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ABSTRACT 

Intelligent Fault Diagnosis (IFD) refers to the application of machine learning theories to machine 
fault diagnosis and seems to be a promising way to release the contribution from human labor, 
since it allows the automatic recognition of the state of health of machines. 

The work presented in the thesis has as objective the identification, training, application and 
evaluation of an artificial intelligence algorithm suitable for assessing the state of health of a 
spherical roller bearing rotating system through the analysis of its vibration path. 

The first step consists in the creation, using the approach of nonlinear multi-body models, of the 
dynamic model of a real bearing, which can simulate its behavior in presence of localized defects 
on the inner or outer raceway. The interaction between bearing elements is based on the theory of 
elastic contact elaborated by Hertz; the decrease in deformation of the rolling elements due to the 
thickness of the lubricant film and damping effects of the fluid itself according to 
Elastohydrodynamic Lubrication (EHL) theory are also included in the model. 

Once the database of vibration paths, related to different rotational speeds, radial loads localized 
defects conditions, has been created, it can be analyzed in time and frequency-domain to extract 
the features necessary to train the artificial intelligence algorithm. At the same time, this operation 
is also carried out for vibration paths obtained experimentally under the same operating conditions 
used for numerical simulations to compare the results. 

The last step of this research consists in choosing the best algorithm among those belonging to 
supervised learning, such as the Support Vector Machine (SVM) and the k-Nearest Neighbors 
(kNN), evaluating their performance on both numerical and experimental data and a finally 
choosing the features of greatest impact through the Shapley values method. 
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 𝐶𝐿𝐹  clearance factor 
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 𝐷  outer diameter, dataset 
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 𝐷𝑟  rolling element diameter 
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 𝑑𝑚  pitch diameter 
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 𝐸  Young modulus 
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 𝐹𝑟  radial load 
 𝐹(𝜌)  curvature difference 
 𝑓  force, frequency, function 
 𝐺  dimensionless material parameter 
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 𝐻𝑐  dimensionless central lubricant film height 
 𝐻𝑑  defect height 
 𝐻𝑚𝑖𝑛  dimensionless minimum lubricant film height 
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 ℎ̂  predicted hypotesis 
 ℎ𝑑𝑒𝑓  defect height 
 ℎ𝑒ℎ𝑙  lubricant film thickness 
 ℎ𝑑  Vickers hardness 
 𝐼  inertia modulus 
 𝐼𝐹  impulse factor 
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 𝐽𝑟  radial integral 
 𝐾  stiffness matrix, Kernel matrix 
 𝑲𝐵  bearing stiffness matrix 
 𝐾𝑖𝑛−𝑜𝑢  resultant contact stiffness 
 𝐾𝑙  Hertzian contact stiffness for line-contact 
 𝑘  stiffness, discrete sample 
 �̂�  stiffness per unit length 
 𝑘𝑒  ellipticity parameter 
 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 kurtosis value 
 𝐿  loss function 
 𝐿𝑑𝑒𝑓  defect linear extension 
 𝐿𝑟  roller length 
 𝑙𝑖𝑛𝑙𝑒𝑡  lubricant inlet-zone length 
 𝑀  mass matrix, number of features 
 M  features set 
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 �̂�  mass per unit width 
 𝑁  number of samples 
 𝑛  rotational speed 
 𝑛ℎ  Hertzian contact exponent 
 𝑝  pressure, feature 
 𝑝0  atmospheric pressure 
 𝑝𝑎  contact asperities pressure 
 𝑄  rolling element load 
 𝑄𝜙  angular dependent rolling element load 
 𝑞  load per unit length, gene 
 𝑅  equivalent curvature 
 𝑅𝑀𝑆  root mean square 
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 𝑅𝑀𝑆𝐹  root mean square frequency 
 𝑅𝑒𝑚𝑝  empirical risk 
 𝑟  radius 
 𝑟𝑖𝑛  roller internal radius 
 𝑟𝑜𝑢𝑡  roller external radius 
 𝑟𝑟  roller contour radius 
 S  features subset 
 𝑆𝐹  shape factor 
 𝑆𝑇𝐷  standard deviation 
 𝑆𝑇𝐷𝐹  standard deviation frequency 
 𝑠  generalized coordinate, spectrum value 
 𝑆𝑘𝑒𝑤  skewness 
 𝑇  temperature, period 
 𝑡  time 
 𝑈  dimensionless speed parameter 
 𝑢  rolling speed 
 𝑢𝑠  sum of surface velocities 
 𝑉  dimensionless hardness parameter 
 𝑣  linear velocity, gain function 
 𝑣𝑟𝑎𝑛𝑑  uniformly distributed random variable 
 𝑊  dimensionless load parameter 
 𝑤  parameter weight, gain function 
 𝑋𝑎  maximum deflection amplitude 
 𝑥  𝑥-coordinate, feature 
 𝐱  feature vector 
 �̅�  mean vibration level 
 𝑥𝑓̅̅̅  mean frequency 
 𝑥𝑓𝑐  frequency center 
 𝑦  𝑦-coordinate, label 
 𝑍  number of rolling elements 
 𝑧𝑃𝑉  viscosity-pressure ratio 
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Greek Symbols 
 𝛼  contact angle 
 𝛼𝑃𝑉  lubricant pressure-viscosity coefficient 
 𝛼𝑠𝑒𝑛𝑠𝑜𝑟 accelerometer sensing parameter 
 𝛽  angle between the rolling element center and the defect edges, penalty constant 
 𝛽0  regression model constant parameter 
 𝛽𝑗  regression model weights  

 𝛾 =
𝐷𝑟 cos𝛼

𝑑𝑚
 

 𝛾ℎ =
8𝑒

1
2(1−𝜈)

𝜋𝐸′𝐿𝑟
 

 Δ𝑓  frequency difference 
 Δt  time difference 
 Δ𝑥  accelerometer position in 𝑥-direction 
 Δ𝑦  accelerometer position in 𝑦-direction 
 Δ𝜃𝑑𝑒𝑓   defect angular extension 
 𝛿  deformation 
 𝛿𝑎  axial contact deformation 
 𝛿𝑟  radial contact deformation 
 𝛿𝜙  angular-dependent contact deformation 

 𝜀 =
1

2
(1 +

𝛿𝑎

𝛿𝑟
tan 𝛼) 

 𝜁  switch variable, slack variable 
 𝜂0  kinematic viscosity 
 𝜃𝑖  defect centre angular position 
 Λ  lambda-ratio 
 𝜇0  dynamic viscosity 
 𝜇𝑚  mass per unit length 
 𝜈  Poisson ratio, contribution function 
 𝜌  curvature 
 𝜌𝑠𝑡𝑒𝑒𝑙  steel density 
 Σ𝜌  curvature sum 
 𝜎  RMS roughness 
 𝜎  dimensionless roughness parameter 
 𝚽  nonlinear vector functions matrix 
 𝜙  angular position, nonlinear vector function, Shapley value 
 𝜙𝑙  half of the loading zone angular extension 
 𝜓𝐿  loss factor 
 𝜔  angular speed 
 𝜔𝑛  natural frequency 
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Subscripts 

 0  initial position 
 1  first body 
 2  second body 
 𝑐  central 
 𝑑  damping 
 𝑑𝑒𝑓  defect 
 𝑒ℎ𝑙  related to elastohydrodynamic theory 
 𝑒𝑥𝑡  external 
 ℎ  related to Hertzian contact theory 
 𝑖  𝑖-th element 
 𝐼𝑅  inner raceway 
 𝑗  𝑗-th element 
 𝑚  related to bearing cage 
 𝑚𝑎𝑥  maximum value 
 𝑚𝑖𝑛  minimum value 
 𝑂𝑅  outer raceway 
 𝑟  rolling element 
 𝑟𝑜𝑙𝑙𝑒𝑟  rolling element 
 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 related to raceways 
 𝑠𝑙𝑖𝑝  slipping 
 𝑥  𝑥-axis direction 
 𝑦  𝑦-axis direction 

 

Superscripts 

 C  complementar 
 𝑖𝑛  inner raceway 
 𝑜𝑢𝑡  outer raceway 
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1 INTRODUCTION 

Rolling elements bearings are used almost in any kind of rotating machinery across various types of 
industries that include aerospace, construction, mining, steel, paper, textile, railways and renewable 
energy. Their damage and consequent failure cause significant economic losses and can lead to 
dangerous and even mortal situations for human lives, such as in the case of an aircraft engine failure 
or a train derailment due to a bearing seizure. 

Engineers usually use fatigue as the normal failure mode on the assumption that the bearings are 
properly installed, operated and maintained. However, thanks to the improvements in manufacturing 
technology and materials, bearing fatigue life is not the limiting factor and accounts for less than 3% 
of failures in service [1]. In fact, many bearings may fail prematurely in service due to faulty 
installation (misalignments, unbalances and poor fittings), poor maintenance (contamination, 
insufficient lubrication) and handling practice, that lead to vibration. [2] 

Therefore, the most important and, unfortunately, the most expensive task in term of labour time and 
cost in machinery maintenance is fault detection and diagnosis. Fault detection is the process of 
observing the measured system data and status information and comparing them with a range of 
observed attributes, coming from healthy conditions of the machine, to determine if they fall outside 
the acceptable limits. Diagnosis is the process of determining the state of failing components and 
identifying the causes of failure. [3] 

The recognition of bearing health problems can be caught by experienced engineers that can diagnose 
faults depending on the abnormal sound or locating them using advanced signal processing method 
to analyse vibration signals. [4] 

Vibration monitoring has now become a well-accepted part of many planned maintenance regimes 
and relies on known characteristic vibration signatures which rolling bearings exhibit as the rolling 
surfaces degrades. However, in most situations bearing vibration cannot be measured directly, so the 
vibration signature is affected by noise coming from the structure and other equipment of the system, 
such as electric motors, gears, belts, hydraulics and structural resonances. This makes the analysis of 
vibration data difficult even for an experienced engineer and this could lead to misdiagnosis resulting 
in unnecessary maintenance, parts replacements, machine downtime and consequent costs. [1]. 

For that reason, machine users would prefer an automatic method to shorten the maintenance cycle 
and improve the diagnosis accuracy. The solution is represented by Intelligent Fault Diagnosis (IFD), 
that uses machine learning theories, such as support vector machine (SVM), k-Nearest Neighbour 
(kNN) or Artificial Neural Networks (ANN), to compute fault diagnosis, relying on previously 
collected data from the machine under test, instead of using the experience and knowledge of 
engineers. [4] 

Since the collection of a wide a set of vibration data coming from the machine under test may result 
in a huge waste of time and money to perform an accurate testing activity on a sufficient wide range 
of load, rotational speed and defect-type conditions, the development of a suitable dynamic model, 
which is able to simulate the mechanical system behavior, could lead to a great improvement in IFD. 
Machines could be tested even if they have recently been installed, because an experimental database 
of vibration paths would not be necessary. 
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1.1 RESEARCH OBJECTIVE 

This thesis is the report of the modelling and analysis work done to setup, train and test an artificial 
intelligence algorithm able to classify the health status of rotating mechanical systems with spherical 
roller bearings. 

The first activity was aimed at the identification and implementation of a suitable model to simulate 
the behavior of the bearing under different loads, shaft rotational velocities localized defect 
conditions. The developed model was then used to create a database of numerical vibration paths 
related to several operating and damage conditions to train the AI algorithm. 

The second part of the work was dedicated at the identification of the most suitable machine learning 
algorithm among those belonging to supervised learning, such as Support Vector Machine (SVM) 
and k-Nearest Neighbor (kNN), to classify the type of defect. Firstly, vibration paths were segmented 
to get a wider set of data and then the most relevant features among those of time and frequency 
domains were extracted from each of them; therefore, a database of examples labelled with type of 
defect each time segment is referred to was generated. Secondly, a number of examples, taken 
randomly from the database, was selected to train the AI algorithms. Finally, they were tested on a 
new set of randomly selected data to evaluate they accuracy. 
Machine learning algorithms were trained and tested using numerical data coming from the bearing 
model and then with experimental data taken from a bearing test rig. Testing accuracy was also 
evaluated for algorithms trained with numerical data and tested on experimental ones, to verify 
whether simulations could be used to test the health status of machine, eliminating the need to carry 
out numerous tests on the machine to build a database for diagnostic operations. 

The final task of the thesis was aimed at the selection of the most relevant features for fault detection 
using the Shapley values method. 

1.2 THESIS OUTLINE 

The thesis is divided in two main parts that present the theoretical background, computations and the 
discussion of obtained results regarding the two main tasks of the work: the development of a dynamic 
model of the bearing system able to simulate its vibration behavior and the individuation of a machine 
learning algorithm for fault detection. 

Chapters 1 contains the thesis introduction, that explains the importance of machine fault detection 
and the contribute of AI algorithms to fault diagnostics. The research objective and the thesis outline 
are also presented in this chapter. 

In Chapter 2 a general introduction on rolling element bearings from the historical and technical 
points of view are presented; the main characteristics of spherical roller bearings, which is the type 
of bearing analysed in this work, is described and in the final part a general discussion of vibration 
and on its causes is presented. 

 



15 

 

Chapter 3 reports the main mathematical relationships regarding rolling element bearings geometry, 
kinematics and loads, adopting the Hertzian theory of contact; an introduction on 
Elastohydrodynamic Lubrication (EHL) and the empirical formulas to compute the lubricant film 
thickness and damping coefficient are described; finally, a lumped parameter model to simulate the 
resultant stiffness and damping in each contact between bearing elements is presented. 

Chapter 4 describes the main types of models used to simulate the bearing behaviour and the 
development of the 4-DoF nonlinear multi-body dynamic model of the spherical roller bearing used 
in this work. 

In Chapter 5 the main features of the developed model are reported and discussed with the help of 
plots and graph, which were obtained from numerical simulation based on the real spherical roller 
bearing characteristics. 

In Chapter 6 the test rig, located at Politecnico di Torino and used to record the experimental vibration 
paths, which were obtained in the same operating conditions of the numerical simulations, is 
described. 

Chapter 7 presents and introductory discussion on the main failure causes in rolling element bearings 
and the most used traditional procedures in fault detection, such as thermal, oil debris and vibration 
analysis. The last one then analysed in more details, since it is the one employed in this work, and 
most used features in time and frequency domain, which are used for fault diagnosis, are reported. In 
the last part of the chapter Intelligent Fault Diagnosis (IFD) is presented and the machine learning 
algorithms used for this work, SVM and kNN, as well as the feature selection technique using Shapley 
values are described. 

