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Summary

Nowadays robots are equipped with a great number of sensors, in order to increase
their level of autonomy. Since analyzing the data coming from such devices is very
resource demanding, cloud robotics was born to offload some of the heavy tasks,
such as computing, memory and storage, to the cloud. Furthermore the availability
of computational resources and the effort to manage these infrastructures is mini-
mal. However, not all the software can be unloaded to the cloud due to latency
requirements and to maintain a local autonomy. In fact, the robot may be affected
by disconnections during an operation and, therefore, a minimum level of autonomy
must be guaranteed on-board to maintain an adequate level of safety, as well as
avoiding it being stuck in place.

In this thesis, an in-dept study of cloud technologies, such as Docker and Ku-
bernetes, has been done. Subsequently some of the AWS services have been
analyzed and used in order to design a cloud architecture for robotic fleet man-
agement. This architecture is made by three different parts: the single robot
development, the multi-robotic algorithm and a REST API to visualize the robots’
status.
Concerning the single robotic algorithm the attention is focused on AWS Robo-
Maker, a service that facilitates the creation of a robotic application through ROS
and its simulation via the Gazebo simulator. The multi-robotic algorithm, instead,
will be developed with AWS Cloud9, an IDE that supports different programming
languages. Its containerized image will be uploaded on Amazon ECR, a container
registry, and deployed in a Kubernetes’ Pod, provided by Amazon EKS. The
interaction between the Pod and the simulated robots will be possible via a NoSQL
database offered by Amazon DynamoDB.
Lastly, the different robot status are shown using a REST API, developed through
the integration of a Python script, that retrieves the status from the database,
AWS Lambda and Amazon API Gateway.

In conclusion a different architecture, in case of availability of physical robots, will
be exposed. Furthermore eProsima Fast DDS will be analyzed as a connection
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between ROS2 nodes and other nodes stored in a Kubernetes’ Pod.
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Chapter 1

Introduction

1.1 Cloud Computing
In the last years cloud storage has grown its popularity among individuals who
need larger storage space, and for entities seeking an efficient off-site data back-up
solution, instead of keeping files on a hard drive or in a local storage device.

Cloud computing is the on-demand delivery of host services, like databases,
storage and servers over the Internet, with pay-as-you-go pricing. It takes all the
heavy tasks involved in processing the data away from the user’s device. It lowers
the operating costs, runs the infrastructure more efficiently and scales when changes
are needed.

The hosted services can be either public and private. Public ones are avail-
able online for a fee, through an account that can be accessed by anyone, and
offered by cloud providers that handle and control all the hardware, software
and the general infrastructure. Private services instead are hosted on a private
network to specific clients. Furthermore a hybrid solution is also available, that
combines public and private clouds allowing data and applications to be shared
between them. This type of approach gives greater flexibility, more deployment
options and it helps to optimize the existing infrastructure, security and compliance.

Cloud computing is primarily composed of three services, as depicted in Figure 1.1:

• Infrastructure as a Service (IaaS): it involves a method for delivering
everything from Operating System (OS) to servers and storage through Internet
Protocol address (IP) based connectivity. Costumers can avoid to purchase
software or servers and instead procure them in an outsourced, on-demand
service.
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• Software as a Service (SaaS): it provides the license of a software applica-
tion to customers. Licenses are typically provided through a pay-as-you-go
model or on-demand.

• Platform as a Service (PaaS): considered as the most complex of the three
layers of cloud-based computing, it shares some similarities with SaaS. The
main difference is that, instead of delivering software online, it is a platform
for creating software that is delivered via Internet.

Figure 1.1: IaaS, PaaS and SaaS structure

Cloud-based solutions offer multiple benefits including the ability to use software
from any device, either via a native application or a browser. As a consequence
users can seamlessly carry their files and settings over to other devices. It also
makes possible to back up their files, ensuring that they are immediately available
in case of a hard drive crash.
Cloud technology has gained lots of popularity also because it offers businesses
huge cost-savings potential. Before it became a feasible alternative, companies
were required to purchase, construct and maintain costly management technology
and infrastructure.
Lastly, cloud computing lets users upgrade their software more quickly, because
software companies can offer their products via web rather than through more
traditional methods, involving disks or flash drives.

2
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1.2 Cloud Robotics
The term "Cloud Robotics" was coined by J. Kuffner in 2010 [1]. It is a field of
robotics that aims to apply cloud computing resources to improve robotic system’s
collective learning, computational speed, collective memory and interconnection.
This can be done since lots of resources, such as computing, storage and memory
are provided by external data centers in the cloud, which can process and share
information from multiple robots or agents.

Modern robots are equipped with a great number of sensors, to increase their
level of autonomy. Since analyzing all the data coming from such devices can be
very resource demanding, the cloud can be used to offload some of these heavy
tasks, with advantages such as the wide availability of storage and computational
resources, and a minimal management effort for provision. Other Internet-related
features of robotics, like online sharing of open-source hardware and software, crowd
sourcing of robotics funding, telepresence and human based computation may also
fall under the definition of Cloud Robotics.

A cloud robotics platform includes secure servers that host vast databases. The
stored data controls every aspect of the robotics machinery. Cloud robotics archi-
tectures typically comprise the following six components:

• Global library of images, maps and object data: it generally includes
geometry and mechanical properties, expert systems and knowledge base.

• Parallel computation on-demand: to allow sample-based statistical model-
ing and motion planning, task planning, multi-robot collaboration, scheduling
and coordination.

• Shared information: such as outcomes, trajectories and control policies as
well as robot learning support.

• Open-source code, data and designs: for easy programming, experimen-
tation and hardware construction.

• On-demand human guidance and assistance: for evaluation, learning
and error recovery.

• Augmented human-robot interaction.
Nevertheless not all the tasks can be offloaded to the cloud because of latency
constraints, but also to ensure local autonomy. In fact mobile robots may, for
a given time interval, be away from the router that allows the communication
with the cloud itself. It follows that distributed solutions are necessary, where the
computation and storage are spread among the robot and the cloud.
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1.3 Related Work

The integration of robotic systems together with the powerful resources offered by
cloud computing is a topic that is becoming always more important. Off-loading
different tasks to external data centers is not only useful for data management
and analysis, but also from an economic perspective since it allows to mount less
complex hardware systems on board, hence the overall unit cost for a given device
decreases.

Several papers published during the last years focus on the development of a
cloud robotic infrastructure to manage and control a fleet of autonomous robots.
The work [2], for instance, provides a generic type of cloud robotic architecture
usable by builders as reference, and a detailed panorama of all the required com-
ponents. The authors retrieved a list of utilized components to devise a generic
architecture, such as robots, I/O devices, service oriented architecture, data pro-
cessing and control. This work has been done because authors realized that there
was no agreed consensus on the tools to be used in the build-up of this type of
systems.

In recent years new types of distributed solutions are also being developed, named
Fog and Dew robotics.
Fog robotics is a system that efficiently distributes both computation and memory
between edge, gateway and cloud devices, in order to access privacy and security.
This approach can escalate the dexterity of robots by shoving the data closer to
the device. Furthermore, it can ensure a more responsive human-robot interaction.
Dew robotics, instead, is a paradigm that efficiently distributes computation and
memory between edge, gateway and cloud devices to address privacy and security.
This technique can improve scalability, since the tasks are distributed among a large
number of heterogeneous devices. In this way it is possible to build distributed
applications without the need of central nodes. For what concerns this second
approach, an implementation based on ROS is described in [3], where a cloud
platform has been developed to coordinate a fleet of drones and a rover for a search
and rescue mission. The three ROS nodes, depicted in Figure 1.2, can communicate
one with another through wireless network technology, using the rover as an access
point. The Reader node is deployed on the drone, that captures an input video
from a generic device, and sends the frames to the second tier of the platform. The
other nodes, named Encoder and Annotator, are deployed on the ground rover so
that they can use its resources to perform medium-weight tasks.
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Figure 1.2: Dew Robotics platform based on ROS developed in [3]

1.4 Thesis structure
The main goal of this thesis work is to design a cloud robotic architecture for fleet
management, using services provided by Amazon Web Services (AWS). The robots,
simulated through the Gazebo simulator, are managed by a multi robot algorithm
deployed in a Kubernetes’ Pod. A non-relational database is used as the bridge
linking the Pod and the different robots. It is also used to store the devices’ status,
that will be viewable in a web page through a Representational State Transfer
Application Programming Interface (REST API).

In the next chapters the adopted technologies and the proposed cloud architecture
will be analyzed. The second chapter gives an overview on Docker, Kubernetes and
non-relational databases. Chapter 3 focuses on AWS and its services that have been
used in this work, while the successive one describes the developed architecture
and its implementation. Lastly further developments are presented, such as the
design of a cloud infrastructure in case of availability of physical robots, and the
connection, through eProsima Fast DDS, between ROS2 nodes deployed on a robot
with others contained in a Kubernetes’ Pod.

