
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

A Neural Network Application For
Impedance-based Plant Monitoring:

From A Development Framework
Towards Edge Computing

Supervisors

Prof. Maurizio MARTINA

Prof. Danilo DEMARCHI

Ph.D. Umberto GARLANDO

Candidate

Federico CUM

October 2022

Summary

During the 21st century, the world is experiencing the most evident effects of climate
change, such as desertification, rising temperatures, higher frequency of extreme
meteorological events, rising sea levels, and lack of potable water. The world
population is constantly growing and is expected to reach almost 10 billion people
by 2050. In this scenario, agriculture is severely challenged due to the increasing
demand for food and the worsening of environmental conditions: new techniques
are needed to improve the yield of plantations by saving as many valuable resources,
such as water and energy, as possible. The field of smart agriculture is working in
this direction, and it is developing technologies that can make farming more efficient
and autonomous. This thesis work aims to find suitable neural network topologies
to predict a plant’s status. Many techniques in the scientific literature employ
machine learning on images to detect diseases or sufferance of the plants; in this
work, the focus will be on using data from stem impedance sensors to accomplish
this task. MINES researchers at Politecnico di Torino in collaboration with the
University of Tel Aviv, have put great effort into the development of sensors that
measure plants’ stem impedance and also in understanding how this parameter
is related to the life cycle and health of the plant [1] [2] [3] [4]. In this thesis,
neural networks employing as features the environmental and stem impedance
data are explored to predict the health status of a plant. When developing a
machine learning model, the parameters to tune to make it work effectively are
many, so many simulations must be performed. A Python framework for plant
status classification was developed to ease this research process and compare many
neural network structures. Since the final goal is to have an algorithm running on
a microcontroller, the research was focused on networks with a limited complexity:
one or two hidden layers with maximum 20 neurons per hidden layer. The dataset
was composed of four plants, two considered healthy and two unhealthy. First,
samples from all four plants were used to train the networks, and accuracy tests
were performed on future data of the same plants for both one and two hidden
layers networks.

ii

1 hidden layer model 2 hidden layers model
Network flash usage 448 B 1.97 KiB
Library flash usage 11.16 KiB 11.86 KiB

Total flash usage 11.59 KiB 13.86 KiB
Network RAM usage 72 B 136
Library RAM usage 1.38 KiB 1.88 KiB

Total RAM usage 1.45 KiB 2.01 KiB
Complexity 122 MACC 538 MACC

Inference time 0.016 ms 0.043 ms
CPU Cycles 2872 7798

Cycles/MACC 23.55 14.50
Accuracy 73.77 % 73.68%

The performance reached by the analyzed neural networks suggests that using
impedance and environmental data to predict plants’ status is possible. However,
it is necessary to increase the prediction accuracy to obtain a reliable system to be,
in the future, deployed on the field. One option for future improvements could be
to extend the dataset to more than four plants; in this way, the networks can learn
from a broader set of examples and, hopefully, improve the classification capability
on completely unseen plants.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1
1.1 Thesis structure . 1

2 Machine Learning Basics 2
2.1 Types of learning algorithms . 3
2.2 Classification vs Regression . 5
2.3 Linear regression . 6
2.4 Logistic Regression . 9
2.5 Neural Networks . 13

2.5.1 Examples . 16
2.5.2 Backpropagation algorithm 19
2.5.3 Activation functions overview 22

2.6 Machine Learning Additional Information 26
2.6.1 Normalization . 26
2.6.2 Overfitting and Underfitting 26
2.6.3 Train-Test split . 27

3 Neural Network Training Framework 28
3.1 Introduction . 28
3.2 Framework starting point . 29

3.2.1 Directory tree . 30
3.2.2 Dataset structure and management 31
3.2.3 Single neural network training 35
3.2.4 Multiple neural networks training 41
3.2.5 Dispatcher and setting files 45

vi

3.2.6 Dispatcher usage . 46
3.3 Framework modifications . 48

3.3.1 Dataset manipulation . 48
3.3.2 Single neural networks training - Modifications 49
3.3.3 Multiple neural network training - Modifications 59

3.4 Converting PyTorch model to ONNX 60

4 Framework Simulations 62
4.1 Training on four plants . 62

4.1.1 One hidden layer networks 63
4.1.2 Two hidden layers networks 72

4.2 Training on two plants, test on the others 84
4.2.1 One hidden layer networks 84
4.2.2 Two hidden layers networks 87

4.3 Conclusions from the analysis . 96

5 Toward Microcontroller Implementation 98

6 Conclusion and Future Perspective 109

7 Appendix 112
Appendix A: How to setup the framework using Anaconda 112
Appendix B: Available Pytorch activation functions 114
Appendix C: Available Pytorch loss functions 115
Appendix D: Available Pytorch optimizers 116

Bibliography 117

vii

List of Tables

3.1 Time window example: n_samples = 5, n_overlap=2 35
3.2 Time window example: n_samples = 5, n_overlap=3 35
3.3 Setting class variables . 39
3.4 Dataset setting variables . 40

4.1 Simulation parameters . 63
4.2 Simulation parameters - Only impedance 66
4.3 Simulation parameters - Impedance and soil moisture 68
4.4 Simulation parameters . 72

5.1 1 hidden layer model vs 2 hidden layers model 108

7.1 Available Pytorch activation functions 114
7.2 Available Pytorch loss functions . 115
7.3 Available Pytorch optimizers . 116

viii

List of Figures

2.1 Approximations of housing prices 4
2.2 Unsupervised learning example: clustering 5
2.3 Right: Loss surface. Left: Contour Map. Courtesy [8] 7
2.4 Logistic function . 10
2.5 Decision boundary . 11
2.6 Logistic regression cost function: on the left y=1 case, on the right

y=0 case . 12
2.7 Human neuron simplified structure 13
2.8 Artificial neuron model . 14
2.9 Example of neural network . 15
2.10 Example of neural network . 16
2.11 Neural network for AND logic function 17
2.12 Neural network for OR logic function 17
2.13 Neural network for NOT logic function 18
2.14 XNOR function neural network . 19
2.15 A simple feedforward neural network 20
2.16 Linear activation function . 22
2.17 Hyperbolic tangent activation function 23
2.18 Derivatives of logistic and tanh functions 24
2.19 ReLU activation function . 25
2.20 Leaky ReLU activation function with a=0.01 26

3.1 Directory tree of the framework . 31
3.2 Features windows . 34
3.3 statusTrain() flowchart . 41
3.4 statusFinder() workflow . 45
3.5 Modified statusTrain() workflow . 50
3.6 Confusion matrix . 51
3.7 Example confusion matrix . 52
3.8 statusTrain() workflow modified . 54
3.9 Modified statusFinder() workflow 60

ix

4.1 Accuracy vs number of neurons . 64
4.2 Matthews correlation coefficient vs number of neurons 64
4.3 F1 Score vs number of neurons . 64
4.4 Test results on future data . 65
4.5 Accuracy vs number of neurons - Impedance only 66
4.6 Future data results - Impedance only 67
4.7 Future data results - Impedance only plant by plant 68
4.8 Accuracy vs number of neurons Impedance and soil moisture 69
4.9 Accuracy vs number of neurons - Future data 69
4.10 Accuracy vs number of neurons - Samples in the past 70
4.11 Accuracy vs number of neurons - Samples in the past - Test on

future data . 71
4.12 Two layers networks - Accuracy . 73
4.13 Two layers networks - Accuracy on future data 73
4.14 Two layers networks - Accuracy on future data plant by plant . . . 74
4.15 Two layers networks - Only impedance implementation 75
4.16 Two layers networks - Only impedance implementation - Future

predictions . 76
4.17 Two layers networks - Only impedance implementation - Future

predictions plant by plant . 76
4.18 Two layers networks - Impedance and moisture 77
4.19 Two layers networks - Impedance and moisture - Future predictions 78
4.20 Two layers networks - Impedance and moisture - Future predictions

plant by plant . 78
4.21 Two layers networks - 6 samples in the past 79
4.22 Two layers networks - 6 samples in the past - Future predictions . . 80
4.23 Two layers networks - 12 samples in the past 80
4.24 Two layers networks - 12 samples in the past - Future data 81
4.25 Two layers networks - 18 samples in the past 81
4.26 Two layers networks - 18 samples in the past - Future data 82
4.27 Two layers networks - 24 samples in the past 82
4.28 Two layers networks - 24 samples in the past - Future data 83
4.29 Two plants training: one layer networks 84
4.30 Two plants training - Impedance only 85
4.31 Two plants training - One layer networks - Impedance and moisture 86
4.32 One layer networks - Samples in the past - Test on 1-2 87
4.33 One layer networks - Samples in the past - Test on 3-4 87
4.34 All features employed - Test on plants 1 and 2 88
4.35 All features employed - Test on plants 3 and 4 89
4.36 Only impedance - Test on plants 1 and 2 89
4.37 Only impedance - Test on plants 3 and 4 90

x

4.38 Impedance and moisture - Plants 1 and 2 91
4.39 Impedance and moisture - Plants 3 and 4 91
4.40 6 samples in the past - Test on plants 1 and 2 92
4.41 6 samples in the past - Test on plants 3 and 4 93
4.42 12 samples in the past - Test on plants 1 and 2 93
4.43 12 samples in the past - Test on plants 3 and 4 94
4.44 18 samples in the past - Test on plants 1 and 2 94
4.45 18 samples in the past - Test on plants 3 and 4 95
4.46 24 samples in the past - Test on plants 1 and 2 95
4.47 24 samples in the past - Test on plants 3 and 4 96

5.1 X-Cube-AI core from user manual [28] 99
5.2 Initial screen of the STM32 project 100
5.3 Activation of X-Cube-AI . 100
5.4 Loading model screen . 101
5.5 Loading model files . 102
5.6 Validation on desktop workflow [28] 102
5.7 Validation on target workflow [28] 103

xi

Acronyms

MiNES
Micro & Nano Electronic Systems

ML
Machine Learning

NN
Neural Network

AI
Artificial Intelligence

SVM
Support Vector Machine

SGD
Stochastic Gradient Descent

ONNX
Open Neural Network eXchange

CSV
Comma Separated Values

RMSE
Root Mean Square Error

MCC
Matthews Correlation Coefficient

xiii

CEL
Cross Entropy Loss

xiv

Chapter 1

Introduction

1.1 Thesis structure
This thesis will follow the workflow adopted in this project and will be divided in
three main parts:

• Development of a machine learning framework to easily train different neural
network topologies

• Analyze and determine which topology performs better for the problem

• Find a proper toolchain for a microcontroller implementation of the algorithm

Since many simulations have to be done in order to understand if, and with which
topologies, neural networks can be used to effectively predict health status of the
plants there was the necessity to easily train a great number of neural networks in
an automatic way. So, it was decided to develop a machine learning framework to
ease this process. To do this Python was employed in particular the ML library
PyTorch [5]. The Python framework just mentioned was initially developed by a
previous student in his master thesis but was able to only perform regression-like
predictions. Since in this study the goal is to classify plants based on their health
there was the need of add this functionality and make the framework able to perform
classification tasks. Considering that the developed piece of software was a valuable
job it was decided to just modify it by adding the needed functionalities. Once
this software had been developed, an instrument to easily train multiple neural
networks was available. So an extensive analysis was performed to understand how
these algorithms can be used in our case study. In the last part of the thesis, a
package from STMicroelectronics, called X-Cube-AI, is used to load and benchmark
on an STM32 microcontroller the previously trained machine learning models.

1

Chapter 2

Machine Learning Basics

Before diving into the details of the project it’s necessary to give a brief introduction
about machine learning, what is it and what are the concepts behind this innovative
technology. Although the terms Artificial Intelligence (AI) and Machine Learning
(ML) are often interchanged they are not the same concept: AI is the broader
concept of having machines that learn in a way similar to the one of humans while
ML is a wing of AI that groups the techniques that enable computers to learn new
skills from data. This technology is becoming more and more popular in these
years, however its theorization is quite old: in 1959 the AI pioneer Arthur Samuel
wrote a program able to learn and improve at the game of checkers by playing
thousands of games; he also gave an informal definition of ML: "Field of study that
gives computers the ability to learn without being explicitly programmed". This
definition sums up well a key characteristic of ML that differentiate it from the
classical programming that is the explicit programming. In classical programming
specific instructions are executed in an IF-THEN structure that is to say that they
are executed only if certain conditions are met. On the other hand when dealing
with ML we have automated process that allows computer to learn a new task
based on past data related to the problem under analysis [6]. In 1998 the American
computer scientist Tom Mitchell gave a more formal definition of machine learning:
"A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on P, as measured by P,
improves with experience E". Considered that the studies about ML are quite
old, why did these techniques take so much time to become popular? Obviously
researches have done big steps but back in the years the bottlenecks of ML were
the availability of memory to store huge amounts of data and the computational
power required by this algorithms to work efficiently. Nowadays memory and
computational power have become more and more cheap and the quantity of data
available is huge. In this evolved scenario machine learning have found the ideal
conditions to be effectively used in modern applications [7].

2

Machine Learning Basics

2.1 Types of learning algorithms
Many ML algorithms exist and each one has its performance depending on the
application. They can be grouped in some macro-categories:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning

Supervised learning

In supervised learning a model is trained by giving it input data and expected
outcomes, this way the model can learn over time by adjusting its predictions. In
this case it is said that the model is fed with a labeled dataset. The performance of
the algorithm is measured by the so called loss function which serves also to adjust
the weights of the algorithm to get more accurate on future predictions. We can
provide a simple example: suppose you want to predict housing prices given their
size in feet square. The dataset will be composed by a single feature, the size of the
house, and by the price of it (the expected prediction outcome). Referring to figure
2.1, one technique can be to find a function which approximate the price, this way
a prediction can be done on new data which are not present in the original dataset
(i.e. forecast new house prices). In the below example two possible approximations
are displayed: linear and quadratic. The process of training a learning algorithm
will consist in finding proper weights to get these approximating functions. In the
case of a linear approach the training process will find the parameters θ1 and θ2
such that price = θ1 · size + θ2 and this price must be as similar as possible to the
actual one. To quantify how much the prediction is similar to the real price and
adjust θ1 and θ2 a mathematical function, the loss function will be used. More
information on how this process works will be given in next sections.

3

Machine Learning Basics

Figure 2.1: Approximations of housing prices

Unsupervised learning

In unsupervised learning data given to the algorithm during the training phase are
not labeled and the machine is let by itself finding patterns, understanding how
these data are correlated or grouping them. Rivedi sta frase perchè mi fa schifo. An
example of unsupervised learning can be cluster algorithms: suppose we have two
features x1 and x2 we would like to find a structure and group similar data together.
In figure 2.2 is possible to observe how a learning algorithm could group data by
their similarity in two clusters. One might think that this separation of the data is
quite evident from the graph but in this simple example we had considered only
two features, with more of them the graph would have been multi-dimensional and
finding correlation would have been impossible by just plotting data and visually
analyzing them.

Semi-supervised learning

In semi-supervised learning, only a small portion of the dataset is labeled, and
a bigger portion is left unlabelled. This approach is employed when labeling the
training examples is complicated or highly time-consuming.

4

Machine Learning Basics

Figure 2.2: Unsupervised learning example: clustering

Reinforcement learning

Reinforcement learning refers to the training of models able to perform a sequence
of decisions. For this task, the algorithm learns by trial and error, and a reward
mechanism drives the learning process: when the algorithm gets closer to the
desired behavior, it gets a reward; on the other hand, it is penalized. Examples of
these models are self-driving cars or applications where a computer has to learn to
play a game.

