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I 

 

Summary 

In the field of natural language processing, traditional information extraction 
methods involve lexical and syntactic analysis to extract words and parts of speech 
from sentences to establish semantics. This development of the new artificial 
intelligence branch makes it suitable for automatic tracing and analyzing blackouts 
in the power systems, which is very costly to the society. Therefore, the purpose of 
this thesis is to develop a model for extracting useful information from texts of 
power industry to conduct effective blackout analysis. To achieve this goal, we 
proposed a combined traditional rule-based and machine learning approach. A 
critical step was to build training data and clean data. We considered blackouts 
using information about when, where, and what equipment and installations failed. 
The dataset was generated related to blackouts by scraping websites and using 
OCR to get text documents. More specifically, first, blackout data was collected, 
and appropriate training data was created through several steps including sentence 
extraction, relation, and named entity extraction for tagging purposes. Then, a 
recognition model for a given entity type could be built based on the constructed 
vocabulary. From experiments, given the blackout texts, we demonstrated how to 
build a model to extract the desired entities, i.e. time, location, faulty facility, etc. 
The best results and provable evaluation metrics were obtained by continuously 
optimizing the model. This research helps to highlight and perceive useful 
information from outage incidents to specific facilities. The framework proposed 
by this study can surely migrate to other specific fields and can certainly improve 
the quality of incident analysis and provide practitioners with technical support for 
specific tasks. 
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Chapter 1 

Introduction 

1.1  Background 

The power system is characterized by a high degree of automation. It is mainly 
composed of electrical equipment, power transformation, distribution facilities, 
transmission lines, and power plants. Nowadays, people's lives and social 
development depend on electricity. Therefore, the power system is an important 
foundation to ensure and promote social stability and economic development. The 
safety of the power system is a crucial factor in order to ensure stability and normal 
operation of the system. Judging from some representative cases of the blackout 
that have occurred in the past, when the power system is affected by various factors 
that cause the system to be unsafe, it may lead to a large-scale power outage. It will 
cause huge economic losses, even seriously endanger people's lives and national 
security. For example, in 2011, the blackout of southern California, Arizona and 
Baja California regions [1] cost about one hundred million dollars [2]. At the end of 
July 2012, a major power outage occurred in India for two consecutive days. Nearly 
half of the national population was affected by this event. During the blackout, 
railway systems and subway service were shut down and the urban transportation 
systems were paralyzed. More severely, the civil water supply was interrupted and 
more than two hundred miners were trapped underground [3]. 
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From the analysis of the power outages that have occurred in the past, there are 
many reasons for the safety problems in the power system, which can be roughly 
divided into internal factors and external factors, including grid loopholes, natural 
disasters, human errors, and even acts of war [4] etc. For some possible threats and 
future development of the power grid, it is very meaningful to statistics and 
analysis the power outages that have occurred in the past. 

1.2  Goal 

The goal of this work is to develop a model that can accurately identify and extract 
useful information (including when, where, and why a power failure occurred) 
from unstructured texts. This can be done by using text mining algorithms for data 
collection and, subsequently, the use of custom Named Entity Recognition (a 
branch of Natural Language Processing) and Optical Character Recognition (OCR) 
techniques to process the texts about blackouts, such as news reports, media 
information or professional accident reports within power industry, etc.  

For this goal, there are few dataset that can be used directly, the existing data is 
very fragmented, and the unstructured text contains a lot of unnecessary details. 
And create a usable dataset needs to be collected and processed a lot before it can 
be put into a Machine Learning model. This makes text analysis work more 
difficult and time-consuming. 

The main objective is to extract information based on text content. A trained 
model will further process the text and highlight key phrases to analysis the results 
and set the goals for the future development. 

1.3  Thesis Organization 

The thesis is organized as followings: 

Chapter 1 is introduction part, which outlines the research background and 
goals of the thesis briefly. 
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Chapter 2 describes some basic concepts, and gives an overview of related 
works and techniques. 

Chapter 3 details the methodology in this work. It covers several major 
aspects from information mining, data cleaning to text classification and model 
creation and optimization. 

Chapter 4 presents all the obtained results containing the data collected for 
building the model, parameters selection during model training and analysis of 
test. 

Chapter 5 provides a general summary of the work, shows some limitations 
and future developments to improve the overall quality of the study. 
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Chapter 2 

Related Work 

In this section, we start by explaining the basic concepts of NLP and ML. Then, 
we interpret the NER process for automatically extracting useful information from 
text. Finally, we give an overview of framework which we used and contribution 
of electric power ontology in this work. 

2.1  Natural Language Processing 

Natural Language Processing (NLP) is one of the most challenging research 
directions in the field of artificial intelligence (AI) that helps computers understand, 
interpret, and manipulate human language. NLP draws from multiple disciplines, 
including computer science and computational linguistics, and it as a bridge 
between machine language and human language to achieve human-computer 
communication. NLP is characterized by two core fields: Natural Language 
Understanding (NLU) and Natural Language Generation (NLG) [5] [6]. 

 Natural Language Understanding (NLU) makes that machines have the 
ability to understand language like humans. After the emergence of NLU, 
machines can distinguish different intentions from expressions in various 
natural languages, instead of relying on rigid keywords. Nowadays, almost 
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all applications related to text language and speech will use NLU, such as 
machine translation, machine customer service, smart speakers, etc. 

 Natural Language Generation (NLG) is a sentence generation process that 
converts data in non-linguistic format into a language format that humans 
can understand. It can improve content production with personalized and 
understandable text. 

For many applications it is necessary to draw on techniques belonging to both 
categories, in order to combine the analysis of the texts with the generation of 
new documents, created starting from the information that has been managed to 
extract. 

Some commonly researched tasks of NLP are following: 

 Lexical Analysis: Tokenization, Morphological Analysis, Part-of-speech 
Tagging, etc. 

 Sentence Analysis: Chunking, Parsing, Language Modeling, Sentence 
Boundary Detection, etc. 

 Sematic Analysis: Word Sense Disambiguation, Sematic Role Labeling, 
Word/Sentence/Paragraph Vector, etc. 

 Information Extraction: Glossary Extraction, Event Extraction, Named 
Entity Recognition, Slot Filling, etc. 

 High-level Tasks: Machine Translation, Question-Answering System, 
Text summarization, etc. 

The Information Extraction, i.e. the activity related to the extraction of 
information from unstructured data, is the main reason for the interest shown in 
this work towards the NLP. 
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2.1.1  Named Entity Recognition 

The fundamental form of text data is unstructured, and information extraction 
plays a very critical role in understanding the logical meaning of sentences. 
Named entity recognition is often used as a first step in the task of information 
extraction. It refers to locating, classifying and extracting "named entities" from 
text. We represent the words in a sentence as Named-entities, which represent 
real-world objects with proper names. The named entity recognition process can 
be divided into two steps [6]: 

 Determine the boundaries of the entity 

 Assignment of labels 

Most Natural Language Processing libraries and tools already have 
predefined categories of entities as they are considered the most common. In this 
case we speak of Named Entity Generic and the categories that belong to it are 
personal names, dates, and locations. An example of NER is shown in Figure 1. 

Figure 1: An example of NER visualization results 

There are other generic entities, but which ones and how many depend on the 
type of software used and obviously on the language. It is also possible to develop 
a Domain-specific Named Entity, or a system for recognizing specific entities, 
chosen on the basis of the analysis context [7]. 

2.1.2  Methods for NER 

Since NER can help answer many real-world questions, it is often mentioned and 
used in many domains of NLP. Methods for implementing NER can be roughly 
divided into two categories: traditional and deep NER approaches [8]. 

Traditional approaches: requires lexical analysis, syntax analysis and a 
rule-base for manually coded relations between words. 
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 Rules-based 

Rule-based methods rely on semantic grammar rules manually formulated by 
linguists and domain experts to identify various types of named entities through 
rule matching. Although rule-based methods can achieve good results on specific 
corpora (exhaustive dictionaries and limited size), building these rules is not only 
time-consuming and difficult to cover all rules, but also has poor scalability and 
portability. Some famous rule-based NER methods are LaSIE-II [9], NetOwl [10], 
Facile [11], etc. 

 Unsupervised Learning 

Unsupervised learning methods utilize lexical resources, models and statistics 
obtained on large corpora to infer named entity types by using clustering [12]. 
The dependence on supervised information is reduced, and only a few seed rules 
(general rules or shallow grammar knowledge) are needed. 

 Feature-based Supervised Learning 

Feature-based supervised learning methods transform NER into sequence labeling 
tasks through supervised learning. Each training sample is represented by 
designed features according to the labeled data, which are provided by human 
experts from the domain. And then trains a model through Machine Learning 
algorithms to predict the entities labels. But the limitation is that it requires an 
annotated corpus for the domain of interest and artificially constructed to select 
effective features [13]. The main algorithms of supervised NER, which are hidden 
Markov model (HMM) [14], Decision Trees [15], maximum entropy model 
(MEM) [16], support vector machines (SVM) [17], conditional random fields 
(CRF) [18]. 

Deep Neural Network (NN) Approaches 

Deep learning (DL) is a field of machine learning that is composed of multiple 
processing layers to learn representations of data with multiple levels of 
abstraction [19]. There are three advantages of applying deep learning techniques 
for NER: deep neural networks can learn more complex features from data by 
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performing non-linear transformations; Deep learning can automatically learn 
features from raw data; Training end-to-end deep neural NER models via gradient 
descent is recommended [20]. DL-based NER with the general architecture is 
shown on Figure 2, which are distributed representation, feature extractor and 
label decoder.  

 

Figure 2: The taxonomy of DL-based NER [20] 

Distributed representation maps words or characters into low-dimensional 
real-valued dense vectors, where each dimension represents a hidden feature, 
which can automatically learn semantic and syntactic features from text. There are 
three types of distributed representation: Word Embedding [21], Character 
Embedding [13], and hybrid representations [22]. The feature extractor learns the 
context feature representation by receiving the vector of the previous layer. 
Commonly used feature extractors are Convolutional Neural Networks (CNN) 
[23], Transformer [24], Recurrent Neural Network (RNN) [25], Gated Recurrent 
Unit (GRU) [26] and Long Short-Term Memory (LSTM) [13]. The label decoder 
is the last stage, which takes context features as input to generate label sequences. 
The common decoding methods are Softmax [21], CRF, and RNN. 
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2.2  Tools for NLP 

There are many different libraries and NLP tools are developed for building the 
NER system: 

 Apache OpenNLP [27] 

 GATE (General Architecture for Text Engineering) 

 TensorFlow 

 NLTK (Natural Language Toolkit) 

 SpaCy 

Each of these tools has peculiarities and novelties compared to the software 
that are normally used most, such as OpenNLP, TensorFlow and spaCy which 
have pre-trained NER models that can be imported, used and can be modified or 
customized according to requirements. When considering the overall performance 
of all the models, Python's spaCy gives a higher accuracy and the best result [28]. 