5



Chapter 2

Adopted Technologies

2.1 Docker
Founded as DotCloud in 2008 by Solomon Hykes, what now is known as Docker
started out as a PaaS, before pivoting in 2013 to focus on democratizing the under-
lying software container its platform was running on. Hykes first presented a demo
of Docker at PyCon, the biggest annual conference on the Python programming
language. Here he explained that Docker was created because developers kept
asking for the underlying technology powering DotCloud.

Docker is an open source software platform that uses OS-level virtualization to
deliver software in containers. Containers are small and lightweight execution
environments that make shared use of the OS kernel, but run in isolation from one
another. The isolation and security given by containers allow the user to run many
of them on a given host.
While containers have been used in Linux and Unix systems for some time, Docker
spread this technology by making it easier for developers to package their software.
Docker packages, provisions and runs containers, whose technology is available
through the OS. A container packages the application service with all of its libraries,
configuration files, dependencies and the other parts needed to operate.

Differently from Virtual Machines (VMs), which encapsulate an entire OS with
executable code, Docker uses resources isolation on the operating system kernel to
run multiple containers on the same OS.

2.1.1 VM vs Container
Containers have become the compute units of modern cloud-native applications,
since they are more portable and resource-efficient than VMs.

6
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VMs, whose architecture is depicted in Figure 2.1, are an abstraction of phys-
ical hardware turning one server into multiple ones. The hypervisor allows multiple
VMs to run on a single machine, where each machine includes a full copy of an
OS, libraries, the application and necessary binaries, taking up a lot of Gigabytes
(GBs). Because of this they can be slow to boot.

Figure 2.1: VM architecture

Containers and VMs have similar isolation and allocation benefits, but function
differently because containers virtualize the OS instead of the hardware.

A container, whose structure is reported in Figure 2.2, is instead an OS-level
virtualization in which the software or application can be moved and run consis-
tently, in any environment and infrastructure, without launching a VM for each
application. It is independent of the environment itself and the infrastructure’s OS.
Containers are an alternative way to coding on one platform or OS, which made
moving the applications difficult since the code might not be compatible with the
new environment.

7
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Figure 2.2: Container structure

Each container consists of one or more running processes which are isolated from
the rest of the system. However when a container is not running, it exists only as
a saved file, the container image. It is a lightweight executable, a package of the
application source code, binaries, files and other dependencies.

A container image can run on various types of infrastructure like bare metal,
within VMs and in the cloud. When a containerized application starts, the contents
of a container image are copied before they are spun up into a container instance.
Each image can be used to instantiate any number of container and, for this reason,
it can be considered as a container blueprint.

Container images can only be shared with others via a public or private con-
tainer registry. To promote sharing and compatibility, images are typically create
in the industry-standard Open Container Initiative (OCI) format.

8



Adopted Technologies

Figure 2.3: Container workflow

The container engine is the software components that enables the host OS
to act as a container host. It accepts user commands to build, start and manage
container through client tools, and also provides an API that allows external pro-
gram to make similar requests. The most important aspects of a container engine’s
functionality are performed by its core component, the container runtime. It
is responsible for creating the standardized platform on which apps can run, for
running containers, and for handling container’s storage needs on the local system.

A container is executed by a container runtime engine. Among the ones available
in the market, Docker is the most adopted one.

2.1.2 Docker architecture
Docker, whose architecture is reported in Figure 2.5, uses a client-server architecture.
Broken down, it comprises six different component parts.

Dockerfile

The Dockerfile is a text file that provides a series of instructions to build a Docker
image, such as the OS, languages, environmental variables, file locations, network

9
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ports and any other required component.

Figure 2.4: Dockerfile example, source [4]

It is made by different instructions, the most important are:

• FROM: is the first instruction in a Dockerfile, it defines the image we want
to use.

• RUN: is an image build step, the state of the container after this command
will be committed to the container image. A Dockerfile may have different
RUN steps that layer on top of one another to build the image.

• COPY: allows to copy local files on the specified image.

• CMD: is the command the container executes by default when the user
launches the built image. A Dockerfile will only use the final CMD defined.

• EXPOSE: exposes a particular port with a specified protocol inside a Docker
container. The ports can be either Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP), but the former is selected by default.

• VOLUME: specifies a mount point in the container. It will be mapped to a
location on the host that is either specified when the container is created or, if
not, chosen automatically from a directory created in /var/lib/docker/volumes.

• ENTRYPOINT: is used to set executables that will always run when the
container is initiated. Differently from CMD, this command cannot be ignored
or overridden.

• ENV: defines the environment variables of the user’s container.

10



Adopted Technologies

Docker image

A Docker image is a portable, read-only executable file containing the instructions
for creating a container and the specifications for which software component the
container will run and how. The user can create the images through a Dockerfile or
use only those created by others and published in a registry. When the developer
changes the Dockerfile and rebuilds the image, only those layers which have changed
are rebuilt.

Docker Hub

Also known as Docker registry, it is a public repository where container images
can be stored, shared and managed. Docker is configured to look for images on
Docker Hub by default.

Docker Engine

It is the core of Docker. Docker Engine is the underlying client-server technology
that creates and runs the container. It includes a long-running daemon process,
called dockerd, for managing container, APIs that allow program to communicate
with the daemon and a Command Line Interface (CLI). The Docker client and
Docker daemon can run on the same system, or the user can connect a client to a
remote daemon. They communicate using a REST API, over UNIX sockets or a
network interface.

Docker Compose

This component is a command-line tool that uses YAML files to define and run
multi-container Docker applications. It allows to create, start, stop and rebuild all
the services from the user’s configuration and view the status and log output of all
running services.

Docker Desktop

It is an application for Desktop to work with the Docker Engine. It provides a
user-friendly way to build and share containerized applications and microservices.
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Figure 2.5: Docker architecture

2.2 Kubernetes

Google was one of the early contributors to Linux container technology and in 2004
launched Borg, an internal cluster management system. With this platform the
company generated more than 2 billion container deployments a week. Given the
relevance of this technology Google decided to present, 10 years after, Kubernetes
as an open-source version of Borg.

Containers are a good way to bundle and run applications. However, in a production
environment, there is the need to manage the containers that run the applications
and ensure there is no downtime.
This is where Kubernetes comes in handy. As depicted in Figure 2.6, it is the most
used open-source container orchestration platform that runs distributed systems
resiliently, automating many of the processes involved in deploying, managing and
scaling containerized applications.
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Figure 2.6: Market share of container management systems, source [5]

2.2.1 Kubernetes features
Kubernetes provides the user with:

• Service discovery and load balancing: it exposes a container via the IP
address or the Domain Name System (DNS) name. In case in which the traffic
to a container is high, Kubernetes load balances and distributes the network
traffic to ensure deployment stability.

• Automated rollouts and rollbacks: the user can describe the desired state
of the deployed containers via Kubernetes, and change them to a desired one
at a controlled rate.

• Automatic bin packing: when working with Kubernetes the user creates a
cluster of nodes that are used to run containerized applications, underlying how
much Central Processing Unit (CPU) and Random Access Memory (RAM)
each container needs. Kubernetes will fit containers onto the nodes to make
the best use of the resources.

• Storage orchestration: Kubernetes allows the user to automatically mount
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the storage system that prefers, such as local storage, public cloud providers
and more.

• Secret and configuration management: used to store and manage sensi-
tive information like passwords, OAuth tokens and Secure Shell (SSH) keys.
The user can deploy and update secrets and application configuration with-
out rebuilding his/hers container images and exposing secrets in the stack
configuration.

• Self-healing: Kubernetes restarts containers that fail, replaces them, kills the
ones that do not respond to user-defined health check and doesn’t advertise
them to clients until they’re ready.

2.2.2 Kubernetes components

The core of Kubernetes is its cluster, represented in Figure 2,7. It contains a set
of worker machines, called nodes, that run containerized applications, and the
control plane, that manages the nodes. Every Kubernetes cluster contains at
least one node.

The worker nodes host the Pods, the smallest execution unit in Kubernetes,
which encapsulate one or more applications. The control plane usually runs across
multiple computers. A Kubernetes cluster generally contains multiple nodes in
order to provide availability and fault-tolerance.
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Figure 2.7: Kubernetes cluster

2.2.3 Control plane components

The control plane makes global decision about the cluster, detects and responds
to cluster events. Its components can be run on any machine in the cluster. For
simplicity, set up scripts typically start all these components on the same machine,
in which the user’s containers do not run.

kube-apiserver (api)

The kube-apiserver is the front end of the control plane itself. It is a component
that exposes the Kubernetes API. It is designed to scale horizontally, deploying
more instances. In this way the user can run different instances of kube-apiserver
and balance traffic between them.
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etcd

It is a highly-available key value store, used by Kubernetes as a backing store for
all the cluster data. If the Kubernetes cluster uses etcd, it is required to have a
back up plan for those data.

kube-scheduler (sched)

The kube-scheduler is a control plane component that looks for newly generated
Pods with no assigned node, and selects a node for them to run on.
Factors taken into consideration for scheduling are: individual and collective re-
source requirements, affinity and anti-affinity specifications, hardware/software/pol-
icy constraints, data locality, inter-workload interference and deadlines.

kube-controller-manager (c-m)

The kube-controller-manager is the control plane component that runs con-
troller processes.
Logically each controller is a separate process but, to decrease complexity, they are
all compiled into a single binary and run in a single process.

