the main issues of this domain and how artificial
intelligence can contribute to its development.

• Chapter 3, Deep Learning Background, introduces the reader to the main
knowledge of machine learning and deep learning. In addition, the Super-
Resolution architecture, the basis of this thesis work, called PIUnet, is analyzed
and described in detail.

• In Chapter 4, Datasets, is presented the used dataset and the related process
of creation as well.

• Chapter 5, Methods and Trainings, contains a detailed description of the
changes made to PIUnet during the thesis and of all the experiments made.

• In Chapter 6, Results, the results obtained are presented and discussed.

• Chapter 7, Conclusion, contains the conclusion of the work and some possible
future ideas to improve or extend the results.
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Chapter 2

Remote Sensing and Earth
Observation

This chapter aims to provide the basic concepts of Remote Sensing and Earth
Observation.
This thesis makes strong use of terms, concepts and techniques related to the
domain of Remote Sensing and Earth Observation; for this reason it is important
to understand the basic notions and the main issues related to this specific domain.

2.1 Remote Sensing
Remote Sensing is the process of acquisition of information about objects and
geographical areas by means of sensors, usually placed on planes and satellites,
that are capable to measure emitted and reflected radiation by the analysed area
or object.

This technical-scientific discipline is used in numerous fields, some practical
examples and uses of Remote Sensing include:

• Environmental and crop monitoring.

• Tracking of deforestation and desertification.

• Monitoring and responding to natural disasters and catastrophes.

• Weather forecasting.

• Monitoring of urban settlements.

3



Remote Sensing and Earth Observation

2.2 Electromagnetic Spectrum and Radiation

The electromagnetic spectrum (Fig. 2.1) is the range of frequencies of electromag-
netic radiation and their respective wavelengths and photon energies. It contains
the range of all the electromagnetic radiation and is divided into several subranges
according to the frequency of the waves and the wavelength.

Figure 2.1: Electromagnetic Spectrum

The main sources of electromagnetic radiation used in Remote Sensing are three:

• Solar Radiation: electromagnetic radiation emitted by the sun.

• Longwave Radiation: electromagnetic radiation emitted by the earth’s
surface and Earth’s atmosphere in the form of thermal radiation.

• Artificial Radiation: electromagnetic radiation generated by an artificial
source (e.g. radars).

The spectral response of a certain object/surface, measured by a sensor, is
determined by the way the electromagnetic radiation interacts with that specific
object/surface, thus, we can distinguish different elements on surface such as water,
soil, vegetation etc. just by looking at the reflected or emitted radiation, in fact,
there are three ways of interaction that can take place when energy strikes a
certain surface; these are: absorption, transmission and reflection. Notice how the
proportions of each will depend on multiple factors such as the wavelength of the
radiation and the target surface’s material.
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2.2.1 Interaction with the atmosphere
Before the electromagnetic radiation reaches the sensor on the satellites/planes it
has to travel some distance, more precisely:

1. The electromagnetic radiation is radiated by a source, as we have seen above.

2. It propagates through space reaching the Earth.

3. It interacts with the Earth’s atmosphere before, and the Earth’s surface after.

4. Once reflected, the radiation interacts again with the atmosphere.

5. At the end it reaches the remote sensors mounted on satellites.

During this trip, when passing through the Earth’s atmosphere, the electromagnetic
radiation is subject to three physical phenomena:

• Scattering: scattering (Fig. 2.2) happens every time the radiation changes its
direction after interacting with particles and gas molecules in the atmosphere.
Wavelength of the radiation, quantity, type of particles and other factors lead
to different kinds of scattering, there are three main types: Rayleigh scattering,
that is caused mainly by oxygen and nitrogen molecules and occurs when
the radiation hits small-sized particles, compared with its wavelength; Mie
scattering, that occurs when the radiation wavelength and the particles have
similar sizes; Nonselective scattering, that occurs when the particles are way
larger than the wavelength of the radiation.

• Absorption: part of the radiation interacting with the atmosphere is absorbed
by the gas molecules, leading to a decrease in intensity of the electromagnetic
radiation.

• Refraction: when a wave passes from one medium to another, refraction
occurs. In Remote Sensing the atmospheric refraction is a well-known phe-
nomenon that causes the deviation of electromagnetic waves due to changes
in air density.

2.2.2 Reflectance
The reflectance of a material is its ability to reflect the radiant energy incident
on its surface. In a more formal way the hemispherical reflectance R of a surface
can be defined as:

R = ϕr

ϕi
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Figure 2.2: Types of scattering
[1]

Where ϕr is the flux reflected by the surface and ϕi is the incident flux on the
surface. Since this measure is a ratio of radiant flux it has no unit of measure and
ranges between 0 and 1.
The reflectance is probably one of the most important measures used in Remote
Sensing because from it one can derive what type of surface is been analysed, it
is indeed crucial to note that the amount of electromagnetic radiation that will
be reflected depends mainly on the nature and properties of the material; every
object or surface has a specific spectral response pattern (Fig. 2.3): in a certain
wavelength region a specific surface or object has a spectral response pattern that
is different from other objects, thus it is possible to distinguish different surfaces
and objects just by looking at their spectral signature.

Figure 2.3: Reflectance response patterns of different surfaces, respectively
vegetation, soil and water. The vertical gray bands represent the different band of
acquisition of the sensor (Landsat7 ).

[2]
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2.3 Sensors
Remote Sensing sensors are the instruments used to measure and collect data
about the electromagnetic radiation incident to a certain object or surface. We
can distinguish among two main macro-categories of sensors: active sensors and
passive sensors. An active sensor provides and emits the waves needed to scan an
object or a surface in order to detect the reflected electromagnetic radiation and
measures its spectral signature, while, a passive sensor detects and measures the
spectral signature of the radiation emitted by a natural source (mainly the sun)
and then reflected by the target surface.
One of the main components of a Remote Sensing sensor is the scanner: sensors
make use of electro-optical scanners to produce images, using detectors that measure
reflected or emitted electromagnetic energy by a surface. The width of the scanned
area is called Swath, while the FOV (Field Of View) represents the angle that the
scanner can capture from a certain distance. There are two types of scanners:

• Whiskbroom scanner: also called across-track scanner (Fig. 2.4, A), it uses
rotating mirrors to scan a surface. The scan is perpendicular to the motion of
the sensor, moving from one side to another, scanning the target area cell by
cell.

• Pushbroom scanner: also called along-track scanner (Fig. 2.4, B), it uses
an array of detectors to scan parallel to the surface. Instead of scanning the
surface from one side to another, cell by cell, the pushbroom scanner scans
the entire swath line at once.

Figure 2.4: Whiskbroom scanner (A) and Pushbroom scanner (B)
[3]
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2.3.1 Sensors resolutions
Four resolutions are used to describe a remote sensing sensor:

• Spatial Resolution: it defines the dimension (often measured in meters) of
a pixel of the image recorded by the sensor, an image whose spatial resolution
is equal to 60 meters represents pixels whose sides measure 60 meters. Keep
in mind that this is an approximation, because in satellite imagery a pixel is
never a perfect square. More information about spatial resolution and sensor
quality are provided later in Section 2.6 and 2.7.

• Radiometric Resolution: it defines the number of intensities of electromag-
netic radiation that the sensor is able to distinguish. In other words we can
define the radiometric resolution as the sensitivity of a sensor in perceiving
and codifying in signal the differences given by the radiant flux reflected or
emitted by a surface. The higher the radiometric resolution, the more accurate
the sensed image will be; Figure 2.5 clarifies this concept.

• Spectral Resolution: it defines the number of spectral bands and the relative
wavelength that the sensor is able to measure. A spectral band is defined by
the central wavelength λ and the band width ∆λ.

• Temporal Resolution: it defines how much time passes from the acquisition
of a certain area and the subsequent acquisition of the same area, or simply
the time that a satellite takes to fly over a certain point again; it can be
decreased by using a constellation of satellites instead of a single satellite.
This resolution is crucial to monitor changes in the landscape.

2.4 Satellite orbits
Since all the data used in this work come from satellites, a distinction between the
types of satellite orbits is needed. We can distinguish between two major orbits:

• Polar orbit: polar orbits are for ensuring global coverage and are generally
Sun-Synchronous (SSO), meaning that the crossing time at the equator is
at the same local time, this is essential for multi-temporal studies, since the
illumination conditions are the same. All satellites of the Copernicus suite
(such as Sentinel-2, Sentinel-3 etc..) and Proba-V follow Sun-Synchronous
Orbits. This orbit goes from north to south, usually passing over the poles,
and has a very low altitude (between 600 and 800km).

• Geostationary orbit: the satellites that are in this orbit move from west to
east, above the equator, and are usually used for sensing the same area on
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Figure 2.5: Same image with different radiometric resolutions
[Credit: NASA Earth Observatory images by J. Stevens,

using Landsat data]

Earth with a very high revisit (order of minutes), allows therefore to monitor
very dynamic processes (e.g. clouds) notably for meteorological applications.

2.5 Image Processing
A fundamental part of the work related to remote sensing consists in the subsequent
processing and analysis of the acquired images. Normally the generic dimensionless
measure to represent the value of a pixel of a remote sensed image is called Digital
Number (DN); purpose of the DN is to represent the values of the pixels that
have not yet been converted into physical units of measurement (such as radiance
and reflectance). Obviously having the data expressed in DN is of little use as in
any physical measurements, the first step consist in moving from the sensor specific
output to a physically meaningful value expressed in standard scientific units, this
is done through the calibration (further information in the next section), that’s
why the products of the satellites that perform remote sensing represent the values
of the pixels in radiance or reflectance, specifically we distinguish between two
distinct processing stages of radiance and reflectance:

• TOA (Top-Of-Atmosphere): as we said when we talked about radiance
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and reflectance we must consider that the radiant energy reflected when
taking satellite images is not given only by the reflection given by the Earth’s
surface, but also by some physical phenomena caused by the atmosphere,
such as scattering and absorption. The TOA measures this kind of raw
radiance/reflectance where the contribution of the reflected light is given by
both the atmosphere and the Earth’s surface.

• BOA (Bottom-Of-Atmosphere): in this quantity the contribution from
atmospheric scattering and absorption is removed through an Atmospheric
Correction process; so basically, this reflectance/radiance does not measure
the contribution made by the atmosphere or other atmospheric elements such
as clouds and it preserves only the part of radiant energy reflected by the
surface below (Earth’s surface).

2.5.1 Calibration
When talking about calibration we mean the operation in which a measuring
instrument is adjusted in order to improve its accuracy, specifically with the
calibration of the sensors we want to relate the value measured by a sensor with
the corresponding uncertainty measurement of that instrument. It is therefore
crucial in Remote Sensing to have an idea of what calibration is, and what types of
calibration exist because when detecting multispectral images even a minimum error
in the accuracy of the instrument leads to incorrect results (physical quantities).

As strongly underlined by R.Müller [4], calibration has to be applied in order to
relate the digital counts given by the sensor to the incoming radiances, consequently,
the physical units of interest. The relation between the digital numbers and the
radiances can be derived by comparison of the sensor signal with an absolute
standard reference prior to launch. Nowadays, satellite instruments are usually well
designed and calibrated prior to launch. Unfortunately, no matter how sophisticated
the instruments are, once in space they degrade with time, e.g., due to thermal,
mechanical or electrical effects or exposure to UV radiation. In order to account for
such ageing, on-board calibration devices are generally placed on board, allowing
to monitor and periodically correct for instrument drifting. Likewise, vicarious well
characterized and stable Earth’s and planetary targets are used to monitor sensor
performances during the mission lifetime.

There are two main types of calibration in Remote Sensing that can be performed:
• Geometric Calibration: the goal of the geometric calibration is to obtain

a geometrically correct image, that is where each pixel is mapped to its
corresponding geographical location.

• Radiometric Calibration: this calibration is needed to convert raw data
(Digital Number, as we have seen before) measured by the sensors in meaningful
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physical scale-based units of measure such as TOA reflectance and thus obtain
physical values that give us information about the image.

Another important technique is the vicarious calibration. The Vicarious Cali-
bration makes use of natural (e.g. deserts, ocean etc.) or artificial sites on earth
to perform on-board calibration; these sites used for calibration are not chosen
randomly but have very specific characteristics from both a spatial and spectral
points of view. By measuring the radiance and reflectance from these sites and
comparing them with the actual standard measurements obtained on the ground
prior to launch, you can see how much accuracy the sensors have lost and work
accordingly to recalibrate them.

2.5.2 Orthoimagery and Orthorectification

When we take a photo, the image we are in front of obviously gives us a sense of
perspective, even if it is two-dimensional. An orthoimage, on the other hand, is an
image that has been geometrically corrected (through an orthorectification process)
and georeferenced in such a way that the scale of representation of the photograph
is uniform, i.e. the photo loses perspective and can therefore be considered as a
geographical map (Fig. 2.6).

Orthoimages are particularly useful as they can be used to measure real distances
as they correctly represent the surface of the earth. To obtain an orthoimage, the
orthorectification process must be applied: it consists of a series of transforma-
tions such as projections, rotations, translations and more that have the purpose of
correcting an image from various deformations due to both shooting (it is indeed
hard to always take images from the same quota) and the optical instrumentation
used.