2.2.1  SpaCy 

SpaCy [29] provides an open-source Python library and neural network model for 
NLP tasks. The tasks include processing linguistic features such as tokenization, 
part-of-speech tagging, lemmatization, rule-based matching, named entity 
recognition, dependency parsing, sentence boundary detection, similarity 
detection, etc. The model is stochastic and the training process is done based on 
gradient and loss function. The pre-trained model can be used in transfer learning 
as well. The library architecture is shown on Figure 3. The Language class 
processing and converting text with multiple languages to Doc object called nlp, 
which has one or more pipeline components for many tasks as shown on Figure 4. 
Strings, word vectors and lexical attributes are centralized in the Vocab. The 
Language class, the Doc object and the Vocab are core data structures in spaCy.  
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Figure 3: SpaCy library architecture [30] 

 

Figure 4: SpaCy language processing pipeline [30] 
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2.3  Power System Ontology 

Ontology describes an abstract simplified view of a specific domain by making 
concepts and relationships explicit, and it identifies concepts relevant to 
representing the domain. That is, by defining terms and axioms, in some 
machine-readable form language can be shared by a group. The term ontology is 
used differently in multi-domain. In the field of power systems, the main purpose 
of the ontology is to be developed a task or event ontologies to achieve specific 
goals. For example, Pradeep et al. defined high level event ontology for power 
system comprising seven concepts to standardize power system events [31]. In 
[32], through development of an upper ontology to integrate several electricity 
market and system models, which explains the basic concepts of all available 
information to help relevant actors understand and respond to the complex and 
changing power system.  

The OntoEIP [33] is capable of presenting knowledge in electrical 
engineering, logistics etc. The ontology utilizes the design philosophy of 
OntoCAPE [34]. Devanand et al. utilized the knowledge management approach 
for constructing a domain ontology for power system called OntoPowSys using a 
Description Logics (DL) syntax and the Ontology Web Language (OWL2) [35]. It 
extends the classes and properties hierarchy defined in the electrical power system 
modules of OntoEIP. The ontology of OntoPowSys contains the important terms 
and concept names of power system, as shown in Table 1. Among all of these, the 
typical properties are things such as electrical equipment, system, scalar quantity, 
etc. which are examples used in the thesis for information extraction.  
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Term name Concept definitions 
Power system PowerSystem ⊑ CompositeSystem 
Bus node BusNode ⊑ ElectricalEquipment 
Electricity line ElectricityLine ⊑ System 
Energy meter EnegryMeter ⊑ ElectricalEquipment 
Power load PowerLoad ⊑ ElectricalEquipment 

 Reactive power ReactivePower ⊑ ScalarQuantity 
Power generator PowerGenerator ⊑ ElectricalEquipment 

 Rated Current Rated Current⊑ ConstantProperty 

Table 1: Partial OntoPowSys concept hierarchy [35] 
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Chapter 3 

Methodology 

This chapter describes methods for retrieving and analyzing collected 
unstructured data. Details for preprocessing and transforming the dataset after 
collection are explained. The whole process of building and optimizing the model 
is mainly described. 

3.1  System Architecture 

Since we focus on training a model to find the concept of date, location, electrical 
equipment, and some information related to electrical system for blackout 
analysis, a system was established to accomplish this goal. The overall 
architecture presents in Figure 5. 
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Figure 5: Framework structure 

The entire work was divided into two parts that information mining and 
model training. We started with information mining, which is divided into two 
branches. One is to mine the entities we are interested in and classify them so that 
each entity has an appropriate label, in order to build a corpus for train the NER 
model. Another branch is mining texts about blackout event. Crawling text 
information according to URLs related to blackout. Finally, the preprocessed 
blackout files were transferred to a main model consisting of a custom NER 
model, a pre-trained model and optimization algorithms for completing blackout 
analysis. 

3.2  Information Mining 

Information Mining is also called ―Web Information Mining‖, it can be broadly 
defined as the discovery and analysis of structured or unstructured data that can be 
quantitative, textual, and pictorial in nature from the World Wide Web. We set 
forth a summary representation of the elements of Information Mining [36] as 
shown in Figure 6. According to different mining objects, network information 
mining can be divided into network content mining, network structure mining and 
network usage mining.  
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When preforming Information Mining, it consists of following steps: 

 Resource discovery: to retrieve the required network documents 

 Information selection and preprocessing: to automatically select and 
pre-process specific information from the retrieved network resources 

 Generalization: find common patterns within a single and multiple web 
sites 

 Analyze: identify or interpret the patterns mined 

 

Figure 6: Key components of information mining [36] 

In this section, we focus on network content mining to collect textual data 
about power outage, i.e. blackout on the Internet with machine learning as well as 
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statistics algorithms. We write python scripts to get Google Search results by using 
requests and BeautifulSoup, which are python library. 

Google Search 

As the most-visited website in the world, Google Search is a search engine 
provided by Google Inc. The main purpose of it is to search for text in publicly 
accessible documents provided by web servers. Additionally, it offers many 
different options for customizing searches, using symbols to include, exclude, 
specify, or require certain search behaviors. The algorithms of Google Search 
organize the hundreds of billions of pages in search index to provide the most 
relevant and useful results based on a user's query, all in an instant. The order of 
search results is returned by PageRank, which is a priority rank system. 

Python 

Python is an interpreted high-level general-purpose programming language. 
Python code is very concise and highly readable. Its language structure and 
object-oriented method help developers express ideas with less code, which greatly 
improves work efficiency. It is dynamically-typed and garbage-collected. When a 
part of the memory space occupied by a program is no longer accessed by the 
program, the program will return this part of the memory space to the operating 
system with the help of the Garbage Collection algorithm. Python code does not 
need to be compiled, can be run directly by the python interpreter, and can modify 
the properties of classes in real time, which is a great advantage compared to other 
programming languages that require a compiler. 

Requests 

Requests is a simple HTTP library for python. It allows user send HTTP requests 
without add query strings to URLs or to form-encode POST data manually. 
Keep-alive and HTTP connection pooling are 100% automatic thanks to another 
python HTTP library called urllib3. The response is serialized JavaScript Object 
Notation (JSON) format, which is used to represent general data based on 
JavaScript object syntax. So user can easily access values in the object by key. 
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3.2.1  Data Collection for Blackout List 

The first step for blackout analysis is data collection. Filtering and preprocessing 
large amount of data to avoid noise and outliers are the main issues that we have to 
face at this stage. 

There are many methods of data collection, which can be roughly divided into 
manual, automatic and semi-automatic. Among them, regarding manual data 
collection, it is a relatively primitive method that requires a lot of time and staff. In 
general, the data obtained are accurate and reliable because noise and duplicates are 
avoided. Therefore, it is often used when the data range is large and the number is 
small. For automatic data collection, it is the fastest method, especially when we 
collect huge amounts of network information. At the same time, this method has 
high requirements on hardware and software facilities, and needs to set constraints 
and filtering conditions in order to obtain expected results. Today, the most popular 
and legal methods are downloading of open dataset, reading API, and web crawlers 
with some third parties. About semi-automation method, it is a combination of 
manual and automatic method. Analysts need to choose the appropriate method for 
specific data at different stages of data collection. 

In this work, we choose semi-automation method to prepare the blackout data. 
There are two datasets here. The first dataset is from the crawling of 
blackout-related websites. The blackout-related URLs were crawled from Google 
search results using a python script. Firstly, install the requirements and import it 
into python script. To perform a search, expects the query to be in the parameters of 
the URL. Additionally, all spaces must be replaced with ‗+‘. To build the URL, we 
properly format the query and put it into the ‗q‘ parameter, as shown in Algorithm 
1. 

import urllib 1 

import requests 2 

from bs4 import BeautifulSoup 3 

query = input("Enter something to search:") 4 

query = query.replace(' ', '+') 5 

URL = f"https://google.com/search?q={query}"6 

Algorithm 1: Snippet of code for request 
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The different search results will be return for mobile and desktop. So 
depending on the use case, we need to specify appropriate user-agent in the 
headers. The request was successfully when the status code returns a ‗200‘. Then 

we put it into BeautifulSoup, which is a python library that allows parse 
content and extracting data from HTML files as shown in Algorithm 2. 

results = [] 1 

for g in soup.find_all('div', class_ = 'r'): 2 

    anchors = g.find_all('a') 3 

    if anchors: 4 

        link = anchors[0]['href'] 5 

        title = g.find('h3').text 6 

        item = { 7 

            "title": title, 8 

            "link": link 9 

        } 10 

results.append(item) 11 

print(results) 12 

Algorithm 2: Example on how to get Google Search results with Python 

3.2.2  Text Scraping 

After we successfully get the URL list about the blackout event, what we need to 
do is to parse HTML source code and then save it. To In order to get the specific 
HTML source code according to the URL, python provides a variety of methods, 
mainly including library of urllib and requests. After comparing the results 
of accessing HTML between the two libraries, we decided to use requests, 
since it can get more complete HTML source code. 

After processing the HTML using requests, the complex code needs to be 
parsed and only the content we need is extracted. Python also provides many 
methods for parsing HTML, regular matching, BeautifulSoup, Xpath, etc. Here 
we use BeautifulSoup as shown in Algorithm 3. 
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res = requests.get(url) 1 

html = res.text 2 

soup = BeautifulSoup(html, 'html5lib') 3 

for script in soup(["script", "style", "aside"]): 4 

     script.extract() 5 

text = " ".join(re.split(r'[\n\t]+', soup.get_text()))6 

Algorithm 3: Example on how to download article according to URL 

3.3  Pre-processing 

In textual data science tasks, any raw text needs to undergo detailed preprocessing, 
and then digest it using algorithms. After the data collection stage, the 
preprocessing stage will be performed in order to be more organized, structured 
and usable by computers for avoiding the analysis that might lead to erroneous 
results. 