The basic types of controllers are:

• Node controller: notices and responds when nodes go down.

• Job controller: looks up for job object that represent one off-tasks, then
creates Pods to run those tasks to completion.

• Endpoints controller: populates the Endpoints object.

• Service Account & Token controllers: create default accounts and API
access tokens for new namespaces.

cloud-controller-manager (c-c-m)

The cloud-controller-manager is a component that embeds cloud-specific control
logic. It allows the user to link the cluster into the cloud provider’s API, and
separates out the components that interact with that cloud platform from the ones
that only interact with the cluster. It only runs controllers that are specific to the
cloud provider.
Similarly to the kube-controller-manager, the cloud-controller-manager combines
several independent control loops into a single binary that the user runs in a single
process. It is possible to scale horizontally in order to improve performance and to
help tolerate failures.
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The controllers that can have cloud provider dependencies are:

• Node controller: to check the cloud provider to determine if a node has
been deleted in the cloud after it stops responding.

• Route controller: to set up routes in the underlying cloud infrastructure.

• Service controller: to create, update and delete cloud provider load bal-
ancers.

2.2.4 Node components

The node components run on every node, maintaining running pods and bringing
the Kubernetes runtime environment.

kubelet

It is an agent that makes sure that containers are running in a Pod.
The kubelet takes a set of PodSpecs, files that describe a version of a Pod library,
and ensures the containers described by them are running and healthy. It receives
command from the API server and instructs the container runtime to start or stop
containers as needed.
It does not manage containers that were not created by Kubernetes.

kube-proxy (k-proxy)

The kube-proxy is a network proxy that runs on each Kubernetes node and it
is responsible for maintaining network rules on each worker machine. These rules
allow communication to the user’s Pods from network sessions inside or outside
from the user’s cluster. Kube-proxy can forward traffic itself or use the OS packet
filter layer.

Container runtime

It is the software layer responsible for running the containers.
There are different container runtimes supported by Kubernetes such as con-
tainered, Container Runtime Interface plus OCI (CRI-O), Docker and other Ku-
bernetes CRI implementations.
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2.2.5 Addons
Addons use Kubernetes resources, to implement cluster features. Since these are
providing cluster-level features, namespaced resources for addons belong within
the kube-system namespace.

DNS

Among all the available addons, the only one that is required is the cluster DNS.
It is a DNS server, in addition to others in the user’s environment, which serves
DNS records for Kubernetes services.
Containers started by Kubernetes automatically include this DNS server in their
DNS searches.

2.3 NoSQL Database
Carl Strozz introduced the "Not only Structured Query Language" (NoSQL)
Database concept back in 1998. The term "NoSQL" refers to non-relational
databases that store data in a different format with respect to relational ones.
They can be queried using idiomatic language APIs, declarative structured query
languages and query-by example languages.

These databases are widely used in real-time applications and big data, since
they are scalable, flexible, highly available, and capable of responding to modern
data management demands. They are also the favourite choice of developers, as
they lend themselves to an agile development paradigm by adapting to changing
requirements. NoSQL databases allow the data to be stored in more intuitive
ways with fewer transformations required. They can also use cloud to deliver zero
downtime.

The four most popular types of NoSQL database are:

• Key-value stores: group associated data in collections with records, identified
through unique keys for easy retrieval. The application has complete control
over what is stored in the value, making it the most flexible NoSQL model.
Data is partitioned and replicated across a cluster to guarantee scalability
and availability. Because of this, they do not often support transactions.
Key-value stores have enough structure to mimic the value of relational
databases while keeping the advantages of NoSQL.

• Document databases: typically store self-describing JSON, XML and BSON
documents. They are similar to key-value stores but, in this case, a value is
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a single document that stores all data related to a given key. Field in the
document can be indexed by the user to provide fast retrieval without knowing
the key. Each document can have the same or different structure.

• Wide-column databases: use the tabular format of relational databases,
but allow a wide variance in how data is named and formatted in each row. A
query can retrieve related data in a single operation, since only the columns
associated with the query are retrieved. Like key-value stores, they have some
basic structure while preserving flexibility.

• Graph databases: use graph structures to store, map and query relationships.
They are useful for identifying patterns in semi-structured and unstructured
information.

2.3.1 Relational vs Non-Relational Database
SQL databases are relational, while NoSQL ones are not. The relational database
management system is the basis for structured query language and allows the user
to access and manipulate data in structured tables. In NoSQL databases the data
access syntax can be different for each one of them.

The data in an relational databases is stored in tables. A table is defined as
a collection of related data entries, made by rows and columns. This type of
databases requires defining the schema upfront, i.e., all the columns and their
associated data-types must be known in advance, so applications can write data to
the database. They store information linking different tables through various keys,
thus creating a relationship across multiple tables.

In a NoSQL one instead, data can be stored without defining the schema up-
front, meaning that the user has the ability to get moving and iterate quickly. Until
recently relational databases were the most used models. Nowadays the variety,
velocity and volume of data sometimes requires a very different database. This
is when the NoSQL approach comes in handy, thanks to its ability to scale out
horizontally and quickly.

2.3.2 NoSQL Database Advantages
To summarize, non-relational databases offer important advantages with respect to
relational ones, including:

• Scalability: NoSQL approach uses horizontal scaling to add or reduce capacity
quickly and non-disruptively with commodity hardware. This has the ability

19



Adopted Technologies

SQL NoSQL
Relational Database Distributed Database
management system management system
Vertically scalable Vertically and horizontally

scalable
Fixed or predefined Schema Dynamic Schema
Not suitable for hierarchical Best suitable for hierarchical

data storage data storage
Can be used for complex queries Not good for complex queries

Table 2.1: SQL vs NoSQL databases

to support increased traffic in order to meet demand with zero downtime.
Scalability eliminates the cost and complexity of manual sharing that is
necessary when trying to scale relational databases.

• Performance: users can increase performance with non-relational databases
by adding commodity resources. This allows organization to continue to
deliver reliably fast user experience with a return on investment for adding
resources.

• High Availability: they are generally designed to ensure high availability
and avoid the complexity of relational architecture, that relies on primary and
secondary nodes. Some distributed NoSQL databases use a masterless archi-
tecture that automatically distributes data equally among different resource.
Because of this the application remains available for read and write operations
even in case of node failure.

• Global availability: non-relational databases can minimize latency and
ensure a consistent application experience wherever users are located. To
achieve this, they automatically replicate data across multiple servers, data
centers or cloud resources.

• Flexibility: NoSQL has the ability to implement fluid and flexible data
models. Users can leverage the data types and query options that are the
most natural fit to the specific application use case. This results in a simpler
interaction between the application and the database, and a faster, more agile
development.
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Chapter 3

Amazon Web Services

Amazon Web Services is a subsidiary of Amazon launched in July 2002, when it
opened the Amazon.com platform, with its first web services, to all developers.
AWS is the world’s most adopted cloud platform, as depicted in Figure 3.1, and
provides scalable and cost-effective on-demand cloud computing. It also comes up
with APIs on a metered pay-as-you-go basis, either on a per-hour or per-second
usage. Fees are based on a combination of usage, hardware, OS, software, network-
ing and service options. If a costumer cannot afford the cost, the AWS Free Tier
allows users to access up to 60 services in one of three different options: always
free, 12 months free and trials.

AWS offers more services, and more features within them, than any other cloud
provider, including a mixture of IaaS, PaaS and packaged SaaS. It provides the
widest variety of databases that are purpose-built for different types of applications,
therefore the user can choose the right tool for the job. All of this makes it faster,
easier and more economical to move the user’s existing applications to the cloud.