Chapter 8 reports the main steps followed to setup, train and test AI algorithms: database generation, 
feature extraction, training and test phases using both numerical and experimental data. The accuracy 
of each algorithm is presented though plots and discussed. In the last part of the chapter the feature 
selection activity through Shapley values and its results are described. 

Chapter 9 presents the conclusions of the work carried out. 
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2 ROLLING ELEMENT BEARINGS AND VIBRATION 

The machine elements that support a rotating shaft against a stationary housing in rotating machinery 
systems are known as bearings, which, simply by the nature of their function, have proven to be the 
most critical elements governing the overall system performance. 

Of the many bearing types, rolling bearings have been popular because of their low power 
consumption, high stiffness, and high load support capabilities. For example, while the high-load 
capabilities have been effective for high-speed turbine applications, the high-stiffness and low-
friction characteristics of rolling bearings have promoted their use in super precision, high-speed 
spindles and guidance systems. In general, rolling bearing applications cover a wide range of 
operating loads and speeds. [5] 

2.1 HISTORICAL BACKGROUND 

After the invention of the wheel, it was learned that less effort was required to move an object on 
rollers than to slide it over the same surface. Even after lubrication was discovered to reduce the work 
required in sliding, rolling motion still required less work when it could be used. Although the concept 
of rolling motion was known and used for thousands of years, and simple forms of rolling bearings 
were in use ca. 50 AD during the Roman civilization, the general use of rolling bearings did not occur 
until the Industrial Revolution. 

The universal adoption of rolling bearings by design engineers was impeded by the inability of 
manufactures to supply rolling bearings that could compete in endurance with hydrodynamic sliding 
bearings. Until approximately 1940 the design and application of bearings could be considered more 
an art than a science, because only little was understood about the physical phenomena that occur 
during their operation. In the following years a more scientific approach led to a better understanding 
of how they perform under varied operation conditions. However, most information and data 
contained in manufacturers’ catalogs were almost entirely empirical, because they were obtained from 

testing activities, based on information contained in the American National Standard Institute (ANSI) 
or International Organization of Standards (ISO) publications. For that reason, those data were 
obtained only for slow speed, simple loading and nominal operating temperatures. 

The concept of rolling bearing fatigue life and its prediction was seen for the first time in the book 
Ball and Roller Bearing Engineering by Arvid Palmgren, Technical Director of ABSKF form many 
years. Palmgren and Gustav Lundberg, Professor of Mechanical Engineering at Chalmers Institute of 
Technology in Goteborg, Sweden, wrote the theory and equations on which ANSI and ISO based 
their standards for the calculation of rolling bearing fatigue life.  

Starting from 1960 the situation changed, thanks to the development of superior rolling bearing steels 
and the constant improvement in manufacturing, providing extremely accurate geometry and 
assemblies with long lives. 
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Along with the technical improvements, much research was conducted on rolling bearing and rolling 
contact, using modern laboratory equipment, such as scanning and transmission electron micro-
scopes, x-ray diffraction devices and digital computers, that permitted a better comprehension of 
mechanical, hydrodynamic, metallurgical and chemical phenomena involved in bearing operations. 
Therefore, many technical papers, which analyzed the performance of rolling bearings in exceptional 
applications, such as high-speed, heavy-load and particular design, were published. Particular 
attention was also given to the theory of lubrication and to rheology of lubricants. 

In the 1970s the competition between ball and roller bearing manufactures for worldwide markets 
provided consumers with low-cost, standard design and reliable bearings. [5] [6] 

2.2 ROLLING ELEMENT BEARINGS 

The term rolling bearings includes all the form of bearings that utilize the rolling action of balls or 
rollers to permit minimum friction from the constrained motion of one body relative to another. Most 
rolling bearings are employed to permit the relative rotation of a shaft with respect to a fixed housing 
structure. [6] 

A rolling bearing consists of three fundamental parts: a number of rolling elements, the inner and 
outer raceways and the cage. Depending on the type of bearing, the rolling elements can be balls, 
cylindrical rollers, spherical rollers, tapered rollers or spherical tapered rollers. Therefore, the 
geometry of races and cage varies with the type of bearing and this also determines the capacity to 
sustain radial, axial or both the types of loads. 

The inner race is usually fastened to the shaft, while the outer ring is mounted in a housing; rolling 
elements space the two raceways and provide for smooth relative motion between them, while the 
cage keeps them uniformly spaced in the bearing, preventing from rubbing on each other or bunching 
on one side of the bearing. [7] 

2.2.1 Spherical roller bearings 

As Figure 2.1 shows, spherical roller bearings contain two rows of rollers, an outer ring with spherical 
raceways, an inner ring with two spherical raceways perpendicular to bearing axes and a cage. The 
locking feature given by geometry makes the inner ring captive within the outer ring in the axial 
direction only. 

Thanks to the two rows of rolling elements, this kind of bearing have a high load-carrying capacity 
both in axial and in radial directions, making it irreplaceable in many heavy industrial applications. 

Thanks to symmetrical rollers and spherical raceways, spherical roller bearings compensate shaft 
tilting and misalignments without increasing friction or reducing the service life. For that reason, they 
are used in those applications, where the shaft may need to change the alignment of its axis or to carry 
heavy loads. [8] 
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The spherical roller bearing used for this research is the SKF 22240 CCK/W33 and its characteristics 
are reported in Figure 2.2 and in Table 2.1. [9] 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2.1: Dimensions of SKF 22240 CCK/W33 bearing 

 

 

 

 

d 200 mm 
D 360 mm 
B 98 mm 
d2 238 mm 
D1 313 mm 
b 16.7 mm 
K 9 mm 
r1,2 min. 4 mm 

Figure 2.1: Spherical roller bearing components 

Figure 2.2: SKF 2240 CCK/W33 
bearing scheme 
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2.3 VIBRATION 

Rolling element bearings are often used in noise sensitive applications, so vibration is becoming 
increasingly important from both an environmental perspective and because it is synonymous with 
quality. In fact, vibration monitoring has now become a well-accepted part of many planned 
maintenance regimes and relies on the vibration signatures that bearings show as the rolling surfaces 
degrade. 

Rolling contact bearings are a complex vibration system, whose components (rolling elements, 
raceways and cage) interact to generate complex vibration signatures. Even if bearings are 
manufactured using high precision machine tools under strict cleanliness and quality control, however 
they present a degree of imperfection and generate vibration as the surfaces interact through a 
combination of rolling and sliding. The level of vibration depends on many factors, such as the energy 
of impact, the mensuration point and the construction of the bearing. [1] 

2.3.1 Variable compliance 

Vibration is generated in a rotating rolling element bearing under radial or misaligned loads, even if 
it is geometrically perfect, because the external load is supported by a discrete number of elements 
(balls or rollers), whose position with respect to the line of action of the load continually changes 
with time.  

In fact, as bearing rotates, individual ball loads, generated though elastic deflection at rolling element-
raceway contact areas, change, producing relative movements between the inner and outer races. That 
movement takes place in two dimensions in case of radial loads, while it is three-dimensional under 
combined radial and axial loads and under misalignments; it is also periodic, because depends on the 
rolling elements pass-frequency across the load zone. 

Variable compliance vibration is dependent on the number of rolling elements (as their number grows, 
vibration becomes weaker), but it can be reduced applying a correct axial preload. [1] 

2.3.2 Geometrical imperfections 

Because of the nature of manufacturing processes, a certain degree of imperfection is always present 
and it also depends on the accuracy class of the bearing. Therefore, the control waviness and surface 
finishing of components during the manufacturing process is critical since it can have a significant 
impact on vibration level and may affect bearing life. 

Geometrical imperfections are considered in terms of wavelength compared with the width of the 
rolling element-raceway contact areas: surface features of the same order or less with respect to the 
contact width are called roughness, others are called waviness. 

• Roughness: surface roughness is a significant source of vibration when its level is high with 
respect to the lubricant film thickness in the contact area between rolling elements and 
raceways. In this case surface asperities can break through the lubricant and interact directly 
with the opposing surface, resulting in a metal-to-metal contact. 
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A common parameter used to estimate the degree of asperity interaction is the lambda ratio, 
defined as: 

 Λ =
ℎ𝑒ℎ𝑙

√𝜎𝑟𝑜𝑙𝑙𝑒𝑟
2 + 𝜎𝑟𝑎𝑐𝑒𝑤𝑎𝑦2

 (2.1) 

 

where ℎ𝑒ℎ𝑙  is the lubricant film thickness, 𝜎𝑟𝑜𝑙𝑙𝑒𝑟2  is the RMS roughness of the rolling 
elements and 𝜎𝑟𝑎𝑐𝑒𝑤𝑎𝑦2  is the RMS roughness of raceways. 
As it can be seen from Figure 2.3 and Figure 2.4 if Λ is less than the unity the bearing probably 
will not satisfy the estimated design life because of the surface distress, which can lead to a 
rapid fatigue failure of the rolling surfaces. The regime of mixed lubrication occurs in the 
range of Λ between 1 and 3, while the full elastohydrodynamic lubrication regime occurs for 
Λ > 3. Typical industrial applications take place in a region between those two regimes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Friction coefficient versus 𝛬 [76] 

Figure 2.4: Film thickness percentage versus 𝛬 [1] 
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• Waviness: for longer wavelength surface features and peak curvatures, which are low 
compared with that of the Hertzian contacts, rolling motion is continuous with the rolling 
elements following the surface contour. The relationship between surface geometry and 
vibration level is complex, being dependent upon the bearing contact geometry as well as the 
conditions of load and speed. In the direction of rolling, elastic deformation at contact area 
attenuates simple harmonic waveforms over the contact width and the level of attenuation 
increases as the waviness wavelength decreases (Figure 2.5); so, its minimum is reached when 
it becomes equal to the contact width. 
Even with modern precision machining technology, waviness cannot be eliminated 
completely; moreover, any geometrical errors on the shaft outside diameter or on the housing 
bore can be reflected on the bearing raceways, increasing vibration phenomena. [1] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3.3 Discrete defects 

If roughness and waviness directly come from the manufacturing process, discrete defects are the 
consequence of damage on rolling surfaces due to assembly, contamination, operation, mounting and 
poor maintenance. These defects are generally really small and difficult to be detected, but they have 
a significant impact on vibration and can reduce the bearing expected life. 

These defects can be indentations, scratches, pits, debris and particles in the lubricant. Manufacturers 
usually do tests on finished products to detect such defects, that are recognizable from characteristic 
impulsive vibrations with high peak-RMS ratio. [1] 

The main types of discrete defects discussed in the present work are those on the inner and outer 
raceway with point dimensions. 

 

  

Figure 2.5: Attenuation due to contact width 
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3 ROLLING ELEMENT BEARINGS THEORETICAL BACKGROUND 

This chapter provides a theoretical basis for the calculations of all the parameter involved in the 
dynamic equations of motions of spherical roller bearings. The following topics will be discussed: 

• geometry relationships 
• loads on bearing elements involving the Hertzian theory of contact 
• kinematic relationships 
• EHL theory and its application film thickness and damping computation 
• lumped parameter model of contact in bearing elements 

At a first glance, rolling element bearings appear to be comparatively simple machine elements. 
However, their design and adequate theoretical description are challenging problems for engineers, 
physicists, chemists, and mathematicians. The loads acting between the rolling elements and 
raceways develop only small areas of contact. Consequently, although local loading may be moderate, 
stresses induced on the surfaces of the rolling elements and raceways are mostly one order of 
magnitude higher than the maximum permissible stresses for structural components in mechanical 
engineering. Thus, common stress analysis methods for the design of machine elements cannot be 
applied to rolling bearings. Furthermore, a rolling element bearing is a nonlinear, statically 
indeterminate structural system. 

In order to attain practically acceptable bearing lifetimes, rolling element bearings need to be 
lubricated. The major functions of the lubricant, in most cases mineral oils, are the following ones: 
reduction of friction and wear, force transmission, heat removal, corrosion protection and vibration 
damping. The lubricant within the highly loaded contact zone between rolling elements and raceways 
separates contacting surfaces and prevents metallic contact of the surface asperities. In many cases, 
oil film thickness is less than 1 𝜇𝑚 thick and, thus, it is of the same order of magnitude as the surface 
roughness of raceways. Owing to the extreme contact pressures, the lubricant within a ball-to-raceway 
contact is transformed from a liquid to a solid with the consistency of a soft metal. The theory 
describing the lubricant film formation is called elastohydrodynamic lubrication (EHL) theory and a 
fast solution of the governing, highly nonlinear equations is a challenging numerical problem. [10] 

3.1 GEOMETRY 

In this section, the principal macro geometric relationships governing the operation of ball and roller 
bearings will be presented and examined. The formulas reported in this section are taken from Harris 
[6]. 

3.1.1 Pitch diameter 

Bearing pitch diameter is approximately equivalent to the mean value of the outer and bore diameters, 
but, more precisely, it is the mean of the inner and outer ring diameters: 

 
𝑑𝑚 =

𝐷 + 𝑑

2
 (3.1) 



24 

 

3.1.2 Mean diameter of the raceways 

The inner and outer raceways mean diameters are defined as follows: 

 𝑑𝐼𝑅 =
𝑑 + 𝑑2
2

 (3.2) 

 𝑑𝑂𝑅 =
𝐷 + 𝐷1
2

 (3.3) 

where 𝑑2 is the inner ring external diameter and 𝐷1 is the outer ring internal diameter 

3.1.3 Diametral clearance 

Spherical roller bearings are designed with diametral clearance, whose expression is the following 
one: 

 𝑐𝑑 = 𝐷1 − 𝐷2 − 2𝐷𝑟 (3.4) 

In this work the nominal clearance from SKF manual was used. 