2.5.3 Digital Evaluation Model

Another important concept in remote sensing imagery is the Digital Evaluation
Model (DEM). A DEM is a digital model that represents the distribution of
altitudes of a territory/surface. This type of model is produced by associating to
every pixel of an image its absolute quota. More specifically we can distinguish
between Digital Surface Model (DSM) and Digital Terrain Model (DTM).
The difference between these two models is that with the DSM we get a 3D model
that takes into account the height of the surface including all the objects that
are placed above (houses, trees etc.) while the DTM takes into account only the
absolute height of the ground (i.e. Earth surface).
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Figure 2.6: Comparison between orthographic and perspective view
[Credit: Wikipedia]

2.5.4 Image co-registration
The process of image co-registration has the goal to align two images geometri-
cally. The images that are used for remote sensing are often detected at different
temporal moments, furthermore, the satellite may have different crossing time at
the Equator so the opportunity of over-flight the same spot at the same time is
generally very limited; also, the local time descending node (LTDN) changes across
missions, for land missions is usually 10:00 or 10:30 AM, because there is less
probability of cloud coverage, but there are also mission crossing at 13:00PM (for
example: MODIS AQUA). All of the above imply that two images of the same area
have offset positions of the pixels even if the surface/area of the images is the same,
so, co-registration is needed to minimize these pixel shifts and align the images.

2.6 Ground Sampling Distance
In an orthoimage, the Ground Sampling Distance (GSD) represents the distance
between the center of two consecutive pixels in the territorial unit of measurement
such as meters. It is clear how there is an inverse proportionality relationship
between the GSD value and the definition of an image: the larger the GSD, the
lower its level of detail. It is moreover easy to understand that the GSD is strictly
connected to the spatial resolution of a satellite.
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2.7 Point Spread Function
The Point Spread Function (PSF) represents the impulsive response of a system
to a point object (Fig. 2.7), in fact, an image can always be described as a blurred
representation of a certain object; the degree of blurring of the point object is the
PSF of that specific imaging system and it is an important measure for the quality
of the latter.

It is clear how it can be used as a quality measure for an optical system, like the
remote sensing sensors: the higher the blurring, the less the quality of the acquired
image.

Figure 2.7: Point Spread Function
[Credit: Wikipedia]

2.8 Proba-V and Sentinel-2 missions
The goal of this last section is to provide an overview of the two missions Proba-V
and Sentinel-2. The datasets used in this work contains data acquired by the two
missions previously mentioned; more details will be provided later in Chapter 4.

2.8.1 Proba-V
Proba-V is a satellite launched in 2013 by the European Space Agency. It is located
at a distance of 820km from the Earth’s surface and acquires data in 4 spectral
bands: Blue, Red, Near-Infrared (NIR) and Short Wave Infrared (SWIR). Three
sensors (Fig. 2.8) are mounted in the satellite, arranged in such a way that there is
one in the center and the other two on the sides. Each sensor is equipped with two
focal planes respectively to capture the SWIR and visible waves to the human eye
(Blue, Red) and NIR [5].
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Figure 2.8: Proba-V Instrument layout
[5]

Proba-V produces products in three different spatial resolutions: 1000m, 300m
and 100m. Figure 2.9 summarize both the radiometric and geometric specifications
of the Proba-V satellite at launch.

Figure 2.9: Proba-V specifications at launch
[6]

Products

As we can see in Figure 2.10 Proba-V products are divided in several levels, and
only some of these levels are available to the end users. The products are divided
into two categories:
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• Segment products: are those obtained from levels 1C and 2A. The Level
1C (L1C) product contains the raw, unprojected observations in segments, as
well as calibration information, while the Level 2A (L2A) products contain
the projected segment data [5].

• Synthesis products: are the level 3 products. These products contain daily
(S1, available at all resolutions) and multi-daily (S5 for 100 m and S10 for
300 m and 1 km) TOA reflectances that are composed of cloud, shadow,
and snow/ice screened observations [5]. Additionally, Top-of-Canopy (TOC)
reflectance (corresponding to the BOA reflectance we talked about earlier in
this chapter) are available in this level.

Processing levels

This subsection describes the various Proba-V products, following all the processing
levels visible in Figure 2.10.
In Level 1 the main steps performed are the geometric and radiometric calibration;
this level is divided into the following sub-levels:

• Level 1A: at this level data are raw and uncompressed; here a geolocation
step is performed in order to associate each pixel to its relative longitude and
latitude. Geometric calibration operations are performed with the support of
the Instrument Calibration Parameters (IPCs) that are regularly updated.

• Level 1B: at this level TOA reflectance is calculated starting by the raw data
(measured in Digital Numbers) obtained in the previous level. First of all,
DNk associated to the k spectral band is corrected in order to remove pixel
uniformities, dark currents and non-linearities. Then, using ICPs the DNk is
converted in Lk radiance. Finally, TOA reflectance is calculated for each k
spectral band starting from the Lk radiance and other parameters such as the
Earth-Sun distance, the mean atmospheric irradiance and the Solar Zenith
Angle (SZA).

• Level 1C: the first end user segment product is available in this level.

In Level 2, products from Level 1C are further processed going through two
sub-levels:

• Level 2A: level 2A products are the results of a series of processing steps. It
follows their description:

1. Mapping: in this processing step the data are mapped onto the WGS84
latitude-longitude projection.
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Figure 2.10: Proba-V levels and processing flowchart
[5]

2. SWIR Mosaicking: after the mapping, there are still three separately
projected SWIR strips. Therefore a mosaicking step is applied to compose
a single SWIR band image [5].

3. Cloud detection: at this point we can guess that clouds are a big
obstacle to the analysis of satellite imagery, so it is necessary to identify
clouds from images before continuing with data analysis. For this reason a
cloud detection algorithm is implemented: briefly, this algorithm consists
in an extended set of thresholds and similarity checks, detecting the
radiometric contrast between surface and clouds, performed on the values
of the Blue and SWIR spectral bands , if the threshold value is smaller
than the pixel’s value then the pixel is marked as ’cloud’. The output of
this algorithm is the cloud mask.

4. Snow/Ice detection: an algorithm for identifying snow and ice that
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works similarly to that of cloud detection is implemented using the data
of all four spectral bands and four different values of threshold.

5. Cloud Shadow detection: as with clouds, cloud shadows are also a
possible source of data error; for this reason a cloud shadows detection
algorithm is implemented and a shadow mask is generated.

• Level 2B: the Level 2A TOA reflectance observations are the resultant of
surface reflectance and scattering, absorption, and multiple reflections within
the atmospheric column below the satellite (clouds, gases, aerosols). In order
to obtain the directional TOC reflectance values, atmospheric correction is
performed. This model converts the observed TOA reflectance into TOC
reflectance using auxiliary water vapour, ozone, and surface pressure data [5].

At Level 3 we have as final products those obtained from level 2B processing
steps and which pass through the composition step; purpose of this step is to
combine, in an optimal way, observations made in different time intervals in a single
image called synthesis image that does not contain clouds. More specifically, level
3 products differ in S1, S3 and S10 based on how many days of data the product
summarizes.

The outputs of the previously mentioned algorithms are used to generate the
so called status map (Fig. 2.11); in the next chapters I will discuss in detail the
crucial role of this mask for this work.

Figure 2.11: Proba-V Status Map pixel’s values
[5]
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2.8.2 Sentinel-2
The Sentinel-2 is an Earth Observation mission developed by the European Space
Agency (ESA). Specifically, Sentinel-2, as part of the Copernicus Programme, aims
to monitor the green areas of the planet, coastal areas, arable areas and much more
in order to support the process of managing natural disasters, monitoring land
changes, monitoring crops etc. To ensure a low temporal resolution and continuous
image availability, two twin satellites, the Sentinel-2A and the Sentinel-2B, operate
simultaneously on the same polar-orbit at a distance of 786 km from Earth, offset
by 180 degrees. Each of the satellites acquire data by the MultiSpectral Instrument
(MSI), an optical sensor that relies on a pushbroom scanner to scan the Earth’s
surface, with an orbital swath width equal to 290km.

The images captured by the Sentinel-2 satellites are 13-bands multispectral
images ranging from visible infrared (NIR) to short-wave infrared (SWIR) with
spatial resolutions of 10, 20 and 60 meters, according to the specific spectral band.
More details about the spectral bands of the Sentinel-2 missions in Figure 2.12.

Figure 2.12: Sentinel-2 spectral bands
[7]

The Sentinel-2 mission includes two segments (i.e. main components): the space
one, consisting of the two satellites that detect the images, and the ground one,
which aims to facilitate the acquisition of data from the satellites, the processing
and storage of data and mission control in general.

Products

Two products are generated by the Sentinel-2:

• Level-1C products: TOA reflectances in cartographic geometry.

18



Remote Sensing and Earth Observation

• Level-2A products: BOA reflectances in cartographic geometry.

Products are a compilation of elementary granules (25km × 23km images) of
fixed size, within a single orbit. A granule is the minimum indivisible partition of
a product (containing all possible spectral bands). For Level-1C and Level-2A, the
granules, also called tiles, are 100×100km2 orthoimages in UTM projection: the
UTM (Universal Transverse Mercator) system divides the Earth’s surface into 60
zones. Each UTM zone has a vertical width of 6° of longitude and horizontal width
of 8° of latitude.

Processing levels

Similarly to what happens with ProbaV, also the Sentinel-2 products are obtained
by passing through a series of processing levels (Fig. 2.13), however, end users have
access to Level1C and Level2A products only. Level-0 and Level-1A take care of
collecting compressed and subsequently decompressed data. In level 1B, radiometric
and geometric corrections and identification of defective pixels are applied to the
decompressed data. Subsequently, at level 1C, further radiometric and geometric
corrections are applied, furthermore here the conversion to reflectance is performed
and the cloud and land/water mask are generated.

Figure 2.13: Sentinel-2 processing levels
[Credit: ESA]

The data processing steps at Level-0 are performed in real-time by the PDGS
(Payload Data Ground Segment) during the data reception. The operations done at
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this level are necessary to subsequently store the data, metadata and subsequently
produce higher level products.

Level-1 is divided into the following sub-levels:

• Level-1A: at this level the decompression of the data (granules) obtained
from level-0 is performed, therefore, each pixel is localized. The output of this
layer is a decompressed granule.

• Level-1B: radiometrically corrected data measured in TOA radiance are
obtained as output of this level. In addition, geometric corrections are applied
to the images in this layer.

• Level-1C: level-1C products are 100×100km2 orthoimages called tiles. Using
a DEM (Digital Elevation Model) is fundamental in order to reproject these
products in UTM. Per-pixel radiometric measurements are provided in TOA
reflectances. Additionally at this level some useful masks, such as cloud and
land/water masks, are computed.

Finally, the Level-2A mainly deals with performing atmospheric corrections in
such a way as to change the images (tiles) of level-1C, which measure the reflectance
in TOA, and thus convert it in BOA reflectance. In addition to this, in this level
there is an algorithm for the Scene Classification (classification of the elements
visible in the image) that allows us to identify, pixel by pixel, clouds (of various
kinds and their respective shadows), snow and other pixel classes. The output
of this algorithm is the Scene Classification Map that, similarly to what we have
already seen with the ProbaV status map earlier, distinguishes the elements present
in the image between clouds, clouds shadows, vegetation, non-vegetation, water
and snow.
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Chapter 3

Deep Learning Background

This chapter introduces you to some of the basic concepts about machine learning
and, more specifically, deep learning. Furthermore, the end of this chapter provides
an in-depth analysis of PIUnet (Permutation Invariance and Uncertainty Network),
the neural network that has been used, and modified, for the development of this
thesis. Given the crucial role of PIUnet in this thesis, the most important concepts
related to the latter will be covered in depth through this chapter, while, other
DL and ML’s concepts that are not strictly connected to PIUnet will be presented
more superficially.

3.1 Artificial Intelligence, Machine Learning and
Deep Learning

Artificial Intelligence (AI) refers to a specific branch of computer science that
aims to give to machines, the ability to ’mimic’ human-cognitive skills and carry
out tasks in a human-way. Machine Learning (ML) is a subset of AI and is
defined as the science that focuses on building systems that are able to perform
a task by learning from data and without being explicitly programmed, unlike to
what happens in the classic programming and computer science paradigms. Deep
Learning (DL) is a subset of ML that aims to build mathematical models inspired
by the human brain, so called neural networks, organized in different layers and
where each layer calculates and provides the input for the next one.

3.1.1 Types of Machine Learning
Machine Learning algorithms can be classified according to various criteria, however,
the most important classification is related to the type of data that models use and
how they are supervised while learning:
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Supervised Learning These kind of algorithms are fed with data that contain
also the solutions of the problem (so called labels). Since the model’s goal is to find
a function to map input values with a target label, these systems learn by setting
their parameters in a way that, once the training phase is concluded, they will be
able to associate each input value with the correct target label.

Unsupervised Learning The data fed to unsupervised learning models are
unlabeled, so in this case the model does not try to associate every input data
with a label, instead the model’s goal is to find recurrent patterns and hidden
information in the data.

Semi-Supervised Learning The Semi-Supervised Learning algorithms stand
between Unsupervised and Supervised Learning; these models use both (few)
labeled data and (many) unlabeled data. Usually these models are trained, first,
in an unsupervised manner and then, once all the labels have been created, in a
supervised way.

Reinforcement Learning Unlike what happens in the three previous approaches,
in reinforcement learning algorithms, the learning system, also called agent, try
to learn how to perform a certain task by maximizing its reward. To do this the
agent uses feedback coming from the external environment; good feedbacks will
lead to an increase of the reward while bad feedbacks to a decrease of the reward.

3.1.2 Datasets
The key concept that emerges in the definition of Machine Learning at the beginning
of this chapter is that an ML system learns from data, without being explicitly
programmed. Thus, It is clear the crucial role of data used to build AI system.
Usually, these data are divided into three different datasets:

• Training set: as we can easily guess, the model is trained and learn using
the training set data.

• Validation set: the validation set is used to evaluate the model and to
fine-tune and find the best hyperparameters, for this reason we could say that
the validation set indirectly affects the training of the model.

