

POLITECNICO DI TORINO
Master‘s Degree in ICT for Smart Societies

Master‘s Degree Thesis

A combined rule-based and machine
learning approach for blackout analysis

using natural language processing

October 2022

Supervisor

Prof. TAO HUANG

Candidate

GAO YU

I

Summary

In the field of natural language processing, traditional information extraction
methods involve lexical and syntactic analysis to extract words and parts of speech
from sentences to establish semantics. This development of the new artificial
intelligence branch makes it suitable for automatic tracing and analyzing blackouts
in the power systems, which is very costly to the society. Therefore, the purpose of
this thesis is to develop a model for extracting useful information from texts of
power industry to conduct effective blackout analysis. To achieve this goal, we
proposed a combined traditional rule-based and machine learning approach. A
critical step was to build training data and clean data. We considered blackouts
using information about when, where, and what equipment and installations failed.
The dataset was generated related to blackouts by scraping websites and using
OCR to get text documents. More specifically, first, blackout data was collected,
and appropriate training data was created through several steps including sentence
extraction, relation, and named entity extraction for tagging purposes. Then, a
recognition model for a given entity type could be built based on the constructed
vocabulary. From experiments, given the blackout texts, we demonstrated how to
build a model to extract the desired entities, i.e. time, location, faulty facility, etc.
The best results and provable evaluation metrics were obtained by continuously
optimizing the model. This research helps to highlight and perceive useful
information from outage incidents to specific facilities. The framework proposed
by this study can surely migrate to other specific fields and can certainly improve
the quality of incident analysis and provide practitioners with technical support for
specific tasks.

II

Acknowledgements

I would like to express my great gratitude and appreciation to my supervisor Prof.
Tao Huang, who kindly accepts me to participate in this work and provides me
help and guidance patiently all the time.

Secondly, I want to say thank you to all my friends who trust and accompany
me over the years.

The most important thing is to thank my family who give me the biggest
support and understanding no matter what happens. Especially my parents, they
always be my strongest backing and warmest harbor.

Thank you so much!

Gao Yu

 III

Table of Contents

List of Algorithms VI

List of Figures VII

List of Tables IX

Acronyms X

1 Introduction 1

1.1 Background ·· 1

1.2 Goal ··· 2

1.3 Thesis Organization ·· 2

2 Related Work 4

2.1 Natural Language Processing ··· 4

2.1.1 Named Entity Recognition ··· 6

2.1.2 Methods for NER ·· 6

2.2 Tools for NLP ··· 9

2.2.1 SpaCy ··· 9

2.3 Power System Ontology ·· 11

3 Methodology 13

3.1 System Architecture ··· 13

3.2 Information Mining ··· 14

3.2.1 Data Collection for Blackout List ·· 17

3.2.2 Text Scraping ··· 18

3.3 Pre-processing ··· 19

IV

3.3.1 Data Cleaning ··· 19

3.3.2 Sentence Detection ··· 20

3.3.3 Tokenization ··· 21

3.3.4 Stop Words Removing ··· 21

3.3.5 Lemmatization ·· 22

3.3.6 Dependency Parsing ·· 22

3.3.7 Shallow Parsing ··· 23

3.4 Creating NE Tagged Corpus ··· 24

3.4.1 Named Entity List ·· 25

3.4.2 Text Classification ·· 28

3.4.3 Corpus Generation ·· 31

3.5 SpaCy NER Model ·· 33

3.5.1 SpaCy Training Data Format ··· 35

3.5.2 Data Preparation ·· 35

3.5.3 Entity Annotations ·· 36

3.5.4 Training Custom NER Model ·· 37

3.6 Evaluation Metrics ·· 39

3.7 Implementation ·· 40

3.7.1 Transfer Learning ··· 40

3.7.2 Refine the model ·· 41

4 Results and Analysis 43

4.1 Result of Blackout List ··· 43

4.2 Results of Text Classification ·· 45

4.2.1 Semi-automatic Classification ·· 46

4.2.2 Classification Tool ··· 47

4.2.3 Choice of Classification Methods ·· 48

4.3 Size of the Tagged Corpus ··· 48

4.4 Tuning Hyper-parameters ·· 49

4.4.1 Summary of the Best Results ··· 56

4.5 Result of Model Test ·· 58

4.6 Blackouts analysis ··· 63

4.6.1 Temporal Analysis ··· 63

V

4.6.2 Reason Analysis ·· 64

4.6.3 Geographical Distribution Analysis ······································· 67

4.6.4 Scope of Impact Analysis ··· 70

5 Conclusion and Future Work 72

5.1 Conclusion ·· 72

5.2 Limitation and Future Work ··· 73

Bibliography 75

VI

List of Algorithms

1: Snippet of code for request ··· 17

2: Example on how to get Google Search results with Python ························· 18

3: Example on how to download article according to URL····························· 19

4: Snippet of code to split concatenated words ··· 20

5: Snippet of regex to remove HTML tags from text ···································· 20

6: Sample code for tokenizing a text ··· 21

7: Sample code that shows the stop words ·· 21

8: Example on get content from Wikipedia webpage ···································· 26

9: Create an NLP object from pre-trained language model ····························· 29

10: Example on how to classify entities automatically ·································· 29

11: Snippet of code to create training set with EntityRuler ····························· 36

12: Snippet of code to annotate entities with spaCy ····································· 36

13: Snippet of code to set up the pipeline ··· 38

14: Snippet of code to get entities label ·· 38

15: Snippet of code to disable other pipes except ner ··································· 38

16: Example on how to update entity recognizer ··· 39

VII

List of Figures

1: An example of NER visualization results ··· 6

2: The taxonomy of DL-based NER ·· 8

3: SpaCy library architecture ·· 10

4: SpaCy language processing pipeline ·· 10

5: Framework structure··· 14

6: Key components of information mining ·· 15

7: Dependency parse demo ·· 23

8: Process of corpus building ·· 25

9: Architecture of the text recognizer CRNN ··· 27

10: Query results of the phrase on Ludwig Guru ··· 32

11: The process of 1D CNN ··· 33

12: Training process of spaCy statistical model ·· 34

13: Dataset distribution··· 37

14: Partial URLs about the blackout events ··· 44

15: Results of semi-automatic classification ·· 46

16: Evaluation results of classification model ·· 47

17: Word cloud created by MonkeyLearn ··· 47

18: The frequency distribution of entities appearing in the corpus ···················· 49

19: Losses of training model obtained from tuning batch size ························· 53

20: Losses and F1-score curves during training ·· 54

21: Losses of training model obtained from tuning dropout rate ······················ 55

22: The performance of each label with the best hyperparameters ···················· 58

23: Annotated and predicted results for most important tags ··························· 60

24: Example results of NER part I ·· 61

25: Example results of NER part II ··· 62

26: The trend of selected blackouts in power systems ··································· 63

file:///E:/nextcloud/gaoyu/thesis.docx%23_Toc100559387

VIII

27: Statistics of the causes of the selected blackouts ···································· 64

28: Percentages of the causes for selected blackouts ···································· 66

29: Trends of four threat categories ·· 66

30: Global selected blackouts distribution ·· 68

31: USA selected blackouts distribution ··· 69

32: Frequency of four threats in selected USA states ···································· 70

file:///E:/nextcloud/gaoyu/thesis.docx%23_Toc100559391

 IX

List of Tables

1: Partial OntoPowSys concept hierarchy ··· 12

2: Examples of lemmatization ··· 22

3: Category list of labels ··· 45

4: Number of tasks completed by different classification methods ···················· 46

5: The number of sentences collected from Ludwig ····································· 49

6: Default hyper-parameters of spaCy NER ·· 51

7: Testing results obtained from tuning batch size during training ···················· 52

8: The results of train set obtained from tuning number of epochs ···················· 53

9: Testing results obtained from tuning dropout rate during training ················· 55

10: Best hyper-parameters of the custom NER model ··································· 56

11: The results for testing data with best hyper-parameters ···························· 57

12: Comparison between predicted and annotated NE using spaCy··················· 59

13: List of selected wide-scale blackouts ·· 71

 X

Acronyms

AI Artificial Intelligence

API Application Programming Interface

BOW Bag of Words

CNN Convolutional Neural Networks

CRF Conditional Random Fields

CRNN Convolutional Recurrent Neural Network

CTC Connectionist Temporal Classification

DL Deep Learning

DL Description Logics

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

LSTM Long Short-term Memory

MEM Maximum Entropy Model

MSE Mean Square Error

ML Machine Learning

NER Named Entity Recognition

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

XI

NN Neural Network

OCR Optical Character Recognition

OWL2 Ontology Web Language

POS Part-of-speech

RNN Recurrent Neural Network

SaaS Software as a Service

SVM Support Vector Machines

URL Uniform Resource Locator

1D CNN one-dimensional Convolutional Neural Network

 1

Chapter 1

Introduction

1.1 Background

The power system is characterized by a high degree of automation. It is mainly
composed of electrical equipment, power transformation, distribution facilities,
transmission lines, and power plants. Nowadays, people's lives and social
development depend on electricity. Therefore, the power system is an important
foundation to ensure and promote social stability and economic development. The
safety of the power system is a crucial factor in order to ensure stability and normal
operation of the system. Judging from some representative cases of the blackout
that have occurred in the past, when the power system is affected by various factors
that cause the system to be unsafe, it may lead to a large-scale power outage. It will
cause huge economic losses, even seriously endanger people's lives and national
security. For example, in 2011, the blackout of southern California, Arizona and
Baja California regions [1] cost about one hundred million dollars [2]. At the end of
July 2012, a major power outage occurred in India for two consecutive days. Nearly
half of the national population was affected by this event. During the blackout,
railway systems and subway service were shut down and the urban transportation
systems were paralyzed. More severely, the civil water supply was interrupted and
more than two hundred miners were trapped underground [3].

Introduction

2

From the analysis of the power outages that have occurred in the past, there are
many reasons for the safety problems in the power system, which can be roughly
divided into internal factors and external factors, including grid loopholes, natural
disasters, human errors, and even acts of war [4] etc. For some possible threats and
future development of the power grid, it is very meaningful to statistics and
analysis the power outages that have occurred in the past.

1.2 Goal

The goal of this work is to develop a model that can accurately identify and extract
useful information (including when, where, and why a power failure occurred)
from unstructured texts. This can be done by using text mining algorithms for data
collection and, subsequently, the use of custom Named Entity Recognition (a
branch of Natural Language Processing) and Optical Character Recognition (OCR)
techniques to process the texts about blackouts, such as news reports, media
information or professional accident reports within power industry, etc.

For this goal, there are few dataset that can be used directly, the existing data is
very fragmented, and the unstructured text contains a lot of unnecessary details.
And create a usable dataset needs to be collected and processed a lot before it can
be put into a Machine Learning model. This makes text analysis work more
difficult and time-consuming.

The main objective is to extract information based on text content. A trained
model will further process the text and highlight key phrases to analysis the results
and set the goals for the future development.

1.3 Thesis Organization

The thesis is organized as followings:

Chapter 1 is introduction part, which outlines the research background and
goals of the thesis briefly.

Introduction

3

Chapter 2 describes some basic concepts, and gives an overview of related
works and techniques.

Chapter 3 details the methodology in this work. It covers several major
aspects from information mining, data cleaning to text classification and model
creation and optimization.

Chapter 4 presents all the obtained results containing the data collected for
building the model, parameters selection during model training and analysis of
test.

Chapter 5 provides a general summary of the work, shows some limitations
and future developments to improve the overall quality of the study.

 4

Chapter 2

Related Work

In this section, we start by explaining the basic concepts of NLP and ML. Then,
we interpret the NER process for automatically extracting useful information from
text. Finally, we give an overview of framework which we used and contribution
of electric power ontology in this work.

2.1 Natural Language Processing

Natural Language Processing (NLP) is one of the most challenging research
directions in the field of artificial intelligence (AI) that helps computers understand,
interpret, and manipulate human language. NLP draws from multiple disciplines,
including computer science and computational linguistics, and it as a bridge
between machine language and human language to achieve human-computer
communication. NLP is characterized by two core fields: Natural Language
Understanding (NLU) and Natural Language Generation (NLG) [5] [6].

 Natural Language Understanding (NLU) makes that machines have the
ability to understand language like humans. After the emergence of NLU,
machines can distinguish different intentions from expressions in various
natural languages, instead of relying on rigid keywords. Nowadays, almost

Related Work

5

all applications related to text language and speech will use NLU, such as
machine translation, machine customer service, smart speakers, etc.

