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Abstract
The goal of this Master Thesis consists on defining and building a multi platform
simulation environment for quadrotors, this environment can be used to collect
data from different platforms and compare the results of position and attitude
controllers in different simulators.
The main focus of this work regards the analysis and replication of different models
in several simulation platforms. In particular, two mathematical models will be
analysed and simulated in MATLAB Simulink, a Simscape model will be simulated
in the Simscape Multibody environment and finally the quadrotor is replicated
and simulated in Gazebo 7 with ROS Kinetic.
Several controllers are designed in Simulink and deployed on ROS Gazebo. This
allows to simulate the deployment of such controllers in real hardware and to
evaluate their performances thanks to the data collected in ROS. The resulting
data is then analysed thanks to some Key Performance Indicator. The testing
experiment consists on the tracking of a reference trajectory starting from the
resting position on the ground. The controller with the best performance in this
experiment is the smooth Sliding Mode Controller.
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Parameter Description Unit of
Measurement Value

x− y − z Inertial (world) reference frame
xb − yb − zb Body reference frame
ξ Position of the quadrotor in the inertial RF m variable

η
Rotation of the quadrotor

with respect to the inertial RF rad variable

ωi rotor angular velocity rad/s control variable
ωΓ sum with sign of the rotor angular velocities m variable
m_UAV Body Mass kg 0.69502
m_p Rotor Mass kg 0.009
m Total mass of the drone kg 0.73102
L_b Body Length m 0.34
L Arm Length m 0.17
h Rotor z-offset from CoM m 0.00951
Ix Total Moment of inertia along xb kg m2 0.0076974
Iy Total Moment of inertia along yb kg m2 0.0076974
Iz Total Moment of inertia along zb kg m2 0.0133784
Ix,p Rotor Moment of inertia along xrotor kg m2 5.63175 × 10−5

Iy,p Rotor Moment of inertia along yrotor kg m2 5.63175 × 10−5

Iz,p Rotor Moment of inertia along zrotor kg m2 1.125 × 10−4

CT Thrust coefficient kg m/rad2 8.54858 × 10−6

CM Drag moment coefficient m 0.016
CR Rolling moment coefficient kg m/rad2 0.1 × 10−5

CD Drag force coefficient kg/rad 8.06428 × 10−4

Table 1. Symbols.
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Chapter 1

Introduction

1.1 Drones and Quadrotors

Drones are becoming increasingly popular in the modern society shifting from an
initial recreational use to a more vast usage in fields like infrastructures inspection,
delivery, reconnaissance and more. Thanks to the reduction of costs of electronics
and at the same time an always higher computational power of micro controllers,
unmanned aerial vehicles such as quadrotors are emerging and will become even
more present in our day to day experience in the next decades [1]. In particular,
quadrotors with fixed arms are one of the most widely used multi rotors drones,
their light weight, high reliability, robustness and ease of design have made them
the preferred platform for present and future research. This research field is
therefore focused on autonomous flight and on improving the mathematical model
of the drone itself and on the complex dynamics that an aerial vehicle is subject
to ([2], [3], [4]).

1.2 Project’s Objective and Thesis Structure

In this project the main goal is to design a multi platform simulation environ-
ment to test autonomous controllers for trajectory tracking problems. The main
programs to be used in the analysis will be MATLAB, Simulink, Simscape, ROS
and Gazebo. This allows to have several models and different simulators where
the controllers can be independently tested.
The second chapter of the thesis is focused on the quadrotors models. For in-
stance, the mathematical models will be introduced. Two mathematical models
will be derived with two different methods. Then, the ROS workspace developed
by [5] will be deeply studied with particular attention to the quadrotor ’humming-
bird’ which resembles the most the study subject. A particular ROS node will be
developed in Python in order to allow the communication between the controllers
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Introduction

designed in MATLAB Simulink and the pre existent ROS workspace. In conclu-
sion of this chapter, the Simscape model developed to mirror the ROS model will
be analysed. This model is designed to act exactly like the ROS quadrotor in
order to work strictly on MATLAB and to obtain similar results with respect to
ROS.
The third chapter regards the model validation test. Here, the different models
are compared to each other thanks to an open loop signal. The same input signal,
the angular velocities of the four rotors, is sent to the different models and the
resulting evolution of the state variables is inspected.
The fourth chapter is focused on the control of the drone. Here the control algo-
rithms that have been tested are explained and their application both in Simulink
and in ROS is described. Then, the results from the trajectory tracking ex-
periment are presented with some considerations about the different controllers
performances.
In the last chapter the conclusions of this work are presented. Some suggestion
about future work and possible application of this environment are given.

1.3 Environment

Given the thesis’s objective and in order to show the real time feasibility of the
several controllers, the implementation of the controllers has to be performed in
an advanced robotic simulation environment such as ROS and Gazebo. The other
simulations are performed in MATLAB Simulink with the help of the Simscape
toolbox, here the controller is designed and then deployed as a C++ node in ROS.

1.3.1 ROS and Gazebo

Robot Operating System (ROS) [6] is one of the most popular open source frame-
work for robot software development and deployment. Despite its name, ROS is
a meta-operating system since it runs on Unix-based platform like Ubuntu. Even
if it is not a real time operating system, ROS is provided with its own clock and
communication systemand is widely used for testing real time application thanks
to the ability to integrate real time code.
Gazebo is a free complex 3D indoor and outdoor robot simulator [7]. It has
a robust physics engine such as Open Dynamic Engine (ODE). Gazebo can be
easily integrated with ROS through a set of Gazebo plugin that have the same
ROS message interface, this allows to ease the deployment of physical robot and
application development.
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Introduction

Figure 1.1. ROS.

1.3.2 MATLAB Simulink and Simscape
MATLAB [8] is a programming platform that can be used for data analysis, al-
gorithm development and model and application elaboration. It uses the MAT-
LAB matrix-based language, useful for computational mathematics. MATLAB is
widely used among engineers for numerous applications, including control system
design. Thanks to the integration with Simulink, it is possible to incorporate
MATLAB algorithms into models and perform multi domain simulations.
Simulink [9] is a block diagram environment that, among its many features, allows
for modelling and simulating dynamic systems and for automatic code generation.
These two features are very useful for this project’ purpose, allowing to design and
test the controller in an user friendly environment and, only after, deploy the code
in the ROS environment as C++ code.
Simscape [10] is a Simulink library that allows to model and simulate multidomain
physical systems. Simscape allows to rapidly create models of physical systems
within the Simulink environment.

Figure 1.2. MATLAB.
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Chapter 2

Modelling

In this Chapter several models will be derived, analysed and explained. In par-
ticular, the derivation of two mathematical models will be the focus of the first
section, the analysis of the adopted ROS model will be the focus of the second
section and the development of the Simscape model will be the focus of the last
section.
All these models will have an important role in the final goal of the thesis. The
mathematical model will be used inside of the controller as reference model, the
Simscape model will be the real plant to which the controller will be applied and it
will be used to tune all the parameters to obtain a fully working controller and, in
conclusion, the ROS model will be used inside the ROS and Gazebo environment
to test the quadrotor and the final controller.

2.1 Mathematical Model
Two mathematical models will be derived with the Newton-Euler formulation and
with the Euler-Lagrangian formulation. During the model validation phase, these
two models will be tested with respect to the Simscape and ROS model and the
best one will be chosen.

2.1.1 Reference Frames and Generalized Coordinates

A quadrotor is an aerial vehicle based on 4 rotors placed at the end of 4 arms.
As shown in fig. 2.1, the system is symmetrical with respect to the xb − zb and
yb − zb planes.
The two reference frames used for this model are the inertial (or world) reference
frame x − y − z and the body reference frame xb − yb − zb (Fig. 2.1). The
transformation between the two reference frames is defined by the translation
ξ = [x, y, z]T and the rotation η = [ϕ, θ, ψ]T . Where ϕ, θ and ψ are the Euler
angles corresponding to the ZYX (Roll-Pitch-Yaw) rotation.
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Figure 2.1. Reference frames.

