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Summary

Energy, in all of its forms, is a physical quantity without which one could not carry out
all his/her daily activities. However, nowadays, we hear more and more about problems
due to lack or waste of energy due to misuse by man and exaggerated consumption of it.

Others problem can be mentioned when speaking about heating. Nowaydays, in fact, due
to an always- increasingly cost of it, retirees and people less wealthy cannot afford heating
in their homes due to rising prices. Provisions on the heating demand would perhaps allow
a choice from a financial point of view more inclined to meet the needs of the citizen, the
main consumer. Forecastsing energy prediction is therefore something that would allow
man to balance what is required and consumed by energy without encountering problems
of overproduction and shortage and to energy supply companies to alleviate the economic
burden on households.

To do this, increasingly sophisticated algorithms have been created to allow companies
that supply energy to stipulate plans for forecasting consumption, demand, and production
of energy itself, allowing them to better manage economic and environmental resources.

In the following, two main methods are reported: the classical residual bootstrap and the
Influence Function bootstrap. In particular, the latter is a method capable of managing
situations in which there are deviations from the assumed model and, with great satis-
faction, the results obtained with this method have been better compared to the others,
confirming that even in situations distant from the made assumptions, it is still possible
to obtain more accurate future predictions.
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Chapter 1

Introduction

Energy is the physical quantity that measures the ability of a body or a physical system to
do work, regardless of whether such work is or can actually be done. Energy is something
that modern man cannot do without, as it is crucial for everyday life. We use energy for
practically all the activities we carry out on a daily basis: whether it is a hot shower, going
to a place using the car, turning on the air conditioner or just sitting and watching TV.
Related to energy there is also heating. Heating systems, moreover, can be classified by
fuel or energy source used like coal, diesel, gas, wood, geothermal, solar or electric energy.
Nowadays, retirees and people who are less wealthy cannot afford heating in their homes
due to rising prices of it. Faced with an ever-increasing demand for energy and heating,
today we are witnessing depletions of non-renewable energy sources from which we draw
for the production of electricity and for heating.
Fossil fuels (oil, coal and natural gas above all) must meet ever-growing energy and heat-
ing demands by introducing polluting substances into the atmosphere that are absolutely
harmful to humans and the environment. In order to extend our energy reserves as long
as possible and safeguard the health of the planet, it is therefore essential to save energy
and implement a conscious reduction in consumption.
The solution to reduce environmental stress is energy saving based also on the use of al-
ternative and renewable energies, which contribute improving our health and that of the
environment.
To do this, however, plans are needed on forecasts of consumption and production of
energy from renewable sources. In this way, plans could be implemented based on these
forecasts and which allow exploiting renewable sources as much as possible when, accord-
ing to forecasts, they can produce sufficient quantities, also allowing the storage of unused
quantities to be used in times when renewable sources fail.
In the past, in fact, there have often been periods of great energy production in the face
of not so high demand. In these cases there were two solutions, either to lose the excess
energy produced or to try to store and conserve it, however having to face the large main-
tenance costs.
With accurate forecasting methods instead, a balance would be sought between requests
and supply at all times, thus avoiding large wastes that would have significant long-term
impacts from an environmental point of view.

1



Energy forecasting, in particular, is a technique to predict future energy needs to achieve
demand and supply equilibrium. Forecasting on energy demands (load) and on the relative
sale price is becoming nowadays a topic more and more analyzed for mainly environmental
and, even more, economic reasons.
Making accurate forecasts on energy requests and consumption would allow energy com-
panies to be able to make competitive decisions within the market reducing expenses and
increasing revenues and, with the advent of renewable energy resources (RER), it has
become crucial for companies and forecasters to know in advance how much energy RER
will produce in the next hours and days.
In the past decades for energy forecasting problems, researchers have tried to use different
methods, from linear regression to neural network and techniques with long short-term
memory (LSTM). In the following, instead, the idea has been to use ARIMA-GARCH
process to model the data in addition to robust Bootstrap algorithm to deal with outliers.
In the first section there is an introduction on what a time series is and on which steps
are necessary for performing time series analysis. Particular attention is paid to ARIMA-
GARCH model, the one adopted during the study. Then, the idea of bootstrap is pre-
sented, giving particular focus to what the residual bootstrap algorithm is. In the second
and last section, the idea of robust bootstrap is deepened with an explanation on what the
Influence Function (IF) Bootstrap is. Finally, the previously mentioned theory is adopted
and the study under case is examined in detail.

Figure 1.1: Example of possible results of good forecasts
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Chapter 2

The problem and common
approaches

2.1 Time series analysis
Time has always been a crucial factor since humans started recording data. Time series
analysis, allows humans to study the world and understand how it is progressing by
extracting meaningful statistics and other characteristics of the data.
Time series analysis is a specific way of analyzing a set of data collected over an interval
of time by analysts who record data points at consistent intervals over a set of period of
time rather than just recording the data points intermittently or randomly.
Time series data, differently from other kinds of data, can show how variables change
over time. It usually requires numerous data points to reach consistency and reliability
because in this way it is possible to have a representative sample size and that analysis
can cut through noisy data.
Time series analysis helps organizations understand the underlying causes of trends or
systemic patterns over time. Using data visualizations, business users can see seasonal
trends and dig deeper into why these trends occur. With modern analytics platforms,
these visualizations can go far beyond line graphs.
When organizations analyze data over consistent intervals, they can also use time series
forecasting to predict the likelihood of future events. Time series forecasting is part of
predictive analytics. It can show likely changes in the data, like seasonality or cyclic
behavior, which provides a better understanding of data variables and helps forecast
better. Examples of time series analysis in action include:

• heating demand

• weather data

• stock prices

• temperature readings

3
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• energy consumptions predictions

• heart rate monitoring.

Figure 2.1: Example of monthly counts of airline passengers from 1949 to 1960
Image source: https://de.mathworks.com/help/stats/

time-series-regression-of-airline-passenger-data.html

Since time series analysis includes many categories or variations of data, is very common
to make complex models when dealing with time series data. Models that are too complex
or that try to do too many things can lead to a lack of fit, being not able anymore to
distinguish between random error and true relationship and leaving and to make correct
forecast predictions.
make correct forecast predictions. As described in Tableau, models of time series analysis
include:

• Classification: identifies and assigns categories to the data for example identify a
word based on series of hand movement in sign language.

• Curve fitting: the process of constructing a curve, or mathematical function, with
the best fit to a series of data points.

• Descriptive analysis: identifies patterns in time series data, like trends, cycles, or
seasonal variation.

• Explanative analysis: attempts to understand the data and the relationship within
it, as well as cause and effect.

• Exploratory analysis: highlights the main characteristics of the time series data,
usually in a visual format.

4
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2.1 – Time series analysis

• Forecasting: predicts future data. It uses historical data as a model for future
data, predicting scenarios that could happen along future plot points.

• Intervention analysis: studies how an event can change the data.

• Segmentation: splits the data into segments to show the underlying properties of
the source information. For example, the audio signal from a conference call can
be partitioned into pieces corresponding to the times during which each person was
speaking.

When dealing with time series data, it is important also to distinguish between the dif-
ferent possible components available, since each one of these requires different strategies
to deal with:

• Trend: in which there is no fixed interval and any divergence within the given
dataset is a continuous timeline. The trend would be negative, positive, or null and
basically represents an increase or decrease in time-series value over time.

• Seasonality: in which regular or fixed interval shifts within the dataset in a continu-
ous timeline. It refers to periodic fluctuations. For example, electricity consumption
is high during the day and low during the night.

• Cyclical: in which there is no fixed interval, uncertainty in movement and its pat-
tern.

• Irregularity: unexpected situations/events/scenarios and spikes in a short time
span.

Usually, one tries to remove these components in order to have a stationary time series,
data where there is no trend or seasonality information present in it. While discussing
time series data types, there are so two major types: stationary and non-stationary.
For being stationary, a dataset should comply with the following requirements:

• the mean value should be completely constant in the data during the analysis.

• the variance should be constant with respect to the time frame.

• the covariance is independent of time.

Basically, a time series is said to be stationary if its statistical properties do not change
over time.
During the time series analysis is important to verify if the dataset is stationary or not
and this can be done considering different test:

• Augmented Dickey-Fuller (ADF) test also known as Unit Root Test. The ADF
has the following assumptions:

– Null hypothesis (H0): series is non-stationary.

5
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– Alternate hypothesis (H1): series is stationary.

If p-value > 0.05, no evidence to reject (H0).
If p-value ≤ 0.05, evidence to reject (H0).

• Kwiatkowki-Phillips-Schmidt-Shin (KPSS) used for testing a null hypothesis
(H0), that will perceive the time series, as stationary around a deterministic trend
against the alternative of a unit root.

For more information concerning the ADF and the KPSS tests, Mushtaq [2011] and Shin
and Schmidt [1992] respectively, describe the two techniques in detail.
In time series analysis, it is mandatory to deal with stationary time series. To do that,
Shanthababu Pandian shows there are two main methods for converting a non stationary
time series into a stationary one:

• Detrending: it involves removing the trend effects from the given dataset and
showing only the differences in values from the trend. It allows the cyclical pattern
to be identified.
The example below shows how to remove a linear trend from daily closing stock
prices to emphasize the price fluctuations about the overall increase.
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Figure 2.2: Example of detrending of daily closing stock prices
Image source:

https://de.mathworks.com/help/matlab/data_analysis/detrending-data.html

• Differencing: it consists in a simple transformation of the series into a new one
used to remove the series dependence on time and stabilize the mean of the time
series. In this way, trend and seasonality are reduced during the transformation.
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2.1 – Time series analysis

The example below shows a nonseasonal difference of a time series, the quarterly
U.S. GDP measured form 1947 to 2005. In particular a first difference of the series
has been applied (more on this in Section 2.2 ):

∆yt = yt − yt−1. (2.1)

0 50 100 150 200

-2000

0

2000

4000

6000

8000

10000

12000

U.S. GDP

First Differences GDP Series

Figure 2.3: Example of Nonseasonal differencing of a time series
Source by: https://de.mathworks.com/help/econ/nonseasonal-differencing.html

After having adjusted the time-series, it is possible to proceed by performing what is
called time-series forecasting, one of the most applied data science technique in business,
finance and, weather heating and energy predictions.
Time series forecasting means to forecast or to predict the future value over a period of
time. It entails developing models based on previous data and applying them to make
observations and guide future strategic decisions.
The future is predicted or estimated based on what has already happened. Time series
adds a time order dependence between observations.
This dependence is both a constraint and a structure that provides a source of additional
information. Time series forecasting is a technique for the prediction of events through
a sequence of time. It predicts future events by analyzing the trends of the past, on the
assumption that future trends will hold similar to historical trends.
For performing predictions and forecasts of a time series, a model is needed but before
it, is also useful to make a distinction between univariate and multivariate time series
models.
The former use only variable without any external data and are based only on the rela-
tionship between past and present. The latter, instead, use multiple variable and can also
use external data and is based on relationship between past and present and also between
variables.

7
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The problem and common approaches

Having said this, there are different families of models:

• Classical time series models: are based on temporal variation inside a time series
and work well with univariate time series.

• Supervised models: are a family of models used for machine learning task. A
machine learning model is supervised when it uses clearly defined input variables
and one or more output (target) variables.

• Deep learning and recent models: the increasing popularity of deep learning
and artificial intelligence over the last years, has opened new possibilities for fore-
casting as well, as specific deep learning approaches have been invented that work
well on time series data.

Classical time series models, in particular, are the most used and are the one adopted in
the following study. They can be divided in different categories:

• ARIMA family: is a set of smaller models that can be combined. Each part of
the ARIMA model can used as a stand-alone component, or the different building
blocks can be combined.

– Autoregression (AR): regression model that explains a variable’s future
value using its past (lagged) values. The order of an AR model (denoted as p),
represents the number of lagged values to include in the model.

– Moving average (MA): it uses the prediction error in previous time steps to
predict the future. The number of steps back in time is the order q of the MA
model.

– Autoregressive moving average (ARMA): combines AR and MA and can
therefore use both values and prediction errors from the past.

– Autoregressive integrated moving average (ARIMA): it includes au-
tomatic differencing to the ARMA model by including a new parameter, d,
representing the number of times that the time series needs to be differenced,
in order to remove the series dependence on time and stabilize the mean of the
time series.