 Natural Language Generation (NLG) is a sentence generation process that
converts data in non-linguistic format into a language format that humans
can understand. It can improve content production with personalized and
understandable text.

For many applications it is necessary to draw on techniques belonging to both
categories, in order to combine the analysis of the texts with the generation of
new documents, created starting from the information that has been managed to
extract.

Some commonly researched tasks of NLP are following:

 Lexical Analysis: Tokenization, Morphological Analysis, Part-of-speech
Tagging, etc.

 Sentence Analysis: Chunking, Parsing, Language Modeling, Sentence
Boundary Detection, etc.

 Sematic Analysis: Word Sense Disambiguation, Sematic Role Labeling,
Word/Sentence/Paragraph Vector, etc.

 Information Extraction: Glossary Extraction, Event Extraction, Named
Entity Recognition, Slot Filling, etc.

 High-level Tasks: Machine Translation, Question-Answering System,
Text summarization, etc.

The Information Extraction, i.e. the activity related to the extraction of
information from unstructured data, is the main reason for the interest shown in
this work towards the NLP.

Related Work

6

2.1.1 Named Entity Recognition

The fundamental form of text data is unstructured, and information extraction
plays a very critical role in understanding the logical meaning of sentences.
Named entity recognition is often used as a first step in the task of information
extraction. It refers to locating, classifying and extracting "named entities" from
text. We represent the words in a sentence as Named-entities, which represent
real-world objects with proper names. The named entity recognition process can
be divided into two steps [6]:

 Determine the boundaries of the entity

 Assignment of labels

Most Natural Language Processing libraries and tools already have
predefined categories of entities as they are considered the most common. In this
case we speak of Named Entity Generic and the categories that belong to it are
personal names, dates, and locations. An example of NER is shown in Figure 1.

Figure 1: An example of NER visualization results

There are other generic entities, but which ones and how many depend on the
type of software used and obviously on the language. It is also possible to develop
a Domain-specific Named Entity, or a system for recognizing specific entities,
chosen on the basis of the analysis context [7].

2.1.2 Methods for NER

Since NER can help answer many real-world questions, it is often mentioned and
used in many domains of NLP. Methods for implementing NER can be roughly
divided into two categories: traditional and deep NER approaches [8].

Traditional approaches: requires lexical analysis, syntax analysis and a
rule-base for manually coded relations between words.

Related Work

7

 Rules-based

Rule-based methods rely on semantic grammar rules manually formulated by
linguists and domain experts to identify various types of named entities through
rule matching. Although rule-based methods can achieve good results on specific
corpora (exhaustive dictionaries and limited size), building these rules is not only
time-consuming and difficult to cover all rules, but also has poor scalability and
portability. Some famous rule-based NER methods are LaSIE-II [9], NetOwl [10],
Facile [11], etc.

 Unsupervised Learning

Unsupervised learning methods utilize lexical resources, models and statistics
obtained on large corpora to infer named entity types by using clustering [12].
The dependence on supervised information is reduced, and only a few seed rules
(general rules or shallow grammar knowledge) are needed.

 Feature-based Supervised Learning

Feature-based supervised learning methods transform NER into sequence labeling
tasks through supervised learning. Each training sample is represented by
designed features according to the labeled data, which are provided by human
experts from the domain. And then trains a model through Machine Learning
algorithms to predict the entities labels. But the limitation is that it requires an
annotated corpus for the domain of interest and artificially constructed to select
effective features [13]. The main algorithms of supervised NER, which are hidden
Markov model (HMM) [14], Decision Trees [15], maximum entropy model
(MEM) [16], support vector machines (SVM) [17], conditional random fields
(CRF) [18].

Deep Neural Network (NN) Approaches

Deep learning (DL) is a field of machine learning that is composed of multiple
processing layers to learn representations of data with multiple levels of
abstraction [19]. There are three advantages of applying deep learning techniques
for NER: deep neural networks can learn more complex features from data by

Related Work

8

performing non-linear transformations; Deep learning can automatically learn
features from raw data; Training end-to-end deep neural NER models via gradient
descent is recommended [20]. DL-based NER with the general architecture is
shown on Figure 2, which are distributed representation, feature extractor and
label decoder.

Figure 2: The taxonomy of DL-based NER [20]

Distributed representation maps words or characters into low-dimensional
real-valued dense vectors, where each dimension represents a hidden feature,
which can automatically learn semantic and syntactic features from text. There are
three types of distributed representation: Word Embedding [21], Character
Embedding [13], and hybrid representations [22]. The feature extractor learns the
context feature representation by receiving the vector of the previous layer.
Commonly used feature extractors are Convolutional Neural Networks (CNN)
[23], Transformer [24], Recurrent Neural Network (RNN) [25], Gated Recurrent
Unit (GRU) [26] and Long Short-Term Memory (LSTM) [13]. The label decoder
is the last stage, which takes context features as input to generate label sequences.
The common decoding methods are Softmax [21], CRF, and RNN.

Related Work

9

2.2 Tools for NLP

There are many different libraries and NLP tools are developed for building the
NER system:

 Apache OpenNLP [27]

 GATE (General Architecture for Text Engineering)

 TensorFlow

 NLTK (Natural Language Toolkit)

 SpaCy

Each of these tools has peculiarities and novelties compared to the software
that are normally used most, such as OpenNLP, TensorFlow and spaCy which
have pre-trained NER models that can be imported, used and can be modified or
customized according to requirements. When considering the overall performance
of all the models, Python's spaCy gives a higher accuracy and the best result [28].

2.2.1 SpaCy

SpaCy [29] provides an open-source Python library and neural network model for
NLP tasks. The tasks include processing linguistic features such as tokenization,
part-of-speech tagging, lemmatization, rule-based matching, named entity
recognition, dependency parsing, sentence boundary detection, similarity
detection, etc. The model is stochastic and the training process is done based on
gradient and loss function. The pre-trained model can be used in transfer learning
as well. The library architecture is shown on Figure 3. The Language class
processing and converting text with multiple languages to Doc object called nlp,
which has one or more pipeline components for many tasks as shown on Figure 4.
Strings, word vectors and lexical attributes are centralized in the Vocab. The
Language class, the Doc object and the Vocab are core data structures in spaCy.

Related Work

10

Figure 3: SpaCy library architecture [30]

Figure 4: SpaCy language processing pipeline [30]

Related Work

11

2.3 Power System Ontology

Ontology describes an abstract simplified view of a specific domain by making
concepts and relationships explicit, and it identifies concepts relevant to
representing the domain. That is, by defining terms and axioms, in some
machine-readable form language can be shared by a group. The term ontology is
used differently in multi-domain. In the field of power systems, the main purpose
of the ontology is to be developed a task or event ontologies to achieve specific
goals. For example, Pradeep et al. defined high level event ontology for power
system comprising seven concepts to standardize power system events [31]. In
[32], through development of an upper ontology to integrate several electricity
market and system models, which explains the basic concepts of all available
information to help relevant actors understand and respond to the complex and
changing power system.

The OntoEIP [33] is capable of presenting knowledge in electrical
engineering, logistics etc. The ontology utilizes the design philosophy of
OntoCAPE [34]. Devanand et al. utilized the knowledge management approach
for constructing a domain ontology for power system called OntoPowSys using a
Description Logics (DL) syntax and the Ontology Web Language (OWL2) [35]. It
extends the classes and properties hierarchy defined in the electrical power system
modules of OntoEIP. The ontology of OntoPowSys contains the important terms
and concept names of power system, as shown in Table 1. Among all of these, the
typical properties are things such as electrical equipment, system, scalar quantity,
etc. which are examples used in the thesis for information extraction.

Related Work

12

Term name Concept definitions
Power system PowerSystem ⊑ CompositeSystem
Bus node BusNode ⊑ ElectricalEquipment
Electricity line ElectricityLine ⊑ System
Energy meter EnegryMeter ⊑ ElectricalEquipment
Power load PowerLoad ⊑ ElectricalEquipment

 Reactive power ReactivePower ⊑ ScalarQuantity
Power generator PowerGenerator ⊑ ElectricalEquipment

 Rated Current Rated Current⊑ ConstantProperty

Table 1: Partial OntoPowSys concept hierarchy [35]

 13

Chapter 3

Methodology

This chapter describes methods for retrieving and analyzing collected
unstructured data. Details for preprocessing and transforming the dataset after
collection are explained. The whole process of building and optimizing the model
is mainly described.

3.1 System Architecture

Since we focus on training a model to find the concept of date, location, electrical
equipment, and some information related to electrical system for blackout
analysis, a system was established to accomplish this goal. The overall
architecture presents in Figure 5.

Methodology

 14

Figure 5: Framework structure

The entire work was divided into two parts that information mining and
model training. We started with information mining, which is divided into two
branches. One is to mine the entities we are interested in and classify them so that
each entity has an appropriate label, in order to build a corpus for train the NER
model. Another branch is mining texts about blackout event. Crawling text
information according to URLs related to blackout. Finally, the preprocessed
blackout files were transferred to a main model consisting of a custom NER
model, a pre-trained model and optimization algorithms for completing blackout
analysis.

3.2 Information Mining

Information Mining is also called ―Web Information Mining‖, it can be broadly
defined as the discovery and analysis of structured or unstructured data that can be
quantitative, textual, and pictorial in nature from the World Wide Web. We set
forth a summary representation of the elements of Information Mining [36] as
shown in Figure 6. According to different mining objects, network information
mining can be divided into network content mining, network structure mining and
network usage mining.

Methodology

 15

When preforming Information Mining, it consists of following steps:

 Resource discovery: to retrieve the required network documents

 Information selection and preprocessing: to automatically select and
pre-process specific information from the retrieved network resources

 Generalization: find common patterns within a single and multiple web
sites

 Analyze: identify or interpret the patterns mined

Figure 6: Key components of information mining [36]

In this section, we focus on network content mining to collect textual data
about power outage, i.e. blackout on the Internet with machine learning as well as

Methodology

 16

statistics algorithms. We write python scripts to get Google Search results by using
requests and BeautifulSoup, which are python library.

Google Search

As the most-visited website in the world, Google Search is a search engine
provided by Google Inc. The main purpose of it is to search for text in publicly
accessible documents provided by web servers. Additionally, it offers many
different options for customizing searches, using symbols to include, exclude,
specify, or require certain search behaviors. The algorithms of Google Search
organize the hundreds of billions of pages in search index to provide the most
relevant and useful results based on a user's query, all in an instant. The order of
search results is returned by PageRank, which is a priority rank system.

Python

Python is an interpreted high-level general-purpose programming language.
Python code is very concise and highly readable. Its language structure and
object-oriented method help developers express ideas with less code, which greatly
improves work efficiency. It is dynamically-typed and garbage-collected. When a
part of the memory space occupied by a program is no longer accessed by the
program, the program will return this part of the memory space to the operating
system with the help of the Garbage Collection algorithm. Python code does not
need to be compiled, can be run directly by the python interpreter, and can modify
the properties of classes in real time, which is a great advantage compared to other
programming languages that require a compiler.

Requests

Requests is a simple HTTP library for python. It allows user send HTTP requests
without add query strings to URLs or to form-encode POST data manually.
Keep-alive and HTTP connection pooling are 100% automatic thanks to another
python HTTP library called urllib3. The response is serialized JavaScript Object
Notation (JSON) format, which is used to represent general data based on
JavaScript object syntax. So user can easily access values in the object by key.

Methodology

 17

3.2.1 Data Collection for Blackout List

The first step for blackout analysis is data collection. Filtering and preprocessing
large amount of data to avoid noise and outliers are the main issues that we have to
face at this stage.

There are many methods of data collection, which can be roughly divided into
manual, automatic and semi-automatic. Among them, regarding manual data
collection, it is a relatively primitive method that requires a lot of time and staff. In
general, the data obtained are accurate and reliable because noise and duplicates are
avoided. Therefore, it is often used when the data range is large and the number is
small. For automatic data collection, it is the fastest method, especially when we
collect huge amounts of network information. At the same time, this method has
high requirements on hardware and software facilities, and needs to set constraints
and filtering conditions in order to obtain expected results. Today, the most popular
and legal methods are downloading of open dataset, reading API, and web crawlers
with some third parties. About semi-automation method, it is a combination of
manual and automatic method. Analysts need to choose the appropriate method for
specific data at different stages of data collection.