3.3.1  Data Cleaning 

After the collection phase, data cleaning is performed to remove all unnecessary 
data that may be adding noise to the data set. The text files are obtained from 
websites according to the URLs list, and some of the content may have the 
following conditions:  

 Concatenated words 

 HTML tags 

 Non-text content 

 Non-English characters and punctuations 

 Abbreviation 

For the first case that might arise in the text we mentioned above, where 
words are not separated by spaces. As shown in Algorithm 4, it can be solved by a 
python library Wordninja, which is probabilistic splitting of concatenated words 
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using NLP based on English Wikipedia uni-gram frequencies. Separating each 
word with a space helps the word segmentation of the text, and also lays the 
foundation for accurate NER. 

import wordninja 1 

split = wordninja.split(text)2 

Algorithm 4: Snippet of code to split concatenated words 

Python's regular expression (or regex) is used to filter meaningless content, 
such as HTML tags contained in text, non-text content, non-English characters, 
etc. For abbreviation, like don‘t, I‘m, ‘s, regex also be used for replace acronym 
with full format. A regular expression (or regex) is a sequence of symbols that 
identifies a group of strings. It is used as search pattern to scan texts and find and 
manipulate strings. As shown in Algorithm 5, in python the library re allows the 
manipulation of regular expressions. 

import re 1 

cleanr = re.compile('<.*?>') 2 

text = re.sub(cleanr, ' ', text)3 

Algorithm 5: Snippet of regex to remove HTML tags from text 

3.3.2  Sentence Detection 

Sentence detection is a process of locating the beginning and end of sentences in a 
given text. It can divide the processed text into linguistically meaningful units that 
will help process the text to perform tasks such as part-of-speech (POS) tagging 
and entity extraction. In spaCy, the sents property is used to extract sentences. 
User can customize the sentence detection to detect sentences on custom 
delimiters. For our case, it is correctly able to identify sentences in English 
language, using a full stop (.) as the sentence delimiter. 
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3.3.3  Tokenization 

Tokenization is the process of forming tokens (sequence of characters) from input 
stream and it can be defined as the next step after sentence detection in NLP. It 
allows identifying the basic units in input text, and these basic units called tokens. 
Tokens can be identifiers, operators, keywords, symbols and constants. For this 
purpose, the token property from the spaCy python library is used which returns a 
list of the words (punctuation and numbers included) of the text by iterating on 
the Doc object. Meanwhile, spaCy provides various attributes for the Token class 
as shown in Algorithm 6. 

import spacy 1 

for token in doc: 2 

  print(token, token.idx, token.text_with_ws, token.is_alpha, 3 

token.is_punct,token.is_space, token.shape_, token.is_stop) 

Algorithm 6: Sample code for tokenizing a text 

3.3.4  Stop Words Removing 

Stop words are common words that have no benefit for analysis of NLP. In fact, 
search engines automatically ignore these words when inserting them. For this 
purpose, the stop_words from the spaCy python library is used as shown in 
Algorithm 7. In this work, we need to fine-tune the provided stop words list 
according to the characteristics of the power domain. In particular, remove from 
the list some prepositions that may form phrases with verbs, such as ‗in‘, ‗out‘, 
‗up‘, ‗down‘, etc. They are indicative of NER in Section 3.5  SpaCy NER Model. 
To do this, we customized a python script to remove from the default stop words 
those that are useful for our work. 

import spacy 1 

print(spacy.lang.en.stop_words.STOP_WORDS)2 

Algorithm 7: Sample code that shows the stop words 
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3.3.5  Lemmatization 

Lemmatization is a process which converts complex forms of words into its basic 
grammatical form, in which the basic form of the word is extracted through 
additional dictionary lookup. 

For example, organizes, organized and organizing are all forms of organize. 
Here, organize is the lemma. The inflection of a word allows expressing different 
grammatical categories like tense (organized vs. organize), number (trains vs. 
train), and so on. Lemmatization is a necessary step since it helps reduce the 
inflected forms of a word so that they can be analyzed as a single item. 
Meanwhile, It can also help normalize the text. spaCy has the attribute lemma_ on 
the Token class. The Table 2 shows different examples of how the lemmatization 
approach changes the words. 

Origianl Lemma 
Were Be 
Lines Line 

Organized Organize 
Generation Generate 

Table 2: Examples of lemmatization 

3.3.6  Dependency Parsing 

Dependency Parsing is a process to analyze the grammatical structure in a 
sentence and find out related words as well as the type of the relationship between 
headwords and their dependents. The dependencies can be mapped in a directed 
graph representation: 

 Words are the nodes. 

 The grammatical relationships are the edges. 

Dependency parsing helps to understand the roles that words play in the text 
and the relationships between different words. When the relationship between 
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named entities in a sentence needs to be discovered, a pre-trained model can be 
used to identify the relationship between words or word chunks. 

Figure 7 shows that the subject of a sentence is proper noun Bus nodes and 
it has a subordinate relationship with electrical network. It represents an 
example of relation in our raw corpus for the property ‗has‘ which is used in 

power system ontology concept. 

Figure 7: Dependency parse demo 

3.3.7  Shallow Parsing 

Shallow parsing, or chunking, is the process of extracting phrases from 
unstructured text. Chunking groups adjacent tokens into phrases on the basis of 
their POS tags. There are some standard well-known chunks such as noun phrases, 
verb phrases, and prepositional phrases. 

Noun Phrase Detection 

A noun phrase is a phrase that has a noun as its head. It could also include other 
kinds of words, such as adjectives, ordinals, determiners. Noun phrases are useful 
for explaining the context of the sentence. They help you infer what is being 
talked about in the sentence. spaCy has the property noun_chunks on Doc object, 
it can be used to extract noun phrases. 

By looking at noun phrases, we can get information about the text. For 
example, ‗a blackout event‘ indicates that the text mentions a blackout, while the 
date 21 July lets us know that blackout occurred for 21 July. We can figure out 
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whether the blackout is in the past or the future. If there is a location is detected 
that tell us the position of the blackout. 

Verb Phrase Detection 

A syntactic unit consisting of at least one verb is called a verb phrase, and it helps 
to understand the action involved in the noun. This verb can be followed by other 
blocks, such as noun phrases. SpaCy has no built-in functionality to extract verb 
phrases, so we need a library called textacy which used to extract verb phrases 
based on grammar rules.  

In the text of electricity field, verb phrase is an important signal. For example, 
cut off, break down, etc. Empirically, verb phrases such as these often appear in 
sentences involving faulty equipment, so this step is important for analyzing 
blackout events. 

3.4  Creating NE Tagged Corpus 

We focus on creating NE categories about power industry because others such as 
date and location are relatively easier to recognize and the power industry 
categories actually suffer from the shortage of an NE tagged corpus. 

Information in various languages is already co-hosted in written form on the 
web, and the amount has recently increased almost infinitely. The network can be 
viewed as an infinite linguistic resource that contains various NE instances with 
different contexts. The key idea is to use a precompiled list of NEs to 
automatically label such NE instances with appropriate class labels. However, due 
to word ambiguity and boundary ambiguity of NE instances, there should be some 
general and language-specific considerations in this tokenization process. To 
build a corpus containing specific entities, its generation process consists of three 
steps. The process first uses data collection techniques to obtain useful NE entries 
from documents and secondly assigns them to appropriate label. Next, sentences 
are generated and searched by inputting entities with categories to linguistic 
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search engine. Extracting each sentence returned by the search engine to construct 
corpus. Figure 8 explains the whole process of generating the NE corpus. 

 
Figure 8: Process of corpus building 

3.4.1  Named Entity List 

Randomly collecting files from the web does not serve our purpose. Because not 
all web documents contain NE instances relevant to our work, and we currently 
do not have a list of all these entities. So building a NE list is an important step to 
create an NE corpus. The building of the NE list, which is sets of special 
keywords in domain of electrical, is required and then saved in text files as the 
second dataset of our work. These keywords can be multiple words or chunks, 
which are useful for tokenizing word chunks for sentence generation in Section 
3.4.3  Corpus Generation. 
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Web crawling 

Part of the data crawled from Wikipedia of the Electrical and Electronic 
Engineering Glossary. We called a python library of Wikipedia API, which 
supports extracting texts, sections, links, categories, translations, etc. from 
Wikipedia. The code snippet for our work is shown in Algorithm 8.

import wikipediaapi 1 

wiki_wiki = wikipediaapi.Wikipedia( 2 

  language = "en", 3 

  extract_formate = wikipediaapi.ExtractFormat.WIKI 4 

) 5 

p_wiki= wiki.wiki.page("Glossary of electrical and electronics 6 

engineering") 7 

print(p_wiki.text)8 

Algorithm 8: Example on get content from Wikipedia webpage 

OCR extraction 

OCR is a technology that can quickly and accurately recognize text information 
from images, has a long research history and wide range of application scenarios. 
In this work, due to the imperfect records of electrical-related vocabulary, for 
another part of data, they are power-related words that exist in some electric 
power industry .pdf format files. In order to extract the vocabulary accurately and 
completely, we adopted the screenshot ORC function in Quicker1 software. 

Although the use of traditional OCR technology to model specific scenes has 
achieved good recognition results, the model will fail once it leaves the preset 
scene, so scene text recognition based on deep learning is more popular. There are 
two methods based on deep learning. One is divided into two stages of text 
detection and text recognition. Another is to complete text detection and 
recognition at the same time through an end-to-end model. Quicker OCR use an 
end-to-end trainable neural network was proposed by Shi et al, called 
Convolutional Recurrent Neural Network (CRNN), which integrates feature 

                                                 

1 https://getquicker.net/  

https://getquicker.net/
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extraction and sequence modeling, the network architecture as shown in Figure 9 
[37]. The architecture consists of three parts:  

 Convolutional layers: constructed by taking the convolutional and 
max-pooling layers from a standard CNN model to extract a feature 
sequence from the input image. 

 Recurrent layers: use deep bidirectional LSTM to predict a label 
distribution for each frame.  

 Transcription layer: translates the per-frame predictions made by RNN 
into the final label sequence.  

 

Figure 9: Architecture of the text recognizer CRNN [37] 
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For transcription layer, it adopts the conditional probability defined in the 
Connectionist Temporal Classification (CTC) [38] loss to avoid the inconsistency 
between prediction and label. The objective is to minimize the negative 
log-likelihood of conditional probability of ground truth shown in  

Formula 1, where    is the training image,    is the ground truth label 
sequence and    is the sequence produced by the recurrent and convolutional 
layers form    [37]. 

    ∑            

       

 

Formula 1: Objective function of label sequence 

3.4.2  Text Classification 

Text classification is a common technique used in on basic NLP tasks as well. 
The important task of creating the corpus is to generate tags for each seed in the 
NE list. To perform this task, we first use semi-manually classify and then 
compared it with machine learning algorithms. The semi-manually classify relies 
on ontology of electrical domain and spaCy library, while the machine learning 
algorithm developed by an AI platform MonkeyLearn2, which is more efficiently 
than previous method. 