– Seasonal autoregressive integrated moving average (SARIMA): it
adds seasonal effects into the ARIMA model. When dealing with SARIMA
models, the parameters to consider are more. The most general representation
is SARIMA(p,d,q)(P,D,Q)m, where m is the number of observations per year
(monthly data has m = 12, ad example), the letters (p,d,q) represent the non
seasonal orders while capital letters (P,D,Q) represent the seasonal orders.
For more information on SARIMAmodel, see https://www.real-statistics.
com/time-series-analysis/seasonal-arima-sarima/sarima-models/.
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2.1 – Time series analysis

– Seasonal autoregressive integrated moving average with exogenous
regressors (SARIMAX): whenever there is any variable that could help
to improve the model, the model adopted should be SARIMAX where the X
stands for external variables.
For more information on SARIMAX model, see https://www.statsmodels.
org/stable/examples/notebooks/generated/statespace_sarimax_stata.html.
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Figure 2.4: Example of ARIMA model fitted to NYSE composite closing prices
Image source: https://de.mathworks.com/help/econ/arima.estimate.html

• Smoothing: allows to make the curve smoother so that long term variability be-
comes more evident while short term patterns (noisy) are removed.

– Simple moving average: consists of replacing the current value by the av-
erage of the current and a few past values.

– Simple exponential smoothing: it takes a weighted average of past values
such that value further back will count less in comparison to more recent values.

– Double exponential smoothing: is used in presence of trends since the
simple exponential smoothing is not able to distinguish between variations and
trends correctly.
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2.2 Stationary time series
Stationarity is an important concept in the field of time series analysis with considerable
influence on how data is perceived and predicted.
For data to be stationary, the statistical properties of a system do not change over time,
meaning that the overall behavior of the data should remain constant.
From a visual perspective, time plots not showing trends or seasonality can be considered
stationary.
If it’s not the case, data has to be transformed in order to be able to forecast the series
using traditional time series models.
Different methods can be applied in order to reach stationarity:

• Difference transform: is a transform that helps stabilize the mean of the time
series by removing changes in the level of a time series, which eliminates trend and
seasonality.
Let L be the lag operator such that:

Ljxt = xt−j , t, j ∈ Z,

and let ∆ denote the difference operator.
So the lag operator shifts a time value xt back by j periods and it can be applied to
all values in a series xt and the result is a new series shifted back by j periods xt−j .
The difference operator is expressed as:

∆ixt = (1− L)j xt. (2.2)

Some combinations of the following difference operators were considered:

– ∆1 corresponds to the nonseasonal differencing to address the linear trend,

– ∆24 corresponds to the number of hours in a day,

– ∆7 corresponds to the number of days in a week,

– ∆365 corresponds to the number of days in a year,

– ∆12 corresponds to the number of months in a year.

The transformation that takes into account all the above operators is obtained by
multiplying the corresponding lag operator polynomials:

H(xt) = ∆1∆7∆12∆24∆365xt = (1−L)(1−L7)(1−L12)(1−L24)(1−L365)xt. (2.3)
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2.2 – Stationary time series

Let the lag operator polynomial be:

A(L) = 1 + φ1L1 + ...+ φdL
d, φ1, ..., φd ∈ {−1,1} . (2.4)

then the inverse seasonal difference operator is given by:

A−1 (L) = 1− φ1L
1 − ...− φdLd (2.5)

• Log transformation: sometimes, differencing is not enough to remove trends in
all non-stationary data and, for solve this problem before performing it, the time
series can be transformed in a logarithmic scale.
Log transformation can be used to stabilize the variance of a series with non-constant
variance. The only limitation is represented by the fact that it can be applied only
to positively valued time series. For negative data, one could add a suitable constant
to make all the series positive before applying the transformation and remove it from
the model before predicting future values.

• Augmented Dickey-Fuller (ADF) test: also known as the unit root test, a
statistical test testing the null hypothesis that a unit root is present in a time series
sample. Unit root is a characteristic of a time series that makes it non-stationary.
An ADF test, tests the null hypothesis that α = 0 (being α the coefficient of the
first lag on x) in the following equation:

xt = c+ βt+ αxt−1 +
p∑
i=1

φi∆xt−i + εt, (2.6)

where:

– xt−1 is the lag 1 of time series,

– ∆xt−1 is the first difference of the series at time (t-1).

Since the null hypothesis assumes the presence of unit root, that is α = 1, the p-
value obtained should be smaller than the significance level in order to reject the
null hypothesis.
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2.3 ARIMA-GARCH process
Time series analysis is a major branch in statistics that mainly focuses on analyzing data
set to study the characteristics of the data and extract meaningful statistics in order to
predict future values of the series.
The two most common approaches used in time series analysis to perform forecast of the
series are frequency-domain (Fourier Transform) and time-domain (ARIMA and GARCH
methods).
In the following study, the applied approach is the latter so particular attention has been
spent on the properties of ARIMA and GARCH processes.

2.3.1 Autoregressive integrated moving average (ARIMA)
An autoregressive integrated moving average, or ARIMA, is a statistical analysis model
that uses time series data to either better understand the data set or to predict future
trends based on past values.
This model is a form of regression analysis that can be understood by outlining each of
its components:

• Autoregression (AR): refers to a model that shows a changing variable that re-
gresses on its own lagged values,

• Integrated (I): represents the differencing of raw observations to allow for the time
series to become stationary,

• Moving Average (MA): incorporates the dependency between an observation and
a residual error from a moving average model applied to lagged observations.

When dealing with ARIMA models, three parameters must be considered:

• p: the number of lag observations in the model,

• d: the number of times that the raw observations are differenced,

• q: the size of the moving average window.

ARIMA combines autoregressive features with those of moving averages. An AR(1) au-
toregressive process, for example, is one in which the current value is based on the preced-
ing one, while an AR(2) process is one in which the current value is based on the previous
two values.
A moving average, instead, is a calculation used to analyze data points by creating a series
of averages of different subsets of the full data set in order to smooth out the influence of
outliers.
As a result of this combination of techniques, ARIMA models can take into account trends,
cycles, seasonality, and other non-static types of data when making forecasts.
General form of the ARMA(p,q) model:

Xt = φ0 + εt +
p∑
j=1

φjXt−j +
q∑
i=1

αiεt−i, t ∈ Z, (2.7)
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where:

• εt follows the standard normal distribution,

• φj = 1− φ1z−, ...,−φpzp meet the requirements of stationarity,

• αi = α0 + α1z + ...+ αqzq, meet the requirements of reversibility (not having prob-
abilistic properties depending on the direction of time).

General form of the ARIMA(p,d,q) model:

Yt = (1− L)dXt, (2.8)

is a sequence of ARMA(p,q), and it indicates that Xt is a sequence of ARMA(p,q) and
the model is shown as follows:

φ (L) (1− L)dXt = α (L) εt, t ∈ Z , (2.9)

where:

• L represent the lag operator,

• (1-L) represents the finite difference operator,

• εt is defined as before,

• φZ = 1− φ1z−, ...,−φpzp is defined as before,

• αz = α0 + α1z + ...+ αqzq is defined as before.

2.3.2 Generalized autoregressive conditional heteroskedasticity
(GARCH)

The autoregressive conditional heteroskedasticity (ARCH) model is a statistical model
for time series data describing the variance of the current error term or innovation as
a function of the actual sizes of the previous time periods error terms. This model is
appropriate when the error variance in a time series follows an autoregressive (AR) model;
if an autoregressive moving average (ARMA) model is assumed for the error variance, the
model is called generalized autoregressive conditional heteroskedasticity (GARCH).
ARCH models are often used in modeling financial time series exhibiting time-varying
volatility (the degree of variation of the series over time, usually measured as the standard
deviation of the logarithmic returns) .
Let εt be the error terms; these terms are splitted into a sthocastic piece ηt and a time-
dependent conditional variance ht characterizing the typical size of the terms such that:

εt =
√
htηt, (2.10)

where the innovations ηt are indipendent and identically distributed (i.i.d) random vari-
ables such that:
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• E[ηt] = 0,

• E[η2
t ] = 1,

• follow a symmetric distribution E[η3
t ] = 0,

• E[η4
t ] ≤ ∞.

Then, the series ht is modeled by:

xt = f (t, xt−1, xt−2, ...) + εt, (2.11)

ht = ω0 +
s∑
i=1

ωiε
2
t−i, (2.12)

where:

• ωi is nonnegative,

• f (t, xt−1, xt−2, ...) is the deterministic information fitting model of the series xt.

If an autoregressive moving average model is assumed for the error variance, the model
is generalized autoregressive conditional heteroskedasticity model and, in that case, the
GARCH(r,s) model, is given by:

xt = f (t, xt−1, xt−2, ...) + εt, (2.13)

εt =
√
htηt, (2.14)

ht = ω +
s∑
i=1

ωiε
2
t−i +

r∑
j=1

γjht−j . (2.15)

where ωi and γj are nonnegative.

It is an extension of the ARCH model and claims that ht has AR
∑r
j=1 γjht−j and ARCH

term is
∑s
i=1 ωiε

2
t−i.

Basically this model is characterized by having a conditional variance not only influenced
by past residuals but also by the lag of conditional variance themselves.

2.3.3 ARIMA-GARCH Models
In general time series modeling must fulfill the assumption of homoskedasticity (constant
variance).
However, some kind of data (is especially the case of stock prices and inflation rates)
usually show the phenomenon of cluster volatility, a period in which their prices show
alternating changes for a long period followed by period indicating a stable state.
This situation can cause variance data not to be constant (heteroskedasticity). To over-
come this situation the ARIMA(p,q)-GARCH(r,s) model can be used.
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In particular, the model is the same as the classical ARIMA(p,q) , but now the error term
εt does not follow anymore a standard normal distribution but follows the same distribu-
tion described in the case of GARCH models:

Xt = φ0 + εt +
p∑
j=1

φjXt−j +
q∑
i=1

αiεt−i, t ∈ Z, (2.16)

εt =
√
htηt, (2.17)

ht = ω0 +
s∑
i=1

ωiε
2
t−i +

r∑
j=1

γjht−j . (2.18)
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2.4 ARIMA order selection: AIC and BIC
When fitting a model to a data set it is important to assess the performance of the model
with respect to how well it explains the data.
Supposing the goal is to select from among several candidate models, which criterion can
be used to select the best model?
Given a set of data, the objective is to determine which of the candidate models best
approximates the data and this involves trying to minimize the loss of information.
For doing so, as suggested by Hyndman and Athanasopoulos [2018] are the most common
approaches in model selection: the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC).

• AIC: the Akaike information criterion estimates, given a collection of model for the
data, the quality of each of them, relative to each of the other models. When fitting
a statistical model to represent a data set, the representation will almost never be
exact.; so some information is lost by using the model to represent the process and,
the goal of AIC, is to estimate it.
Less information is lost by a model, higher is the quality of that model.
The AIC is computed as follows:

AIC = −2 logL
(
θ̂
)

+ 2k, (2.19)

where:

– θ is the set of model parameters,

– L
(
θ̂
)
is the likelihood of the candidate model given the data when evaluated

at the maximum likelihood estimate of θ,

– k is the number of estimated parameters in the candidate model.

The first component, −2 logL
(
θ̂
)
, is the value of the log-likelihood function, logL

(
θ̂
)
,

which is the probability of obtaining the data given the candidate model. Since the
log-likelihood function’s value is multiplied by -2, ignoring the second component,
the model with the minimum AIC is the one with the highest value for the log-
likelihood function.
However, to this first component an adjustment is added based on the number of
estimated parameters. The more parameters, the greater the amount added to the
first component, increasing the value for the AIC and penalizing the model.
A trade-off is then present when AIC is adopted, between the goodness of fit of the
model and the simplicity of it. Basically, AIC deals with both risk of overfitting and
that of underfitting.
When fitting models, it is possible to increase the log-likelihood by adding parame-
ters, but doing so may result in overfitting. The AIC tries to resolve the problem by
introducing a penalty term for the number of parameters in the model.
When dealing with ARIMA models, it can be rewritten as:

AIC = −2 logL
(
θ̂
)

+ 2 (p+ q + k + 1) , (2.20)
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where:

– k = 1 if the constant term in ARIMA model is different from zero,

– k = 0 if the constant term in ARIMA model is equal to zero.

• BIC: the Bayesian information criterion (BIC), is a criterion for model selection
among a finite set of models; usually the model with lower BIC is preferred.
The difference with AIC is the greater penalty term imposed for the number of
parameters by the BIC.
The BIC is computed as follows:

BIC = −2 logL
(
θ̂
)

+ k log n, (2.21)

where the terms are the same as described before for the AIC and n is the number
of observations.
When dealing with ARIMA models, it can be rewritten as:

BIC = AIC + [log n− 2]− (p+ q + k + 1) . (2.22)
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2.5 ACF and PACF
Even if the order of the ARIMA(p,q) model can be detected usig AIC and BIC criterions,
another way is to look graphically at the ACF (autocorrelation function) and PACF
(partial autocorrelation function) of the time series.
Autocorrelation is the correlation between two observations at different points in a time
series. For example, values that are separated by an interval might have a strong positive
or negative correlation. When these correlations are present, they indicate that past values
influence the current value.
Mathematically speaking, the observations yt and yt−k are separated by k time units,
where k is the lag, the number of intervals between two observations.
For each lag, there is a correlation. To identify which lags have significant correlations,
understand the patterns and properties of a time series, the autocorrelation function
(ACF) is adopted.
The ACF assesses the correlation between observations in a time series for a set of lags
and, for two variables yt and yt+k, is given by:

ρk = Corr [yt, yt+k] = E [(yt − µt) (yt+k − µt+k)]
σtσt+k

= Cov (yt, ..., yt+k)
σtσt+k

, (2.23)

where:

• E is the expected value operator,

• µt and µt+k are the means respectively for yt and yt+k,

• σt and σt+k are their standard deviations.