In this work, we choose semi-automation method to prepare the blackout data.
There are two datasets here. The first dataset is from the crawling of
blackout-related websites. The blackout-related URLs were crawled from Google
search results using a python script. Firstly, install the requirements and import it
into python script. To perform a search, expects the query to be in the parameters of
the URL. Additionally, all spaces must be replaced with ‗+‘. To build the URL, we
properly format the query and put it into the ‗q‘ parameter, as shown in Algorithm
1.

import urllib 1

import requests 2

from bs4 import BeautifulSoup 3

query = input("Enter something to search:") 4

query = query.replace(' ', '+') 5

URL = f"https://google.com/search?q={query}"6

Algorithm 1: Snippet of code for request

Methodology

 18

The different search results will be return for mobile and desktop. So
depending on the use case, we need to specify appropriate user-agent in the
headers. The request was successfully when the status code returns a ‗200‘. Then

we put it into BeautifulSoup, which is a python library that allows parse
content and extracting data from HTML files as shown in Algorithm 2.

results = [] 1

for g in soup.find_all('div', class_ = 'r'): 2

 anchors = g.find_all('a') 3

 if anchors: 4

 link = anchors[0]['href'] 5

 title = g.find('h3').text 6

 item = { 7

 "title": title, 8

 "link": link 9

 } 10

results.append(item) 11

print(results) 12

Algorithm 2: Example on how to get Google Search results with Python

3.2.2 Text Scraping

After we successfully get the URL list about the blackout event, what we need to
do is to parse HTML source code and then save it. To In order to get the specific
HTML source code according to the URL, python provides a variety of methods,
mainly including library of urllib and requests. After comparing the results
of accessing HTML between the two libraries, we decided to use requests,
since it can get more complete HTML source code.

After processing the HTML using requests, the complex code needs to be
parsed and only the content we need is extracted. Python also provides many
methods for parsing HTML, regular matching, BeautifulSoup, Xpath, etc. Here
we use BeautifulSoup as shown in Algorithm 3.

 19

res = requests.get(url) 1

html = res.text 2

soup = BeautifulSoup(html, 'html5lib') 3

for script in soup(["script", "style", "aside"]): 4

 script.extract() 5

text = " ".join(re.split(r'[\n\t]+', soup.get_text()))6

Algorithm 3: Example on how to download article according to URL

3.3 Pre-processing

In textual data science tasks, any raw text needs to undergo detailed preprocessing,
and then digest it using algorithms. After the data collection stage, the
preprocessing stage will be performed in order to be more organized, structured
and usable by computers for avoiding the analysis that might lead to erroneous
results.

3.3.1 Data Cleaning

After the collection phase, data cleaning is performed to remove all unnecessary
data that may be adding noise to the data set. The text files are obtained from
websites according to the URLs list, and some of the content may have the
following conditions:

 Concatenated words

 HTML tags

 Non-text content

 Non-English characters and punctuations

 Abbreviation

For the first case that might arise in the text we mentioned above, where
words are not separated by spaces. As shown in Algorithm 4, it can be solved by a
python library Wordninja, which is probabilistic splitting of concatenated words

Methodology

 20

using NLP based on English Wikipedia uni-gram frequencies. Separating each
word with a space helps the word segmentation of the text, and also lays the
foundation for accurate NER.

import wordninja 1

split = wordninja.split(text)2

Algorithm 4: Snippet of code to split concatenated words

Python's regular expression (or regex) is used to filter meaningless content,
such as HTML tags contained in text, non-text content, non-English characters,
etc. For abbreviation, like don‘t, I‘m, ‘s, regex also be used for replace acronym
with full format. A regular expression (or regex) is a sequence of symbols that
identifies a group of strings. It is used as search pattern to scan texts and find and
manipulate strings. As shown in Algorithm 5, in python the library re allows the
manipulation of regular expressions.

import re 1

cleanr = re.compile('<.*?>') 2

text = re.sub(cleanr, ' ', text)3

Algorithm 5: Snippet of regex to remove HTML tags from text

3.3.2 Sentence Detection

Sentence detection is a process of locating the beginning and end of sentences in a
given text. It can divide the processed text into linguistically meaningful units that
will help process the text to perform tasks such as part-of-speech (POS) tagging
and entity extraction. In spaCy, the sents property is used to extract sentences.
User can customize the sentence detection to detect sentences on custom
delimiters. For our case, it is correctly able to identify sentences in English
language, using a full stop (.) as the sentence delimiter.

Methodology

 21

3.3.3 Tokenization

Tokenization is the process of forming tokens (sequence of characters) from input
stream and it can be defined as the next step after sentence detection in NLP. It
allows identifying the basic units in input text, and these basic units called tokens.
Tokens can be identifiers, operators, keywords, symbols and constants. For this
purpose, the token property from the spaCy python library is used which returns a
list of the words (punctuation and numbers included) of the text by iterating on
the Doc object. Meanwhile, spaCy provides various attributes for the Token class
as shown in Algorithm 6.

import spacy 1

for token in doc: 2

 print(token, token.idx, token.text_with_ws, token.is_alpha, 3

token.is_punct,token.is_space, token.shape_, token.is_stop)

Algorithm 6: Sample code for tokenizing a text

3.3.4 Stop Words Removing

Stop words are common words that have no benefit for analysis of NLP. In fact,
search engines automatically ignore these words when inserting them. For this
purpose, the stop_words from the spaCy python library is used as shown in
Algorithm 7. In this work, we need to fine-tune the provided stop words list
according to the characteristics of the power domain. In particular, remove from
the list some prepositions that may form phrases with verbs, such as ‗in‘, ‗out‘,
‗up‘, ‗down‘, etc. They are indicative of NER in Section 3.5 SpaCy NER Model.
To do this, we customized a python script to remove from the default stop words
those that are useful for our work.

import spacy 1

print(spacy.lang.en.stop_words.STOP_WORDS)2

Algorithm 7: Sample code that shows the stop words

Methodology

 22

3.3.5 Lemmatization

Lemmatization is a process which converts complex forms of words into its basic
grammatical form, in which the basic form of the word is extracted through
additional dictionary lookup.

For example, organizes, organized and organizing are all forms of organize.
Here, organize is the lemma. The inflection of a word allows expressing different
grammatical categories like tense (organized vs. organize), number (trains vs.
train), and so on. Lemmatization is a necessary step since it helps reduce the
inflected forms of a word so that they can be analyzed as a single item.
Meanwhile, It can also help normalize the text. spaCy has the attribute lemma_ on
the Token class. The Table 2 shows different examples of how the lemmatization
approach changes the words.

Origianl Lemma
Were Be
Lines Line

Organized Organize
Generation Generate

Table 2: Examples of lemmatization

3.3.6 Dependency Parsing

Dependency Parsing is a process to analyze the grammatical structure in a
sentence and find out related words as well as the type of the relationship between
headwords and their dependents. The dependencies can be mapped in a directed
graph representation:

 Words are the nodes.

 The grammatical relationships are the edges.

Dependency parsing helps to understand the roles that words play in the text
and the relationships between different words. When the relationship between

Methodology

 23

named entities in a sentence needs to be discovered, a pre-trained model can be
used to identify the relationship between words or word chunks.

Figure 7 shows that the subject of a sentence is proper noun Bus nodes and
it has a subordinate relationship with electrical network. It represents an
example of relation in our raw corpus for the property ‗has‘ which is used in

power system ontology concept.

Figure 7: Dependency parse demo

3.3.7 Shallow Parsing

Shallow parsing, or chunking, is the process of extracting phrases from
unstructured text. Chunking groups adjacent tokens into phrases on the basis of
their POS tags. There are some standard well-known chunks such as noun phrases,
verb phrases, and prepositional phrases.

Noun Phrase Detection

A noun phrase is a phrase that has a noun as its head. It could also include other
kinds of words, such as adjectives, ordinals, determiners. Noun phrases are useful
for explaining the context of the sentence. They help you infer what is being
talked about in the sentence. spaCy has the property noun_chunks on Doc object,
it can be used to extract noun phrases.

By looking at noun phrases, we can get information about the text. For
example, ‗a blackout event‘ indicates that the text mentions a blackout, while the
date 21 July lets us know that blackout occurred for 21 July. We can figure out

Methodology

 24

whether the blackout is in the past or the future. If there is a location is detected
that tell us the position of the blackout.

Verb Phrase Detection

A syntactic unit consisting of at least one verb is called a verb phrase, and it helps
to understand the action involved in the noun. This verb can be followed by other
blocks, such as noun phrases. SpaCy has no built-in functionality to extract verb
phrases, so we need a library called textacy which used to extract verb phrases
based on grammar rules.

In the text of electricity field, verb phrase is an important signal. For example,
cut off, break down, etc. Empirically, verb phrases such as these often appear in
sentences involving faulty equipment, so this step is important for analyzing
blackout events.

3.4 Creating NE Tagged Corpus

We focus on creating NE categories about power industry because others such as
date and location are relatively easier to recognize and the power industry
categories actually suffer from the shortage of an NE tagged corpus.

Information in various languages is already co-hosted in written form on the
web, and the amount has recently increased almost infinitely. The network can be
viewed as an infinite linguistic resource that contains various NE instances with
different contexts. The key idea is to use a precompiled list of NEs to
automatically label such NE instances with appropriate class labels. However, due
to word ambiguity and boundary ambiguity of NE instances, there should be some
general and language-specific considerations in this tokenization process. To
build a corpus containing specific entities, its generation process consists of three
steps. The process first uses data collection techniques to obtain useful NE entries
from documents and secondly assigns them to appropriate label. Next, sentences
are generated and searched by inputting entities with categories to linguistic

Methodology

 25

search engine. Extracting each sentence returned by the search engine to construct
corpus. Figure 8 explains the whole process of generating the NE corpus.

Figure 8: Process of corpus building

3.4.1 Named Entity List

Randomly collecting files from the web does not serve our purpose. Because not
all web documents contain NE instances relevant to our work, and we currently
do not have a list of all these entities. So building a NE list is an important step to
create an NE corpus. The building of the NE list, which is sets of special
keywords in domain of electrical, is required and then saved in text files as the
second dataset of our work. These keywords can be multiple words or chunks,
which are useful for tokenizing word chunks for sentence generation in Section
3.4.3 Corpus Generation.

Methodology

 26

Web crawling

Part of the data crawled from Wikipedia of the Electrical and Electronic
Engineering Glossary. We called a python library of Wikipedia API, which
supports extracting texts, sections, links, categories, translations, etc. from
Wikipedia. The code snippet for our work is shown in Algorithm 8.

import wikipediaapi 1

wiki_wiki = wikipediaapi.Wikipedia(2

 language = "en", 3

 extract_formate = wikipediaapi.ExtractFormat.WIKI 4

) 5

p_wiki= wiki.wiki.page("Glossary of electrical and electronics 6

engineering") 7

print(p_wiki.text)8

Algorithm 8: Example on get content from Wikipedia webpage

OCR extraction

OCR is a technology that can quickly and accurately recognize text information
from images, has a long research history and wide range of application scenarios.
In this work, due to the imperfect records of electrical-related vocabulary, for
another part of data, they are power-related words that exist in some electric
power industry .pdf format files. In order to extract the vocabulary accurately and
completely, we adopted the screenshot ORC function in Quicker1 software.

Although the use of traditional OCR technology to model specific scenes has
achieved good recognition results, the model will fail once it leaves the preset
scene, so scene text recognition based on deep learning is more popular. There are
two methods based on deep learning. One is divided into two stages of text
detection and text recognition. Another is to complete text detection and
recognition at the same time through an end-to-end model. Quicker OCR use an
end-to-end trainable neural network was proposed by Shi et al, called
Convolutional Recurrent Neural Network (CRNN), which integrates feature

1 https://getquicker.net/

https://getquicker.net/

Methodology

 27

extraction and sequence modeling, the network architecture as shown in Figure 9
[37]. The architecture consists of three parts:

 Convolutional layers: constructed by taking the convolutional and
max-pooling layers from a standard CNN model to extract a feature
sequence from the input image.

 Recurrent layers: use deep bidirectional LSTM to predict a label
distribution for each frame.

 Transcription layer: translates the per-frame predictions made by RNN
into the final label sequence.