• Test set: the test set is used to test the performance of a given model. It
is used only after the model has been trained using both the training and
validation sets to check how well the model performs with never-seen data.
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3.1.3 Loss Function
A Loss Function is a mathematical function used to evaluate how well a ML
model perform. When we finetune a ML model in order to achieve the best results,
what we do is, simply, try to minimize as much as possible the loss function: the
lower the function, the better the model’s performance. To minimize as much as
possible a loss function, ML models use the so called optimizer algorithm like the
Gradient Descent, Adam and much more.
But a Loss Function is much more than a mathematical representation of a model’s
performance; they are also used to optimize an algorithm and to find the best
parameters that fit the data. In other words, the loss function is an integral and
crucial part of the training of a model.

The most common losses functions are:

• Mean Squared Error (MSE): also called L2 Loss, it measures the average
squared difference between model’s predictions (y) and actual observations
(ŷ). It follows the mathematical formulation of the MSE:

MSE =
qn

i=1 (yi − ŷi)2

n
(3.1)

• Mean Absolute Error (MAE): also called L1 Loss, it measures the average
of sum of absolute difference between model’s predictions (y) and actual
observations (ŷ). It follows the mathematical formulation of the MAE:

MAE =
qn

i=1 |yi − ŷi|
n

(3.2)

• Cross-Entropy: it is a loss often used in classification problems; it measures
how much the predicted probability (y) of a label diverges from the actual
label (ŷ), a.k.a. Ground Truth.

CrossEntropy = −
nØ

i=1
(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (3.3)

3.1.4 Problems of Machine Learning
Usually, all the things that can go wrong in ML and DL algorithms can be traced
back to these two main problems, overfitting and underfitting (Fig. 3.1):

Overfitting Overfitting occurs every time the model performs very well on
training data but it does not generalize well with other data. The main cause of
overfitting is the high model complexity: if the model has too many features, the
learned hypothesis may fit the training set well but it fails to generalize on the test
set. The possible solutions to overfitting are:
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• Simplify the model by reducing the number of features.

• Apply regularization, a technique that allows to keep all the features but
reduce their impact.

• Feed the model with more training data.

Underfitting Underfitting occurs when the model has poor performance on both
training and test data, and it is often caused by a model that is too simple and is
not able to learn. The solutions to underfitting are:

• Increase the model complexity (i.e. increase the amount of information the
model uses to learn).

• Increase the number of features (feature engineering).

• Clean training data, avoiding as much noise as possible.

Figure 3.1: Underfitting and Overfitting
[8]

3.2 Neural Networks
The Neural Networks (NN) are a group of algorithms that try to mimic the
human brain. In the last years they are becoming increasingly fundamental in the
field of machine learning as they outperform the majority of classic ML techniques,
especially in the resolution of the hardest tasks (e.g. computer vision). As in
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the human brain, a Neural Network is composed mainly by 2 elements: neurons
(computational units) and synapses (connections between neurons).

A neuron takes a certain number of parameters as input, multiplies them by
weights, combines them together and finally applies a non-linear function called
activation function. Figure 3.2 shows a simple neural network, so called Multi-
layer Perceptron (MLP), composed by an input layer, an hidden layer and an
output layer.

Figure 3.2: Multi-layer Perceptron, one of the simplest NN
[9]

The number of neurons in each layer may vary, except for the level of input and
output. The number of neurons of the input layer depends on the number of inputs
the model takes; the number of neurons of the output layer depends on the number
and type of output we expect (e.g. in a classification task the number of neurons of
the ouput layer will be equal to the number of classes/labels we want to classify).

3.2.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) are among the most used neural
networks, especially in the field of computer vision, however, they have been also
successfully used at many other tasks. The basic building block of a CNN is the
convolutional layer: the convolution operation allows to decrease the number of
features of the model without losing information. As explained by A. Géron in [10],
the convolution allows the network to concentrate on small low-level features in
the first hidden layer, then assemble them into larger higher-level features in the
next hidden layer, and so on. This hierarchical structure is common in real-world
images, which is one of the reasons why CNNs work so well in performing computer
vision tasks. The main layers of this type of NN are:
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Convolutional layer This layer convolves the input data and it creates an
output feature map. The parameters that defines a convolution are: the kernel,
the padding and the stride. Given an input with the following shape: [input height
n]×[input width m]×[input channels] and a convolutional filter defined by a filter f,
a stride s and a padding p, the result of the convolution will be performed as shown
in Figure 3.3, where the shape of the convolutions between input and the filters is:

[n + 2p − f

s
+ 1] × [n + 2p − f

s
+ 1]

Figure 3.3: Convolutional layer
[11]

Furthermore, a non-linear activation function is applied to reproduce a non-linear
behaviour since the convolution is a linear operation. In Figure 3.3 the ReLU is
the activation function used, but usually also the sigmoid or the hyperbolic tangent
(tanh) are common functions used to introduce non-linear behaviours.

Pooling layer Pooling layers are used to significantly reduce the number of
parameters (i.e. the dimension of the output feature map obtained by a convolution)
of the CNN by dividing the feature map in several blocks of n × m shape. The
most common pooling layers (Fig. 3.4) used are:

• Max Pooling: it returns the maximum value of each block of the feature
map.

• Average Pooling: it returns the mean of each block’s values of the feature
map.

Fully Connected layer Usually some fully connected layers (i.e. MLP networks)
are added at the end of a CNN in order to perform a non-linear combination of
the features extracted in the previous layers and, lastly, classify the image.
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Figure 3.4: Pooling layers
[12]

3.3 ResNet and Residual Blocks
CNNs and NNs in general can easily become very deep and complex, furthermore,
during the training of these networks can arise various problems related to gradi-
ents, such as vanishing (gradient approaches 0) and exploding gradients (gradient
approaches ∞).

K. He et al. [13] were the first to tackle the complexity of the deepest NNs
by using a novel approach based on new computational blocks called Residual
Blocks. A Residual Block (Fig. 3.5) is composed by the so called skipping
connections: ’shortcuts’ that allow the forwarding of data obtained from a level
to a deeper level by adding it to a linear component before applying a non-linear
function like the ReLU. The NNs that implement the Residual Blocks are called
Residual Networks (ResNet).

Figure 3.5: Residual Block
[13]

In Figure 3.6 is shown that the plain NNs have a performance degradation
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problem as the number of levels increase and how ResNet strongly mitigates this
phenomenon.

Figure 3.6: Performance degradation of Plain NNs and ResNets
[13]

3.4 Super-Resolution
We have seen how the use of high-resolution satellite imagery turns out to be very
useful for a number of practical applications such as environmental monitoring,
city mapping, disaster management, and much more. Unfortunately we have also
seen how the instruments aboard satellites are subject to very stringent constraints
that in some cases can limit the spatial resolution of the images acquired by them;
appropriate Super-Resolution (SR) techniques, however, allow us to obtain
high-resolution (HR) images from one or more low spatial resolution (LR) images.

It becomes clear how the availability of many images of the same scene is
particularly important since if properly combined they allow us to greatly increase
the spatial resolution. In fact, when we talk about Super-Resolution applied to
Remote Sensing, we must take into account the fact that there are two main
methods of applying SR techniques:

• Single Image Super-Resolution (SISR): these techniques use a single
image to construct its super-resolution counterpart; however, the amount of
useful information in the case of a single LR image is not very high, and the
capacity of these models is therefore limited.

• Multitemporal Image Super-Resolution (MISR): in this case multiple
images of the same scene (i.e., multiple images of the same area taken at
different times) are used to generate the super-resolution version of the image.
The great advantage of this approach is due to the fact that by having multiple
images of the same scene we will have much more useful information and
also be able to increase the spatial resolution, at the same time, however, it
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should be considered that using temporally distant images leads to having
images that, in fact, often change (for example, due to lighting, clouds, human
activity and others).

3.5 PIUnet
PIUnet (Permutation Invariance and Uncertainty estimation Network)
is a neural network architecture presented by D.Valsesia and E.Magli in [14], for
multitemporal super-resolution which is invariant to the temporal permutations
of the images and that requires smaller dataset for training (in comparison with
other models performing MISR). The new features proposed in PIUnet can be
summarized as:

• Invariance to temporal image permutations.

• A second output, in addition to the SR image, called uncertainty map which
estimates the uncertainty for each pixel of the SR image based on temporal
variations in images and true error.

• The ability to take a variable number of LR images as input (previous ar-
chitectures performing MISR take a fixed number of LR images, usually
9).

The dataset used for the training is a Proba-V dataset made available by ESA;
the reason this dataset was chosen is that it has both 300m spatial resolution LR
images (generated every day) and 100m spatial resolution HR images simultaneously.
However, the HR images are generated every 5 days, making them limited in number.
Each image in the dataset represents a Level 2A product, ergo radiometrically and
geometrically corrected and quantified in TOA reflectance; the bands used are the
NIR (near-infrared) and RED bands.The images are also preprocessed in such a
way as to select only those LR images that, according to the relative status map,
have less than 15 percent concealed pixels in them; in addition, the number of 9
LR images was fixed for each scene even though there are no constraints on the
number of images to be used. Finally, the images were appropriately normalized
by subtracting the mean intensity from the training set and dividing everything by
the standard deviation.

3.5.1 Model architecture
The PIUnet architecture is shown in Figure 3.7. The model takes as input a stack
of LR images and outputs two results: the uncertainty map (top output) and the
super resolution image (bottom output); both of these outputs share part of the
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network (backbone) although we can see that convolutional, Batch Normalization
and Upsampling blocks are used to obtain the uncertainty map, while for the
SR image a PixelShuffle and a skipping connection are used. We emphasize an
important difference with other models that perform the same task (MISR), which
is that PIUnet can take as input any number of LR images, vice versa many other
MISR models take as input a fixed number of LR images.

Figure 3.7: PIUnet Architecture
[14]

Notice how the architecture is also composed by two modules: TEFA (Fig. 3.8)
and TERN (Fig. 3.9), which will be discussed in depth in the next section.

3.5.2 Invariance to temporal image permutations
Before understanding how invariance to temporal permutations works, two concepts
of algebra must be introduced.

Equivariance: A function f : X → Y is equivariant to the actions g of a group
G if:

f(g ◦ x) = g ◦ f(x) ∀x ∈ X, g ∈ G (3.4)

Invariance: A function f : X → Y is invariant to the actions g of a group G if:

f(g ◦ x) = f(x) ∀x ∈ X, g ∈ G (3.5)

As explained in [14], in PIUnet, we are dealing with the permutation group and
its actions are all the possible temporal permutations of the input images, more
specifically, with the invariance property the order in which we give LR images
to PIUnet does not affect the SR image. If we have an invariant function, the
output will always be the same, no matter the permutation of the input, while for
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Figure 3.8: TEFA Module
[14] Figure 3.9: TERN Module

[14]

equivariant functions we will get an output that is exactly a permuted version of
the output we would get without the input permutation.

Being able to implement the invariance property in the layers is the key to
obtain a model that is invariant to temporal image permutations. Unfortunately
the mathematical operations that have the latter property are few (e.g. the mean),
and often too simple for solving such a complex task. However, D. Valsesia and
E.Magli proposed in [14] an alternative way to build an invariant neural network:
the idea is to concatenate multiple equivariant operations (layers) followed finally
by a global invariant operation. The equivariant operation that was chosen to
implement the model is the self-attention [15].

The Self-Attention is an operation that uses three matrices to generate three
vectors called: key (K), value (V) and query (Q) and once obtained it calculates
the cross-correlation matrix between key and query used later to appropriately
weight the values of the value vector and generate the output. More formally, we
define the self-attention function as:

QQQ = XWXWXW q KKK = XWXWXW k VVV = XWXWXW v

YYY = softmax(QKQKQKT

√
T

) · VVV = AVAVAV

Where X is the representation of a pixel with F features and T temporal channels.
It can be mathematically proved in the above formula that a permutation of T
corresponds to a permutation of the columns of A, ergo the self-attention function
is equivariant. This operation is performed on all pixels of all images in the batches
we train.

Therefore, in [14], the Self-Attention function was used to build the TEFA
(Temporally-Equivariant Feature Attention) block (Fig. 3.8); the latter is an
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extension of the classic residual feature attention proposed in [16] and is used in
repetition as the backbone of the neural network. Specifically, the TEFA module
computes attention scores to weigh the feature channels by extracting spatial and
temporal features in an equivariant way, by means of shared 2D convolutions and
temporal self-attention, and averaging them over space and time [14]. Now seeing
the whole architecture (Fig. 3.7) we notice that all its blocks perform equivariant
functions (to temporal permutations), consequently to make the whole model
invariant, as we said before, we need to apply a global invariant function: we do
this performing an average of the TERN output along the temporal axis.

As for TERN (Temporally-Equivariant RegNet) module, it is an extension
of the RegNet module presented in [17]. The goal of the original RegNet was to
dynamically compute small K × K spatial kernels from the input features to be
used as filters over the input itself; The TERN module retains this function but
has been modified in [14] to implement the temporal-equivariance property.

3.5.3 Uncertainty estimation
The second output of PIUnet is the so-called Uncertainty Map which is particu-
larly useful since it gives us an estimation of the aleatoric uncertainty of the SR
image, useful to judge the reliability of regions of SR image. Figure 3.10 shown a
comparison between one of the LR images provided to PIUnet, the SR output and
the uncertainty map; notice how the uncertainty map has higher value in areas
with various and different spatial features.