This cloud provider offers services from dozens of data centers spread across
availability zones in regions throughout the world. A single availability zone con-
tains multiple physical data centers, and multiple ones in a geographic proximity,
connected by low-latency network links, is called region. The user can choose one
or multiple zones for different reasons, such as compliance and proximity to the
end costumers. A user can also spin up VMs and replicate data in different regions
to ensure reliability and resistance to failures of individual servers or of an entire
data center.
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Figure 3.1: Cloud providers market share, source [6]

3.1 Security
AWS offers lots of different tools that can be used, by individuals and companies,
in data centers in up to 190 countries. Through the support of 98 different security
standards and compliance certifications, the core infrastructure of AWS satisfies
the security requirements for the military, banks and other high-sensitivity organi-
zations.
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This model has been recognized by Gartner, a technological research and con-
sulting firm, as the recommended approach for running enterprise applications
that require high availability. In fact Gartner positioned AWS in the Leaders
quadrant of the 2021 Magic Quadrant for Cloud Infrastructure Platform Services
(CIPS). CIPS are defined, in this context, as "standardized, highly automated
offerings, in which infrastructure resources (e.g., compute, networking and storage)
are complemented by integrated platform services". [7]

Figure 3.2: Magic Quadrant for Cloud Infrastructure & Platform Services, source
[8]
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3.2 Services
AWS is made up by more than 100 services, including those for computing,
databases, application development and many others. Each one of them can
be configured in different ways based on the user’s needs. Among the services
provided by AWS, Amazon Elastic Compute Cloud (EC2) allows users to have at
their disposal a virtual cluster of computers, always available through the Internet.
These virtual computers emulate most of the attributes of a real one, including
hardware CPUs and Graphics Processing UnitS (GPUs) for processing, local/RAM
memory, hard disk/Solid-State Drive (SSD) storage, a choice of OS, networking
and many others.
Most services are not exposed directly to end users, but instead offer functionality
through APIs for developers to use in their applications. AWS offerings are accessed
over HTTP, using the REST architectural style and JSON for newer APIs.

This chapter contains an overview on the main features and advantages of all
the services that have been used for this thesis work. First of all the services
employed for the multi robot application are analyzed, i.e, AWS Cloud9, Amazon
Elastic Container Registry (ECR) and Amazon Elastic Kubernetes Service (EKS).
Subsequently AWS RoboMaker, used to simulate the robots, is presented. Lastly
AWS Lambda and Amazon API Gateway, useful for the implementation of the
REST API displaying the robots’ status, are analyzed.

3.3 AWS Cloud9
AWS Cloud9 is a cloud-based Integrated Development Environment (IDE) that lets
developers write, run and debug their code with just a browser. It includes a code
editor, a debugger and a terminal. This service is prepackaged with essential tools
for over 40 programming languages, including Python, Java, C++ and many others.
Therefore users do not need to install files and configure their development machine
when starting new projects. The cloud-based nature of this IDE allows user to work
on their projects everywhere they want, using just an internet-connected machine.

3.3.1 Features
An interesting feature of this service is the quickly sharing of the development
environment with colleagues, characteristic that facilitates the collaboration. It
updates in real time, so a programmer can see the code entered, edited and deleted
from another member of the team as it happens. Colleagues can also chat with
one another through a terminal.
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The Cloud9 IDE also offers default support for Git, the defacto standard of
source control management, and comes with a pre-installed Serverless Application
Model (SAM) local environment. The local testing of SAM applications is enabled
by Docker, already available in an AWS Cloud9 instance.

Figure 3.3: AWS Cloud9 workflow

3.3.2 Benefits and security
AWS Cloud9 is useful for developing serverless applications. It preconfigures the
development environment with the required Software Development Kits (SDKs),
libraries and plug-ins for serverless development. It can be also integrated with
other AWS services. Developers can, through Cloud9, build, edit and debug AWS
Lambda functions, a service described in Section 3.7. It can run on managed
Amazon EC2 instances, or on any SSH-supported Linux server.

The AWS shared responsibility model applies to data protection in Cloud9.
The cloud provider is responsible for protecting the global cloud infrastructure,
while the users are responsible for maintaining control over their content.

3.4 Amazon ECR
Amazon ECR is a fully-managed Docker container registry useful for developers
to store, manage and deploy Docker container images. The users do not need to
operate their own container repositories or to scale the underlying infrastructure.
This service allows developers to save configurations and move them quickly into a
production environment, reducing the overall workloads.
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ECR provides a CLI and APIs to manage the repositories and its integrated
services such as Amazon Elastic Container Service (ECS), which installs and man-
ages the infrastructure for the containers. The main difference between ECR and
ECS is that the former comes up with the repositories to store all the code that
has written and wrapped up in a Docker image, while the latter takes these files
and use them in the deployment of applications.
The developer can use the Docker CLI to push or pull container images to or from
an AWS region. Amazon ECR can be used wherever a Docker container service is
running.

3.4.1 Features
Amazon ECR writes and packages code in the form of a Docker image. Subsequently
it compresses, encrypts and manages access to these images and controls their
lifecycle. Lastly Amazon ECS pulls the Docker images from ECR to be used in the
deployment of applications and continues to manage containers anywhere.

Figure 3.4: Amazon ECR workflow

Amazon ECR is made by the following components:

• Docker images: they can be pushed or pulled to the user’s repositories. The
developers can use them on their local development system or Amazon ECS
task definitions and Amazon EKS Pod definitions.

• Repository: stores the user’s Docker images, OCI images and compatible
artifacts. Developers can push and pull images to the repository. ECR
lifecycle policies allows to specify the lifecycle management of images inside a
repository.
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• Repository policy: used by developers to manage the access to the reposi-
tories and the images within them.

• Registry: an Amazon ECR private registry is provided to every AWS account.
Developers can create one or more repositories in their registry and store
images in them.

• Authorization token: before it can push and pull images, the Docker client
must be recognized as an AWS account holder. The AWS CLI get-login
command provides the user with authentication credentials to pass to Docker.

3.4.2 Benefits and security
The main benefits of ECR are:

• High availability: ECR architecture is scalable, durable and redundant.
Therefore the Docker images are easily available and accessible, and users can
dependably deploy new containers for their application.

• Streamlines workflow: the integration with Amazon ECS and the Docker
CLI allows users to simplify their development and production process by
facilitating Continuous Integration/Continuous Delivery (CI/CD) in ECS.
Container images can be pushed to Amazon ECR through the Docker CLI and
Amazon ECS can easily pull the images directly and use them for production
deployments.

• Fully managed: Amazon ECR does not include software that needs to be
installed and managed, or an infrastructure that must be scaled.

An important trait of Amazon ECR is its increased security. It encrypts images
at rest with Amazon S3 server-side encryption, an AWS service that provides object
storage through a web service interface. ECR also allows administrators to use
AWS Identity and Access Management (IAM), an AWS product that specifies who
or what can access services in AWS, to create restrictions to limit the access for
the repositories. AWS security groups, virtual firewalls at the instance level, can
be selected for the interface that controls whether each host is allowed to interact
with that interface.

3.5 Amazon EKS
Amazon EKS is a cloud-based container management service useful to run Ku-
bernetes on AWS without the need to install, control and maintain the control
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plane and the nodes. It automatically manages and scales clusters of infrastructure
resources.

Figure 3.5: Amazon EKS workflow

3.5.1 Components

An EKS cluster is made of a control plane and multiple nodes.

EKS Control Plane

The control plane, that consists of at least two API servers and three etcd instances,
runs on a set of EC2 instances in an AWS account. It uses three load-balanced
master nodes arranged in a high-availability configuration. They are managed by
AWS and carry the functionalities needed to implement Kubernetes, including
access to the EKS API.
Data on etcd is encrypted using Amazon KMS, a service that lets the user create,
manage, and control cryptographic keys across the applications and more than 100
AWS services. Kubernetes master nodes are distributed across different availability
zones. Role-Based Access Control (RBAC) policies can be used to authorize a
cluster to view or receive communication from other clusters or other AWS accounts.
The user can create an EKS cluster for each application or use one cluster for
multiple applications. The second case requires the use of IAM security and
Kubernetes namespaces to isolate applications inside the cluster.
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EKS Nodes

Worker nodes are created by EKS users via EC2 instances. They host pods
of containers that compose container-based applications. Nodes are in general
arranged in node groups, and different node groups can be created inside the same
cluster. The worker nodes communicate with the control plane via the EKS API,
RBAC and Amazon Virtual Private Cloud (VPC).

Self-Managed Nodes

Nodes are organized into node groups. Every EC2 instance in a node group must
have the same Amazon instance type, Amazon Machine Image (AMI) and IAM
role. An AMI is a supported and maintained image that provides the information
required to launch a given instance. The user can have different node groups in a
cluster, each one representing a different type of instance or instances with different
role.

Managed Node Groups

Amazon EKS provides managed node groups with automated lifecycle management.
This allows the user to create, update or shut down nodes with only one operation.
When the user terminates nodes, EKS drains them to make sure there is no
interruption of service.
Managed nodes are operate using EC2 Auto Scaling groups, that are managed
by the Amazon EKS service. The user can define in which availability zones the
groups should run on.

3.5.2 Features and benefits
A developer that works with EKS will provide the worker nodes and link them
to the Amazon EKS endpoints. AWS handles all the management tasks for the
Kubernetes control plane such as patches, updates and security configurations. The
user must create an IAM role, a VPC and a security group for its cluster. The cus-
tomer should create different VPCs per cluster in order to increase network isolation.