Semi-manually 

This stage is called semi-automatic classification because it consists of two parts, 
one is to use NLP model to process unstructured text, in order to achieve as many 
entity classification tasks as possible. The other is to organize and standardize 
some entities that cannot be automatically classified by algorithms through 

                                                 

2 https://monkeylearn.com/  

https://monkeylearn.com/
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manual review of data or through empirical cognition, and finally group them into 
corresponding categories. 

At first, we roughly determine 19 very fine label categories according to the 
attributes of the ontology to automatically label as many entities as possible. We 
defined a specific function for each category label and use the small English 
pre-trained model that is en_core_web_sm provided by spaCy as an NLP tool 
for semi-automatic classification, as shown in Algorithm 9.

import spacy 1 

nlp = spacy.load("en_core_web_sm")2 

Algorithm 9: Create an NLP object from pre-trained language model 

Each of these specific functions contains restrictions on whether an entity can 
be selected as that category, and these restrictions are actually specified according 
to the inherent properties and word formation rules of the entity. For example, in 
Algorithm 10, filter entities that satisfy the ‗MATH‘ label requirements by 
determining whether all tokens are within the theory which is constraints we 
defined.

def is_math(doc): 1 

    for token in doc: 2 

        if token.lower_ in theory: 3 

            expressions.remove(doc.text) 4 

            MATH.append(doc.text) 5 

            return True 6 

    return False7 

Algorithm 10: Example on how to classify entities automatically 

In our case, not all entities can be automatically classified by the algorithm to 
match the corresponding label, because the pre-set constraints for each class only 
apply to a subset of entities for which word formation rules can be found. 
Although it will take a lot of time, in order to ensure the reliability of the 
classification task. For those unlabeled entities, we have to classify and 
summarize them under the corresponding labels manually. Since automatic 
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classification is not hundred percent correct, the classified entities also need to be 
manually checked. 

Classifier tool 

Since manual classification in the semi-automatic stage consumed a lot of time, in 
order to alleviate the time cost, we decided to use an online codeless classifier. The 
success of methods for manual classification relies on large and high-quality 
labeled examples, which are often labor-intensive and time-consuming. We 
utilized MonkeyLearn analysis platform as the foundation for classifier 
mechanisms, which is software as a service (SaaS) with machine learning. 

MonkeyLearn uses several algorithms that combine to create the entire 
system. According to MonkeyLearn itself, SVM is a supervised machine learning 
model that uses linear classifier. After providing an SVM model with sets of 
labeled training data for each category, they were able to classify new data. 
Classification methods mostly use bag of words (BoW) and the kernel function of 
SVM [39]. 

Moreover, it also utilizes other algorithms to support its platform by 
implementing probabilistic classifier to predict certain words that have been 
annotated previously. The classifier based on Naïve Bayes theorem, shown in 
Formula 3, which begins with the conditional probability described in Formula 2. 
Naïve Bayes is essential for inferential statistics and many advanced machine 
learning models. Bayesian inference is a logical method to updating the 
probability of a hypothesis based on new evidence. It allows users to answer 
questions of frequency statistical methods, which have not been developed [40]. 
Essentially, Bayesian theorem supposes that      is the "A Priori" or marginal 
probability: they are calculated independently of each other. Calculate the 
conditional probability         by using Naive hypothesis: all attributes are 
statistical independent, but since it is not always true, it may affect the model 
quality generating lower accuracy results. 
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Formula 2: Conditional Probability 

        
           

    
 

Formula 3: Bayes Theorem 

 The system can train a text classifier to associate input text with its assigned 
corresponding category by using mathematical models and these machine 
learning algorithms, in the process the classifier generates "rules" to classify new 
input unlabeled text data. Furthermore, classification process can be done by 
applying API which provided by MonkeyLearn to predict the aspect of extra 
testing data. 

3.4.3  Corpus Generation 

Based on the existing list of NEs and the categories, we need to extract sentences 
from web documents which necessarily contain at least one NE instance for 
creating training raw corpus for named entity training. Using whole paragraphs in 
document is not sensible, since each paragraph is too long and there are lots of 
irrelevant sentences or words which can create a lot of noise in training data. 
However, manually extracting sentences from description fields is a time 
consuming task. An et al. [41] submitted the NE entities as queries to a search 
engine to obtain URLs and utilized web robot visits the web sites in the URL list 
to fetch the corresponding web documents. The main task of this step is that we 
have to specifically find the sentences that contain these named entities. For our 
case, we decided to generate sentences for each entity belongs to the already 
constructed NE list with the help of an online corpus, namely Ludwig Guru3. 

                                                 

3 https://ludwig.guru/  

https://ludwig.guru/


 

Methodology 

 32 

 

In this work, we employed Ludwig Guru, a popular linguistic search engine, 
as a tool to find sentences associated with the entities. As a unique search engine 
developed by a large number of linguists and computer experts, Ludwig provides 
users with many functions such as contextualized translation, advanced search 
options etc. We focus on one of the powerful functions, which is to find context 
provided by reliable and inspiring English sources for the words we entered. As 
shown in Figure 10, the source of the phrase is generated on the right and it 
allows user to explore more the sentence source. The searched phrase is 
underlined in blue so as to make the user easy to spot the word/phrase. This not 
only solves the condition that the generated sentence contains at least one entity, 
but also ensures the professionalism and traceability of the sentences in our 
custom corpus. However, since some entities involve professional vocabulary and 
even proper nouns in the power industry, they only appear as words and do not 
exist in a complete sentence, so not all entities in the list are successfully 
completed the task of sentences generation in Ludwig Guru. 

 

Figure 10: Query results of the phrase on Ludwig Guru [42] 

We edited a python script so that computer can automatically send the seeds 
in batch to the search engine to accomplish query with pre-complied NE list. For 
sentences that can be queried that contain at least one seed, we scraped the results 
as our custom corpus for Section 3.5  SpaCy NER Model. 
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3.5  SpaCy NER Model 

SpaCy is primarily an NLP library for machine learning, but its main advantage is 
the ability to use rule-based NER methods as well. It is essential that combination 
of rule-based and machine learning-based approaches to develop a robust NER 
system for a specialized domain. The spaCy NER environment uses a word 
embedding strategy using a sub-word features and Bloom embedding and 
one-dimensional Convolutional Neural Network (1D CNN). 

 Bloom Embedding: It is similar to word embedding and more space 
optimized representation. It gives each word a unique representation for each 
distinct context it is in. 

 1D CNN: It is applied over the input text to classify a sentence/word into a 
set of predetermined categories. The realization process is shown in Figure 
11. 

 

Figure 11: The process of 1D CNN 

SpaCy not only makes working with machine learning models easy, but it 
greatly reduces the complexity of training custom machine learning models. To 
train a model, a standard training data is cornerstone, because all subsequent work 
is based on it. For spaCy statistical model, the training data is required to be 
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annotated which contain both examples of text and their labels. The model then 
displays the unlabeled text and makes prediction. The whole process as shown in 
Figure 12, the model can give feedback on the predictions made by itself in the 
form of the error gradient of the loss function, since we have identified the correct 
labels in the training data. Based on the error gradient, the model compares the 
predicted label with the actual label and adjusts its weights to make correct action 
have a higher score than before. 

 

Figure 12: Training process of spaCy statistical model [43] 

In spaCy, Mean squared error (MSE) is used as the loss function of the model. 
It is the most commonly used loss function for regression to measure how well a 
model performs on unseen dataset. The loss is the mean overseen data of the 
squared differences between true and predicted values, or writing it as Formula 4, 
where  ̂ is the predicted value. 

     ̂   
 

 
∑    ̂  

 

 

   

 

Formula 4: Calculating mean squared error loss 

During the model training, we tried to minimize an expected value of loss 
function on our training data. A smaller loss value means better performance of 
the model and vice versa. 
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3.5.1  SpaCy Training Data Format 

According to requirements of spaCy for the training set, the input data should be 
in the following format: 

                                                                    

Manually converting training data to the format spaCy requires is very 
difficult. The researcher must count the number of characters to specify where the 
entity starts and ends. Another problem appears that using Python's built-in string 
functions to get start and end characters. Because using string functions to 
calculate character positions differs from how spaCy reads the character offsets 
during training procedure. This means that spaCy remove labels that are 
inconsistent with the start and end of the label in training. In order to reduce the 
time and effort cost of manual annotation, some tools have been developed, such 
as Prodigy4, doccano [44], etc. Especially Prodigy, a paid scriptable annotation 
tool developed form the makers of spaCy, namely Explosion AI. It is efficient that 
data scientists can do the annotation themselves, enabling a new level of rapid 
iteration. Prodigy is a good choice if the task is on a budget as it fits seamlessly 
into the spaCy workflow. For our case, we automatically generated a basic 
training set using rule-based methods. 

3.5.2  Data Preparation 

The data structure for training machine learning models is a list, where each index 
contains a text (a sentence, paragraph or whole text). In general, the length of text 
depends on the target to be achieved through ML-NER, while the size of the text 
will affect the training process. It is precisely because of these potential problems, 
we try to avoid using long text when creating the corpus in Section 3.4.3  Corpus 
Generation, but choosing each index contains a sentence. We made a machine 
learning training set by EntityRuler. 