Figure 3.10: From left to right: LR image, SR image, Uncertainty Map

To estimate SR image uncertainty PIUnet focuses on aleatoric uncertainty,
which is calculated as a function of perturbations on the input data such as noise

32



Deep Learning Background

or, in this specific case, temporal variation in the images. Being able to measure
this uncertainty allows us to determine when a portion of an image has been
’super-resolved’ crudely and when there is some degree of certainty. To calculate the
uncertainty we need to model each pixel of the SR image as a random variable and
whose distribution can vary pixel by pixel. The NLL (Negative Log-Likelihood)
is used as the loss function to be minimized where, however, the distribution of
pixels is calculated using the following Laplacian formula:

p(xi) = 1
2βi

exp(−|xi − µi|
βi

)

E[xi] = µi V ar[xi] = 2βi
2

Where µi are the pixels of the SR image obtained in output, or more precisely the
version where we compensate with the average brightness to handle the fact that the
Ground Truth image and the SR image can have different absolute brightness values,
and βi which is proportional to the standard deviation and thus will represent
our aleatoric uncertainty (from the second head of the network we in fact get
δ = log β). Having made this assumption, the NLL loss can be generalized as if it
is the following L1 Loss:

L = − 1
NB

Ø
b,i

log p(xi) = 1
NB

Ø
b

CØ
i

3
δi

(b) + e−δ
(b)
i

---xHR(b)
i − µ

(b)
i

---4D
(3.6)

Where i = 1...N are the pixels and b = 1...B are the images; also notice that µ
and δ = log β are the two outputs of the model, respectively the SR image and the
aleatoric uncertainty.

3.5.4 Results
The metric used to evaluate the results of PIUnet is a variation of the classic PSNR
(Peak Signal-to-Noise Ratio), the cPSNR (Corrected PSNR), which is
insensitive to absolute brightness and takes into account the pixel shifts between
the SR image and the Ground Truth. It follows the definition of the cPSNR:

cPSNR = max
u,v∈[0,6]

10 log10
(216 − 1)2

MSEu,v

(3.7)

Where MSEu,v is:
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MSEu,v = ||xHR(u,v) ⊙ m − (xSR ⊙ m + b ⊙ m)||22
||m||1

In the latter m represent the quality masks, xHR is the high-resolution image, xSR

is the super-resolved image, b is the bias calculated to make the PSNR insensitive
to absolute brightness differences, finally u and v indicate the amount of horizontal
and vertical shift applied to the HR image. Notice that in the previous formula
the ⊙ symbol denotes an elementwise product.

In Figure 3.11 is shown the performance comparison between PIUnet and other
state-of-the-art models like DeepSUM [17] and RAMS[18].

Figure 3.11: Performance as function of no. of training scenes
[14]

Furthermore, Figure 3.12 shows an example of the two outputs of the network,
respectively the SR Image and the uncertainty map, and the Ground Truth (HR
Image).

Notice how in the uncertainty map (Fig. 3.12), the highest aleatoric uncertainty
values, denoted by warmer colors in the color map, are near areas where spatial
and radiometric features are particularly variable.
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Figure 3.12: From left to right: HR Image, SR Image, Uncertainty Map
[14]
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Chapter 4

Datasets

One of the most important and time-consuming part of this work was related to
the creation process of the dataset needed for this thesis. This chapter provides an
in-depth analysis of the latter and its creation processes; since in order to create the
final dataset it was first necessary to create two other datasets, one from Proba-V
data and one from Sentinel-2 respectively, this chapter will also describe the process
that led to the creation of the previous two and finally to the creation of the final
dataset.

4.1 Datasets specifications
After analysing the problem, we defined the specification of the dataset:

• The new dataset must contain images from both Sentinel-2 and Proba-V
missions. Those from Proba-V must be used as LR images, while those from
Sentinel-2 must be used as Ground Truth.

• Obviously, the images (LR and HR) must represent the same area and must
be coregistered in such a way that the shifts between the images are, at most,
of 3/4 pixels.

• Since the images used with PIUnet measure the TOA reflectance, the images
in the new dataset must be quantified in TOA reflectance, consequently for
the Proba-V mission the data need to be extracted from level 2A, while for
the Sentinel-2 mission the data need to be extracted from level 1C.

• The bands on which we will work on are the RED and NIR bands; specifically
for each scene, the same image is extracted from both bands.

• For each scene, there must be at least 16 LR images and one HR image.
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• Images should be as clean as possible; ideally LR images should have at least
70% clear pixels while HR images should have at least 85%.

• Acquisitions should not be time-spaced more than two months apart, oth-
erwise there could be substantial spatial and radiometric differences due to
various phenomena, both natural (e.g., change of season) and man-made
(e.g., cultivation, buildings construction, etc..). Ideally, one would choose the
latter as small as possible for the previously mentioned reasons, but since
the availability of data varies a lot and high-quality images (i.e. with few
dirty pixels) are quite rare, especially in certain areas, we decided to enlarge
it and set it at 2 months. This 2-months time-window is, in our opinion, the
minimum necessary trade off so that there are at least 16 downloadable LR
images of the same area and at the same time with good quality.

I also specify that, following the same convention to the one already adopted
in the European Space Agency challenge addressed in [14], the LR images have
dimension of 128x128 pixels with a spatial resolution of 300 meters, following
Proba-V specifications, consequently covering an area of about 38400 meters; while
the HR images are 384x384 pixels in size with a spatial resolution of 100 meters,
thus as before covering an area of 38400 meters per side.

4.1.1 Selections of Regions of Interest

The first step necessary to define the dataset was to choose the coordinates of
the scenes, also known as Regions Of Interests (ROI), to be acquired. For this
purpose I selected, manually, 636 different coordinates from all over the world.
Since both the NIR and RED bands had to be downloaded for each scene, the total
number of different sets of images (imgsets) in the dataset is 1272. It is crucial to
emphasize that these latter coordinates were not chosen randomly; rather, criteria
were followed with the aim of obtaining as heterogeneous a dataset as possible, with
the presence of a wide variety of biomes and spatial features, thus including coastal
areas, urban settlements, deserts, vegetation-rich areas, mountains and more.

In addition to the previous criterion, strong consideration was also given to
the fact that the images should contain as few clouds as possible, which is why
acquisitions made in particularly sunny months, and in areas of the Earth where
the presence of clouds is often reduced, were chosen.

Figure 4.1 shows a map of the world where the positions of the previously
mentioned coordinates are identified with a cross.

The list of coordinates, and other useful information, regarding the acquisitions
chosen for the new dataset can be found in Appendix A.
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Figure 4.1: Coordinates of the 636 scenes

4.1.2 Image quality
As we have seen in previous chapters, for the model to work well, it is essential that
the images are reliable and have high pixel quality. In particular, it is necessary
that in addition to the LR and HR images, information about each pixel in the
images should also be provided to the model to understand whether it is a clear
or dirty pixel; in the rest of this thesis I will refer to the latter as Quality Map
(QM) (Fig. 4.2). Since each dirty pixel corresponds to a loss of information then
it is critical that the images in the dataset have as few dirty pixels as possible.

Following a similar, but not the same, approach to the one followed in [19], I
decided to compute and add to the datasets (of both Proba-V and Sentinel-2), for
each image, its corresponding Quality Map. More specifically I downloaded, for
both missions, all the status map (Fig. 2.11 represents the Proba-V’s status map
notation), scene classification map and all the files containing acquisition quality
metrics such as radiometric quality, geometric quality, saturated pixels, burned
pixels and so on.

Finally, I computed the quality map for each LR and HR image following these
general rules:

• Pixels identified as clouds, cloud shadows or undefined in the status maps of
a certain image are set as dirty in the corresponding quality map.

• Using files with image quality information, I identified saturated, burned, and
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low-quality pixels, both radiometric and geometric, as dirty in the correspond-
ing quality map.

• All other pixels that do not fall into the previous two cases were identified as
clear in the quality map.

Following the same convention adopted in [19], I defined the clearance of an
image as the ratio of clear pixels to the total number of pixels in an image:

Clearance (%) = no. clear pixels
tot. image pixels

With tot. image pixels that can be equal to 16.384 (128×128) in the case of LR
images and 147.456 (384×384) in the case of HR images.

Figure 4.2 shows an HR image (4.2a) from the Proba-V dataset and its corre-
sponding quality map (4.2b), computed following the previous rules.

(a) HR Image (b) Quality Map

Figure 4.2: HR Image and its corresponding quality map; black pixels (i.e. value
= 0) represent dirty pixels while the white ones (i.e., value = 1) represent clear
pixels. The image was extracted from the RED data band at the coordinates
(latitude, longitude) of 38.21130, 13.31250 in May 2020.

4.1.3 Dataset structure
To summarize, I ended up creating a dataset consisting of 1272 imagesets. Each
imageset (imgset) represents the same geographical area and contains the following:
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• At least 16 low-resolution Proba-V images (16 bits grey scale) of size 128×128
pixels (Fig. 4.3).

• For each low-resolution image, the corresponding quality map of the same size.
The quality map is a binary image, so it encodes only two possible values: 1
for clear pixels, 0 for dirty pixels.

• One single high-resolution Sentinel-2 image (16 bits grey scale) of size 384×384
pixels. This image is used as Ground Truth for the Super-Resolution task.

• A single quality map relative to the HR image. As with LR images, this
quality map is a binary image of the same size as the HR image, in which
dirty pixels are identified with 0 and clear pixels with 1.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Different LR images representing the same area extracted at different
times.
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4.2 Data collection
As mentioned before at the beginning of this chapter, to create the dataset needed
for this thesis the idea was to create and then merge two smaller datasets, one
obtained from the Proba-V data and containing the LR images, and the other
containing the corresponding HR images obtained from the Sentinel-2 data.
In this section is explained the process of creation of the two datasets already
mentioned.

4.2.1 Proba-V
To collect Proba-V data and create the related dataset I relied on the terrascope1

platform, specifically using one of the virtual machines provided by them. In the
latter, all data in the time frame from 2014 to 2020 from the Proba-V mission in
Europe are available, while less data are available outside European soil in the
same time frame.

To collect the LR images I used the products available at product level L2A,
which, as previously explained in Chapter 2, is composed of radiometrically and
geometrically corrected Top-Of-Atmosphere reflectances in Plate-Carré projection.
These products are saved in the HDF5 format in the Terrascope VM; the HDF5
format is a format that allows particularly complex and heterogeneous data to be
grouped into an intuitive and easy-to-manage hierarchical structure, all of which
made Proba-V’s data extraction work relatively easy to do. Specifically, part of the
hierarchical structure of the latter is presented in Table 4.1; for the sake of clarity
and simplicity I specify that in Table 4.1 I report only part of the hierarchy of the
HDF5 file, in particular, showing the attributes and data used for data extraction
and not reporting instead all the data that were not used. Further information
about the format and Proba-V data and the HDF5 format are available respectively
in the Terrascope website and in the HDF Group Website2.

LR Images extraction Regarding the extraction and collection of LR images,
I made a script that, taking as input a latitude, a longitude and a time interval
of two months, would search among all the 300-meters spatial resolution Level2A
products present in the Terrascope VM those that within them had the latitude
and longitude given as input and in the specified time interval; once these products
were found I would go to check the quality of the image (more information in the
next paragraph) and finally if the quality checks were passed patches of size 128x128

1https://terrascope.be/en
2https://www.hdfgroup.org/solutions/hdf5/
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Name HDF5 Path Description

lat /lat Dataset containing
the latitudes

lon /lon Dataset containing
the longitudes

Status Map /LEVEL2A/QUALITY/SM
Dataset containing

the quality flags
and status pixels

TOA RED /LEVEL2A/RADIOMETRY/RED/TOA Dataset containing
TOA reflectances

TOA NIR /LEVEL2A/RADIOMETRY/NIR/TOA Dataset containing
TOA reflectances

Table 4.1: Hierarchical structure of Proba-V HDF5 files.

were extracted, using the input latitude and longitude as left-upper starting pixel of
the image. In the indicated time period as many images as possible were extracted,
again if the quality control is passed, in such a way as to have as many LR images
as possible; in case more than 15 LR images could not be extracted within the
indicated time period then the script was aborted with an error report.

This procedure was applied for both NIR and RED bands; in addition, although
not strictly required and not necessary, I also extracted for each imageset the
corresponding Proba-V image in HR (i.e., with spatial resolution of 100 meters).
As we will see later, the HR images from Proba-V, will also serve us to calculate
the cPSNR using the Proba-V images as ground truth.

Quality Check and generation of QMs Since the L2A products are already
geometrically and radiometrically corrected the quality checks were quite straight-
forward to perform. To create the quality map of an image I checked in the
corresponding status maps which pixels had the label undefined, cloud and shadow,
then I created a matrix by setting to 0 (dirty) the pixels that fell into the 3 previous
categories and to 1 (clear) all others. From this last matrix I generated a binary
image, i.e., the quality map.

Finally, I extracted only LR images that had a clearance ≥ 70%, while in the
case of HR images this threshold was set at 85%.
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4.2.2 Sentinel-2
While creating the Proba-V dataset was a straightforward process, creating the
Sentinel-2 dataset was more complicated for a number of reasons; I list the main
ones below:

• The data format of Sentinel-2 data is .SAFE; this format does not group all
the useful information into a single easy-to-open file (which is what happens
in HDF5), instead the information and data are distributed among a hierarchy
of folders where there are multiple files and extensions (such as .tif, .jp2, .shp
and more), depending on what type of information the specific file contains.
The naming convention for the Sentinel-2 is presented in Figure 4.4 and Table
4.2. More information about Sentinel-2 data can be found in [20].

• For both Level-1C and Level-2A, data are distributed in 100×100km2 adjacent
tiles. This turned out to be the main problem since it often happens that the
HR image to be extracted was distributed over several tiles that need to be
merged before (i.e., the image of the area we are interested in extracting is
not present entirely within a single tile, but on multiple adjacent tiles). To
solve this problem and merge multiple tiles graphically, I had to implement a
mosaicking procedure.