2.2 Classification vs Regression
In previous sections, we saw a possible predictive model for housing prices; these
types of prediction are called regression problems. In this case, the variable to
be guessed can vary on a specific range in a continuous way. Some examples
of regression problems can be housing price predictions, stock market trends,
predictions of a day temperature given other environmental parameters, and many
others. On the other hand, we refer to classification problems whenever the variable
to be predicted can assume only a discrete set of values. For example, the study
in this thesis work aims to classify plants based on their health status, which can
assume only two values: 1 = healthy, 0 = unhealthy. Another example can be
handwritten digits recognition: there are ten classes which are the possible digits
0-9, and the ML model has to pick the correct one or also object recognition in
which the algorithm may have to discriminate between different objects such as

5

Machine Learning Basics

cars, trucks, bicycle, and others so a number to each class is assigned and these
numbers are the only possible outcomes of the learning algorithm. The following
sections present some basic algorithms and optimization techniques used during
this thesis work to understand better why some design choices were made.

2.3 Linear regression
Linear regression is the simplest example of a regression problem but can be very
useful to analyze to understand many ML basic concepts. Here, some features xi

are given as input, and a prediction ŷ of the actual value y is provided as output.
The prediction ŷ is called hypothesis, and it is obtained as follows:

ŷ = θ0 + θ1 · x1 + θ2 · x2 + ... + θj · xj (2.1)

Where N is the number of the features considered in this example. ŷ can be written
more concisely:

ŷ = hθ(x⃗) =
NØ

j=0
θjxj = θ · X (2.2)

Where

θ = [θ0 θ1 .. θN]

is a row vector if considering only one training example, and similarly

X =

x0
x1
..

xN

is a column vector. Considering that the training will be done on many training

examples and not just one, the previous notation can be extended by having X an
(N x m) matrix:

X =

x

(1)
0 x

(1)
1 .. x

(1)
N

x
(2)
0 x

(2)
1 .. x

(2)
N

..

x
(m)
0 x

(m)
1 .. x

(m)
N

where m is the number of training examples employed and x

(i)
j indicates the jth

feature belonging to the ith sample. The training phase consists of finding the
values of θj parameters so that the estimation ŷ is as similar as possible to the

6

Machine Learning Basics

actual value y. Nevertheless, how is it evaluated how much the hypothesis is close
to the actual value? It is used the so-called loss function (or similarly cost function).
Many of them exist and are suitable for different ML algorithms; in the case of
linear regression, the Mean Squared Error is used:

J(θ0, θ1, .., θN) = 1
2m

mØ
i=1

(ŷ(i) − y)2 (2.3)

Since this is a measure of the distance between the predicted value and the actual
one, the value of J(θ⃗) should be minimized by picking proper θ⃗ values. To solve
this minimization problem, a technique called gradient descent is used. An intuitive
definition of gradient descent is given in [8]: "Gradient descent is an iterative
technique commonly used in machine learning and deep learning to find the best
possible set of parameters/coefficients for a given model, data points, and loss
function, starting from an initial, and usually random, guess". Gradient descent
can be easily visualized by picking just two input features. The loss function
J(θ1, θ2) is a 3D surface:

Figure 2.3: Right: Loss surface. Left: Contour Map. Courtesy [8]

Concerning figure 2.3 the process starts from a random choice of θ1 and θ2 . It
gradually moves towards the minimum point of the loss surface, in which the θ
parameters are optimal, and the loss (the distance between the prediction and the
actual value) is minimized. In figure 2.3 the rightmost picture depicts the loss
surface in a 3D way, while in the left one, a contour map is used, and colors are
employed to highlight the different values for the loss function. Equations can
express this process, and in gradient descent parameters are updated as follows:

7

Machine Learning Basics

θj := θj − η
∂J(θ)
∂θj

(2.4)

It is important to notice that the ":=" sign in the equation indicates an update
operation of the parameters and not the usual equal symbol. Every parameter θj

is updated by a constant parameter η, the learning rate, weighted by the partial
derivative of the loss function with respect to θj, i.e. the steepness of the J(θ)
curve in the J-θj plane. In this process, the point on the surface is moved towards,
hopefully, the absolute minimum of the curve. Equation (2.4) can be applied to a
linear regression case:

θj := θj − η
∂

∂θj

1
2m

mØ
i=1

(ŷ(i) − y)2 = θj − η
∂

∂θj

mØ
i=1

(hθ(x⃗(i)) − y(i))2 (2.5)

Reminding that hθ(x⃗) = qN
j=0 θjxjwe can obtain the final equation for the update

of the parameters for linear regression:

θj := θj − η
1
m

mØ
i=1

(hθ(x⃗(i)) − y(i)) · x
(i)
j (2.6)

From equation (2.6) it can be noticed that an update occurs every m samples,
supposing to have in total M training examples, it is possible to select the value m
and perform gradient descent in three different ways:

• if m = M we are using all the examples in the training set, this technique is
called Batch Gradient Descent

• if m = 1 only one training example is used, and this is called Stochastic
Gradient Descent

• if 1 < m < M we have the so-called Mini-Batch Gradient Descent

But why this distinction? The natural process would be to compute the loss on
all training samples available before performing an update, so to employ batch
gradient descent. Although this process will find a minimum, it may take a long
time to execute, especially in complex problems, so usually, the number of samples
used before performing an update (usually called batch) is reduced to find a good
trade-off between performance and speed. Another critical aspect to consider is the
choice of the learning rate η, which heavily affects the effectiveness of the gradient
descent. Visually, the learning rate represents the size of the ’steps’ on the loss
surface to move towards the minimum. A small η means small steps are taken, a
minimum is reached, but the algorithm will be slow. In addition, more complex
loss functions do not have a "bowl" shape like in figure 2.3, so many local minima

8

Machine Learning Basics

may be present. In that case, having too little learning rate can lead the algorithm
to be stuck in one of the minima that are not optimal. On the other hand, if the
value of η is increased, the execution speed will also increase; however, in this way,
steps taken on the surface will be bigger, and it becomes possible to skip over a
minimum missing it. Also, if the learning rate is set to a huge value, not only could
the optimal point be skipped, but the algorithm might diverge and, instead of
reducing the loss while training, may increase it, leading to poor results. Gradient
descent is only one of the many methods to solve a minimization problem; however,
it is the foundation of many other techniques which aim to solve some criticalities
of gradient descent (local minima, saddle points, plateau). In [9] an overview of
some gradient descent methods and an excellent visualization of their key concepts
is presented.

2.4 Logistic Regression
Logistic regression is a different method for classification problems. In this case,
the output of the machine learning algorithm should be a variable that changes
in a discrete, instead of a continuous, way. Supposing we want to divide objects
into two classes, performing the so-called "binary classification" we would like to
have as output two possible states that can be, for simplicity, 0 or 1. To obtain
such behavior, a function called "logistic (or sigmoid) function" is applied to the
output of a simple linear regression case. In linear regression, the prediction, the
hypothesis hθ(X⃗), was obtained as:

hθ(X) = θ · X (2.7)

Differently, for logistic regression:

hθ(X⃗) = g(θ · X) (2.8)

Where g, is the logistic function, defined as:

g(z) = 1
1 + e−z

(2.9)

By applying g to our hypothesis, we get:

hθ(X) = 1
1 + e−θ·X (2.10)

In figure 2.4 is plotted the graph of the logistic function. It can be noticed how
this function assumes values in the range (0-1); however, to adapt the output to a
binary classification problem, it is necessary to have as possible values only the
limits 0 or 1. A threshold can be set; above it, the predicted class will be 1, and

9

Machine Learning Basics

hθ(X) = g(θ0x0 + θ1x1 + θ2x2) = g(θ0 + θ1x1 + θ2x2) (2.15)
Prediction is equal to 1 if the argument of the logistic function is greater than zero,
0 otherwise.
Predict y=1 if −3 + x1 + x2 ≥ 0 −→ x1 + x2 ≥ 3
Predict y=0 if −3 + x1 + x2 < 0 −→ x1 + x2 < 3
In figure 2.5 is represented the decision boundary just calculated in the more
complex case of multiple training examples. Black circles indicate a prediction
equal to 0, and the red crosses instead equal to 1. The green dashed line represents
the decision boundary identified by the equation x1 +x2 = 3. It can be noticed that
training examples are divided, and above the line, a prediction will be equal to 1;
on the contrary, it will be 0 below the same line. In this simple example, only two
input features were considered, so, it was possible to plot the decision boundary; in
real problems where many features are considered, it is not possible to perform this
analysis due to the difficulty of representing higher dimension functions. Another
essential aspect is that the decision boundary is a property not of the training set
but of the hypothesis and parameters. The learning algorithm will use the training
set to tune its decision boundary to get accurate predictions.

Figure 2.5: Decision boundary

At this point, gradient descent can be again applied to optimize parameters θ;

11

Machine Learning Basics

hand, if y = 1 and the hypothesis is equal to 0, we can notice that the cost drasti-
cally increases. For the y=0 case, the concept is similar, with obvious adjustments.
With this mechanism, it is possible to run gradient descent to tune parameters θ,
so the decision boundary, to get accurate predictions: correct prediction will have
a zero cost while wrong ones will increase the cost. At this point, gradient descent
will optimize θ to get the smaller possible cost. Lastly, we notice that gradient
descent for linear and logistic regression has the same behavior; the only change is
the loss function employed.

2.5 Neural Networks
Neural networks are a set of algorithms that try to mimic the structure and
functioning of neurons in a human brain. The functioning of the neuron is very
complex but can be simplified as follows: the cell receives an electrical input
through the dendrites, which can be thought of as the input wires, and this signal
is elaborated in a certain way inside the cell, then it is re-transmitted to other
neurons through the axon. In figure 2.7 a simplified neuron structure is represented.

Figure 2.7: Human neuron simplified structure

Neural networks are made up of the so-called artificial neurons that mathematically
mimic the above process. Like a human neuron, the artificial one receives some
input signals, which, in this case, are real numbers. The output to be transmitted

13

Machine Learning Basics

• x = input vector, the size is the number of features

• y = output vector, yj = output of neuron j in last layer L

• g(·) is a generic activation function

It is possible to express forward propagation in a vectorized form:

a(1) = x

z(2) = θ(1)a(1)

a(2) = g(z(2))
z(3) = θ(2)a(2)

a(3) = g(z(3))
z(4) = hθ(x) = θ(3)a(3)

At this point, a new quantity is defined: θ(l) is a vector containing the error
associated with neurons of layer l. It is now possible to go backward and evaluate
the error vectors for each layer in the neural network, starting from the output
layer. The following equations are not demonstrated, so to see the mathematical
details it is possible to check [10].

δ(4) = a4 − y

δ(3) = (θ(3))T δ(4) · g
′(z(3))

δ(2) = (θ(2))T δ(3) · g
′(z(2)

(2.23)

Note that the dot symbol "·" distinguishes the element-wise product from the
matrix product. δ(1) is not present because the first layer coincides with the
training dataset. It is also possible to obtain a relationship between the gradients
of the cost function with respect to the network weights and the quantities just
calculated:

∂J(θ)
∂θ

(l)
ij

= a
(l)
j δ

(l+1)
i (2.24)

At this point, the gradients of the cost function for each parameter θ
(
ijl) are known,

and it is possible to perform gradient descent to minimize the cost function. Also
for neural networks, the ideal situation would be to plug into the neural network all
the training set values before performing an update, i.e., to employ batch gradient
descent. However, this may be too computationally expensive, so mini batch and
stochastic gradient descent are more viable choices in most cases.

21

Machine Learning Basics

2.6.3 Train-Test split
The train-test split technique consists in dividing the dataset in two portions, one
for the training and the other for the test. A typical split is to reserve 80% of the
dataset for the training and the remaining 20% to the test. This technique helps
detect overfitting and underfitting: if the model performs poorly on the train and
test portions, it probably suffers from underfitting because it can model neither the
training data nor unseen test data; if, on the other hand, it performs exceptionally
well on the train split but poorly on the test portion, the model may be affected
by overfitting. The ideal situation is when a model performs well on the training
dataset and the unseen data from the test split, highlighting a good generalization
capability.

27

Chapter 3

Neural Network Training
Framework

3.1 Introduction
One of the aims of this thesis work is to find out if neural networks can be efficiently
used to predict the plant’s health status and, if so, which topologies (i.e., how
many layers, how many neurons per layer) are more suitable to accomplish this
task. Moreover, since the objective is to implement the learning algorithm on a
microcontroller which will also be responsible for getting data from plants and
the environment, the focus will be on finding networks able to perform health
status classification without employing too many resources on the platform such as
flash memory and RAM. Besides memory aspects, also the computation time is a
crucial problem because the more time the network spends on the computation,
the more the microcontroller has to run instead of going into standby mode; in
a system that aims to be autonomous and powered by solar panels the time
microcontroller spends in running mode can determine a significant impact on
the energy consumption and on the effectiveness of the system. For these reasons,
accurate neural network research must be done. Since there are no strict rules
in machine learning to be applied to have an effective system but only guidelines
and, considering that there are scarce resources in the literature addressing the
problem of plant classification employing impedance and environmental data, a
trial and error approach is a good choice. Many aspects determine how a neural
network performs, features used, number of hidden layers, number of neurons in
each layer, learning rate, activation functions, cost functions, and many others.
Since designing each neural network and then changing the above parameters can
be time-consuming and good results are not guaranteed, it is helpful to have a
tool to perform this search automatically. For the above reasons, it was chosen to

28

Neural Network Training Framework

implement a framework to train neural networks efficiently. The first version of this
framework was implemented by a previous student of Politecnico di Torino who did
a great job defining the program’s data structures and general workflow. However,
this first version could train neural in a parametric way but was able to perform
only regression tasks. The major add-on implemented during this thesis was the
capability of train neural networks to perform classification, in particular, binary
classification to discriminate between healthy and unhealthy plants. The software
was implemented using the Python[15] programming language, in particular version
3.9. To easily install all required packages and avoid compatibility problems of
different packages already installed on the computer, the software Anaconda[16]
was employed. With its intuitive GUI, Anaconda navigator, this software allows to
easily install the required packages inside a Python virtual environment[17]. The
section "Appendix A" of this document presents a small guide on how to setup
correctly the developed framework using the Anaconda virtual environments.

3.2 Framework starting point
This section presents an overview of the functions already implemented inside the
framework before the beginning of this thesis work. Since many functionalities are
implemented and going into deep details about the code is beyond the scope of
this work, a general overview of the framework is presented. For more details, it
is possible to refer to the thesis of Alessandro Lovesio present in the Politecnico
di Torino online library [18]. The framework is developed using the open-source
Python machine learning library called Pytorch[5]. This library was released in 2016
and gained rapid popularity in many ML applications; moreover, many important
companies, such as Tesla, Uber, and Airbnb, employ this library for their products.
Pytorch offers a set of tools that drastically improve the efficiency of training
machine learning models, such as:

• automatic differentiation: helpful to perform automatically the process of
backpropagation seen in the previous chapter.