                                                 

4 https://prodi.gy/  

https://prodi.gy/
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 EntityRuler is a spaCy factory that allows creating a set of schemas with 
corresponding labels. We pay attention to it as a component of the model pipeline 
in this section. For example, in Algorithm 11, in order to incorporate EntityRuler 
into a model, it must be created as a new fitting and added to the model. Then, 
user can save the new model with EntityRuler to disk for recalling later. 

ruler = EntityRuler(nlp, overwrite_ents = True)  #create EntityRuler 1 

pattern = [{ 2 

                    "label": TAG OF SEED, 3 

                    "pattern": SEED OF NE LIST 4 

                    }]  #build entity and mode list 5 

ruler.add_patterns(patterns)  #add mode to EntityRuler 6 

nlp.add_pipe(ruler)  #join EntityRuler to the pipeline 7 

nlp.to_disk("RULE NAME")  #save rule8 

Algorithm 11: Snippet of code to create training set with EntityRuler 

3.5.3  Entity Annotations 

Besides the sentences in corpus, another element required for training data is a list 
of entities of text, including their start and end positions and labels in text. The 
NE tagged list we have done in Section 3.4.1  Named Entity List. So the main 
task we need to solve in this section is to complete entity annotation by using all 
known entities (seeds) to label all collected training sentences. In general, two 
nested loops (one for sentences and one for seeds) can be used to implement full 
labeling task with a complexity                         [45]. However, it 
would take a long time to label a large amount of sentences for entity seeds, even 
with the help of multi-thread implementation. Fortunately, a built-in function in 
spaCy has the ability to automatically get character offsets according to the rules 
specified by calling the new model with EntityRuler, as shown in Algorithm 12. 

nlp = spacy.load("RULE NAME")  #calling the new EntityRuler model 1 

doc = nlp(sentence)  #traverse the corpus 2 

for ent in doc.ents:  #extract entities 3 

entities.append([ent.start_char, ent.end_char, ent.label_])4 

Algorithm 12: Snippet of code to annotate entities with spaCy 
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Since spaCy takes training data in JSON format, it is necessary to convert the 
training data into a spaCy-readable form after completing entity annotation. 
During training, these annotations will allow CNN (architectural structures behind 
the spaCy machine learning training) to learn from the data and correctly identify 
the practiced entities being trained.  

3.5.4  Training Custom NER Model 

We divided our data set into two subsets. One subset is training data which will be 
used to fit our model. The other subset is test data which will be used to evaluate 
our model. In our dataset, 80% of the data was used for the training phase and 20% 
of the data was used for the testing phase. The dataset distribution of each entity 
label is shown in Figure 13. 

 Training set includes 80% of the data set and has 8200 samples. 

 Testing set includes 20% of the data set and has 2003 samples. 

Figure 13: Dataset distribution 
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To train a NER model defined by ourselves, we create an empty class with 
English and add the entity recognizer which is the built-in pipeline components to 
the pipeline if there is no existing. This procedure is shown on Algorithm 13. 

nlp = spacy.blank("en") 1 

if "ner" not in nlp.pipe_names: 2 

ner = nlp.create_pipe("ner") 3 

nlp.add_pipe(ner, last = True)4 

Algorithm 13: Snippet of code to set up the pipeline 

In fact, every decision made by spaCy is a process of prediction. For all 
predictions are based on the examples learned by the model during training. 
Therefore, in order to make the spaCy model aware of all custom tags, we can add 
the new entity from our annotated data to the entity recognizer using add_label 
method, as shown in Algorithm 14. 

for _, annotations in TRAIN_DATA: 1 

for ent in annotations.get("entities"): 2 

ner.add_label(ent[2])3 

Algorithm 14: Snippet of code to get entities label 

It is essential to acquire other pipeline components than the entity recognizer 
and disable them to remove any impact on the training process, as shown on 
Algorithm 15, as we are only focusing on entity extraction. 

other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] 1 

nlp.disable_pipes(*other_pipes)2 

Algorithm 15: Snippet of code to disable other pipes except ner 

We trained our model for a number of iterations so that the model can learn 
from it effectively. At each iteration, the training data is shuffled to ensure the 
model doesn‘t make any generalizations based on the order of examples. Pass raw 
texts and dictionaries of annotations to update the model for each iteration. An 
example of use is shown in Algorithm 16. 
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nlp.update( 1 

           [text],  #sentences in TRAIN_DATA 2 

           [annotations],  #labels in TRAIN_DATA 3 

           drop = dropout_rate, 4 

           sgd = nlp.begin_training(), 5 

           losses = losses 6 

             )7 

Algorithm 16: Example on how to update entity recognizer 

3.6  Evaluation Metrics 

For evaluation of hyper-parameters and models, precision, recall and F1-score 
have been used in NLP system. In particular, the binary classification problem is 
referred to in the context of NER and entity extraction from text [46]. In fact, each 
token in text needs to be evaluated whether it can be recognized. Therefore, we 
focus on positive examples, thus choosing precision and recall, which are mainly 
evaluate quantitative aspects of recognition, but also qualitative aspects [46] [47]. 

How many positive predictions are correct is indicated by precision. The 
precision value is calculated as Formula 5, where we find the ratio between true 
positive and total positive predictions gives the precision result. 

           
  

     
 

Formula 5: Precision calculation formula 

The recall also known as sensitivity is the number of positive predictions 
divided by the sum of all positives in the system should predict. The recall 
formula is in the following (Formula 6). 

        
  

     
 

Formula 6: Recall calculation formula 
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The recall or precision is given the highest priority depends on the reference 
target, since in most cases they are opposite, i.e. high sensitivity values 
correspond to low precision values and vice versa. In order to balance the two 
measures and obtain a value that provides an overall indication of the 
performance of the system, the F1-score or F-measure is also used, calculated as 
the harmonic average between precision and recall, as shown in Formula 7 [46]. 

            
                  

                
 

Formula 7: F1-score calculation formula 

3.7  Implementation 

3.7.1  Transfer Learning 

Transfer learning is one of the most influential recent breakthroughs in NLP. 
Before transfer learning became popular, almost all NLP models were trained 
entirely from scratch. While the standard approach to natural language processing 
has changed dramatically these days, the safest approach is to download some 
mature pre-trained models and fine-tune them for specific NLP tasks. Because 
these transfer learning models have learned a lot of unlabeled text, which have 
learned a lot about language: understand the meaning of words and sentences, 
coreference, grammar, etc. 

However, most transfer learning models are huge, and they have so many 
parameters that they are rather slow and resource intensive. It is clear that more 
traditional, smaller models with relatively few parameters may not be able to 
handle all the NLP tasks thrown at them. But for simple text recognition or 
sequence labeling tasks, small models are sufficient to handle. In order to meet 
the NLP in different situations, spaCy offers three pre-trained models of different 
magnitudes for the English language, which are large, medium and small sizes. In 
our case, we choose a small-sized English model to perform NLP tasks on some 
unspecified entities, such as dates, locations, numbers, etc. 
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It is necessary to combine the custom NER model with existing off-the-shelf 
model from spaCy to implement the NLP tasks simultaneously. Our goal is 
adding our custom NER component to standard model for constituting a 
comprehensive model. The first step is to load two models that we mentioned and 
set the standard off-the-shelf spaCy model as main model. Then add the custom 
label to main string store to ensure that custom entities are recognized by the 
synthetic model. The process is shown in Algorithm 17. 

main_nlp = spacy.load("en_core_web_sm")  #load pre-trained model 1 

new_vocab = ["CUSTOM LABELS"] 2 

for item in new_vocab: 3 

    main_nlp.vocab.strings.add(item)  #add new vocabulary to main nlp 4 

model 5 

custom_ner_nlp = spacy.load("custom_ner_model") 6 

ner = custom_ner_nlp.get_pipe("ner") 7 

main_nlp.add_pipe(ner, name="custom_ner", before="ner")  #custom pipe 8 

has primacy over the main NER

Algorithm 17: Example on how to add custom functions to spaCy pipeline 

3.7.2  Refine the model 

The optimization of the model starts from two aspects, one is to improve the 
accuracy of the model, and the other is to shorten the time for recognition. We use 
rule-based approach with high accuracy to achieve. 

Text preprocessing has been done in Section 3.3  Pre-processing for each 
blackout text input to the model waiting to be recognized. Most of our target 
entities are composed of different nouns or noun groups, and thanks to property of 
spaCy, noun chunks in the article and their root words can be easily obtained, as 
shown in Algorithm 18. 

for chunk in doc.noun_chunks:  #get noun chunk, index and root 1 

    print(chunk.text, noun_chunks.start, noun_chunks.end, 2 

          chunk.root.text)

Algorithm 18: Noun chunk analysis using spaCy 
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To determine whether there is an unlabeled target entity in the article, we 
divide it into the following two steps: 

 Compare index position of the noun chunk with the entity that has been 
recognized by the model. If index positions coincide, it means that the 
target entity is correctly labeled and recognized by the model. Otherwise, 
the model may not recognize target entity. In this case, it is necessary to 
compare the root of the noun chunk with entities in the NE list for further 
judgment.  

 Add those new noun chunks to the NE list after looking for entities in the 
NE list that have the same root, and then tokenized them to build a 
rule-based NER model. Meanwhile, sentences containing these new noun 
chunks can be also extracted from the blackout text for training a new 
custom NER model. 

In this way, the NE list can be improved to the greatest extent and the defect 
of insufficient corpus data can be also compensated. Combining the rule-based 
NER model with the custom NER model trained by machine learning methods 
avoids the tedious work of secondary training and improves the accuracy of the 
model while shortening the recognition time. 
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Chapter 4 

Results and Analysis 

This chapter describes all the results including the processing of the blackout text, 
the classification of the text in the entity list, the general composition of the 
corpus, and the training and testing of the model. The last section covers the 
statistics after the model performs the NER task, and conducts a complete 
blackout analysis in terms of trends, causes, geographies, and scope of influence. 

4.1  Result of Blackout List 

Having a corpus of blackout events is not easy for several reasons. Since 
electricity is the foundation of people's livelihood and even related to the stable 
operation of the country, the investigation results of many accidents are secret. 
Documentation used in other work and other studies was either created 
specifically for project purposes or provided by power companies licensed to use 
the data. There are also many non-English texts, and even choosing a translation 
requires expert help. In order to deal with these difficulties, it was decided to 
obtain as much open-source information as possible on the Internet, most of 
which are news reports, and a few are professional power failure analysis reports. 
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In order to get the blackout results returned by a Google search as accurate as 
possible, we use the following as search terms: 

 Massive/Prolonged/huge blackout 

 Major power/electricity outage 

 Power system cascading event 

 Power cut/failure 

 Lose power 

The search engine returned results based on the given keywords, but some of 
the content was not related to the blackout event we are referring to here. These 
irrelevant materials include temporary amnesia due to drunkenness, events held to 
defend human rights, broadcasts of sports events and game server failures. In 
order to ensure the accuracy of the analyzed data, 234 satisfactory results were 
obtained after screening and filtering. Part of them is shown in Figure 14. 

 
Figure 14: Partial URLs about the blackout events 

The texts obtained from the blackout list here can be roughly divided into 
news reports and power industry accident reports. In addition to web pages, texts 
are also in .pdf file. After the crawler and OCR convert the text into text 
documents in txt format and store them locally for later NER tasks. 
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4.2  Results of Text Classification 

Here we present the classification results in Section 3.4.2  Text Classification. 
Since our purpose is to build a custom NER model, a corpus of entity-labeled is 
required and each entity's label needs to be specified. However, there is no 
specific classification standard for the power industry and there are many ways of 
classification, such as with a wide range and fine division. So it makes our work 
difficult to carry out. We had to artificially specify the names of the tags and then 
group them into the corresponding categories based on the properties of each 
entity itself. As mentioned before, we used both manual and automatic tool to 
classify, but they presuppose having a list of labels, as shown in Table 3. 