Figure 9: Architecture of the text recognizer CRNN [37]

Methodology

 28

For transcription layer, it adopts the conditional probability defined in the
Connectionist Temporal Classification (CTC) [38] loss to avoid the inconsistency
between prediction and label. The objective is to minimize the negative
log-likelihood of conditional probability of ground truth shown in

Formula 1, where is the training image, is the ground truth label
sequence and is the sequence produced by the recurrent and convolutional
layers form [37].

 ∑

Formula 1: Objective function of label sequence

3.4.2 Text Classification

Text classification is a common technique used in on basic NLP tasks as well.
The important task of creating the corpus is to generate tags for each seed in the
NE list. To perform this task, we first use semi-manually classify and then
compared it with machine learning algorithms. The semi-manually classify relies
on ontology of electrical domain and spaCy library, while the machine learning
algorithm developed by an AI platform MonkeyLearn2, which is more efficiently
than previous method.

Semi-manually

This stage is called semi-automatic classification because it consists of two parts,
one is to use NLP model to process unstructured text, in order to achieve as many
entity classification tasks as possible. The other is to organize and standardize
some entities that cannot be automatically classified by algorithms through

2 https://monkeylearn.com/

https://monkeylearn.com/

Methodology

 29

manual review of data or through empirical cognition, and finally group them into
corresponding categories.

At first, we roughly determine 19 very fine label categories according to the
attributes of the ontology to automatically label as many entities as possible. We
defined a specific function for each category label and use the small English
pre-trained model that is en_core_web_sm provided by spaCy as an NLP tool
for semi-automatic classification, as shown in Algorithm 9.

import spacy 1

nlp = spacy.load("en_core_web_sm")2

Algorithm 9: Create an NLP object from pre-trained language model

Each of these specific functions contains restrictions on whether an entity can
be selected as that category, and these restrictions are actually specified according
to the inherent properties and word formation rules of the entity. For example, in
Algorithm 10, filter entities that satisfy the ‗MATH‘ label requirements by
determining whether all tokens are within the theory which is constraints we
defined.

def is_math(doc): 1

 for token in doc: 2

 if token.lower_ in theory: 3

 expressions.remove(doc.text) 4

 MATH.append(doc.text) 5

 return True 6

 return False7

Algorithm 10: Example on how to classify entities automatically

In our case, not all entities can be automatically classified by the algorithm to
match the corresponding label, because the pre-set constraints for each class only
apply to a subset of entities for which word formation rules can be found.
Although it will take a lot of time, in order to ensure the reliability of the
classification task. For those unlabeled entities, we have to classify and
summarize them under the corresponding labels manually. Since automatic

Methodology

 30

classification is not hundred percent correct, the classified entities also need to be
manually checked.

Classifier tool

Since manual classification in the semi-automatic stage consumed a lot of time, in
order to alleviate the time cost, we decided to use an online codeless classifier. The
success of methods for manual classification relies on large and high-quality
labeled examples, which are often labor-intensive and time-consuming. We
utilized MonkeyLearn analysis platform as the foundation for classifier
mechanisms, which is software as a service (SaaS) with machine learning.

MonkeyLearn uses several algorithms that combine to create the entire
system. According to MonkeyLearn itself, SVM is a supervised machine learning
model that uses linear classifier. After providing an SVM model with sets of
labeled training data for each category, they were able to classify new data.
Classification methods mostly use bag of words (BoW) and the kernel function of
SVM [39].

Moreover, it also utilizes other algorithms to support its platform by
implementing probabilistic classifier to predict certain words that have been
annotated previously. The classifier based on Naïve Bayes theorem, shown in
Formula 3, which begins with the conditional probability described in Formula 2.
Naïve Bayes is essential for inferential statistics and many advanced machine
learning models. Bayesian inference is a logical method to updating the
probability of a hypothesis based on new evidence. It allows users to answer
questions of frequency statistical methods, which have not been developed [40].
Essentially, Bayesian theorem supposes that is the "A Priori" or marginal
probability: they are calculated independently of each other. Calculate the
conditional probability by using Naive hypothesis: all attributes are
statistical independent, but since it is not always true, it may affect the model
quality generating lower accuracy results.

Methodology

 31

Formula 2: Conditional Probability

Formula 3: Bayes Theorem

 The system can train a text classifier to associate input text with its assigned
corresponding category by using mathematical models and these machine
learning algorithms, in the process the classifier generates "rules" to classify new
input unlabeled text data. Furthermore, classification process can be done by
applying API which provided by MonkeyLearn to predict the aspect of extra
testing data.

3.4.3 Corpus Generation

Based on the existing list of NEs and the categories, we need to extract sentences
from web documents which necessarily contain at least one NE instance for
creating training raw corpus for named entity training. Using whole paragraphs in
document is not sensible, since each paragraph is too long and there are lots of
irrelevant sentences or words which can create a lot of noise in training data.
However, manually extracting sentences from description fields is a time
consuming task. An et al. [41] submitted the NE entities as queries to a search
engine to obtain URLs and utilized web robot visits the web sites in the URL list
to fetch the corresponding web documents. The main task of this step is that we
have to specifically find the sentences that contain these named entities. For our
case, we decided to generate sentences for each entity belongs to the already
constructed NE list with the help of an online corpus, namely Ludwig Guru3.

3 https://ludwig.guru/

https://ludwig.guru/

Methodology

 32

In this work, we employed Ludwig Guru, a popular linguistic search engine,
as a tool to find sentences associated with the entities. As a unique search engine
developed by a large number of linguists and computer experts, Ludwig provides
users with many functions such as contextualized translation, advanced search
options etc. We focus on one of the powerful functions, which is to find context
provided by reliable and inspiring English sources for the words we entered. As
shown in Figure 10, the source of the phrase is generated on the right and it
allows user to explore more the sentence source. The searched phrase is
underlined in blue so as to make the user easy to spot the word/phrase. This not
only solves the condition that the generated sentence contains at least one entity,
but also ensures the professionalism and traceability of the sentences in our
custom corpus. However, since some entities involve professional vocabulary and
even proper nouns in the power industry, they only appear as words and do not
exist in a complete sentence, so not all entities in the list are successfully
completed the task of sentences generation in Ludwig Guru.

Figure 10: Query results of the phrase on Ludwig Guru [42]

We edited a python script so that computer can automatically send the seeds
in batch to the search engine to accomplish query with pre-complied NE list. For
sentences that can be queried that contain at least one seed, we scraped the results
as our custom corpus for Section 3.5 SpaCy NER Model.

Methodology

 33

3.5 SpaCy NER Model

SpaCy is primarily an NLP library for machine learning, but its main advantage is
the ability to use rule-based NER methods as well. It is essential that combination
of rule-based and machine learning-based approaches to develop a robust NER
system for a specialized domain. The spaCy NER environment uses a word
embedding strategy using a sub-word features and Bloom embedding and
one-dimensional Convolutional Neural Network (1D CNN).

 Bloom Embedding: It is similar to word embedding and more space
optimized representation. It gives each word a unique representation for each
distinct context it is in.

 1D CNN: It is applied over the input text to classify a sentence/word into a
set of predetermined categories. The realization process is shown in Figure
11.

Figure 11: The process of 1D CNN

SpaCy not only makes working with machine learning models easy, but it
greatly reduces the complexity of training custom machine learning models. To
train a model, a standard training data is cornerstone, because all subsequent work
is based on it. For spaCy statistical model, the training data is required to be

Methodology

 34

annotated which contain both examples of text and their labels. The model then
displays the unlabeled text and makes prediction. The whole process as shown in
Figure 12, the model can give feedback on the predictions made by itself in the
form of the error gradient of the loss function, since we have identified the correct
labels in the training data. Based on the error gradient, the model compares the
predicted label with the actual label and adjusts its weights to make correct action
have a higher score than before.

Figure 12: Training process of spaCy statistical model [43]

In spaCy, Mean squared error (MSE) is used as the loss function of the model.
It is the most commonly used loss function for regression to measure how well a
model performs on unseen dataset. The loss is the mean overseen data of the
squared differences between true and predicted values, or writing it as Formula 4,
where ̂ is the predicted value.

 ̂

∑ ̂

Formula 4: Calculating mean squared error loss

During the model training, we tried to minimize an expected value of loss
function on our training data. A smaller loss value means better performance of
the model and vice versa.

Methodology

 35

3.5.1 SpaCy Training Data Format

According to requirements of spaCy for the training set, the input data should be
in the following format:

Manually converting training data to the format spaCy requires is very
difficult. The researcher must count the number of characters to specify where the
entity starts and ends. Another problem appears that using Python's built-in string
functions to get start and end characters. Because using string functions to
calculate character positions differs from how spaCy reads the character offsets
during training procedure. This means that spaCy remove labels that are
inconsistent with the start and end of the label in training. In order to reduce the
time and effort cost of manual annotation, some tools have been developed, such
as Prodigy4, doccano [44], etc. Especially Prodigy, a paid scriptable annotation
tool developed form the makers of spaCy, namely Explosion AI. It is efficient that
data scientists can do the annotation themselves, enabling a new level of rapid
iteration. Prodigy is a good choice if the task is on a budget as it fits seamlessly
into the spaCy workflow. For our case, we automatically generated a basic
training set using rule-based methods.

3.5.2 Data Preparation

The data structure for training machine learning models is a list, where each index
contains a text (a sentence, paragraph or whole text). In general, the length of text
depends on the target to be achieved through ML-NER, while the size of the text
will affect the training process. It is precisely because of these potential problems,
we try to avoid using long text when creating the corpus in Section 3.4.3 Corpus
Generation, but choosing each index contains a sentence. We made a machine
learning training set by EntityRuler.

4 https://prodi.gy/

https://prodi.gy/

Methodology

 36

 EntityRuler is a spaCy factory that allows creating a set of schemas with
corresponding labels. We pay attention to it as a component of the model pipeline
in this section. For example, in Algorithm 11, in order to incorporate EntityRuler
into a model, it must be created as a new fitting and added to the model. Then,
user can save the new model with EntityRuler to disk for recalling later.

ruler = EntityRuler(nlp, overwrite_ents = True) #create EntityRuler 1

pattern = [{ 2

 "label": TAG OF SEED, 3

 "pattern": SEED OF NE LIST 4

 }] #build entity and mode list 5

ruler.add_patterns(patterns) #add mode to EntityRuler 6

nlp.add_pipe(ruler) #join EntityRuler to the pipeline 7

nlp.to_disk("RULE NAME") #save rule8

Algorithm 11: Snippet of code to create training set with EntityRuler

3.5.3 Entity Annotations

Besides the sentences in corpus, another element required for training data is a list
of entities of text, including their start and end positions and labels in text. The
NE tagged list we have done in Section 3.4.1 Named Entity List. So the main
task we need to solve in this section is to complete entity annotation by using all
known entities (seeds) to label all collected training sentences. In general, two
nested loops (one for sentences and one for seeds) can be used to implement full
labeling task with a complexity [45]. However, it
would take a long time to label a large amount of sentences for entity seeds, even
with the help of multi-thread implementation. Fortunately, a built-in function in
spaCy has the ability to automatically get character offsets according to the rules
specified by calling the new model with EntityRuler, as shown in Algorithm 12.

nlp = spacy.load("RULE NAME") #calling the new EntityRuler model 1

doc = nlp(sentence) #traverse the corpus 2

for ent in doc.ents: #extract entities 3

entities.append([ent.start_char, ent.end_char, ent.label_])4

Algorithm 12: Snippet of code to annotate entities with spaCy

Methodology

 37

Since spaCy takes training data in JSON format, it is necessary to convert the
training data into a spaCy-readable form after completing entity annotation.
During training, these annotations will allow CNN (architectural structures behind
the spaCy machine learning training) to learn from the data and correctly identify
the practiced entities being trained.

3.5.4 Training Custom NER Model

We divided our data set into two subsets. One subset is training data which will be
used to fit our model. The other subset is test data which will be used to evaluate
our model. In our dataset, 80% of the data was used for the training phase and 20%
of the data was used for the testing phase. The dataset distribution of each entity
label is shown in Figure 13.

 Training set includes 80% of the data set and has 8200 samples.

 Testing set includes 20% of the data set and has 2003 samples.