The partial autocorrelation function is similar to the ACF but captures, instead, a direct
correlation between time series and a lagged version of itself.
Is quite similar to ACF, since is defined as the correlation between two variables but, now,
depending on all the observations that are in between:

ρk = Corr [yt, yt+k|yt+1, ..., yt+k−1] . (2.24)

But what’s the relation between ACF and PACF plots and ARIMA models?
It is possible to select the order p for AR(p) model based on significant spiked from the
PACF plot. One more indication of the AR process is that the ACF plot decays more
slowly.
In contrast to the AR model, it is possible to choose the order q for model MA(q) from
ACF if this plot has a sharp cut-off after lag q. One more indication of the MA process is
that the PACF plot decays more slowly.

Consider now a time series generated by an autoregression (AR) process with a lag of k.
Since the ACF describes the autocorrelation between an observation and another one at a
prior time step that includes direct and indirect dependence information, we woud expect
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the ACF for AR(k) time series to be strong to a lag of k and the inertia of that relation-
ship would carry on to subsequent lag values, trailing off at some point as the effect was
weakened.
The PACF, instead, only describes the direct relationship between an observation and its
lag and this would suggest that there would be no correlation for lag values beyond k.
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2.6 Engle’s test for heteroskedasticity
After having fitted an ARIMA(p,d,q) model and decided the best order of it, another test
can be performed to confirm or reject the heteroskedasticity of the residuals; this test is
also known as the Engle’s test.
In the following, as suggested by Engle [1982], a simple time series is considered but the test
can be performed in the same way considering more complex models, like ARIMA(p,d,q).

1. Consider a time series:
yt = µt + εt, (2.25)

where:

• µt is the conditional mean of the process,

• εt is an innovation process with mean zero.

2. Suppose the innovations are generated as:

εt = σtzt, (2.26)

where zt is an indipendent and identically distributed process with mean 0 and
variance 1.
Thus E [εtεt+h] = 0 for all lags h /= 0 and the innovations are uncorrelated.

3. Let Ht denote the history of the process available at time t. The conditional variance
of yt is:

Var (yt|Ht−1) = Var (εt|Ht−1) = E
(
ε2t |Ht−1

)
= σ2

t . (2.27)

Thus, the conditional heteroscedasticity in the variance process is equivalent to the
autocorrelation in the squared innovation process.

4. Define the residual series:
εt = yt − µ̂t. (2.28)

If all autocorrelation in the original series, yt, is accounted for in the conditional
mean model, then the residuals are uncorrelated with mean zero. However, the
residuals, can still be serially dependent.

5. The alternative hypothesis for Engle’s ARCH test is autocorrelation in the squared
residuals, given by the regression:

Ha : ε2t = α0 + α1ε
2
t−1 + ...+ αmε

2
t−m + µt, (2.29)

where µt is a white noise error process.
The null hypothesis is:

H0 : α0 = α1 = ... = αm = 0. (2.30)
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Basically the null hypothesis is that, in the absence of ARCH components, αi = 0
for all i = 1, ...,m. The alternative hypothesis is that, in the presence of ARCH
components, at least one of the estimated αi coefficients must be significant. After
performing the Engle’s ARCH test, is possible, using again AIC and BIC criterion,
to choose the best ARIMA(p,q,d)-GARCH(r,s) model.

21



The problem and common approaches

2.7 Time series forecasting
The concept of time series forecasting occurs when, through historical analysis and by
building models, future predictions are made based on previous historical data.
Is basically the process of analyzing time series data using statistics and modeling to make
predictions on the future outcomes.
In the following, time series forecasting has been performed in the differenced log domain
and three different kinds of techniques have been analyzed:

• Forecasts through the Matlab function ’forecast’ which basically forecast univariate
autoregressive integrated moving average (ARIMA) model responses or conditional
variances.

• Classical Residual Bootstrap, where the idea is to make future predictions based on
the residuals of the ARIMA-GARCH model. In particular the bootstrap technique
is applied to the standardized residuals in order to generate paths of future outcomes
without making assumptions about the probability distribution of them.

• Influence Function Bootstrap, where the idea is pretty close the one of Classical
Residual Bootstrap with the difference that, here the IF is used to resample with
probabilities in order to reduce outliers effects.
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Fill missing data with nearest values

Remove duplicates

Leap year adjustment

Take log value

Differencing

Stationary test (ADF test)

ARIMA order chosen by AIC and BIC

ACF and PACF check

Engle’s test on residual for heteroskedasticity

ARIMA-GARCH order chosen by AIC and BIC

Fit ARIMA-GARCH model

Forecasts in differenced log domain

Go back on the original domain

Real forecast values

Figure 2.5: Steps for time series analysis
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2.8 Case under study
A dataset from https://data.open-power-system-data.org (an open power system
data platform providing European power system data) has been used, describing the total
heating demand in Megawatt in Germany from 2015 to 2020.
The dataset has been modified such that missing values were imputed by taking the
nearest non-empty value; moreover, the data points from February 29th of leap years
were removed and, to better capture the relative change between subsequent data points
and lower the computational range, the sample points are transformed by taking their
natural log values.
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Figure 2.6: Dataset of heating demand in Germany
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2.8 – Case under study
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Figure 2.7: Logarithmic representation of heating demand in Germany

After that, the series has been detrended and seasonal effects have been removed by per-
forming the before mentioned differencing method.
In particular, for this dataset, the combination H (xt) = ∆1 ·∆12 ·∆24xt, t = 1, ..., T , was
found to be the best.
Once Augmented Dickey-Fuller (ADF) test has been performed on H(xt), the series could
be considered stationary since the rejection of the hypothesis that there is a unit root was
confirmed.
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Figure 2.8: Nonseasonal and seasonal differenced log heating demand

Then, the AIC and BIC criterion have been considered in order to choose the right ARIMA
order.
The minimum values of AIC and BIC, in particular, have been obtained with p=1 and
q=1 and used in order to fit the data to the ARIMA model; moreover, the ACF and
PACF of the differenced logarithmic dataset have been plotted to graphically understand
the possible moving average and autoregressive orders and to confirm, once more, the
correct ARIMA orders.

p
q 1 2 3 4

1 -6.8925 -5.9117 -6.6158 -6.2038
2 -5.9666 -4.4964 -4.7185 -5.1511
3 -6.0872 -3.7490 -5.0644 -5.0156
4 -5.7726 -3.4614 -3.3556 -6.2295

Table 2.1: AIC calculation results (·104) for ARMA order
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p
q 1 2 3 4

1 -6.8910 -5.9106 -6.6145 -6.2031
2 -5.9656 -4.4951 -4.7170 -5.1493
3 -6.0859 -3.7475 -5.0625 -5.0136
4 -5.7710 -3.4596 -3.3536 -6.2271

Table 2.2: BIC calculation results (·104) for ARMA order

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o

rr
e
la

ti
o

n

ACF

0 2 4 6 8 10 12 14 16 18 20

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 P

a
rt

ia
l 
A

u
to

c
o

rr
e
la

ti
o
n

PACF

0 2 4 6 8 10 12 14 16 18 20

Lag

Figure 2.9: ACF and PACF of differenced logarithmic data

As showed by Figure 2.9, both the ACF and PACF have the biggest correlation value at
lag 0, and then they start slowly decreasing. This result, based on the theory discussed
previously, means that is reasonable to adopt an ARIMA model with p = 1 and q = 1, as
suggested before by the AIC and BIC criterion.
Having found the order, an ARMA(1,1) model has been constructed and fitted to the
data. But, before doing that, the residuals have been analyzed in order to perform an
Engle test to check for the presence of ARCH effects.
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Figure 2.10: ARIMA model residual

Beyond the residuals, also the volatility, obtained by taking the square root of the condi-
tional variance, was analyzed.
Furthermore, the residuals have been also standardized by taking the ratio of their values
and the volatility. The standardized residuals were then used for performing bootstrap
based forecasting.
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Figure 2.11: Conditional standard deviation of the ARMA model
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Figure 2.12: Standardized residuals of the ARMA model

Then, the Engle test has been performed on the residual indicating that the null hypoth-
esis of homoskedasticity must be rejected. In other words, residuals are heteroskedastic
and so, the composite model ARIMA(p,d,q)-GARCH(r,s) was considered.
Again, AIC and BIC were used in order to get, this time, not only the ARIMA orders
but also those of the GARCH process. The most parsimonious model was chosen to be
ARIMA(1,1,1)-GARCH(1,1).

p
q 1 2 3 4

1 -7.7239 -7.1342 -7.3981 -6.8984
2 -7.1668 -5.4369 -5.6055 -4.3500
3 -6.8174 -4.6190 -5.9132 -4.2164
4 -6.9153 -4.3477 -4.2170 -6.6766

Table 2.3: AIC calculation results (·104) for GARCH order

p
q 1 2 3 4

1 -7.7226 -7.1331 -7.3973 -6.8969
2 -7.1657 -5.4356 -5.6039 -4.3482
3 -6.8161 -4.6174 -5.9113 -4.2143
4 -6.9137 -4.3459 -4.2149 -6.6743

Table 2.4: BIC calculation results (·104) for GARCH order
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Having found the correct ARIMA(p,d,q)-GARCH(r,s) orders, it was finally possible to
construct the model and fit it to the data set. As can be seen in Figure 2.13, and in
particular in the zoomed version of it, Figure 2.14, the model fits pretty well the data set.
This demonstrates graphically that the previous described analysis and techniques were
necessary in order to achieve good performances.
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Figure 2.13: Real dataset and ARIMA-GARCH fitted model
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Figure 2.14: Zoom real dataset and ARIMA-GARCH fitted model
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In particular, when fitting an ARIMA-GARCH model in Matlab, the software provides
different properties of the model itself like the parameters adopted in the model equation.
The following parameter values regarding the ARIMA-GARCH process under study were
obtained:

ARIMA(1,1,1) VALUE STD.ERROR t-statistic PValue
Constant -1.6001e-05 0.00066138 -0.024194 0.9807
AR(1) 0.39605 0.0050722 78.081 0
MA(1) 0.37814 0.0061805 61.183 0

Table 2.5: ARIMA parameters

GARCH(1,1) VALUE STD.ERROR t-statistic PValue
Constant 3.4596e-05 5.3e-06 6.5275 6.686e-11
GARCH(1) 0.97133 0.0013558 716.43 0
ARCH(1) 0.026932 0.0012318 21.863 0

Table 2.6: GARCH parameters

Considering the above parameters and the model mentioned in equation (2.16) and equa-
tion (2.18), it was possible to reconstruct analytically the adopted model:

Xt = −1.6001e− 05 + 0.39605Xt−1 + 0.37814εt−1 + εt, (2.31)

ht = 3.4596e− 05 + 0.97133ht−1 + 0.026932ε2t−1. (2.32)

Having fitted the model to the dataset, it was possible to perform forecast in differenced
log domain and finally get the prediction values back in the original domain applying the
inverse seasonal difference operator to the known historical values for the past d data point:

x̂t+1 = H−1 (x̂t+1) = [−φd, ...,−φ1,1]T [xt−d+1, ..., xt, x̂t+1] , (2.33)

where φ1, .., φd are as defined in Eq. (2.5).

After having fitted the model, predictions have been performed with and without boot-
strap algorithms.
For the former case, the Matlab command forecast has been used, which forecast univari-
ate autoregressive integrated moving average (ARIMA) model responses or conditional
variances for performing prediction into the future, in a time range beyond the last in-
stant of measured data.
For each one-hour-ahead prediction, the preceding Ntrain = 30 data points were used and
a total of 100 total predictions were performed.
Without bootstrapping, the predictions gave the following results for what concerns the
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performance metrics and, in particular, the root mean squared error (RMSE), mean ab-
solute error (MAE), and the mean absolute percentage error (MAPE):

RMSE (MW) MAE (MW) MAPE (%)
9.0940e+03 5.6054e+03 0.0613

Table 2.7: Performance without bootstrap

RMSE =
√

1
N

(At − Ft)2, (2.34)

MAE = 1
N

N∑
t=1
|At − Ft| , (2.35)

MAPE = 100
N

N∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (%), (2.36)

where:

• At denotes the t-th actual value,

• Ft denotes the t-th forecasted values.