3.1.4 Curvature 

The description of the contact between mating surfaces of revolution uses the concept of curvature of 
each body along a pair of principal axes: 

 𝜌 =
1

𝑟
 (3.5) 

Curvature is positive for convex surfaces and negative for concave ones. 
Other two important parameters are the curvature sum and difference: 

 Σ𝜌 =
1

𝑟1𝑥
+
1

𝑟1𝑦
+
1

𝑟2𝑥
+
1

𝑟2𝑦
 (3.6) 

 𝐹(𝜌) =
(𝜌1𝑥 − 𝜌1𝑦) + (𝜌2𝑥 − 𝜌2𝑦)

Σ𝜌
 (3.7) 

 

 

 

 

 

 

 

 

 Figure 3.1: Geometry of contact bodies [6] 
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In case of spherical roller bearings with point contact between rollers and raceways, whose scheme 
is presented in Figure 3.3 and Figure 3.3, the equations for the contact between the rolling elements 
and the inner and outer raceways are the following ones: 

 𝑟1𝑥
𝑖𝑛 =

𝐷𝑟
2

 (3.8) 

 𝑟1𝑦
𝑖𝑛 = 𝑟𝑟 (3.9) 

 𝑟2𝑥
𝑖𝑛 =

𝑑𝑚 − 𝐷𝑟 cos 𝛼 −
𝑐𝑑
2 cos 𝛼

2 cos𝛼
 (3.10) 

 𝑟2𝑦
𝑖𝑛 = −𝑟𝑖𝑛 (3.11) 

   

 𝑟1𝑥
𝑜𝑢𝑡 =

𝐷𝑟
2

 (3.12) 

 𝑟1𝑦
𝑜𝑢𝑡 = 𝑟𝑟 (3.13) 

 𝑟2𝑥
𝑜𝑢𝑡 = −

𝑑𝑚 + cos𝛼 +
𝑐𝑑
2 cos 𝛼

2 cos𝛼
 (3.14) 

 𝑟2𝑦
𝑜𝑢𝑡 = −𝑟𝑜𝑢𝑡 (3.15) 

So, denoting: 

 𝛾 =
𝐷𝑟 cos 𝛼

𝑑𝑚
 (3.16) 

The curvature sum and difference are: 

 Σ𝜌𝑖𝑛 =
1

𝐷𝑟
[
2

𝛾 − 1
+ 𝐷𝑟 (

1

𝑟𝑟
−
1

𝑟𝑖𝑛
)] (3.17) 

 𝐹(𝜌)𝑖𝑛 =

2
1 − 𝛾 − 𝐷𝑟 (

1
𝑟𝑟
−
1
𝑟𝑖𝑛
)

2
1 − 𝛾 + 𝐷𝑟 (

1
𝑟𝑟
−
1
𝑟𝑖𝑛
)
 (3.18) 

 Σ𝜌𝑜𝑢𝑡 =
1

𝐷𝑟
[
2

1 + 𝛾
+ 𝐷𝑟 (

1

𝑟𝑟
−

1

𝑟𝑜𝑢𝑡
)] (3.19) 

 𝐹(𝜌)𝑖𝑛 =

2
1 + 𝛾 − 𝐷𝑟 (

1
𝑟𝑟
−

1
𝑟𝑜𝑢𝑡

)

2
1 + 𝛾 + 𝐷𝑟 (

1
𝑟𝑟
−

1
𝑟𝑜𝑢𝑡

)
 (3.20) 
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Since it is difficult to get reliable data about curvature radii of spherical rolling elements, in this work 
they are considered as cylindrical (the scheme is shown in Figure 3.4), therefore: 

 𝑟𝑟 = 𝑟𝑖𝑛 = 𝑟𝑜𝑢𝑡 → ∞ (3.21) 

So: 

 Σ𝜌𝑖𝑛 =
1

𝐷𝑟
[
2

𝛾 − 1
] (3.22) 

 𝐹(𝜌)𝑖𝑛 = 1 (3.23) 

 Σ𝜌𝑜𝑢𝑡 =
1

𝐷𝑟
[
2

1 + 𝛾
] (3.24) 

 𝐹(𝜌)𝑖𝑛 = 1 (3.25) 

Figure 3.3: Characteristic dimensions of a 
spherical roller bearing [8] 

Figure 3.3: Radii of curvature between roller, outer race and 
inner race [8] 
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3.2 LOADS 

In this section a review of the main forces acting on bearing elements is presented. 

3.2.1 External loads 

Loads applied to bearings can be forces (radial, axial or combined) and moments. 

In this works the external load is only a force in the radial direction, as shown in Figure 3.5, and, 
since only a row of rolling element is considered, the real radial force applied to the bearing assembly 
is: 

 𝐹𝑟,1 =
𝐹𝑟
2

 (3.26) 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Cylindrical roller bearing 
schematic drawing [6] 

Figure 3.5: Radially loaded spherical roller bearing [6] 
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3.2.2 Centrifugal forces 

The centrifugal force of each rolling element is expressed as: 

 𝐹𝑐 =
1

2
𝑚𝑟𝑑𝑚𝜔𝑚

2  (3.27) 

For a cylindrical roller: 

 𝑚 =
1

4
𝜌𝑠𝑡𝑒𝑒𝑙𝜋𝐷𝑟

2𝐿𝑟 (3.28) 

And: 

 𝜔𝑚 =
2𝜋𝑛𝑚
60

 (3.29) 

Substituting this relation in the first one and considering steel rolling elements, the centrifugal force 
is: 

 𝐹𝑐 = 3.39 × 10−11𝐷𝑟
2𝐿𝑟𝑑𝑚𝑛𝑚

2  (3.30) 

Since this model has been developed for low-average velocities, centrifugal forces can be neglected. 

3.2.3 Contact stresses and deformations 

The classical solution for local stresses and deformations of two elastic bodies contacting at a single 
point was developed by Hertz. 

Two solids having different radii of curvature in two principal directions, like 𝑥 and 𝑦, are in point 
contact when no load is applied to them. On the contrary, when they are pressed together by a force 
𝐹, the resulting contact area becomes elliptical with 𝑎 being the major axis and 𝑏 the minor one, as it 
can be seen in Figure 3.6. [6] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Ellipsoidal surface compressive stress distribution in point-contact [6] 
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The elliptic parameter is defined as: 

 𝑘𝑒 =
𝑎

𝑏
 (3.31) 

It can be re-defined as a function of the curvature difference 𝐹(𝜌), which is the curvature difference 
presented in Equation 3.7, and the elliptic integrals of the first �̅� and second �̅� kinds: 

 𝑘𝑒 = [
2�̅� − �̅�(1 + 𝐹(𝜌) )

�̅�(1 − 𝐹(𝜌) )
]

1/2

 (3.32) 

Brewe and Hamrock [11] used numerical iteration and curve fitting techniques to find the following 
approximation formulas for the ellipticity parameter 𝑘𝑒 and the elliptical integrals of the first �̅�  and 
second �̅�   kinds as shown below: 

 𝑘𝑒 = 1.0339 (
𝑅𝑦

𝑅𝑥
)
0.636

 (3.33) 

 �̅� = 1.003 + 0.5968
𝑅𝑥
𝑅𝑦

 (3.34) 

 �̅� = 1.5277 + 0.6023 ln (
𝑅𝑦

𝑅𝑥
) (3.35) 

Where: 

 
1

𝑅𝑥
=

1

𝑟1𝑥
+
1

𝑟2𝑥
 (3.36) 

 
1

𝑅𝑦
=

1

𝑟1𝑦
+
1

𝑟2𝑦
 (3.37) 

The ellipse axes and deformation can be obtained through the following equations: 

 𝑎 = 𝑎∗ (3
𝑄

𝐸′Σ𝜌
)

1
3
 (3.38) 

 𝑏 = 𝑏∗ (3
𝑄

𝐸′Σ𝜌
)

1
3
 (3.39) 

 𝛿 = 𝛿∗ (3
𝑄

𝐸′Σ𝜌
)

2
3 Σ𝜌

2
  (3.40) 
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Where: 

 
1

𝐸′
=
1

2
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)  (3.41) 

 𝑎∗ = (
2𝑘𝑒

2�̅�

𝜋
)

1
3

 (3.42) 

 𝑏∗ = (
2�̅�

𝜋𝑘𝑒
)

1
3

  (3.43) 

 𝛿∗ =
2�̅�

𝜋
(
𝜋

2𝑘𝑒2�̅�
)

1
3
  (3.44) 

In case of a cylindrical roller bearing (Figure 3.7), the contact between rolling elements and raceways 
takes place on an ideal line and 𝑘𝑒 → ∞, so the contact area degenerates into a semi-cylindrical form 
with dimensions 2𝑏  and 𝐿𝑟 = 2𝑎 . The contact minor axis 𝑏  and deformation 𝛿  are computed 
through: 

 𝑏 = [
4𝑄

𝜋𝐿𝑟Σ𝜌
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)]

1
2

 (3.45) 

 𝛿 =
2𝑄(1 − 𝜈2)

𝜋𝐸𝐿
ln [

𝜋𝐸𝐿𝑟
𝑄(1 − 𝜈2)(1 ∓ 𝛾)

] (3.46) 

 

 

 

 

 

 

 

 

 

In practice, rollers are crowned and basing on laboratory testing Palmgren [12] developed an empiric 
equation for contact deformation: 

 𝛿 = 3.81 [
1

𝜋
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)]

0.9
𝑄0.9

𝐿𝑟
0.8  (3.47) 

Figure 3.7: Semicylindrical surface compressive stress distribution of ideal line-contact  [6] 
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Note that in this formula the resulting contact deformation does not depend either on the radii of 
rolling elements or those of raceways. 
The contact force can be obtained from displacement through: 

 𝑄 =
1

3.81
10
9 [
1
𝜋
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)]

𝐿𝑟

8
9𝛿

10
9  (3.48) 

So: 

 𝐾𝑙 =
1

3.81
10
9 [
1
𝜋
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)]

𝐿𝑟

8
9  (3.49) 

3.2.4 Load distribution under combined radial and thrust load for single-row bearings 

In static or quasi-static conditions, if a rolling bearing without diametral clearance is subjected 
simultaneously to a radial load in the central plane of the rollers and a centric thrust load, then the 
inner and outer rings will remain parallel and will be relatively displaced by a distance 𝛿𝑎 in the axial 
direction and 𝛿𝑟 in the radial one. At any position 𝜙 measured from the most heavily loaded rolling 
element, the approach of the rings is: [6] 

 𝛿𝜙 = 𝛿𝑎 sin 𝛼 + 𝛿𝑟 cos 𝛼 cos𝜙 (3.50) 

where 𝛿𝑟 is the ring radial shift, 𝛿𝑎 is the axial shift and 𝑐𝑑 is the diametral clearance, 𝛼 is the contact 
angle and 𝜙 is the rolling element angular position. 

So, the maximum deflection occurs when 𝜙 = 0 and is given by: 

 𝛿𝑚𝑎𝑥 = 𝛿𝑎 sin 𝛼 + 𝛿𝑟 cos 𝛼 (3.51) 

Combining the two equations: 

 𝛿𝜙 = 𝛿𝑚𝑎𝑥 [1 −
1

𝜀
(1 − cos𝜙)] (3.52) 

 𝜀 =
1

2
(1 +

𝛿𝑎
𝛿𝑟
tan𝛼) (3.53) 

The load at a given angle is: 

 𝑄𝜙 = 𝑄𝑚𝑎𝑥 [1 −
1

𝜀
(1 − cos𝜙)]

𝑛ℎ

 (3.54) 
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The sum of rolling element forces in each direction must equal the applied load in that direction to 
satisfy the static equilibrium conditions: 

 𝐹𝑟 = ∑ 𝑄𝜙 cos 𝛼 cos𝜙

𝜙=𝜙𝑙

𝜙=−𝜙𝑙

 (3.55) 

 𝐹𝑎 = ∑ 𝑄𝜙 sin 𝛼

𝜙=𝜙𝑙

𝜙=−𝜙𝑙

 (3.56) 

Where: 

 𝜙𝑙 = cos
−1 (−

𝛿𝑎
𝛿𝑟
tan 𝛼) = cos−1(1 − 2𝜀) (3.57) 

The static equilibrium equations can be rewritten respectively as functions of radial and thrust 
integrals: 

 𝐹𝑟 = 𝑍𝑄𝑚𝑎𝑥 𝐽𝑟(𝜀) cos 𝛼 (3.58) 

 𝐹𝑎 = 𝑍𝑄𝑚𝑎𝑥 𝐽𝑎(𝜀) cos 𝛼 (3.59) 

Where: 

 𝐽𝑟(𝜀) =
1

2𝜋
∫ [1 −

1

2𝜀
(1 − cos𝜙)]

𝑛ℎ

cos𝜙 𝑑𝜙
𝜙𝑙

−𝜙𝑙

 (3.60) 

 𝐽𝑎(𝜀) =
1

2𝜋
∫ [1 −

1

2𝜀
(1 − cos𝜙)]

𝑛ℎ

𝑑𝜙
𝜙𝑙

−𝜙𝑙

 (3.61) 

Those integrals were introduced by Sjovall [13] and Table 3.1 gives their values for point and line 
contact as function of 𝐹𝑟 tan 𝛼 /𝐹𝑎, assuming that the contact angle 𝛼 is constant for all the loaded 
rolling elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 Table 3.1: Values of eccentricity, thrust and radial integrals for different values of external 

loads [6] 
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If axial load is not present, the static model allows the analysis of the effect of clearance on the load 
distribution. For a rigidly supported bearing, the radial deflection at any rolling element angular 
position is given by: 

 𝛿𝜙 = 𝛿𝑟 cos𝜙 −
1

2
𝑐𝑑 (3.62) 

where 𝛿𝑟 is the ring radial shift, and 𝑐𝑑 is the diametral clearance. 

If the equation is rearranged in terms of maximum deformation: 

 𝛿𝜙 = 𝛿𝑚𝑎𝑥 [1 −
1

2𝜀
(1 − cos𝜙)] (3.63) 

 𝜀 =
1

2
(1 −

𝑐𝑑
2𝛿𝑟

) (3.64) 

The angular extension of the load zone is determined by the diametral clearance: 

 𝜙𝑙 = cos−1 (
𝑐𝑑
2𝛿𝑟

) (3.65) 

For static equilibrium, the applied radial load must equal the sum of the vertical components of the 
rolling element loads: 

 𝐹𝑟 = ∑ 𝑄𝜙 cos𝜙

𝜙=𝜙𝑙

𝜙=−𝜙𝑙

 (3.66) 

or 

 𝐹𝑟 = 𝑄𝑚𝑎𝑥 ∑ [1−
1

2𝜀
(1 − cos𝜙)]

𝑛ℎ

cos𝜙

𝜙=±𝜙𝑙

𝜙=0

 (3.67) 

This equation can also be rewritten in integral form: 

 𝐹𝑟 = Z Q𝑚𝑎𝑥
1

2𝜋
∫ [1 −

1

2𝜀
(1 − cos𝜙)]

𝑛ℎ

cos𝜙 𝑑𝜙
𝜙𝑙

−𝜙𝑙

 (3.68) 

or 

 𝐹𝑟 = 𝑍𝑄𝑚𝑎𝑥 𝐽𝑟(𝜀) (3.69) 

where the radial integral is defined as: 

 𝐽𝑟(𝜀) =
1

2𝜋
∫ [1 −

1

2𝜀
(1 − cos𝜙)]

𝑛ℎ

cos𝜙 𝑑𝜙
𝜙𝑙

−𝜙𝑙

 (3.70) 
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In Table 3.2 the radial integral 𝐽𝑟(𝜀) has been evaluated numerically for various values of 𝜀. 