Class Name Class Label 
Equipments and Installations EQUIPMENT 
Actions and Operations ACTIONS 
Mathematics, Physics MATH 
Errors, Data and Status INFO 
System Parameters PARAMS 
Market and Economics COMMERCIAL 
Systems and Networks SYSTEM 
Sources and Waste SOURCES 
Roles and Players ROLES 
Other/Unlabeled OTHER 
Standards and Rules LAWS 
Tests and Simulations SIMULATIONS 
Units of Measurement UNITS 
Inventions INVENTIONS 
Filters FILTERS 
Time TIME 
Organizations ORG 
Problems PROBLEMS 
Engineering Branches ENGINEERING 

Table 3: Category list of labels 
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4.2.1  Semi-automatic Classification 

As shown in Table 4, we have a total of 1776 entities in the entity list, and each 
entity needs to be classified according to the categories in Table 3. There are 984 
entities that can be automatically classified by algorithm, and the remaining 828 
unlabeled entities can only be manually assigned to the corresponding categories.  

Total entity 
Classification method 

Automatically Manually 
1776 984 828 

Table 4: Number of tasks completed by different classification methods 

From Figure 15 we can clearly see the results of semi-automatic classification of 
entities using custom algorithms and manually. Among them, the entities 
belonging to the ‗EQUIPMENT‘ class are the largest category in the entity 
distribution, which is also an important purpose of our training of custom NER. 
From the ordinate of the histogram, we can see that there are 19 label types. The 
reason is to avoid data type too single to have negative impact on the performance 
of the NER model trained. 

 
Figure 15: Results of semi-automatic classification 
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4.2.2  Classification Tool 

We selected as input those entities that cannot be automatically classified by the 
algorithm in the semi-automation stage in order to train the automatic classifier on 
MonkeyLearn. The text classification module of MonkeyLearn adopts a mode of 
prediction while training. When the input training data reaches a certain amount, 
the model starts to make predictions. The accuracy and F1-score are calculated 
and displayed in the form of a meter so that the user can understand the 
performance of the model. As shown in Figure 16, our classification model with 
890 texts achieved an accuracy of 59% and an F1-score of 66%.  

 

Figure 16: Evaluation results of classification model 

In MonkeyLearn's display interface, it is easily to see that the keywords 
appear more frequently in the training data. And it can automatically generate 
word cloud which is shown in Figure 17. Users can further view detailed files of 
classification and model predictions for each entity keyword. These visualization 
services make our analysis of results more convenient and clear. 

Figure 17: Word cloud created by MonkeyLearn 
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4.2.3  Choice of Classification Methods 

Through the analysis of the above results, the two classification methods we 
adopted have their own merits. For semi-automated classification, the traditional 
method is used. The classification is completed by observing the word formation 
rules of the entity and using the NLP library. And another part that cannot be 
automatically classified by algorithms can only be done manually. Since many 
words have multiple attributes, the classification criteria are less common. For the 
method of training classification models using the online platform, it is 
time-saving and easy to use because of the intuitive and concise operation 
interface. However, it requires a large amount of training data with classification 
labels to make the model performed well. 

To sum up, taking into account the classification criteria we have formulated 
is not very accurate. In our case, the reliability of the data determines whether the 
next steps can be carried out with relative accuracy. Although the semi-automated 
method is more time-consuming than the fully developed system platform, we 
decided to use the results of semi-automatic classification as a part of data to build 
an NE tagged corpus to train a NER model in next stages. 

4.3  Size of the Tagged Corpus 

As an important task, we tried to investigate how large corpus we should generate 
to obtain satisfactory performance. We collect as many sentences containing 
entities as possible in Ludwig. Ideally, we would like each entity to be contained 
by 6 to 7 sentences. However, in practice, not all entities can be fully queried to 
have been used in sentences. Because some of the entities we collected include 
highly specialized and compound words, some even involve mathematical 
operations such as (n-1). The final corpus size is shown in Table 5. Since each 
entity that appears in the corpus would be labeled accordingly for NER model 
training. We only selected sentences that contain complete entities to construct the 
corpus and label entity in sentences accurately. 



 

Results and Analysis 

 49 

 

Total Contain full entity Contain partial entity 
16795 12551 4244 

Table 5: The number of sentences collected from Ludwig 

Figure 18 shows the distribution of occurrences of entities in the corpus. 
There are 33.9% entities never appeared in the corpus, because they were not 
included in the sentences completely or the sentences related to them were not 
queried through Ludwig. In our case, this part of the entity is excluded. About 66% 
of the remaining entities are fully present in the corpus, and most of them 
appeared between 1 and 10 times. Only 6.19% of entities were found more than 
50 times because they were or contained common words. 

 
Figure 18: The frequency distribution of entities appearing in the corpus 

4.4  Tuning Hyper-parameters 

To get the best results, it is necessary to tune the hyper-parameters. We tried 
possible combination of different features and compared their results as a basis for 
choosing the best result. 
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The hyper-parameters for spaCy NER model as following: 

 Learning rate: It determines step size for each iteration and controls how 
much the model weights are adjusted with respect the loss function. In 
general, its value range can be set between 0 and 1. 

 Regularization: Deep learning may suffer from overfitting, i.e. high 
variance. Regularization helps to avoid the degree of overfitting of the 
model, or reduce network error. 

 Gradient clipping: Because larger updates to the weights of neural 
network model can cause numerical overflow or underflow, i.e. gradients 
exploding. Gradient clipping is the clipping of gradient values outside of 
a preset range for updating error derivative before the network 
propagates the error backwards. It is used to update the weights to ensure 
that the network is non-divergent. 

 Optimizer: It guides each parameter of the loss function (objective 
function) to update the appropriate size in the correct direction in the 
process of deep learning back propagation, so that the updated 
parameters make the value of the loss function continuously approach the 
global minimum. 

 Number of Epochs: It is a hyper-parameter that indicates how many 
training times the machine learning algorithm needs to complete for the 
entire training data set. The overfitting conditions could be caused by 
higher epochs. 

 Batch size: It determines the number of samples in a training session, and 
its size affects how well and how fast the model is optimized. A smaller 
batch size updates weights more frequently. Moreover, it directly affects 
the usage of GPU memory. That is, larger batch size requires more 
computational power.  
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 Dropout rate: It is an effective regularization technique used for 
preventing overfitting and helps boost the performance of the CNN. The 
stability and robustness of model are greatly improved because dropout is 
set to randomly stop certain neurons from participating in operations 
each training session. Generally speaking, the range of dropout is 
between 0.3 and 0.5. 

Since those parameters with spaCy default settings, as shown in Table 6, have 
always performed well in the training of the spaCy model. Without changing the 
default parameter values of the platform, in our case, we only adjusted the three 
parameters, which are batch size, number of epochs and dropout rate. 

Hyper-parameters Values 
Learning rate 0.001 

Beta1 0.9 
Beta2 0.999 

L2 Regularization 1e-6 
Optimization algorithm Adam 

Loss function Mean Squared Error 

Table 6: Default hyper-parameters of spaCy NER 

The first parameter needs to tune is the batch size. We used mini-batch 
Gradient Descent as mentioned before. It divides into a data set less than a total 
number of samples. If the bath size is large, it may consume a lot of memory and 
needs more computational power. Since the batch size can be a number that 
doesn‘t change, or a schedule, like a sequence of compounding values, which has 

shown to be an effective trick [48]. To sum up, we tried using a composite rate of 
1.001, starting from 1 or 4 and ending with 4, 32, 64, 128 as the maximum batch 
size, respectively.  
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Compounding batch 
sizes (start-max) 

Precision (%) Recall (%) F1-Score (%) 

1-4 95.408 96.161 95.783 
1-32 95.021 97.169 96.083 
4-32 94.949 96.733 95.833 
1-64 94.462 96.597 95.518 
4-64 94.271 96.325 95.287 
1-128 94.486 96.107 95.290 
4-128 95.417 96.923 96.164 

Table 7: Testing results obtained from tuning batch size during training 

From Table 7, we can see that the larger the gap, the better the performance of 
the model when there is little difference between the starting batch value and the 
maximum batch value. For example, composite batches with values of 1-32 and 
1-64 have higher F1-score than 4-32 and 4-64 respectively, which means the 
model performed better. When the maximum batch value is increased to 128, the 
smaller the gap between the starting value and the maximum value, the better the 
model performs, and the highest value is obtained in the whole results, that is, the 
model obtained 96.164 F1-score when the composite batch size is 4-28.  

As shown in Figure 19, the smaller the batch size, the slower the loss function 
value converges. When the maximum batch size is 128, the value of the loss 
function is a little smaller than others. This also verifies once again that a max 
batch size of 128 is the best choice for our model. 
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Figure 19: Losses of training model obtained from tuning batch size 

The next parameter needs to tune is number of epoch. Each epoch includes 
one forward and backward pass of the entire training data set. The reason why we 
need more than one epoch is that in order to learn the pattern of the training 
dataset, the training dataset has to be looped through the neural network more 
than once. We tried 30, 60 and 100 epochs in our experimentation. 

Number of epochs Precision (%) Recall (%) F1-Score (%) 
30 98.796 98.513 98.654 
60 99.732 99.478 99.605 
100 99.816 99.876 99.835 

Table 8: The results of train set obtained from tuning number of epochs 
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Figure 20: Losses and F1-score curves during training 

The results shown in Table 8 seem to be that the more epochs are trained, the 
better the performance of each evaluation metric. However, it is not rigorous to 
only look at the evaluation indicators of the training set. When we analyze the 
curves in Figure 20, it is not difficult to find that the losses decrease rapidly in the 
early stage of model training. When the epoch number exceeds 20, the loss value 
gradually stabilizes and decreases at a very slow rate as the epoch number 
increases. Conversely, the F1-score of validation set rises above 90 shortly with 
training beginning, and reaches its highest value of 95.602 when the number of 
epochs increases to 30. After that, although the loss value for training is still 
slowly decreasing, the F1-score for validation is almost stagnant, which means 
that the model has been overfitted. We have to stop the training process of the 
model before overfitting. So far, combined with the values of loss and testing 
results, we decided to use 30 as the optimal number of epochs. 