The rotation matrix resulting from the Roll-Pitch-Yaw sequence is obtained by:

• rotation about the x axis with angle ψ for the yaw;

Rx(ψ) =


1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)

 (2.1)

• rotation about the y axis with angle θ for the pitch;

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

 (2.2)

• rotation about the z axis with angle ϕ for the roll.

Rz(ϕ) =


cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 (2.3)

As shown in [11], the final rotation matrix is Rw
b = Rz(ϕ)Ry(θ)Rx(ψ).

Rw
b =


CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ
SψCθ SψSθSϕ + CψCθ SψSθCϕ − CψSϕ
−Sθ CθSϕ CθCϕ

 (2.4)

since for an orthogonal matrix R−1 = RT :

Rb
w =


CψCθ SψCθ −Sθ

CψSθSϕ − SψCϕ SψSθSϕ + CψCθ CθSϕ
CψSθCϕ + SψSϕ SψSθCϕ − CψSϕ CθCϕ

 (2.5)
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where Cx = cos(x) and Sx = sin(x).
According to [12], the Kinematic equation which links the angular speed of the
body frame ν = [p, q, r]T and the derivative of the ZYX euler angles η̇ = [ϕ̇, θ̇, ψ̇]T
can be described thanks to the matrix Wη:

ν = Wηη̇, Wη =


1 0 −Sθ
0 Cϕ CθSϕ
0 −Sϕ CθCϕ

 (2.6)

η̇ = Wη
−1ν, Wη

−1 =


1 SϕTθ CϕTθ
0 Cϕ −Sϕ
0 Sϕ/Cθ Cϕ/Cθ

 (2.7)

In conclusion, the generalized coordinates that are used to define the position and
orientation of the drone in the inertial reference frame are ξ and η. They are
collected in a the single vector q:

q =
C
ξ

η

D
=



x

y

z

ϕ

θ

ψ


(2.8)

2.1.2 Dynamic Constants and Generalized Forces
Several external forces and torques are present in the system. Two forces and two
torques are directly generated by the rotors while the gyroscopic effect will be
described and analysed for the different formulation.
According to [5],the generalized forces generated by each rotor are :

FT = ω2CT · kb (2.9)

FD = −ωCD · v⊥,w
A (2.10)

MR = −ϵωCR · v⊥,w
A (2.11)

MD = −ϵCM · FT (2.12)

These forces model the real effects of the entire rotor dynamic (Fig.(2.2)). They
are respectively vertical thrust, drag force, rolling moment and drag moment. In
particular, the rolling moment has been slightly modified with respect to [5] in
order to take in account the different effect of clockwise and counter clockwise
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rotors. As shown in fig. 2.3, where the real lift distribution (L) is presented, the
direction of the resulting rolling moment (MR) is different for the two types of
rotors.

Figure 2.2. Forces and torques for a clockwise (left) and counter clock-
wise (right) rotor.

CT , CD, CR and CM are dynamic coefficients that can be empirically measured.
ω is the angular velocity of the rotor, kb is the unit vector in the body z-direction.
ϵ represents the direction of rotation of each rotor (ϵ = +1 for counterclockwise
rotors,ϵ = −1 for clockwise rotors).
v⊥,w

A is the projection of the linear velocity of the rotor vwA in the rotor plane.
The velocity vwA is computed as the velocity of the body in the inertial reference
frame plus the cross product between the angular speed and the arm represented
in the inertial reference frame:

vwA = ξ̇ + ν ×
1
Rw
b rb

2
(2.13)

In particular:

• The Thrust force (2.9) represents the main effect of the rotor. The rotating
blades produce an upward lift that is proportional to the square of the angular
velocity of the rotor ωi.

• The Drag moment (2.12) represents the effect of induced drag in an airfoil,
this drag produces a resulting torque which is opposite with respect to the
direction of rotation of the rotor (example: a clockwise rotor will produce a
counter clockwise (upward) drag moment, as shown in fig. 2.2). This moment
is proportional to the square of the angular velocity of the rotor ωi.

• The Drag force (2.10) represents the effect of aerodynamic drag of a rotor
that moves with linear velocity in space. It depends on the angular velocity
of the rotor, on the drag coefficient and on the linear velocity of the rotor.

7
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• The Rolling moment (2.11) represents the difference of lift produced by the
blade that moves against the relative wind and the lift produced by the blade
that moves in the same direction of the relative wind (Fig. 2.3). This results
in an uneven distribution of lift and in a consequent torque that rolls the
rotor with respect to the direction of motion. It depends on the direction of
rotation of the rotor, on the angular velocity, on the rolling coefficient and
on the linear velocity of the rotor.

Figure 2.3. Real lift (L) and equivalent rolling moment (MR) for a clockwise
(left) and counter clockwise (right) rotor.

The generalized forces applied to the body are therefore Thrust and Drags,
both are represented in the inertial reference frame since in both the following
derivation the force section is computed in the inertial reference frame:

f =
4Ø
i=1

(Rw
b Tb + FD,i)

= Rw
b


0
0

CT (ω2
1 + ω2

2 + ω2
3 + ω2

4)

+


CD(−ω1v

⊥,w
Ax,1 − ω2v

⊥,w
Ax,2 − ω3v

⊥,w
Ax,3 − ω4v

⊥,w
Ax,4)

CD(−ω1v
⊥,w
Ay,1 − ω2v

⊥,w
Ay,2 − ω3v

⊥,w
Ay,3 − ω4v

⊥,w
Ay,4)

CD(−ω1v
⊥,w
Az,1 − ω2v

⊥,w
Az,2 − ω3v

⊥,w
Az,3 − ω4v

⊥,w
Az,4)


(2.14)

where v⊥,w
Ax,i,v

⊥,w
Ay,i and v⊥,w

Az,i are the components of the projected linear velocity of
each rotor i expressed in the inertial reference frame.

The generalized torques applied to the body are the Drag torques, the Rolling
torques and the generalized forces multiplied by their arm. The torques will be
expressed in the body reference frame since the two mathematical models that
will be derived in the following sections keep the rotational part of the equation
in this reference frame.

τ =
4Ø
i=1

(MD,i + Mb
R,i + rbi × (FT,i + Fb

D,i)) = τ 1 + τ 2 + τ 3 + τ 4 (2.15)

8
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For the first rotor the resulting torque is:

τ 1 =


0
0

CMCTω
2
1

+ Rb
w(CRω1v⊥,w

A,1 ) +


L

0
h

×




0
0

CTω
2
1

+ Rb
w(−CDω1v⊥,w

A,1 )


(2.16)

The arm of the rotor is r1 = [L,0, h]T , where L is the arm length of the quadrotor
and h is the distance between the center of mass of the body and the rotor center
of mass where the forces are applied.

τ 2 =


0
0

−CMCTω2
2

+Rb
w(CRω2v⊥,w

A,2 )+


0
L

h

×




0
0

CTω
2
2

+ Rb
w(−CDω2v⊥,w

A,2 )


(2.17)

τ 3 =


0
0

CMCTω
2
3

+Rb
w(CRω3v⊥,w

A,3 )+


−L
0
h

×




0
0

CTω
2
3

+ Rb
w(−CDω3v⊥,w

A,3 )


(2.18)

τ 4 =


0
0

−CMCTω2
4

+Rb
w(CRω4v⊥,w

A,4 )+


0

−L
h

×




0
0

CTω
2
4

+ Rb
w(−CDω4v⊥,w

A,4 )


(2.19)

2.1.3 Newton-Euler Derivation
The Newton-Euler method can be used to derive the dynamic equations of the
system.
For the translational equations, expressing every vector in the inertial reference
frame, the gravitational force and the generalized forces (2.14) contributes in the
acceleration of the quadrotor:

mξ̈ = mg + f

mξ̈ = m


0
0

−g

+ f
(2.20)

For the rotational equations, expressing every vector in the body reference
frame, the angular acceleration of the inertia Iν̇, the centripetal forces ν × (Iν)
and the gyroscopic forces Γ are equal to the external generalized forces (2.15):

Iν̇ + ν × (Iν) + Γ = τ (2.21)
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where I is the inertia matrix of the drone and Γ has the form, as shown in [13]:

I =


Ix 0 0
0 Iy 0
0 0 Iz

 (2.22)

Γ = Iz,p


p

q

r

×


0
0
ωΓ

 (2.23)

where Iz,p is the rotor moment of inertia with respect to the z rotor axis and ωΓ

is the sum of the angular velocities with the proper sign.