 

 
 

 

 

 

 

 

 

For a radial roller bearing with zero internal radial clearance and subjected to a simple radial load, it 
holds that 

 𝑄𝑚𝑎𝑥 =
4.08𝐹𝑟
𝑍 cos 𝛼

 (3.71) 

The effect of radial clearance on the load distribution among the rolling elements can be seen in 
Figure 3.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Values of radial integral for various values of 𝜀 

Figure 3.8: Rolling element load distribution for different amount of clearance [6] 
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3.3 KINEMATICS 

In most applications of rolling bearings and particularly those operating at relatively slow shaft or 
outer-ring speeds, the velocities of all the internal element of bearing can be calculated with good 
accuracy using simple kinematical relationships and assuming that rolling elements roll on the 
raceways without sliding. [14] 

3.3.1 Cage speed 

Assuming that both inner and outer rings rotate in a bearing having common contact angle 𝛼 (Figure 
3.9), given the shaft rotational speed, its angular speed and so the one of the inner ring is [6]: 

 𝜔𝐼𝑅 =
2𝜋𝑛

60
 (3.72) 

Consequently: 

 𝑣𝐼𝑅 =
1

2
𝜔𝐼𝑅(𝑑𝑚 − 𝐷𝑟 cos 𝛼) =

1

2
𝜔𝐼𝑅𝑑𝑚(1 − 𝛾) (3.73) 

 𝑣𝑂𝑅 =
1

2
𝜔𝑂𝑅𝑑𝑚(1 + 𝛾) (3.74) 

where 𝛾 is defined in Equation 3.16. 

If there is no slip at the rolling element-raceway contact, the cage velocity is the mean of the inner 
and outer raceways velocities, so: 

 𝑣𝑚 =
1

2
(𝑣𝐼𝑅 + 𝑣𝑂𝑅) =

𝜋𝑑𝑚
120

[𝑛𝐼𝑅(1 − 𝛾) + 𝑛𝑂𝑅(1 + 𝛾)] (3.75) 

If the outer ring does not move, as in the analysed case, the nominal angular speed of the cage is: 

 𝜔𝑚 =
𝜔𝐼𝑅
2
(1 − 𝛾) (3.76) 

 

 

 

 

 

 

 

 

 

 Figure 3.9: Rolling speeds and velocities in a bearing [6] 
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3.3.2 Rolling element speed 

Assuming that there is no slipping between rolling element and raceways, the linear velocity of the 
rolling element is equal to that of the inner race at the contact point, thus [6] 

 1

2
𝜔𝑚𝑑𝑚(1 − 𝛾) =

1

2
𝜔𝑟𝐷𝑟 (3.77) 

Since the rotational speed of the cage relative to the inner race is 

 𝑛𝑚,𝐼𝑅 = 𝑛𝑚 − 𝑛𝐼𝑅 (3.78) 

substituting the expression of 𝑛𝑚, the first equation becomes: 

 𝑛𝑟 =
𝑑𝑚
2𝐷𝑟

(1 − 𝛾)(1 + 𝛾)(𝑛𝑂𝑅 − 𝑛𝐼𝑅) (3.79) 

In the analyzed case only the inner ring rotates, so: 

 𝑛𝑅 =
𝑑𝑚𝑛𝐼𝑅
2𝐷𝑟

(1 − 𝛾2) (3.80) 

3.4 EHL THEORY 

Ball and roller bearings require fluid lubrication if they are to perform satisfactorily for long periods 
of time. The primary function of a lubricant is to prevent wear of the rolling and sliding contacts of a 
bearing under hydrodynamic, elastohydrodynamic (EHL), or boundary lubrication conditions; 
however, there are many other vital functions, such as: [6] 

• minimizing the frictional power loss of the bearing 
• acting as a heat transfer medium to remove heat from the bearing or to redistribute the heat 

energy within the bearing assembly to minimize differential thermal expansions 
• protecting the precise surfaces of bearing components from corrosion 
• removing wear debris from the roller contact paths 
• minimizing the amount of extraneous dirt entering the roller contact paths 
• providing a damping medium for cage dynamic motions 

In the 1880s Reynolds established the fundamental theory, called Hydrodynamic lubrication theory 
(HL-theory) [15] [14], describing the lubricant flow between conformal surfaces. Those kinds of 
surfaces are those of journal bearings, in which contacting bodies have almost the same radii of 
curvature, the surface area, through which the external forces are transmitted, is large and 
consequently the pressure within the lubricant film is comparatively low. The corresponding basic 
differential equation, which relates the pressure in the lubricant film to its geometry and the velocities 
of the moving surfaces, is called Reynolds equation. [16] 

In rolling element bearings, contact areas are non-conformal surfaces, since radii of curvature might 
differ a lot and only small areas of contact with extremely high pressures are developed. For that 
reason, it took a long time to recognise that the fluid film could separate the metallic surfaces.  
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The first breakthrough in this field of research occurred in 1949 when Grubin [17] managed to 
incorporate in his theory both the elastic deformation of the solids and the viscosity-pressure 
characteristics of the lubricant to analyse the lubricant flow between non-conformal surfaces. EHL-
analysis was first performed for line-contact (two-dimensional) problems in isothermal conditions 
and without transient normal motion of the contacting bodies (steady-state). 

As computer power increased and numerical solution techniques were improved, these assumptions 
could be removed step by step. The modern field of research is the transient EHL-problem in which 
the time-dependent Reynolds equation has to be solved. [10] 

3.4.1 EHL system of equations 

The elastohydrodynamic model is composed of the Reynolds equation, the lubricant film thickness 
equation and the equation of motion of EHL contact. Since the properties of the lubricant fluid change 
due to large contact forces, the viscosity and density relations as function of pressure are also added 
to the EHL model: 

• Reynolds equation: 

 
𝜕

𝜕𝑥
(
𝜌ℎ3

𝜂

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜌ℎ3

𝜂

𝜕𝑝

𝜕𝑦
) = 6𝑢𝑠

𝜕(𝜌ℎ)

𝜕𝑥
+ 12

𝜕(𝜌ℎ)

𝜕𝑡
 (3.81) 

 𝑝(𝑥, 𝑦, 𝑡) ≥ 0;  ∀(𝑥, 𝑦) ∈ Ω (3.82) 

where ℎ is the lubricant film thickness, 𝜂 is the absolute viscosity of the fluid, 𝜌 is its density, 
𝑢𝑠 is the entrainment velocity 
 

• Film thickness equation: 

 ℎ(𝑥, 𝑦, 𝑡) = −𝛿(𝑡) +
𝑥2

2𝑅
+

2

𝜋𝐸′
∬

𝑝(𝑥′, 𝑦′, 𝑡)

√(𝑦 − 𝑦′)2 + (𝑥 − 𝑥′)2
𝑑𝑥′𝑑𝑦 (3.83) 

where 𝛿 is the mutual approach between both surfaces in contact, 𝑅 is the equivalent radius 
of curvature, 𝐸′ is the reduced modulus of elasticity defined in Equation 3.41 

 
1

𝑅
=
1

𝑅1
+
1

𝑅2
 (3.84) 

• Viscosity-pressure relationship of Roelands: 

 𝜂(𝑝) = 𝜂0 exp {
𝛼𝑃𝑉 𝑝0
𝑧𝑃𝑉

[−1 + (1 +
𝑝

𝑝0
)
𝑧

]} (3.85) 

Where 𝜂0 is the kinematic viscosity at atmospheric pressure 𝑝0, 𝛼𝑃𝑉 is the pressure-viscosity 
coefficient, 𝑧𝑃𝑉 is the viscosity-pressure ratio and 𝑝 is the manometric pressure in [𝑃𝑎]. 
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• Density-pressure relationship of Dowson and Higginson: 

 𝜌(𝑝) = 𝜌0 (
5.9 ∗ 108 + 1.34 𝑝

5.9 ∗ 108 + 𝑝
) (3.86) 

• Equilibrium equation: 

 𝑓 =∬𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 (3.87) 

• Motion equation: 

 𝑚𝑟�̈�(𝑡) +∬𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 = 𝑓(𝑡) (3.88) 

 𝑚𝑟 = 𝜋𝑅2𝐿𝜌𝑠𝑡𝑒𝑒𝑙 (3.89) 

Where �̈� is the acceleration between bodies in contact, 𝑚𝑟 is the roller mass in the reduced contact, 
𝐿 is the effective length of the contact surface and 𝜌𝑠𝑡𝑒𝑒𝑙 is the material density of the contact bodies. 
[18] [19] 
 

3.4.2 Steady-state EHL-contact and lubricant film thickness 

Numerous publications, such as Harris [14], Hamrock [15] and Venner [20], present the theory of 
steady-state, isothermal EHL-contacts. 

Figure 3.10 shows a qualitative representation of the lubricant film thickness and the pressure 
distribution profile within the EHL-contact between a rolling element and raceway. The contacting 
bodies are deformed due to the normal load 𝑄 and the viscous lubricant fluid is dragged into the high-
pressure zone of the contact, adhering to the surface of the rolling bodies and separating the two 
mating surfaces. Since the lubricant viscosity strongly increases with increasing pressure, the film 
thickness is almost constant across the contact area and the minimum value ℎ𝑚𝑖𝑛  is found at the 
trailing edge of the contact. 

The pressure distribution in EHL-contacts is similar to the elliptical Hertzian pressure distribution: 
from the inlet zone pressure increases, reaching the maximum value 𝑝0 equal to the Hertzian pressure; 
in correspondence the minimum film thickness ℎ𝑚𝑖𝑛, there is a spike in pressure distribution. 

For high loads the pressure profile is nearly similar to the Hertzian one, whereas for high speeds and 
low loads the hydrodynamic effects become more important, since the pressure spike becomes bigger 
and shifts towards the centre of the contact area. [10] 
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In order to obtain the oil film pressure profile and thickness in EHL lubrication, the Reynolds equation 
should be solved together with the surfaces deformations. When surfaces are rough, Reynolds 
equation should be modified once more since roughness changes the load balance: the external load 
is shared between the fluid and the asperities, which can deform elastically, elasto-plastically or 
plastically, while smooth surfaces deform only in an elastic way. [21] 

Therefore, the total pressure is the sum of the hydrodynamic and asperity pressure: 

 𝑝 = 𝑝𝑒ℎ𝑙 + 𝑝𝑎 (3.90) 

In line contact EHL, the steady-state Reynolds equation formulated by Patir and Cheng [22], that 
includes the effects of roughness, is written as follows: 

 
𝜕

𝜕𝑥
(𝜙𝑥

𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
) = 𝑢

𝜕(𝜌ℎ𝑇)

𝜕𝑥
 (3.91) 

where ℎ is the film thickness, 𝜇 is the fluid viscosity, 𝜌 is its density, 𝑢 is the rolling speed, 𝜙𝑥 is the 
pressure flow factor in 𝑥  direction and ℎ𝑇  is the average gap between the two mating surfaces, 
computed for a Gaussian distribution of surface heights. 

Reynolds equation can be solved through numerical methods, but Masjedi and Khonsari [23] [24], 
derived curve-fitting equations for the minimum and central film thickness, after having simulated 
hundreds of cases with a wide range of numerical values for the main parameters. 

The central film thickness equation is: 

 𝐻𝑐 =
ℎ𝑒ℎ𝑙,𝑐
𝑅𝑥

= 2.691 𝑊−0.135𝑈0.705𝐺0.556 (1 + �̅�1.222𝑉0.223𝑈−0.748𝐺−0.842) (3.92) 

While the minimum film thickness can be computed through: 

 𝐻𝑚𝑖𝑛 =
ℎ𝑒ℎ𝑙,𝑚𝑖𝑛
𝑅𝑥

= 1.652 𝑊−0.077𝑈0.716𝐺0.695 (1 + 0.026 �̅�1.120𝑉0.185𝑊−0.312𝐺−0.977) (3.93) 

 

 

Figure 3.10: EHL-contact scheme showing a qualitative shape of lubricant film and pressure profile [10] 
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The dimensionless parameters involved in those equations are defined as follows: 

 𝑊 =
𝑞

𝐸′𝑅𝑥
 (3.94) 

 𝑈 =
𝜇0𝑢

2𝐸′𝑅
 (3.95) 

 𝐺 = 𝛼𝑃𝑉𝐸
′ (3.96) 

 𝜎 =
𝜎

𝑅𝑥
 (3.97) 

 𝑉 =
ℎ𝑑

𝐸′
 (3.98) 

Where 𝑤 is the load per contact length, 𝐸′ is the effective modulus of elasticity defined in Equation 
3.41, 𝑅𝑥 is the equivalent contact radius, 𝜇0 is the lubricant viscosity at atmospheric pressure, 𝑢 is the 
mean rolling speed, 𝛼 is the fluid pressure-viscosity coefficient, 𝜎 is the standard deviation of surface 
height, ℎ𝑑 is the Vickers hardness of the softest material. 

 𝑞 =
𝑄

𝐿𝑟
 (3.99) 

 
1

𝑅𝑥
=

1

𝑟1𝑥
+
1

𝑟2𝑥
 (3.100) 

 𝑢 =
𝑢𝑟𝑜𝑙𝑙𝑒𝑟 + 𝑢𝑟𝑎𝑐𝑒𝑤𝑎𝑦

2
 (3.101) 

 𝜎 = √𝜎𝑟𝑜𝑙𝑙𝑒𝑟
2 + 𝜎𝑟𝑎𝑐𝑒𝑤𝑎𝑦2  (3.102) 

The mean velocities for the inner and outer raceways are: 

 𝑢𝐼𝑅 =
𝑑𝑚
2
[(1 − 𝛾)(𝜔 − 𝜔𝑚) + 𝛾𝜔𝑟) (3.103) 

 𝑢𝑂𝑅 =
𝑑𝑚
2
[(1 + 𝛾)𝜔𝑚 + 𝛾𝜔𝑟) (3.104) 

The empirical formula for the film-thickness calculation is valid for the dimensionless parameters in 
the ranges presented in Table 3.3: Dimensionless parameters ranges Table 3.3. 