• support for GPU computing in order to speed up the training process

• template classes to create a custom dataset

• template classes to create neural networks

• compatibility with popular Python libraries like Numpy and Pandas

• compatibility with ONNX format to convert models between different machine
learning libraries

29

Neural Network Training Framework

3.2.1 Directory tree
Figure 3.1 represents the files organization of the framework:

• "Data": this folder stores the files containing data on the tobacco plants used
in this research. The data file location can be any folder since the path of the
desired files can be passed through a setting file; however, it is convenient to
have an ordered organization with each plant having its directory containing
its CSV files.

• "results": it stores results of different training processes. This folder will be
filled with other subfolders corresponding to the performed simulation, each
of them will eventually store the model (or models) trained saved as a .pth
file, plots of the behavior of the network (only for regression problems), and a
.txt file that summarizes the performance of the network (or networks).

• "src": the src folder stores all the Python source files that compose the
framework:

– status_now_classes.py: implements all the classes useful for the training
of neural networks, such as a custom neural network class inherited by
the "nn" module of PyTorch, a Dataset class, the core functions that allow
for the training process and many other important functionalities

– status_now.py: script that performs the training of a single neural network
– status_now_finder.py: script that performs a sweep over some parame-

ters of a neural network (number of hidden layers, neurons per hidden
layer) and runs one training process for every specified combination of
parameters.

– status_now_dispatcher.py: file used to call other scripts to have an easier
execution of the software

– status_now_test.py: script that performs a test of an existing neural
network on a dataset specified by the user, different from the one employed
in the training

– utilities.py: stores all the generic functions employed in other parts of the
code framework

Inside the "src" folder, there is a directory called "settings" that contains all the
settings files that the user can create or modify to run a simulation. The next
sections will give more information about the structure of settings files and how to
use them.

30

Neural Network Training Framework

employ this kind of data will open many possibilities because, up to now, image
processing has been the primary technique used together with machine learning in
smart agriculture. Relieving on sensors such as impedance ones can lead to simpler
and cheaper detection systems. The four plants are kept in different conditions
to have a more effective dataset that can better represent the different health
conditions. In particular, two plants are regularly watered while the remaining are
not. Going into deeper details, the measured parameters are:

• Temperature measured in Celsius degrees;

• Air relative humidity measured in percentage;

• Ambient light measured in lux

• Soil moisture measured in kilopascals;

• The date of the measurements

• Stem impedance modulus expressed in ohms;

• Stem impedance phase measured in degrees;

• The health status of the plant: 0 if the plant is labeled unhealthy, 1 if healthy.

In listing 3.1, a sample of the CSV files is presented:

Listing 3.1: Exampe of CSV file
1 Unnamed : 0 , Status , Temperature [C] , Air Humidity [RH] , Ambient Light [

lux] , Moisture [KPa] , Date , impedance_modlus , impedance_phase
2 0 ,1 ,29.42558288 ,41.17279052 ,11955.2 , −5.652781040 ,2021 −03 −23

14 :37 :53 ,973 .782052 , −90 .776159
3 1 ,1 ,30.81535339 ,40.67840576 ,15953.92 , −5.624867456 ,2021 −03 −23

15 :37 :53 ,2729 .400701 , −87 .17937
4 2 ,1 ,29.25941467 ,40.46173095 ,8442.880000 , −3.683619830 ,2021 −03 −23

16 :37 :53 ,1892 .752663 , −88 .013926

The first operation the framework performs when launched is always the creation
of the dataset using data extracted from CSV files. To accomplish this task, the
Pandas [19] library is employed. The Pandas read_csv() function is used to read all
CSV files and create a data frame which contains each plants’ data. At this point
the just created data frame is put into a list that will be then passed to another
function: buildDataset(), whose definition is shown in listing 3.2

Listing 3.2: buildDataset() function definition
1

2 de f bu i ldDataset (plant_df , p l an t_ l i s t , da ta se t_se t t ings ,
p lants_to_use_l i s t=None , remove_n=0, start_date=None ,

32

Neural Network Training Framework

3 end_date=None , date_param_name=" Date " , testMode=
False) :

This function accepts the following arguments:

• plant_df : list of data frames created with the read_csv() function;

• plant_list: list of strings with names chosen for each plant;

• dataset_settings: list of dictionaries that specify how to build the columns in
the dataset. It gives information such as how to filter, constrain and normalize
data;

• plants_to_use_list: it specifies which plants are used to train the neural
networks;

• remove_n: number of elements to be removed at the end of the data frame;

• start_date: specifies the starting date from which data will be put into the
dataset;

• end_date: it specifies the last date for which data are put into the dataset;

• date_param_name: it specifies the name of the column in the data frame at
which the dates of the measurements are written;

• testMode: flag helpful for debug purposes.

Data of the plants are limited in the range of dates specified by start_date
and end_date, constrained within a specified values range, filtered (example:
exponential average), transformed (for example, by applying the logarithm function),
and then normalized in the range [-1,+1]. The buildDataset() function returns a
single Pandas data frame in which all plants data are merged. To fully exploit
the capabilities of PyTorch, however, it is better not to work with Pandas data
frames but to convert them to some PyTorch data types. In particular, one of
the most powerful objects of this library is the Dataloader class: it allows to pass
data in batches to a network automatically; in this way, it is possible to avoid
manipulating the previous data frame directly and to ease the training process.
PyTorch implements a template class called Dataset[20] that is accepted by the
Dataloader. At this point a custom class,PlantsDataset, which inherits from Dataset
is created: due to the inheritance characteristics only some methods of this class
had to be implemented, the __init__(), the len() and the get_item() methods.
The behaviour of len() and get_item() is intuitive from their names: the first one
returns how many elements are present in the dataset while the second returns a
single item from it. Note that as the number of elements, the number of batches

33

Neural Network Training Framework

these kinds of events when making a prediction. Moreover, collecting input samples
in this way will ensure that the time order of measurement remains unchanged
when the dataset is shuffled, and this is fundamental when dealing with time series,
like in this case. The n_overlap parameter tells how many samples are common
to two subsequent inputs given to the neural network. Regarding figure 3.2, it
can be seen that two successive input data of the same feature have 12 samples in
common, that is to say that the time window is shifted by two time samples. To
clarify this concept example tables 3.1 and 3.2 are provided.

t t-1 t-2
Impedance modulus sample1 sample2 sample3

Impedance modulus -1 - sample1 sample2
Impedance modulus -2 - - sample1

Table 3.1: Time window example: n_samples = 5, n_overlap=2

t t-1 t-2 t-3 t-4
Impedance modulus sample1 sample2 sample3 sample4 sample5

Impedance modulus -2 - - sample1 sample2 sample3
Impedance modulus -4 - - - - sample1

Table 3.2: Time window example: n_samples = 5, n_overlap=3

The last two parameters specify how many samples are taken from the input
data frame. Amount indicates the percentage of the total number of samples
that will be inserted in the final dataset, so it is a value that can range from 0
to 1. Amount_start specifies the point, in percentage, from which starting to
collect data to put into the dataset. For example: setting amount_start=0.1 and
amount=0.8 will imply that 80% of total samples will be taken from the Pandas
data frame, starting from the position corresponding to the 10% of the data. With
this mechanism, it is possible to build different datasets starting from the same data
frame, and this is helpful, for example, in creating a training and test dataset. The
operations described in this chapter are common to every framework’s functionality.
They are a key part of the framework since an optimal dataset is a key aspect of
obtaining a good predictor. After the dataset is correctly manipulated, it can be
used by the program to train neural networks.

3.2.3 Single neural network training
The first helpful functionality to perform training allows for training a single neural
network. The core of it is the function train_loop, which is implemented in the

35

Neural Network Training Framework

file status_now_classes.py, and on which the whole training procedure in the
framework is based.

Listing 3.4: train_loop definition
1 de f t ra in_loop (data loader , model , loss_fn , opt imize r) :

This function performs a single training step, which means a complete run on all
the batches of the dataset, and its definition is shown in listing 3.4. It accepts four
input parameters:

• dataloader : this parameter belongs to the Pytorch Dataloader class, and it is
useful to create iterable objects that can easily be passed to the network for
training. The objects returned by the dataloader consist of batches of training
examples whose dimension is specified by the batch size parameter

• model: this object belongs to a class that inherits from the Module PyTorch
class [21]. It allows the definition of a neural network specifying the hidden
layers, number of neurons, and activation functions. Also in this case, only
some methods of the model object have to be implemented: the __init__()
method helpful to define the shape of the neural network and the forward
method that given in input vector returns the prediction of the algorithm. In
Appendix B is possible to find a list of the possible layers and activation for
this class

• loss_fn: this object is useful to calculate the loss, so the "goodness" of a pre-
diction; moreover, it allows to use the backward method, which automatically
performs the process of backpropagation, allowing to update of neural network
weights. In appendix C, an overview of the loss functions available in Pytorch
is given [22]

• optimizer : it implements an optimization algorithm (such as gradient descent);
what is needed is to have evaluated the gradients of the loss function for each
parameter, that is what the backward method of the previous argument does.
Appendix D presents a list of available optimizers in Pytorch [23]

Since before this thesis, the framework could perform only classification tasks,
the functions described here will be analyzed again in later sections to see what
modifications have been made. In listing 3.5 is shown the code for train_loop:

Listing 3.5: train_loop implementation
1 de f t ra in_loop (data loader , model , loss_fn , opt imize r) :
2 dev i ce = ’ cuda ’ i f cuda . i s _ a v a i l a b l e () e l s e ’ cpu ’
3 s i z e = len (data loader . datase t)
4 t ra in_lo s s , train_RMSE , n = 0 , 0 , 0

36

Neural Network Training Framework

5 f o r batch , (X, y) in enumerate (data loader) :
6 # Compute p r e d i c t i o n and l o s s
7 pred = model (X. to (dev i ce))
8 y = y . to (dev i ce)
9 pred . squeeze_ ()

10 y . squeeze_ () . squeeze_ ()
11 l o s s = los s_fn (pred , y)
12 t r a i n _ l o s s += l o s s . item ()
13

14 # Backpropagation
15 opt imize r . zero_grad ()
16 l o s s . backward ()
17 opt imize r . s tep ()
18

19 i f i s i n s t a n c e (pred . t o l i s t () , l i s t) and i s i n s t a n c e (y . t o l i s t () ,
l i s t) :

20 train_RMSE += sum (([(x i − y i) ∗∗ 2 f o r xi , y i in z ip (pred
. t o l i s t () , y . t o l i s t ())]))

21 n += len (pred . t o l i s t ())
22 e l i f i s i n s t a n c e (pred . t o l i s t () , (int , f l o a t)) and i s i n s t a n c e (y

. t o l i s t () , (int , f l o a t)) :
23 train_RMSE += (pred . t o l i s t () − y . t o l i s t ()) ∗∗ 2
24 n += 1
25 e l s e :
26 pr in t (" Warning : RMSE c a l c u l a t i o n may be inaccu ra t e due to

wrong type conver s i on f o r c a l c u l a t i o n ")
27 t r a i n _ l o s s /= s i z e
28 train_RMSE = math . sq r t (train_RMSE / n)
29 pr in t (f " Train ing Error : \n RMSE: {train_RMSE:>8 f } , Avg l o s s : {

t r a i n _ l o s s :>8 f } \n ")
30 re turn t ra in_lo s s , train_RMSE

First, the computation device is selected among CPU or GPU depending on if the
cuda utility is available. Then, a loop over all the batches inside the dataset is
performed: measurement and labels of the plants are passed to the model, and a
prediction is made. At this point the loss is evaluated using the loss_fn function
and the backward propagation is performed using the backward method. Finally,
the optimizer is employed to update the network weights. At the end of the
execution, the loss and the Root Mean Square Error (RMSE) are returned. For the
classification case that will be analyzed later, other evaluation metrics instead of
the RMSE will be returned. The function just described helps perform a training
step, however, it is also necessary to test the network on a different dataset to
evaluate its performance. For this reason a similar function called test_loop is
introduced.

Listing 3.6: test_loop implementation
1 de f tes t_loop (data loader , model , l o s s_fn) :

37

Neural Network Training Framework

test_loop has almost the same code as train_loop, but in this case, only the
network’s predictions are computed using the model, but the parameters are not
updated. It is possible to see, looking at listing 3.6, that the optimizer is no longer
needed as a parameter to be passed to the function.

Status_now functionality

The entire process of training a single neural network is implemented in the file
status_now.py. In particular, three functions are implemented:

• main(): used when status_now.py is called as a standalone script. It imports
all the data from CSV files and selects a setting object, which is fundamental
for the program’s execution. The next section will give more details about the
setting object. If the script is used as a module the main() is not executed

• statusTrain(): this function is in charge of managing the process of train-
ing by calling the appropriate functions, such as the one described above,
train_loop. When executed, it returns data about the trained model, in
particular, evaluation metrics, plots of samples, and errors committed by the
model.

• statusNowPrint(): function used to save results and actual model file produced
by the statusTrain() or statusTrainKFold() function.

Listing 3.7 shows the definition of statusTrain() function.

Listing 3.7: statusTrain() definition
1 de f s ta tusTra in (plant_df , p l an t_ l i s t , chosen_sett ing , batchMode : bool

= Fal se) :

Parameters:

• plant_df : list of Pandas data frames obtained using the read_csv() function

• plant_list: list of the name attributed to the plants (i.e. pianta1, pianta2,
etc.)

• chosen_setting: a setting object that contains an indication of the model to
be created

• batchMode: flag used to enable or disable the plots

38

Neural Network Training Framework

Setting object

Before continuing with the overview about statusTrain() it is convenient to describe
the setting object since it will be used inside that function. This class is a container
for all the information used to build the network, and it is implemented in the
file status_now_classes.py. In particular, it provides a way to specify all the
characteristics the target neural network should have in a setting file. All the
parameters stored in this class will be used in the statusTrain() function and a list
with a brief description is presented in table 3.3.

Variable Description
start_date Dataset start date
end_date Dataset end date

plants_to_use_list List of plants used for training
params_to_use List or features used for training

outputs Name of network’s output
n_samples_per_parameter Number of samples for each prediction

n_overlap_of_samples Overlap of two consecutive groups of samples
learning_rate Learning rate for optimization algorithm
momentum Momentum for optimization algorithm [9]
batch_size Batch size

model Neural network model
loss_fn Loss function
epochs Number of epochs
folds Number of folds for K-Fold cross validation

testMode Flag used for debug purposes
remove_n Flag to remove last n samples

trainWithAllData Specifies if

dataset_setting List of dictionaries with information
about the manipulation of the dataset

Table 3.3: Setting class variables

Particular attention has to be given to the dataset_setting parameter: it is a
list of dictionaries that contains information that indicates to the statusTrain()
function how the dataset will be manipulated before it is used. To do this, the
indications collected from dataset_setting are then passed to the buildDataset()
function described in section 3.2.2. In table 3.4, it is possible to read all the keys
in this class and what they represent.
At this point it is possible to continue the analysis of the statusTrain() function, in
figure 3.3 it is represented a flowchart of the operations performed inside it. First,
all the parameters passed through the chosen_setting dictionary are collected.
Then, the dataset is created by employing buildDataset() function, and then a
PlantsDataset object is instantiated; during this process, data are shuffled to allow a
proper learning process; now, the dataset is ready to be used. Inside chosen_setting
is specified the desired number of epochs for the training; this number is used
to loop over all the batches of the dataset. Inside this loop the train_loop()
function is called to perform an optimization step on the specified model (the one

39

Neural Network Training Framework

Key Description
param_name Name assigned to the feature
input_name Name of the CSV column

norm_data_range Specified range for the feature
norm_data_median Mid-range of the feature
transform_function Applied data transformation

transform_function_kwargs Arguments for transform function
filter Filter function

filter_kwargs Arguments for the filter function
constrain_min Feature lower limit
constrain_max Feature upper limit

Table 3.4: Dataset setting variables

passed through the chosen_setting dictionary). Then the model is tested after the
optimization using the test_loop function. The model that exhibits the lower error
will be saved at the end of the loop. When the iterations over the whole dataset
are concluded, the function statusTrain() returns the best model found, the last
model trained, and, for each of them, a summary of the performances and all the
figures associated.