Kubernetes uses pods, or group of containers, to orchestrate and scale servers.
Amazon EKS automatically replicates master schedulers across three availability
zones in each AWS region to ensure higher availability. It also checks for unhealthy
control plane instances and automatically replaces them, restarting them across
the zones within the AWS Region as needed.
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EKS provides a series of features that focus on several operational areas such
as:

• Cluster management: EKS provides a managed control plane and node
groups, a hosted Kubernetes console, AWS service integrations and support
for a large library of Kubernetes add-ons.

• Network management: it controls networking and security through support
for IPv6, service discovery, IAM authentication and compliance with a series
of regulatory requirements.

• Load balancing: EKS supports load balancing via the Application Load
Balancer, Network Load Balancer and Classic Load Balancer.

• Serverless computing: it allows serverless computing using AWS Fargate,
a service that can be integrated with Amazon ECS to run containers without
having to manage clusters of Amazon EC2 instances or servers.

• Logging: EKS uses AWS CloudTrail and Amazon CloudWatch for logging
and analysis of its environment. The former helps the users enable operational
and risk auditing, governance, and compliance of their AWS account, while
the latter is a metrics repository.

• Updating: EKS supports easy updates, allowing to rapidly update to the
latest Kubernetes version without significant disruption to existing clusters
or applications. Users can select the desired Kubernetes version through the
CLI, SDK or AWS Console.

• Eksctl: the eksctl CLI automates the creation and control of EKS clusters,
and other individual tasks.

Amazon EKS also joins different Kubernetes-based container services available
on the market, including Google Kubernetes Engine, Microsoft Azure Kubernetes
Engine and RedHat OpenShift. Scripts, plugins and cluster configurations can
be easily moved among these platforms since they rely on the same orchestration
layer.

3.6 AWS RoboMaker
Developer teams design code to cover a wide range of deployments situations, inte-
grate the code and test the application on robotics hardware in real life scenarios.
This manual approach wastes a lot of time, it necessitates expensive technology and
it slows program update. To overcome these problems, AWS launched RoboMaker
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back in 2020.

AWS RoboMaker is a cloud-based simulation service that makes it easy to develop,
test and simulate robotics application at scale without managing any infrastructure.
By means of this service, users can cost-effectively scale and automate simulation
workloads, run large-scale and parallel simulations with a single API call and
create 3D virtual environments. It is capable of automated testing within a CI/CD
pipeline, training reinforcement models and connecting multiple synchronous simu-
lations to the fleet management software for testing.
AWS RoboMaker also extends ROS, described in Appenidx A, with connectivity
to different cloud services like Amazon Kinesis Video, a service designed to process
large-scale data streams from different services in real-time, and Amazon Lex,
that builds conversational interfaces for applications using voice and text. The
integration of RoboMaker with machine learning, monitoring and analytics services
enables the robot to stream data, communicate and navigate. It comes up with a
development environment for application development and a simulation service for
application testing.

3.6.1 Features
AWS RoboMaker comes up with the following features:

• Development: RoboMaker provides a customized environment in AWS
Cloud9 for robotics development, configured with ROS/ROS2 and integrated
with other capabilities. The user can manage build configurations, create
simulation jobs and interact with running simulation via graphical tools. The
provided CLI supports the Gazebo simulator, rviz, the visualization engine
for ROS, and rqt, a QT-based framework for ROS Graphical User Interfaces
(GUIs).

• Creating 3D world with Simulation WorldForge: Simulation World-
Forge automatically creates hundreds of pre-defined and randomized simulation
worlds, that implements real-world conditions without managing world gener-
ation infrastructure.

• Simulation: a fully managed service that allows the user to run simulation
jobs without provisioning or managing any infrastructure. RoboMaker sup-
ports large-scale and parallel simulations, and it automatically scales them
depending on the complexity of the tested scenario. The simulation can be
used to run the robot software and simulator choice such as ROS, Gazebo,
Unreal and Unity.
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Figure 3.6: AWS RoboMaker features

AWS RoboMaker can also be integrated with Amazon CloudWatch and Amazon
Simple Storage Service (S3) for job monitoring and logging of simulation data.

3.7 AWS Lambda
AWS Lambda is an event-driven computing cloud service that allows users to
program functions on a pay-per-use basis. Developers are not required to provision
storage or compute resources to support their functions. This model is also referred
to as Function as a Service (FaaS). Lambda runs the users’ code on a high-availability
compute infrastructure and performs the resources administration, including server
and OS system maintenance, capacity provisioning, automatic scaling and logging.
Users can list, delete, update and monitor functions via the dashboard, CLI or
SDK. AWS Lambda also performs infrastructure-focused activities, such as servers
and OS maintenance, patch deployment and logging through AWS CloudWatch. It
also supports third-party logging APIs and developers can connect custom APIs
endpoint to Lambda through Amazon API Gateway.

3.7.1 Lambda Functions
Developers organize their code into Lambda functions. This service runs the user’s
function only when needed and scales automatically, from few daily requests to
thousands per second.

A function is a piece of programming that implement a specific task. Devel-
opers use this service to code and run functions in response to specific events in
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other AWS services. Each Lambda function runs inside an isolated computing en-
vironment with its resources and view of the file system. The storage and compute
resources for a given function spin up automatically as a metered service as soon
as that function is called. Through AWS Lambda the user can run code for any
type of application, it takes care of everything required to run and scale the code
with high availability. The developer can set up the code to automatically trigger
from other AWS services or call it directly from a mobile or web app.

Users can use AWS Lambda to:

• process streaming data stored in Amazon Kinesis.

• Build data-processing triggers for AWS services such as Amazon S3 and
Amazon DynamoDB.

• Create their own back-end that operates at AWS scale, performance and
security.

3.7.2 Features
The following features help users to develop scalable, secure and easily extensible
Lambda applications:

Concurrency and scaling controls

Concurrency and scaling controls give the users fine-grained control over the scaling
and responsiveness of their production applications.

Code signing

Code signing provides trust and integrity controls that let user verify that only
unaltered code, approved by developers, is deployed as Lambda function.

Functions defined as container images

Developers can use any container image tooling, workflow and dependencies to
build, test and deploy Lambda functions.

Lambda extensions

Lambda extensions can be used to augment the user’s Lambda functions. An
example can be to use extensions to easily integrate this service with tools for
monitoring, observability, security and governance.
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File systems access

The user can configure a function to mount an Amazon Elastic File System (EFS),
a file storage service for applications and workloads that run in the AWS public
cloud, to a local directory. With this service the code can access and modify shared
resources safely and at high concurrency.

Function blueprints

This feature provides sample code showing how to use Lambda with other AWS
services or third-part applications. Blueprints include sample code and function
configuration presets for Python and Node.js runtime.

Database access

A database proxy manages a pool of database connections and relays queries
from a function. This permits functions to reach high concurrency levels without
exhausting database connections.

Figure 3.7: AWS Lambda architecture

3.7.3 Benefits
One of the main benefits of AWS Lambda is that it manages the servers, allowing
the developers to focus more on writing application code. Because Lambda manages
these resources, the user cannot log in to compute instance or customize the OS on
provided runtimes. It supports code written in different programming languages,
such as Node.js, C, Java and Python. Users can also integrate this service with
compiler tools like Maven or Gradle, and packages to build functions.

34



Amazon Web Services

3.8 Amazon API Gateway

An API Gateway is the middleware that sits between an API endpoint and backend
services, sending client requests to an appropriate service of an application. It
accepts and processes concurrent API call, which take place when APIs submit
requests to a server. An API Gateway can also handle any type of interaction
between the user’s website, web or mobile application, IoT devices and microservices.

Amazon API Gateway is a closed-source SaaS used to create, publish, maintain,
monitor and secure Hypertext Transfer Protocol (HTTP), REST and WebSocket
APIs. It enables developers to connect non-AWS application to AWS back-end
resources. Users can build APIs that access AWS, other web services and data
stored in the AWS Cloud. It supports containerized and serverless workloads, as
well as web applications. This service manages traffic, authorized end users and
monitors performance. Amazon API Gateway can be connected to other AWS
services like AWS Lambda.

By means of few clicks in the AWS Management Console, the user can create an
API, a front door for applications to access data, business logic or functionality
from the user’s back-end services.

Figure 3.8: Amazon API Gateway workflow example
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3.8.1 Features
When creating an API, the user must define its name, an HTTP function, the
integration between the API and other services and how requests and transfers are
handled. Through an SDK the developer can integrate with software that calls
the APIs. When the user makes API calls to API Gateway, the service triggers a
Lambda function, which sends back the response to Amazon API Gateway.
This service accepts all payload sent over HTTP and users can monitor API calls
through a dashboard. They can also retrieve errors, access and debug logs from
Amazon CloudWatch.
This service handles API call traffic in two main ways:

• Throttling: limits the number of API call per day or per hour. It helps
maintain the performance of calling applications during unexpected spike in
calls, which can happen when many users use an application at the same time.