Basically:

• RMSE is a measure of the differences between values predicted by a model or an
estimator and the values observed. Thus, RMSE is the average distance measured
vertically from the actual value to the corresponding predicted value on the fit line.
The range of RMSE is (0,∞); the smaller the RMSE value is, the higher the accuracy
of the prediction model. The units of RMSE are the same as original units,

• MAE is an arithmetic average of the absolute errors between predictions and real
vlaue. The MAE is often called the mean absolute deviation (MAD). The range
of MAE is (0,∞); the smaller the MAE value is, the higher the accuracy of the
prediction model. The unit of MAE iis the same as original data. In comparison
with MAE, the RMSE has a relatively high weight for large errors, because the errors
are squared before averaging,

• MAPE is a measure of prediction accuracy of a forecasting method. Is a percentage-
dependent metric since is a unit-free measure which calculates the average of the
percentage error. The disadvantage of the MAPE is that the MAPE is scale-sensitive;
it will get extreme values if the actual value is quite small.
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Figure 2.15: Prediction without bootstrapping
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Figure 2.16: Zoom in prediction without bootstrapping
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2.9 Introduction to bootstrap methods

Statistics is the science of learning from data. Statistical knowledge aids in the proper
methods for collecting data, using correct methods for analyzing them, and effectively
presenting the results derived from data. The primary task of a statistician is to
summarize a sample based study and generalize the finding to the parent population
in a scientific manner. A technical term for a sample summary number is (sample)
statistic. Some basic sample statistics are sample mean, sample median, sample
standard deviation.
Of course, a summary statistic like the sample mean will fluctuate from sample to
sample and a statistician would like to know the magnitude of these fluctuations
around the corresponding population parameter in an overall sense. This is then
used in assessing margin of errors.
The entire picture of all possible values of a sample statistics presented in the form
of a probability distribution is called a sampling distribution. A general intuitive
method applicable to just about any kind of sample statistic that keeps the user
away from the technical tedium has got its own special appeal. Bootstrap is such a
method.
To understand bootstrap, suppose it were possible to draw repeated samples (of
the same size) from the population of interest, many times. Then, one would get
a fairly good idea about the sampling distribution of a particular statistic from the
collection of its values arising from these repeated samples. But, that does not
make sense as it would be too expensive and defeat the purpose of a sample study,
gathering information cheaply in a timely fashion.

Figure 2.17: Traditional approach
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The idea behind bootstrap is to use the data of a sample study at hand as a surrogate
population, for the purpose of approximating the sampling distribution of a statis-
tic; i.e. to resample (with replacement) from the sample data at hand and create
numerous "phantom samples" known as bootstrap samples. The sample summary is
then computed on each of the bootstrap samples. A histogram of the set of these
computed values is referred to as the bootstrap distribution of the statistic.
So bootstrapping is a statistical procedure that resamples a single dataset to create
many simulated samples, allowing for the calculation of standard errors, confidence
intervals, and hypothesis testing.
Bootstrapping is any test or metric that uses random sampling with replacement
and it estimates the properties of an estimator by measuring these properties when
sampling from an approximating distribution.
The traditional approach draws one sample of size n from the population, and that
sample is used to calculate population estimates to then make inferences on. Now, in
reality, only one sample has been observed. However, there is the idea of a sampling
distribution, which is a theoretical set of all possible estimates if the population were
to be resampled.
The theory states that, under certain conditions such as large sample sizes, the sam-
pling distribution will be approximately normal, and the standard deviation of the
distribution will be equal to the standard error.
But what happens if the sample is not sufficiently large? Then, it cannot necessarily
be assumed that the theoretical sampling distribution is normal. This then makes
it difficult to determine the standard error of the estimate, and harder to draw rea-
sonable conclusions from the data.
As with the traditional approach, a sample of size n is drawn from the population
within the bootstrapping approach. Let call this sample S.
Then, rather than using theory to determine all possible estimates, the sampling dis-
tribution is created by resampling observations with replacement from S, m-times,
with each resamples set having n observations. Now, if sample appropriately, S
should be representative of the population. Therefore, by resampling S m-times
with replacement, it would be as if m samples were drawn from the original popula-
tion, and the estimates derived would be representative of the theoretical distribution
under the traditional approach.
It must be noted that increasing the number of resamples, m, will not increase the
amount of information in the data. That is, resampling the original set 100000 times
is not more useful than only resampling it 1000 times. The amount of informa-
tion within the set is dependent on the sample size, n, which will remain constant
throughout each resample. The benefit of more resamples, then, is to derive a better
estimate of the sampling distribution.
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Figure 2.18: Bootstrap approach

Both traditional and bootstrapping approaches require the use of appropriately
drawn samples to make inferences about populations. However, the most major
difference between these two methods is the mechanics behind estimating the sam-
pling distribution.
The traditional procedure requires one to have a test statistic that satisfies partic-
ular assumptions in order to achieve valid results, and this is largely dependent on
the experimental design. The traditional approach also uses theory to tell what the
sampling distribution should look like, but the results fall apart if the assumptions
of the theory are not met.
The boostrapping method, on the other hand, takes the original sample data and
then resamples it to create many (simulated) samples. This approach does not rely
on the theory since the sampling distribution can simply be observed, and one does
not have to worry about any assumptions. This technique allows for accurate esti-
mates of statistics, which is crucial when using data to make decisions.

Bootstrap, as suggested by Zoubir and Iskandler [2007] is usually used for estimation
of statistical characteristics such as bias, variance distribution functions, confidence
intervals, and more in general hypothesis tests and model selection.
It is particularly useful when I know little about the statistics of the data or I have
only a small amount of data so that I cannot use asymptotic results.
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The bootstrap, overall, does with a computer what the experimenter would do in
practice if it were possible:

1. The observations are randomly re assigned and the estimates re computed.

2. These assignments and re computations are done many times and treated as
repeated experiments.

The bootstrap idea is to simulate the probability mechanism of the real world by
substituting the unknowns with estimates derived from the data.

Figure 2.19: Bootstrap main idea

There are more ways of performing case resampling but the most common is the
Monte Carlo algorithm. First, the data have to be resampled and the size of the
resample must be equal to the size of the original data set.
Then the statistics of interest is computed from the resample from the first step.
This routine is repeated many times to get a more precise estimate of the bootstrap
distribution of the statistic.
Suppose that there is a series of measurements collected in x = {x1, x2, ..., xn} which
are realizations of the random sample X = {X1, X2, ..., Xn} drawn from some un-
specified distribution FX .
Let θ̂ = θ̂(X) be an estimator of some parameter θ of FX , which could be, for ex-
ample, the mean θ = µX of FX estimated by the sample mean θ̂ = µ̂X = 1

n

∑n
i=1 Xi.

The aim is to find characteristics of θ̂ such as the distribution of θ̂.
If F is unknown and asymptotic theory does not apply, the bootstrap provides the
answer.
Its paradigm suggests substitution of the unknown distribution FX by the empirical
distribution of the data, F̂X . Practically, it means that the original data is reused
through resampling to create what is called a bootstrap sample which has the same
size as the original one: x∗b = {x∗1, x∗2, ..., x∗n} for b = 1,2, ..., B, where x∗i , i = 1,2, ...n
are obtained, for example, by drawing at random with replacement from x.

37



The problem and common approaches

1. Conduct the experiment to obtain X = {X1, X2, ..., Xn} and find the estimator
θ̂ from X.

2. Construct the empirical distribution F̂θ which puts equal mass 1/n to each
observation X1 = x1, X2 = x2, ..., Xn = xn.

3. From F̂θ draw a sample X∗ = X∗1 , X
∗
2 , ..., X

∗
n, called the bootstrap (re)sample.

4. Approximate the distribution of θ̂ by that of θ̂∗ derived from X∗.

With a large number B of bootstrap parameter estimates, it is then possible to
approximate the distribution of θ̂ by that of θ̂∗, derived from the bootstrap sample
x∗. So, the distribution of Fθ̂ of θ̂ is approximated by F̂θ̂∗ , the distribution of θ̂∗.

Figure 2.20: Bootstrap algorithm for distribution approximation

Furthermore, there are different types of bootstrap schemes and, in the following,
will be discussed the one based on resampling residuals, a common approach in re-
gression analysis.
The method proceeds as follows:

1. Fit the model and retain the fitted values ŷi and the residuals ε̂i = yi −
ŷi, (i = 1, ..., n).

2. For each pair (xi, yi), in which xi is the explanatory variable, add a randomly
resampled residual, ε̂i, to the fitted value ŷi. In other words, create synthetic
response variables y∗i = ŷi + ε̂j , where j is selected randomly from the list
(1,...,n) for every i.

3. Refit the model using the fictitious response variables y∗i , and retain the quan-
tities of interest (often the parameters, µ̂∗i , estimated from the synthetic y∗i ).
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2.9 – Introduction to bootstrap methods

4. Repeat steps 2 and 3 many times.

This scheme has the advantage that it retains the information in the explanatory
variables. In the following page, a full explanation of the classical residual bootstrap
ARMA(p,q)-GARCH(r,s) is presented step by step.
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2.10 Classical residual bootstrap
ARMA(p,q)-GARCH(r,s) model

1. Obtain the QML estimator from the past Ntrain samples,

θ̂ = (φ̂0, ..., φ̂p, α̂0, ...., α̂q, ω̂0, ..., ω̂s, γ̂0, ...., γ̂r), (2.37)

and calculate the residuals:

ε̂τ = Xτ − φ̂0 −
p∑
i=1

φ̂iXτ−i −
q∑
j=1

α̂j ε̂τ−j , τ = t−Ntrain + 1, ..., t. (2.38)

2. Compute the variance:

ĥτ = ω̂0 +
s∑
j=1

ω̂j ε̂
2
τ−1 +

r∑
i=1

γ̂iĥτ−1, τ = t−Ntrain + 1, ..., t. (2.39)

3. Compute the standardized residuals:

ε̃τ = ε̂τ√
ĥτ

, τ = t−Ntrain + 1, ..., t. (2.40)

4. Resample ε̃τ with replacement to obtain ε̃∗τ , τ = t−Ntrain + 1, ..., t.
With θ̂, xt, ĥτ , and ε̃∗τ as the disturbance path, estimate the predicted value at time
t+1, x̃, according to:

Xt = φ0 + εt +
p∑
j=1

φjXt−j +
q∑
j=1

αjεt−j . (2.41)

5. Repeat Step 4 B times to obtain the bootstrapped predictions, x̃1, x̃2, ..., x̃B and

sort these into x̃(1) ≤ x̃(2), ... ≤ x̃(B).

6. Obtain the 100(1-α) % confidence interval from x̃(1) ≤ x̃(2), ... ≤ x̃(B) and the
bootstrapped estimated value from Median (x̃(1) ≤ x̃(2), ... ≤ x̃(B)).
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In the same way as before, for each one-hour-ahead prediction, the precedingNtrain =
30 data points are used, 100 predictions are obtained and the number of bootstrap
resamples is B = 100.

RMSE (MW) MAE (MW) MAPE (%)
8.9156e+03 5.3232e+03 0.0422

Table 2.8: Performance with residual bootstrap
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Figure 2.21: Residual bootstrap predictions
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Chapter 3

Proposed approach

3.1 Outliers introduction

Outliers in time series data are values that significantly differ from the patterns and
trends of the other values in the time series. Identifying outliers in time series analy-
sis is important because outliers influence the forecast model that is used to forecast
future values. Even a small number of outliers, if not handled correctly, can in fact
drastically reduce the accuracy and reliability of the forecasts.
In ARIMA models, it has been found that outliers can result in significantly neg-
atively biased estimates of the AR(1) coefficient and positively biased estimates of
the MA(1) coefficient, and may also result in model misspecifications. Similarly, for
the GARCH model, the presence of outliers may lead to problems in estimation,
specification, forecasting and interpretation.
In ARIMA models, the accuracy of the point forecasts immediately following an
outlier has been shown to be severely impaired. However, point forecasts are signifi-
cantly less affected by an outlier when such observations are more than two periods
away from the forecast origin. This because the effects of past observations on sub-
sequent forecasts diminish exponentially with the distance from the forecast origin.
Moreover, the impacts of outliers on the parameter estimates affects the forecasts
substantially less.
A common and simple approach for detecting a single outlier in a linear regression
model is selecting the observation with the largest absolute studentised residual, or
the observation with the largest impact on the residual sum of squares upon deletion.
However, this method is not appropriate for detecting outliers in time series, since
the observations are usually neither normally nor independently distributed.
Classical time series analysis entertains two types of outliers: additive and innova-
tion outliers.
An additive outlier only affects a single observation such as a typo or a recording
error while, an innovation outlier affects many observations, and it often signifies an
external disturbance to the series that has a gradually decaying impact.
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Considering the case of GARCH processes, there are two different scenarios. First,
there exist situations in which an outlier does not have any impact on volatility and
this type of disturbance is called level outlier (LO).
The second scenario is when external disturbances, known as volatility outlier (VO),
affect the volatility of the series of interest.
In the following some theory concerning outlier detection is shown.
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3.1 – Outliers introduction

3.1.1 Test to detect level outliers

When the outlier is in the level, it only affects the series at the observation where
it occurs. The effect is not carried into the subsequent observations or into the
volatility.
Let’s consider the following GARCH(r,s) model free of outliers:

yt =
√
htεt, (3.1)

ht = δ +
s∑
i=1

αiy
2
t−i +

r∑
j=1

βjht−j , (3.2)

where:

– the sequence of errors {εt} is indipendent and identically distributed with zero
mean and unit variance,

– δ > 0, αi ≥ 0, and 0 ≤ βi < 1, for i = 1, ..., s, and j = 1, ..., r,

– the quantity ht is the conditional variance of yt on the past information, ht =
V ar (yt|Ft−1), where Ft−1 = {yt−1, yt−2, ...}.