40

Neural Network Training Framework

Like status_now functionality, it is also possible to use the file as a standalone script
or as a module. The key function of this framework capability is statusFinder()
whose definition is shown in listing 3.8.

Listing 3.8: statusFinder() definition
1 de f s ta tusF inder (plant_df : l i s t , p l a n t _ l i s t : l i s t , search_type : s t r ,

save_fo lder_root : Path = None , useKFold : bool = True ,
decideWithFullData : bool = True , f i n d e r _ s e t t i n g : F inderSe t t ing =
None , batchMode : bool = Fal se) :

This function accepts the following parameters:

• plant_df : list of Pandas data frame obtained by CSV files

• plant_list: list of names assigned to the plants

• search_type: type of sweep of the neural network parameters

• save_folder_root: directory in which all the results and models obtained will
be saved during

• useKFold: a flag that indicates if the K-Fold cross-validation technique is used

• decideWithFullData: a flag that is used to decide if all data are used for
training

• finder_setting: new setting object specific for the sweep functionality

• batchMode: a flag that enables or disables the plot of images

Finder setting

For this framework feature, a new setting type is needed to tell the software how
to perform the simulations. For this reason, a new class, called FinderSetting is
implemented. It stores a set of variables that will be used by statusFinder() to
batch-train multiple neural networks, and its implementation is presented in listing
3.9.

Listing 3.9: FinderSetting class
1 c l a s s F inderSe t t ing :
2 de f __init__(s e l f , search_type) :
3 s e l f . common_settings = None
4 s e l f . RMSE_threshold_to_save = f l o a t (" i n f ")
5 s e l f . loss_threshold_to_save = f l o a t (" i n f ")
6 s e l f . Accuracy_to_save = 0
7 s e l f . F1_score_to_save = 0
8 s e l f . MCC_to_save = 0

42

Neural Network Training Framework

9 i f search_type == " time1 " :
10 s e l f . s tart_date = " " # YYYY−MM−DD hh :mm: s s format
11 s e l f . end_date = " " # YYYY−MM−DD hh :mm: s s format
12 s e l f . window_min = 0 # days
13 s e l f . window_max = 0 # days
14 s e l f . window_change_step = 0 # days
15 s e l f . window_move_step = 0 # days
16 s e l f . min_samples_for_training = 1 # Amount o f samples in

window to s t a r t t r a i n i n g
17 s e l f . p lants_to_cycle = [] # L i s t o f p lant names to c y c l e

one . Train ing can happen only on a s i n g l e p lant f o r t h i s type o f
search

18 e l i f search_type == " nnShape1 " :
19 s e l f . l ayer1_neurons_l i s t = []
20 s e l f . l ayer2_neurons_l i s t = []
21 e l i f search_type == " nnShape2 " :
22 s e l f . n_layers_values = []
23 s e l f . n_neurons_values = []
24 e l i f search_type == " nSamplesPerParameter1 " :
25 s e l f . n_samples_per_parameter_min = 0
26 s e l f . n_samples_per_parameter_max = 0
27 s e l f . n_samples_per_parameter_step = 1
28 e l s e :
29 r a i s e Exception (" Search type not implemented . ")

The class only implements the __init__() method, which is called as soon as
the object is instantiated. The variable common_settings is an instance of the
dataset_setting class and contains the basic information about the models to be
created. The other parameters are specific to the search type performed, so a
"switch" structure is used to define only the needed quantities in every case. Four
types of search are implemented, but more can be easily added by adding new if
statements with the proper variables inside, as well as the search implementation
inside the statusFinder function:

• time1

• nnShape1

• nnShape2

• nSamplesPerParameter1

time1 search aims to find the best temporal window in which to perform the
training. This window is searched between the values start_date and end_date
and for one plant at the time. The process begins by varying the time frame
size between the values window_min and window_max and each variation is
made by an amount equal to window_change_step. Then, the position in time

43

Neural Network Training Framework

of the window is moved by a quantity window_move_step at the time. It is
important to notice that each step of the window corresponds to a new model
trained. nnShape1 allows to try different configurations for a neural network. In
particular, many networks with two layers are trained, and the amount of neurons
belonging to each layer is changed. The parameters that must be provided are two
lists containing the number of neurons the user wants to try in each layer; then,
every combination of the values present in these two lists is used. For example,
supposing the list for layer 1, layer1_neurons_list equal to [2,4] and the one for
layer 2, layer2_neurons_list equal to [3,6], then the following combinations of
layers will be trained: 2-3,2-6,4-3,4-6.

nnShape2 allows for varying the number of neurons per layer and the number of
hidden layers used. In this case, it is only possible to have the same amount of
neurons for each layer inside a single simulation. For example having the parameter
n_layers_values equal to [2,4] and n_neurons_values equal to [3,6] will mean
training a total of four neural networks, in particular:

• a neural network with 2 layers and 3 neurons per each layer

• a neural network with 2 layers and 6 neurons per each layer

• a neural network with 4 layers and 3 neurons per each layer

• a neural network with 4 layers and 6 neurons per each layer

The last type of search concerns how many samples to look at in the past to make
a prediction. This functionality modifies the parameter n_samples_per_parameter
of dataset_setting object. This type of sweep is performed in the range
n_samples_per_parameter_min - n_samples_per_parameter_max with variations
equal to n_samples_per_parameter_step. The simulations described above require,
inside each iteration, defining a different structure for the neural network or the
dataset. Once these aspects are defined, the training process consists of just
training a single neural network at each cycle. This can be accomplished by calling
the statusTrain() function. For this reason the statusNowFinder() function loops
over the different setups to be analyzed, for each of them defines the appropriate
network and dataset structure, and then calls the statusTrain() function. After the
training process is ended, the RMSE and loss of the best and last model found
are stored, and if they are higher than the thresholds RMSE_threshold_to_save
and loss_threshold_to_save, the current model and the corresponding plots are
saved inside the results folder. At this point, the process is repeated for each model
considered in the selected sweep. Figure 3.4 shows a flowchart of the behavior of
the statusFinder()

44

Neural Network Training Framework

to be performed and it creates a Setting or FinderSetting object depending on the
type of mode, single or multiple training, the user wishes to use. The Dispatcher
accepts as an argument a setting file, and it then launches the simulation by calling
the status_now.py or status_now_finder.py with the parameters specified by the
user inside the setting file. All the setting files the user wants to use must be stored
in the settings folder.

3.2.6 Dispatcher usage
The scripts described up to now can be launched as standalone elements, how-
ever, it is more convenient to employ them by calling the dispatcher since it
allows to use custom setting files without modifying the code of status_now.py
or status_now_finder.py. The syntax to be used from the command line is the
following:

1 python3 status_now_dispatcher . py s c r i p t −f <Se t t i ng Fi l e > −b <
Batch>

The script argument can be set to status_now or status_now_finder and it is
used to select the framework functionality to use. The -f <Setting File> argument
specifies the name of the setting file used for the simulation. The specified setting
file is searched inside the settings folder, and an error is returned if it is not present.
The -b <Batch> argument is used to select between batch mode or not batch mode.
By setting <Batch> to "yes," batch mode is selected, and no plots are displayed
on the screen by the framework; on the contrary, if <Batch> is set to "no," the
batch mode is disabled, and the framework will print on screen the plot containing
features values, loss values, and RMSE values. Note that for the classification
case, no plots regarding the evaluation metrics are produced, so only images about
the values of input features will be printed on screen if classification is performed
and batch mode is not selected. To allow the user to easily perform simulations,
template files for status_now and status_now_finder search types are provided in
the settings folder. In this way, the user can easily compile them with the desired
values for the simulation.

Example: single neural network training

Suppose to have a setting file called single_training.py inside the settings folder,
and the user wants to launch a single training with batch mode enabled. It is
possible to launch the following command.

46

Neural Network Training Framework

1 $ python3 status_now_dispatcher . py status_now −f s i n g l e _ t r a i n i n g
−b yes

Multiple neural networks training

Suppose to have a setting file in the settings folder called sweep_search.py and the
user wants to launch a sweep over the neural network parameters with batch mode
enabled. It is possible to type the following command to perform this simulation.

1 $ python3 status_now_dispatcher . py status_now_finder −f
sweep_search −b yes

To display a help page for the Dispatcher it is also possible to type the following
instruction.

1 $ python3 status_now_dispatcher −h

47

Neural Network Training Framework

3.3 Framework modifications
So far, the general structure of the framework and its functionalities have been
analyzed. The first version of the software was able to train neural networks
effectively but was only able to perform regression problems. This section presents
the modifications to make the framework able to train neural networks suitable
for classification problems. In particular, binary classification is the objective of
the training since the plants have to be classified as healthy or unhealthy. The
code was modified by adding the required functions but respecting the software’s
original workflow as much as possible.

3.3.1 Dataset manipulation
A new feature needs to be added to the dataset to perform binary classification
inside the framework: the Status of the plant. It is a variable that can assume
two values: 0 if the plant is considered unhealthy and 1 if it is considered healthy.
This new feature does not belong to the available CSV files. To obtain an updated
dataset, a new file, called modify_csv.py, is created, and it contains two useful
functions to manipulate the CSV files and get them ready to be used to train a
classifier: add_columns() and remove_columns(). The definitions of these functions
are presented in listings 3.10 and 3.11.

Listing 3.10: add_columns() definition
1 de f add_columns (f i l ename , to_be_added_dict=None , by_dict=False , by_date

=False , s tart_date=None , stop_date=None , va lue=None , col_name=None) :

add_columns, as the name suggests, allows for the addition of one or more
columns in the CSV file, whose path is specified by the filename parameter. This
function is helpful to label the data, in this case, by adding the observed status
of the plants. The addition of a column can be made by setting the flag by_dict
to True and providing a list of dictionaries, to_be_added_dict, to the function.
Each dictionary inside the provided list must have a key that will be the name of
the column added and the corresponding value, which is a list containing all the
numbers to be added. Another way to add one or more columns is by specifying
a range of dates in which a certain value has to be inserted, and outside of it,
another value is put. To modify the CSV file in this way is necessary to set the flag
by_date to True, provide a date range by setting start_date and end_date; provide
a list of column names to be added (parameter col_name); provide a list,value,
in which each element is a list itself that specifies, for each column to be added,
the value that has to be set inside the date range and the one outside of it. For
example, suppose providing the col_name= [var1,var2] and value= [[2,3] , [4,5]];
it is created a column var1 in which values inside the specified date range are set

48

Neural Network Training Framework

to 2 and to 3 outside; then another column called var2 is created with the value 4
inside the date range, and 5 outside.

Listing 3.11: remove_columns() definition
1 de f delete_columns (f i l ename , co l_to_delete) :

The second function, called delete_columns, helps delete one or more columns
from a CSV file, and it is shown in listing 3.11. The parameters to be passed
are, respectively, the name of the target file to be modified and the name of the
column that must be deleted. These two functions were used to label the plants, in
particular, by visual inspections of the plants performed by previous students it
was decided to perform the labeling as follows:

• Plant 1 : healthy from 23-03-2021 to 21-04-2021 and unhealthy later

• Plant 2 : unhealthy from 23-03-2021 to 21-04-2021 and healthy later

• Plant 3 : unhealthy from 23-03-2021 to 21-04-2021 and healthy later

• Plant 4 : healthy from 23-03-2021 to 21-04-2021 and unhealthy later

For what concerns the dataset a little modification is made to the buildDataset()
function. The labels given to the plants must not be transformed, normalized,
or constrained. It was added to the framework the possibility to exclude some
columns from this process since, by default, buildDataset() applies this operation
to all the columns in the data frame.

Listing 3.12: Modified buildDataset() definition
1 de f bu i ldDataset (plant_df , p l an t_ l i s t , da ta se t_se t t ings ,

p lants_to_use_l i s t=None , remove_n=0, start_date=None ,
2 end_date=None , date_param_name=" Date " , testMode=False ,

except i ons=None) :

It can be noticed that the function accepts a new parameter, called exceptions,
and it is a list of strings containing the name of the columns that have to be left
unmodified. In this case, it is possible to exclude the column containing the output
labels from the manipulation process.

3.3.2 Single neural networks training - Modifications
To perform classification problems the statusTrain() function inside status_now.py
file is modified. First, a flag called binaryClassificationFlag is added to the Setting
class, which is set by the user when binary classification has to be performed.
Concerning the simple flowchart of figure 3.5, the original framework’s single

49

Neural Network Training Framework

learning algorithm should work, and accuracy is not showing its real performances.
To avoid this problem the metrics F1 Score and Matthews Correlation Coefficient
are inserted in the framework.

F1 Score

The F1 Score is evaluated starting from two other quantities, precision and recall.
The precision is defined as the number of correctly classified positive results divided
by all the actual positive results. The recall is the number of true positives divided
by all items that should be identified as positive.

Precision = true positives

true positives + false positives
(3.1)

Recall = true positives

true positives + false negatives
(3.2)

The F1 Score is defined starting from these two quantities as the harmonic mean
between precision and recall and can assume values between 0 and 1.

F1 Score = 2 · precision · recall

precision + recall
(3.3)

To understand this metric better, it is possible to calculate the F1 Score for
the previous simple example. The values for true positives, true negatives, false
positives, and false negatives can be written inside the so-called confusion matrix
as follows:

Figure 3.6: Confusion matrix

For this specific case, the confusion matrix results as follows:

51

Neural Network Training Framework

Figure 3.7: Example confusion matrix

At this point, it is possible to evaluate the F1 Score. By looking at the F1 Score
definition, it is possible to notice that if precision or recall is equal to 0, the F1
Score will be equal to 0. In this case, recall is equal to 0, so it is also the F1 Score
indicating that the algorithm employed is not adequate.