Figure 13: Dataset distribution

Methodology

 38

To train a NER model defined by ourselves, we create an empty class with
English and add the entity recognizer which is the built-in pipeline components to
the pipeline if there is no existing. This procedure is shown on Algorithm 13.

nlp = spacy.blank("en") 1

if "ner" not in nlp.pipe_names: 2

ner = nlp.create_pipe("ner") 3

nlp.add_pipe(ner, last = True)4

Algorithm 13: Snippet of code to set up the pipeline

In fact, every decision made by spaCy is a process of prediction. For all
predictions are based on the examples learned by the model during training.
Therefore, in order to make the spaCy model aware of all custom tags, we can add
the new entity from our annotated data to the entity recognizer using add_label
method, as shown in Algorithm 14.

for _, annotations in TRAIN_DATA: 1

for ent in annotations.get("entities"): 2

ner.add_label(ent[2])3

Algorithm 14: Snippet of code to get entities label

It is essential to acquire other pipeline components than the entity recognizer
and disable them to remove any impact on the training process, as shown on
Algorithm 15, as we are only focusing on entity extraction.

other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] 1

nlp.disable_pipes(*other_pipes)2

Algorithm 15: Snippet of code to disable other pipes except ner

We trained our model for a number of iterations so that the model can learn
from it effectively. At each iteration, the training data is shuffled to ensure the
model doesn‘t make any generalizations based on the order of examples. Pass raw
texts and dictionaries of annotations to update the model for each iteration. An
example of use is shown in Algorithm 16.

 39

nlp.update(1

 [text], #sentences in TRAIN_DATA 2

 [annotations], #labels in TRAIN_DATA 3

 drop = dropout_rate, 4

 sgd = nlp.begin_training(), 5

 losses = losses 6

)7

Algorithm 16: Example on how to update entity recognizer

3.6 Evaluation Metrics

For evaluation of hyper-parameters and models, precision, recall and F1-score
have been used in NLP system. In particular, the binary classification problem is
referred to in the context of NER and entity extraction from text [46]. In fact, each
token in text needs to be evaluated whether it can be recognized. Therefore, we
focus on positive examples, thus choosing precision and recall, which are mainly
evaluate quantitative aspects of recognition, but also qualitative aspects [46] [47].

How many positive predictions are correct is indicated by precision. The
precision value is calculated as Formula 5, where we find the ratio between true
positive and total positive predictions gives the precision result.

Formula 5: Precision calculation formula

The recall also known as sensitivity is the number of positive predictions
divided by the sum of all positives in the system should predict. The recall
formula is in the following (Formula 6).

Formula 6: Recall calculation formula

Methodology

 40

The recall or precision is given the highest priority depends on the reference
target, since in most cases they are opposite, i.e. high sensitivity values
correspond to low precision values and vice versa. In order to balance the two
measures and obtain a value that provides an overall indication of the
performance of the system, the F1-score or F-measure is also used, calculated as
the harmonic average between precision and recall, as shown in Formula 7 [46].

Formula 7: F1-score calculation formula

3.7 Implementation

3.7.1 Transfer Learning

Transfer learning is one of the most influential recent breakthroughs in NLP.
Before transfer learning became popular, almost all NLP models were trained
entirely from scratch. While the standard approach to natural language processing
has changed dramatically these days, the safest approach is to download some
mature pre-trained models and fine-tune them for specific NLP tasks. Because
these transfer learning models have learned a lot of unlabeled text, which have
learned a lot about language: understand the meaning of words and sentences,
coreference, grammar, etc.

However, most transfer learning models are huge, and they have so many
parameters that they are rather slow and resource intensive. It is clear that more
traditional, smaller models with relatively few parameters may not be able to
handle all the NLP tasks thrown at them. But for simple text recognition or
sequence labeling tasks, small models are sufficient to handle. In order to meet
the NLP in different situations, spaCy offers three pre-trained models of different
magnitudes for the English language, which are large, medium and small sizes. In
our case, we choose a small-sized English model to perform NLP tasks on some
unspecified entities, such as dates, locations, numbers, etc.

Methodology

 41

It is necessary to combine the custom NER model with existing off-the-shelf
model from spaCy to implement the NLP tasks simultaneously. Our goal is
adding our custom NER component to standard model for constituting a
comprehensive model. The first step is to load two models that we mentioned and
set the standard off-the-shelf spaCy model as main model. Then add the custom
label to main string store to ensure that custom entities are recognized by the
synthetic model. The process is shown in Algorithm 17.

main_nlp = spacy.load("en_core_web_sm") #load pre-trained model 1

new_vocab = ["CUSTOM LABELS"] 2

for item in new_vocab: 3

 main_nlp.vocab.strings.add(item) #add new vocabulary to main nlp 4

model 5

custom_ner_nlp = spacy.load("custom_ner_model") 6

ner = custom_ner_nlp.get_pipe("ner") 7

main_nlp.add_pipe(ner, name="custom_ner", before="ner") #custom pipe 8

has primacy over the main NER

Algorithm 17: Example on how to add custom functions to spaCy pipeline

3.7.2 Refine the model

The optimization of the model starts from two aspects, one is to improve the
accuracy of the model, and the other is to shorten the time for recognition. We use
rule-based approach with high accuracy to achieve.

Text preprocessing has been done in Section 3.3 Pre-processing for each
blackout text input to the model waiting to be recognized. Most of our target
entities are composed of different nouns or noun groups, and thanks to property of
spaCy, noun chunks in the article and their root words can be easily obtained, as
shown in Algorithm 18.

for chunk in doc.noun_chunks: #get noun chunk, index and root 1

 print(chunk.text, noun_chunks.start, noun_chunks.end, 2

 chunk.root.text)

Algorithm 18: Noun chunk analysis using spaCy

Methodology

 42

To determine whether there is an unlabeled target entity in the article, we
divide it into the following two steps:

 Compare index position of the noun chunk with the entity that has been
recognized by the model. If index positions coincide, it means that the
target entity is correctly labeled and recognized by the model. Otherwise,
the model may not recognize target entity. In this case, it is necessary to
compare the root of the noun chunk with entities in the NE list for further
judgment.

 Add those new noun chunks to the NE list after looking for entities in the
NE list that have the same root, and then tokenized them to build a
rule-based NER model. Meanwhile, sentences containing these new noun
chunks can be also extracted from the blackout text for training a new
custom NER model.

In this way, the NE list can be improved to the greatest extent and the defect
of insufficient corpus data can be also compensated. Combining the rule-based
NER model with the custom NER model trained by machine learning methods
avoids the tedious work of secondary training and improves the accuracy of the
model while shortening the recognition time.

 43

Chapter 4

Results and Analysis

This chapter describes all the results including the processing of the blackout text,
the classification of the text in the entity list, the general composition of the
corpus, and the training and testing of the model. The last section covers the
statistics after the model performs the NER task, and conducts a complete
blackout analysis in terms of trends, causes, geographies, and scope of influence.

4.1 Result of Blackout List

Having a corpus of blackout events is not easy for several reasons. Since
electricity is the foundation of people's livelihood and even related to the stable
operation of the country, the investigation results of many accidents are secret.
Documentation used in other work and other studies was either created
specifically for project purposes or provided by power companies licensed to use
the data. There are also many non-English texts, and even choosing a translation
requires expert help. In order to deal with these difficulties, it was decided to
obtain as much open-source information as possible on the Internet, most of
which are news reports, and a few are professional power failure analysis reports.

Results and Analysis

 44

In order to get the blackout results returned by a Google search as accurate as
possible, we use the following as search terms:

 Massive/Prolonged/huge blackout

 Major power/electricity outage

 Power system cascading event

 Power cut/failure

 Lose power

The search engine returned results based on the given keywords, but some of
the content was not related to the blackout event we are referring to here. These
irrelevant materials include temporary amnesia due to drunkenness, events held to
defend human rights, broadcasts of sports events and game server failures. In
order to ensure the accuracy of the analyzed data, 234 satisfactory results were
obtained after screening and filtering. Part of them is shown in Figure 14.

Figure 14: Partial URLs about the blackout events

The texts obtained from the blackout list here can be roughly divided into
news reports and power industry accident reports. In addition to web pages, texts
are also in .pdf file. After the crawler and OCR convert the text into text
documents in txt format and store them locally for later NER tasks.

Results and Analysis

 45

4.2 Results of Text Classification

Here we present the classification results in Section 3.4.2 Text Classification.
Since our purpose is to build a custom NER model, a corpus of entity-labeled is
required and each entity's label needs to be specified. However, there is no
specific classification standard for the power industry and there are many ways of
classification, such as with a wide range and fine division. So it makes our work
difficult to carry out. We had to artificially specify the names of the tags and then
group them into the corresponding categories based on the properties of each
entity itself. As mentioned before, we used both manual and automatic tool to
classify, but they presuppose having a list of labels, as shown in Table 3.

Class Name Class Label
Equipments and Installations EQUIPMENT
Actions and Operations ACTIONS
Mathematics, Physics MATH
Errors, Data and Status INFO
System Parameters PARAMS
Market and Economics COMMERCIAL
Systems and Networks SYSTEM
Sources and Waste SOURCES
Roles and Players ROLES
Other/Unlabeled OTHER
Standards and Rules LAWS
Tests and Simulations SIMULATIONS
Units of Measurement UNITS
Inventions INVENTIONS
Filters FILTERS
Time TIME
Organizations ORG
Problems PROBLEMS
Engineering Branches ENGINEERING

Table 3: Category list of labels

Results and Analysis

 46

4.2.1 Semi-automatic Classification

As shown in Table 4, we have a total of 1776 entities in the entity list, and each
entity needs to be classified according to the categories in Table 3. There are 984
entities that can be automatically classified by algorithm, and the remaining 828
unlabeled entities can only be manually assigned to the corresponding categories.

Total entity
Classification method

Automatically Manually
1776 984 828

Table 4: Number of tasks completed by different classification methods

From Figure 15 we can clearly see the results of semi-automatic classification of
entities using custom algorithms and manually. Among them, the entities
belonging to the ‗EQUIPMENT‘ class are the largest category in the entity
distribution, which is also an important purpose of our training of custom NER.
From the ordinate of the histogram, we can see that there are 19 label types. The
reason is to avoid data type too single to have negative impact on the performance
of the NER model trained.

Figure 15: Results of semi-automatic classification

Results and Analysis

 47

4.2.2 Classification Tool

We selected as input those entities that cannot be automatically classified by the
algorithm in the semi-automation stage in order to train the automatic classifier on
MonkeyLearn. The text classification module of MonkeyLearn adopts a mode of
prediction while training. When the input training data reaches a certain amount,
the model starts to make predictions. The accuracy and F1-score are calculated
and displayed in the form of a meter so that the user can understand the
performance of the model. As shown in Figure 16, our classification model with
890 texts achieved an accuracy of 59% and an F1-score of 66%.

Figure 16: Evaluation results of classification model

In MonkeyLearn's display interface, it is easily to see that the keywords
appear more frequently in the training data. And it can automatically generate
word cloud which is shown in Figure 17. Users can further view detailed files of
classification and model predictions for each entity keyword. These visualization
services make our analysis of results more convenient and clear.

Figure 17: Word cloud created by MonkeyLearn

Results and Analysis

 48

4.2.3 Choice of Classification Methods

Through the analysis of the above results, the two classification methods we
adopted have their own merits. For semi-automated classification, the traditional
method is used. The classification is completed by observing the word formation
rules of the entity and using the NLP library. And another part that cannot be
automatically classified by algorithms can only be done manually. Since many
words have multiple attributes, the classification criteria are less common. For the
method of training classification models using the online platform, it is
time-saving and easy to use because of the intuitive and concise operation
interface. However, it requires a large amount of training data with classification
labels to make the model performed well.

To sum up, taking into account the classification criteria we have formulated
is not very accurate. In our case, the reliability of the data determines whether the
next steps can be carried out with relative accuracy. Although the semi-automated
method is more time-consuming than the fully developed system platform, we
decided to use the results of semi-automatic classification as a part of data to build
an NE tagged corpus to train a NER model in next stages.

4.3 Size of the Tagged Corpus

As an important task, we tried to investigate how large corpus we should generate
to obtain satisfactory performance. We collect as many sentences containing
entities as possible in Ludwig. Ideally, we would like each entity to be contained
by 6 to 7 sentences. However, in practice, not all entities can be fully queried to
have been used in sentences. Because some of the entities we collected include
highly specialized and compound words, some even involve mathematical
operations such as (n-1). The final corpus size is shown in Table 5. Since each
entity that appears in the corpus would be labeled accordingly for NER model
training. We only selected sentences that contain complete entities to construct the
corpus and label entity in sentences accurately.