– the process is the same as the one described in equation

In financial applications, yt are the returns and
√
ht is the volatility. In the following,

equation (3.1) and equation (3.2) are referred to as the mean and volatility equation,
respectively.
Considering now a GARCH(1,1) model and, calling the observed series zt, the level
outlier model for a single outlier of size γ at the τ -th observation is given by:

zt = yt + γI[t=τ ], (3.3)

ht = δ + α1y
2
t−1 + β1ht−1, (3.4)

where:

– yt = γ
√
htεt, as defined in equation (3.1),

– I[t=τ ] is the indicator function, which is equal to one when t = τ , and zero
otherwise.

When εt has standard Gaussian distribution, the log-likelihood, conditional on z1
and h1, is given by:

Llo (γ; Θ) = −1
2

n∑
i=2

log

[
δ + α1

(
zt−1 − γI[t−1=τ ]

)2
+ β1ht−1

]
−

−1
2

n∑
i=2

(
zt − γI[t−1=τ ]

)2

δ + α1
(
zt−1 − γI[t−1=τ ]

)2
+ β1ht−1

, (3.5)
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where Θ = (δ, α1, β1)T .

Because the likelihood depends only on the absolute value of
(
zτ − γI[t=τ ]

)
, outliers

equal to γ and (2zτ − γ) at the τ -th observation will produce the same likelihood.
In particular, considering no outlier and outliers equal to 2zt, at every observation
will produce the same likelihood.
A solution is to consider outliers of smaller absolute values, to take the outlier with
the same sign as yτ , or equivalently to assume the magnitude of γ is smaller than
the magnitude of the observed value yτ .
A possible way for detecting additive outliers in a time series is the following.

LM lo
τ = LM vo

τ

1 + α̂1ĥτ

n−τ∑
j=1

β̂j−1
1

(
1

ĥτ+j
−
z2
τ+j

ĥ2
τ+j

)
21 + 2α̂2

1ĥ
2
τ

n−τ∑
j=1

β̂2j−2
1

ĥ2
τ+j

−1

(3.6)
where:

– hat symbol means estimates under the null hypothesis that there is no outlier,

– LM vo
τ , is the test statistic for volatility outlier given by equation (3.10).

Because | β1 |< 1, βi1 converges to zero and the summations in equation (3.6) can
be truncated.
In many applications the position of the outlier is not known and, one case use the
test statistics:

LM lo
max = max2≤τ≤nLM

lo
τ . (3.7)

The distribution of the test statistics can be found using simulation, using the
GARCH(1,1) model without outlier fitted to the observed data series for data gen-
erating model.
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3.1.2 Test to detect volatility outliers

The effect of a volatility outlier is carried into the future observations via the volatil-
ity equation. The observation equation is the same as before, where γ now is the
volatility outlier and the volatility equation is:

ht = δ + α1z
2
t−1 + β1ht−1. (3.8)

For Gaussian distribution, the log-likelihood, conditional to z1 and h1, is given by:

Llo (γ,Θ) = −1
2

n∑
i=2

log
(
δ + α1z

2
t−1 + β1ht−1

)
− 1

2

n∑
i=2

(zt − γIt=τ )2

δ + α1z2
t−1 + β1ht−1

, (3.9)

and there is no identification problem.
Hotta and Tsay [2018] proposed a Lagrange multiplier test for detecting volatility
outliers. A Lagrange multiplier test is a general principle for testing hypotheses
about parameters in a likelihood framework as suggested by Arellano [2002].
The test for the presence of a volatility outlier at the τ -th observation, in particular,
is given by the square of the standardized return on observation τ :

LM vo
τ = y2

τ

α̂ + α̂1z2
τ−1 + β̂1ĥτ−1

, (3.10)

where the hat means the maximum likelihood estimates under the null hypothesis
but, as in the level outlier test presented before, the estimates can be replaced by
any robust estimates.
When the position of the outlier is unknown, the test statistic LM vo

max = max2≤τ≤nLM
vo
τ

is employed to detect a volatility outlier.
When the parameters and h1 are known LM vo

τ , τ = 2, ..., n, are independent with
χ2

1 distribution.
Based on this fact, Hotta and Tsay [2018] suggested approximating the distribu-
tion of LM vo

max by the distribution of the maximum of an independent identically
distributed (i.i.d) sample from the χ2

1 distribution.
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3.1.3 Test to detect level and volatility outliers simultane-
ously

In some procedures, tests can be used to detect the level and volatility outliers
simultaneously. In general, these first involve testing whether there is any type of
outlier and then deciding the type of outlier.
Doornik and Ooms [2005] presented a likelihood ratio test for detecting multiple
level and volatility outliers.
They presented the test for an ARMA-GARCH model but, for simplicity, in the
following is assumed that the return series was already filtered by a suitable model,
which could be an ARMA model.
The GARCH(1,1) model with outliers is fitted to the residual series zt. The model
for possible outliers at the τ -th observation, for the GARCH(1,1) model, is given by:

zt = yt + γlI[t=τ ], (3.11)

ht = δ + α1y
2
t−1 + β1ht−1 + γvI[t−1=τ ], (3.12)

where yt =
√
htεt, as defined in equation (3.1).

Under the null hypothesis of no outliers, γl = γv = 0 and under the hypothesis of
existence of only a level outlier, γl /= 0 and γv = 0.
Comparing with the volatility outlier model given by equation (3.3) and equation
(3.8) with the model given by equation (3.11) and equation (3.12), there is a volatility
outlier, as defined in Section 3.1.2, when:

γl = γ, (3.13)

hτ+1 = δ + (α1yτ + γ)2 + β1hτ = δ + α1y
2
τ + β1hτ + γv , (3.14)

where:

– γl = γ,

– γv = 2α1yτγ + α1γ
2.

The parameter γv is different from zero and since the interest is more in outliers that
increase the volatility, α1 > 0. Also, considering that γ has the same sign as γτ , in
the presence of volatility outliers should be γv > 0.
The procedure suggested by Doornik and Ooms [2005] for detecting multiple outliers
when the position of the outlier is not known is given in four steps:

– Step 1: estimate the GARCHmodel without outlier to obtain the log-likelihood
l̂0 and the conditional variance estimates ĥt.
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– Step 2: denote by "s" the position of the outlier which has the largest absolute
standardized value, the one which maximizes | zt/ĥt |. Estimate the model
given by equation (3.11) and equation (3.12) with τ = s.
Call the estimates of the outlier parameters γ̂l,s and γ̂v,s and the corresponding
log-likelihood L̂s.

– Step 3: if 2
(
L̂0 − L̂s

)
< Cα

n , no outlier is detected at the level of significance
α and the procedure stops. Doornik and Ooms [2005] suggested critical values
based on extreme value theory.

– Step 4: if an outlier is detected, this step selects the type of outlier:

(a): if γ̂v > 0, then there is a level outlier; otherwise continue with steps 4(b).
(b): consider τ = s and γ = γ̂l,s, in the volatility model given by equation (3.3)

and equation (3.4) and the associated log-likelihood given by equation
(3.5). Find the maximum likelihood estimate and denote the associated
log-likelihood as L̂ao,s.

(c): consider τ = s and γ = γ̂v,s, in the volatility model given by equation
(3.3) and equation (3.8) and the associated log-likelihood given by equation
(3.9). Find the maximum likelihood estimate and denote the associated
log-likelihood as L̂vo,s.

(d): if L̂ao,s > L̂vo,s, the outlier is a level outlier otherwise it’s a volatility
outlier.

Each time an outlier is detected, its presence is incorporated in the model and
the four-step procedure is applied until no outlier is detected.
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3.2 Robust bootstrap idea

Robust statistical signal processing, as suggested by Zoubir et al. [2018], is part of
statistical signal processing that, broadly, involves making inference based on obser-
vations of signals that have been distorted or corrupted in some unknown manner.
Classical statistical signal processing relies strongly on the normal (Gaussian) distri-
bution, which provides, in many situations, a reasonable model for the data. It also
allows for closed form derivations of optimal procedures. However, there have been
deviations from Gaussianity reported in numerous campaigns.
Robust statistical methods, instead, account for the fact that the postulated models
for the data are fullfilled only approximately and not exactly. In contrast to clas-
sic parametric procedures, robust methods are not significantly affected by small
changes in the data, such as outliers or small model departures. They also provide
near-optimal performance when the assumptions hold exactly.
While optimality is clearly desirable, robustness is the engineer’s choice.
Optimality, only under the assumed (nominal) distribution is in fact useless if the
estimator is applied to data that does not follow this distribution.
Furthermore, even slight deviations from the assumed distribution may cause the
estimator’s performance to drastically degrade or to completely break down. On
the other hand, robust methods do not depend critically on the exact fulfillment
of the model assumptions and are designed in such a way that they behave nearly
optimally, if the assumed model is correct, while small deviations from the model
assumptions degrade performance only slightly and larger deviations do not cause a
catastrophe.
In recent years, a few of robust bootstrap methods have been developed like:

- Influence Function bootstrap: which assigns resampling probabilities based on
the influence function in such a way that potential outliers are assigned small
probabilities of appearing in any bootstrap resample. This method will be
further analyzed, since it has been adopted for the case under study.

- Stratified bootstrap: which divides data points into groups and bootstrap each
stratum individually in such a way that the fraction of contamination in every
bootstrap sample is kept more representative, in terms of contamination level
of the original sample.

- Fast and robust bootstrap: which avoids recomputation of fixed-point equations
for each bootstrap sample via a smart approximation.

So, when dealing with outliers or, in general, contaminated time series, two are the
possible approaches:

– follow the idea analyzed in Section 3.1 of modeling and correcting the out-
liers before applying forecasting techniques. The forecasting technique will be
applied to the clean data set.
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3.2 – Robust bootstrap idea

– develop a robust bootstrap algorithm able to, even in presence of outliers,
reproduce the time series correctly without need of adjusting for outliers before.
Predictions will be based on the robust bootstrap algorithm which, internally,
will provide for the manipulation of the outliers. This has been the choice for
this study case since the IF bootstrap algorithm has been implemented and
used for making future predictions on the heating demand in Germany.
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3.3 Influence Function bootstrap

The existence of outliers in a sample is an obvious problem which can become even
worse when the usual bootstrap is applied, because some resamples may have higher
contamination level than the initial sample.
It is therefore important to develop bootstrap procedures that prevent some or all
of these problems.
Amado and Pires [2004] suggested a modification of the bootstrap procedure in order
to solve these problems which consists of forming each bootstrap sample by resam-
pling with different probabilities so that the potentially more harmful observations
have smaller probabilities of selection.
The aim is to protect the bootstrap procedure against a given number of arbitrary
outliers and at the same time to be computationally less time-consuming than re-
sampling using a robust estimator.
The control mechanism consists of an alteration of the resampling probabilities as-
signing more importance to some samples than others and using the Influence Func-
tion to compute those selection probabilities.
In general, this procedure leads to resampling less frequently highly influent obser-
vations (those with smaller robust empirical standardized influence function) while,
at the same time, resampling with equal probabilities the observations belonging to
the main structure.
Before going deeper inside the implementation of the IF bootstrap, let’s define what
an Influence Function is. As suggested by Zoubir et al. [2018], to understand the IF,
is better to introduce before the so called Tukey’s sensitivity curve or empirical IF:

SC
(
y, β̂N

)
= N ·

(
β̂N (y1,y2, ...,yN−1,y)− β̂N−1 (y1,y2, ...,yN−1)

)
. (3.15)