Matthews Correlation Coefficient

The other metric introduced inside the framework is the Matthews Correlation
Coefficient (MCC). Accuracy and F1 Score are both sensitive to class imbalance,
which can be present inside the dataset and can be misleading. The MCC can
consider all four cases present in the confusion matrix to give a score that considers
the algorithm’s performance concerning the eventual class imbalance in the dataset,
an aspect not considered by accuracy and the F1 Score. The MCC can assume
values in the range [-1,1], where 1 indicates the perfect classifier, 0 is a classifier
not better than random guessing, and -1 is a classifier perfectly opposite to the
perfect one. Since the formula which defines the MCC is quite long, a more concise
notation is employed:

• true positives −→ tp

• true negatives −→ tn

• false positives −→ fp

• false negatives −→ fn

The MCC is defined as:

MCC = (tp · tn) − (fp · fn)ñ
(tp + fp) · (tp + fn) · (tn + fp) · (tn + fn)

(3.4)

It is possible to understand the properties of this metric by looking at this formula.
Considering a perfect classifier, we have that fp=fn=0. In this case, evaluating

52

Neural Network Training Framework

will lead to MCC=1, so a perfect prediction. Supposing an algorithm that always
misclassifies, we have that tp=tn=0 and so MCC=-1, indicating that predictions
are always opposite to the correct ones. Suppose instead to have a dataset. It is
also possible to consider the situation in which the dataset is composed of only
one label. In this case, the MCC will always be equal to 0; this situation will be
encountered in the next section when predicting future data of a single plant. This
situation is useful to know if a classifier can predict the status of a "stable" plant.
However, MCC is unsuitable for this case so simple accuracy will be considered.
A more exhaustive explanation of the concepts and advantages of the Matthews
Correlation Coefficient are provided in [24] [25] [26].
Going back to the single training functionality, it is possible to select which metric
to use among the three just described. The metric selected will be the one employed
to find the best model to be trained; for example: if binaryClassificationMetric is
set to "Accuracy," the model with the best accuracy will be saved, and the same is
done for the cases "F1 Score" and "MCC." The functions useful for the calculation
of the MCC and F1 Score are implemented in the file utilities.py and are called
MatthewsCorrCoeff and F1_Score, respectively.
At this point, the dataset is shuffled and split into train and test portions using the
PlantsDataset class. Test and train dataset labels are then counted, and the result
is printed on the screen to inform the user how many samples present a label equal
to 0 and equal to 1, in this way, the user can understand if he is working with a
balanced case study or not. Now it is all ready to perform the training process. In
figure 3.8 it is present a flowchart that describes the operations performed to train a
single neural network, it is similar to the one of the original statusTrain() function
presented in figure 3.3 with some differences. The core of the function is the same,
a loop over the selected number of epochs, but in this case, the single training step
is performed by a different function called train_class_loop(). This function is
slightly different from train_loop and is in charge of performing a training step for
the binary classification case, which will be described in the next section. After the
training step, the model is again tested using the function test_class_loop() that
is similar to train_class_loop() with the difference that, in this case, the model is
only tested, but no backpropagation is applied to the network. At every epoch,
after the training step and the test are performed, the best model is updated if
the results are better for the selected evaluation metric than those obtained in the
previous cycles. At the end of the epochs, the last and the best model (according
to the evaluation metric selected) are saved in the results folder as ".pth" files. In
the same folder, a file called results.txt is created, and it reports the performance
of the trained models.

53

Neural Network Training Framework

Figure 3.8: statusTrain() workflow modified

train_class_loop() and test_class_loop()

Listing 3.13: train_class_loop() definition
1 de f t ra in_c las s_loop (data loader , model , loss_fn , opt imize r) :

In listing 3.13 is presented the definition of the train_class_loop() function. It
can be noticed that the function accepts the same four parameters of the original
train_loop() function employed for regression problems. What is changed is that,
in this case, retrieving the outputs of the neural networks is different from the

54

Neural Network Training Framework

regression case. When dealing with regression problems, the output is obtained by
looking at the value of the output neuron, and the prediction quality is evaluated
by simply computing the difference between the calculated value and the expected
one, which is included in the dataset. When performing binary classification, the
situation is different: by looking at the output neurons, a label, 0 or 1, has to be
extracted and compared to the expected one. To do so, two cases are implemented in
the framework, employing two different loss functions listed below. Other methods
to accomplish this task exist and can be added to the framework by making some
modifications to the code; however, only these two, which are the most commonly
used, are implemented in this work.

1. nn.CrossEntropyLoss() loss function

2. nn.BCEWithLogitsLoss() loss function

By passing one of these two functions to train_class_loop() using the loss_fn the
first or the second case is selected by the code. If the nn.CrossEntropyLoss() is
used; the neural network’s output layer should be composed of two neurons, the
first associated with the label 0 and the second with the label 1. The values of the
output neurons are compared to make a prediction, and the index of the neuron
with the greater value will be the predicted value. For example, if the first output
neuron (index 0) has a greater value than the second one (index 1), the prediction
will be class 0. Regarding the neural network training, the code is similar to the
one shown in listing 3.5 for train_loop. The significant differences take place in
the outputs extraction from the network and are shown in listing 3.14. The code
loops over the samples provided by the passed dataloader, the values of the output
neurons are computed, and the actual value of the predictions is evaluated by the
max() Pytorch function, which returns the index of the neuron with the greater
value. At this point, the number of true positives, true negatives, false positives,
and false negatives is evaluated in order to be able to compute the confusion matrix.
Then the accuracy, F1 Score, and MCC are computed, and the calculated confusion
matrix is printed on the screen.

Listing 3.14: CrossEntropyLoss definition
1 with torch . no_grad () :
2 count1=0
3 count0=0
4 p r e c i s i o n = 0
5 r e c a l l = 0
6 n_samples = 0
7 n_true_pos i t ives = 0
8 n_true_negatives = 0
9 n_fa l se_negat ives = 0

10 n_fa l s e_pos i t i v e s = 0

55

Neural Network Training Framework

11 n_pos i t ive s = 0
12 n_negatives = 0
13 f o r X, y in data loader :
14 i f X. s i z e () [0] != 1 :
15 outputs = model (X. to (dev i c e))
16 y = y . to (dev i ce)
17 # Squeeze removes the dimensions equal to 1 in

the t enso r . E .G i f I have a tenso r which has s i z e [3 0 0 0 , 1 , 1] i t i s
18 f o r i in y :
19 i f i . item () ==1:
20 count1+=1
21 i f i . item () ==0:
22 count0+=1
23 # Due to the d e f a u l t norma l i za t i on o f the

framework the s t a tu s i s a v a r i a b l e which i s e i t h e r +1 i f the
p lant i s f i n e

24 #pr in t (f ’ Labels : {y } . S i z e : {y . s i z e () } ’)
25 _, p r e d i c t i o n s = torch . max(outputs , 1)
26 f o r i in range (l en (p r e d i c t i o n s)) :
27 i f y [i] == p r e d i c t i o n s [i] :
28 i f y [i] == 1 :
29 # True p o s i t i v e s
30 n_true_pos i t ives += 1
31 e l s e :
32 n_true_negatives += 1
33 e l s e :
34 i f y [i] == 1 :
35 n_fa l se_negat ives += 1
36 e l s e :
37 n_fa l s e_pos i t i v e s += 1
38 # Update the number o f ca s e s analyzed
39 n_samples+=len (p r e d i c t i o n s)
40 p r e c i s i o n = u t i l . b in_prec i s i on (n_true_posit ives ,

n_ fa l s e_pos i t i v e s)
41 r e c a l l = u t i l . b i n_re ca l l (n_true_posit ives , n_fa l se_negat ives

)
42 F1_score = u t i l . F1_score (p r e c i s i o n=p r e c i s i o n , r e c a l l=r e c a l l)
43 MCC = u t i l . MatthewsCorrCoeff (TruePos= n_true_posit ives ,

TrueNeg= n_true_negatives , FalsePos= n_fa l s e_pos i t i ve s , FalseNeg=
n_fa l se_negat ives)

44 accuracy = (n_true_pos i t ives+n_true_negatives) /n_samples
45 pr in t (f ’ Count o f TRAIN datase t va lue s : { count1 } p o s i t i v e

cases , { count0 } negat ive ca s e s ’)
46 pr in t (f ’Wrong p r e d i c t i o n s : { n_fa l s e_pos i t i v e s+

n_fa l se_negat ives } ’)
47 pr in t (f ’Number o f c o r r e c t p r e d i c t i o n s f o r t r a i n i n g datase t :

{(n_true_pos i t ives+n_true_negatives) }/{ n_samples } . Train ing
accuracy : {100∗ accuracy : . 3 f } %’)

56

Neural Network Training Framework

48 pr in t (f ’ True p o s i t i v e s : { n_true_pos i t ives } . True nega t i v e s : {
n_true_negatives } . Fa l se p o s i t i v e s : { n_fa l s e_pos i t i v e s } . Fa l se
nega t i v e s : { n_fa l se_negat ives } ’)

49

50 # Long pr in t statement to draw the con fu s i on matrix
51 pr in t (f ’TRAIN CONFUSION MATRIX\n\n\n\ t \ t \ t \ t ACTUAL\n\ t \ t

\ t \ t 0\ t 1\ t \n\ t \ t \ t __|_______|_______|\ n\ t \ t \ t \ t | \ t | \ t
| \ n\ t \ t \ t0 \ t | { n_true_negatives }\ t | { n_fa l se_negat ives }\ t | \ n\ t \ t
\ t __|_______|_______| \ n\tPREDICTED\ t \ t | \ t | \ t | \ n\ t \ t \ t1 \ t | {
n_fa l s e_pos i t i v e s }\ t | { n_true_pos i t ives }\ t | \ n\ t \ t \ t __|
_______|_______| \ n\n ’)

52

53

54 pr in t (f ’ Train ing p r e c i s i o n : { p r e c i s i o n : . 3 f } . Train ing r e c a l l :
{ r e c a l l : . 3 f } . Train ing F1 s co r e : {F1_score : . 3 f } . MCC: {MCC: . 3 f } ’)

55 re turn t r a i n _ l o s s / s i z e , accuracy , F1_score , MCC

If the BCEWithLogitsLoss is employed, the output layer has to contain just one
neuron, and its output represents the probability that the class predicted is 1. So
it is possible to predict by setting a threshold for the output neuron above which
the predicted class is 1 and below it is 0. This threshold is set to the value 0.5.
Since BCEWithLogitsLoss applies the sigmoid function to the output neuron to
evaluate the probability of a specific class. It is sufficient to look at the value of
the output neuron to understand if the probability is greater or smaller than 0.5.
If it is greater than zero, the prediction will be equal to 1 and 0 otherwise (refer
to the graph of the sigmoid function in figure 2.4). Also in this case, the part of
the code which implements the training is similar to the one of train_loop (refer
to listing 3.5). Listing 3.15 shows the code created to evaluate a prediction using
the BCEWithLogitsLoss() function. The training examples are iterated through
the dataloader, and the value of the output neuron is computed for each of them.
At this point, following the procedure described above, the value of the output
neuron is compared to 0, and the value of the prediction is determined. Again,
the true positives, true negatives, false positives, and false negatives are evaluated
to compute the confusion matrix. Finally, all the possible evaluation metrics are
computed, and the confusion matrix is printed on the screen.

Listing 3.15: BCEWithLogitsLoss
1 f o r X, y in data loader :
2 p r e d i c t i o n s = torch . empty (y . s i z e ())
3 outputs = model (X. to (dev i c e))
4 y = y . to (dev i ce)
5 y . squeeze_ ()
6 outputs . squeeze_ ()
7 #pr in t (outputs)
8 f o r i in y :
9 i f i . item () ==1:

57

Neural Network Training Framework

10 count1+=1
11 i f i . item () ==0:
12 count0+=1
13 f o r index in range (l en (outputs)) :
14 i f outputs [index]>=0:
15 p r e d i c t i o n s [index]=1
16 e l s e :
17 p r e d i c t i o n s [index]=0
18

19 f o r i in range (l en (p r e d i c t i o n s)) :
20 i f y [i] == p r e d i c t i o n s [i] :
21 i f y [i] == 1 :
22 # True p o s i t i v e s
23 n_true_pos i t ives += 1
24 e l s e :
25 n_true_negatives += 1
26 e l s e :
27 i f y [i] == 1 :
28 n_fa l se_negat ives += 1
29 e l s e :
30 n_fa l s e_pos i t i v e s += 1
31 # Update the number o f ca s e s analyzed
32 n_samples+=len (p r e d i c t i o n s)
33 p r e c i s i o n = u t i l . b in_prec i s i on (n_true_posit ives ,

n_ fa l s e_pos i t i v e s)
34 r e c a l l = u t i l . b i n_re ca l l (n_true_posit ives , n_fa l se_negat ives

)
35 F1_score = u t i l . F1_score (p r e c i s i o n=p r e c i s i o n , r e c a l l=r e c a l l)
36 MCC = u t i l . MatthewsCorrCoeff (TruePos= n_true_posit ives ,

TrueNeg= n_true_negatives , FalsePos= n_fa l s e_pos i t i ve s , FalseNeg=
n_fa l se_negat ives)

37 accuracy = (n_true_pos i t ives+n_true_negatives) /n_samples
38 pr in t (f ’ Count o f TRAIN datase t va lue s : { count1 } p o s i t i v e

cases , { count0 } negat ive ca s e s ’)
39 pr in t (f ’Wrong p r e d i c t i o n s : { n_fa l s e_pos i t i v e s+

n_fa l se_negat ives } ’)
40 pr in t (f ’Number o f c o r r e c t p r e d i c t i o n s f o r t r a i n i n g datase t :

{(n_true_pos i t ives+n_true_negatives) }/{ n_samples } . Train ing
accuracy : {100∗ accuracy : . 3 f } %’)

41 pr in t (f ’ True p o s i t i v e s : { n_true_pos i t ives } . True nega t i v e s : {
n_true_negatives } . Fa l se p o s i t i v e s : { n_fa l s e_pos i t i v e s } . Fa l se
nega t i v e s : { n_fa l se_negat ives } ’)

42 # Long pr in t statement to draw the con fu s i on matrix
43 pr in t (f ’TRAIN CONFUSION MATRIX\n\n\n\ t \ t \ t \ t ACTUAL\n\ t \ t

\ t \ t 0\ t 1\ t \n\ t \ t \ t __|_______|_______|\ n\ t \ t \ t \ t | \ t | \ t
| \ n\ t \ t \ t0 \ t | { n_true_negatives }\ t | { n_fa l se_negat ives }\ t | \ n\ t \ t
\ t __|_______|_______| \ n\tPREDICTED\ t \ t | \ t | \ t | \ n\ t \ t \ t1 \ t | {
n_fa l s e_pos i t i v e s }\ t | { n_true_pos i t ives }\ t | \ n\ t \ t \ t __|
_______|_______| \ n\n ’)

58

Neural Network Training Framework

44

45

46 pr in t (f ’ Train ing p r e c i s i o n : { p r e c i s i o n : . 3 f } . Train ing r e c a l l :
{ r e c a l l : . 3 f } . Train ing F1 s co r e : {F1_score : . 3 f } . MCC: {MCC: . 3 f } ’)

47 re turn t r a i n _ l o s s / s i z e , accuracy , F1_score ,MCC

3.3.3 Multiple neural network training - Modifications
The possibility of training a single neural network to perform classification tasks
is also extended to the case of multiple neural network training by making some
modifications on the status_now_finder.py file. The modified workflow is similar
to the one represented in figure 3.4. The difference now is that the classification
function and metrics can also be used for each of the available search types
previously presented. Also in this case, the BinaryClassificationFlag is used to
discriminate between classification and regression problems. Figure 3.9 shows a
flowchart explaining the operation performed by the functionality. First, the general
parameters and settings required by the statusFinder() function are collected.
Note that the definition of statusFinder() is not changed so its definition and
accepted arguments are the same described in the previous sections (refer to listings
3.8 and 3.9). From the finder_setting argument, the search type and all the
flags necessary for the execution are retrieved. Then, the function checks the
BinaryClassificationFlag (which is passed inside the finder_setting argument) and,
if False, the normal operations for regression problems seen in previous sections are
performed; if True, the algorithm loops over the structures of the neural network
specific to the search type, it performs the training using statusTrain() function
and saves all the models that meet a certain threshold for the specified evaluation
metric. Note that the evaluation metric and the thresholds for the model are
specified inside the finder_setting object. When all the specified models are trained,
the function creates a file called rankings.txt, in which all the models saved are
ranked based on their performance. Once the execution is concluded, all the models
and results are saved inside the resutls folder. Regarding the usage of the software
employing the dispatcher, no changes are made with respect to the original code,
so the same commands can be typed to perform the simulation; what is changed is
just how it is performed. For information about the framework’s usage, refer to
3.2.6.