• Caching: different API calls use the same information and return the same
result. Caching provides common API responses, rather than performing all
the process required to produce a given result. It also reduces the number of
API calls and improves the performance of calling applications.

Amazon API Gateway support REST and WebSocket APIs.

REST APIs

They communicate with a server via HTTP methods, such as GET, POST, PUT
and DELETE, the same method used to access web pages and create a resource.
With Amazon API Gateway, REST APIs are used for serverless workload and
HTTP back-ends using HTTP APIs. HTTP APIs are the best choice for building
APIs that require only API proxy functionality.

WebSocket API

It enables a full-duplex communication channel, between client and server, over
a single TCP connections. It facilitates client-server communication in real-time
applications. Differently from HTTP APIs, that rely on the client to initiate
communication, this API allows the server to send messages to the client without
any request.

3.8.2 Management components
API management platforms support the API infrastructure and the underlying
data. They incorporate several components in a layered architecture. Other API
management components are:
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• API developer portal: lets users access documentation and other informa-
tion related to an API in one place. It contains resources and tool like SDK
and API keys.

• Reporting and analytics tracks usage metrics, including data such as
requests per second, request volume, latency and throughput.

• API lifecycle management: describes the steps in the development and
maintenance of an API. This process begins with the design of the API and
continues with the development, testing and deployment. It ends with the
retirement of the API.

• API policy manager: controls the policies that define and manage APIs.
The policies go through the same lifecycle as the API. They control API traffic,
security and performance. Management platform often provide policies that
can be implemented without new code or changes to back-end services.

3.8.3 Security and benefits
Amazon API Gateway provides security through access keys to control API access.
This service work with AWS IAM and Amazon Cognito, a service that controls user
authentication and access for mobile applications on internet-connected devices,
to authorize access to APIs. It also supports AWS Signature Version 4 to add
authentication information to AWS API requests sent by HTTP, creating access
keys for every API call. As an alternative security measure, OAuth tokens can also
be passed to running workload.

This service lets developers operate multiple versions of an API simultaneously.
In this way they can build and deploy new APIs while existing applications use
previous versions. It provides the end user with the lowest possible latency for API
requests and responses.
The user does not have to worry about having Autoscaling groups responding to
API requests, since API Gateway scales automatically.

3.9 Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service known for low
latency and its scalability. It makes easy to store and retrieve data, as well as serve
any level of traffic. All data is stored on SSD which provides high I/O performance
and can handle high-scale requests in an efficient manner. Users can interact and
work with this service by means of the AWS dashboard or the DynamoDB API.
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3.9.1 Features

The DynamoDB Triggers feature integrates with AWS Lambda to allow users to
code actions based on updates to items on a DynamoDB table. The developer
associates a Lambda function with the stream on a DynamoDB table, subsequently
AWS Lambda read updates to a table from a stream and executes the function.
DynamoDB provides two consistency options when reading data:

• Eventually consistent: in this case, when the user reads data from a table,
the response might not give back the result of a recently completed write
operation. The response might include some stale data. If the users repeats
the request after a short amount of time, the response should throw back the
latest data.

• Strongly consistent: with this option, DynamoDB returns a response
with the most up-to-date data, returning the updates from all prior write
operations that were successful. However this consistency might not be
available if there is a network delay, and the reads may have higher latency
than eventually consistent reads. Furthermore the strongly consistent reads
use more throughput capacity than eventually consistent ones.

3.9.2 Benefit and security

This service execute replication across three availability zones for high availability,
durability and read consistency. Developers can also go for cross-region replication,
that creates a backup copy of a DynamoDB table in one or more global geographic
locations.

Amazon DynamoDB comes up with Fine-Grained Access Control for an administra-
tor to secure data in a table. The admin or the table owner can specify which users
can access which items and what action that person can perform. This control
feature is based on AWS IAM service.
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Figure 3.9: Amazon DynamoDB features
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Chapter 4

Cloud Robotics Architecture

This chapter contains a description of the developed cloud robotics architecture,
represented in Figure 4.1.

Figure 4.1: Cloud robotics architecture

It is made by three main components: the single-robot application, the multi-
robot management algorithm and a REST API that shows the robots’ status. This
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different sections are connected one another through a non-relational database, the
focal point of the proposed solution.

4.1 Database configuration
The NoSQL database provided by Amazon DynamoDB, depicted in Figure 4.2,
plays a crucial role in this architecture, since it is the bridge between the fleet
management software and the simulated robots. It also stores the devices’ status,
that are displayed in a web page through a REST API.

Figure 4.2: Robot-Status Database
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This choice was done because of its ability to scale horizontally, therefore it can
efficiently handle an increasing number of robots.

In this thesis work the database uses a partition key named Robots of type Number,
to properly distinguish the different devices, and a sort key named Type of type
String, representing the kind of robots, i.e. leader or follower. This distinction was
done since the robots are controlled via a "Leader Follower Approach", described
in section 4.2, that allows the followers to complete their tasks if and only if the
leader is being simulated.

An item was created for each robot, using also the attribute Status of type String.
This last parameter was set to denote the different conditions of the devices:

• connected: that is when the simulation is running,

• disconnected: once the simulation is stopped,

• disconnecting: when the multi robot algorithm updates the database to
stop the followers simulation.

This attribute was set as disconnected by default for every item, and they were
subsequently updated by the simulated robots and the fleet management software.

4.2 Multi robot application

The multi robot algorithm controls the robots using the Leader Follower Ap-
proach. One device, the leader, can complete its task independently of the followers’
status. The followers instead can run the simulation if and only if the leader is
connected.

To implement the control logic, the Kubernetes’ Pod containing this algorithm
constantly performs a query operation on the leader’s status and, in case in which
it reads disconnected, it updates the followers’ status to disconnecting. As a further
security level, these robots constantly read their status and, once it is disconnecting,
update it to disconnected and exit the simulation. The sequence diagram describing
this control logic is depicted in Figure 4.3.
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Figure 4.3: Fleet management sequence diagram

The fleet management software was developed through the following Python
script, using an AWS Cloud9 instance.

#!/usr/bin/env python3

import boto3
from boto3.dynamodb.conditions import Key
import time

while True:

TABLE_NAME = "Robot-Status"

# Creating the DynamoDB Client
dynamodb_client =
boto3.client(’dynamodb’,region_name="eu-central-1",
aws_access_key_id="xxxx",aws_secret_access_key="xxxx")

# Creating the DynamoDB Table Resource
dynamodb=boto3.resource(’dynamodb’,region_name="eu-central-1",
aws_access_key_id="xxxx",aws_secret_access_key="xxxx")
table=dynamodb.Table(TABLE_NAME)

43



Cloud Robotics Architecture

# Use the DynamoDB client get item method to get a single item
response1=dynamodb_client.query(

TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(1)}
}

)
print(response1[’Items’][0][’Status’][’S’])
# Use the DynamoDB client get item method to get a single item
response2=dynamodb_client.query(

TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(2)}
}

)

print(response2[’Items’][0][’Status’][’S’])
# Use the DynamoDB client get item method to get a single item
response3=dynamodb_client.query(

TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(3)}
}

)
print(response3[’Items’][0][’Status’][’S’])

if response1[’Items’][0][’Status’][’S’] == "disconnected" and
response2[’Items’][0][’Status’][’S’] == "connected":

response2 = table.update_item(
Key={

’Robot’: 2,
’Type’:’Follower’
},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "disconnecting"},
ExpressionAttributeNames={"#st":"Status"},
ReturnValues="UPDATED_NEW"

)

if response1[’Items’][0][’Status’][’S’] == "disconnected" and
response3[’Items’][0][’Status’][’S’] == "connected":
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response3 = table.update_item(
Key={

’Robot’: 3,
’Type’:’Follower’
},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "disconnecting"},
ExpressionAttributeNames={"#st":"Status"},
ReturnValues="UPDATED_NEW"

)
time.sleep(0.5)

In this script the AWS access key id and secret access key were overshadowed
for security reasons. They were needed for the containerized image to access the
NoSQL database described in the previous section. The "while True:" condition
instead was added in order to have the multi robot image always running inside a
Kubernetes’ Pod.
This script was then containerized through the following Dockerfile, and uploaded
into an Amazon ECR’s private repository.