The sensitivity curve displays the bias of an estimator β̂N when an additional ob-
servation, that takes on the value y, is added to a sample yN−1 = (y1, y2, ..., yN−1)T .
Here β̂N (·) represents an estimator of a deterministic parameter β based on a sample
of size N.
Having defined the sensitivity curve, it’is possible to consider the Influence Function
of an estimator β̂ as its counterpart, as N tends to infinity.
Let β̂∞ denote the estimator as N tends to infinity and let T(F) be its functional
representation. Then, the IF shows the approximate behavior of the asymptotic
estimator when the sample contains a small fraction ε of identical outliers.
The IF is defined as follows:

IF (y; T (F) ,F) = lim
ε↓0

T (Fε)−T (F)
ε

=
[
∂T (Fε)
∂ε

]
ε=0

, (3.16)

where T (F ) and T (Fε) are the functional representations of the estimator when the
data is distributed following, respectively, F and the contaminated distribution:

Fε = (1− ε)F + εδy, (3.17)
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3.3 – Influence Function bootstrap

with δy being the point-mass probability on y and ε the fraction of contamination.
The main argument of the IF is y, the position of the infinitesimal contamination.
The IF is the first derivative of an estimator T(F) evaluated based on the under-
lying distribution function F while the parameter y is a coordinate in the space of
probability distributions. Consistent with equation (3.19), the assumption is made
that the true distribution lies in an ε-neighborhood of the nominal distribution F.
By evaluating the influence at F, the goal is to gain insight into the behavior of T(F)
within the entire neighborhood.
Having defined the sensitivity curve and the Influence Function, let’s start now de-
scribing the influence function bootstrap.
Let F (Ω) be some specified nominal parametric model, and let the actual distribu-
tion of the data belong to a contamination neighborhood. Here, Ω = (β, τ), where
β ∈ Rp is the parameter vector of interest, while τ ∈ Rp are the nuisance parameters.
Then, the Standardized Influence Function (SIF) of some non-robust estimator β̂nr,
e.g. the LSE, is defined as:

SIF
(
x, β̂nr,F (Ω)

)
=
(

IF
(
x, β̂nr,F (Ω)

)T
var−1

(
β̂nr
∞

)
IF
(
x, β̂nr,F (Ω)

)) 1
2
,

(3.18)
with:

var−1
(
β̂inf

)
= E

[
IF
(
IF(x, β̂,F (Ω)

)
IF
(
x, β̂,F (Ω)

)T
]
, (3.19)

denoting the asymptotic variance of an estimator, and where the expectation is
taken with respect to the nominal distribution F (Ω). Then, the robust standardized
empirical Influence Function RESIF

(
x, β̂nr, Ω̂r

)
is obtained by substituting robust

estimates Ω̂r of Ω into equation (3.20).
For the simple linear regression model, Ω = (β, σ)T , where σ2 denotes the variance
of the residuals, it is the case that:

ri = yi − xiβ, i = 1, ..., N. (3.20)

Moreover, the LSE is an M-estimator with ρ
(
ri
σ

)
=
(
ri
σ

)2
, i = 1, ..., N . Then, it

follows that:

SIF (ri, σ) =
(
r2
i

σ2

) 1
2

= | ri |
σ

, i = 1, ..., N. (3.21)

The robust empirical SIF is then obtained by inserting robust estimates of β and σ,
that is:

RESIF (r̂i, σ̂) = | yi − xiβ̂ |
σ̂

, i = 1, ..., N. (3.22)

Now, the computational cost of the IFB is reasonable because robust estimation
is performed only once prior to bootstrapping. Every bootstrapped estimate β̂∗ is
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obtained through the classical LSE.
The LSE is a solution to the zero gradient equation:

∇β ∗ LRSS
(
β̂
)

= 0⇔
N∑
i=1

(
yi − xT[i]β̂

)
x∗[i] = 0, (3.23)

which can be represented more compactly in matrix form as:

XH
(
y −Xβ̂

)
= 0⇔ XHXβ̂ = XHy. (3.24)

Assuming X is full rank, the LSE is the unique solution of the normal equation and
the LSE can be expressed as a linear function of y as:

β̂ =
(
XHX

)−1
XHy. (3.25)

The LSE fit is thus:

ŷ = Xβ̂ = X
(
XHX

)−1
XHy = Hy, (3.26)

where:
H = X

(
XHX

)−1
XH , (3.27)

is called the hat matrix which is a projection matrix
(
HH = H and H2 = H

)
.

Going back to the IF bootstrap, letX = {(xi, yi) , i = 1, ..., N} be an available sample
and let β̂ and σ̂ be the associated estimates of regression and scale, respectively.
The IF Bootstrap can be explained as follows:

1. Conduct experiment and collect measurements. From the original sample, com-
pute an estimate, β̂ (X).

2. Compute RESIF (r̂i, σ̂) at each data point i = 1,2, ..., N by evaluating equa-
tion (3.24). Then, compute the weights wi according to:

wi = 1[0,c] (|RESIF (r̂i, σ̂) |) + φ (c, |RESIF (r̂i, σ̂) |)× 1(c,+∞] (|RESIF (r̂i, σ̂) |) , i = 1,2, ..., N.
(3.28)

Here, 1A is the indicator function of the set A, c>0 is a tuning constant and φ
is a non-negative function satisfying the two conditions:
Condition 1:

lim
t→∞

t2φ (c, t) = 0 (for fixed c) (3.29)

Condition 2:
∂

∂t
φ (c, t) |t=c = 0 (3.30)
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3.3 – Influence Function bootstrap

3. Obtain bootstrap resamples by sampling with probabilities p = (p1, p2, ..., pN )T
where:

pi = wi∑N
n=1 wn

. (3.31)

The first condition on φ, protects the bootstrap distribution from the harmful effects
of outliers, while the second condition preserves the efficiency of the procedure with
clean data.
Moreover, a flexible family of functions from which φ can be chosen is the kernel of
the pdf of the t-distribution and its limiting form, the normal distribution:

φ (x; c, d, γ) =


(
1 + (x−c)2

γd2

)− γ+1
2 0 < γ <∞

exp
(
− (x−c)2

2d2

)
γ =∞

Here, c is the location parameter which is equal to the tuning constant in equation
(3.28), d is the scale and γ is the shape parameter.
Condition 1 is satisfied if γ > 1 and condition 2 is satisfied if c is the tuning constant.
In order to reduce the number of parameters to be adjusted to two (c and γ), the
parameter d can further be set equal to c.

Figure 3.1: Implementation of the nonparametric bootstrap to estimate the distribution
function G

(
β̂
)
of β̂ which is an estimator for the unknown parameter β
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1. Obtain the QML estimator from the past Ntrain samples,

θ̂ = (φ̂0, ..., φ̂p, α̂0, ...., α̂q, ω̂0, ..., ω̂s, γ̂0, ...., γ̂r), (3.32)

and calculate the residuals:

ε̂τ = Xτ − φ̂0 −
p∑
i=1

φ̂iXτ−i −
q∑
j=1

α̂j ε̂τ−j , τ = t−Ntrain + 1, ..., t. (3.33)

2. Compute the variance:

ĥτ = ω̂0 +
s∑
j=1

ω̂j ε̂
2
τ−1 +

r∑
i=1

γ̂iĥτ−1, τ = t−Ntrain + 1, ..., t. (3.34)

3. Calculate the robust empirical Standardized Influence Function :

RESIF (ri, σ̂) = |yi − xiβ̂|
σ̂

, i = 1,2, ..., N, (3.35)

being ri = |yi − xiβ̂| and σ̂ a robust estimates of the standard deviation of the
residuals.
Using the ARIMA-GARCH notation, the RESIF can even be rewritten considering
ε̂τ = ri and σ̂ being the standard deviation of the residuals obtained by the square
root of the variance ĥτ :

RESIF (ri, σ̂) = ε̂τ
σ̂
. (3.36)

4. Compute the weights wi according to:

wi = 1[0,c] (|RESIF (r̂i, σ̂) |) + φ (c, |RESIF (r̂i, σ̂) |)× 1(c,+∞] (|RESIF (r̂i, σ̂) |) , i = 1,2, ..., N. (3.37)

5. Obtain bootstrap resamples by resampling with replacement with probabilities
p = (p1, p2, ..., pN )T where:

pi = wi∑N
n=1 wn

. (3.38)

6. Repeat step 5 B times to obtain the bootstrapped prediction x̃1, x̃2, ..., x̃B and
sort these into x̃(1) ≤ x̃(2), ... ≤ x̃(B).
7. Obtain the 100(1-α) % confidence interval from x̃(1) ≤ x̃(2), ... ≤ x̃(B) and the
bootstrapped estimated value from Median (x̃(1) ≤ x̃(2), ... ≤ x̃(B)).
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3.4 Influence Function bootstrap applied to the
clean time series

In the following, some of the results obtained are represented and discussed, still
considering the same ARMA(1,1)-GARCH(1,1) model as before.
In particular, a comparison between the performances of applying Influence Func-
tion bootstrap and classical residual bootstrap (both implemented through the use
of Matlab) have been studied in order to understand which method is more suitable
for making predictions on future data values.
For the first case, moreover, different simulations have been performed using different
values of tuning constant c and shape parameter γ to check which range of values
suits better for making future predictions.
For computational time costs, the performances have been compared considering a
case with 10 Monte Carlo simulations, 30 trained data taken from the dataset, 50
bootstrap resamples, and 100 total predictions.

C value γ value RMSE (MW) MAE (MW) MAPE (%)
0.1 1.1 8.5034e+03 4.8123e+03 0.0532
0.5 1.1 8.5123e+03 4.9234e+03 0.0535
1 1.1 8.5198e+03 4.9027e+03 0.0472
1.5 1.1 8.5013e+03 4.8928+03 0.0461
2 1.1 8.465e+03 4.8521e+03 0.0499
1.5 1.01 8.489e+03 4.8768e+03 0.0511
1.5 1.3 8.517e+03 4.8148e+03 0.0477
1.5 2.5 8.612e+03 4.7791e+03 0.0589
1.5 5 8.445e+03 4.7649e+03 0.3202
1.5 10 8.432e+03 4.7566e+03 0.0511
1.5 15 8.901e+03 4.8128e+03 0.0543

Table 3.1: Performance with different c and γ values

As can be observed in Table 3.1, the best performances have been obtained for the
case of c = 1.5 and γ = 10. However, looking at the case of c = 1.5 and γ = 1.1, the
results are not that different so, another comparison has been performed considering
now 10 Monte Carlo simulations, 30 trained data, 100 bootstrap resamples and 100
data points to be predicted, to achieve bigger accuracy. The following results have
been obtained:
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Figure 3.2: Influence Function bootstrap predictions with γ = 1.1
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Figure 3.3: Influence Function bootstrap predictions with γ = 10

C value γ value RMSE (MW) MAE (MW) MAPE (%)
1.5 1.1 8.1273e+03 4.5631e+03 0.039
1.5 10 8.2671e+03 4.6712e+03 0.045

Table 3.2: Performance comparison when γ = 1.1 and γ = 10
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Looking at the Table 3.2 above, it is possible to observe how the algorithm is able
to achieve better performances when γ = 1.1 with a fixed value of c= 1.5. For this
reason, in the following, the case of γ = 1.1 has been considered.
After having identified the most suitable values for what concern the tuning con-
stant c and the shape parameter γ, a new simulation has been carried out taking
into account the real dataset without modification in order to see the differences
concerning the performances of classical residual bootstrap and Influence Function
bootstrap (with c set to 1.5 and γ to 10).
For both cases, a number of 10 Monte-Carlo simulations has been performed consid-
ering a number of 100 predictions, using 30 trained data and 100 bootstrap resamples,
from the original dataset.
As done previously, again, MAPE, MAE, and RMSE have been estimated:

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 8.9156e+03 5.3232e+03 0.0422
IF Bootstrap 8.1273e+03 4.5631e+03 0.0390

Table 3.3: Performance comparison between residual and IF bootstrap
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Figure 3.4: Predictions based on Influence Function bootstrap
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Figure 3.5: Residual bootstrap predictions

60



3.5 – Influence Function bootstrap applied to contaminated time series

3.5 Influence Function bootstrap applied to con-
taminated time series

After having analyzed the real dataset and the prediction performances of both clas-
sical residual bootstrap and IF bootstrap, a new comparison has been carried out in
the cases where some outliers are added to the original time series.
In this sense, three different cases have been considered:

– only level outliers present,

– only volatility outliers present,

– both level and volatility outliers present simultaneously.