59

Neural Network Training Framework

Figure 3.9: Modified statusFinder() workflow

3.4 Converting PyTorch model to ONNX
The Python models trained with the framework are saved in files with the .pth
extension. In the last chapter of this thesis a tool, called X-Cube-AI, is used to
automatically create an optimized C library that allows the implementation of
the algorithm on a microcontroller. This software can convert files from the main
Python deep learning frameworks (such as Keras or Tensorflow) but the .pth format

60

Neural Network Training Framework

of Pytorch is not supported. What is supported is the ONNX, an open format
built to represent machine learning models [27], so a Python script to convert .pth
files to ONNX is written and shown in listing 3.16.

Listing 3.16: PyTorch to ONNX conversion
1 import torch
2 import torch . onnx
3 import status_now_classes
4 import pandas as pd
5 import u t i l i t i e s as u t i l
6

7

8 model = torch . load (’ . . / r e s u l t s /1234 TrainingImage1 /0004
_best_model_hiddenLayers_1_neurons_10 . pth ’)

9 model . eva l ()
10 batch_size = 1
11 num_features = 8
12 x = torch . randn (batch_size , num_features , requ i res_grad = True)
13 output = model (x)
14 pr in t (model)
15 torch . onnx . export (model , x , ’ Four_plants_10 . onnx ’ , export_params=True ,

opset_vers ion =10, do_constant_folding=True , input_names =[] ,
output_names =[] , dynamic_axes={ ’ impedance_phase ’ : { 0 : ’ batch_size ’ } ,

’ impedance_modulus ’ : { 0 : ’ batch_size ’ } , ’ moisture ’ : { 0 : ’ batch_size ’
} , ’ temperature ’ : { 0 : ’ batch_size ’ } , ’ Ambient Light ’ : {0 : ’ batch_size ’
} , ’ day_of_year ’ : { 0 : ’ batch_size ’ } , ’ hour ’ : { 0 : ’ batch_size ’ } , ’
AirHumidity ’ : { 0 : ’ batch_size ’ } , ’ Status ’ : { 0 : ’ batch_size ’ } })

The model is loaded by using the torch.load() command specifying the path of the
model to be converted. Then the torch.onnx.export() command is used to convert
and save the model as an ONNX file.

61

Chapter 4

Framework Simulations

In this chapter, the developed framework is employed to perform many simulations
useful to find a suitable neural network structure. First, the training is performed
on all four plants available, and the test on future data belonging to the same
plants. Then, only two plants are used for training, and the remaining are used
to test the neural networks. Finally, the trained models are converted from the
Pytorch .pth file to the ONNX [27] format.

4.1 Training on four plants
In this section, all four plants available are used for the training phase. The
samples used are from 24-03-2021 to 28-05-2021, and 80% of them are used as the
training dataset while the remaining 20% as a test. Many combinations of possible
structures are tried to compare different results; in particular, many parameters
are changed to see how they affect the quality of the prediction. Different setups
analyzed:

• Different number of layers

• Different number of neurons per layer

• Different combinations of features

• Different number of samples employed for each prediction

Moreover, a testing phase on future data of the same plants used for training is
performed.

62

Framework Simulations

4.1.1 One hidden layer networks
First, simpler networks with only one hidden layer are trained, and the number of
neurons is varied from 4 neurons to 20 neurons. All the hyperparameters employed
for this simulations are shown in table 4.1.

Hyperparameter Value
Activation function ReLU

Loss function Cross entropy loss

Features
Impedance modulus,Impedance phase,Soil moisture

Temperature,Ambient light,Air humidity
Day of the year,Hour

Samples per parameter 1
Overlap of samples 0

Batch size 10
Epochs 50

Learning rate 0.001

Table 4.1: Simulation parameters

In figures 4.1, 4.2 and 4.3 are shown the results of the simulation for the three
evaluation metrics available for classification problems, that are accuracy, Matthews
correlation coefficient, and F1 Score, versus the number of neurons, computed over
the 20% of data used as test dataset. Red curves represent the calculated metrics
values, while the black-dashed lines represent the trend for these plots. All the
figures show that when more neurons are employed, predictions tend to be more
precise. Another thing to notice is how these three graphs are similar; since F1
Score and Matthews correlation coefficient are quantities that take into account
also the balancing of the dataset, the fact that their plots are similar to the one of
the accuracy indicates that the used dataset is correctly balanced between positive
and negative cases, i.e., healthy and unhealthy plant samples. Considering accuracy,
the performances of the networks range from a minimum of 82% of the network
employing only four neurons up to 93.5% reached by the ones with 13,16, and 19
neurons. To understand better the quality of the models obtained, they are then
tested on samples of the same four plants starting from 29-05-2021 to 20-07-2021;
in this way, it is possible to appreciate how the networks perform on future data
belonging to the same plants.

63

Framework Simulations

Samples per parameter

In this section, the number of samples in the past for each prediction is varied to
see if it positively affects the algorithm’s performance. In particular, four cases are
analyzed:

• 6 samples in the past

• 12 samples in the past

• 18 samples in the past

• 24 samples in the past

Since each sample is acquired every hour, this technique implies using time windows
of 6,12,18, and 24 hours, respectively. The time windows move by one sample, mean-
ing that a new prediction is provided every hour. Figure 4.10 shows the obtained
results on the 20% of the dataset used for testing. All the curves representing the
simulations where some samples in the past are employed show better performance
than the case in which no past samples are considered. All the cases that consider
past samples have similar performance that is in the range of 90-95%; however, the
case where 6 past samples are considered is promising: it performs well for almost
all the number of neurons, moreover, considering that only 6 samples in the past
are considered it results in fewer input neurons, resulting in a simpler network.
This aspect can be favorable, looking forward to a low-power implementation on a
microcontroller.

Figure 4.10: Accuracy vs number of neurons - Samples in the past

Figure 4.11 shows the simulation results on future data of the same plants used
for training. In this situation, an overall drop in the performance is present since

70

Framework Simulations

4.1.2 Two hidden layers networks
After analyzing simpler networks composed of just one hidden layer, a new analysis
is performed on more complex networks containing two hidden layers. To perform
this search the functionality nnShape1 is used. This analysis is done by selecting
only some possible values for each hidden layer: 6,10,14, and 20 neurons. The
same case studies of the previous section are proposed here to see the differences
with networks with only one hidden layer. The first simulations are performed
considering all the available features, and the main settings are shown in table 4.4.

Hyperparameter Value
Activation function ReLU

Loss function Cross entropy loss

Features
Impedance modulus,Impedance phase,Soil moisture

Temperature,Ambient light,Air humidity
Day of the year,Hour

Samples per parameter 1
Overlap of samples 0

Batch size 10
Epochs 50

Learning rate 0.001

Table 4.4: Simulation parameters

Also in this case, the dataset employed is well balanced between negative and
positive cases, so only the plots regarding the accuracy are reported since it is more
intuitive than MCC or F1 Score. Since in this new simulation the accuracy will
be plotted against the numbers of neurons of layer 1 and layer 2, a visualization
that employs a color map was chosen where colors tending to the yellow represent
better performance, and more red cells indicate a worse behavior. As usual, the
model is first trained on 80% of the dataset and tested on the remaining 20%, and
the corresponding results are shown in figure 4.12. It can be noticed a good overall
accuracy that ranges from 86.7% to 98%. In particular, more complex networks
seems to behave better, especially the ones with more neurons in the second hidden
layer; in fact from the figure, it can be observed that networks composed of 20
neurons in the second hidden layer are the ones that exhibit the best behavior.
Again, the trained models are tested on future samples belonging to the same four
plants, and another colormap is produced and shown in figure 4.13. It can be
observed that there is a performance drop when analyzing future samples, and
this is quite visible, noticing how, overall, the colormap tends to have more red
colors. In this case, simpler networks, i.e., the ones located on the bottom side
of the colormap, present worse performance compared to the more complex ones

72

Framework Simulations

Predictions with impedance and moisture

In this section, networks with two hidden layers are trained using impedance and
moisture as features. Looking at figure 4.18, a slight increase in performance is
observed except for the network with 6 neurons in both hidden layers, which fails
by reaching almost null accuracy. This model is discarded from this analysis since it
can be due to a particularly bad minimum found by the gradient descent algorithm
during training, and it is in strong contrast with all the other models trained. The
accuracy on the present data of the plants rose compared to the case with only
impedance employed and reached above the 85% for many networks. In figure 4.19,
the models are tested on future data, and the accuracy drops drastically, suggesting
strong overfitting and that impedance and moisture are not enough to get a reliable
prediction. This fact is confirmed by figure 4.20 where performance is perfect on
plant 1 and decent on plant 2 but drops drastically for plants 3 and 4.

Figure 4.18: Two layers networks - Impedance and moisture

77

Framework Simulations

Samples per parameter

In this section, networks with two hidden layers employing all the features available
are trained using a different number of past samples for each feature to perform a
single prediction. For each number of past samples, the networks are tested first on
the 20% of the dataset excluded from training, then predictions on future samples
belonging to the same four plants are evaluated. Figure 4.21 shows the results on
the 20% test dataset; it can be noticed that performance is excellent, and almost
any network performs over 95% of accuracy. The same networks are evaluated on

Figure 4.21: Two layers networks - 6 samples in the past

the same four plants but considering subsequent samples; the results are shown
in figure 4.22. The general performance has reduced with respect to the previous
case, but it is still acceptable since most of the networks perform above 80% with
the best results obtained by a network with 6 and 10 neurons in the hidden layers.
It can also be noticed a sort of "noisiness" among the results since some networks
present accuracy that is a lot lower than best cases; an example of this effect is
the network with 14 and 10 neurons which scores only 64.4% of accuracy. Looking
at these results, it is possible to effectively predict the future status of the plants
used for training.
The same analysis is performed for the other cases of 12,18, and 24 samples in the
past. The results follow the same trend as the case of 6 samples: the accuracy
prediction is excellent on the test dataset, and a performance drop is noticed when
predicting future data. Another important aspect is that for the 12,18 and 24
samples cases, the accuracy on future data is worse than the 6 samples case. Since
employing fewer past samples leads to better performance, it does not make sense

79

Framework Simulations

Figure 4.22: Two layers networks - 6 samples in the past - Future predictions

to pick more than 6 samples in the past because the number of features to be
used in those networks will be larger, leading to greater network complexity not
justified by an increase in performance. The following figures present results for
the networks with 12,18, and 24 samples in the past.

Figure 4.23: Two layers networks - 12 samples in the past

80

Framework Simulations

Figure 4.24: Two layers networks - 12 samples in the past - Future data

Figure 4.25: Two layers networks - 18 samples in the past

81

Framework Simulations

Figure 4.26: Two layers networks - 18 samples in the past - Future data

Figure 4.27: Two layers networks - 24 samples in the past

82

Framework Simulations

Figure 4.28: Two layers networks - 24 samples in the past - Future data

83

Framework Simulations

4.2 Training on two plants, test on the others
Up to now, all the neural networks were trained on all four available plants and
tested data of the same plants, whether from the same time frame or a future
one. This section uses a different methodology which is more similar to how an
implementation of a classifier’s actual application should work: the networks are
trained on a set of plants and used to predict the state of health of different plants.
Since the dataset available is composed of four plants, 2 of them are used for the
training phase, while the others are for the testing. One healthy and one unhealthy
plant are taken for training, and the same is done for the testing dataset using the
remaining plants.

4.2.1 One hidden layer networks
The same procedure used in the previous training process is also followed in this
situation. The first case analyzed is considering networks with only one hidden
layer, the number of neurons is varied, and the results are reported considering
future data belonging to the same plants employed for training, but now also
for the future data belonging to the remaining two plants. The results of the
training processes are plotted in figure 4.29. Two cases are presented: the blue

Figure 4.29: Two plants training: one layer networks

line represents the results of the networks when tested on future data of plants 1
and 2 (the ones used for training), while the black line shows the performance of
plants 3 and 4. The first case shows good performance, reaching a peak accuracy
of 95 %. In the second case, a significant performance drop is observed: prediction

84

Framework Simulations

accuracy is always greater than 75%; however, it dropped by more than 10%. The
best results for what regards the test on unseen plants 3 and 4 are reached with
networks having 10,12 and 16 neurons, which present an accuracy of almost 78 %.
This performance drop between seen and unseen plants suggests the presence of
overfitting, probably due to the simplicity of the network combined with a great
quantity of data belonging only to two different plants.

Predictions with only impedance

In previous sections, some networks were trained by employing only impedance
modulus and phase as features; this situation is also analyzed here to see if the
results found when working on four plants are also valid in this new case.
With respect to the previous case, where all the features were employed, this
situation shows less accurate predictions also on the plants 1 and 2 used for
training, with an accuracy in the range of 50-60%. Moving to unseen plants 3 and 4,
the situation also worsens with most of the networks performing correct predictions
in less than 10% of the cases and a few of them reaching still not acceptable
performance around 50%. These results confirm that using only impedance features
does not lead to great results both on future data belonging to the same plants
used for training and on future data of unseen plants.

Figure 4.30: Two plants training - Impedance only

85

Framework Simulations

Predictions with impedance and moisture

A similar analysis to previous sections is now performed. The soil moisture is added
to the impedance and is used as a feature of the trained neural networks.

Figure 4.31: Two plants training - One layer networks - Impedance and moisture

Adding moisture as a feature increased the overall performance on test data
belonging to plants 1 and 2, reaching almost 80% for all the number of neurons
employed.

On the other hand, the results on plants 3 and 4 are still not acceptable. Some
networks perform exceptionally well on the test plants reaching almost 90 % of
accuracy. However, most models perform poorly, scoring less than 40%.

Prediction with samples in the past

Now the networks with only one hidden layer are trained using samples from
the past to make a prediction. Figure 4.32 shows the results on plants 1 and 2.
all the networks perform well, but it can be noticed that the case which shows
better results is the one in which 6 samples in the past are considered. A general
performance drop is noticed when moving to figure 4.33, suggesting the presence of
overfitting. In this case, the networks with 6,12, and no samples in the past show
accuracy on average around 75% while networks with 18 and 24 samples perform
worse.

86

Framework Simulations

Figure 4.32: One layer networks - Samples in the past - Test on 1-2

Figure 4.33: One layer networks - Samples in the past - Test on 3-4

4.2.2 Two hidden layers networks
This section will analyze networks composed of two hidden layers. As done pre-
viously for this type of analysis, only some values for each hidden layer will be
considered: 6,10,14, and 20 neurons. The search nnShape1 of the statusNowFinder
functionality is employed to perform the simulations.The model will be first eval-
uated on the plants used for training (plants 1 and 2) and then tested on data
belonging to plants 3 and 4. Figure 4.34 represents the performance of the trained

87

Framework Simulations

networks on plants 1 and 2, using the 20% of these plants’ samples which were
excluded from the training process. The image shows excellent performance, always
higher than 90%. However, to better understand the neural networks’ quality, it is
possible to observe figure 4.35, which shows the accuracy on plants 3 and 4. In this
case, it is visible how the performance dropped with respect to plants 1 and 2. This
behavior suggests that the networks are overfitting, so they try strongly to predict
the status of plants 1 and 2 correctly, but, in this way, they lose generalization
capability. It is worth noticing the model composed of 20 neurons in the first hidden
layer and 10 in the second one, which can achieve 78% of accuracy. This result is
not excellent but shows that it is possible to train a neural network on some plants
and use it on others that are entirely new from the network’s perspective.