• Another problem was related to the coordinates system, in fact in Proba-
V data it was possible to locate points by latitude and longitude, while in
Sentinel-2 the images are projected according to the UTM system (Universal
Transverse Mercator, Fig. 4.5). The UTM is a coordinate system that divides
the world, except for the polar zones, into 60 different regions each identified
by a number and a letter.

Figure 4.4: Sentinel-2 products naming convention

To extract and collect the Sentinel-2 data I used an EarthConsole3 Virtual
Machine.

HR Image extraction Again it was necessary to make a script for data extrac-
tion. The procedure, and so the script, to extract HR Image from Sentinel-2 data
was very similar to the one described previously for the Proba-V Dataset, with two
main differences:

3https://earthconsole.eu
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<MISSION> Mission ID (S2A, S2B)
<DATE> Start date of acquisition in YYYYMMDD format
<TIME> Start time of acqusition in hhmmss format

<GRIDID> ID of the tile in UTM projection
<CONTENT> Content of the file (i.e. TOC, TOC-B02, TOC-B07..)

<RESOLUTION> Spatial resolution of the product
<VESRSION> Workflow’s version (last is v200)

Table 4.2: Sentinel-2 products naming convention

Figure 4.5: UTM Coordinate System
[Credit: Wikipedia]

• Latitude/Longitude-UTM Conversion: Since the Sentinel-2 data are
projected accordingly to the UTM system I could not directly use latitude
and longitude to locate the searched point; rather, it was necessary to convert
the coordinates given in latitude and longitude to UTM so that I could then
search for the target area. To perform this conversion I used the utm4 python
library.

• Mosaicking: As mentioned earlier one of the main problems was due to the
tile size of Sentinel-2, in fact it often happened that an image to be extracted
was located on multiple tiles (Fig. 4.6). Obviously in this case it was necessary
to perform a merge between the various tiles that ’contained’ the area of the

4https://github.com/Turbo87/utm

44

https://github.com/Turbo87/utm


Datasets

HR image to be extracted. To do this I included in the Sentinel-2 generation
script some additional methods that had the purpose of: identifying if the area
to be extracted was entirely on one tile, if it was not on one tile finding the
adjacent tiles needed to observe the whole area, once found it was necessary
to merge them and finally to crop only the area of our interest to generate the
HR image.

(a) (b) (c) (d)

Figure 4.6: Visual representation of the mosaicking problem. The red square
represents the area to be extracted (HR Image) while the squares with the black
perimeter represent the Sentinel-2 tiles.(a). HR Image is located within two tiles;
(b). HR Image is entirely inside just one tile; (c). HR Image is located within two
tiles; (d). HR Image is located within four different tiles.

Quality Check and generation of QMs In order to perform quality checks
with the sentinel 2 data, I acted slightly differently from what I did with the
Proba-V dataset, in fact the Level 1C products of Sentinel-2 are a bit rougher
than the Level 2A products of Proba-V. Specifically, to create the quality maps, I
used all available files that contained quality information (CLOUDS.shp for clouds,
SATURATED.shp for saturated pixels, and so on). In this way an early version of
the quality map was defined, which was later improved by also using Sentinel-2’s
Level 2A quality files (when available on the EarthConsole VM ), which contained
more accurate information, and the scene classification maps. Using the quality
data from Level 2A was made necessary in some images because the Sentinel-2
level 1C data are poorly refined and in some cases there was no quality information
present (i.e., the quality files are empty), with the only exception for the cloud
information (contained in the file CLOUDS.shp) that is always present even from
level 1C, although not very accurate. Obviously the Level 2A data were used only
for quality control, the extraction of the images was only done at Level 1C where
the TOA reflectance is measured. Finally, in order to generate the quality map for
a Sentinel-2 image I followed the following rules:
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• All the saturated, ’dark-currents’ and undefined pixels were identified as dirty
in the corresponding quality map.

• All the pixels representing clouds and shadows were identified as dirty in the
corresponding quality map.

• The remaining pixels that did not fall into the previous two categories were
identified as clear.

The images, compared to Proba-V dataset, have on average a higher cleanliness;
in fact, in the script I inserted a constraint such that to select and generate an image
92% of its pixels must be identified as clear (previously it was 85% in Proba-V).
This choice is due to the fact that by then applying co-registration (more details
in the next section) to the Sentinel-2 images the resulting image contained black
side stripes, effectively decreasing the percentage of clean pixels, consequently
to maintain a high quality of the Ground Truth images I decided to make this
condition more stringent.

Downsampling Since the HR images of Proba-V originally used in PIUnet
had spatial resolution of 100 meters (RED and NIR bands have 100m spatial
resolutions), while the HR images of Sentinel-2 have spatial resolution of 10 meters,
it was necessary to apply a downsample filter to the Sentinel-2 imagery so as to
bring their spatial resolution to 100 meters. This is necessary for two reasons:

• To keep the problem specifications as close as possible to the original ones.

• PIUnet decreases the spatial resolution by a factor of 3 (from 300m to 100m),
if one were to leave the HR images at 10m size the spatial resolution would
have to decrease by a factor of 10 which is very difficult both because the
improvement is really high, it is also difficult because of a computational
aspect related to the number of model parameters and the limitations of the
GPUs used for training.

To perform the downsampling operation, the Image.resize() method of the PIL
python library5 was used. This method, as we can guess from the name, returns a
resized copy of the image; one of the optional parameter we can pass to the latter
is resample: this parameter allows us to choose an optional resampling filter. Since
the operation we wanted to perform is a downsampling, I chose the LANCZOS
low-pass filter since it has the highest downscaling quality of all the filters available,
at the expense of performance.

5https://pillow.readthedocs.io/en/stable/reference/Image.html
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4.3 Final Dataset
The final dataset was created by merging the data from the previous two datasets,
using Proba-V images as LR images and Sentinel-2 images as Ground Truth. Some
operations were necessary to make the dataset correct, in particular, a process of
reprojection and finally coregistration were carried out.

4.3.1 Reprojection
We saw in Chapter 2 that the two missions, Proba-V and Sentinel-2, have different
specifications and characteristics; one of the differences between the two missions
is the projection system, in fact in Proba-V the data are projected using the Plate-
Carré projection system while in Sentinel-2 the UTM system is used. Before talking
about reprojection, however, let’s take a step back and understand what and why
the projection system is so important.

Projection A projection is a mathematical transformation that takes spherical
coordinates, usually latitude and longitude, and transforms them into an (x, y)
coordinate system. This makes possible to create a map that accurately shows dis-
tances, areas, or directions. With this information, it is possible to work accurately
on the data to calculate areas and distances and measure directions.

When working with satellite data, it is important that all images are projected
using the same projection system, in fact, using different projection systems leads
to displaying the data differently (even if the target area is the same), which is
inconsistent, and therefore incorrect. One can visualize this problem in Figure
4.7 where the same area (the images are taken by using as reference the same
coordinates on the upper-left angle and by extracting 384 pixels per size) of the
earth is shown but projected using two different projection systems. From the latter
it can be seen that although the upper-left corner has the same coordinates and
both images have the same size of 384×384 pixels, one of the two images, the one
projected in Plate-Carré, ’contains’ a larger area than the other. Clearly, this needs
to be corrected since the images that PIUnet will need to use must necessarily
be the same; otherwise, the model will fail to perform the Super-Resolution task
correctly.

Finally, to solve this problem, I decided to reproject, in the Sentinel-2 image
extraction script, the Sentinel-2 images by changing the projection system from
UTM to Plate-Carré. To do this it was necessary to use python’s rasterio6 library.

6https://rasterio.readthedocs.io/en/latest/index.html
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(a) UTM Projection (b) Plate-Carré Projection

Figure 4.7: Image extracted from the RED data band at the coordinates (latitude,
longitude) of 15.2321419, 49.4107126 (upper-left corner). (a). Sentinel-2 Image
in UTM Projection; (b). Proba-V Image in Plate-Carré Projection. Note that
the upper left coordinates are the same for both images and also have the same
dimensions (384x384 pixels), but the Plate-Carré projection image b represents a
larger area, this is due to the different projection system.

4.3.2 Co-registration
I have already introduced the concept of co-registration in Chapter 2. For the
creation of the final dataset, it was necessary to apply co-registration between
Sentinel-2 and Proba-V images so as to obtain images that are as geometrically
aligned as possible and whose pixel shifts are as minimal as possible.

To perform the co-registration task I used arosics7: a python library that is
specialized in performing automatic subpixel co-registration of two satellite image
datasets. Unfortunately, because of the optical and geometric differences between
the two satellites, I was not able to co-register all images using the latter’s functions,
but only those that differed by a few pixel shifts; therefore, it was necessary to
create a special script for co-registering images to be used in all other cases (large
shifts between pixels). In the end, the goal defined in the dataset specification was
achieved and all images, after co-registration, did not differ by more than a couple
of pixels. The only problem that arose as a result of co-registration was that in
order to geometrically align the images it happened that the co-registered image
often, not always, contained black side stripes actually decreasing the quality of

7https://github.com/GFZ/arosics
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the image, which is why as mentioned before I inserted a constraint to extract as
Ground Truth only images with clearance ≥ 92%.

What is described in this section is shown in Figure 4.8.

(a) Proba-V HR Image (b) Sentinel-2 HR reprojected Image

(c) Co-registered image (arosics) (d) Co-registered image (my script)

Figure 4.8: Co-registration process. In this specific scene the coregistration
performed by the arosics (c) package was not enough reliable so it was necessary
to use my co-registration script (d) to obtain a correctly co-registred image.

49



Chapter 5

Methods and Trainings

This chapter presents the modifications made on the architecture of PIUnet, in
addition, experiments and trainings performed on both the standard version of
PIUnet and the modified version are described.

5.1 Modified PIUnet
Doing Super-Resolution tasks by taking images from two different satellites, i.e.,
sensors with different characteristics is not easy for a number of reasons. One
of the main ones, which will be further discussed in detail in later sections and
chapters of this thesis, is that the model trains using low-resolution images from
a certain satellite, in this case Proba-V, while the loss function is minimized by
decreasing the error by using Sentinel-2 imagery as reference; this leads the model
to create images that do not preserve the radiometry of either satellite, standing in
the middle between the features of the latter two. For the former reason, taking a
cue from the work done by M.T. Razzak et al. in [21], some changes were applied
to the original architecture of PIUnet.

5.1.1 Consistency Loss
In the original implementation of PIUnet, the only loss function used is the L1
Loss (Eq. 3.6) shown earlier in Chapter 3; the former’s main purpose is to generate
output that is as similar as possible to Ground Truth images, then to Sentinel-2
imagery, but strong consideration must be given to the fact that the LR images used
to train PIUnet are Proba-V images, thus with different radiometric and spatial
characteristics. This same point was made by M.T. Razzak et al. in [21], who
investigated in their work how different characteristics related to the optical sensors
from which images are captured can lead to inconsistent results from a radiometric
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point of view. Therefore, using an approach similar to that proposed in [21] an
additional loss, called consistency loss, was added to the standard architecture of
PIUnet. The idea was to obtain a Super-Resolved image that is radiometrically-
consistent and does not have features that are somewhere between the LR images
from Proba-V and the HR image from Sentinel-2.

Figure 5.1: Modified version of PIUnet with the additional consistency loss.

In the modified PIUnet architecture, the SR image produced as output (together
with the uncertainty map) is not only used to compute the L1 loss (upper branch of
Figure 5.1), but it is then downsampled in such a way that its size is decreased and
made the same as that of the LR input images, thus 128×128 pixels; the downsample
is performed using a 2D adaptive average pooling layer (more information on
AdaptiveAvgPool2d are available PyTorch documentation1). At the same time, a
temporal mean of the LR images used as input for the model is performed (lower
branch of Figure 5.1); finally, the downsampled SR image and the result of the
temporal mean of the LR images are used for the calculation of consistency loss.

For what concern the calculation of the original PIUnet loss, it remains unchanged
from what was described by E. Magli and D. Valsesia in [14] (see section 3.5.3),
while, about the consistency loss, it was implemented as a corrected L1 loss
computed using as Ground Truth the result of the temporal mean of the LR input
images and as predictions the downsampled version of the SR image, and which
by similar reasoning to that used in equation 3.6, would take into account a bias
factor given by the difference in brightness between the images; specifically, before
computing the classical L1 loss formula (see equation 3.1), the SR image was
corrected by adding to each pixel of the latter a value (b) that compensates the

1https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool2d.html
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bias due to difference in brightness between the two inputs:

b = 1
1282 (LR_temporal_mean − SR)

Furthermore, before calculating the consistency loss, normalization of the data
is performed so as to bring them into the range [0, 1]; the normalization performed
on the data is the L2 normalization, already implemented in the PyTorch library2,
illustrated in the following formula:

t = t

max(||t||2, ϵ)

Where t is the tensor input and ϵ is a small value (i.e., e−12) needed to avoid
division by 0.

Finally, to combine two (or more), losses into a total loss there are several
alternatives: they can be summed, they can be averaged, they can be weighted
with appropriate weights, just to mention some of the most popular methods used
in the literature. In this case, after some experiments made to figure out the best
way to combine the latter two, a simple subtraction was chosen as the operation to
combine the two losses mentioned above. So the total loss resulted in:

total_loss = PIUnet_original_loss − consistency_loss (5.1)

5.1.2 Regularization
In order to avoid overfitting problems, a regularization technique was implemented
in the modified version of PIUnet; more specifically, the weight decay technique
was chosen. Weight decay is a popular technique that is used to regularize the
weights of the parameters of a certain model, and it works by penalizing the weights
accordingly to their L2 norm. In our specific case, applying the weight decay to
the new PIUnet architecture, the final loss can be described as:

loss = total_loss + λ

2n

nØ
i=1

wi
2 (5.2)

Where λ is a manually chosen regularization hyperparameter.