Results and Analysis

 49

Total Contain full entity Contain partial entity
16795 12551 4244

Table 5: The number of sentences collected from Ludwig

Figure 18 shows the distribution of occurrences of entities in the corpus.
There are 33.9% entities never appeared in the corpus, because they were not
included in the sentences completely or the sentences related to them were not
queried through Ludwig. In our case, this part of the entity is excluded. About 66%
of the remaining entities are fully present in the corpus, and most of them
appeared between 1 and 10 times. Only 6.19% of entities were found more than
50 times because they were or contained common words.

Figure 18: The frequency distribution of entities appearing in the corpus

4.4 Tuning Hyper-parameters

To get the best results, it is necessary to tune the hyper-parameters. We tried
possible combination of different features and compared their results as a basis for
choosing the best result.

Results and Analysis

 50

The hyper-parameters for spaCy NER model as following:

 Learning rate: It determines step size for each iteration and controls how
much the model weights are adjusted with respect the loss function. In
general, its value range can be set between 0 and 1.

 Regularization: Deep learning may suffer from overfitting, i.e. high
variance. Regularization helps to avoid the degree of overfitting of the
model, or reduce network error.

 Gradient clipping: Because larger updates to the weights of neural
network model can cause numerical overflow or underflow, i.e. gradients
exploding. Gradient clipping is the clipping of gradient values outside of
a preset range for updating error derivative before the network
propagates the error backwards. It is used to update the weights to ensure
that the network is non-divergent.

 Optimizer: It guides each parameter of the loss function (objective
function) to update the appropriate size in the correct direction in the
process of deep learning back propagation, so that the updated
parameters make the value of the loss function continuously approach the
global minimum.

 Number of Epochs: It is a hyper-parameter that indicates how many
training times the machine learning algorithm needs to complete for the
entire training data set. The overfitting conditions could be caused by
higher epochs.

 Batch size: It determines the number of samples in a training session, and
its size affects how well and how fast the model is optimized. A smaller
batch size updates weights more frequently. Moreover, it directly affects
the usage of GPU memory. That is, larger batch size requires more
computational power.

Results and Analysis

 51

 Dropout rate: It is an effective regularization technique used for
preventing overfitting and helps boost the performance of the CNN. The
stability and robustness of model are greatly improved because dropout is
set to randomly stop certain neurons from participating in operations
each training session. Generally speaking, the range of dropout is
between 0.3 and 0.5.

Since those parameters with spaCy default settings, as shown in Table 6, have
always performed well in the training of the spaCy model. Without changing the
default parameter values of the platform, in our case, we only adjusted the three
parameters, which are batch size, number of epochs and dropout rate.

Hyper-parameters Values
Learning rate 0.001

Beta1 0.9
Beta2 0.999

L2 Regularization 1e-6
Optimization algorithm Adam

Loss function Mean Squared Error

Table 6: Default hyper-parameters of spaCy NER

The first parameter needs to tune is the batch size. We used mini-batch
Gradient Descent as mentioned before. It divides into a data set less than a total
number of samples. If the bath size is large, it may consume a lot of memory and
needs more computational power. Since the batch size can be a number that
doesn‘t change, or a schedule, like a sequence of compounding values, which has

shown to be an effective trick [48]. To sum up, we tried using a composite rate of
1.001, starting from 1 or 4 and ending with 4, 32, 64, 128 as the maximum batch
size, respectively.

Results and Analysis

 52

Compounding batch
sizes (start-max)

Precision (%) Recall (%) F1-Score (%)

1-4 95.408 96.161 95.783
1-32 95.021 97.169 96.083
4-32 94.949 96.733 95.833
1-64 94.462 96.597 95.518
4-64 94.271 96.325 95.287
1-128 94.486 96.107 95.290
4-128 95.417 96.923 96.164

Table 7: Testing results obtained from tuning batch size during training

From Table 7, we can see that the larger the gap, the better the performance of
the model when there is little difference between the starting batch value and the
maximum batch value. For example, composite batches with values of 1-32 and
1-64 have higher F1-score than 4-32 and 4-64 respectively, which means the
model performed better. When the maximum batch value is increased to 128, the
smaller the gap between the starting value and the maximum value, the better the
model performs, and the highest value is obtained in the whole results, that is, the
model obtained 96.164 F1-score when the composite batch size is 4-28.

As shown in Figure 19, the smaller the batch size, the slower the loss function
value converges. When the maximum batch size is 128, the value of the loss
function is a little smaller than others. This also verifies once again that a max
batch size of 128 is the best choice for our model.

Results and Analysis

 53

Figure 19: Losses of training model obtained from tuning batch size

The next parameter needs to tune is number of epoch. Each epoch includes
one forward and backward pass of the entire training data set. The reason why we
need more than one epoch is that in order to learn the pattern of the training
dataset, the training dataset has to be looped through the neural network more
than once. We tried 30, 60 and 100 epochs in our experimentation.

Number of epochs Precision (%) Recall (%) F1-Score (%)
30 98.796 98.513 98.654
60 99.732 99.478 99.605
100 99.816 99.876 99.835

Table 8: The results of train set obtained from tuning number of epochs

Results and Analysis

 54

Figure 20: Losses and F1-score curves during training

The results shown in Table 8 seem to be that the more epochs are trained, the
better the performance of each evaluation metric. However, it is not rigorous to
only look at the evaluation indicators of the training set. When we analyze the
curves in Figure 20, it is not difficult to find that the losses decrease rapidly in the
early stage of model training. When the epoch number exceeds 20, the loss value
gradually stabilizes and decreases at a very slow rate as the epoch number
increases. Conversely, the F1-score of validation set rises above 90 shortly with
training beginning, and reaches its highest value of 95.602 when the number of
epochs increases to 30. After that, although the loss value for training is still
slowly decreasing, the F1-score for validation is almost stagnant, which means
that the model has been overfitted. We have to stop the training process of the
model before overfitting. So far, combined with the values of loss and testing
results, we decided to use 30 as the optimal number of epochs.

Dropout technique randomly selects and removes the units during each
iteration of training. When removing the units, in and out connections of the units
are cut off. Dropout can be applied to the input layer and also the hidden layer. In

[30,95.602]

L
o
s
se
s

F
1-
s
c
or
e

Number of epoch

Results and Analysis

 55

our case, 0.35 and 0.5 dropout rates have been used. Table 9 shows the results of
the custom NER model when we applied dropout to the network.

Dropout rate Precision (%) Recall (%) F1-Score (%)
0.35 95.417 96.923 96.164
0.5 91.697 95.317 93.472

Table 9: Testing results obtained from tuning dropout rate during training

Figure 21: Losses of training model obtained from tuning dropout rate

When training the same number of epochs, the models with different dropout
rates behave differently. Compared to the dropout rate of 0.5, our model achieves
better performance with a dropout rate of 0.35. It can also be seen from Figure 21
that a smaller dropout rate can make the loss curve converge faster. Although
setting a larger dropout rate can avoid overfitting the model, it also means that we
have to make the model learn more epochs, which will prolong the training time
of the model. So in our case, we choose 0.35 as final dropout rate.

Results and Analysis

 56

4.4.1 Summary of the Best Results

To summarize, we have tried to find the best results by tuning the
hyper-parameters for custom NER model. We use the control variable method to
find a suitable value for the model by adjusting the three model parameters,
namely batch size, number of epochs and dropout rate, as shown in Table 10.

Hyper-parameters Values
Batch size 4-128 (start-max)

Number of epochs 30
Dropout rate 0.35

Table 10: Best hyper-parameters of the custom NER model

Since implementing the multi-class classification and having more than two
label classes. For each sentence on which the model is tested, we calculate
precision, recall and f-score for each entity that the model recognizes. The values
of these metrics for each entity are summed up and averaged to generate an
overall score to evaluate the model on the test data consisting of 2003 sentences.
The entity wise evaluation results can be observed below. It is observed that the
results obtained have been predicted with a commendable accuracy. As shown in
Table 11, for example, out of the 881 entities with the ‗EQUIPMENT‘ tag, the

NER model correctly tagged 96.935% (recall) of them. With precision, out of all
the entities the model tagged with ‗EQUIPMENT‘, only 93.743% of them had the
‗EQUIPMENT‘ tag. Most of labels have F1-score around 95%, except label
‗ORG‘ below 90%. And three labels have reached a high F1-score of 100%,
which are ‗PROBLEMS‘, ‗SIMULATIONS‘ and ‗INVENTIONS‘.

Results and Analysis

 57

Labels Precision (%) Recall (%) F1-Score (%) Sample size
EQUIPMENT 93.743 96.935 95.313 881

MATH 97.401 97.668 97.534 729
OTHER 97.786 98.330 98.057 539

ACTIONS 95.090 97.872 96.461 376
PARAMS 94.241 96.515 95.364 373

INFO 98.052 96.795 97.419 156
SYSTEMS 92.568 96.479 94.483 142
SOURCES 93.662 94.326 93.993 141

UNITS 98.246 94.915 96.552 59
PROBLEMS 100.0 100.0 100.0 52

ROLES 98.113 100.0 99.048 52
SIMULATIONS 100.0 100.0 100.0 35
COMMERCIAL 90.625 96.667 93.548 30

FILTERS 90.0 90.0 90.0 30
TIME 96.154 92.593 94.340 27
LAWS 100.0 94.444 97.143 18

ENGINEERING 100 93.750 96.774 16
INVENTIONS 100.0 100.0 100.0 11

ORG 80.0 66.667 72.727 6

Table 11: The results for testing data with best hyper-parameters

In general, the number of samples is proportional to the F1-score, but
combined with what is shown in Figure 22, it does not seem to fit this statement
at all in our model. It might be caused by the uneven distribution of the amount of
data per label. For some categories with full F1-scores, this means that the model
is overfitting on these categories due to the low number of samples during
training of the model over multiple epochs. But in order for a large number of
class labels to be learned well by the model, we have to sacrifice these few labels
that are less important to us.

Results and Analysis

 58

Figure 22: The performance of each label with the best hyper-parameters

4.5 Result of Model Test

In this work, the following three models were built using spaCy:

 en_core_web_sm which a pre-trained model to recognize built-in
labels.

 Custom NER model to recognize custom labels.

 The comprehensive model to identify all entities.

Here we selected sentences with their corresponding labels from the corpus
for training according to the functional properties of the model. And each model
is trained until the loss stabilizes.

Results and Analysis

 59

Type
Pre-trained Model Custom NER Model Pre-trained model &

Custom NER model

train test train test train test

#Annotated 5932 1328 15303 3524 20780 4729

#Predicted 9024 2025 15019 3665 23502 5414

Diff 3092 697 -284 141 2722 685

Table 12: Comparison between predicted and annotated NE using spaCy

Table 12 shows the correctness of the three models by spaCy method. The
Annotation and Prediction rows show the count of data marked for training and
the number of named entities predicted by the model, respectively. "Diff"
represents the difference between "Annotated" and "Predicted". It is worth noting
that the negative value in "Diff" is due to the model finding fewer entities than the
number of annotation labels. The reason why the pre-trained model provided by
spaCy can recognize more entities than our annotated labels is because it contains
many built-in labels. For custom labels, the number of predicted labels missing is
about 1.86% of training. Here it is necessary to state the exact boundary problem
of spaCy's predicted phrases. The prediction may not exactly match the annotation,
but it provides reference boundary or good estimate of the entities. If we count the
exact number of positions it might be wrong. Thus, we lowered the metric and
only counted the number of predictions. For the combined model composed of the
first two models, it has the performance of predicting both built-in labels and
custom labels.

There are 18 built-in labels in the small English model pre-trained by spaCy,
among which labels representing locations (NORP, GPE, LOC), labels
representing time (DATE, TIME) and labels representing numbers (MONEY,
CARDINAL, ORDINAL) are helpful for blackout analysis. For the 19 custom
labels, we are most concerned about ‗EQUIPMENT‘, ‗SYSTEMS‘,
‗PROBLEMS‘, ‗ACTIONS‘, ‗PARAMS‘. When creating a comprehensive model
that recognizes all the types of labels including spaCy's built-in labels and custom
labels, we obtained over 90% accuracy in both training and testing for each label.

Results and Analysis

 60

Figure 23 shows the accuracy results for the most important labels mentioned
above in the comprehensive model.