Figure 4.34: All features employed - Test on plants 1 and 2

88

Framework Simulations

Figure 4.35: All features employed - Test on plants 3 and 4

Predictions with only impedance

Like in previous sections, also for the training with 2 plants, networks employing
only impedance data are trained. The results of the simulations for plants 1 and 2
are shown in figure 4.36. The performance reached is around 75%, with the best
network reaching 79.4% and the worse 68.4%.

Figure 4.36: Only impedance - Test on plants 1 and 2

The networks are tested on unseen plants 3 and 4; the results are represented in

89

Framework Simulations

figure 4.37. Also in this case, the neural networks show a performance drop that can

Figure 4.37: Only impedance - Test on plants 3 and 4

be due to overfitting, however, with respect to the previous case, this phenomenon
is less evident since the performance difference between seen and unseen plants is
reduced. Looking at figure 4.37, it is possible to see slightly better performance of
simpler networks, so the ones located in the bottom left corner of the table, while
moving towards the top right corner result in an accuracy reduction indicating that
more complex networks tend to be more subject to overfitting.

Predictions with impedance and moisture

Following the usual scheme, figures 4.38 and 4.39 show the performance on plants
1-2 and 3-4, respectively, employing as features only impedance data and soil
moisture. Looking at figure 4.38, we can observe that the performance on known
plants is better than the previous case where only impedance was considered as a
feature. Here, many networks perform above the 85% of accuracy, and the best one
achieves 88.6% (10-20 neurons). The situation is different in figure 4.39, where the
classifiers are evaluated on plants 3 and 4. In this case, the results tend to decrease.
The performance ranges from 53.9% up to 74.5% showing a great variability between
different networks. With respect to the case where only impedance was considered,
here, overfitting seems to be stronger; in fact, the performance difference between
the two tests is overall larger, and results tend to be more "noisy," highlighting the
fact that the networks tend to classify known plants accurately and to misclassify
unseen plants.

90

Framework Simulations

Figure 4.38: Impedance and moisture - Plants 1 and 2

Figure 4.39: Impedance and moisture - Plants 3 and 4

Samples in the past

In this section, the networks are trained using different numbers of past samples to
perform a prediction. The case analyzed are the following:

• 6 samples in the past

• 12 samples in the past

91

Framework Simulations

• 18 samples in the past

• 24 samples in the past

Starting from the first case, networks employing 6 samples to make a prediction
are trained. The test results on plants 1 and 2 are reported in figure 4.40. As
happened many times in previous simulations, the performance on known plants is
auspicious, showing scores constantly above 95% of accuracy. Figure 4.41 shows
how the same network performs on unseen plants 3 and 4. Regarding the results

Figure 4.40: 6 samples in the past - Test on plants 1 and 2

on plants 1 and 2, in this case, the accuracy has decreased; however, employing
6 samples for a prediction leads to some good models even if overfitting is still
present. In particular it is interesting to compare figure 4.41 with 4.35 in which the
same networks are trained without considering samples in the past. It is possible
to notice that adding 6 past samples to perform a prediction leads to a better and
more stable performance through the various structures considered. In particular,
the model composed of 20 neurons in both hidden layers is worth to be noticed
since it shows great performance on both pairs of plants with 95.9% and 89%.
The same analysis is performed employing 12 samples for a single prediction and
results are presented in figure 4.42 and 4.43. The tests on plants 1 and 2 give good
results, as it is common on the plants used for training.

92

Framework Simulations

Figure 4.41: 6 samples in the past - Test on plants 3 and 4

Figure 4.42: 12 samples in the past - Test on plants 1 and 2

Considering the accuracy on plants 3 and 4 instead, it is possible to see how,
concerning the case of 6 past samples, the performance is less good overall and that
many networks are strongly overfitting since the difference between the accuracy in
the two cases has increased.
Figures 4.44 and 4.45 represent the results considering 18 past samples. As for
the previous case, the accuracy on plants 1 and 2 is around 95% for almost all
the trained networks. Moving to results on plants 3 and 4, it is possible to notice

93

Framework Simulations

Figure 4.43: 12 samples in the past - Test on plants 3 and 4

Figure 4.44: 18 samples in the past - Test on plants 1 and 2

that the overall performance is decreasing while picking more samples in the past.
Still, some model scores good performance; however, the variability of the results
across the structures analyzed has grown, and the overall difference between results
on plants 1-2 and 3-4 suggests that increasing the past samples considered is also
boosting the overfitting from which networks are affected.
Finally, the case of 24 samples in the past is considered, and the trend seen in
the previous case continues here: for what refers to plants 1 and 2, performance

94

Framework Simulations

Figure 4.45: 18 samples in the past - Test on plants 3 and 4

is still good and above 90% for almost all the networks. Considering the test
on plants 3 and 4 and adding even more samples for a prediction led to a worse
performance than the previous cases where a smaller number of samples in the
past was considered.

Figure 4.46: 24 samples in the past - Test on plants 1 and 2

Overall the networks that employ 6 past samples for a prediction perform better
and are less complex, so it seems more convenient to use these networks rather
than the ones with 12,18, or 24 samples in the past.

95

Framework Simulations

Figure 4.47: 24 samples in the past - Test on plants 3 and 4

4.3 Conclusions from the analysis
In the previous sections, many simulations were performed to understand the
possible performance of a neural network to predict plants’ status. First, all four
plants were used as training, and the test was performed on future data from the
same plants. Regarding networks with one hidden layer, it was possible to reach
an accuracy on future data of 80% when employing all the features available. This
result was further boosted to around 85% when employing 6 samples in the past
to perform a prediction. Some tests using only impedance data or impedance
and moisture combined led to not satisfying results. Moving to two hidden layers
networks, the performance accuracy rose above 84% and using 6 samples in the
past, in this case, did not boost the performance like in the previous case. For
two hidden layers networks employing only impedance or impedance and moisture
did not show good results. Second, the networks were trained only on two plants,
leaving the other two as test datasets to emulate a situation closer to the final
goal of the entire project: having a classifier to detect the status of completely
unseen plants. In this case, one hidden layer networks showed worse performance
than the case with all four plants used as training and this result was expected
since the test plants are completely new and networks showed signs of overfitting.
However, accuracy was around 75% and reached almost 80% when employing 6
samples in the past. These results are not excellent but suggest the possibility
of predicting the plants’ status by employing relatively simple networks. Also, in
this case, one hidden layer networks that use only impedance or moisture did not
show good results. Regarding networks with two hidden layers, they showed strong

96

Framework Simulations

overfitting when all the features were employed, reaching a maximum of 73% on
the test plants. This situation was mitigated by employing 6 samples in the past,
leading to performance above 85%. Also in this case, employing only impedance or
impedance and moisture did not show promising results.

97

Chapter 5

Toward Microcontroller
Implementation

In this chapter, the focus will be moved toward a possible microcontroller imple-
mentation of the networks studied in previous chapters. Even if the neural networks
analyzed are still not optimal and much work is needed to completely understand
how to solve the problems of overfitting highlighted in the previous chapter, it is
worth analyzing the costs of a firmware implementation of such neural networks. In
particular, since the final aim of this project is to integrate a plant status classifier
to perform edge computing, it is interesting to understand how many resources
these algorithms require to run on a microcontroller and the possible performance.
In particular, a Nucleo board from STMicroelectronics was employed to perform
some microcontroller test implementations. In particular the NUCLEO-F446RE
equipped with an STM32F446RET6U was used. STMicroelectronics provides
a package for artificial intelligence called X-CUBE-AI [28], which provides an
automatic neural network library generator that is already optimized for what
regards computation and memory and can convert trained models from the main
machine learning frameworks such as TensorFlow, Keras, and ONNX to a library
that the user on the microcontroller can employ. This package, together with the
STM32CubeMX code generator and the STM32CubeIDE are employed to load one
of the models trained in the previous chapter and perform some analysis on it for
what regards memory occupation, computation time, and power consumption.
Figure 5.1 from X-Cube-AI documentation shows the general structure of the
software. Up to this point, the trained model is available in the ONNX format
[27]. The model is imported by specifying simple information such as the file
format used to save the neural networks model (ONNX in our case), the name
of the networks and features, a compression factor used to reduce the memory
impact of the algorithm and the target STM32 microcontroller. From these simple

98

Toward Microcontroller Implementation

Figure 5.1: X-Cube-AI core from user manual [28]

parameters, the software can generate a ready-to-use C-code library that allows the
user to employ the previously trained neural network model. An important part of
the X-Cube-AI is the validation engine that allows the user to test the C-model
library created, compare it to the saved model to see if, during the transition
between the ML framework to the C-code, some numerical degradations occurred
(in particular when the compression factor is used). Moreover, a complexity report
will be produced and analyzed to evaluate the overall cost of the selected model.
This section presents the step-by-step procedure to load a model on the STM32
microcontroller. All the procedure is performed using the STM32CubeIDE, which
embeds the STM32CubeMX code generator and easily allows the installation of
the X-Cube-AI add-on package. First, a project is created by selecting "New >
STM32 project". The window that pops up is the board selector, which allows the
selection of the desired Nucleo board; in this case, the NUCLEOF446RE. Then the
program asks to name the project, and after that, a new window appears asking
if initialize all the peripherals in default mode; in this case, where just a simple
analysis is required, the answer will be yes, but when dealing with a real project the
user might consider a different choice. At this point, the STM32CubeIDE should
be a screen like the one in figure 5.2.
From here, it is necessary to activate the X-Cube-AI package by clicking on Software
Packs > Select Components, and the screen on figure 5.3 will appear. In this new
window, looking inside the red-dashed frame, check the box, and the X-Cube-AI
package is now activated, and it is possible to click Ok. Back to the screen in figure
5.2
Back to the screen in figure 5.2, on the left is appeared a new entry called Software

99

Toward Microcontroller Implementation

Figure 5.2: Initial screen of the STM32 project

Figure 5.3: Activation of X-Cube-AI

Packs, select it and then click on STMicroelectronics.X-CUBE-AI<version>, where
<version> corresponds to the downloaded version of X-Cube-AI. After doing so,
the window in figure 5.4 will appear. From here, it is possible to add a model to

100

Toward Microcontroller Implementation

be loaded on STM32 by clicking the "+" icon near Platform settings.

Figure 5.4: Loading model screen

After this, the window in figure 5.5 will pop up. From here, it is necessary to insert
the name of the desired model (which will also be the name of the created C-library
for the model), select the format of the saved model (in our case, it is the ONNX
format), and then load the model file by clicking on Browse. Once the model is
added to the project, it is possible to click on Analyze to print on screen some
useful preliminary information on the network, such as RAM and Flash, necessary
to run the model.
It is also possible to set a compression factor that reduces the dimension of the
weights of the network, saving some memory space. When the model is correctly
loaded, it is possible to use the Validation engine presented in figure 5.1 to perform
some tests on the automatically generated C-model. Two kind of validation
techniques are available: Validate on desktop and Validate on target. For both
of them, it is possible to test the network using random or custom input data
provided through CSV files.

Validation on desktop

This execution mode allows comparing the generated C model with the original
model created using the ML framework. This operation runs on the host and
not on the microcontroller. The validation on desktop is not mandatory, however,
it is recommended by STMicroelectronics, in particular for the cases in which a
compression factor is applied to the model. Figure 5.6 shows the workflow for the
validation on desktop.

101

Toward Microcontroller Implementation

Figure 5.5: Loading model files

Figure 5.6: Validation on desktop workflow [28]

The evaluation on desktop process uses the input data (random or provided by
the user) on both the original and the created C model. The networks’ outputs
are written on file so that it is possible to perform some post-processing if needed.
Then some performance metrics such as accuracy, RMSE, and others are evaluated.
It is important two notice that, in this validation case, eventual manipulations of
the output of neurons should be done with some processing. For example: with
the model trained in previous sections, the procedure to evaluate the prediction

102

Toward Microcontroller Implementation

starting from the output neurons’ values was to compare their values and, based on
the result, pick a particular prediction. In this case, the comparison operation is
not performed by the validation engine, so the results returned are just the values
of the output neurons. To get the predictions, some post-processing on the results
file is necessary.

Validation on target

The second validation mode compares the original framework model with the
generated C model running on the target device, so on the microcontroller. The
workflow of this operation is shown in figure 5.7.

Figure 5.7: Validation on target workflow [28]

The process is similar to the validation on desktop case, with the difference that
now the C-model is not running on the host device but the target. Also in this case,
random or custom data are injected in both the C and the original models. The
networks’ outputs are written on file, and a report containing many performance
metrics is reported. Also in this case, eventual manipulation to get the actual
predictions of the model has to be done with some post-processing.

Evaluation metrics

Whenever a validation process is run X-Cube-AI returns a report containing valuable
information about the ML model and many evaluation metrics useful to evaluate
different aspects of the algorithm implementation. A complete list of the available
metrics is in the user manual [28] (see section 15.2). For this simple analysis, only
some of them are considered:

103

Toward Microcontroller Implementation

• MACC and cycles/MACC

• Memory-related metrics

• Accuracy

• Confusion matrix

MACC and cycles/MACC are measures of the computational complexity of
the neural network. In particular MACC refers to the number of Multiply and
Accumulate operations needed to perform inference. This metric is independent
of the C-model implementation generated by X-Cube-AI, so it can be evaluated
immediately when the model is analyzed. Instead, cycles/MACC is a metric that
allows for on-device profiling of the performance by measuring the number of
clock cycles the target device uses to perform an inference divided by the MACC.
Memory-related metric refers to information about the usage of Flash and RAM.
In particular, weights and activations of the neural networks are stored inside
the Flash of the target device, so it is helpful to estimate how much memory is
used to store these values. Moreover, when performing an inference, intermediate
values of the neural network need to be stored on RAM to compute the output;
for this reason, it is also useful to estimate the volatile memory usage required.
Regarding the accuracy and confusion matrix, no further explanations are needed
since they are the classical, well-known parameters useful to evaluate the quality
of a prediction.