2https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
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5.1.3 Versions
For the sake of clarity and completeness, it is necessary to say that multiple modified
versions of PIUnet have been implemented. The one described above represents
the architecture of PIUnet from version 2 onward.

Specifically, version 1, the first modified version of PIUnet, was different from
version 2 (and later) for the following reasons:

• The consistency loss was not implemented in the same way as the corrected
L1 loss we have just seen, but it was implemented, taking a cue from [21], as a
classical MSE loss calculated without taking into account bias due to brightness
difference between. However, the inputs were the same: the temporal mean of
the input LR images and the downsampled SR image.

• The two losses, the PIUnet original loss and the consistency loss, respectively,
were not combined by subtraction as seen in equation 5.1, but were multi-
plied by 0.1 and 0.9, respectively, and then combined by a weighted average
operation.

• No regularization techniques were present, unlike in later versions.

For what concern the other versions, from version 2 onward, they all maintain
the same architecture, which is the one described in the previous paragraphs, the
only difference is the different choice of the regularization parameter λ, which
changes from version to version. In table 5.1 are summarized the various modified
versions of PIUnet made during this thesis.

Version Consistency Loss implementation λ value
1 Mean Squared Error 0 (No regularization)
2 Corrected L1 0.01
3 Corrected L1 0.0001
4 Corrected L1 0.000001
5 Corrected L1 0.0000001
6 Corrected L1 0.00000001

Table 5.1: Modified versions of PIUnet

In the remainder of this thesis, version 1 will no longer be discussed because
after some preliminary testing, it was found to be ineffective in training, where
the loss function was not minimized correctly, and for that reason the network
was never able to learn anything useful, i.e., perform the super-resolution task
correctly; for the former reason, version 1 was not even tested. Conversely, the
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most interesting results and experiments were those obtained from version 2 and
version 3, which is why more emphasis will be placed in the analysis and discussion
of the previous two versions.

5.2 Pre-processing step
In the next sections experiments and trainings performed on the model are described
in depth, so it is important to mention that before any training was performed,
either of the standard PIUnet architecture or the modified one, the data in the
dataset used for training were processed appropriately through the use of a notebook
very similar to those used and presented in [18] and [14]. The main steps of the
latter are:

• Dataset loading: in this step each image and the corresponding quality map
of every imageset are converted in tensors and added to two arrays, one for
the LR images and one for the quality map.

• Dataset registration: a first step of registration among the images had
already been done in the dataset creation phase (section 4.3.2), in this step we
are going to perform a second registration of all the images in each individual
imageset. Specifically, among the many available LR images, the one with
the best quality is taken, checking the clearance obtained from the quality
mask, and used as a reference to co-register all the others. This operation is
performed for each imageset of the train, validation and test sets.

• Selection of the best n images: in this step, for each imgset, only the best
n images are kept. The value n corresponds to the number of LR images we
want to use as input, and represents the number of the temporal dimension of
the images (which we recall is usually 9 in MISR models but in PIUnet is a
non-fixed value). To select the best images, first a threshold for the clearance is
selected, each image that has a lower clearance than the threshold is discarded,
then among the remaining images, only the n with the highest clearance are
kept; the default threshold value is 85%. Since, as we saw while describing the
creation of the new dataset, the LR images must have a clearance > 70%, it
may happen that one or more imagesets are discarded if they do not reach the
minimum threshold of n LR images with clearance greater than 85%. Due to
the manual selection of appropriate ROIs with low cloud presence, described
in section 4.1.1, no imagesets were discarded during this pre-processing step
for not meeting the previous condition (considering n=9 ).

• Saving the dataset: finally, after performing all the previous steps, also for
performance reasons, the pre-processed data are saved as .npy files.
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Finally, we add that, even before performing the dataset loading step, all the
data in the dataset were normalized using the z-score normalization:

z = x − µ

σ

Where z is the new normalized value, µ is the the mean value and σ is the
standard deviation, both calculated on the whole training set.

5.3 Trainings and experiments
At the beginning of the thesis, the agreed upon goal was to first test how the
standard PIUnet architecture worked after being trained with the new dataset
created using both Proba-V and Sentinel-2 data, and if necessary, in case of
uninteresting, incorrect or improvable results, continue testing by applying changes
to the network structure. It is important before going on to recall the fact that
PIUnet works on two spectral bands, the NIR band and the RED band as we
discussed earlier, consequently each training and experiment must be done and
evaluated separately on each of the two bands. From here on, when we talk about,
for example, ’PIUnet training’, if the spectral band is not specified, this means
that (at least) two trainings or tests have been carried out, one per band.

A series of trainings and experiments were performed during this work; their
detailed description follows in the subsequent paragraphs.

5.3.1 Experiment using Pre-trained PIUnet
An experiment was carried out using the images from the test set of the new dataset
created for this work as test images, but using as a model the pre-trained PIUnet
model, originally trained using the original ESA’s Kelvin competition dataset 3.
The pre-trained PIUnet model, in both the NIR 4 and RED 5 bands, that was used
to carry out this experiment is the one (i.e., has the same configuration) that led
to the results shown by D. Valsesia and E.Magli in [14].

This experiment, while not particularly useful to accomplish the main goal of
this thesis, allowed us to answer two interesting questions.

3https://kelvins.esa.int/proba-v-super-resolution/data/
4NIR band Pre-Trained PIUnet
5RED band Pre-Trained PIUnet
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How is the super-resolution task performed by PIUnet if the training
and the test set used come from two different datasets? As said before,
the two datasets in question are the one from the original ESA’s challenge (as well
as used in [14]) and the new one whose creation was described in Chapter 4 of this
thesis. Both datasets have low-resolution images extracted from Proba-V, but in
the pre-trained model of PIUnet, training was performed using the high-resolution
images of Proba-V as ground truth, instead of Sentinel-2 imagery; the fact that
tests were done on an already extensively tested and studied model might make the
question uninteresting, but this is not true since the the two datasets used to test
the model are different and were created by selecting different Regions Of Interest
(ROIs) consequently it might have been expected that in one of the two datasets
there would be images extracted from areas with radiometric or spatial features
poorly present or absent in the other dataset, thus leading to the generation of
(some) incorrectly created SR images or at least not totally accurate and reliable.

How much does a super-resolved image from Proba-V resemble a high-
resolution image from Sentinel-2? Since the pre-trained PIUnet generates
super-resolved images with the characteristics of Proba-V, using the new dataset
as a test set, it was possible to quantitatively evaluate, by calculation of cPSNR,
how closely the images in SR generated from Proba-V data resembled those from
Sentinel-2 imagery. Logically, one cannot expect a very good result from cPSNR
calculation, nevertheless it is still interesting to make an assessment of it because
although the optical sensors of the two satellites have different characteristics, it is
still true that Proba-V data are sufficiently consistent with those of Sentinel-2 in
terms of overpass time, radiometry and spectral coverage.

5.3.2 Experiment using Standard PIUnet
This experiment was carried out training the standard PIUnet architecture on
the new dataset created during this work and aimed to answer the fundamental
question underlying this thesis: is it possible to effectively perform super-resolution
tasks using data from two different satellites in combination? And more specifically,
is PIUnet capable of doing so?

In this experiment, the first two PIUnet trainings were performed on the new
dataset, one on the NIR spectral band images and one on the RED spectral band
images. We remark here the fact that, as described extensively in Chapter 3 when
discussing about PIUnet, the network takes as input a variable number of LR
images; although each imageset of the created dataset has at least 16 LR images
available, as described in section 4.1.3, in order to keep the configuration as close
as possible to the original one, the trainings in this experiment were still carried
out by selecting 9 LR images from the many available in each imageset (i.e., the
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number of the temporal dimension is 9; nine different LR acquisitions of the same
area are used to generate the correspondent SR image).

The Table 5.2 summarizes the configuration of Standard PIUnet during the
execution of the present experiment.

no. RED train scenes 396
no. RED validation scenes 140
no. RED test scenes 100
no. NIR train scenes 396
no. NIR validation scenes 140
no. NIR test scenes 100
learning rate e−4

batch size 24
no. epoch 400
no. temporal dimension (i.e., different ac-
quisitions over time)

9

Table 5.2: Experimental setup used for the trainings of Standard PIUnet

The neural network, as seen in Table 5.2, was trained for 400 epochs, a number
that experimentally proved sufficient to reach the learning plateau. To complete
the 400 epochs needed to finish the training phase, for each band, the model needed
approximately 80 hours; this means that to train the model to work in both the
NIR and RED bands the time needed to complete the training is one week, more
or less.

Each training was performed on a dedicated server provided by Politecnico
di Torino, using an Nvidia Quadro P6000, and the parameters presented above
required approximately 19GB of GPU memory for training.

The figure 5.2 shows the trend of the loss function during the training of the
standard version of PIUnet.

5.3.3 Experiments using Modified PIUnet
As will be explained later in Chapter 6, the results obtained from experiments on
the standard version of PIUnet were interesting in many aspects, but certainly
improvable. That is why multiple experiments were also carried out using the
modified versions of PIUnet; all the modified versions of PIUnet shown in Table
5.1 were used for at least one experiment, consequently at least one training was
performed for each of them.

The same parameters shown in Table 5.2 were chosen to perform the training and
experiments of the various modified versions of PIUnet. The same considerations as
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Figure 5.2: Trend of the loss function during the training of the standard PIUnet
architecture in the NIR band.

before about the performance and execution time of a training also apply to these
experiments: it took approximately 80 hours to complete a 400 epochs training.
Since performing two trainings, one for each spectral band, took about a week of
time, the following criterion was followed to perform the experiments as efficiently
as possible: for each modified version of PIUnet a training was performed on the
RED spectral band, subsequently, if the training led to quantifiable improvements
with respect to the standard version of PIUnet then a training on the NIR band
was also performed, conversely if the training worsened the performance or led
to worse results than those obtained by the standard version of PIUnet then the
second training in the NIR band was avoided. Finally, after analyzing in detail
the cPSNR, the SR images and their histograms, performance (loss and cPSNR)
during training, it turned out that among the various modified version of PIUnet
tested, just the version 2 and version 3 led to interesting results.

Among the many experiments, these performed on the modified versions of
PIUnet are, unquestionably, the most interesting as they allowed us to really
understand the possibilities of working with SR models using images from two
satellites in combination.

Figures 5.3 and 5.4, respectively, shows the trend of the loss function during the
training of the version 2 of modified PIUnet on the NIR and RED bands.

In Figure 5.5 is shown the trend of the loss function during the training of the
version 3 of modified PIUnet on the RED band.
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Figure 5.3: Trend of the loss function during the training of the modified PIUnet
version 2 in the NIR band.

Figure 5.4: Trend of the loss function during the training of the modified PIUnet
version 2 in the RED band.

Figure 5.5: Trend of the loss function during the training of the modified PIUnet
version 3 in the RED band.
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Results

In this chapter, the results of the previously mentioned experiments are presented
and described. In addition, a comparison will be made between the results obtained
from the two most interesting versions of PIUnet, namely versions 2 and version
3, and the results of the standard architecture.

6.1 Results of Pre-trained PIUnet experiment
As discussed in the previous chapter, this experiment served to understand how
pre-trained PIUnet worked with the Proba-V LR images contained in the new
dataset, consequently the result of this experiment are super-resolved Proba-V
images. We remark that since a pre-trained model was used, no training was carried
out in this experiment, thus, the cPSNR could not be plotted during the training
and validation phases; however, it was still possible to calculate cPSNR later using
the test set.

In Figure 6.1 we can begin to observe, visually, the results obtained from this
experiment. What is noticeable, which is what we expected, is that the SR image
(Fig. 6.1a) obtained is extremely accurate with respect to the corresponding HR
from Proba-V (Fig. 6.1c); this does not surprise us as the model that was used
for this experiment is the one that was originally trained in [14] with a dataset
that only contained data from Proba-V. Furthermore, what is observed visually in
Figure 6.1 is also found quantitatively through the calculation of cPSNR: Table
6.1 shows the calculation of cPSNR evaluated using both Proba-V HR images and
Sentinel-2 HR images as ground truth; by calculating cPSNR using Proba-V HR
images as ground truth we can quantify how the super-resolved reconstruction of
the model is similar to the original Proba-V image, similarly by calculating cPSNR
using Sentinel-2 images as ground truth we understand how much an image with
Proba-V features resembles one from Sentinel-2.
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(a) SR Image (b) Sentinel-2 HR Image (c) Proba-V HR Image

Figure 6.1: A SR image (a) obtained by pre-trained PIUnet trained on the RED
band. Image (b) shows the corresponding Sentinel-2 HR image while the Image (c)
represents the corresponding Proba-V HR Image.

Sentinel-2 HR Proba-V HR
RED band 47.0338 69.4320
NIR band 45.7173 69.6610

Table 6.1: Mean cPSNR calculated over the test set using the results obtained by
Pre-trained PIUnet. Columns headers show the data used as ground truth, while
in the rows are indicated the spectral band over which the average cPSNR was
calculated.

Looking at the average cPSNR values shown in Table 6.1 we can point out two
aspects:

• The high values of the cPSNR calculated using Proba-V images as Ground
Truth show us that even while changing dataset, the original model continues
to perform correctly, performing the Proba-V Super-Resolution task with high
accuracy.