 
Table 3.3: Dimensionless parameters ranges 

PARAMETER 𝑾 𝑼 𝑮 �̅� �̅� 

Min 2 ∗ 10−5 1 ∗ 10−12 2500 0 0.005 

Max 5 ∗ 10−4 1 ∗ 10−10 7500 5 ∗ 10−5 0.03 
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3.5 DAMPING 

Fluid film damping, coming from the variation of lubricant film thickness, and structural film 
damping, which arises from hysteresis losses within the deformed material, are associated with the 
variation of the elastic displacement 𝛿 of the contacting bodies, so the contact damping force follows 
the law: 

 𝐹𝐷 = 𝑐 �̇� (3.105) 

where the damping coefficient 𝑐 includes all the viscous loss effects. 

The evaluation of the damping coefficient has been carried by many researchers, but it seems to be a 
very difficult field. The most used relation is the one coming form Kramer [25], that relates the 
bearing damping coefficient to its linearized stiffness, obtained in static or quasi-static conditions: 

 𝑐 = (0.25 − 2.5) 10−5 𝑘 (3.106) 

The main sources of damping in rolling element bearings are summarized in Figure 3.11. Since 
damping effects are important only in case of notable relative motions only those happening in the 
Hertzian contact areas between rolling elements and raceways, housing and bearing, shaft and bearing 
are taken into account. The most important damping sources in a bearing according to Zeillinger [26] 
are: 

• material damping due to Hertzian deformation of the rolling bodies 
• oil-fil damping due to squeeze effects within the inlet zone of the EHL-contact 

 

 

 

 

 

 

 

3.5.1 Dry Hertzian contact damping 

When an elastic structure is deformed, the major portion of the supplied energy is stored in the 
structure as potential energy, while the rest is absorbed and transformed into thermal energy due to 
dissipative mechanisms, such as thermo-elasticity, magneto-elastic effects, relaxation processes in 
crystal structures and interactions between molecular forces. Regarding metal materials, the friction 
between grain boundaries is the main dissipative mechanism. 

Figure 3.11: Damping sources in a rolling bearing joint [10] 
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If an elastic body is subjected to cyclic stress, the energy loss in the material causes a hysteresis loop 
in the stress-strain diagram and the area within it is proportional to the absorbed damping energy per 
load cycle. [27] 

In common metals energy loss is low, so the total strain energy stored in deformed bodies is barely 
equal to the energy needed for the deformation and the hysteresis loop is slim. Being 𝐸𝑠 the total 
strain energy stored in the deformed structure of volume 𝑉 and 𝐸𝐷 the energy dissipated per load 
cycle, the loss factor is defined as (Figure 3.12): 

 𝜓𝐿 =
𝐸𝐷
2𝜋𝐸𝑆

 (3.107) 

Through the analysis of experimentally determined values, the dissipated energy per load cycle can 
be written in the form: 

 𝐸𝐷 = 𝜓𝐿𝜋𝑘𝑋𝑎
2 (3.108) 

Where 𝑘 is the stiffness of the structure, and 𝑋𝑎 is the maximum deflection amplitude. 

According to the study of Lazan [28], the loss factor for common metals is lower than 1%, while for 
ball bearings is between 0.02 − 0.07% . Experimental investigations on single ball-to-raceways 
contact were conducted by Zeillinger [26], who reported 𝜓𝐿 = 1.5 − 3%, Krempf and Sabot (𝜓𝐿 =
1.5%). In the work written by Dietl [10] 𝜓𝐿 values between 1.7 − 2% were found for dry rolling 
bearing contacts. 

The energy dissipated through structural damping is independent of the frequency of deformation, 
while viscous damping forces lead to an enlargement of the hysteresis loop with increasing frequency. 
Since a viscous damping model is easier to handle in theoretical analysis, the loss factor is 
transformed into an equivalent viscous damping coefficient 𝑐𝜓𝐿 . For harmonic vibrations of 
frequency 𝑓: 

 𝑐𝜓𝐿 = 𝜓𝐿
𝑘

2𝜋𝑓
 (3.109) 

The natural frequency of a cylinder with mass per unit width �̂� and stiffness per unit length �̂�ℎ, 
oscillating between two raceways, is: 

 𝑓 =
1

2𝜋
√
2�̂�ℎ
�̂�

 (3.110) 

 �̂�ℎ =
𝜋𝐸′

2[2 ln 2 − ln(𝛾𝑞)
 (3.111) 

 �̂� =
𝑚

𝐿𝑟
=

𝐸′

4𝜋[2 ln 2 − ln(𝛾ℎ𝑞)
 (3.112) 
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 𝛾ℎ =
8𝑒

1
2(1−𝜈)

𝜋𝐸′𝐿𝑟
 (3.113) 

The equivalent material damping coefficient of a single Hertzian contact in a rolling element bearing 
can be written as: 

 𝑐ℎ,𝑖 = 𝜓𝐿
𝑘ℎ,𝑖
2𝜋𝑓

 (3.114) 

If 𝜓𝐿 is assumed to be equal for all rolling elements, the material damping matrix can be obtained 
directly from the bearing stiffness matrix: 

 𝑪𝐵,ℎ =
𝜓𝐿
2𝜋𝑓

𝑲𝐵 (3.115) 

Experimental validations of the viscous damping model for the dry Hertzian contact were successfully 
conducted by Hunt and Crossley [29] and by Kremps and Sabot [30]. 

Summing up, the loss factor approach can be used to make quick estimations of the minimum 
damping capability of a rolling element bearing. 

 

 

 

 

 

 

 

 

 

3.5.2 Lubricant film damping 

The lubricant film damping can be computed through numerical methods, but here a curve-fitted 
formula taken from the work of Dietl [10] is presented. Oil-film damping coefficient were obtained 
solving the complete transient EHL line-contact problem under isothermal conditions, using a code 
developed by Van Nijen [31]. 

The equivalent oil-film damping coefficient of a single line-contact can be estimated through the 
following empirical law: 

 𝑐𝑒ℎ𝑙 = 0.1963 𝑅𝑥
0.781 𝐿𝑟

0.769 𝐸′
1.069

 𝜇0
0.531 𝛼𝑃𝑉

0.424 𝑞−0.136 𝑢𝑠
−0.434 𝐹𝑖𝑛𝑙𝑒𝑡

−0.563 (3.116) 

 

Figure 3.12: Force-deflection diagram with hysteresis loop caused by internal 
damping; 𝐸𝑠 is the maximum strain energy, 𝐸𝐷 is the dissipated energy [10] 



44 

 

where 𝑅𝑥  is the equivalent radius of curvature of Equation 3.99, 𝐿𝑟  is the roller length, 𝐸′ is the 
equivalent modulus of elasticity defined in Equation 3.41, 𝜇0 is the lubricant viscosity at ambient 
pressure 𝑝0, 𝛼𝑃𝑉 is the pressure-viscosity coefficient, 𝑞 is the rolling element load per unit length 
(Equation 3.98), 𝑢𝑠 is the sum of surface velocities, 𝐹𝑖𝑛𝑙𝑒𝑡 is the inlet-zone length factor (Figure 3.13). 

 𝑢𝑠 = 𝑢1 + 𝑢2 (3.117) 

 𝑢1 = 𝑢2 =
𝜋𝐷𝑟
60

(
𝑑𝑚
𝐷𝑟

−
𝐷𝑟
𝑑𝑚

cos2 𝛼)
𝑛𝐼𝑅 − 𝑛𝑂𝑅

2
 (3.118) 

 𝐹𝑖𝑛𝑙𝑒𝑡 =
𝑙𝑖𝑛𝑙𝑒𝑡
𝑏

 (3.119) 

 𝑏 = √
8𝑄𝑅𝑥
𝜋𝐸′𝐿𝑟

 (3.120) 

𝑙𝑖𝑛𝑙𝑒𝑡 is the length of the lubricant inlet zone and 𝑏 is the semi-minor axis of the line-contact zone. 
For 𝐹𝑖𝑛𝑙𝑒𝑡 > 4 the equivalent damping coefficient does not change and 𝐹𝑖𝑛𝑙𝑒𝑡 = 4 can be considered 
when in starved lubrication conditions. Higher values of 𝐹𝑖𝑛𝑙𝑒𝑡 give lower damping coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dietl’s empirical formula for the damping factor computation is valid for the following ranges of 
input parameters (Table 3.4): 
 

Figure 3.13: EHL-contact profile and parameters 
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Table 3.4: Input parameters' validity ranges 

3.6 EQUIVALENT STIFFNESS AND DAMPING OF A SINGLE LUBRICATED ROLLING CONTACT 

As previously discussed, the damping capability of a roller bearing mainly comes from the dissipative 
processes within the contact zones between rolling elements and raceways. due to viscous losses 
within the lubricant film, material damping losses and dry friction losses. 

Figure 3.14 shows the scheme of a single lubricated rolling contact and the corresponding, 
dynamically equivalent spring-damper model. Numerical calculations of EHL non-linear equations 
show that for sufficiently high contact preloads 𝑄 and small amplitudes of lateral vibrations of the 
rolling bodies, the EHL-contact has got approximately the characteristics of a linear, viscoelastic 
system, that can be linearised for a certain reference load and modelled by a combination of linear 
springs and viscous dampers. 

The hertzian stiffness is represented by the spring coefficient 𝑘ℎ, while the lubricant film stiffness 
𝑘𝑒ℎ𝑙 can be set to infinite, since it is some orders of magnitude higher than the hertzian one. The 
energy dissipation within the deformed material and the frictional losses in case of metallic contact 
of rolling bodies are represented by the damping coefficient 𝑐ℎ and 𝑐𝑒ℎ𝑙 is the damping capability of 
the lubricant film. 

Since the film stiffness is very high in the contact zone, the damping capability of the lubricant is 
caused by viscous losses within the inlet zone of the EHL contact; for that reason, the dashpot 𝑐𝑒ℎ𝑙 is 
modelled in parallel with the other lumped parameters. [10] 

SYMBOL UNIT DESIGNATION RANGE 

𝑹𝒙 m equivalent radius of curvature 5 − 20 ∗ 10−3 

𝑳𝒓 m contact length of line-contact 1 − 16 ∗ 10−3 

𝑬′ Pa equivalent modulus of elasticity 1.95 − 2.55 ∗ 1011 

𝝁𝟎 Pa s lubricant viscosity at ambient pressure 0.01 − 0.28 

𝜶 Pa-1 Pressure-viscosity coefficient 1.8 − 2.3 ∗ 10−8 

𝒒 N/m rolling element load per unit length 70000 − 260000 

𝒑𝟎 Pa maximum Hertzian pressure 600 − 1000 ∗ 106 

𝒖𝒔 m/s sum of surface velocities 1.8 − 11.0 

𝑭𝒊𝒏𝒍𝒆𝒕  inlet zone length factor 1.5 − 4.0 
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3.6.1 Equivalent stiffness and damping of a single rolling element 

In common rolling bearing applications, the vibration frequency of the inner ring with respect to the 
outer one is much lower than the natural frequency of a single rolling element oscillating between the 
raceways. Therefore, the mass of the rolling elements can be neglected and the scheme of the system 
is shown in Figure 3.15. [32] 
𝑐𝑠 and 𝑘𝑠 for both the inner and outer ring can be evaluated through: 

 𝑘𝑠 = 𝑘ℎ (3.121) 

 𝑐𝑠 = 𝑐ℎ + 𝑐𝑒ℎ𝑙 (3.122) 

 
So: 

 
1

𝑐𝑗
=

1

𝑐𝑠𝑗,𝐼𝑅
+

1

𝑐𝑠𝑗,𝑂𝑅
 (3.123) 

 
1

𝑘𝑗
=

1

𝑘𝑠𝑗,𝐼𝑅
+

1

𝑘𝑠𝑗,𝑂𝑅
 (3.124) 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Lubricated rolling contact (left), spring-damper model of the contact (centre), equivalent Kelvin-Voigt element (right) [10] 

Figure 3.15: Spring-damper model for a single rolling element and equivalent Kelvin-Voigt element [10] 
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4 SPHERICAL ROLLER BEARING DYNAMIC MODEL 

The first step in order to setup an AI algorithm able to predict the health status of a spherical rolling 
element bearing is the elaboration of a suitable bearing mathematical model that can generate a wide 
database of vibration data to be used in the training phase. Such a model should be able to simulate 
the behavior of different types of bearings, in various operating conditions and with different kinds 
and dimensions of defects. 

In this chapter a brief review of the main types of analytical models, used to simulate bearing 
performances, and the development of the full 4 DoF multi-body non-linear dynamic model of the 
spherical roller bearing are described. 

4.1 ANALYTICAL MODELS 

The simulation of rolling element bearings performance through an analytical formulation can be 
done following two different approaches: the quasi-static model is based on static force and moment 
equilibrium equations, while dynamic one involves the integration of the differential equations of 
motion. 

4.1.1 Quasi-static model 

In this method, the force and moment equilibrium equations are written for each bearing element for 
the prescribed loads, including the effects of centrifugal forces and gyroscopic moments, together 
with the external forces and moments. 

The rolling element angular velocities are computed from the prescribed angular velocities of the 
races, assuming pure rolling condition and the rotation of each roller about its axis of symmetry. In 
angular contact ball bearings, kinematic relationships are more complicated due to the possible spin 
velocity, that is an angular velocity along an axis normal to the contact plane. For that reason, a “race 
control” hypothesis, which restricts the ball to spin either on the outer or on the inner race, depending 
on the race that gives the smaller spin moment for the known contact loads, is added. However, it has 
been shown that in well-lubricated bearings, the race control hypothesis is not valid and rolling 
elements spin on both the raceways, so the incorporation of realistic lubricant behavior in this kind 
of model is impossible. 

Other limitations of the quasi-static model are the simulation of the cage interaction with rolling 
elements, that implies short duration collisions (highly dynamic), roller skidding and skewing and the 
influence of time-varying loads. 