Dropout technique randomly selects and removes the units during each 
iteration of training. When removing the units, in and out connections of the units 
are cut off. Dropout can be applied to the input layer and also the hidden layer. In 
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our case, 0.35 and 0.5 dropout rates have been used. Table 9 shows the results of 
the custom NER model when we applied dropout to the network.  

Dropout rate Precision (%) Recall (%) F1-Score (%) 
0.35 95.417 96.923 96.164 
0.5 91.697 95.317 93.472 

Table 9: Testing results obtained from tuning dropout rate during training 

 

Figure 21: Losses of training model obtained from tuning dropout rate 

When training the same number of epochs, the models with different dropout 
rates behave differently. Compared to the dropout rate of 0.5, our model achieves 
better performance with a dropout rate of 0.35. It can also be seen from Figure 21 
that a smaller dropout rate can make the loss curve converge faster. Although 
setting a larger dropout rate can avoid overfitting the model, it also means that we 
have to make the model learn more epochs, which will prolong the training time 
of the model. So in our case, we choose 0.35 as final dropout rate. 
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4.4.1  Summary of the Best Results 

To summarize, we have tried to find the best results by tuning the 
hyper-parameters for custom NER model. We use the control variable method to 
find a suitable value for the model by adjusting the three model parameters, 
namely batch size, number of epochs and dropout rate, as shown in Table 10.  

Hyper-parameters Values 
Batch size 4-128 (start-max) 

Number of epochs 30 
Dropout rate 0.35 

Table 10: Best hyper-parameters of the custom NER model 

Since implementing the multi-class classification and having more than two 
label classes. For each sentence on which the model is tested, we calculate 
precision, recall and f-score for each entity that the model recognizes. The values 
of these metrics for each entity are summed up and averaged to generate an 
overall score to evaluate the model on the test data consisting of 2003 sentences. 
The entity wise evaluation results can be observed below. It is observed that the 
results obtained have been predicted with a commendable accuracy. As shown in 
Table 11, for example, out of the 881 entities with the ‗EQUIPMENT‘ tag, the 

NER model correctly tagged 96.935% (recall) of them. With precision, out of all 
the entities the model tagged with ‗EQUIPMENT‘, only 93.743% of them had the 
‗EQUIPMENT‘ tag. Most of labels have F1-score around 95%, except label 
‗ORG‘ below 90%. And three labels have reached a high F1-score of 100%, 
which are ‗PROBLEMS‘, ‗SIMULATIONS‘ and ‗INVENTIONS‘.  
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Labels Precision (%) Recall (%) F1-Score (%) Sample size 
EQUIPMENT 93.743 96.935 95.313 881 

MATH 97.401 97.668 97.534 729 
OTHER 97.786 98.330 98.057 539 

ACTIONS 95.090 97.872 96.461 376 
PARAMS 94.241 96.515 95.364 373 

INFO 98.052 96.795 97.419 156 
SYSTEMS 92.568 96.479 94.483 142 
SOURCES 93.662 94.326 93.993 141 

UNITS 98.246 94.915 96.552 59 
PROBLEMS 100.0 100.0 100.0 52 

ROLES 98.113 100.0 99.048 52 
SIMULATIONS 100.0 100.0 100.0 35 
COMMERCIAL 90.625 96.667 93.548 30 

FILTERS 90.0 90.0 90.0 30 
TIME 96.154 92.593 94.340 27 
LAWS 100.0 94.444 97.143 18 

ENGINEERING 100 93.750 96.774 16 
INVENTIONS 100.0 100.0 100.0 11 

ORG 80.0 66.667 72.727 6 

Table 11: The results for testing data with best hyper-parameters 

In general, the number of samples is proportional to the F1-score, but 
combined with what is shown in Figure 22, it does not seem to fit this statement 
at all in our model. It might be caused by the uneven distribution of the amount of 
data per label. For some categories with full F1-scores, this means that the model 
is overfitting on these categories due to the low number of samples during 
training of the model over multiple epochs. But in order for a large number of 
class labels to be learned well by the model, we have to sacrifice these few labels 
that are less important to us. 
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Figure 22: The performance of each label with the best hyper-parameters 

4.5  Result of Model Test  

In this work, the following three models were built using spaCy: 

 en_core_web_sm which a pre-trained model to recognize built-in 
labels. 

 Custom NER model to recognize custom labels. 

 The comprehensive model to identify all entities. 

Here we selected sentences with their corresponding labels from the corpus 
for training according to the functional properties of the model. And each model 
is trained until the loss stabilizes.  
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Type 
Pre-trained Model Custom NER Model Pre-trained model & 

Custom NER model 

train test train test train test 

#Annotated 5932 1328 15303 3524 20780 4729 

#Predicted 9024 2025 15019 3665 23502 5414 

Diff 3092 697 -284 141 2722 685 

Table 12: Comparison between predicted and annotated NE using spaCy 

Table 12 shows the correctness of the three models by spaCy method. The 
Annotation and Prediction rows show the count of data marked for training and 
the number of named entities predicted by the model, respectively. "Diff" 
represents the difference between "Annotated" and "Predicted". It is worth noting 
that the negative value in "Diff" is due to the model finding fewer entities than the 
number of annotation labels. The reason why the pre-trained model provided by 
spaCy can recognize more entities than our annotated labels is because it contains 
many built-in labels. For custom labels, the number of predicted labels missing is 
about 1.86% of training. Here it is necessary to state the exact boundary problem 
of spaCy's predicted phrases. The prediction may not exactly match the annotation, 
but it provides reference boundary or good estimate of the entities. If we count the 
exact number of positions it might be wrong. Thus, we lowered the metric and 
only counted the number of predictions. For the combined model composed of the 
first two models, it has the performance of predicting both built-in labels and 
custom labels. 

There are 18 built-in labels in the small English model pre-trained by spaCy, 
among which labels representing locations (NORP, GPE, LOC), labels 
representing time (DATE, TIME) and labels representing numbers (MONEY, 
CARDINAL, ORDINAL) are helpful for blackout analysis. For the 19 custom 
labels, we are most concerned about ‗EQUIPMENT‘, ‗SYSTEMS‘, 
‗PROBLEMS‘, ‗ACTIONS‘, ‗PARAMS‘. When creating a comprehensive model 
that recognizes all the types of labels including spaCy's built-in labels and custom 
labels, we obtained over 90% accuracy in both training and testing for each label. 
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Figure 23 shows the accuracy results for the most important labels mentioned 
above in the comprehensive model. 

 

Figure 24 shows the recognition results for an example. Figure 24(a) is the 
result of spaCy pre-trained model, which can well identify the time, place and 
digital content in the text. While Figure 24(b) represents the result processed by 
the custom NER model. The result of comprehensive model is shown in Figure 
24(c). It can be clearly seen that the model performs well after integrating two 
well-trained models, and the important entities in the text that are useful for 
blackout analysis are accurately identified and marked. In addition to fully 
displaying the content recognized by the model, in order not to interfere with 
unimportant entities, we can also set the label categories we want to view based 
on different scenarios 

(a) 

Figure 23: Annotated and predicted results for most important tags 
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(b) 

(c) 
Figure 24: Example results of NER part I 

It is worth mentioning that the processing results of different types of text 
NER models are different. For news report-type text, most of the available 
information can usually be obtained from the news headline because of its highly 
general nature. For example, each text has a publication time. Even if the specific 
time of the blackout event is not specified in the article, we can judge it based on 
the publication time combined with the content in the text. Rough statistical 
analysis can be done using such text. And for professional accident reports there 
is usually no explanatory text especially cascading blackouts. Figure 25 shows 
example results of professional incident investigation report. 

(a) 

(b) 

(c) 
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(d) 
Figure 25: Example results of NER part II 

In the obtained results we can see that most of the entities are correctly 
identified and labeled. It is attributed to high-quality corpus and text 
preprocessing. Since there are cases where sentences are of a schematic and 
fundamental nature, it is more important to have high-performance fundamental 
tasks that can correctly identify all tokens. In fact, in cases where expressions are 
not recognized in the correct way, errors are mainly due to tokenization not 
properly separating the text and insufficient corpus data resulting in incorrectly or 
missing entities being recognized. It must be admitted that building a pattern is a 
delicate operation that must be done precisely by an expert, or in any case with 
the help of in-depth research, to avoid omission or misidentification. 

It is important to emphasize that the selected text has a considerable difficulty 
compared to the documents on which the model was trained. In addition to the 
refinement of vocabulary, there are also the use of abbreviations and synonyms. 
Furthermore, while the test results demonstrate that our model can be used for 
power text, it is partly due to the fact that the information extraction activity uses 
a rule-based approach to make the model explicit as the target entity. Fortunately, 
since those modules we use to build our models are based on neural networks, it is 
possible to train on more data to further improve performance. If necessary, it is 
possible to leverage more complex modules or optimize what already exists in 
this work. 
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4.6  Blackouts analysis 

This section describes the outage analysis that has been performed. We will carry 
out statistical and analysis work from the aspects of the time, cause and place, and 
the scope of influence of the selected accident. 

4.6.1  Temporal Analysis 

To analyze the temporal trend of power outage incidents, we visualized the time 
in years of incident occurrence in the text obtained. We extract the time 
information from more than two hundred texts through the NER task, and obtain 
178 independent blackout events through cross-validation due to the existence of 
multiple articles describing the same event. 

Figure 26: The trend of selected blackouts in power systems 

From Figure 26, it can be seen that the collected outage data cover a range 
from 1950 to 2022, and show an upward trend with the changing times. Before 
1996, the frequency of blackout has historically remained at almost the same level 
every year, almost once a year. The frequency kept in a moderately high level 
from 1996 to 2006. The blackout number has soared to a high level in the 
following decades since 2007, almost all of which are around 10 times. In 2019, it 
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reached as many as 18 times, and the sudden decrease in 2022 is due to the fact 
that this year has just begun. The rising trend of power outages in recent years 
shows that a variety of threats are increasingly affecting today's power systems. 

4.6.2  Reason Analysis 

In the power industry, potential causes that could lead to an unexpected event that 
compromises the power system are referred to as threats. Generally speaking, 
threats can be divided into four categories: natural threats, accidental threats, 
malicious threats and emerging threats [49]. 