• The large difference (> 20) in value between the cPSNR calculated using
Proba-V data as ground truth and Sentinel-2 data as ground truth underscores
the fact that although the two missions have similar characteristics in some
respects (such as overpass time, radiometry, and spectral coverage) it is not
possible to use the pre-trained PIUnet model to obtain a result that also
accurately reconstructs SR images with characteristics from another satellite
other than Proba-V

Also, in Figure 6.2 we can see how the super-resolution task is carried out using
the pre-trained model and what are the outputs obtained; specifically, we can see
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how the spatial resolution was increased by starting from multiple LR images (Fig.
6.2a shows one of the many LR images available), thus resulting in the two PIUnet
outputs: the SR image (Fig. 6.2b) and the corresponding uncertainty map (Fig.
6.2c).

(a) LR Image (b) SR Image (c) Uncertainty Map

Figure 6.2: Input (a) and output obtained (b,c) from the pre-trained PIUnet
model. The image was extracted from the RED data band at the coordinates
(latitude, longitude) of -20.034934, -64.876301.

6.2 Results of Standard PIUnet experiment
The results obtained from the experiments performed on the Standard PIUnet
architecture, trained with the new dataset including images from both Proba-V
(LR) and Sentinel-2 (HR), allowed us to answer a first fundamental question we
asked: is it possible to perform super-resolution using sentinel-2 and Proba-V data
in combination? To give us an answer, the results of this experiment are analyzed
below.

In early experiments with the Standard version of PIUnet, two particular
phenomena were detected in part of the images:

• In performing super-resolution of images with a massive presence of high
values of reflectance (an example of surface that has high values of reflectance
is the water) it happened that at these elements (pixels) were recreated in the
SR image with extremely high values, greater than 60000, thus, absolutely
unrealistic from a physical point of view.

• In the SR images that had the former phenomenon there was also often a
blurring phenomenon, so as if the image had a lot of noise.
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From a purely visual point of view, the first phenomenon represents an undesir-
able result as it does not allow a proper visualization of the SR image, in fact the
very large difference between the maximum value (>60000, as mentioned) and the
minimum value (a few thousand or hundreds usually) of TOA reflectance does not
allow a clear visualization of the various shades of reflectance values present in the
SR image. From an analysis point of view, on the other hand, surfaces with high
reflectance such as water are of no particular interest for the purpose of analysis
since increasing the spatial resolution serves mainly to perform better analyses on
terrestrial surfaces such as vegetation, cities and so on; therefore, the solution was
to mask all pixels in the SR image with a value greater than a certain threshold
(chosen equal to 60000) by setting them to 0. The result of this post-processing
process is shown in Figure 6.3 where the exact same SR image, before (Fig. 6.3a)
and after (Fig. 6.3b) pixel masking, are compared; we can see that this pixel
masking process done in post-processing actually made the SR image visible, at
the same time, however, we notice that the blurring phenomenon is still noticeable
even in the post-processed image.

(a) SR Image before post-processing (b) SR image after post-processing

Figure 6.3: Comparison between the SR Image before (a) and after(b) the masking
operation applied on post-processing.

The two phenomena mentioned before, we stress again, were not found in all SR
images but only in a part of them, all others, however, have no particular problems
with blurring or unrealistic reflectance values. Figure 6.4, which shows an LR image
and the outputs obtained from the model after being trained on the new dataset,
visually demonstrates the considerations that have just been made: indeed, it can
be seen that the SR image (Figure 6.4b) is displayed correctly and that the spatial
resolution, compared to the LR image (Figure 6.4a) is increased considerably.
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(a) LR Image (b) SR Image (c) Uncertainty Map

Figure 6.4: Input (a) and outputs obtained (b,c) after the training of the
Standard PIUnet architecture on the new dataset containing data of both Proba-V
and Sentinel-2 missions.

Again to get a quantitative idea based on a defined metric, of how accurate the
obtained SR image is, we need to calculate the cPSNR. Table 6.2 shows the cPSNR
values calculated on both NIR and RED bands and using both Sentinel-2 and
Proba-V images as ground truth. Analyzing the data present in the latter we find
that the cPSNR has decreased significantly especially in the calculation performed
comparing the HR images of Proba-V, however, compared to the pre-trained version
of the model, the cPSNR value calculated using the Sentinel-2 images as ground
truth has increased by 3 per band, which means that after training the network on
the new dataset and using Sentinel-2 images as ground truth the model became
more proficient in creating Sentinel-2-like images rather than Proba-V-like images,
while still using LR images of the latter satellite.

Sentinel-2 HR Proba-V HR
RED band 50.5796 47.6771
NIR band 48.1811 47.0348

Table 6.2: Mean cPSNR calculated over the test set using the results obtained
after training the Standard PIUnet architecture. Columns headers show the data
used as ground truth, while in the rows are indicated the spectral band over which
the average cPSNR was calculated.

What is reported in Table 6.2 can be further verified in Figure 6.5 where the
cPSNR was plotted during the model validation phase in the RED band. Indeed,
it can be seen that at the end of the training, in the validation set, the calculated
cPSNR is around the value of 50.4, which is in line with what can be seen in the
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first cell of Table 6.2 (which, however, we recall represents the cPSNR calculated
using the test set images).

Figure 6.5: Trend of the cPSNR calculated on the imagesets of the validation set,
during the training of Standard PIUnet architecture in the RED band. The peak
value is 50.5 and was reached at step 101.500, about 3 days and 2 hours after the
start of training.

We have visually analysed the images and calculated the cPSNR; at this point
there is only one element missing to consider our analysis of the results complete:
the histograms of the images, both the low-resolution and high-resolution images
and the SR images, must be observed.

The image histogram is a graph used to plot the number of pixels (on the vertical
axis) as a function of their intensity (on the horizontal axis), consequently it allows
us to visualize the distribution of a continuous numeric variable (reflectance of a
given image in our case); it is therefore important, for the purposes of our analysis,
to compare several histograms with each other for the purpose of determining
how much one SR image resembles another HR image. The histograms of some
SR images trained on Standard PIUnet tend to better replicate the histograms
of Sentinel-2 HR images than those of Proba-V images; the latter, however, is
not a definite and valid pattern for all images: for many other images the pixel
intensity values of the SR image, and the function plotted in the histogram, appear
to lie somewhere between Proba-V and Sentinel-2 values, without resembling either
histogram in particular but representing a middle ground between the two.

Figure 6.6 shows the histograms of the three images already shown in Figure
6.1. From the above figure we note that the histogram of the SR image (Fig. 6.6a)
has an non-homogeneous distribution of values, this can be seen by the presence of
white areas within the bell formed by the perimeter of the histogram (colored in
blue); this particular pattern indicates the total absence of certain pixel intensity
values in the super-resolved image in favor of a higher frequency of other reflectance
values. This reason, combined with the fact that the radiometry of the SR image
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(a) SR Image histogram (b) Sentinel-2 HR Image his-
togram

(c) Proba-V HR Image his-
togram

Figure 6.6: From left to right: histogram of the SR image (a), histogram of the
Sentinel-2 HR image (b) and histogram of the Proba-V HR image (c).

is not totally consistent with that of either Proba-V or Sentinel-2 imagery, led to
the idea of developing a modified version of PIUnet.

6.3 Results of Modified PIUnet experiments
As mentioned earlier in Chapter 5, the modified versions of PIUnet from which
we obtained the most interesting results were the version 2 and the version 3.
Therefore, in the following sections are described only the results obtained from
the latter.

6.3.1 Modified PIUnet version 2
Let us begin the analysis of the results of modified PIUnet version 2 by saying that
the problems of image blurring and extremely high pixel values, both mentioned
earlier, that occurred in the experiments performed on standard PIUnet did not
occur by training and testing this version, consequently no pixel masking procedures
were necessary in post-processing.

To get a visual idea of how the super-resolution task was performed by this
version of the modified architecture, a low-resolution image and the corresponding
SR image and uncertainty map are shown in Figure 6.7; from the latter we can
observe that, from a visual point of view, the super-resolution task is solved correctly
with an effective increase in spatial resolution and a result (Fig. 6.7b) that is
pleasing to the eye, also, notice how the uncertainty map (Fig. 6.7c) realistically
traces the features in the image indicating greater uncertainty values in all those
areas where there are particular spatial features: notice how the river running
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through the Figure 6.7 is colored in warmer colors in the UM, indicating less
confidence in the reconstruction, which is a perfectly legitimate and realistic result
considering the difficulty in increasing the resolution of spatially and radiometrically
heterogeneous areas.

(a) LR Image (b) SR Image (c) Uncertainty Map

Figure 6.7: Input (a) and outputs obtained (b,c) after the training of the Modified
PIUnet architecture version 2 on the new dataset containing data of both Proba-V
and Sentinel-2 missions.

A second consideration that can be made both by measuring the mean pixel
value of the SR image (Fig. 6.7b) and by tracking the histograms (Fig. 6.8) of the
images is that this modified version of PIUnet produces, on average, images that
have a greater reflectance values.

(a) SR Image histogram (b) Sentinel-2 HR Image his-
togram

(c) Proba-V HR Image his-
togram

Figure 6.8: From left to right: histogram of the SR image (a), histogram of the
Sentinel-2 HR image (b) and histogram of the Proba-V HR image (c).

Notice looking at Figure 6.8 how the histogram of the SR image (Fig. 6.8a)
has a homogeneous pixels distribution, like that of Sentinel-2 (Fig. 6.8b) and
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Proba-V (Fig. 6.8c). Note also, looking at the horizontal axis, where the pixel
values of the images are shown (for the sake of better visualization the histogram
in Fig. 6.8a shows the values on the horizontal axis starting from 2500), how the
SR image has much higher intensity values than the other two HR images. Finally,
the most interesting thing to note is that the histogram of the SR image almost
perfectly follows that of Sentinel-2, from which we infer that the changes made in
the modified PIUnet version 2 were effective: the image obtained from PIUnet is
radiometrically consistent with Sentinel-2 imagery.

Sentinel-2 HR Proba-V HR
RED band 52.2491 48.4827
NIR band 50.5344 48.2647

Table 6.3: Mean cPSNR calculated over the test set using the results obtained
after training the modified PIUnet architecture version 2. Columns headers show
the data used as ground truth, while in the rows are indicated the spectral band
over which the average cPSNR was calculated.

Table 6.3 shows the result of the cPSNR calculation, as usual calculated using
both Sentinel-2 and Proba-V HR images as Ground Truth. Note how, compared
with the data shown in Table 6.2, the cPSNR, especially calculated on Sentinel-2
data, has significantly increased; this also allows us to observe from a quantitative
point of view how the modification implemented on the original PIUnet architecture
has actually brought improvements in performing the super-resolution on Sentinel-2
imagery. A further very interesting point to make is that, as seen in the previous
chapter, the consistency loss was calculated using the downsampled SR image as
input data and as ground truth the LR images of Proba-V (which were averaged on
the temporal axis), we would therefore have expected a more pronounced increase
in cPSNR with respect to the Proba-V images, instead what we see from Table
6.3 is that the addition of this loss had more effect in improving the similarity
to HR images (thus Sentinel-2) rather than LR images (thus Proba-V). It is also
interesting to note the trend of cPSNR during trainings shown in Figure 6.10.

Finally, let us compare, in Figure 6.9 the SR image obtained from modified
PIUnet version 2 with the corresponding high-resolution images from Proba-V and
Sentinel-2. This figure, especially, allows us to note the high pixel value of the SR
image compared to both the Sentinel-2 and Proba-V images, in fact this is visually
reflected in an image that looks significantly brighter than the other two. Clearly,
we remark that the cPSNR is not adversely affected by this phenomenon since, as
explained in section 3.5.4, it is insensitive to the absolute brightness of images.
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(a) SR Image (b) Sentinel-2 HR Image (c) Proba-V HR Image

Figure 6.9: A SR image (a) obtained by modified PIUnet version 2 trained on
the RED band. Image (b) shows the corresponding Sentinel-2 HR image while the
Image (c) represents the corresponding Proba-V HR Image.

(a) cPSNR of the validation set (NIR
band)

(b) cPSNR of the validation set (RED
band)

Figure 6.10: Trends of the cPSNR calculated on the imagesets of the validation
set during the training of modified PIUnet version 2 on both RED and NIR bands.

6.3.2 Modified PIUnet version 3
Also in the results of modified PIUnet version 3, as in the version 2, the problem of
high pixel values did not occur, although some SR images turned out to be blurry
as in the case of Standard PIUnet.

Figure 6.11 shows a low-resolution Proba-V image and the corresponding SR
image and uncertainty map produced by version 3 : analysing the figure we
can observe that the super-resolution is correctly performed, with an effective
improvement in spatial resolution of the SR image (Fig. 6.11b) compared with the
LR image (Fig. 6.11a). Regarding the uncertainty map (Fig. 6.11c), note that
the model has high confidence (i.e., low aleatoric uncertainty values) in all areas
of the image; this pattern is present in, more or less, all uncertainty maps, but
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this is not a particularly realistic and reliable result since it is expected that in
areas of the image with particular spatial features there will be lower confidence in
reconstructing the SR image, as was the case in version 2.

(a) LR Image (b) SR Image (c) Uncertainty Map

Figure 6.11: Input (a) and outputs obtained (b,c) after the training of the
Modified PIUnet architecture version 3 on the new dataset containing data of both
Proba-V and Sentinel-2 missions.

As for the cPSNR values, they are shown in Table 6.4: we note that compared
with the standard version of PIUnet there was a general improvement in cPSNR
calculated using Sentinel-2 images as ground truth, while for Proba-V images the
improvement is minimal. Also in this modified version of PIUnet, as in version
2, by analyzing the cPSNR values, we notice that the model is more capable of
recreating Sentinel-2-like images than Proba-V.

Sentinel-2 HR Proba-V HR
RED band 51.5208 47.7112
NIR band 49.4665 47.2381

Table 6.4: Mean cPSNR calculated over the test set using the results obtained
after training the modified PIUnet architecture version 3. Columns headers show
the data used as ground truth, while in the rows are indicated the spectral band
over which the average cPSNR was calculated.