Beside those limitations, quasi-static models are very useful for the design of rolling element 
bearings, because they provide a realistic load distribution on the rolling elements and well accepted 
prediction of fatigue life and bearing stiffness. Moreover, the static equilibrium solution provides 
favourable initial conditions for the integration of the differential equations of motion in dynamic 
simulations. 
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The most important features of the quasi-static model can be summarized as follows: [5] 

• the solution to a set of nonlinear algebraic equations of static equilibrium is obtained 
• kinematic constraints are employed for computing angular velocities of rolling elements 
• it is very effective in the estimation of the overall load distribution, bearing fatigue and 

stiffness 
• since a single solution provides all the performance parameters, the model requires only 

moderate computational effort 
• Convergence problems can be found when simulating the realistic lubricant traction behavior 

of a lubricant 
• none of the bearing elements accelerate and all velocities are assumed to be constant 
• the cage motion may not be considered 
• roller instabilities, such as roller skidding and skewing, time-varying loads and race speeds 

cannot be treated  

4.1.2 Dynamic model 

In the dynamic model the equilibrium equations of the quasi-static model are replaced by the 
differential equation of motion of each bearing element and the applied forces and moments are 
computed as a consequence of the various interaction between the elements. Given the initial 
conditions, the differential equations are integrated numerically. 

The dynamic model provides a real time simulation of the performance of the bearing assembly and 
eliminates most of the problems of the quasi-static model: for example, angular velocities are now 
computed by integrating the corresponding accelerations, so no kinematics constraints are necessary. 
The model also allows the treatment of all the internal transient forces, resulting from the interaction 
between the different elements of the bearing, and the lubrication effects. It also provides an improved 
steady-state solution, that can be presented as a time-cycle solution rather than a one-point solution 
of the equilibrium problem. 

Despite the increased computational effort for the numerical integration, the dynamic model provides 
an overall simplification of the design procedure and costs, because the real-time simulation helps in 
the replacement of experimental investigations. 

So, the main features can be summarized as follows: [5] 

• the model consists of the integration of the differential equations of motion of the bearing 
elements, providing a real-time simulation of the bearing performance 

• no kinematic constraints are necessary 
• the lubricant behavior can be modelled 
• the accelerations of any bearing element are determined by applied forces and moments, 

which are computed from the interactions between the elements themselves 
• all external interactions may vary with time 
• instabilities can be simulated 
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4.1.3 Multi-body dynamic model 

The nonlinear multi-body dynamic analytical model of rolling element bearings and associated 
systems are lumped parameter (masses, springs and dampers) models and generally consider outer 
and inner rings as rigid masses and the rolling elements-to-raceways contact interfaces as nonlinear 
springs. They predict the vibration response of bearings, bearing-pedestal and rotor-bearing system 
due to the presence of localized (point, circular, elliptical and rectangular spalls) and extended defects. 

Dynamics of rolling element bearings are addressed to be highly nonlinear and time-variant. Non-
linearity comes from the nonlinear effects due to the Hertzian force-deformation relationship, the 
varying stiffness resulting from load transmission through a finite number of rolling elements, the 
presence of radial clearance in the rolling element-raceway contacts and the effect of lubricant film. 
Time-variant characteristics are the result of the orbital motion of rolling elements: varying 
compliance vibration is due to the bearing rotation movement itself, that leads to variations in its 
stiffness. 

In order to simplify the analysis, the majority of the multi-body models uses the following 
assumptions: [33] 

• the outer and inner rings are rigidly connected to the housing and the shaft respectively 
• the rolling elements are excluded or considered massless 
• the inertial and centrifugal effects on rolling elements are neglected 
• the slippage of the rolling elements is ignored 
• the EHL fluid film in rolling contacts is not considered 
• the bearing stiffness is considered to be linear 

Prior to investigating the vibration response of rolling element bearings due to the presence of defects, 
the research was primarily focused on understanding the characteristics of the vibration response of 
non-defecting ones. The first systematic investigations were conducted by Perret and Meldau in the 
early 1950s and concluded that rolling element bearings generate cyclic vibrations even in absence 
of manufacturing or geometrical imperfections, such as surface roughness, waviness, misaligned 
raceways, off-sized rolling elements, and out-of-round components; those vibrations are called 
variable compliance vibrations. Later, several researchers reported on the development of analytical 
models to predict the vibration response of rolling element bearings due to the presence of distributed 
defects. The first nonlinear multibody dynamic model was reported in 2002 by Feng et al [34]., that 
was based on the model developed by Fukata et al. [35], which describes the vibration response of an 
ideal ball bearing using a 2-DoF model. 

Since that time, many non-linear multi-body dynamic models have been presented, each one with 
different features and levels of complexity, because the simulated vibration time-traces can easily 
highlight the defect-related frequency components and corresponding sidebands. The most important 
problem linked to those models is the amplitude mismatch between modelled and measured vibration 
frequencies, so in many researchers corrected the predicted amplitudes relying on experimental 
results. 
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4.2 4 DOF NON-LINEAR MULTI-BODY DYNAMIC MODEL 

Although spherical roller bearings are extensively applied thanks to their high load-supporting 
capabilities, there is a lack of models of this kind of bearings; therefore, this work is based on ball or 
roller bearings models, that can easily be adapted to spherical roller bearings, assuming some 
simplifications. 

The first major works on rolling element bearings dynamic modelling were performed by Lundberg 
and Palmgren [36] and Harris [14], who introduced the concept of nonlinear stiffness, but did not 
exploit the total non-linearity and time-varying characteristics of bearings. The first complete 
dynamic model for angular contact ball bearings was developed by Gupta [37], who introduced and 
solved the generalised differential equations of motion of the complete system. Tiwari et al. [38] [39] 
studied the effect of clearance on the dynamic response of a rigid rotor and reported that as clearance 
decreases, the bearing stiffness and its non-linear characteristics increase. 

Elastohydrodynamic lubrication theory (EHL) was introduced in modelling in 1960s and Wijnant et 
al. [40] reported the studies and the computational model used to compute the effects of EHL 
influence on bearing dynamics: the interaction between bearing elements was described through non-
linear spring-damper models, based on numerical solution of the EHL problem. 

One of the most comprehensive models, even if it does not include the effects of the EHL theory, was 
presented by Fukata et al. [35] and included all the non-linear and time-variant characteristics of 
rolling element bearings. This was a 2 DoF model, which is based on the Hertzian load-displacement 
relationship. This model was then further developed by Feng et al. [34], including the effects of cage 
and rolling element slipping and of defects on raceways. 

A more recent model is addressed to Sopanen and Mikkola [41] [42] and includes the effects of 
different geometrical faults and extended defects, such as surface roughness, waviness and localised 
defect on raceways and rolling elements, non-linear Hertzian contact deformation and the effects of 
EH fluid film, using a 6-DoF model for deep-groove ball bearings. They showed that radial clearance 
has a significant effect on natural frequencies and vibration response of the whole system, variable 
compliance vibration is generated even if the bearing is geometrically perfect and localised defects 
generate vibration at bearing defect frequencies. 

Basing on the work by Feng et al., Sawalhi and Randall [43] [44] proposed a 5-DoF model, adding 
one degree of freedom through a mass-spring-damper system resonator to simulate the bearing high 
resonant mode and introducing a new defect profile that reduced the vibration amplitude peak to 
obtain results similar to experimental data. Petersen [45] [46] used two resonators, one along 𝑥 and 
one along 𝑦-axis, and developed his model for two-rows spherical roller bearings, including rolling 
element slippage, EHL theory effect for lubricant damping, extended and localized defects effects. 

Working on the above-mentioned model, Mohazen Ahmadi [47] developed a dynamic model of deep 
groove ball-bearings considering the finite size and inertia effects of rolling elements, effects of 
lubricant and extended defects. Recent models of ball bearing, including more or less the same 
approach to simulate the non-linear and time-variant behavior of rolling element bearings are those 
of Singh et al. [2], Shah and Patel [48], Liu and Shao [33]. 
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The model from Yan et al. [49] [50] [51] is a 5 DoF nonlinear dynamic model for ball bearings that 
takes into account the effects of lubricant film damping and height: a new computational fluid 
dynamics method for modeling elastohydrodynamic contacts was proposed, in which fluid-solid 
interaction and elastic deformation of the solid as well as thermal effects were taken into account. 
This work presents a non-linear multi-body dynamic model that can be used to predict the time-
domain vibration response of a radially loaded two-rows spherical roller element bearing due to a 
localized defect on a raceway. The described model is based on the ones of Petersen [45] [46] and 
Yan [49], that used the concept of variable compliance to describe the source of vibration in loaded 
rolling element bearings. 

In the first formulation of the model presented in this work the high frequency resonator was not 
added, but it is one of the topics for future developments as well as the inclusion of the two rows of 
rolling elements. The defect profile model comes from Wen’s dynamic model [52], that simulates the 
effects of a defected raceway with a change in the rolling element displacement. 

The aforementioned models account for the effects of lubricating fluid, but not rigorously; in this 
research the fluid thickness and its damping coefficient are computed real-time at every instant of the 
simulation and for each rolling element, using empirical curve-fitted formulas coming from the EHL-
theory, presented in the works of Masjedi [23] [24] and Dietl [10]. 

The non-linear multi-body dynamic model presented in this work has got 4 DoF (Figure 4.1), two for 
the inner (𝑥𝐼𝑅 and 𝑦𝐼𝑅 displacements) and two for the outer ring (𝑥𝑂𝑅 and 𝑦𝑂𝑅 displacements), can 
simulate the vibration of the bearing for average radial loads applied to the outer raceway and 
rotational velocities and with the presence of localized or extended defects on raceways. Rolling 
elements are modelled as massless bodies (since it has been proven that their effect is minimal [53]) 
with time-varying non-linear stiffness, while raceways are massive bodies with intrinsic stiffness and 
damping capabilities: the inner raceway has got mass 𝑚𝐼𝑅, stiffness 𝑘𝐼𝑅 and damping 𝑐𝐼𝑅, while the 
outer raceway has got mass 𝑚𝑂𝑅, stiffness 𝑘𝑂𝑅 and damping 𝑐𝑂𝑅. The model allows the simulation 
of all those bearing, whose internal contacts between their elements are assumed to be line-contacts, 
since it is really versatile and its input data can be easily changed. 

The lubricant is assumed to be a Newtonian incompressible fluid, whose viscosity depends on 
temperature, working under isothermal conditions. The EHL effects also account for the bearing 
elements roughness and hardness. 

The output data of the model include accelerations, velocities and positions relative to the centre of 
the bearing of the two raceways, rolling elements positions, Hertzian and damping loads, that allows 
the analysis of the load distribution and its comparation with static models if the rotating speed of the 
shaft is set to zero (Figure 4.2). 
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Figure 4.2: Schematic of bearing in load and unload zone 

Figure 4.1: Dynamic model scheme of the bearing [46] 



53 

 

4.2.1 Assumptions and simplifications 

The dynamic model is based on the Hertzian and EHL theories, considers the time-varying 
displacement excitation, the effects of radial clearance, lubricant oil film and the following 
assumptions: 

• only one of the two rows of rolling elements is considered 
• the external load is equally divided between the two rows of rolling elements 
• the outer ring is fixed, while the inner rotates with the shaft 
• the cage movement is based on the bearing geometric dimensions; therefore, no slipping 

occurs between the components of the bearing itself 
• all the rollers are equally distributed around the inner race, move around the raceways with 

equal velocity and the centrifugal forces are neglected 
• rollers are considered massless 
• only nonlinear Hertzian contacts occur between rolling elements and raceways 
• Hertzian contacts are assumed to be line-contacts 
• all translational movements are limited to the 𝑥 − 𝑦 plane and the rolling elements rotate 

around 𝑧-axis 
• the lubricant oil is a Newtonian incompressible fluid, whose viscosity is constant along the 

thickness of the film 
• the bearing is assumed to operate under isothermal working conditions 
• the variation of lubricant oil film in the vertical direction is ignored 
• the contact joint between the shaft and the inner ring is considered infinitely rigid and without 

damping capabilities 
• the defect covers all the raceway width 

4.3 DYNAMIC MODEL DEVELOPMENT 

The modelling of the vibration response of the rolling element bearing with defects is obtained 
through a multi-body nonlinear dynamic model, based on the one developed by Sawalhi and Randall, 
which in includes 4 DoF: 2 translational DoF for the inner raceway and 2 for the outer one, that have 
respectively mass 𝑚𝐼𝑅 and 𝑚𝑂𝑅. The spring and damper constant 𝑘𝐼𝑅, 𝑘𝑂𝑅, 𝑐𝐼𝑅 and 𝑐𝑂𝑅 represent the 
stiffness and damping of the bearing support structure (Figure 4.1). 
The Hertzian contacts between the rolling elements and raceways are modelled by time-varying 
nonlinear contact springs and dampers. 

4.3.1 Rolling element angular position 

The position 𝜙𝑗(𝑡) of each rolling element is defined as: 

 𝜙𝑗(𝑡) = 𝜙𝑚(𝑡) +
2𝜋(𝑗 − 1)

𝑍
+ 𝜙0,    𝑗 = 1, … , 𝑍 (4.1) 
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where 𝑍 is the number of rolling elements, 𝜙𝑚  is the current cage angular position and 𝜙0 is the 
initial cage angular position. 

 𝜙𝑚(𝑡) = 𝜔𝑚𝑡 (4.2) 

where 

 𝜔𝑚 =
𝜔𝐼𝑅
2
(1 − 𝛾) (4.3) 

𝐷𝑟 is the rolling elements diameter, 𝛼 is the contact angle and 𝑑𝑚 is the pitch diameter. 