3.5.1 Level outliers case

Following the model analyzed in equation (3.3), additive outliers have been included
in time series at different time steps in order to check whether the IF bootstrap
can be really considered a robust technique in comparison to the classical residual
bootstrap. In particular the original dataset, collecting a total number of 61320
values, has been transformed by increasing the magnitude of some data points such
that:

Indices of modified data Original mean value New mean value
5000:5010 1.1381e+04 4.6381e+04
20000:20100 6.9259e+04 1.0226e+05
45000:45700 1.2890e+05 1.6040e+05

Table 3.4: Level outliers introduction
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Figure 3.6: Example of additive outliers

For doing a comparison between the two methods, a number of 10 Monte-Carlo
simulations has been performed considering a number of 100 predictions, using 30
trained data form the original dataset, and considering 100 bootstrap resamples.
The following comparison of MAE, MAPE, and RMSE has been obtained:

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 9.2355e+03 5.4599e+03 0.0512
IF Bootstrap 8.5532e+03 4.7891e+03 0.0434

Table 3.5: Performance with level outliers
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Figure 3.7: Influence Function bootstrap with additive outliers
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Figure 3.8: Classical residual bootstrap with additive outliers

As can be observed in Table 3.5, the IF bootstrap performances are better than
those of residual classical bootstrap. Furthermore, looking at Figure 3.7 and Figure
3.8, it is possible to observe also graphically how the forecasted prediction of the
Influence Function bootstrap are better following the ARIMA-GARCH model fitted
to the data set.
By manually introducing manually some outliers, it has been possible to verify the
correctness of the implemented algorithm of IF bootstrap.

63



Proposed approach

3.5.2 Volatility outliers case

Considering the model discussed in equation (3.10), in the same way as in Sec-
tion 3.5.1, a comparison between classical residual bootstrap and Influence Function
bootstrap has been studied after having added innovation outliers in the clean time
series.
In the same way as before, some volatility outliers have been introduced:

Indices of modified data Original mean value New mean value
5000:5010 0.0525 0.3526
20000:20100 0.0347 0.2447
45000:45700 0.0276 0.3576

Table 3.6: Level outliers introduction
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Figure 3.9: Example of innovative outliers

Once more, a number of 10 Monte-Carlo simulations has been performed considering
a number of 100 predictions, using 30 trained data form the original dataset, and
considering 100 bootstrap resamples.
The following results have been obtained:
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Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 9.3100e+03 5.6788e+03 0.0525
IF Bootstrap 8.7113e+03 4.8197e+03 0.0477

Table 3.7: Performance with volatility outliers
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Figure 3.10: Influence Function bootstrap with volatility outliers

Concerning the case of volatility outliers, the situation is a bit different since the
performances are, in general a bit worse. Graphically, at Figure 3.10 ad Figure 3.11
, it is possible to see that the predictions is working fine expect at the end for the
case of classical residual bootstrap, demonstrating once more the improvements of
IF bootstrap.
Moreover, as in the case of level outliers, also for volatility ones, it can be seen in
the Table 3.7 how the IF bootstrap manages to achieve better performance than the
classical one based on residuals.
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Figure 3.11: Classical residual bootstrap with volatility outliers
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3.5.3 Level and volatility outliers simultaneously

The third case combines the previous two in order to check the performances when
both additive and volatility outliers are present in the data set. The same additive
and volatility outliers have been introduced.
In the same way as before, a number of 10 Monte-Carlo simulations has been per-
formed considering a number of 100 predictions, using 30 trained data form the
original dataset, and considering 100 bootstrap resamples.
A comparison of MAE, MAPE, and RMSE has been conducted to check whether
Influence Function bootstrap is able to reach better results than classical residual
bootstrap also in this case.

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 9.5623e+03 5.8391e+03 0.0612
IF Bootstrap 8.9045e+03 5.1161e+03 0.0568

Table 3.8: Performance with level and volatility outliers
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Figure 3.12: Influence Function bootstrap with additive and volatility outliers
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Figure 3.13: Classical residual bootstrap with additive and volatility outliers

The same situation as before arised also when considering at the same time both
level and volatility outliers. Of course, in this scenario, the performances are a bit
worse but still showing an improvement when considering the Influence Function
bootstrap with respect to the classical residual bootstrap.
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3.6 Summary of results

In order to have a total view of the results obtained previously, in the various cases, a
summary table is shown below. All the simulations below were performed considering
γ = 10, 30 trained data from the original dataset, 10 Monte-Carlo simulations, 100
bootstrap resamples and a total of 100 predictions.

Data Set Resampling method RMSE (MW) MAE (MW) MAPE (%)
Original Residual Bootstrap 8.9156e+03 5.3232e+03 0.0422
Original IF Bootstrap 8.1273e+03 4.5631e+03 0.0390
Additive Outliers Residual Bootstrap 9.2355e+03 5.4599e+03 0.0512
Additive Outliers IF Bootstrap 8.5532e+03 4.7891e+03 0.0434
Volatility Outliers Residual Bootstrap 9.3100e+03 5.6788e+03 0.0525
Volatility Outliers IF Bootstrap 8.7113e+03 4.8197e+03 0.0477
Both Outliers Residual Bootstrap 9.5623e+03 5.8391e+03 0.0612
Both Outliers IF Bootstrap 8.9045e+03 5.1161e+03 0.0568

Table 3.9: Summary of performances

As learned from the table above and from the previous sections, robust bootstrap
techniques and, in particular that of the IF bootstrap, are an efficient way to handle
situations where there are outliers.
In particular, such methods, as in the case just described, can be applied in various
situations to make predictions based on past data. In the case of energy generation
from renewable sources such as wind, the implementation of these techniques would
allow to predict the future more accurately than standard methods, favoring a more
efficient energy production and management than ever, reducing waste and meeting
the demand on the market.
It would also lead to a possible increase in revenues for energy supply companies
as they could develop precise plans according to the forecasts analyzed. Nowadays,
with the open conflict between Ukraine and Russia, the energy problem is affecting
several countries, especially in Europe which from one day to the next have found
themselves having to fill shortages of resources and having to face this energy crisis.
Although the outbreak of a war is an unpredictable phenomenon, accurate forecasts
on energy production would allow the various countries to balance consumption and
production by reducing waste and, favoring the development of sustainable plans
from an economic point of view, without having to go to affect in suddenly the
pockets and wallets of end consumers.
The result achieved with the Influence Function bootstrap method is of considerable
importance even though, at first glance, the performances achieved are not so better
than those of the classical residual bootstrap if we think about RMSE, MAE, and
MAPE.
Suffice it to say that the presence of outliers in a dataset is something unpredictable
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(such as the outbreak of a war) and being able to manage them, in the long run,
brings advantages especially if we are talking about ARIMA-GARCH models that
are based on past data. If these were treated normally like other data, they would
undermine performance and disadvantage accurate forecasting. Furthermore, the
results achieved could be further improved by increasing the number of simulations
or the number of bootstrap resamplings but, in any case, they represent a let-through
for the development of other robust bootstrap techniques.
These techniques, in fact, although already analyzed for several years, are still little
recognized worldwide when instead, in my opinion, they represent an important
future opportunity for two main reasons: being able to be applied in the case of small
sample sizes and being able to foresee the future accurately even in the presence of
deviations and outliers.
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3.7 Application to wind power generation

In order to validate the adopted algorithm, it has been applied also to another
dataset, still from Data Platform (an open power system data platform providing
European power system data), collecting wind power generation and capacities from
2015 to 2020.
The same steps as for the heating demand case have been performed in order to check
whether the Influence Function bootstrap is able to achieve better performances, in
comparison with the classical residual bootstrap, also in different scenarios.
Like has been done previously, after careful examinations (differencing transform,
ADF and Engle test, AIC and BIC criterion), the new dataset has been modeled
using an ARIMA(1,1)-GARCH(1,1) process.
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Figure 3.14: Wind power generation in Germany in MW
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Figure 3.15: Logarithmic data representation

Concerning the differencing method, the combination H (xt) = ∆1 ·∆12 ·∆24xt, t =
1, ..., T , was found to be the best.
Once Augmented Dickey-Fuller (ADF) test has been performed on H(xt), the series
could be considered stationary since the rejection of the hypothesis that there is a
unit root was confirmed.
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Figure 3.16: Nonseasonal and seasonal differenced log actual wind generation

p
q 1 2 3 4

1 -6.1034 -5.9691 -5.8830 -5.8595
2 -6.0846 -2.9452 -2.9680 -2.9427
3 -4.9347 -2.7844 -2.1442 -2.1450
4 -5.0588 -2.9459 -2.1134 -1.8517

Table 3.10: AIC calculation results (·104) for ARMA order

p
q 1 2 3 4

1 -6.1026 -5.9691 -5.8830 -5.8595
2 -6.0836 -2.9439 -2.9664 -2.99409
3 -4.9334 -2.7828 -2.1424 -2.1429
4 -5.0572 -2.9440 -2.1114 -1.8493

Table 3.11: BIC calculation results (·104) for ARMA order

73



Proposed approach

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

ACF

0 2 4 6 8 10 12 14 16 18 20

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n

PACF

0 2 4 6 8 10 12 14 16 18 20

Lag

Figure 3.17: ACF and PACF of differenced logarithmic data

As showed by the above plot, both the ACF and PACF have the biggest correlation
values at lag 0 and lag 1, and then they start slowly decreasing. This result, based
on the theory discussed previously, means that is reasonable to adopt an ARIMA
model with p = 1 and q = 1, as suggested before by the AIC and BIC criterion.
Having found the order, an ARMA(1,1) model has been constructed and fitted to the
data. But, before doing that, the residuals have been analyzed in order to perform
an Engle test to check for the presence of ARCH effects.
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Figure 3.18: ARIMA model residual

Beyond the residuals, also the volatility, obtained by taking the square root of the
conditional variance, was analyzed.
Furthermore, the residuals have been also standardized by taking the ratio of their
values and the volatility. The standardized residuals were then used for performing
bootstrap based forecasting.
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Figure 3.19: Conditional standard deviation of the ARMA model
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Figure 3.20: Standardized residuals of the ARMA model

Then, the Engle test has been performed on the residual indicating that the null
hypothesis of homoskedasticity could be rejected. In other words, residuals are
heteroskedastic and so, the composite model ARIMA(p,d,q)-GARCH(r,s) was con-
sidered.
Again, AIC and BIC were used in order to get, this time, not only the ARIMA orders
but also those of the GARCH process. The most parsimonious model was chosen to
be ARIMA(1,1,1)-GARCH(1,1).

p
q 1 2 3 4

1 -7.6309 -7.5200 -7.4654 -7.4536
2 -7.6134 -4.7223 -4.7273 -4.7221
3 -6.4601 -4.5652 -4.7560 -4.1338
4 -6.5737 -4.7227 -4.1083 -3.9724

Table 3.12: AIC calculation results (·104) for GARCH order

p
q 1 2 3 4

1 -7.6301 -7.5190 -7.4641 -7.4520
2 -7.6124 -4.7210 -4.7258 -4.7202
3 -6.4588 -4.5636 -4.7542 -4.1317
4 -6.5721 -4.7208 -4.1062 -3.9701

Table 3.13: BIC calculation results (·104) for GARCH order
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Having found the correct ARIMA(p,d,q)-GARCH(r,s) orders, it was finally possible
to construct the model and fit it to the data set. As can be seen in Figure 3.21, and
in particular in the zoomed version of it, Figure 3.22, the model fits pretty well the
data set.
This demonstrates graphically that the previous described analysis and techniques
were necessary in order to achieve good performances.
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Figure 3.21: Real dataset and ARIMA-GARCH fitted model
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Figure 3.22: Zoom in real dataset and ARIMA-GARCH fitted model

The following parameter values regarding the ARIMA-GARCH process under study
were obtained:

ARIMA(1,1,1) VALUE STD.ERROR t-statistic PValue
Constant -1.2e-05 0.00048472 -0.024619 0.98036
AR(1) 0.67949 0.0039897 170.31 0
MA(1) 0.26516 0.0054102 49.011 0

Table 3.14: ARIMA parameters

GARCH(1,1) VALUE STD.ERROR t-statistic PValue
Constant 8.179e-05 5.092e-06 16.062 4.6949e-58
GARCH(1) 0.90804 0.001525 595.42 0
ARCH(1) 0.091964 0.0017181 53.525 0

Table 3.15: GARCH parameters

Considering the above parameters and the model mentioned in equation (2.16) and
equation (2.18), it was possible to reconstruct analytically the adopted model:

Xt = −1.2e− 05 + 0.679Xt−1 + 0.265εt−1 + εt, (3.39)
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ht = 8.179e− 05 + 0.908ht−1 + 0.092ε2t−1. (3.40)

Having fitted the model to the dataset, it was possible to perform forecast in differ-
enced log domain and finally get the prediction values back in the original domain
applying the inverse seasonal difference operator to the known historical values for
the past d data point:

x̂t+1 = H−1 (x̂t+1) = [−φd, ...,−φ1,1]T [xt−d+1, ..., xt, x̂t+1] , (3.41)

where φ1, .., φd are as defined in Eq. (2.5).