FROM python:3
ADD multirobot.py /
RUN pip install boto3
CMD [ "python", "./multirobot.py"]

Subsequently, to ensure high availability and scalability, the created image
was offloaded inside a Kubernetes’ Pod, provided by Amazon EKS, through the
following YAML file.

apiVersion: apps/v1
kind: Deployment
metadata:

name: multirobotapp
namespace: multi-robotic-application
labels:

app: aws-ecr
spec:

replicas: 3
selector:

matchLabels:
app: aws-ecr

template:

45



Cloud Robotics Architecture

metadata:
labels:

app: aws-ecr
spec:

affinity:
nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

- key: kubernetes.io/arch
operator: In
values:
- amd64
- arm64

containers:
- name: aws-ecr

image:
060472927758.dkr.ecr.eu-central-1.amazonaws.com/robomaker-helloworld-

robot-app:latest
ports:
- name: http

containerPort: 80
imagePullPolicy: IfNotPresent

nodeSelector:
kubernetes.io/os: linux

)

A service was also created, through the following YAML file, to access all replicas
through the same IP address or name.

apiVersion: v1
kind: Service
metadata:

name: multirobotservice
namespace: multi-robotic-application
labels:

app: aws-ecr
spec:

selector:
app: aws-ecr

ports:
- protocol: TCP

port: 80
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targetPort: 80

The EKS Kubernetes cluster, and its resources, cannot access the DynamoDB
table by default. Therefore the following permission was added to the node group
containing the fleet manager software.

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [

"dynamodb:Query",
"dynamodb:UpdateItem"

],
"Resource": "arn:aws:dynamodb:*:060472927758:table/*"

}
]

}

4.3 Single robot application
The robots used for the simulation were the TurtleBot3 Waffle Pi, depicted in
Figure 4.4. This device is a small, affordable, ROS-based mobile robot used in
education, research and product prototyping. Its goal is to reduce the size of the
platform and lower the price without affecting its functionality and quality.

The robots were developed and simulated through different AWS RoboMaker
instances, a service that provides an IDE integrated with ROS and the Gazebo
simulator.

Since June the 27th however, AWS ended the support for the AWS RoboMaker
development environment feature. Hence the remaining instances, used to develop
and simulate the followers, were manually set up following the steps suggested
in [9]. A relevant aspect to emphasize is that, if the user is creating an in-
stance in a region different from us-east-1, the ImageID of the document SSM for
ROS Melodic has to be changed. To overcome the former problem the ImageID
ami-0f3f0cd0c5fc276ae, retrieved from [10] by setting eu-central-1 as region and
18.04LTS as Ubuntu version, was used.
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For this thesis work, Melodic was chosen as ROS distribution, while the Gazebo9
simulator was used to interact with the simulations.

Figure 4.4: TurtleBot3 Waffle Pi, source [11]

The single robot algorithm is made by a ROS node that makes the robot rotate
around the vertical axis, the blue one depicted in Figure 4.4, with a constant angular
velocity. Once the algorithm is launched, the robot also updates its respective
status to connected using the UpdateItem API of boto3, the SDK of Amazon
DynamoDB. The stopper function instead makes the robot update back its status
to disconnected once the simulation is stopped.

The Python script used to simulate the leader is the following.

#!/usr/bin/env python

from geometry_msgs.msg import Twist
import rospy
import boto3
from boto3.dynamodb.conditions import Key
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import signal
import time

TABLE_NAME = "Robot-Status"

class Rotator():

# Creating the DynamoDB Table Resource
dynamodb=boto3.resource(’dynamodb’, region_name="eu-central-1")
table=dynamodb.Table(TABLE_NAME)

def __init__(self):
self._cmd_pub = rospy.Publisher(’/cmd_vel’, Twist, queue_size=1)

# Use the DynamoDB client update the status of Robot 1
response=self.table.update_item(

Key={
’Robot’: 1,
’Type’:’Leader’

},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "connected"},
ExpressionAttributeNames={"#st": "Status"},
ReturnValues="UPDATED_NEW"

)

def rotate_forever(self):
self.twist = Twist()

r = rospy.Rate(10)
while not rospy.is_shutdown():

self.twist.angular.z = 0.1
self._cmd_pub.publish(self.twist)
rospy.loginfo(’Rotating robot: %s’, self.twist)
r.sleep()

def stopper(self):
response=self.table.update_item(
Key={

’Robot’: 1,
’Type’:’Leader’

},
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UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "disconnected"},
ExpressionAttributeNames={"#st": "Status"},
ReturnValues="UPDATED_NEW"

)
self.twist = Twist()

r = rospy.Rate(10)
while not rospy.is_shutdown():

self.twist.angular.z = 0
self._cmd_pub.publish(self.twist)
rospy.loginfo(’Rotating robot: %s’, self.twist)
r.sleep()

def main():
rospy.init_node(’rotate’)

def handler(*args):
rotator.stopper()
exit(1)

try:
rotator = Rotator()
signal.signal(signal.SIGINT, handler)
rotator.rotate_forever()

except rospy.ROSInterruptException:
pass

if __name__ == ’__main__’:
main()

The previous code properly implements the leader robot, since it completes its
task independently from the other devices. However it is not sufficient to develop
the followers, since it does not handle the multi robot algorithm.

Therefore the following script was used to design the second robot. For the
remaining follower, the same script has been adopted, with the only difference that
the Query and UpdateItem API refer to the third one.

#!/usr/bin/env python
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from geometry_msgs.msg import Twist
import rospy
import boto3
from boto3.dynamodb.conditions import Key
import signal
import time
import threading

TABLE_NAME = "Robot-Status"

class Rotator():

# Creating the DynamoDB Client
dynamodb_client = boto3.client(’dynamodb’,
region_name="eu-central-1")

# Creating the DynamoDB Table Resource
dynamodb=boto3.resource(’dynamodb’, region_name="eu-central-1")
table=dynamodb.Table(TABLE_NAME)

def disconnecter(self):
while True:

response=self.dynamodb_client.query(
TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={

’:Robot’: {’N’: str(2)}}
)
time.sleep(1.5)

if response[’Items’][0][’Status’][’S’]==’disconnecting’:
response=self.table.update_item(

Key={
’Robot’: 2,
’Type’:’Follower’

},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" :

"disconnected"},
ExpressionAttributeNames={"#st": "Status"},
ReturnValues="UPDATED_NEW"

)
self.twist = Twist()
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r = rospy.Rate(10)
while not rospy.is_shutdown():

self.twist.angular.z = 0
self._cmd_pub.publish(self.twist)
rospy.loginfo(’Rotating robot: %s’, self.twist)
r.sleep()

exit(1)
time.sleep(2)

def __init__(self):
self._cmd_pub = rospy.Publisher(’/cmd_vel’, Twist, queue_size=1)

# Use the DynamoDB client update the status of Robot 1
response=self.table.update_item(

Key={
’Robot’: 2,
’Type’:’Follower’

},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "connected"},
ExpressionAttributeNames={"#st": "Status"},
ReturnValues="UPDATED_NEW"

)
thread=threading.Thread(target=self.disconnecter, args=())
thread.start()

def rotate_forever(self):
self.twist = Twist()
r = rospy.Rate(10)

while True:
response=self.dynamodb_client.query(

TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,

ExpressionAttributeValues={
’:Robot’: {’N’: str(2)}}

)
if response[’Items’][0][’Status’][’S’]==’connected’:

self.twist.angular.z = 0.1
self._cmd_pub.publish(self.twist)
rospy.loginfo(’Rotating robot: %s’, self.twist)
r.sleep()

time.sleep(2)
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def stopper(self):
response=self.table.update_item(
Key={

’Robot’: 2,
’Type’:’Follower’

},
UpdateExpression = "set #st = :s",
ExpressionAttributeValues={":s" : "disconnected"},
ExpressionAttributeNames={"#st": "Status"},
ReturnValues="UPDATED_NEW"

)
self.twist = Twist()

r = rospy.Rate(10)
while not rospy.is_shutdown():

self.twist.angular.z = 0
self._cmd_pub.publish(self.twist)
rospy.loginfo(’Rotating robot: %s’, self.twist)
r.sleep()

def main():
rospy.init_node(’rotate’)

def handler(*args):
rotator.stopper()
exit(1)

try:
rotator = Rotator()
signal.signal(signal.SIGINT, handler)
rotator.rotate_forever()

except rospy.ROSInterruptException:
pass

if __name__ == ’__main__’:
main()

These robots were simulated in an empty world. A simulation output is reported
in Figure 4.5.
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Figure 4.5: Simulation output

4.4 REST API
The web page displaying the robots’ status was created through the integration
of AWS Lambda and Amazon API Gateway. Once the REST API was created
using the latter service, a Resource with the GET Method was added to it. This
allowed the API to invoke the desired Lambda function, reported below.

import json
import boto3

54



Cloud Robotics Architecture

TABLE_NAME = ’Robot-Status’

# Creating the DynamoDB Client
dynamodb_client = boto3.client(’dynamodb’, region_name="eu-central-1")

def lambda_handler(event, context):
response1 = dynamodb_client.query(

TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(1)}
}

)

response2 = dynamodb_client.query(
TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(2)}
}

)

response3 = dynamodb_client.query(
TableName=TABLE_NAME,
KeyConditionExpression=’Robot = :Robot’,
ExpressionAttributeValues={
’:Robot’: {’N’: str(3)}
}

)
string = f"Robot 1 status is
{response1[’Items’][0][’Status’][’S’]}\nRobot 2 status is
{response2[’Items’][0][’Status’][’S’]}\nRobot 3 status is
{response3[’Items’][0][’Status’][’S’]}"
return{

’statusCode’: 200,
’body’: string

}

This code connects to the DynamoDB table Robot-Status, and retrieves the
different status through the GetItem API of boto3. The output is then displayed
into a web page, as depicted in Figure 4.6.
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Figure 4.6: Default REST API
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Chapter 5

Results

The proposed architecture has been validated through different tests:

• Single robot simulation: in which the robots were simulated one at a time.