ωΓ = −ω1 + ω2 − ω3 + ω4 (2.24)

In conclusion, the total set of differential equation derived with the Newton-Euler
formulation is:

ẍ

ÿ

z̈

ṗ

q̇

ṙ


=



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz



−1
m



0
0

−g
0
0
0


−



0
0
0

−(Iy − Iz)qr
−(Iz − Ix)pr
−(Ix − Iy)pq


−



0
0
0

Iz,pqωΓ
−Iz,ppωΓ

0


+
5

f
τ

6


(2.25)

2.1.4 Euler-Lagrangian Derivation

The Lagrangian is the sum of the rotational and translational kinematic energy
minus the potential energy of the system.

L =Ktrans +Krot + Epot

=1
2mξ̇

T
ξ̇ + 1

2ν
T Iν −mg

(2.26)

The Euler-Lagrangian equations are:
C
f
τ

D
= d

dt

A
δL
δq̇

B
− δL
δq

(2.27)

The linear equation can be derived in the following way:

f = d

dt

A
δL
δξ̇

B
− δL
δξ

= d

dt

1
mξ̇

2
−m


0
0

−g

 = mξ̈ −m


0
0

−g

 (2.28)
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In order to derive the rotational Euler-Lagrangian equation the Kinetic energy is
written substituting ν with η:

J(η) = WT
η IWη =


Ix 0 −IxSθ
0 IyC

2
ϕ + IzS

2
ϕ (Iy − Iz)CϕSϕCθ

−IxSθ (Iy − Iz)CϕSϕCθ IxS
2
θ + IyS

2
ϕC

2
θ + IzC

2
ϕC

2
θ


(2.29)

The rotational Lagrangian can be then rewritten as:

Krot = 1
2 η̇

TJη̇ (2.30)

The rotational equation can be derived in the following way:

τ = d

dt

A
δL
δη̇

B
− δL
δη

= d

dt
(Jη̇) − 1

2
δ

δη

1
η̇TJη̇

2
= Jη̈ + d

dt
(J) η̇ − 1

2
δ

δη

1
η̇TJη̇

2
(2.31)

The final result can be rewritten as:

τ = Jη̈ + C(η, η̇)η̇ (2.32)

where the matrix C(η, η̇) is the Coriolis matrix that contains the centripetal
terms.
As shown in [14], the matrix C(η, η̇) has the form:

C(η, η̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.33)

C11 = 0
C12 = (Iy − Iz)(θ̇CϕSϕ + ψ̇S2

ϕCθ) + (Iz − Iy)ψ̇C2
ϕCθ − Ixψ̇Cθ

C13 = (Iz − Iy)ψ̇CϕSϕC2
θ

C21 = (Iz − Iy)(θ̇CϕSϕ + ψ̇S2
ϕCθ) + (Iy − Iz)ψ̇C2

ϕCθ + Ixψ̇Cθ

C22 = (Iz − Iy)ϕ̇CϕSϕ
C23 = −Ixψ̇SθCθ + Iyψ̇S

2
ϕCθSθ + Izψ̇C

2
ϕCθSθ

C31 = (Iy − Iz)ψ̇C2
θCϕSϕ − Ixθ̇Cθ

C32 = (Iz − Iy)(θ̇CϕSϕSθ + ϕ̇S2
ϕCθ) + (Iy − Iz)ϕ̇C2

ϕCθ + Ixψ̇SθCθ − Iyψ̇S
2
ϕCθSθ − Izψ̇C

2
ϕCθSθ

C33 = (Iy − Iz)ϕ̇CϕSϕC2
θ − Iyθ̇S

2
ϕCθSθ − Iz θ̇C

2
ϕCθSθ + Ixθ̇SθCθ

This formulation does not take in account the gyroscopic effect due to the rotating
propellers. The term Γ (2.23) previously defined is added to the final equation:

τ = Jη̈ + C(η, η̇)η̇ + Γ (2.34)
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The total set of differential equation derived with the Euler-Lagrangian method
is:

ẍ

ÿ

z̈

ϕ̈

θ̈

ψ̈


=
5

m3x3 03x3

03x3 J3x3

6−1


m



0
0

−g
0
0
0


−
5

03x3 03x3

03x3 C(η, η̇)

6


ẋ

ẏ

ż

ϕ̇

θ̇

ψ̇


−



0
0
0

Iz,p(Cϕθ̇ + CθSϕψ̇)ωΓ
−Iz,p(ϕ̇− Sθψ̇)ωΓ

0


+
5

f
τ

6


(2.35)

2.1.5 Simulink File Of The Mathematical Model
In order to simulate the mathematical models and given the fact that these models
will be used as reference plant for the controller, two different simulink files are
developed starting from the two sets of differential equations.
As matter of fact the two sets can be integrated two times given the input ωi(t) (for
i = 1,2,3,4) and the initial conditions q(0) = [x(0), y(0), z(0), ϕ(0), θ(0), ψ(0)]T
and q̇(0) = [ẋ(0), ẏ(0), ż(0), ϕ̇(0), θ̇(0), ψ̇(0)]T to obtain a complete evolution of the
system in time. For what concerns the Newton-Euler set of differential equation,
the variables in this set are ξ̈ and ν̇ instead of q̈ = [ξ̈; η̈]. To link η̈ with ν̇ the
following formula can be derived:

η̈ = d

dt

1
W−1

η ν
2

= d

dt

1
W−1

η

2
ν + W−1

η ν̇

=


0 ϕ̇CϕTθ + θ̇Sϕ/C

2
θ −ϕ̇SϕTθ + θ̇Cϕ/C

2
θ

0 −ϕ̇Sϕ −ϕ̇Cϕ
0 ϕ̇Cϕ/Cθ + θ̇SϕTθ/Cθ −ϕ̇Sϕ/Cθ + θ̇CϕTθ/Cθ

ν + W−1
η ν̇

(2.36)

The simulink file related to the Newton-Euler set of differential equations (2.25)
is shown in fig.2.4. The simulation gets as input ω = [−ω1, ω2,−ω3, ω4] which are
the angular velocities of the rotors with the proper sign and produces as output
q and dq. Going deeper in the code it is possible to see the first sum between the
terms:

• Thrust and Drag moment summed with Rolling moment and Drag Force
(last term of (2.25));

• Γ (third term of (2.25));

• ν × (Iν) (second term of (2.25));

• gravity effect (first term of (2.25));

This total sum is then left multiplied by B−1 where:

B =
C

m3x3 03x3

03x3 I3x3

D
(2.37)
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At this point the output [ξ̈; ν̇] is integrated to obtain [ξ̇;ν] and used into (2.36) to
obtain [ξ̈; η̈]. In conclusion, the linear accelerations and second derivatives of the
Euler angles are integrated two times in the State Space block to obtain a single
vector of [q; dq].

Figure 2.4. Simulink file of the Newton-Euler differential equations

The simulink file related to the Euler-Lagrange set of differential equations
(2.35) is shown in fig.2.5. The simulation gets as input the same ω as the Newton-
Euler code and outputs q and dq. Like in the previous simulation the first step
consists on summing the terms:

• Thrust and Drag moment summed with Rolling moment and Drag Force(last
term of (2.35));

• C · dq (second term of (2.35));

• gravity effect (first term of (2.35));

• Γ (third term of (2.35));

The output of this sum is then left multiplied by the matrix B−1
1 , where:

B1 =
C

m3x3 03x3

03x3 J3x3

D
(2.38)

At this point it is possible to double integrate ddq in the State Space block to
obtain a single vector with [q; dq].