Figure 24 shows the recognition results for an example. Figure 24(a) is the
result of spaCy pre-trained model, which can well identify the time, place and
digital content in the text. While Figure 24(b) represents the result processed by
the custom NER model. The result of comprehensive model is shown in Figure
24(c). It can be clearly seen that the model performs well after integrating two
well-trained models, and the important entities in the text that are useful for
blackout analysis are accurately identified and marked. In addition to fully
displaying the content recognized by the model, in order not to interfere with
unimportant entities, we can also set the label categories we want to view based
on different scenarios

(a)

Figure 23: Annotated and predicted results for most important tags

Results and Analysis

 61

(b)

(c)
Figure 24: Example results of NER part I

It is worth mentioning that the processing results of different types of text
NER models are different. For news report-type text, most of the available
information can usually be obtained from the news headline because of its highly
general nature. For example, each text has a publication time. Even if the specific
time of the blackout event is not specified in the article, we can judge it based on
the publication time combined with the content in the text. Rough statistical
analysis can be done using such text. And for professional accident reports there
is usually no explanatory text especially cascading blackouts. Figure 25 shows
example results of professional incident investigation report.

(a)

(b)

(c)

Results and Analysis

 62

(d)
Figure 25: Example results of NER part II

In the obtained results we can see that most of the entities are correctly
identified and labeled. It is attributed to high-quality corpus and text
preprocessing. Since there are cases where sentences are of a schematic and
fundamental nature, it is more important to have high-performance fundamental
tasks that can correctly identify all tokens. In fact, in cases where expressions are
not recognized in the correct way, errors are mainly due to tokenization not
properly separating the text and insufficient corpus data resulting in incorrectly or
missing entities being recognized. It must be admitted that building a pattern is a
delicate operation that must be done precisely by an expert, or in any case with
the help of in-depth research, to avoid omission or misidentification.

It is important to emphasize that the selected text has a considerable difficulty
compared to the documents on which the model was trained. In addition to the
refinement of vocabulary, there are also the use of abbreviations and synonyms.
Furthermore, while the test results demonstrate that our model can be used for
power text, it is partly due to the fact that the information extraction activity uses
a rule-based approach to make the model explicit as the target entity. Fortunately,
since those modules we use to build our models are based on neural networks, it is
possible to train on more data to further improve performance. If necessary, it is
possible to leverage more complex modules or optimize what already exists in
this work.

Results and Analysis

 63

4.6 Blackouts analysis

This section describes the outage analysis that has been performed. We will carry
out statistical and analysis work from the aspects of the time, cause and place, and
the scope of influence of the selected accident.

4.6.1 Temporal Analysis

To analyze the temporal trend of power outage incidents, we visualized the time
in years of incident occurrence in the text obtained. We extract the time
information from more than two hundred texts through the NER task, and obtain
178 independent blackout events through cross-validation due to the existence of
multiple articles describing the same event.

Figure 26: The trend of selected blackouts in power systems

From Figure 26, it can be seen that the collected outage data cover a range
from 1950 to 2022, and show an upward trend with the changing times. Before
1996, the frequency of blackout has historically remained at almost the same level
every year, almost once a year. The frequency kept in a moderately high level
from 1996 to 2006. The blackout number has soared to a high level in the
following decades since 2007, almost all of which are around 10 times. In 2019, it

Results and Analysis

 64

reached as many as 18 times, and the sudden decrease in 2022 is due to the fact
that this year has just begun. The rising trend of power outages in recent years
shows that a variety of threats are increasingly affecting today's power systems.

4.6.2 Reason Analysis

In the power industry, potential causes that could lead to an unexpected event that
compromises the power system are referred to as threats. Generally speaking,
threats can be divided into four categories: natural threats, accidental threats,
malicious threats and emerging threats [49].

Figure 27: Statistics of the causes of the selected blackouts

Results and Analysis

 65

The specific event names ascribed to the four threats are shown in Figure 27.
It is easy to see that natural threats have the most sub-categories, including
extreme weather-induced changes in climate conditions, geological hazards,
non-human-caused disasters, and health disasters, etc. Most of the power grid
security problems caused by natural threats in the power outage events we
selected are concentrated in the part caused by extreme weather, especially the
power outage accidents caused by windstorms and rainstorm/thunderstorms
reached 15 and 18 times respectively. The frequency of blackout caused by
geological disasters, space disasters and non-human-caused fires stay at a steady
low level. Every subcategory of incidental threats was involved in the blackouts
we selected, with the most frequent cause of power system failures being
technical failures. Generally speaking, we describe a technical failure as a
breakdown or ceasing of equipment caused by internal factors of the equipment
with direct malfunctioning effects on each sector in power systems. Since
technical failure covers a wide range, it has the longest column in the histogram,
reaching 51 times. The frequency of unnatural fires or explosions caused by
operating equipment/devices and installation failures caused by humans or
animals is maintained at a high level. The rest of the accident causes that belongs
to the category of operational fault are all around twice. The power system is
interdependent with other system infrastructure. There are cases where faults in
other systems spread and cause uncertainty of power system, and we call this type
of incident emerging threats. As can be seen from the histogram, emerging and
malicious threats are rare. Among them, malicious threats are all caused by
human subjective operation or control. And according to the three layers of power
system, malicious threats can be classified into physical threat, human threat, and
cyber threat.

Results and Analysis

 66

Figure 28: Percentages of the causes for selected blackouts

Overall, in Figure 28, natural and accidental threats account for more than 90%
of the 178 power outages counted, which means that these two threats can be used
as the main reasons for power outages. There are 4% of unknown represent a
portion of the outage text that does not state the cause and has not yet found the
truth.

Figure 29: Trends of four threat categories

Results and Analysis

 67

As shown in Figure 29, the four categories of threat trends are viewed in
conjunction with a year timeline. Although the curve fluctuates to a certain extent,
nature and accident are always in the lead and peaked in 2019. The emerging and
malicious threats have only gradually affected the instability of the power system
since 2008 and 2009. This means that with the progress of society and the
development of the industrial industry, the power system is gradually forms an
interrelated state with other systems. In this case, the stable operation of the
power grid can be affected, for example, by cyber-attack or other industrial
systems. Malicious threats and other emerging threats in the last decade are
starting as a reason for blackouts.

4.6.3 Geographical Distribution Analysis

We also counted the regions where power outages occurred. Figure 30 shows the
worldwide distribution of the blackouts we selected. Most of the blackouts are
concentrated in North America, including the United States and Canada. Among
the 178 blackouts, the number of occurrences in the United States is as high as
about 80. This was followed by Canada in the second batch, with power outages
occurring between 16 and 32 times. The rest of the regions with very low
frequency of grid power outages are mainly concentrated in Europe, Asia, South
America and Oceania.

However, it is obviously that the blackout events we selected cannot fully
represent the global power outage trend and frequency, which is caused by the
singularity of the data. Since the data is in English as the search language, the
obtained data is all in English, and there is very little outage information in
English for many countries and regions that do not use English as the official
language. This is the main reason why the vast majority of power outages in the
global distribution map are concentrated in North America, while other regions
are almost at the lowest power outage frequency level.

Results and Analysis

 68

Figure 30: Global selected blackouts distribution

Among the power outages we selected, the sample size of blackout events in
the United States is relatively comprehensive compared to other countries.
Therefore, we think that it is worth to conduct a detailed analysis of the grid
outage events that have occurred in different states in the United States.

Figure 31 is a map of the distribution of power outages we selected in the
United States. On the whole, the southwestern coastal areas and northeastern
regions of the United States are areas with high incidence of power outages,
especially California and New York. Because the Northeast borders Canada and
the two countries also have some common industrial infrastructure, grid incidents
often affect each other. This has become one of the reasons for the high frequency
of power outages in the northeastern United States. Due to the special
geographical location of the western and southern region, climate change such as
the formation of cyclones in the Pacific Ocean is one of the main reasons for
power outages. In contrast, the southeastern and central regions of the United
States have had few major grid incidents.

Results and Analysis

 69

Figure 31: USA selected blackouts distribution

To further explore the relationship between geography and the four threats, 15
states with more than 5 blackouts were selected as objects from the 78 blackouts
in the United States. As shown in Figure 32, in addition to Puerto Rico, 14 of the
15 states selected suffered from natural threats causing blackouts more frequently
than accidental threats. Especially in Texas and Iowa, the natural threats were the
culprit of blackouts in the text we collected. It is not difficult to find that these 14
states are located in the coastal belt and northeast of the United States. This means
that locations with a greater likelihood of climate impact are also at higher risk of
blackouts. The impact of malicious and emerging threats on the U.S. power
system is not clearly represented.

Results and Analysis

 70

Figure 32: Frequency of four threats in selected USA states

4.6.4 Scope of Impact Analysis

Typically, a blackout event that affects more than one million people can be
considered a major blackout. There are 94 out of 178 blackouts which we counted
belong to wide-scale blackouts. Due to limited space, we only selected 33 cases
that affected more than 10 million people, as shown in Table 13.

Over 100 million people were plagued by losing power in four Asian
countries, and the top 4 are all in India. Almost all of them are due to technical
failures. There are three events involved more than 3 countries and two of them
were caused by rainstorm. The most widespread being the outage on November 4,
2006, which affected 15 million people in seven European countries due to power
system design error. In general, 79% of the causes of widespread blackouts
affecting more than 10 million people were accidental threats, 15% were due to
natural threats, and only 6% were accidental threats.

Results and Analysis

 71

People affected
(millions) Locations Dates Threats

700 India July 31, 2012 Technical failure
620 India July 30, 2012 Technical failure
230 India January 1, 2001 Technical failure
230 India January 2, 2001 Technical failure
212 Pakistan January 10, 2021 Technical failure
160 Bangladesh November 1, 2014 Technical failure
140 Pakistan January 26, 2015 Terrorist attack
120 Indonesia August 4, 2019 Technical failure
100 Indonesia August 18, 2005 Technical failure
97 Brazil March 11, 1999 Lightning
70 Turkey March 31, 2015 Interior fire/explosion
60 Brazil,Paraguay,Uruguay November 10, 2009 Rainstorm
60 Australia January 30, 2010 Lightning
56 Italy September 28, 2003 Windstorm
55 US,Canada August 14, 2003 Operation mistake
53 Brazil February 4, 2011 Technical failure

48 Argentina,Paraguay,
Uruguay,Chile,Brazil June 16, 2019 Rainstorm

40 Philippines May 21, 2002 Technical failure
35 Philippines April 7, 2001 Technical failure
32 Venezuela March 7, 2019 Equipment defect/aging
30 US,Canada November 9, 1965 Maintenance accident
30 Iran May 20, 2001 Technical failure
30 Venezuela July 22, 2019 Sabotage
24 China August 15, 2017 Operational mistake
20 Egypt September 4, 2014 Technical failure
20 India October 12, 2020 Technical failure
21 Sri Lanka March 13, 2016 Technical failure
21 Sri Lanka August 17, 2020 Technical failure

15
France,Germany,Italy,
Netherlands,Belgium,

Spain,Portugal
November 4, 2006 Design error

15 Chile March 14, 2010 Technical failure
10 Brazil March 21, 2018 Technical failure
10 Kenya June 7, 2016 Human/animal interference
10 Jordan May 21, 2021 Technical failure

Table 13: List of selected wide-scale blackouts

 72

Chapter 5

Conclusion and Future Work

In this chapter, the previous work are summarized and discussed. Based on the
limitations of the proposed model, some possible future work is stated.

5.1 Conclusion

The thesis explores a NLP methodology for extracting information and
preprocessing text from unstructured blackout materials. In particular, we
demonstrate prototype using machine learning complemented by rule-based
approach to recognize and extract content of interest to users from blackout
records.

Therefore, the first step of the work is to crawl the web pages with the
keyword "blackout" returned by the Google search engine, and preprocess them to
construct a text dataset. Then, the specific vocabulary required building the NER
model, the generation of the original corpus, and the preprocessing methods for
annotation are introduced. To further extend potential of the model for extracting
more information using NLP techniques, we customized pipeline and integrated a
well-trained English language module developed by spaCy to build model
perform name entity recognition task on the blackout dataset. The performance of

Conclusion and Future Work

 73

the model is discussed and the statistical results of selected blackout events are
analyzed.