• Leader-Followers simulation: during the which the leader was simulated
together with the followers.

These trials have been done to properly evaluate the correct implementation of
the fleet manager algorithm, and to check if the robots correctly update their own
status.

Single robot simulation

The aim of this test was to verify that the followers could perform the rotation, and
update their status to connected, if and only if the leader was being simulated, which
instead can complete its tasks independently of the other devices. As expected,
when the robot 1 was launched, it updated its status and began rotating, as depicted
in Figure 5.1.
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Figure 5.1: Leader simulation output

Once the leader simulation was stopped and a follower was launched, instead,
it has been verified that this device did not perform the rotation. Therefore its
status was update first to connected by the robot, then to disconnecting from the
multi robot application, as reported in Figure 5.2 for the robot 2, and then to
disconnected from the robot itself, reaching the default configuration depicted in
Figure 4.6.
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Figure 5.2: Single follower simulation output

Leader-Followers simulation

The goal of this simulation was to evaluate the last feature of the fleet manager
algorithm, which forces the followers to stop once the leader is stopped. First of all
the robots were simulated, and their status have been updated and displayed in a
web page, as reported in Figure 5.3.
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Figure 5.3: Leader Followers simulation

Afterwards the leader simulation was interrupted, and it was verified that the
followers automatically stopped their simulation. The multi robot application
updated their status to disconnecting, as reported in Figure 5.4, and the followers
updated again their status to disconnected, reaching the default configuration.
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Figure 5.4: Leader disconnection
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Chapter 6

Discussion and future
developments

6.1 AWS Cloud architecture for physical robots

The cloud architecture presented in the previous chapter was designed to manage
a fleet of simulated robots. Therefore, after the testing phase, the developed
algorithms can be applied to physical devices. The schema depicted in Figure 6.1
represents an AWS cloud architecture to manage a fleet of real robots.

The main differences from the previous scheme regard the single robot application
and the development of a dashboard for the end-user.

6.1.1 Single robot application

The single robot application can be developed using only one AWS RoboMaker
instance per robot type, i.e. leader and follower. The robotic application can then
be deployed to the physical devices using AWS IoT Greengrass 2.0. This service
comprises two shared resources, named Components and Developments, to
respectively import the application the user wants to deploy and register the core
devices. The application can be defined through a recipe, that is a YAML or JSON
file describing the component’s details, dependencies, compatibility, and lifecycle.
The physical robots instead can be registered to this service individually or as a
group, and the developer can choose which component will be deployed to which
deployment.
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6.1.2 End-user Dashboard

Instead of setting up a REST API, as proposed in chapter 4, via AWS Lambda
and Amazon API Gateway, AWS IoT Greengrass 2.0 can be easily integrated with
AWS IoT Device Management. This service provides a dashboard through
which the user can visualize the status of each deployment. It allows also to filter
them on the basis of different parameters, such as the battery percentage and
location. The developer can also select a trigger that activates to some user-defined
conditions and IoT Device Management can automatically alert users via email
once the specified conditions are not met.

Figure 6.1: Cloud robotics architecture for physical devices
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6.2 eProsima Fast DDS

In this thesis work the multi robot algorithm, that was deployed in a Kubernetes’
Pod, was implemented through a Python script, and a NoSQL database acted as
the bridge between this application and the simulated devices. However, for more
complicated tasks, it may be necessary to carry out the fleet management software
using ROS or ROS2 and to set a direct communication between the robots and the
Kubernetes’ Pod, through a Digital Data Service (DDS). Therefore a study has
been made on the use of eProsima Fast DDS to connect ROS2 nodes deployed
on a physical robot and others deployed in a Pod.

ROS2 was preferred to ROS because it is easier to containerize and because
of its masterless nature. This last property helps the user since it is not required
to deal with multi master communication problem.

eProsima Fast DDS is a free and open source middleware implementation providing
both the Object Management Group (OMG) DDS 1.4 and the OMG Real-Time
Publish-Subscribe (RTPS) 2.2 wire-protocol standards. This framework generates
the Publisher/Subscriber code from the topic definition through an Interface Defi-
nition Language, allowing users to focus on the application development without
minding about the networking.

In this example, depicted in Figure 6.2, a Kubernetes network and a local en-
vironment are set up to enable communication between a pair of ROS2 nodes,
one sending messages from a Local Area Network (LAN) (talker) while the other
(listener) receiving them in the cloud.

Figure 6.2: Robot - Kubernetes communication
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6.2.1 Local setup
The local instance of the DDS router only requires the following two components:

• Simple Participant: which discovers all Participants deployed in its own local
network in the same domain via multicast communication. It communicates
with the ones that share publication or subscription topics.

• WAN Participant: which communicates with other Wide Area Network
(WAN) Participants in different networks. This Participant acts as a bridge
for every Participant working locally in the LAN and any other LAN having
DDS with an active WAN Participant.

These two components acknowledge each other’s existence through a Simple DDS
discovery mechanism. The Simple Participant receives messages published by the
ROS2 talker node and it forwards them to the WAN Participant.
Subsequently these messages are sent to another Participant in a Kubernetes’ Pod
to which it connects via WAN communication over UDP/IP.

6.2.2 Kubernetes setup
The cloud instance of the DDS Router consists on the following two Participants:

• WAN Participant: that receives the messages coming from the LAN via
the UDP communication channel.

• Local Discovery Server: which forwards these messages to the ROS2 listener
node, hosted in a third Pod.

In this instance the Local Discovery Server was preferred with respect to the Simple
Participant because of the difficulty on enabling multicast communication in cloud
environments.
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Chapter 7

Conclusion

Cloud robotics is an emergent field of robotics that uses cloud technologies to
improve robotic system’s functionalities. Once connected to the cloud, these de-
vices can take advantage of the powerful computation, storage, and communication
resources offered by cloud computing. However not everything can be offloaded to
the cloud because of latency constraints and to ensure local autonomy.

This thesis work provides an implementation of a cloud architecture to man-
age a fleet of simulated mobile robots, through different services provided by AWS.
The robots were simulated with different AWS RoboMaker instances. The com-
munication with the multi robotic application, stored in an Amazon EKS’ Pod,
was being possible through a NoSQL database provided by Amazon DynamoDB.
Lastly it was demonstrated how to create and expose a REST API using AWS
Lambda and Amazon API Gateway.

In order to validate the proposed solutions, two different types of test have been
performed: the Single robot simulation, in which the robots were simulated one at a
time; and the Leader-Followers one, where all the devices were tested simultaneously.
These simulations have verified all the features of the multi robotic application.
The former confirmed that the leader can perform its task independently of the
followers, which instead cannot be simulated. The latter, instead, verified that the
followers automatically stop their task once the leader simulation is stopped. Given
the flexibility and high availability of the used technologies, the proposed solution
can be applied also to an increasing number of devices and more sophisticated
algorithms.

As further analysis, a cloud architecture was proposed also in case of availability of
physical devices. Furthermore eProsima Fast DDS was described as a link between
ROS2 nodes stored in a robot with others inside a Kubernetes’ Pod.
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Appendix A

Tools

A.1 ROS
ROS is an open-source, meta operating system to develop robotics software. It
delivers services the user would expect from an OS like hardware abstraction,
low-level device control and package management. ROS also comes up with tools
and libraries to obtain, build, write and run code across different computers.
It is a middleware, responsible for handling the communication between programs
in a distributed system, with a publisher-subscriber approach. The software codes
are separated into packages, called nodes, which communicate with one other using
one of the following tools:

• Topics: used for sending and receiving data streams between nodes. Every
node declares in which topic publish its message and/or to which topic subscribe
to.

• Services: useful to create a synchronous client/server communication between
nodes. It is used to change settings in a robot or ask for a specific action.

• Actions: based on topics, they provide the developer with an asynchronous
client/server architecture, where the client can send a request that takes a
long time. The client can asynchronously monitor the state of the server, and
cancel the request anytime.

Robotics code in ROS can be developed in many different languages like C++,
Python, JavaScript, MATLAB and many others. A peculiarity of this tools is that
ROS is language agnostic, meaning that the application can have nodes written
in different programming languages, since the communication layer is below the
language layer.
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