Example

A model with 2 hidden layers with 20 and 14 neurons saved in the ONNX format
is loaded on the microcontroller. The validation process on target is performed,
providing the model with two CSV files containing the input features and expected
outcomes. When the process is completed, a report is produced, and it is now
analyzed. First, some information about the network is reported:

Validation report
1

2 Generated C−graph summary
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 model name : four_plants_20_14
5 c−name : network
6 c−node # : 5
7 c−array # : 12
8 a c t i v a t i o n s s i z e : 136 (1 segments)
9 weights s i z e : 2016 (1 segments)

10 macc : 538
11 i nputs : [’ node_0_output ’]

104

Toward Microcontroller Implementation

12 outputs : [’ node_12_output ’]
13

14 C−Arrays (12)

In the listing, some information about the loaded model extracted from the report
is reported; in particular, the size in Bytes of the network activations and weight are
shown as the number of MACC operations. Note that the memory usage reported
here does not correspond to the total memory necessary to run the model on the
target device. Since X-Cube-AI also generates a C-Library that allows using the
model, the library’s size has to be considered and is bigger than the memory used
by the model itself. For this case, the Flash used by the library is 11.86 KiB which,
added to the 1.97 KiB (2016 Byte / 1024 = 1.97 KiB)occupied by the weights,
results in a total Flash size of 13.82 KiB. Note that KiB refers not to the Kilobyte
(kB) but the Kibibyte. To convert the number of bytes to Kibibytes, it is necessary
to divide by 1024. For what concerns the RAM used, the neural network itself
needs the 136 Bytes of the activations (136 · 1,024 = 0.133 KiB) and 1.88 KiB
for the execution of the library, for a total of 2.01 KiB. Some information about
the inference process is reported in the following part of the validation report. In
this case, the number of CPU cycles used to perform an inference is 7798, which,
considering that the microcontroller employed is running at 180 MHz, corresponds
to 7798 · 1

180 MHz
= 0.043 ms which is the value written in the report. Moreover, it

is also reported the time spent by the network for the computation of the values of
each layer and the corresponding percentage concerning the total inference time.

content/STM32/network_validate_report.txt
1

2 Resu l t s f o r 1216 i n f e r e n c e (s) − average per i n f e r e n c e
3 dev i ce : 0x421 − UNKNOW @180/180MHz fpu , ar t_lat =5,

art_pre fetch , art_icache , art_dcache
4 durat ion : 0 .043ms
5 CPU c y c l e s : 7798
6 c y c l e s /MACC : 14 .49
7 c_nodes : 5
8

9 c_id m_id desc output ms %
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−
11 0 1 Dense (0 x104) (1 , 1 , 1 , 20) / f l o a t 3 2 /80B 0.014

33.1%
12 1 2 NL (0 x107) (1 , 1 , 1 , 20) / f l o a t 3 2 /80B 0.003

7.7%
13 2 3 Dense (0 x104) (1 , 1 , 1 , 14) / f l o a t 3 2 /56B 0.018

41.5%
14 3 4 NL (0 x107) (1 , 1 , 1 , 14) / f l o a t 3 2 /56B 0.003

6.6%
15 4 5 Dense (0 x104) (1 , 1 , 1 , 2) / f l o a t 3 2 /8B 0.005

11.0%

105

Toward Microcontroller Implementation

16 −−−−−−−−−−−−−−−−−−−−−−−−−−
17 0 .043 ms

106

Toward Microcontroller Implementation

In the following part of the report, some performance metrics are reported.
In particular, the accuracy and confusion matrix are evaluated for both the C-
generated and original models. In the last part of the below listing, the Cross
accuracy and confusion matrix resulting from comparing the C and the original
is reported. It can be noticed that a score of 100% of cross accuracy is obtained;
this means that the C model and the original one behave in the same way, and no
degradation was introduced in the transition to the C model.

content/STM32/network_validate_report.txt
1

2 Accuracy repor t #1 f o r the generated stm32 C−model
3 −−−−−−−−−−−−−−−−−−−−−−−−−−
4 notes : − computed aga in s t the provided ground truth va lue s
5 − 1216 samples (2 items per sample)
6

7 acc =73.68%, rmse =4.405611515 , mae=3.851439714 , l 2 r =0.980058432 , nse
=−7660.57%

8

9 2 c l a s s e s (1216 samples)
10 −−−−−−−−−−−−−−−−−−
11 C0 306 .
12 C1 320 590
13

14 Accuracy repor t #1 f o r the r e f e r e n c e model
15 −−−−−−−−−−−−−−−−−−−−−−−−−
16 notes : − data type i s d i f f e r e n t : r / f l o a t 3 2 in s t ead p/ f l o a t 6 4
17 − computed aga in s t the provided ground truth va lue s
18 − 1216 samples (2 items per sample)
19

20 acc =73.68%, rmse =4.405611515 , mae=3.851439714 , l 2 r =0.980058432 , nse
=−7660.57%

21

22 2 c l a s s e s (1216 samples)
23 −−−−−−−−−−−−−−−−−−
24 C0 306 .
25 C1 320 590
26

27 Cross accuracy repor t #1 (r e f e r e n c e vs C−model)
28 −−−−−−−−−−−−−−−−−−
29 notes : − data type i s d i f f e r e n t : r / f l o a t 6 4 in s t ead p/ f l o a t 3 2
30 − the output o f the r e f e r e n c e model i s used as ground truth /

r e f e r e n c e value
31 − 1216 samples (2 items per sample)
32

33 acc =100.00%, rmse =0.000000000 , mae=0.000000000 , l 2 r =0.000000000 ,
nse =100.00%

34

35 2 c l a s s e s (1216 samples)

107

Toward Microcontroller Implementation

36 −−−−−−−−−−−−−−−−−−
37 C0 626 .
38 C1 . 590

The same validation procedure is applied to a model composed of one hidden layer
with 10 neurons to compare it to the model with 2 hidden layers with 20 and 14
neurons.

1 hidden layer model 2 hidden layers model
Neurons in 1st-2nd hidden layer 10 - / 20 - 14

Network flash usage 448 B 1.97 KiB
Library flash usage 11.16 KiB 11.86 KiB

Total flash usage 11.59 KiB 13.86 KiB
Network RAM usage 72 B 136B
Library RAM usage 1.38 KiB 1.88 KiB

Total RAM usage 1.45 KiB 2.01 KiB
Complexity 122 MACC 538 MACC

Inference time 0.016 ms 0.043 ms
CPU Cycles 2872 7798

Cycles/MACC 23.55 14.50
Accuracy 73.77 % 73.68%

Table 5.1: 1 hidden layer model vs 2 hidden layers model

108

Chapter 6

Conclusion and Future
Perspective

In this thesis, a neural network framework was employed and then used to train
a great number of neural networks. An extensive analysis of neural networks
showed the feasibility of plants’ status prediction with relatively simple neural
networks. Networks with one hidden layer showed a prediction accuracy on future
data belonging to the plants used for training of 80 %, which can be boosted to
85 % if 6 samples in the past for each feature are used. When these networks are
used on the unseen plants, the results drop to around 75% when no samples in
the past are used and to 80% when 6 past samples are employed. Networks with
two hidden layers reached a prediction accuracy of 84% on the future data from
plants used in the training phase, but using samples in the past did not boost the
performance in this situation. Regarding the test on unseen plants, the networks
with two layers showed a performance drop to 73%, which is mitigated by using 6
samples in the past, leading to 85% accuracy on completely unseen plants. Finally,
the X-Cube-AI tool was employed to load and benchmark two networks on an
STM32 microcontroller. Two neural networks were loaded on the microcontroller:

• a network with one hidden layer with 10 neurons

• a network with two hidden layer with 20 and 14 neurons

The results obtained for these two network when validated on the target device
were around 73% of prediction accuracy; however the simpler network with just one
hidden layer showed a smaller Flash and RAM usage as well as a faster execution
time. In the future, the first objective is to boost the neural network’s performance,
and a possible option is to augment the dataset with more different plants to be
used in the training phase. Once better networks are obtained, the automatic

109

Conclusion and Future Perspective

C-library generator provided by X-Cube-AI can be used to ease the process of
writing the firmware of a classifier operating on the edge.

110

Chapter 7

Appendix

Appendix A: How to setup the framework using
Anaconda
In this section it is explained how to install easily all the Python modules and
their dependencies to be able to run the framework. To do so, the program used is
Anaconda that allows to easily create virtual environments in which it is possible
to safely use all the Python packages needed by the user in a project. Anaconda
can be downloaded from the official site [29]. Once the installation is complete it is
possible, to use the file ml_framework_env.yml to automatically setup a virtual
environment with all the packages needed for the framework execution by typing
the following command.

1 $ conda env c r ea t e −f ml_framework_env . yml

This command creates a virtual environment whose name is specified inside the
yml file. It is possible to change the environment name inside the yml to create an
environment with a different name. To see if the environment is correctly created
type:

1 $ conda l i s t

and the name of all the environment created will be printed. 1 To correctly execute
the framework the created virtual environment should be acctivated, to do so the
following command is used.

1 $ conda a c t i v a t e <environment_name>

112

Appendix

Once the virtual environment is correctly activated it is possible to launch the
framework.

113

Appendix

Appendix B: Available Pytorch activation func-
tions

Pytorch activation functions
ELU

Hardshrink
Hardsigmoid

Hardtanh
Hardswish

LeakyReLU
LogSigmoid

MultiheadAttention
PReLU
ReLU
ReLU6
RReLU
SELU
CELU
GELU

Sigmoid
SiLU
Mish

Softplus
Softshrink
Softsign

Tanh
Tanhshrink
Threshold

GLU
Softmin
Softmax

Softmax2d
LogSoftmax

AdaptiveLogSoftmaxWithLoss

Table 7.1: Available Pytorch activation functions

114

Appendix

Appendix C: Available Pytorch loss functions
Pytorch loss functions available in the torch.nn package.

Pytorch loss functions
nn.L1Loss

nn.MSELoss
nn.CrossEntropyLoss

nn.CTCLoss
nn.NLLLoss

nn.PoissonNLLLoss
nn.GaussianNLLLoss

nn.KLDivLoss
nn.BCELoss

nn.BCEWithLogitsLoss
nn.MarginRankingLoss

nn.HingeEmbeddingLoss
nn.MultiLabelMarginLoss

nn.HuberLoss
nn.SmoothL1Loss
nn.SoftMarginLoss

nn.MultiLabelSoftMarginLoss
nn.CosineEmbeddingLoss

nn.MultiMarginLoss
nn.TripletMarginLoss

nn.TripletMarginWithDistanceLoss

Table 7.2: Available Pytorch loss functions

115

Appendix

Appendix D: Available Pytorch optimizers
Pytorch optimization algorithms available in torch.optim pacakge.

Pytorch optimizers
Adadelta
Adagrad
Adam

AdamW
SparseAdam

Adamax
ASGD
LBFGS
NAdam
RAdam

RMSprop
Rprop
SGD

Table 7.3: Available Pytorch optimizers

116

Bibliography

[1] Lee Bar-on, Aakash Jog, and Yosi Shacham-Diamand. «Four Point Probe
Electrical Spectroscopy Based System for Plant Monitoring». In: 2019 IEEE
International Symposium on Circuits and Systems (ISCAS) (2019), pp. 1–5.
doi: 10.1109/ISCAS.2019.8702623 (cit. on pp. ii, 31).

[2] Lee Bar-On, Sebastian Peradotto, Alessandro Sanginario, Paolo Motto Ros,
Yosi Shacham-Diamand, and Danilo Demarchi. «In-Vivo Monitoring for
Electrical Expression of Plant Living Parameters by an Impedance Lab
System». In: 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS) (2020), pp. 178–180. doi: 10.1109/ICECS46596.2019.
8964804 (cit. on p. ii).

[3] Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Sebastian Peradotto, Yosi Shacham-Diamand, Adi Avni, Maurizio Martina,
and Danilo Demarchi. «Towards Optimal Green Plant Irrigation: Watering
and Body Electrical Impedance». In: 2020 IEEE International Symposium on
Circuits and Systems (ISCAS) (2020), pp. 1–5. doi: 10.1109/ISCAS45731.
2020.9181290 (cit. on pp. ii, 31).

[4] Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Stefano Calvo, Maurizio Martina, Adi Avni, Yosi Shacham-Diamand, and
Danilo Demarchi. «Analysis of In Vivo Plant Stem Impedance Variations in
Relation with External Conditions Daily Cycle». In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS) (2021), pp. 1–5. doi: 10.1109/
ISCAS51556.2021.9401242 (cit. on p. ii).

[5] Pytorch documentation. Available here (cit. on pp. 1, 29).
[6] «An Introduction to Machine Learning». Available here (cit. on p. 2).
[7] «Machine learning is popular right now». Available here (cit. on p. 2).
[8] Daniel Voigt Godoy. Deep Learning with PyTorch Step-by-Step: A Beginner’s

Guide. Volume I - Fundamentals. 2021 (cit. on p. 7).
[9] A visual explanation of gradient descent methods. Available here (cit. on pp. 9,

39).

117

https://doi.org/10.1109/ISCAS.2019.8702623
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ISCAS51556.2021.9401242
https://doi.org/10.1109/ISCAS51556.2021.9401242
https://pytorch.org/docs/stable/index.html
https://monkeylearn.com/machine-learning
https://machinelearningmastery.com/machine-learning-is-popular
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

BIBLIOGRAPHY

[10] Neural networks and deep learning. Available here (cit. on pp. 20, 21).
[11] 3Blue1Brown’s video on backpropagation. Available here (cit. on p. 20).
[12] Neural networks cost functions overview. Available here (cit. on p. 22).
[13] ReLU activation function. Available here (cit. on p. 25).
[14] Normalization. Available here (cit. on p. 26).
[15] Python documentation. Available here (cit. on p. 29).
[16] Anaconda documentation. Available here (cit. on p. 29).
[17] Python virtual environments. Available here (cit. on p. 29).
[18] DESIGN OF A NEURAL NETWORK DEVELOPMENT FRAMEWORK

FOR PLANT MONITORING APPLICATIONS. Available here (cit. on p. 29).
[19] Pandas documentation. Available here (cit. on p. 32).
[20] Pytorch Dataset. Available here (cit. on p. 33).
[21] Pytorch Module. Available here (cit. on p. 36).
[22] Pytorch: torch.nn. Available here (cit. on p. 36).
[23] Pytorch: torch.optim. Available here (cit. on p. 36).
[24] Matthews Correlation Coefficient Introduction. Available here (cit. on p. 53).
[25] Matthews Correlation Coefficient advantages. Available here (cit. on p. 53).
[26] Matthews Correlation Coefficient advantages pt.2. Available here (cit. on

p. 53).
[27] Open Neural Network Exchange format. Available here (cit. on pp. 61, 62,

98).
[28] X-Cube-AI documentation. Available here (cit. on pp. 98, 99, 102, 103).
[29] Download Anaconda. Available here (cit. on p. 112).

118

http://neuralnetworksanddeeplearning.com/chap2.html
https://www.youtube.com/watch?v=Ilg3gGewQ5U&t=307s
https://www.v7labs.com/blog/neural-networks-activation-functions
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://developers.google.com/machine-learning/data-prep/transform/normalization
https://docs.python.org
https://docs.anaconda.com/
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://webthesis.biblio.polito.it/21030/
https://pandas.pydata.org/docs/
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/optim.html
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863449/
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7
https://onnx.ai/
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.anaconda.com/products/distribution

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis structure

	Machine Learning Basics
	Types of learning algorithms
	Classification vs Regression
	Linear regression
	Logistic Regression
	Neural Networks
	Examples
	Backpropagation algorithm
	Activation functions overview

	Machine Learning Additional Information
	Normalization
	Overfitting and Underfitting
	Train-Test split

	Neural Network Training Framework
	Introduction
	Framework starting point
	Directory tree
	Dataset structure and management
	Single neural network training
	Multiple neural networks training
	Dispatcher and setting files
	Dispatcher usage

	Framework modifications
	Dataset manipulation
	Single neural networks training - Modifications
	Multiple neural network training - Modifications

	Converting PyTorch model to ONNX

	Framework Simulations
	Training on four plants
	One hidden layer networks
	Two hidden layers networks

	Training on two plants, test on the others
	One hidden layer networks
	Two hidden layers networks

	Conclusions from the analysis

	Toward Microcontroller Implementation
	Conclusion and Future Perspective
	Appendix
	Appendix A: How to setup the framework using Anaconda
	Appendix B: Available Pytorch activation functions
	Appendix C: Available Pytorch loss functions
	Appendix D: Available Pytorch optimizers

	Bibliography