13



Modelling

Figure 2.5. Simulink file of the Euler-Lagrange differential equations
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2.2 ROS Model
In order to have an external testing environment for the drone simulation and the
controller application, ROS and gazebo are chosen. The rotorS simulator [5] is
adopted, this group of packages contains all the urdf files, plugins, custom mes-
sages and custom worlds that can be exploited in Gazebo.
The simulator provides a high number of different drones, plugins and controllers.
For this study just the simple drone urdf, launch files and motor plugin are used.
In particular, the hummingbird quadrotor is used for the entire study, this drone
corresponds exactly to the structure described in the mathematical model. De-
spite the fact that the visual mesh can look complicated and not symmetrical, the
inertial characteristics describe a simple structure with z-y and z-x symmetry.
ROS is an interesting test environment thanks to its modularity and the simplic-
ity of modifying pre-existing code and nodes. In particular, MATLAB and ROS
have a strong crossplatform connection that allow to write code in MATLAB and
Simulink and to use it directly in ROS as a node. In addition, it is possible to
convert the MATLAB and Simulink code in C++ and deploy it as an indepen-
dent ROS node. Thanks to the MATLAB coder, the simulink controller can be
converted in C++ code and deployed in order to test it in another environment.

2.2.1 Custom Simulator
The basic environment of the rotorS simulator is modified and upgraded. A new
node is added to the basic workspace and many files are modified in order to
simplify its use in this specific case.

2.2.2 Simulator workspace
The packages needed for the simulation are divided in simulator packages, utility
package and custom package.
The simulator packages are contained in the rotors_simulator folder:

• rotors_description: contains the entire urdf and mesh library of the sim-
ulator. Many different drones can be simulated like the classic quadrotor
(hummingbird) or a more complex hexarotor (firefly);

• rotors_gazebo: contains all the launch files needed to run the simulation.
Many different worlds are present beyond the basic empty world;

• rotors_gazebo_plugin: contains all the C++ files that can be used as
plugins in the Gazebo environment.

The utility package is the mav_comm which contains the custom messages used in
the simulator. These messages allow to compress important information about
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drones such as the angular rotor velocities that can be easily used by plugins or
sent over topics.

2.2.3 Custom package
The custom package has been developed at University of Surrey, it consists of one
node (communication_node) which is implemented in order to have a new layer
between the motor speed input provided by the Simulink code and the proper
motor speed input needed by Gazebo.
The main issue of using MATLAB Simulink to generate a ROS node is related
to the impossibility of implementing custom ROS messages. To overcome this
problem, the communication node works as an intermediate ROS layer to convert
the classic ROS messages (such as Float64MultyArray) from Simulink into custom
ROS messages (fig. 2.8).
In particular, the rotorS simulator exploits the mav_msgs/Actuators defined in
the utility package mav_comm. This type of message can carry information such
as the position, the angular velocity and the angular acceleration of each rotor.
The Simulink code (fig. 2.6) publishes the vector of four Float64 numbers (mes-
sage type: Float64MultyArray) to the intermediate topic hummingbird/com-
mand/raw/motor_speed.

Figure 2.6. ROS input section from Simulink code

At the same time, the communication_node (fig. 2.7) subscribes to the intermedi-
ate topic hummingbird/command/raw/motor_speed, converts the Float64MultyArray
messages into mav_msgs/Actuators and publishes them in the final topic hum-
mingbird/command/motor_speed.
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Figure 2.7. Communication_node pyton script.

Figure 2.8. ROS nodes and topics. Nodes are contained into circles and
connected by topics.
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2.2.4 Key files for ROS simulations
To initialize the Gazebo simulation environment the mav.launch file present in
the rotor_gazebo package is executed.
$ roslaunch rotors_gazebo mav.launch

This launch file is structured as follow (also shown in fig. 2.9):

• definition of main variables (Section 1);

• empty_world.launch is included (Section 2), this launch file belongs to the
basic gazebo_ros package. It starts Gazebo and its GUI with an empty
world. Among the arguments of this call the world "basic" is chosen, this is
described in the rotors_gazebo/world folder;

• spawn_mav.launch is included (Section 3), this launch file spawns the robot
in the Gazebo environment given the proper parameters;

• custom communication node is executed (Section 4).

Figure 2.9. Representation of the launch file composition. Circles represent
launch files, rhombuses represent final nodes.

The spawn_mav.launch file spawns the drone in Gazebo given a certain number
of inputs like its urdf, initial position and main parameters. The robot physical
description is given to ROS by the urdf (Universal Robot Description Format).
This format allows to write the link and joint chain, the visual and the collision
characteristics of each link, the plugins applied to each link and many more char-
acteristics that entirely describe the robot and its dynamic properties.
This description is written in the hummingbird_base.xacro present in the ro-
tor_description package and it is composed as follow (also shown in fig. 2.10):

• components_snippets.xacro is included (Section 1), this xacro file contains
the entire list and description of components that can be mounted on the
model (imu sensors, gps sensors, magnetometers etc.);
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• hummingbird.xacro is included (Section 2), this xacro file contains the nu-
meric parameters and the physical description of the base and the rotors of
the drone.

• the "defalut_imu" is mounted (Section 3), this sensor is chosen among the
ones present in the components_snippets.xacro list;

• the "ground_truth_imu_and_odometry" is mounted (Section 4), this sensor
is chosen among the ones present in the components_snippets.xacro list and
it is needed to print the state variable value in a given topic.

The hummingbird.xacro file is organized as follow:

• definition of the main properties (Section 1)

• the multirotor_base.xacro is included (Section 2), this xacro file contains the
default macros for a drone base and a general vertical rotor;

• the "multirotor_base_macro" is called (Section 3) in order to build the body
of the quadrotor;

• the "vertical_rotor" macros are called (Section 4) in order to build the four
rotors of the quadrotor.

Figure 2.10. Representation of the urdf file composition. Rectangles represent
xacro files, hexagons represent final components of the drone.

The plugin present on each rotor is described by the gazebo_motor_model.cpp
file present in the rotor_gazebo_plugin package. This plugin is needed to acti-
vate the rotors rotation, upload their position at each simulation step, compute
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the forces and torques etc.
The plugin file is composed by many functions but the most important one is the
GazeboMotorModel::UpdateForcesAndMoments() function, which com-
putes and apply the several forces and torques to the drone:

• in Section 1 the thrust force (eq. (2.9))is computed and applied to the rotor;

• in Section 2 the drag force (eq. (2.10)) is computed and applied to the rotor;

• in Section 3 the drag moment (eq. (2.12)) is computed and applied to the
body;

• in Section 4 the rolling moment (eq. (2.11)) is computed and applied to the
body.

Notes:

• In this plugin the torques are applied to the body of the drone and not to
the single rotor. This is needed because the gazebo plugin does not work
otherwise. In the simulink model the forces and torques are all applied to
the rotors frame in order to follow the mathematical model;

• The drag moment application in Section 3 of the original rotorS simulator
script is modified. In the original code the drag moment is rotated according
to the difference of orientation between the rotor and the body, this rotation
is needed because this plugin can be exploited by many other drones with
non fixed rotors. In the case of study, the rotors are fixed and therefore drag
moment (which has only the z-component different from 0) is not rotated
when transformed in the body reference frame. In particulare, the line:

parent_links.at(0)->AddRelativeTorque(drag_torque_parent_frame);

is substituted by:

parent_links.at(0)->AddRelativeTorque(drag_torque);

• The rolling moment computation in Section 3 of the original rotorS simulator
script is modified. To distinguish from clockwise and counterclockwise rotors
the turning_direction_ coefficient has been added in the computation of this
torque. In particular, the line:

rolling_moment = -std::abs(real_motor_velocity) *
rolling_moment_coefficient_ *
body_velocity_perpendicular;
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is substituted by:

rolling_moment = -std::abs(real_motor_velocity) *
rolling_moment_coefficient_ *
body_velocity_perpendicular*turning_direction_;

2.3 Simscape Model

Simscape is a Simulink extension that allows to model, to test and to visual-
ize multidomain systems. This environment allows to build a model in Simulink
which closely recalls the ROS model, this Simscape model is then used for quick
testing and tuning. In this case, the quadrotor phisical and visual characteris-
tic are initially imported from the ROS model thank to the MATLAB command
smimport(.urdf). The initial hummingbird_base.xacro file is converted in urdf
format thanks to an online converter and then fed in the MATLAB command.
The first output of this command is a rough representation of the final model.
Many modifications are applied to the model, the base and rotor subsystems are
defined. In each rotor the several forces and torques are added. A sensor section
is defined in order to capture all the important variables that are later sent to
MATLAB for analysis. The final Simscape model (fig. 2.11) is composed by a
configuration section, a base subsystem (hummingbird_base), four rotor subsys-
tem (hummingbird_rotor_i, i=1,2,3,4) with each its own input rotor velocity and
a sensor subsystem.