If the slippage of rolling elements is also taken into account: 

 𝜙𝑚(𝑡) = 𝜔𝑚𝑡 + 𝑣𝑟𝑎𝑛𝑑(𝑡) (4.4) 

where 𝑣𝑟𝑎𝑛𝑑(𝑡)  is a random process uniformly distributed in the range [−𝜙𝑠𝑙𝑖𝑝. 𝜙𝑠𝑙𝑖𝑝] . Typical 
maximum values for the phase variation 𝜙𝑠𝑙𝑖𝑝 are in the order of 0.01 − 0.02 rad 

4.3.2 Hertzian contact model 

The contact deformation 𝛿𝑗(𝑡) for each rolling element is a function of the relative displacement 
𝛿𝑥(𝑡) and 𝛿𝑦(𝑡) of the inner and outer raceways, the position 𝜙𝑗(𝑡) of the rolling element itself, the 

defect profile 𝐻𝑑 (𝜙𝑗(𝑡)) at the rolling element position, which will be described in Section 4.3.6, 

the radial clearance 𝑐𝑑 and the film thickness ℎ𝑒ℎ𝑙,𝑗 at rolling each element location: [49] 

 𝛿𝑗(𝑡) = 𝛿𝑥(𝑡) cos𝜙𝑗(𝑡) + 𝛿𝑦(𝑡) sin𝜙𝑗(𝑡) − ℎ𝑒ℎ𝑙,𝑗 − 𝑐𝑑 − 𝐻𝑑 (𝜙𝑗(𝑡)) (4.5) 

 𝛿𝑥(𝑡) = 𝑥𝐼𝑅(𝑡) − 𝑥𝑂𝑅(𝑡) (4.6) 

 𝛿𝑦(𝑡) = 𝑦𝐼𝑅(𝑡) − 𝑦𝑂𝑅(𝑡) (4.7) 

The lubricant film thickness can be evaluated through the empirical formula illustrated in Section 
3.4.2: 

 ℎ𝑒ℎ𝑙,𝑗 =
ℎ𝑚𝑖𝑛
𝑅𝑥

= 2.691 𝑊𝑗
−0.135𝑈0.705𝐺0.556 (1 + 𝜎1.222𝑉0.223𝑈−0.748𝐺−0.842) (4.8) 

In this formula the load parameter 𝑊𝑗 is computed through the current load on each element 𝑄𝑗. 

The Hertzian contact force 𝑓ℎ,𝑗(𝑡) associated to the deformation 𝛿𝑗(𝑡) exists only for positive values 
of deformation and can be written as  

 𝑓ℎ,𝑗(𝑡) = 𝐾𝑙𝛿𝑗(𝑡)
𝑛ℎ𝜁𝑗(𝑡)             𝜁𝑗(𝑡) = {

1     𝑖𝑓 𝛿𝑗(𝑡) > 0

0     𝑖𝑓 𝛿𝑗(𝑡) ≤ 0
 (4.9) 

𝐾𝑙 depends on the curvature and material properties of the surfaces in contact and 𝑛 = 10

9
 for roller 

bearings. For line-contact, as discussed in section 3.2.3, the stiffness can be evaluated through: 
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 𝐾𝑙 =
1

3.81
10
9 [
1
𝜋
(
1 − 𝜈𝑟𝑜𝑙𝑙𝑒𝑟

2

𝐸𝑟𝑜𝑙𝑙𝑒𝑟
+
1 − 𝜈𝑟𝑎𝑐𝑒𝑤𝑎𝑦2

𝐸𝑟𝑎𝑐𝑒𝑤𝑎𝑦
)]

𝐿𝑟

8
9  (4.10) 

where 𝐿𝑟 is the rolling element length, 𝐸 and 𝜈 are the Young modulus and the Poisson coefficient of 
the rolling element and raceway. 

The total radial contact forces acting on the inner and outer raceways and computed over all rolling 
elements on both rows are: 

 [
𝑓ℎ,𝑥(𝑡)

𝑓ℎ,𝑦(𝑡)
] =∑𝐾𝑖𝑛−𝑜𝑢𝛿𝑗(𝑡)

𝑛ℎ𝜁𝑗(𝑡)

Z

𝑗=1

[
cos𝜙𝑗(𝑡)

sin𝜙𝑗(𝑡)
] (4.11) 

or 

[
𝑓ℎ,𝑥
𝑓ℎ,𝑦

] =∑𝐾𝑖𝑛−𝑜𝑢 𝜁𝑗 [(𝑥𝐼𝑅 − 𝑥𝑂𝑅) sin𝜙𝑗 + (𝑦𝐼𝑅 − 𝑦𝑂𝑅) cos𝜙𝑗 −𝐻𝑑 − 𝑐 − ℎ𝐸𝐻𝐿]
1.11

 [
cos 𝜃𝑗
sin 𝜃𝑗

]

𝑍

𝑖=1

 (4.12) 

where: 

 𝐾𝑖𝑛−𝑜𝑢 = (
1

(𝐾𝑙,𝐼𝑅
−𝑛ℎ + 𝐾𝑙,𝑂𝑅

−𝑛ℎ)
)

𝑛ℎ

 (4.13) 

is the resultant stiffness from the contact between each rolling element and both the raceways, since 
the springs 𝐾𝐼𝑅 and 𝐾𝑂𝑅, that model the contact stiffness, are in series. 

Taking into account the rolling elements contact angle: 

 [
𝐹ℎ,𝑥
𝐹ℎ,𝑦

] = [
𝑓ℎ,𝑥
𝑓ℎ,𝑦

] cos 𝛼 (4.14) 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.3: Scheme of the contact between a rolling element and raceways [49] 
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4.3.3 Damping in rolling elements contacts 

To account for lubricant film damping effect in contacts between rolling elements and raceways, 
dampers 𝑐𝑗(𝑡) are included in the model. The force 𝑓𝑑,𝑗(𝑡) associated with a rolling element located 
at 𝜙𝑗(𝑡) acts on the inner and outer raceways in the radial direction and is given by: 

 𝑓𝑑,𝑗(𝑡) = 𝑐𝑗  �̇�𝑗(𝑡)
𝑛𝜁𝑗(𝑡) = 𝑐𝑗(𝑡) �̇�𝑗(𝑡)         𝜁𝑗(𝑡) = {

1     𝑖𝑓 𝛿𝑗(𝑡) > 0

0     𝑖𝑓 𝛿𝑗(𝑡) ≤ 0
 (4.15) 

The total contact damping forces acting on the inner and outer raceways in 𝑥 and 𝑦 directions are: 

 [
𝑓𝑑,𝑥(𝑡)

𝑓𝑑,𝑦(𝑡)
] = 𝑐𝑗∑�̇�𝑗(𝑡)𝜁𝑗(𝑡) [

cos𝜙𝑗
sin𝜙𝑗

]

Z

𝑗=1

 (4.16) 

The damping coefficient 𝑐𝑗 of each rolling element is the resultant damping coefficient of the inner 
race-roller and outer race-roller contacts. As reported in Section 3.6.1, the total damping coefficient 
for each rolling element is 

 
1

𝑐𝑗
=

1

𝑐𝑠𝑗,𝐼𝑅
+

1

𝑐𝑠𝑗,𝑂𝑅
 (4.17) 

where: 

 𝑐𝑠,𝑗 = 𝑐ℎ,𝑗 + 𝑐𝑒ℎ𝑙,𝑗 (4.18) 

𝑐𝑒ℎ𝑙 is the damping coefficient of the lubricant film, that can be computed through the empirical 
formula reported in Section 3.5.2: 

 𝑐𝑒ℎ𝑙,𝑗𝐼𝑅 = 0.1963 𝑅𝑥,𝐼𝑅
0.781 𝐿𝑟

0.769 𝐸′
1.069

 𝜂0
0.531 𝛼𝑃𝑉

0.424 𝑞𝑗
−0.136 𝑢𝑠,𝑗

−0.434 𝐹𝑖𝑛𝑙𝑒𝑡
−0.563 (4.19) 

 𝑐𝑒ℎ𝑙,𝑗𝑂𝑅 = 0.1963 𝑅𝑥,𝑂𝑅
0.781 𝐿𝑟

0.769 𝐸′
1.069

 𝜂0
0.531 𝛼𝑃𝑉

0.424 𝑞𝑗
−0.136 𝑢𝑠,𝑗

−0.434 𝐹𝑖𝑛𝑙𝑒𝑡
−0.563 (4.20) 

The description of all the parameters involved in the equation can be found in the afore mentioned 
paragraph; the load 𝑄𝑗, used for the computation of the distributed load 𝑞𝑗, is the current load on 
rolling element 𝑗. 

𝑐ℎ is the structural damping coefficient of metal parts single Hertzian contact in a rolling element 
bearing, as it is discussed in Section 3.5.1, and can be written as: 

 𝑐ℎ,𝑗 = 𝜓𝐿
𝑘ℎ,𝑗

2𝜋𝑓
 (4.21) 

where 𝜓𝐿 is the loss factor, that for steel bodies ranges between 0.2 − 3 ∗ 10−4, 𝑘ℎ,𝑖 is the contact 
stiffness and 𝑓 is the excitation frequency. 

Taking into account the rolling elements contact angle: 

 [
𝐹𝑑,𝑥
𝐹𝑑,𝑦

] = [
𝑓𝑑,𝑥
𝑓𝑑,𝑦

] cos 𝛼 (4.22) 
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4.3.4 Model of raceways stiffness 

Whenever a rolling element hits a defect in the loaded area, the ring containing the defect is driven 
into a vibration flexural motion, that can occur in several different modes. However, to make the 
characterization of parameters easier, only the first flexural mode, which has an elliptic shape, is 
considered. The bearing rings are also excited by the variable compliance effect, that generates 
vibration even in absence of defects. 

Thus, the external and internal ring are represented through a mass-spring system with one-degree of 
freedom in radial direction and the natural frequency for the flexural vibration mode 𝑛 is given by 
[54]: 

 𝜔𝑛 =
𝑛(𝑛2 − 1)

√1 + 𝑛2
√

𝐸𝐼

𝜇𝑚𝑟4
 (4.23) 

Where 𝐸 is the modulus of longitudinal elasticity, 𝐼 is the moment of inertia of the cross-section of 
the ring, 𝜇𝑚 is the mass per unit length, 𝑟 is the radius of neutral axis of the ring. 

Depending on the rings dimensions and characteristics and imposing 𝑛 = 2 for the first flexural 
mode, we can evaluate the rings stiffness: 

 𝑘𝐼𝑅 = 𝑚𝐼𝑅 𝜔𝐼𝑅
2  (4.24) 

 𝑘𝑂𝑅 = 𝑚𝑂𝑅 𝜔𝑂𝑅
2  (4.25) 

In this model, as mentioned in the assumptions, the inner ring is considered rigid, to obtain quasi-
static load distribution for the defect-free case that agree with the well-known Stribeck results [45], 
and 𝐾𝑂𝑅 represent the stiffness of the external structure. 

4.3.5 Lubricant properties 

As mentioned in the assumptions, the lubricant is an incompressible Newtonian fluid, whose 
properties depend on temperature. 

• lubricant density 𝜌 can be read on manufacturer’s datasheet. 
• kinematic viscosity 𝜈0 depends on temperature, so, knowing the working temperature of the 

bearing, it can be derived through interpolation. 
• dynamic viscosity is  

 𝜇0 = 𝜂0 𝜌 (4.26) 

• viscosity-pressure coefficient 𝛼𝑃𝑉 can be derived using the ASME relation [55] 

 𝛼𝑃𝑉 = 0.1122 𝜂0
0.163 (4.27) 

that returns the viscosity-pressure coefficient in mm2/N 
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4.3.6 Defect model 

Bearing fail as a consequence of multiple causes: corrosion, wear, plastic deformation, fatigue, 
lubrication failure, electrical damage, fracture and incorrect design or setup operations. Most common 
spalling fatigue leaves pits on races or rollers due to periodic contact stress. 

In this work only localised defects on the races are analysed. Many researches report the displacement 
excitation function, which is used, like in this work, to model the defect effect. Simplest models 
assume the defect as cube-shaped, but this does not model the real path the rollers follow when they 
fall into the defect itself. Thus, the geometrical relationship between the roller and the outer raceway 
centres is described through the following model, introduced by Wen [52]: 

 𝐻𝑑 (𝜙𝑗(𝑡)) = {
min(ℎ𝑑𝑒𝑓 , 𝑟𝑟 + 𝑟𝑂𝑅(cos𝛽𝑗 − 1) − √𝑟𝑟

2 − 𝑟𝑂𝑅
2 (sin 𝛽𝑗)

2
    𝑖𝑓 𝜙𝑗 ∈ [𝜃𝑖 − 0.5Δ𝜃𝑑𝑒𝑓 , 𝜃𝑖 + 0.5Δ𝜃𝑑𝑒𝑓]

0                                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.28) 

where ℎ𝑑𝑒𝑓 is the defect height, 𝑅𝑟 is the roller radius, 𝑅𝑂𝑅 is the outer raceways mean radius, 𝜃𝑖 is 
the angular position of the centre of the defect, Δ𝜃𝑑𝑒𝑓 is the angular extension of the defect, 𝛽𝑗 is the 
current angle between the roller centre and the edges of the defect, which is defined as follows: 

 𝛽𝑗 = {
𝜙𝑗 − 𝜃𝑖 + 0.5 Δ𝜃𝑑𝑒𝑓    𝑖𝑓 𝜃𝑖 − 0.5 Δ𝜃𝑑𝑒𝑓 ≤ 𝜙𝑗 ≤ 𝜃𝑖
𝜃𝑖−𝜙𝑗 + 0.5 Δ𝜃𝑑𝑒𝑓    𝑖𝑓 𝜃𝑖 ≤ 𝜙𝑗 ≤ 𝜃𝑖 + 0.5 Δ𝜃𝑑𝑒𝑓

 (4.29) 

 Δ𝜃𝑑𝑒𝑓 =
𝐿𝑑𝑒𝑓

𝑟𝑟𝑎𝑐𝑒
 (4.30) 

In the outer raceway case 𝑟𝑟𝑎𝑐𝑒𝑤𝑎𝑦 = 𝑟𝑂𝑅 =
𝑑𝑂𝑅

2
 

The equation for the inner race is: 

 𝐻𝑑 (𝜙𝑗(𝑡)) = {
min(ℎ𝑑𝑒𝑓, 𝑟𝑟 + 𝑟𝐼𝑅(cos𝛽𝑗 − 1) − √𝑟𝑟

2 − 𝑟𝐼𝑅
2 (sin 𝛽𝑗)

2
    𝑖𝑓 𝜙𝑗 ∈ [𝜃𝑖 − 0.5Δ𝜃𝑑𝑒𝑓 , 𝜃𝑖 + 0.5Δ𝜃𝑑𝑒𝑓]

0                                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.31) 

In this case 𝑟𝑟𝑎𝑐𝑒𝑤𝑎𝑦 = 𝑟𝐼𝑅 =
𝑑𝐼𝑅

2
 

The comparation of the depth of defect used in this work compared to the one that is most frequently 
used in dynamic models of defective bearings can be seen in Figure 4.4. 