The results of this work may contribute to a deep understanding of blackout
incidents that have occurred in the history, including failure analysis of the power
system and multiple factors affecting the stable operation of the power grid, etc. It
can even provide an effective analytical tool for those working in the power
industry. In fact, the proposed methodology can not only be used to study and
analyze outage-related information in the power industry, but can also be
generalized to identify entities in other fields to study and analyze related topics.
For those algorithms and techniques could be utilized for obtaining and
preprocessing data.

5.2 Limitation and Future Work

The main limitation of the work is the lack of documentation of outage incidents
and sufficient information to optimize the model. A general deficiency can be
noticed from the collected dataset that the vast majority of recorded blackout
incidents are from more developed regions of the world, which making the results
not representative of the whole phenomenon. Secondly, the information that can
be collected on the Internet is quite discrete, and multiple documents describe the
same event or an event that is not completely recorded often occurs, which greatly
increases the difficulty of processing and statistics. Moreover, the web crawling
method we used does not work for the websites which need to pay. So the dataset
is not comprehensive, although we have tried to find related information through
various channels as many as possible.

Despite some regrets of data, algorithms and results, important results have
been achieved in data extraction and collection methods. We can conclude that
the results obtained are consistent with our expectations.

The thesis focuses on study the methods and tool that will be used at the
power information extraction and processing stages to ensure abundant
foundation is defined for conducting effective blackout analysis. There are some

Conclusion and Future Work

 74

issues need to be tackled with in the future work. Here several aspects can be
investigated and explored are as flowing:

 Partner with a professional organization in the power industry or apply
for a license to use the full dataset annotated by experts in the field.

 Use spaCy or other frameworks as input to train and generate a
classification model to label new text. Combined with supervised
techniques, it can improve the accuracy of the analysis and provide better
results.

 Probe into more complex preprocessing models such as BERT with the
help of transfer learning, and introduce the concept of word vector to
make up for the lack data of original corpus by calculating the similarity
between entities.

 75

Bibliography

[1] FERC and NERC staffs, Arizona-Southern California Outages on Septe
mber 8, 2011: causes and recommendations, Tech. rep., Federal Energy
 Regulatory Commission (FERC) & North American Electric Reliability
 Corporation (NERC) (2012). doi:10.1093/toxsci/kft047.

[2] National University System Institute for Policy Research, Blackout losse
s could top $100 million (2011). http://www.nusinstitute.org/press/in-the
-news/Blackout-losses-could-top-100million.html

[3] The massive blackouts in India—the largest blackout in the world. http:
//old.china5e.com/special/show.php?specialid=575 Accessed 01 Aug 2012

[4] Halilcevic Suad S, Gubina Ferdinand, Gubina Andrej F. Prediction of p
ower system security levels. IEEE Trans Power Syst 2009;24:368–77.

[5] Rosati, S. Natural Language Processing. Politecnico di Torino.

[6] Tono, R. «Natural Language Processing e tecniche semantiche per il su
pporto alla diagnosi: un esperimento». Tesi di Laurea Magistrale. Unive
rsità degli studi di Padova, 2010.

[7] Palshikar, G. K. «Techniques for Named Entity Recognition: A Survey».
 In: vol. 1.Gen. 2012, pp. 191–217. ISBN: 9781466636057. DOI: 10.40
18/978-1-4666-3604-0.ch022.

[8] LI Meng, LI Yanling, LIN Min. "Review of Transfer Learning for Na
med Entity Recognition." Jisuanji Kexue Yu Tansuo 15.2 (2021): 206-1
8.

[9] K. Humphreys et al., "University of sheffield: Description of the laSIE-
II system as used for MUC-7", Proc. 7th Message Understanding Conf.,
 pp. 1-20, 1998.

[10] G. Krupka and K. IsoQuest, "Description of the nerOWL extractor syst
em as used for MUC-7", Proc. 7th Message Understanding Conf., pp.
21-28, 2005.

http://www.nusinstitute.org/press/in-the-news/Blackout-losses-could-top-100million.html
http://www.nusinstitute.org/press/in-the-news/Blackout-losses-could-top-100million.html
http://old.china5e.com/special/show.php?specialid=575
http://old.china5e.com/special/show.php?specialid=575

Bibliography

 76

[11] W. J. Black, F. Rinaldi and D. Mowatt, "FACILE: Description of the
NE system used for MUC-7", Proc. 7th Message Understanding Conf.,
pp. 1-10, 1998.

[12] NADEAU D, SEKINE S. A survey of named entity recognition and cl
assification[J]. Computational Linguistics, 2007,30(1): 3-26

[13] LI J, SUN A X, JOTY S R. SegBot: a generic neural text segmentatio
n model with pointer network[C]//Proceedings of the 27th International
Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018:
 4166-4172.

[14] Grewal, Jasleen K, Martin Krzywinski, and Naomi Altman. "Markov M
odels — Hidden Markov Models." Nature Methods 16.9 (2019): 795-9
6.

[15] De Ville, Barry. "Decision Trees." Wiley Interdisciplinary Reviews. Co
mputational Statistics 5.6 (2013): 448-55.

[16] J. N. Kapur, Maximum-Entropy Models in Science and Engineering, H
oboken, NJ, USA:Wiley, 1989.

[17] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, "Su
pport vector machines", IEEE Intell. Syst. Their Appl., vol. 13, no. 4,
pp. 18-28, Jul./Aug. 1998.

[18] J. D. Lafferty, A. McCallum and F. C. N. Pereira, "Conditional rando
m fields: Probabilistic models for segmenting and labeling sequence dat
a", Proc. 18th Int. Conf. Mach. Learn., pp. 282-289, 2001.

[19] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521,
 no. 7553, 2015.

[20] J. Li, A. Sun, J. Han and C. Li, "A Survey on Deep Learning for Na
med Entity Recognition," in IEEE Transactions on Knowledge and Data
 Engineering, vol. 34, no. 1, pp. 50-70, 1 Jan. 2022.

[21] Strubell, Emma, Patrick Verga, David Belanger, et al. Fast and accurate
 entity recognition with iterated dilated convolutions[C]//Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Proces
sing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL,2017: 2670-2680.

[22] Huang, Zhiheng, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF model
s for sequence tagging[J]. arXiv:1508.01991, 2015.

Bibliography

 77

[23] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language pro
cessing (almost) from scratch[J]. Journal of Machine Learning Research,
 2011, 12: 2493-2537.

[24] V ASW ANI A, SHAZEER N, PARMAR N, et al. Attention is all yo
u need[C]//Proceedings of the Annual Conference on Neural Informatio
n Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran
Associates, 2017: 5998-6008.

[25] SHEN Y Y , YUN H, LIPTON Z C, et al. Deep active learning for n
amed entity recognition[C]//Proceedings of the 2nd Workshop on Repre
sentation Learning for NLP, Vancouver, Aug 3, 2017. Stroudsburg: AC
L, 2017: 252-256.

[26] Y ANG Z, SALAKHUTDINOV R, COHEN W. Multi-task crosslingual
 sequence tagging from scratch[J]. arXiv:1603.06270,2016.

[27] Apache OpenNLP. 2004. Apache Software Foundation. Retrieved from
https://opennlp.apache.org.

[28] Shelar, Hemlata, Gagandeep Kaur, Neha Heda, and Poorva Agrawal. "
Named Entity Recognition Approaches and Their Comparison for Custo
m NER Model." Science & Technology Libraries (New York, N.Y.) 39.
3 (2020): 324-37.

[29] SpaCy. (2020) Facts & Figures. Retrieved 26 March 2020. [Online]. A
vailable: https://spacy.io/usage/facts-figures

[30] SpaCy. ―Library architecture,‖ 2022. [Online]. Available: https://spac
y.io/api#section-nn-model

[31] Y. Pradeep, S. A. Khaparde and R. K. Joshi, "High Level Event Ontol
ogy for Multiarea Power System," in IEEE Transactions on Smart Grid,
 vol. 3, no. 1, pp. 193-202, March 2012

[32] Santos G, Pinto T, Morais H, Sousa TM, Pereira IF, Fernandes R, et a
l. Multi-agent simulation of competitive electricity markets: autonomous
 systems cooperation for european market modeling. Energy Convers M
anage 2015;99:387–99. doi: 10.1016/j.enconman.2015.04.042.

[33] Zhou L, Pan M, Sikorski JJ, Garud S, Aditya LK, Kleinelanghorst MJ,
 et al. Towards an ontological infrastructure for chemical process simul
ation and optimization in the context of eco-industrial parks. Appl Ener
gy 2017;204:1284–98. doi: 10.1016/j.apenergy.2017.05.002.

https://spacy.io/usage/facts-figures
https://spacy.io/api#section-nn-model
https://spacy.io/api#section-nn-model

Bibliography

 78

[34] Morbach J, Yang A, Marquardt W. OntoCAPE-A large-scale ontology f
or chemical process engineering. Eng Appl Artif Intell 2007;20(2):147–

61. doi: 10.1016/j.engappai.2006.06.010.

[35] Devanand A, Karmakar G, Krdzavac N, et al. OntoPowSys: A power s
ystem ontology for cross domain interactions in an eco industrial park
[J]. Energy and AI, 2020, 1: 100008.

[36] Ram Gopal, James R. Marsden, Jan Vanthienen. Information mining —

 Reflections on recent advancements and the road ahead in data, text,
and media mining. Pages 727-731, ISSN 0167-9236. https://www.scienc
edirect.com/science/article/pii/S0167923611000376

[37] B. Shi, X. Bai and C. Yao, "An End-to-End Trainable Neural Network
 for Image-Based Sequence Recognition and Its Application to Scene T
ext Recognition," in IEEE Transactions on Pattern Analysis and Machin
e Intelligence, vol. 39, no. 11, pp. 2298-2304, 1 Nov. 2017

[38] A. Graves, S. Fernandez, F. J. Gomez, and J. Schmidhuber. Connection
ist temporal classification: labelling unsegmented sequence data with rec
urrent neural networks. In ICML, 2006. 4, 5

[39] S. M. Tedjojuwono and C. Neonardi, "Aspect Based Sentiment Analysi
s Restaurant Online Review Platform in Indonesia with Unsupervised S
craped Corpus in Indonesian Language," 2021 1st International Confere
nce onComputer Science and Artificial Intelligence (ICCSAI), 2021, pp.
 213-218

[40] D. Berrar, "Bayes‘ Theorem and Naive Bayes Classifier," Encyclopedia

 of Bioinformatics and Computational Biology, vol. 1, pp. 403-412, 20
18.

[41] An J, Lee S, Lee G G. Automatic acquisition of named entity tagged
corpus from world wide web[C]//The Companion Volume to the Procee
dings of 41st Annual Meeting of the Association for Computational Lin
guistics. 2003: 165-168.

[42] ―Write smarter, write with Ludwig!‖ 2022. [Online]. Available: https://
www.youtube.com/watch?v=ZgIHx2aCcPE

[43] SpaCy. (2020) training. Retrieved 26 December 2020. [Online]. Availab
le: https://v2.spacy.io/usage/training

https://www.sciencedirect.com/science/article/pii/S0167923611000376
https://www.sciencedirect.com/science/article/pii/S0167923611000376
https://www.youtube.com/watch?v=ZgIHx2aCcPE
https://www.youtube.com/watch?v=ZgIHx2aCcPE
https://v2.spacy.io/usage/training

Bibliography

 79

[44] Hiroki Nakayama et al. doccano: Text Annotation Tool for Human. Sof
tware available from https://github.com/doccano/doccano. 2018. url: https:
//github.com/doccano/doccano

[45] Chou C L, Chang C H, Lin Y H, et al. On the Construction of Web
NER Model Training Tool based on Distant Supervision[J]. ACM Trans
actions on Asian and Low-Resource Language Information Processing
(TALLIP), 2020, 19(6): 1-28.

[46] Derczynski, L. «Complementarity, F-score, and NLP Evaluation». In: Pr
oceedings of the Tenth International Conference on Language Resources
 and Evaluation (LREC‘16). 2016, pp. 261–266.

[47] Powers, D. «Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation». In: Journal of Machine Lear
ning Technologies2(1) (2008), pp. 37–63.

[48] Smith S L, Kindermans P J, Ying C, et al. Don't decay the learning r
ate, increase the batch size[J]. arXiv preprint arXiv:1711.00489, 2017.

[49] Bompard E, Huang T, Wu Y, et al. Classification and trend analysis o
f threats origins to the security of power systems[J]. International Journ
al of Electrical Power & Energy Systems, 2013, 50: 50-64.

https://github.com/doccano/doccano
https://github.com/doccano/doccano