Figure 2.11. Simscape Model.
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The configuration section defines the world reference frame, the gravity set-
tings and the solver settings for the entire model.

The hummingbird_base subsystem (fig.2.12) is composed by a visual and in-
ertia block where the physical characteristic are defined, a reference frame block
to initialize the body reference frame (reference frame that is fixed to the drone)
and a six-degree of freedom block that allows the free relative motion between the
world reference frame and the body reference frame.

Figure 2.12. Simscape Model Base.

The hummingbird_rotor subsystem (fig. 2.13) revolves around the humming-
bird_joint block which allows the rotation of the propeller. This block is connected
to the rotor velocity input, to the rotor_fixed_rf, to the inertia and visual block
of the propeller and finally has as output the rotor velocity. Then, in the bottom
left there is a section for sensing and computing the perpendicular linear velocity
of the rotor in the world reference frame. This velocity is used together with
the rotor angular velocity to compute forces and torques. In conlusion, the three
purple blocks represent the computation and application of forces and torques
(eq. (2.9),(2.10),(2.11),(2.12))in the rotor_fixed_rf which is the reference frame
corresponding to the initial reference frame of the rotor.

The sensor subsystem (fig. 2.14) is based on the Transform Sensor block which
is able to sense the state of a reference frame with respect to another reference
frame. In this case, this block is used to calculate the position, the orientation,
the linear velocity and the Euler angle derivatives of the body reference frame
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Figure 2.13. Simscape Model Rotor.

with respect to the world (inertial) reference frame.

Figure 2.14. Simscape Model Sensor.
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Chapter 3

Model Validation

The main focus of this chapter is the comparison of the several models previously
analysed. The results of this comparison should reveal a good matching between
all the different models. This result is needed in order to reach the final goal of this
work. Every model will have a role in the final demonstration, the mathematical
model will be needed inside the controller, the Simscape model will be the real
controlled plant and the ROS model will be used inside the Gazebo environment
with the developed controller to provide a further trial.

3.1 Actuation and Acquisition Node
In order to set up the model validation experiment between the Simscape, the
mathematical and the ROS models a simple node able to provide input and read
output from Gazebo is needed.
For instance, the Simulink code is created (Fig. 3.1), this code is able to con-
nect to the hummingbird/command/raw/motor_speed topic and publish an open
loop input signal. At the same time it can read from the /hummingbird/-
ground_truth/odometry and from the /hummingbird/motor_speed/ rispectively
the state variable and the rotational motor speed. In conclusion it can save these
values in the ros_output_complete.mat file.
The final Simulink code is then converted by the Simulink encoder in a C++ file
as shown in [?]. The output of such convertion are three files (a .sh file, a rtw file
and a .tgz file). This three files are dragged into the workspace folder and built
as a ROS package with the following command line:

$ ./build_ros_model.sh ROS_actuation_and_acquisition_node.tgz .

The data is then collected in a specific simulation. The classic mav.launch file
is run to set up the gazebo environment and to spawn the drone; after that, the
ROS_actuation_and_actuation_node is run with the command:
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~/rotors_sim_ws$ rosrun ros_actuation_and_acquisition_node
ros_actuation_and_acquisition_node_node

After the simulation the ros_output_complete.mat file will appear in the direc-
tory from where the node was run. In a second moment these results are compared
to the ones from the simulink and mathematical model.

Figure 3.1. Actuation and Acquisition node.

3.1.1 ROS Input

The ROS input section is based on a BlankMessage block, a signal builder block,
a MATLAB assign function and a Publish block. This components respectively
build the message and the signal, assign the signals to the right BUS section and
publish the final message in the /hummingbird/command/raw/motor_speed topic.
The Simulink signal routing library contains a BUS assignment block which can
be usually used to directly assign a scalar value to a Blank Message. In this case
this block cannot be used because the signal is a vector of four scalars. To over-
come such problem a dedicated MATLAB Function is built (Fig. 3.2).
Note: if the assign block is used in another simulink code the BUS name corre-
sponding to the output must be changed. Steps:

1. the block has to be copied in the new simulink and connected to the BlankMes-
sage, to the input and to the Publish Block;

2. the simulink can be run. The buses will be built among the MATLAB vari-
ables and an error will occur;
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3. open the MATLAB Function in the MATLAB workspace. In EDITOR/SIMULINK
open the Edit Data section;

4. the output msg DataType must be modified in BUS: <object name>, with
<object name> corresponding to one of the BUS variable built in the MAT-
LAB workspace (for example: Bus: SL_<file_name>_Float64MultiArray
where <file_name> is the file name). To edit this field click on edit and pick
the BUS from the list of active BUSES (fig.3.3).

Figure 3.2. MATLAB Assign Function.

3.1.2 ROS Output
The ROS output section is based on a subscribe block, a signal conversion part
and a To File block. This allows to read from a certain topic and save the output
in a .mat file.
The output of such section is composed by the raw output variables, by the
converted output variables and by the rotor motor speeds.
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Figure 3.3. BUS correction.
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3.2 Model Validation Experiment
The model validation experiment consists on testing the several models with the
same input and initial conditions. The evolution of the different models will be
recorded and the state variables will be plotted to evaluate the matching.
For instance, a proper input signal has been developed through trial and error
tecniques to obtain a complete and durable trajectory (Fig. 3.4).

Figure 3.4. Input signal.

This signal is used for the simulink code that contains the mathematical and
Simscape models (Fig. 3.6). For the Actuation and Acquisition node (Fig. 3.1)
the signal is slightily modified by adding a zero input for the first second of the
simulation, this allows the node to start properly and without cutting out any
part of the initial input signal.

The simulink code used for this experiments (Fig. 3.6) contains the Euler-Lagrange
model (Fig. 2.5) the Newton-Euler model (Fig. 2.4) and the Simscape model (Fig.
2.11) and it is able to collect and save in the MATLAB workspace the state vari-
ables of each model.
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Figure 3.5. Input signal for Gazebo.

Figure 3.6. Model validation experiment.
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3.3 Model Validation Results

The results of the model validation experiment are shown in Fig. 3.7,3.8,3.9,3.10.
This images represent the evolution of the state variables ξ, η, ξ̇ and η̇ given the
input defined in the previous section and the resting initial conditions: q(0) =
[0,0,0,0,0,0]T and q̇(0) = [0,0,0,0,0,0]T .
From a first look it is possible to notice that all the models behave in a similar
way, the variables evolve in the same direction and with similar derivatives. From
the error section of each figure it is advatagious to check which, among the two
mathematical models and the Simscape model, differs more with respect to the
ROS model. In particular, the Euler-Lagrangian model shows higher absolute
error that increase with time.

Figure 3.7. Model validation position.
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Figure 3.8. Model validation orientation.

Figure 3.9. Model validation linear velocity.