The most interesting results to analyze from this version, however, are those
obtained by plotting the histograms of the images. As can be seen in Figure
6.12, the SR image created by this version recreates pretty well the histograms of
Sentinel-2: this means that the SR image (Fig. 6.12a) is radiometrically consistent
with the ground truth of Sentinel-2 (Fig. 6.12b), unfortunately, this is not the
case for all images; in fact, some SR images have histograms that follow the shape
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of that of Sentinel-2, but with an uneven distribution of pixels. But the most
interesting consideration is that, unlike what we saw in the analysis of version 2,
we notice how in this version of PIUnet the intensity of the pixel values of the
SR image is perfectly in line with the values of the HR images of Proba-V and
Sentinel-2, particularly of the latter. This last observation made, in addition to
the histograms, also has visual confirmation by comparing three images: the SR
image, the Proba-V HR image and the Sentinel-2 HR image; this comparison is
presented in Figure 6.13.

(a) SR Image histogram (b) Sentinel-2 HR Image his-
togram

(c) Proba-V HR Image his-
togram

Figure 6.12: From left to right: histogram of the SR image (a), histogram of the
Sentinel-2 HR image (b) and histogram of the Proba-V HR image (c).

(a) SR Image (b) Sentinel-2 HR Image (c) Proba-V HR Image

Figure 6.13: A SR image (a) obtained by modified PIUnet version 3 trained on
the RED band. Image (b) shows the corresponding Sentinel-2 HR image while the
Image (c) represents the corresponding Proba-V HR Image.
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6.4 Comparison of the results
This section aims to present a detailed comparison of the results obtained from the
three main experiments: the one performed on the standard version of PIUnet and
the other on the version 2 and 3 of modified PIUnet. To make the analysis clearer
and easier to understand, it will be divided into several points: super-resolved
image, uncertainty map, cPSNR and histogram.

It is important to specify, before moving on to the comparison, that the consid-
erations that are made below are argued by showing only one scene, significant for
understanding, at a time; however, it is clear that these considerations are general
and applicable to all, or almost all, of the imagsets obtained from the various
versions.

6.4.1 Super-Resolved Image
A comparison of the three super-resolved images obtained from Standard PIUnet,
Modified PIUnet version 2 and Modified PIUnet version 3, respectively, is shown
in Figure 6.14; from this figure, it can be seen that all three models perform
the super-resolution task correctly, decreasing the spatial resolution from 300 to
100 meters. A slight blurring effect can also be seen in the image obtained from
Standard PIUnet; this effect is totally absent from version 2 while in version
3 results you can find slightly blurred images. Finally, we note that the image
obtained from version 2 has significantly higher intensity values than the other
two models, which can be seen from the high brightness of the image.

Figure 6.14: From left to right: LR image, SR image obtained from Standard
PIUnet, SR image obtained from Modified PIUnet version 2, and SR image obtained
from Modified PIUnet version 3.

We also remark that the image obtained from Standard PIUnet is correctly
visualized only after the pixel masking operation performed in post-processing:
this operation is not applied to the other two models since neither of them has
problems with extremely high values in the images.
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6.4.2 Uncertainty Map

Regarding uncertainty maps, the only model that always generates the most reliable
and accurate maps is Modified PIUnet version 2, the other two models, however,
tend to generate uncertainty maps with most of the pixels indicating a very low
aleatoric uncertainty value, which is quite improbable especially in those images
that have peculiar and heterogeneous spatial and radiometric features.

Figure 6.15: From left to right: Sentinel-2 HR image, UM obtained from Standard
PIUnet, UM obtained from from Modified PIUnet version 2, and UM obtained
from Modified PIUnet version 3.

Figure 6.15 shows an example of an image for which only Modified PIUnet
version 2 generated a realistic uncertainty map, while Figure 6.16 shows an image
where the other two models also succeed in creating reliable, pseudo-realisitic
uncertainty maps.

Figure 6.16: From left to right: Sentinel-2 HR image, UM obtained from Standard
PIUnet, UM obtained from from Modified PIUnet version 2, and UM obtained
from Modified PIUnet version 3.
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6.4.3 cPSNR
The table in Figure 6.17 shows all cPSNR values calculated on the results obtained
from the three different models.

Figure 6.17: Comparison of cPSNR values calculated on Standard PIUnet,
Modified PIUnet version 2 and Modified PIUnet version 3

From the above table we can make the following observations:

• The introduction of the new dataset, i.e., changing the ground truth during
training from Proba-V images to Sentinel-2 images, has made the model more
capable of creating Sentinel-2-like SR images; just observe how the cPSNR
is always higher when calculated using Sentinel-2 as the ground truth. This
allows us to say that it is indeed possible to perform super-resolution tasks
using data from two different missions in combination.

• Modified PIUnet version 2 is the model that gave us the highest improvement
in terms of cPSNR, with a very good improvement of about 2 points for both
the RED and NIR band (with Sentinel-2 data as ground truth); however,
Modified PIUnet version 3 also showed a noticeable, albeit minor, improvement
in cPSNR values. We can therefore say that the best improvement was obtained
from version 2, while version 3 still represents an improvement, but somewhere
in between Standard PIUnet and Modified PIUnet version 2.

6.4.4 Histogram
As far as the histograms are concerned, what can be observed is that:

• The histograms obtained from Standard PIUnet are not radiometrically con-
sistent with either Sentinel-2 or Proba-V: this is demonstrated by the fact that
according to the image being analysed, the histogram of the super-resolved
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image sometimes resembles that of the Sentinel-2 HR image, sometimes that
of the Proba-V HR image, and sometimes represents a middle ground between
the two previous cases, which is the worst case. In terms of pixel intensity,
however, the SR images of Standard PIUnet have values in line with those of
the two satellites.

• The histograms obtained from Modifed PIUnet version 2 are radiometrically
consistent with the Sentinel-2 HR images: they are almost equal to the Sentinel-
2 histograms and have a homogeneous pixel distribution. The problem with
this version is the high intensity of the pixel values in the SR image.

• The histograms obtained by Modifed PIUnet version 3 are often, but not
always, radiometrically consistent with the HR images of Sentinel-2; in some
images, histograms are not particularly similar to those of Sentinel-2 or have
a different distribution of pixel values than those of Sentinel-2 and Proba-V.
The greatest strength of this version is the pixel intensity value, which follows
Sentinel-2’s intensity values almost perfectly.

Figure 6.18 shows the histograms (of imageset 12 of the RED band) of each of
the previously mentioned architectures, compared with those of the high-resolution
images of Proba-V and Sentinel-2; from this figure, the previous considerations can
be verified.

6.4.5 Conclusions
Finally, we can sum up our analysis with the following considerations:

• All models tested perform the super-resolution task visually correctly, with a
real improvement in the spatial resolution of the images. Standard PIUnet,
however, suffers from a problem of blurring and extremely high values for
pixels representing water.

• Version 2 is the one that yields the highest cPSNR values, which means that
the resulting image is the one with the best quality compared to the original
high-resolution image; furthermore, the histograms of this version follow those
of the Sentinel-2 images particularly reliably and the uncertainty maps are
reliable and accurate. The negative aspect of this version is the intensity of
the pixel values, which on average is higher than that of the original images.

• Version 3 represents a middle ground: it has a lower cPSNR than version 2,
but higher than the Standard PIUnet version. The images are often recreated
in a radiometrically accurate manner, and this can be verified by comparing
the histograms of this version with those of the original images; despite this,
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some specific images have a non-uniform pixel distribution, moreover, the
uncertainty maps generated by this version are not always reliable. The
positive aspect of this version is the intensity of the pixel, that is reliable with
Sentinel-2 and Proba-V data.

Figure 6.18: Comparison of histograms of Standard PIUnet, Modified PIUnet
version 2 and Modified PIUnet version 3.

In conclusion, the most visually and radiometrically interesting result is rep-
resented by version 2, which has the only flaw of having excessively high pixel
intensity values; unfortunately, since these images are mainly used to perform
analysis, having high pixel values means that proper analysis cannot be performed,
which is why version 2 is (at present) probably the perfect middle ground.
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Chapter 7

Conclusion

The goal of this thesis was initially to understand whether it was possible to
combine images obtained from two satellites, Proba-V and Sentinel-2 in our case,
to do super-resolution tasks using an existing model: PIUnet.

The results obtained, first from the training of the standard PIUnet architecture
on the new dataset, allowed us to understand that it is possible to perform super-
resolution tasks of Proba-V data in combination with Sentinel-2 data; but the most
interesting results came with the modification of the architecture of PIUnet and
the addition of a new loss function: the consistency loss.

As a result of the modifications, we obtained even more interesting results,
achieving radiometrically consistent SR images with Sentinel-2 and increasing the
value of cPSNR, the main quality evaluation metric used in super-resolution tasks.
Although the results obtained are interesting, there is still room for improvement,
for example, with the creation of a novel neural network or further improvement
of PIUnet with the aim of obtaining a final version that allows the generation of
super-resolved Sentinel-2-like images, with the same intensity (like in version 3 ),
radiometrically consistent and with reliable uncertainty maps (like in version 2 ).
Probably, at present, the best result to be obtained from this work would be to be
able to decrease the pixel intensity of Modified PIUnet version 2 (the only defect of
this version),for example by applying processes in post-processing to decrease the
intensity by a certain value calculated image by image, but keeping the excellent
results obtained by the latter in terms of cPSNR, reliability of uncertainty maps
and radiometric consistency.

Furthermore, building on this work, one can also try, in the future, to carry out
super-resolution tasks by combining other satellites than Proba-V and Sentinel-2:
a meaningful example would be the use of cubesat satellites. The latter are
miniaturized satellites that are particularly interesting since they have very low
spatial resolution, on the order of a few meters, and acquire data in the visible
and near-infrared spectral bands. Although these satellites allow us to have very

77



Conclusion

high resolution both temporally and spatially, they lack in radiometric quality, so
starting from an approach similar to the one presented in this paper we can think
of combining cubesat data with data obtained from other satellites (with high
radiometric quality) so as to obtain SR images with very low spatial resolution and
at the same time high radiometric quality.
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Appendix A

Dataset’s coordinates

The following table contains the first 30 coordinates chosen for the scenes of the
dataset used in this work and mentioned in Chapter 4.

Table A.1: List of coordinates.

List of coordinates
scene no. Latitude Longitude Time period

1 38.211305890764514 13.312500272478376 May-June 2020
2 15.232141585577104 49.410712650844026 May-June 2020
3 37.7797600882394 13.270832879202706 May-June 2020
4 37.37202744256883 13.928571530750819 May-June 2020
5 37.812498183477494 14.767856688726514 May-June 2020
6 24.122021266392302 52.49702217465355 May-June 2020
7 10.907734462193083 48.42261977422805 May-June 2020
8 24.520832970028835 52.497022356305806 May-June 2020
9 23.8124996366955 52.497022356305806 May-June 2020
10 23.3124996366955 52.497022356305806 May-June 2020
11 22.8124996366955 52.497022356305806 May-June 2020
12 24.122021266392302 52.99702217465355 May-June 2020
13 24.122021266392302 53.49702217465355 May-June 2020
14 24.122021266392302 53.99702217465355 May-June 2020
15 24.122021266392302 54.49702217465355 May-June 2020
16 24.520832970028835 52.997022356305806 May-June 2020
17 24.520832970028835 53.497022356305806 May-June 2020
18 24.520832970028835 54.497022356305806 May-June 2020
19 23.8124996366955 52.997022356305806 May-June 2020
20 23.8124996366955 53.497022356305806 May-June 2020
21 23.8124996366955 53.997022356305806 May-June 2020
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Continuation of Table A.1
scene no. Latitude Longitude Time period

22 23.8124996366955 54.497022356305806 May-June 2020
23 23.3124996366955 52.997022356305806 May-June 2020
24 23.3124996366955 53.497022356305806 May-June 2020
25 23.3124996366955 53.997022356305806 May-June 2020
26 23.3124996366955 54.497022356305806 May-June 2020
27 22.8124996366955 52.997022356305806 May-June 2020
28 22.8124996366955 53.497022356305806 May-June 2020
29 22.8124996366955 53.997022356305806 May-June 2020
30 22.8124996366955 54.497022356305806 May-June 2020

End of Table

Due to a matter of space it is not possible to include all 636 coordinates (in the
latitude, longitude format) in the previous table, I summarize below the rest of the
information related to the coordinates chosen for the dataset:

• 8 scenes selected in the zone ranging from 35.172615, 64.169644 to 35.172615,
65.169644 in April-May 2020.

• 48 scenes selected in the zone ranging from 35.172615, 65.669644 to 32.672615,
68.669644 in May-June 2020.

• 89 scenes selected in the zone ranging from 35.0, -113.0 to 32.0, -107.0 in
April-May 2020.

• 48 scenes selected in the zone ranging from -18.035713, -66.875003 to -
20.535713, -63.375003 in April-May 2020.

• 78 scenes selected in the zone ranging from -29.5, 138.0 to -33.0, 142.5 in
February-March 2020.

• 74 scenes selected in the zone ranging from 31.0, 28.0 to 28.0, 33.0 in April-May
2020.

• 70 scenes selected in the zone ranging from -28.0, 24.0 to -31.0, 28.5 in
May-June 2020.

• 99 scenes selected in the zone ranging from 28.0, 76.0 to 24.0, 81.0 in May-June
2020.

• 45 scenes selected in the zone ranging from -25.5, 116.0 to -28.0, 120.0 in
May-June 2020.
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• 47 scenes selected in the zone ranging from 41.0, -6.0 to 38.5, -2.5 in May-June
2020.
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