After having fitted the model, predictions have been performed with and without
bootstrap algorithms.
For each one-hour-ahead prediction, the preceding Ntrain = 30 data points were used
and a total of 100 total predictions were performed.
Without bootstrapping, the predictions gave the following results for what concerns
the performance metrics and, in particular, the root mean squared error (RMSE),
mean absolute error (MAE), and the mean absolute percentage error (MAPE):

RMSE (MW) MAE (MW) MAPE (%)
2.5043e+03 1.3057e+03 1.5642

Table 3.16: Performance without bootstrap
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Figure 3.23: Prediction without bootstrapping
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Figure 3.24: Zoom in prediction without bootstrapping

In the same way as before, for each one-hour-ahead prediction, the precedingNtrain =
30 data points are used, 100 predictions are obtained and the number of bootstrap
resamples is B = 100.

RMSE (MW) MAE (MW) MAPE (%)
1.7881e+03 1.2987e+03 0.2366

Table 3.17: Performance with residual bootstrap
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Figure 3.25: Residual bootstrap predictions
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In the following, some of the results obtained are represented and discussed when
using the IF bootstrap technique for making future predictions.
In particular, a comparison between the performances of applying Influence Function
bootstrap and classical residual bootstrap have been studied in order to understand
which method is more suitable for making predictions on future data values.
For the first case, moreover, different simulations have been performed using different
values of tuning constant c and shape parameter γ to check which range of values
suits better for making future predictions.
For computational time costs, the performances have been compared considering a
case with 10 Monte Carlo simulations, 30 trained data, 50 bootstrap resamples, and
100 total predictions.

C value γ value RMSE (MW) MAE (MW) MAPE (%)
0.1 1.1 1.9979e+03 2.1599e+03 0.3245
0.5 1.1 2.1034e+03 2.2099e+03 0.3211
1 1.1 2.1167e+03 2.1363e+03 0.3222
1.5 1.1 1.9971e+03 2.1233e+03 0.2987
2 1.1 2.2982e+03 2.1546e+03 0.3461
1.5 1.01 2.2660e+03 2.0962e+03 0.4187
1.5 1.3 2.4533e+03 2.1583e+03 0.4143
1.5 2.5 2.2403e+03 2.0413e+03 0.3356
1.5 5 2.1987e+03 1.9877e+03 0.3200
1.5 10 1.9823e+03 1.3448e+03 0.3119
1.5 15 2.1021e+03 1.5788e+03 0.3357

Table 3.18: Performance with different c and γ values

As can be observed in Table 3.18, the best performances have been obtained for the
case of c = 1.5 and γ = 10. However, looking at the case of c = 1.5 and γ = 1.1, the
results are not that different so, another comparison has been performed consider-
ing a bigger number of data to be predicted, 100, to achieve bigger accuracy. The
following results have been obtained:
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Figure 3.26: Influence Function bootstrap predictions with γ = 1.1
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Figure 3.27: Influence Function bootstrap predictions with γ = 10

C value γ value RMSE (MW) MAE (MW) MAPE (%)
1.5 1.1 1.7408e+03 1.2608e+03 0.2219
1.5 10 1.6868e+03 1.1599e+03 0.2235

Table 3.19: Performance comparison when γ = 1.1 and γ = 10

Basically, with a fixed value of tuning constant, is not that easy to find a good es-
timate for what concern the shape parameter since, with γ = 1.1 smaller MAPE is
obtained but bigger MAE and RMSE.
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In the following, however, the case of γ = 10 has been considered.
After having identified the most suitable values for what concern the tuning con-
stant c and the shape parameter γ, a new simulation has been carried out taking
into account the real dataset without modification in order to see the differences
concerning the performances of classical residual bootstrap and Influence Function
bootstrap (with c set to 1.5 and γ to 10).
For both cases, a number of 10 Monte-Carlo simulations has been performed consid-
ering a number of 100 predictions, using 30 trained data and 100 bootstrap resamples,
form the original dataset.
As done previously, again, MAPE, MAE, and RMSE have been estimated:

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 1.7881e+03 1.2987e+03 0.2366
IF Bootstrap 1.6868e+03 1.1599+03 0.2235

Table 3.20: Performance comparison between residual and IF bootstrap
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Figure 3.28: Predictions based on Influence Function bootstrap
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Figure 3.29: Predictions based on classical residual Bootstrap

After this, the data set has been modified in order to add volatility and level outliers
and check wheter, also in this cases, the IF bootstrap is more robust than the classical
residual bootstrap by comparing the perfomance metrics MAE, MAPE, and RMSE.
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3.7.1 Level outliers case

The original dataset, collecting a total number of 50350 values, has been transformed
such that:

Indices of modified data Original mean value New mean value
5000:5010 2.0268e+04 3.5268e+04
20000:20100 1.3435e+04 3.6435e+04
45000:45700 2.2443e+04 2.4943e+04

Table 3.21: Level outliers introduction
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Figure 3.30: Example of additive outliers

A number of 25 Monte-Carlo simulations has been performed considering a number
of 100 predictions, using 30 trained data form the original dataset, and considering
100 bootstrap resamples.
A comparison of MAE, MAPE, and RMSE has been conducted.

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 2.3454e+03 2.1011e+03 0.2495
IF Bootstrap 2.1500e+03 1.9195e+03 0.2447

Table 3.22: Performance with level outliers
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Figure 3.31: Influence Function bootstrap with additive outliers
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Figure 3.32: Classical residual bootstrap with additive outliers

As can be observed in Table 3.22, the IF bootstrap performances are better than
those of residual classical bootstrap. Furthermore, looking at Figure 3.31 and Figure
3.32 it is possible to observe also graphically, how the forecasted prediction of the
Influence Function bootstrap are better following the ARIMA-GARCH model fitted
to the data set.
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3.7.2 Volatility outliers case

Considering the model discussed in equation (3.10), in the same way as in previous
section, a comparison between classical residual bootstrap and Influence Function
bootstrap has been studied after having added innovation outliers in the clean time
series giving the following modifications:

Indices of modified data Original mean value New mean value
5000:5010 0.1388 0.4388
20000:20100 0.1595 0.3695
45000:45700 0.1441 0.4741

Table 3.23: Level outliers introduction
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Figure 3.33: Example of innovational outliers

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 2.4215e+03 2.1590e+03 0.2503
IF Bootstrap 2.1929e+03 1.9205e+03 0.2472

Table 3.24: Performance with volatility outliers
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Figure 3.34: Influence Function bootstrap with volatility outliers
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Figure 3.35: Classical residual bootstrap with volatility outliers

Concerning the case of volatility outliers, the situation is a bit different since the
performances are, in general a bit worse. Graphically, at Figure 3.34 and Figure 3.35,
it is possible to see that the predictions is not working really fine at the beginning
(September 27) but, after some hours, the prediction line start to follow the real
trend of the data set, thus showing also in this case that the bootstrap methods are
particularly useful for making predictions.
Moreover, as in the case of level outliers, also for volatility ones, it can be seen in
the Table 3.24 how the IF bootstrap manages to achieve better performance than
the classical one based on residuals.
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3.7.3 Level and volatility outliers simultaneously

The third case combines the previous two in order to check the performances when
both additive and volatility outliers are present in the data set.
In the same way as before, a number of 25 Monte-Carlo simulations has been per-
formed considering a number of 100 predictions, using 30 trained data form the
original dataset, and considering 100 bootstrap resamples.
A comparison of MAE, MAPE, and RMSE has been conducted to check whether
Influence Function bootstrap is able to reach better results than classical residual
bootstrap also in this case.

Resampling method RMSE (MW) MAE (MW) MAPE (%)
Residual Bootstrap 2.5991e+03 2.2544e+03 0.2697
IF Bootstrap 2.2509e+03 2.1005e+03 0.2525

Table 3.25: Performance with level and volatility outliers
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Figure 3.36: Influence Function bootstrap with additive and volatility outliers
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Figure 3.37: Classical residual bootstrap with additive and volatility outliers

The same situation as before arised also when considering at the same time both
level and volatility outliers. Of course, in this scenario, the performances are a bit
worse but still showing an improvement when considering the Influence Function
bootstrap with respect to the classical residual bootstrap.

In order to have a total view of the results obtained previously, in the various cases,
a summary table is shown below. All the simulations below were performed consid-
ering γ = 10, 30 trained data from the original dataset, 25 Monte-Carlo simulations,
100 bootstrap resamples and a total of 100 predictions.

Data Set Resampling method RMSE (MW) MAE (MW) MAPE (%)
Original Residual Bootstrap 1.7881e+03 1.2987e+03 0.2366
Original IF Bootstrap 1.6868e+03 1.1599e+03 0.2235
Additive Outliers Residual Bootstrap 2.3454e+03 2.1011e+03 0.2495
Additive Outliers IF Bootstrap 2.1500e+03 1.9195e+03 0.2447
Volatility Outliers Residual Bootstrap 2.4215e+03 2.1590e+03 0.2503
Volatility Outliers IF Bootstrap 2.1929e+03 1.9205e+03 0.2472
Both Outliers Residual Bootstrap 2.5991e+03 2.2544e+03 0.2697
Both Outliers IF Bootstrap 2.2509e+03 2.1005e+03 0.2525

Table 3.26: Summary of performances
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Chapter 4

Conclusion

Taking up what was said at the beginning of this document, time series forecasting
is an important topic not yet fully explored and which, with increasingly refined
techniques, would allow a balance between demand and energy production without
encountering waste and allowing supply companies to increase their revenues and
refine their financial decisions.
In this document was showed that the wind power generation can be predicted with
a reasonable accuracy by fitting the historical data to the ARMA(1,1)-GARCH(1,1)
model. Before fitting the model, a series of seasonal and non-seasonal de-trending
was proposed and applied to the original time series to make it stationary.
A simple inverse differencing technique (as descirbed at page 32) was then used to
bring back the results to the original domain for better interpretability.
A residual bootstrapping method to obtain future prediction was proposed by taking
the median value of the bootstrapped resamples and compared with a new robust
bootstrap method, the so called Influence Function bootstrap.
Several comparisons of the models has been carried on, under different circumstances:
clean time series data, contaminated time series with level outliers, volatility outliers
and time series data contaminated with both kinds of outliers simultaneously.
In all the cases, the robust bootstrap algorithm showed improvements with respect
to the residual bootstrap, due to the outlier manipulation present in the former.
However, an ongoing attempt can be the implementation of the other robust boot-
strap techniques explained in Section 3.2 to see whether the other methods can
achieve even better performances.

91



92



Bibliography

[1] C. Amado and A. M. Pires. Robust bootstrap with non random weights based
on the influence function. Communications in Statistics-Simulation and Com-
putation, 33(2):377–396, 2004.

[2] M. Arellano. Lagrange multiplier test, 2002.

[3] J. A. Doornik and M. Ooms. Outlier detection in garch models. Technical
report, Tinbergen Institute Discussion Paper, 2005.

[4] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrica: Journal of the econometric
society, pages 987–1007, 1982.

[5] L. K. Hotta and R. S. Tsay. Outliers in garch processes. In Economic Time
Series, pages 355–376. Chapman and Hall/CRC, 2018.

[6] R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[7] R. Mushtaq. Augmented dickey fuller test. 2011.

[8] Y. Shin and P. Schmidt. The kpss stationarity test as a unit root test. Economics
Letters, 38(4):387–392, 1992.

[9] A. M. Zoubir and D. R. Iskandler. Bootstrap methods and applications. IEEE
Signal Processing Magazine, 24(4):10–19, 2007.

[10] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma. Robust statistics for signal
processing. Cambridge University Press, 2018.

93


	List of Figures
	List of Tables
	Introduction
	The problem and common approaches
	Time series analysis
	Stationary time series
	ARIMA-GARCH process
	Autoregressive integrated moving average (ARIMA)
	Generalized autoregressive conditional heteroskedasticity (GARCH)
	ARIMA-GARCH Models

	ARIMA order selection: AIC and BIC
	ACF and PACF
	Engle's test for heteroskedasticity
	Time series forecasting
	Case under study
	Introduction to bootstrap methods
	Classical residual bootstrap ARMA(p,q)-GARCH(r,s) model

	Proposed approach
	Outliers introduction
	Test to detect level outliers
	Test to detect volatility outliers
	Test to detect level and volatility outliers simultaneously

	Robust bootstrap idea
	Influence Function bootstrap
	Influence Function bootstrap applied to the clean time series
	Influence Function bootstrap applied to contaminated time series
	Level outliers case
	Volatility outliers case
	Level and volatility outliers simultaneously

	Summary of results
	Application to wind power generation
	Level outliers case
	Volatility outliers case
	Level and volatility outliers simultaneously


	Conclusion
	Bibliography