In tables 3.1,3.2,3.3,3.4, it is possible to check the maximum absolute error and the
avarege percentage error between the simscape model and the two mathematical
models with respect to the ROS model.
From all these results it is possible to see that the Euler-Lagrangian model has
higher errors.
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Figure 3.10. Model validation Euler derivatives.

x error y error z error
[m] [m] [m]

avg % simscape-ROS error 0.36758 0.72618 0.28902
avg % (E-L)-ROS error 1.6666 3.5448 0.49309
avg % (N-E)-ROS error 0.47002 0.78136 0.39181
max absolute ROS-ROS error 0.26122 0.036197 0.018514
max absolute (E-L)-ROS error 1.5941 2.0344 0.087062
max absolute (N-E)-ROS error 0.29041 0.14408 0.042843

Table 3.1. Position error.

phi error theta error psi error
[deg] [deg] [deg]

avg % simscape-ROS error 1.2667 0.70159 0.98156
avg % (E-L)-ROS error 2.0624 8.1665 3.4401
avg % (N-E)-ROS error 1.4002 1.1616 1.4527
max absolute simscape-ROS error 1.1937 0.54734 0.50449
max absolute (E-L)-ROS error 2.4131 5.9439 4.5597
max absolute (N-E)-ROS error 1.5207 1.7777 2.2715

Table 3.2. Orientation error.

32



Model Validation

ẋ error ẏ error ż error
[m/s] [m/s] [m/s]

avg % simscape-ROS error 0.98509 1.2199 0.78222
avg % (E-L)-ROS error 3.9217 11.279 3.2932
avg % (N-E)-ROS error 1.0342 1.6055 1.1345
max absolute simscape-ROS error 0.1665 0.071286 0.026641
max absolute (E-L)-ROS error 1.108 1.4376 0.16735
max absolute (N-E)-ROS error 0.18495 0.13779 0.025199

Table 3.3. Linear velocity error.

ϕ̇ error θ̇ error ψ̇ error
[deg/s] [deg/s] [deg/s]

avg % simscape-ROS error 1.8832 1.3059 3.447
avg % (E-L)-ROS error 3.1274 8.4773 29.885
avg % (N-E)-ROS error 2.1768 2.8223 17.593
max absolute simscape-ROS error 2.5222 1.7515 1.7024
max absolute (E-L)-ROS error 2.1146 12.477 5.397
max absolute (N-E)-ROS error 2.0068 4.1066 3.3592

Table 3.4. Euler angles derivatives error.
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Chapter 4

Control

The main goal of this Chapter is developing on Simulink and deploying on ROS
Gazebo different types of controllers and analysing their performances. These
controllers will compute the angular velocity of the for rotors in order to impose
a certain orientation and therefore position to the quadrotor.
In the first section, the problem of under actuated systems will be discussed and
a particular solution for quadrotors is presented. This problem characterizes sys-
tems that have a smaller number of inputs with respect to the number of variables
to be controlled. To solve this problem the links between orientation and position
of quadrotor will be exploited to develop a working controller.
The solution for the underactuated problem consists on building a first block of
the controller which just computes the missing reference and feeds the actual con-
troller with the complete set of euler angles to be followed.
This means having a control structure divided in two loops (Fig. 4.1): an outer
loop that runs slower which computes the complete reference and in mean time
provides the commanded acceleration and an inner loop that runs faster that com-
putes the second derivatives of the euler angles.
Later in the discussion the different controllers that are tested in the inner loop will
be presented one by one. Each control law and its application will be described.
The tuning of each controller is performed both in Simulink and in ROS Gazebo
because the controllers work differently in the two environments. In Simulink the
simulation time does not correspond to the real time while, on the other hand,
ROS Gazebo tries to have a simulation time that follows the real time.
In conclusion, the results of the tracking experiment for each controllers will be
analysed with respect to some Key Performance Indicator. The tracking experi-
ment consists on following a spiral trajectory that rises upwards starting from a
resting position on the ground.
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Figure 4.1. Controller structure.

4.1 Under Actuated Systems and Control Ar-
chitectures

The first step in designing a controller for any system is to verify if the control
inputs can steer the entire system’s configuration. This means checking whether
the mechanical system is fully actuated or under actuated.
As shown in [15] it is possible to check this property by analysing the second order
differential equation of the system:

q̈(t) = f(t, q(t), q̇(t)) +G(q(t))u(t) (4.1)

In particular, it is necessary to check the rank of G(q(t)). If this value is lower
than the number of state variables the system is underactuated while, if it is equal
to the number of state variable, the system is fully actuated. In the quadrotor
case rank(G(q(t))) = 4 while the state variables are 6 and therefore the system
is underactuated.
Then, another issue in designing the control architecture consists on analysing the
controller output and eventually transforming such output in the real plant input.
In this project, a position and an attitude controller will be deployed which means
that the output will be the acceleration (or virtual control U) and the torques
τ ϕ, τ θ, τψ as shown in Fig. 4.1, while the plant input are the angular velocities of
the four rotors. the transformation from the controller output to the plant input
is performed in the conversion block.
Finally, a partial feedback linearization is performed based on the mathematical
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Euler-Lagrangian model. This method is used to improve the performance of the
controllers.

4.1.1 Outer Loop
To solve the problem of the underactuated system it is possible to exploit the
strong coupled properties of quadrotors as shown in [13] to obtain the reference
for the uncontrollable variables. In this project it is decided to have as reference
the position ξ, the yaw angle ψ and their derivatives.
The relationship between the attitude and the linear acceleration is built on the
position error PID closed-loop simplified equations of the quadrotor. It is neces-
sary to add that, with respect to the formulas obtained in [13], in this project the
position closed loop equations contain also the integral of the position error:

ξ̈e +Kdξ̇e +Kpξ +Ki

Ú
ξedt = 0 (4.2)

where ξe is the position error between the reference and the actual position:

ξe = ξref − ξ (4.3)

The virtual control vector can be written as follow:

U = ξ̈ = ξ̈ref +Kd(ξ̇ref − ξ̇) +Kp(ξref − ξ) +Ki(
Ú
ξrefdt−

Ú
ξdt) (4.4)

from the simplified system equation it is possible to obtain the roll and pitch
reference angle as function of the the virtual control variables and the reference
yaw angle:

ϕref = arcsin
U1 sinψref + U2 cosψrefñ

U2
1 + U2

2 + (U3 + g)2

 (4.5)

θref = arcsin
A
U1 cosψref + U2 sinψref

U3 + g

B
(4.6)

The calculation of these reference angles and their derivatives ϕ̇ref ,θ̇ref ,ϕ̈ref ,θ̈ref
is performed in each controller and represents the outer loop of the controller
structure.

4.1.2 Conversion Block
The conversion block is the other part of the control structure that is common
for every type of controller. This section transforms the output of the outer and
inner loop in the angular velocities of the rotors.
For instance, it is necessary to transform the output of the outer loop U = ξ̈ in
thrust. As shown in [13], the thrust force is computed as follow:

T = m[U1(sin θ cosψ cosϕ+sinψ sinϕ)+U2(sin θ sinψ cosϕ−cosψ sinϕ)+(U3+g) cos θ cosϕ]
(4.7)
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A simplified relationship between the thrust force, the torques and the angular
velocities of the rotors can be derived from 2.14 and 2.15:

T

τx
τy
τz

 =


CT CT CT CT
0 CT 0 −CT

−CT 0 CT 0
CTCM −CTCM CTCM −CTCM



ω2

1
ω2

2
ω2

3
ω2

4

 (4.8)

inverting this equation it is possible to obtain the square and then the final value
of the angular velocities.

4.1.3 Feedback Linearization

A feedback linearization algorithm has been added in the PD and MRAC con-
trollers to increase their performances. As shown by [11] in chapter 8.5.2 a new
control u(t) can be designed taking in consideration the dynamic equations of the
model.
Starting from eq. 2.34 a new control law can be designed:

u = Jy + C(η, η̇)η̇ + Γ (4.9)

where y represents a new input vector that is obtained from the inner control
loop. The new structure of the controller is shown in fig. 4.2.