Figure 27: Statistics of the causes of the selected blackouts 
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The specific event names ascribed to the four threats are shown in Figure 27. 
It is easy to see that natural threats have the most sub-categories, including 
extreme weather-induced changes in climate conditions, geological hazards, 
non-human-caused disasters, and health disasters, etc. Most of the power grid 
security problems caused by natural threats in the power outage events we 
selected are concentrated in the part caused by extreme weather, especially the 
power outage accidents caused by windstorms and rainstorm/thunderstorms 
reached 15 and 18 times respectively. The frequency of blackout caused by 
geological disasters, space disasters and non-human-caused fires stay at a steady 
low level. Every subcategory of incidental threats was involved in the blackouts 
we selected, with the most frequent cause of power system failures being 
technical failures. Generally speaking, we describe a technical failure as a 
breakdown or ceasing of equipment caused by internal factors of the equipment 
with direct malfunctioning effects on each sector in power systems. Since 
technical failure covers a wide range, it has the longest column in the histogram, 
reaching 51 times. The frequency of unnatural fires or explosions caused by 
operating equipment/devices and installation failures caused by humans or 
animals is maintained at a high level. The rest of the accident causes that belongs 
to the category of operational fault are all around twice. The power system is 
interdependent with other system infrastructure. There are cases where faults in 
other systems spread and cause uncertainty of power system, and we call this type 
of incident emerging threats. As can be seen from the histogram, emerging and 
malicious threats are rare. Among them, malicious threats are all caused by 
human subjective operation or control. And according to the three layers of power 
system, malicious threats can be classified into physical threat, human threat, and 
cyber threat. 



 

Results and Analysis 

 66 

 

 
Figure 28: Percentages of the causes for selected blackouts 

Overall, in Figure 28, natural and accidental threats account for more than 90% 
of the 178 power outages counted, which means that these two threats can be used 
as the main reasons for power outages. There are 4% of unknown represent a 
portion of the outage text that does not state the cause and has not yet found the 
truth. 

 
Figure 29: Trends of four threat categories 
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As shown in Figure 29, the four categories of threat trends are viewed in 
conjunction with a year timeline. Although the curve fluctuates to a certain extent, 
nature and accident are always in the lead and peaked in 2019. The emerging and 
malicious threats have only gradually affected the instability of the power system 
since 2008 and 2009. This means that with the progress of society and the 
development of the industrial industry, the power system is gradually forms an 
interrelated state with other systems. In this case, the stable operation of the 
power grid can be affected, for example, by cyber-attack or other industrial 
systems. Malicious threats and other emerging threats in the last decade are 
starting as a reason for blackouts. 

4.6.3  Geographical Distribution Analysis 

We also counted the regions where power outages occurred. Figure 30 shows the 
worldwide distribution of the blackouts we selected. Most of the blackouts are 
concentrated in North America, including the United States and Canada. Among 
the 178 blackouts, the number of occurrences in the United States is as high as 
about 80. This was followed by Canada in the second batch, with power outages 
occurring between 16 and 32 times. The rest of the regions with very low 
frequency of grid power outages are mainly concentrated in Europe, Asia, South 
America and Oceania. 

However, it is obviously that the blackout events we selected cannot fully 
represent the global power outage trend and frequency, which is caused by the 
singularity of the data. Since the data is in English as the search language, the 
obtained data is all in English, and there is very little outage information in 
English for many countries and regions that do not use English as the official 
language. This is the main reason why the vast majority of power outages in the 
global distribution map are concentrated in North America, while other regions 
are almost at the lowest power outage frequency level. 
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Figure 30: Global selected blackouts distribution 

Among the power outages we selected, the sample size of blackout events in 
the United States is relatively comprehensive compared to other countries. 
Therefore, we think that it is worth to conduct a detailed analysis of the grid 
outage events that have occurred in different states in the United States. 

Figure 31 is a map of the distribution of power outages we selected in the 
United States. On the whole, the southwestern coastal areas and northeastern 
regions of the United States are areas with high incidence of power outages, 
especially California and New York. Because the Northeast borders Canada and 
the two countries also have some common industrial infrastructure, grid incidents 
often affect each other. This has become one of the reasons for the high frequency 
of power outages in the northeastern United States. Due to the special 
geographical location of the western and southern region, climate change such as 
the formation of cyclones in the Pacific Ocean is one of the main reasons for 
power outages. In contrast, the southeastern and central regions of the United 
States have had few major grid incidents. 



 

Results and Analysis 

 69 

 

 

Figure 31: USA selected blackouts distribution 

To further explore the relationship between geography and the four threats, 15 
states with more than 5 blackouts were selected as objects from the 78 blackouts 
in the United States. As shown in Figure 32, in addition to Puerto Rico, 14 of the 
15 states selected suffered from natural threats causing blackouts more frequently 
than accidental threats. Especially in Texas and Iowa, the natural threats were the 
culprit of blackouts in the text we collected. It is not difficult to find that these 14 
states are located in the coastal belt and northeast of the United States. This means 
that locations with a greater likelihood of climate impact are also at higher risk of 
blackouts. The impact of malicious and emerging threats on the U.S. power 
system is not clearly represented. 
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Figure 32: Frequency of four threats in selected USA states 

4.6.4  Scope of Impact Analysis 

Typically, a blackout event that affects more than one million people can be 
considered a major blackout. There are 94 out of 178 blackouts which we counted 
belong to wide-scale blackouts. Due to limited space, we only selected 33 cases 
that affected more than 10 million people, as shown in Table 13.  

Over 100 million people were plagued by losing power in four Asian 
countries, and the top 4 are all in India. Almost all of them are due to technical 
failures. There are three events involved more than 3 countries and two of them 
were caused by rainstorm. The most widespread being the outage on November 4, 
2006, which affected 15 million people in seven European countries due to power 
system design error. In general, 79% of the causes of widespread blackouts 
affecting more than 10 million people were accidental threats, 15% were due to 
natural threats, and only 6% were accidental threats.  
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People affected 
(millions) Locations Dates Threats 

700 India July 31, 2012 Technical failure 
620 India July 30, 2012 Technical failure 
230 India January 1, 2001 Technical failure 
230 India January 2, 2001 Technical failure 
212 Pakistan January 10, 2021 Technical failure 
160 Bangladesh November 1, 2014 Technical failure 
140 Pakistan January 26, 2015 Terrorist attack 
120 Indonesia August 4, 2019 Technical failure 
100 Indonesia August 18, 2005 Technical failure 
97 Brazil March 11, 1999 Lightning 
70 Turkey March 31, 2015 Interior fire/explosion 
60 Brazil,Paraguay,Uruguay November 10, 2009 Rainstorm 
60 Australia January 30, 2010 Lightning 
56 Italy September 28, 2003 Windstorm 
55 US,Canada August 14, 2003 Operation mistake 
53 Brazil February 4, 2011 Technical failure 

48 Argentina,Paraguay, 
Uruguay,Chile,Brazil June 16, 2019 Rainstorm 

40 Philippines May 21, 2002 Technical failure 
35 Philippines April 7, 2001 Technical failure 
32 Venezuela March 7, 2019 Equipment defect/aging 
30 US,Canada November 9, 1965 Maintenance accident 
30 Iran May 20, 2001 Technical failure 
30 Venezuela July 22, 2019 Sabotage 
24 China August 15, 2017 Operational mistake 
20 Egypt September 4, 2014 Technical failure 
20 India October 12, 2020 Technical failure 
21 Sri Lanka March 13, 2016 Technical failure 
21 Sri Lanka August 17, 2020 Technical failure 

15 
France,Germany,Italy, 
Netherlands,Belgium, 

Spain,Portugal 
November 4, 2006 Design error 

15 Chile March 14, 2010 Technical failure 
10 Brazil March 21, 2018 Technical failure 
10 Kenya June 7, 2016 Human/animal interference 
10 Jordan May 21, 2021 Technical failure 

Table 13: List of selected wide-scale blackouts 
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Chapter 5 

Conclusion and Future Work 

In this chapter, the previous work are summarized and discussed. Based on the 
limitations of the proposed model, some possible future work is stated. 

5.1  Conclusion 

The thesis explores a NLP methodology for extracting information and 
preprocessing text from unstructured blackout materials. In particular, we 
demonstrate prototype using machine learning complemented by rule-based 
approach to recognize and extract content of interest to users from blackout 
records. 

Therefore, the first step of the work is to crawl the web pages with the 
keyword "blackout" returned by the Google search engine, and preprocess them to 
construct a text dataset. Then, the specific vocabulary required building the NER 
model, the generation of the original corpus, and the preprocessing methods for 
annotation are introduced. To further extend potential of the model for extracting 
more information using NLP techniques, we customized pipeline and integrated a 
well-trained English language module developed by spaCy to build model 
perform name entity recognition task on the blackout dataset. The performance of 
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the model is discussed and the statistical results of selected blackout events are 
analyzed. 

The results of this work may contribute to a deep understanding of blackout 
incidents that have occurred in the history, including failure analysis of the power 
system and multiple factors affecting the stable operation of the power grid, etc. It 
can even provide an effective analytical tool for those working in the power 
industry. In fact, the proposed methodology can not only be used to study and 
analyze outage-related information in the power industry, but can also be 
generalized to identify entities in other fields to study and analyze related topics. 
For those algorithms and techniques could be utilized for obtaining and 
preprocessing data. 

5.2  Limitation and Future Work 

The main limitation of the work is the lack of documentation of outage incidents 
and sufficient information to optimize the model. A general deficiency can be 
noticed from the collected dataset that the vast majority of recorded blackout 
incidents are from more developed regions of the world, which making the results 
not representative of the whole phenomenon. Secondly, the information that can 
be collected on the Internet is quite discrete, and multiple documents describe the 
same event or an event that is not completely recorded often occurs, which greatly 
increases the difficulty of processing and statistics. Moreover, the web crawling 
method we used does not work for the websites which need to pay. So the dataset 
is not comprehensive, although we have tried to find related information through 
various channels as many as possible. 

Despite some regrets of data, algorithms and results, important results have 
been achieved in data extraction and collection methods. We can conclude that 
the results obtained are consistent with our expectations.  

The thesis focuses on study the methods and tool that will be used at the 
power information extraction and processing stages to ensure abundant 
foundation is defined for conducting effective blackout analysis. There are some 
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issues need to be tackled with in the future work. Here several aspects can be 
investigated and explored are as flowing: 

 Partner with a professional organization in the power industry or apply 
for a license to use the full dataset annotated by experts in the field. 

 Use spaCy or other frameworks as input to train and generate a 
classification model to label new text. Combined with supervised 
techniques, it can improve the accuracy of the analysis and provide better 
results. 

 Probe into more complex preprocessing models such as BERT with the 
help of transfer learning, and introduce the concept of word vector to 
make up for the lack data of original corpus by calculating the similarity 
between entities. 
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