Figure 4.2. Controller plus feedback linearization structure.
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4.2 Inner Loop

4.2.1 PD Controller
The first algorithm that is tested inside of the inner loop controller is a simple
Proportional Derivative controller (PD). This controller computes the difference
between the reference, its derivatives and the current state variables and then mul-
tiply it by some gains. This gains correspond to two square matrices, respectively
one for the position error and one for the derivative error:

Kϕ,P 0 0
0 Kθ,P 0
0 0 Kψ,P


Kϕ,D 0 0

0 Kθ,D 0
0 0 Kψ,D


(4.10)

The final commanded output is:

τx =
1
Kϕ,P (ϕref − ϕ) +Kϕ,D

1
ϕ̇ref − ϕ̇

22
Ix

τy =
1
Kθ,P (θref − θ) +Kθ,D

1
θ̇ref − θ̇

22
Iy

τz =
1
Kψ,P (ψref − ψ) +Kψ,D

1
ψ̇ref − ψ̇

22
Iz

(4.11)

4.2.2 Sliding Mode Control
The second algorithm to be tested inside the inner loop is a Sliding Mode Con-
troller. The control law based on this algorithm is divided in two parts:

• the first one, also called discontinuous controller, brings the error vector
toward a decision rules, called sliding surface.

• the second one, also called equivalent controller, once the error vector is re-
stricted in the sliding surface, tracks the dynamics imposed by the equations
describing the sliding surface.

The sliding surface for the three variables to be controlled can be written as:

sϕ =
1
ϕ̇ref − ϕ̇

2
+ λϕ (ϕref − ϕ)

sθ =
1
θ̇ref − θ̇

2
+ λθ (θref − θ)

sψ =
1
ψ̇ref − ψ̇

2
+ λψ (ψref − ψ)

(4.12)

where λ = [λϕ, λθ, λψ] is the first parameter to be tuned in the control algorithm.
The general form of the control law u(t) can be written as:

u(t) = ueq(t) + ud(t) (4.13)
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As shown by [16] the final control laws are:

τϕ = uϕ(t) =
è
λϕ
1
ϕ̇ref − ϕ̇

2
+ ϕ̈ref − θ̇ψ̇

1
Iy−Iz
Ix

2
+ Iz,p

Ix
θ̇ωΓ

é
Ix
L

+Kd,ϕ
sϕ

|sϕ|+δϕ
τθ = uθ(t) =

è
λθ
1
θ̇ref − θ̇

2
+ θ̈ref − ϕ̇ψ̇

1
Iz−Ix
Iy

2
− Iz,p

Iy
θ̇ωΓ

é
Iy
L

+Kd,θ
sθ

|sθ|+δθ
τψ = uψ(t) =

è
λψ
1
ψ̇ref − ψ̇

2
+ ψ̈ref − ϕ̇θ̇

1
Ix−Iy
Iz

2é
Iz +Kd,ψ

sψ

|sψ|+δψ
(4.14)

where ωΓ is the sum of the angular velocities (eq. 2.24) andKd = [Kd,ϕ, Kd,θ, Kd,ψ]
is the second parameter to be tuned.

4.2.3 MRAC
The last algorithm to be tested as inner loop controller is a model reference adap-
tive controller. The objective of this controller is to design a MIMO state feedback
adaptive control law such that the state system x globally uniformly asymptoti-
cally tracks the reference state xref of the reference model:

ẋref = Arefxref +Brefr(t) (4.15)

then, given any bounded command r(t), the control input u needs to be chosen
such that the state tracking error e = x− xref globally uniformly asymptotically
tends to zero:

lim
t→∞

∥x− xref∥ = 0 (4.16)

The control law to be applied has the form:

u(t) = K̂T
x (t)x(t) + K̂T

r (t)r(t) (4.17)

where K̂T
x and K̂T

r are the estimates of the ideal unknown gain matrices KT
x and

KT
r . The adaptive laws to select the gains are:

K̂x = Φx + STyex
Tβx

K̂r = Φr + STyer
Tβr

(4.18)

and
Φ̇x = STyex

Tαx
Φ̇r = STyer

Tαr
(4.19)

where S in an invertible matrix such that:

PΦ = Φ̂rS > 0 (4.20)

and ye is:
ye = BT

refPe (4.21)

and Pe is the solution of the equation:

PeAref + ATrefPe = −Q (4.22)
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whereQ is a strictly positive matrix. The term αx,αr,βx and βr are strictly positive
diagonal matrices that define the variation of the adaptive gains in time. This
matrices represents the parameters to be tuned in order to prepare the algorithm
for the experiment.

4.3 Control Implementation and Results
The different controllers are developed in Simulink and then deployed on the ROS
workspace to be tested in Gazebo.
The first part of the experiment consists on building the entire system in Simulink
as shown in fig. 4.3. Here it is possible to notice the reference block, the controller
block, the plant and the scope section where the results are plotted. The results
of such simulation can be also collected in the MATLAB workspace and analysed
later.

Figure 4.3. Simulink set up.

The second part of the experiment regards the modification of the starting Simulink
set up in order to prepare it for the ROS simulation. As shown in fig. 4.4, the only
parts left from the initial Simulink are a slightly modified reference block and the
controller while the plant disappear because it is already present as independent
drone in Gazebo. The new section of this Simulink regards the communication
section with all the blocks regarding the message initialization, the topic connec-
tion and the data collection where the important variables are saved in a .mat file,
this method is the same used in the actuation and acquisition block (fig. 3.1).

4.3.1 Reference
The reference signal used for this experiment is composed by the coordinates, the
yaw angle and their derivatives up to the fourth time derivative. In particular, a
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Figure 4.4. Simulink set up for ROS deployment.

spiral rising trajectory is defined with the mathematical law:

x = kx,1 cos(kx,2t) − x0

y = ky,1 sin(ky,2t) − y0

z = kz,1t− z0

ψ = 0

(4.23)

where kx,1, kx,2, ky,1, ky,2 are constants that define the amplitude and the period
of the spiral while kz,1 defines the rising velocity of the drone. In this experiment
the radius of the spiral (kx,1, ky,1) was 2 meters, the frequency (kx,2, ky,2) was 0.5
Hz and the rising velocity (kz,1) was 1 meter per second. The initial condition
x0, y0, z0 are needed to center the starting point of the trajectory in the inertial
reference frame coordinates (0,0,0).

4.3.2 Tuning
In order to compare the several inner loop controller performances, the outer
loop parameters are the same for all the controllers. With reference to 4.4 the
parameters values are reported in tab 4.1. The PD controller is implemented both

Parameter x y z
Kp 5 5 5
Kd 1 1 2
Ki 0.2 0.2 0.2

Table 4.1. Outer loop parameters.

with and without feedback linearization and the parameters referring to eq. 4.10
are reported in tab. 4.2, 4.3.
The Sliding Model Controller parameters (eq. 4.14) are reported in tab. 4.4.
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Parameter ϕ θ ψ
Kp 200 200 200
Kd 20 20 20

Table 4.2. PD parameters.

Parameter ϕ θ ψ
Kp 350 350 350
Kd 35 35 35

Table 4.3. PD with Feedback Linearization parameters.

Parameter ϕ θ ψ
K 3 3 3
λ 10 10 10
δ 0.1 0.1 0.1

Table 4.4. SMC parameters.

In conclusion, the MRAC parameters related to eq. 4.18 4.19 are reported in tab.
4.5.

Parameter ϕ θ ψ ϕ̇ θ̇ ϕ̇
αx 200000 20000 200000 8800 8800 8800
βx 20000 2000 20000 880 880 880

Table 4.5. MRAC parameters.

And the model reference matrices are:

Aref =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kref 0 0 −bref 0 0
0 −kref 0 0 −bref 0
0 0 −kref 0 0 −bref



Bref =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



(4.24)

Here, kref and bref are two parameters related to the settling time of the reference
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system. In this case a settling time of 1 second is chosen and therefore:
ts = 1
λ1 = 4.6/ts = 4.6
λ2 = 5λ1 = 23
kref = λ1λ2 = 105.8
bref = λ1 + λ2 = 27.6

(4.25)

4.3.3 Results
In this section the results of the trajectory tracking experiment are presented. In
fig. 4.5 it is possible to see the the several trajectories of each drone controlled by
a different inner loop algorithm.

Figure 4.5. Trajectories.

In particular it is possible to notice how the model reference adaptive control algo-
rithm needs some time to adjust the gains in order to have an acceptable tracking;
while the other controllers, that have been previously tuned, immediately have
good performances. In order to better evaluate the algorithm performances some
Key Performance indicator are introduced and then applied to the experimental
outputs.
Root Mean Square Error (RMSE) and Maximum Error (ME) are used to analyse
the position error, the velocity error, the orientation error and the euler angle
derivatives error. The RMSE of a vector x with respect to the reference vector
xref (in this case the trajectory to be followed) is computed in the following way:

RMSE =

öõõõô nq
i=1

(xi − xrefi )

n
(4.26)
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where n is the number of samples in the vector and xi is the i-th sample of the
vector x.
On the other hand, the ME is:

ME = max(x− xref ) (4.27)

These KPI’s have been computed for the total experiment duration of 120 seconds
and for each cycle that the quadrotor performs in order to notice the evolution
of the errors in time. The results of each simulation is reported in the tables 4.6,
4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13.
From the error analysis it can be stated that the Sliding Mode Controllers has
better performances with lower total and final RMSE and ME. It is also possible
to notice how the feedback linearization helps the PD controller improving its
performances among all the KPI’s.

PD total cycle 1 cycle 2 cycle 3 cycle 4
position RMSE 0.014526 0.040129 0.022608 0.022539 0.022525
velocity RMSE 0.019332 0.060681 0.016225 0.016235 0.016211
orientation RMSE 0.0066593 0.020242 0.0076358 0.0074925 0.0078571
euler angle der RMSE 0.015739 0.046876 0.019615 0.019627 0.020047

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.02245 0.022425 0.022546 0.023183 0.022443 0.022526
0.016079 0.016063 0.016242 0.016571 0.016195 0.016144
0.0075539 0.0075456 0.0076772 0.0079626 0.0075342 0.0075852
0.019468 0.019567 0.019738 0.019949 0.019405 0.019641

Table 4.6. PD RMSE results.

PD with Feedback Lin. total cycle 1 cycle 2 cycle 3 cycle 4
position RMSE 0.014148 0.039872 0.021431 0.021388 0.021416
velocity RMSE 0.018945 0.059507 0.01535 0.015394 0.015406
orientation RMSE 0.0050179 0.014776 0.0065389 0.0066208 0.0064414
euler angle der RMSE 0.014243 0.040852 0.019563 0.0199 0.019567

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.021307 0.021356 0.021408 0.021862 0.021205 0.021391
0.015252 0.015318 0.015336 0.015758 0.015257 0.015384
0.0064451 0.0065109 0.0065948 0.0065772 0.0063928 0.0065018
0.019548 0.01962 0.019993 0.019854 0.019558 0.019599

Table 4.7. PD with Feedback Linearization RMSE results .
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SMC total cycle 1 cycle 2 cycle 3 cycle 4
position RMSE 0.01507 0.043949 0.020868 0.020784 0.020768
velocity RMSE 0.02045 0.064332 0.014902 0.014863 0.01489
orientation RMSE 0.0053053 0.015636 0.0067994 0.0068058 0.0067898
euler angle der RMSE 0.011244 0.029296 0.017535 0.017624 0.017821

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.020727 0.020747 0.020754 0.021234 0.0208 0.020747
0.014851 0.014881 0.014888 0.015242 0.01482 0.01485
0.0068562 0.0068554 0.0068278 0.0069106 0.006786 0.0068657
0.017631 0.017981 0.017723 0.017681 0.01758 0.017736

Table 4.8. SMC RMSE results.

MRAC with Feedback Lin. total cycle 1 cycle 2 cycle 3 cycle 4
position RMSE 0.021482 0.064347 0.028369 0.027765 0.026211
velocity RMSE 0.027785 0.084858 0.043679 0.032201 0.025048
orientation RMSE 0.013406 0.040904 0.019016 0.015758 0.013174
euler angle der RMSE 0.017719 0.050412 0.032893 0.028473 0.022771

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.026277 0.026641 0.025803 0.024981 0.025351 0.020747
0.028432 0.034806 0.029371 0.024599 0.025533 0.01485
0.014105 0.016309 0.014853 0.012524 0.013223 0.0068657
0.02297 0.028515 0.02623 0.02133 0.02066 0.017736

Table 4.9. MRAC with Feedback Linearization RMSE results.

PD total cycle 1 cycle 2 cycle 3 cycle 4
position ME 0.4115 0.4115 0.071815 0.070703 0.071621
velocity ME 1 1 0.037581 0.038871 0.040369
orientation ME 0.11862 0.11862 0.014859 0.015146 0.015124
euler angle der ME 0.6073 0.6073 0.063945 0.061388 0.073881

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.069065 0.071284 0.07067 0.070344 0.067516 0.069685
0.036291 0.037118 0.038231 0.037723 0.041247 0.036582
0.014749 0.015284 0.014844 0.01535 0.015705 0.014618
0.062379 0.066042 0.066741 0.067703 0.068629 0.06465

Table 4.10. PD ME results.
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Control

PD with Feedback Lin. total cycle 1 cycle 2 cycle 3 cycle 4
position ME 0.37063 0.37063 0.068876 0.066537 0.067032
velocity ME 1 1 0.03421 0.032785 0.034378
orientation ME 0.10373 0.10373 0.012556 0.01335 0.012698
euler angle der ME 0.69817 0.69817 0.072471 0.084467 0.0703

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.064625 0.064569 0.063538 0.067499 0.066649 0.062762
0.034251 0.032373 0.033311 0.033136 0.036044 0.03352
0.01235 0.012045 0.01316 0.012224 0.013597 0.012867
0.069044 0.068861 0.090846 0.06616 0.068216 0.065665

Table 4.11. PD with Feedback Linearization ME results.

SMC total cycle 1 cycle 2 cycle 3 cycle 4
position ME 0.47686 0.47686 0.06538 0.063109 0.064352
velocity ME 1 1 0.03326 0.03142 0.031806
orientation ME 0.1149 0.1149 0.0084517 0.0086417 0.0067636
euler angle der ME 0.30159 0.30159 0.060315 0.057727 0.057883

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.063134 0.064264 0.062316 0.06016 0.062351 0.062791
0.031412 0.032474 0.031401 0.031238 0.033048 0.032509
0.0075412 0.0072998 0.0070483 0.0070208 0.00789 0.0081154
0.065214 0.065007 0.059352 0.053838 0.061572 0.059217

Table 4.12. SMC ME results.

MRAC with Feedback Lin. total cycle 1 cycle 2 cycle 3 cycle 4
position ME 0.63163 0.63163 0.12588 0.114 0.0939
velocity ME 1 1 0.25221 0.16559 0.091056
orientation ME 0.24559 0.24559 0.059506 0.036555 0.026301
euler angle der ME 0.63082 0.63082 0.13519 0.11975 0.084093

cycle 5 cycle 6 cycle 7 cycle 8 cycle 9 cycle 10
0.096982 0.095591 0.09083 0.085546 0.094834 0.10368
0.11226 0.19205 0.12063 0.079317 0.093384 0.11352
0.026313 0.045091 0.033602 0.020847 0.024212 0.031428
0.082381 0.14432 0.10074 0.06442 0.063881 0.076721

Table 4.13. MRAC with Feedback Linearization ME results.
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Chapter 5

Conclusion

From the results reported in chapter 4, it can be inferred that the simulation
environment is adequate for testing algorithms and running several type of sim-
ulations. The real strength of this project is the possibility of designing different
controllers in a friendly environment such as MATLAB Simulink and then deploy-
ing such algorithms in a more realistic simulator like ROS Gazebo. Thanks to
this work it is possible to study the performance of already developed controllers
and also future algorithms in an application that will become crucial in the day
to day life since drones will become always more important in many fields and
their control will be on the most important aspect to be studied and improved.
In this project a simple experiment has been run to test the environment capabil-
ity. In the future it will be possible to exploit this work and all the functionality
of ROS Gazebo to run more interesting tests. For example it will be possible to
run this simulation in more realistic maps like in fig. 5.1 and maybe give more
articulated trajectories to the drone to follow. Exploiting the modularity and
ROS Gazebo it will be possible to spawn a vehicle in Gazebo that the drone may
follow and guard.
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Conclusion

Figure 5.1. Gazebo Map.
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