Figure 4.4: Qualitative comparison of spall profile 
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4.3.7 Nonlinear dynamic equations of motions 

Using the equations presented in Paragraph 4.3, the nonlinear equations of motion for the inner and 
outer raceways are given by 

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑠} + {𝐹ℎ𝑒𝑟𝑡𝑧} + {𝐹𝑑𝑎𝑚𝑝} = {𝐹𝑒𝑥𝑡} (4.32) 

where: 

 {𝑠} = {

𝑥𝐼𝑅
𝑦𝐼𝑅
𝑥𝑂𝑅
𝑦𝑂𝑅

} (4.33) 

 {�̇�} = {

�̇�𝐼𝑅
�̇�𝐼𝑅
�̇�𝑂𝑅
�̇�𝑂𝑅

} (4.34) 

 {�̈�} = {

�̈�𝐼𝑅
�̈�𝐼𝑅
�̈�𝑂𝑅
�̈�𝑂𝑅

} (4.35) 

 [𝑀] = [

𝑚𝐼𝑅 0 0 0
0 𝑚𝐼𝑅 0 0
0 0 𝑚𝑂𝑅 0
0 0 0 𝑚𝑂𝑅

] (4.36) 

 [𝐶] = [

0 0 0 0
0 0 0 0
0 0 𝑐𝑂𝑅 0
0 0 0 𝑐𝑂𝑅

] (4.37) 

 [𝐾] = [

0 0 0 0
0 0 0 0
0 0 𝑘𝑂𝑅 0
0 0 0 𝑘𝑂𝑅

] (4.38) 

 {𝐹ℎ} =

{
 

 
𝐹ℎ,𝑥
𝐹ℎ,𝑦
−𝐹ℎ,𝑥
−𝐹ℎ,𝑦}

 

 

 (4.39) 

 {𝐹𝑑} =

{
 

 
𝐹𝑑,𝑥
𝐹𝑑,𝑦
−𝐹𝑑,𝑥
−𝐹𝑑,𝑦}

 

 

 (4.40) 
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 {𝐹𝑒𝑥𝑡} =

{
 
 

 
 
0

−
𝐹𝑟
2
0
0 }
 
 

 
 

 (4.41) 

𝑘𝑂𝑅 and 𝑐𝑂𝑅 are respectively the stiffness and damping of outer ring, that are presented in Sections 
4.3.4 and 3.5.1;  𝐹𝑟 is the external radial load applied to the outer ring of the bearing and it is divided 
by two, because only a row of rolling elements is considered and we assumed that load is equally 
supported by the two rows. 
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5 SIMULATION SETUP AND RESULTS 

The multi-body nonlinear dynamic model of the spherical roller bearing presented in Chapter 4 was 
implemented in Matlab and Simulink and the equations of motion were solved using the differential 
equation solver Ode 4, that is based on Runge-Kutta method with fixed step size. 

The developed model allows the simulation of bearing performance under different conditions of 
shaft rotational speed, radial load and operating temperature. The presence of a defect on the inner, 
outer or both the raceways and the effects of lubrification and rolling element slipping can be easily 
included in the simulation setup. 

Since the initial conditions of simulations regarding the position and velocities of inner and outer 
races are set to zero, the model simulates also a transient; therefore, in the simulation setup the starting 
revolution or the starting time from which data are recorded for further analysis can be set. 

In this chapter the data used for simulation and the main results are presented. 

 

5.1.1 Simulation data 

All the parameters involved in the dynamic equations of motion can be derived using the equations 
presented in the previous sections and using the following data and diagrams, relative to the SKF 
22240 CCK/W33 spherical roller bearing ( 

Table 5.1) and the ISO VG 150 lubricant (Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Diagram of ISO VG 150 lubricant kinematic viscosity vs. temperature 
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Table 5.1: Simulation data  

Parameter Value Unit 

Number of rollers (𝒁) 19 / 

Roller diameter (𝑫𝒓) 38.26 mm 

Bearing width (𝑳𝒓) 33.41 mm 

Radial clearance (𝒄𝒅) 0 µm 

Inner raceway diameter (𝒅) 200 mm 

Outer raceway diameter (𝑫) 360 mm 

Inner ring external contact diameter (𝒅𝟐) 238 mm 

Outer ring internal contact diameter (𝑫𝟏) 313 mm 

Contact angle (𝜶) 11.27 ° 

Bearing exponential coefficient (𝒏𝒉) 1.11 / 

Mass of inner ring (𝒎𝑰𝑹) 10.5 kg 

Mass of outer ring (𝒎𝑶𝑹) 15.3 kg 

Mass of rollers (𝒎𝒓𝒐𝒍𝒍𝒆𝒓) 0.349 kg 

Material of rings and rollers steel / 

Elastic modulus of raceways (𝑬𝒓𝒂𝒄𝒆) 210 GPa 

Elastic modulus of rollers (𝑬𝒓𝒐𝒍𝒍𝒆𝒓) 207 GPa 

Poisson’s ratio of rings (𝝂𝒓𝒊𝒏𝒈) 0.3 / 

Poisson’s ratio of rollers (𝝂𝒓𝒐𝒍𝒍𝒆𝒓) 0.3 / 

Roughness of raceways (𝝈𝒓𝒂𝒄𝒆) 0.1 µm 

Roughness of rollers (𝝈𝒓𝒐𝒍𝒍𝒆𝒓) 0.03 µm 

Steel loss factor (𝝍𝑳) 0.0002 / 

Bearing hardness (𝒉𝒅) 7.65∙109 / 

Cage starting angular position (𝝓𝟎) 1.5π rad 

Lubricant density (𝝆) 872 kg/m3 

Defect angular position (𝜽𝒊) 1.5π rad 

Defect linear length (𝑳𝒅𝒆𝒇) 2 mm 

Defect height (𝒉𝒅𝒆𝒇) 1 mm 
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5.2 SIMULATION RESULTS 

The discussion on the spherical roller bearing simulation output that will be presented in this section 
are based on roller bearing data of Table 5.1 and the tuneable parameters are set to 

𝑛𝐼𝑅 = 127 rpm 

𝐹𝑟 = 124.8 kN 

𝑇 = 30 °C 

The presence of defects and the effect of lubrication are included or excluded, depending on the 
simulation needs. 

5.2.1 Rolling element load 

The static load distribution as a function of the cage position is obtained from the defect-free 
simulation and is presented in Figure 5.2. 

In case of dry contact, the load distribution for a rolling element as a function of the cage angle is in 
accordance with theory: the maximum load is in correspondence to 𝜙 = 270°, that is the centre of 
the load zone, whose angular extension is Δ𝜙 = 180° because the diametral clearance 𝑐𝑑 = 0. 

If the effect of lubricant film thickness is considered, there is a reduction in the load zone extension, 
since it affects the deformation, as presented in Equation 4.5. The maximum load is also higher than 
in the case of dry contact, because the rolling element crossing the centre of the load zone has to 
sustain the load of those that have not been deformed yet due to the film thickness effect, even if they 
have already entered the dry load zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Plot of rolling element load distribution in case of dry (orange) or lubricated (blue) contact 
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5.2.2 Fluid film thickness 

The fluid film thickness profile as function of the cage angular position is shown in Figure 5.3, while 
Figure 5.4 relates it to the rolling element load distribution. In this model the effect of lubricant film 
thickness is considered only when the rolling element is in the load zone, because the empirical 
formula presented in Equation 4.8 for the film thickness computation includes the load parameter, 
that accounts for the current Hertzian contact force sensed by the rolling element. This makes sense, 
because outside the load zone, the effect of film thickness does not have effect, since the rolling 
element deformation is negative and it does not produce a Hertzian contact force. The computation 
of the film thickness is performed using the dry Hertzian contact force, then it is subtracted to the 
current dry deformation and finally Hertzian contact force is obtained, as described in Section 4.3.2. 

As the rolling element reaches the maximum load point, the lubricant is squeezed apart and 
compressed, reaching conditions similar to solid state, so the film thickness becomes thinner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4: Normalized lubricant film thickness (blue) and rolling element 

load as function of the cage angular position 

Figure 5.3: Film thickness profile 
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5.2.3 Lubricant film damping coefficient 

The lubricant film damping coefficient is computed through the empirical formula presented in 
Equation 3.116 and with the assumption regarding the rolling element load made in the previous 
section. Its maximum value is reached and the entrance of the load zone and its minimum is in 
correspondence of the maximum load point, where lubricant reaches its maximum pressure (Figure 
5.5). 

Figure 5.6 shows the relationship between damping coefficient and load in case of the presence of a 
defect on the outer race. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Lubricant film damping coefficient (blue) and rolling element load 
(orange) as function of cage angle for a spherical roller bearing with a 

localized defect on the outer race 

Figure 5.5: Lubricant film damping coefficient (blue) and rolling element load 
(orange) as function of cage angle 
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5.2.4 Defect induced effect 

The defect-induced reduction in rolling element deformation as function of cage angular position is 
shown in Figure 5.7. 

The modified profile presented in Section 4.3.6 simulates the deviation of the rolling element centre 
from the circular trajectory around the bearing centre. The original profile assumed a constant value 
𝐻𝑑 = ℎ𝑑𝑒𝑓 for the whole defect angular extension: in the case analysed in this work the defect heigh 
is ℎ𝑑𝑒𝑓 = 1 mm and it produces too large vibration. From the plot it can be seen that the maximum 
defect-induced deformation reduction is only about 23 μm , because it considers only the true 
penetration of the rolling element into the defect, depending on their geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 shows the normalized defect-induced reduction in deformation and the rolling element 
load as function of the cage angular position for a rolling bearing with a localized defect on the outer 
race (left) and on the inner one (right). 

In the former case, it can be seen that whenever a rolling element enters into the defect (𝜙 = 270°), 
it senses an abrupt reduction in its contact deformation and, therefore, in its Hertzian load. This effect 
induces a peak in the load of nearby rolling elements that have already entered the load zone. The 
impulsive effect on load is greater as rolling element are closer to the one that encountered the defect.  

A defect on the inner race rotates with the same rotational speed of the shaft 𝑛𝐼𝑅, so it has an effect 
only if it is in the load zone, as shown in Figure 5.8 and in Figure 5.9. 

 

 

 

 

Figure 5.7: Defect-induced reduction in rolling element deformation as 
function of the cage position 
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Figure 5.8: Normalized defect-induced reduction in deformation (orange) and rolling element load (orange) for a bearing with a 
localized defect on the outer (left) and inner (right) raceway 

Figure 5.9: Rolling element load distribution for dry (orange) and lubricated (blue) contact in case of a localized defect on the inner 
(left) or outer (right) receway 
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6 EXPERIMENTAL TEST RIG 

Numerical data obtained through simulation using the nonlinear multi-body dynamic should be 
compared to experimental data obtained under similar condition of rotation speed, external loads and 
defect type to validate the model. 

Figure 6.1 shows the photo of the test rig designed by Brusa et al. [56] to conduct active monitoring 
of bearings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1: Pictures of the test rig [56] 
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The test rig is powered by a 30 kW three-phase motor by SIEMENS® connected to the SIEMENS® 
G120_CU240E_2 INVERTER with Brake Resistor, that drives the shaft up to 195 Nm of maximum 
torque at the rated spin speed of 1470 rpm. Speed and torque controls, managed by the inverter, can 
set the motor speed up to 2500 rpm. The “self-contained box” is made of two housing blocks with 
oil lubrication equipped with up to four different roller bearings, whose reactions are directly balanced 
by the box. Hydraulic actuators on the upper panel of the box and between each pair of bearings allow 
the application of radial and axial static loads respectively up to 200 kN.  

As it is mentioned in Brusa et al. [56], the main advantages of this test rig can be resumed as follows: 

• independent radial and axial loads up to 200 kN on each tested bearing 
• simultaneous testing of four bearings, that allows the self-balance of applied loads with 

minimal transmission to the platform 
• high modularity, that enables testing on different sized bearings up to 420 mm  of outer 

diameter 
• direct measure of friction torque of tested bearings 

Four SKF CMSS 2200 T sensors are mounted along the radial direction on the bearing-box adapters 
to measure vibration amplitude and frequency and operating temperature of each bearing. Vibration 
signals are acquired through the DAQ system and digitally sampled at 𝑓𝑠 = 20480 Hz  

Figure 6.2 shows the CAD model section of the “self-containing box” that highlights the position of 
the accelerometer with respect to the centre of the bearing. In the reference system used in the model 
developed in this work: 

Δ𝑦 = 215.25 mm 

Δ𝑥 = 150.77 mm 

The angle formed by the segment that links the centre of the bearing to the sensor and the 𝑥-axis is 

 𝛼𝑠𝑒𝑛𝑠𝑜𝑟 = tan−1
Δ𝑦

Δ𝑥
 (6.1) 

So the acceleration sensed by the sensor can be written as: 

 �̈�𝑠𝑒𝑛𝑠𝑜𝑟 = �̈�𝑂𝑅 cos 𝛼𝑠𝑒𝑛𝑠𝑜𝑟 + �̈�𝑂𝑅 sin 𝛼𝑠𝑒𝑛𝑠𝑜𝑟 (6.2) 

The 22240 CCK/W33 bearing tested on this test rig has the characteristic frequencies reported in 
Table 6.1 

 

 

 

 

 
Table 6.1: SKF 22240 CCK/W33 characteristic frequencies 

 

Characteristic Frequency Value [𝐇𝐳] 
Ball Pass Frequency relative to Outer Race (𝑩𝑷𝑭𝑶) 8.176 𝑓𝑟 
Ball Pass Frequency relative to Inner Race (𝑩𝑷𝑭𝑰) 10.824 𝑓𝑟 
Ball Spin Frequency (𝑩𝑺𝑭) 3.464 𝑓𝑟 
Fundamental Train Frequency (𝑭𝑻𝑭) 0.43 𝑓𝑟  
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Figure 6.2: CAD model of the box showing the position of the sensor with respect to the shaft 
center 
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7 VIBRATION ANALYSIS AND FAULT DETECTION: A REVIEW 

Nowadays, since manufacturing companies struggle to maintain their competitiveness on the global 
market, they are making great efforts to reduce costs and improve quality. Being cost saving and 
profitability achieved by higher industrial equipment’s availability, reliability and maintainability, it 
is necessary to implement an effective machinery maintenance program. In fact, since it is impossible 
to effectively plan maintenance and production scheduling without an accurate identification of 
machine faults, the most important task in machinery maintenance should be fault detection and 
diagnostics. In addition, an accurate diagnostic activity assures fast troubleshooting and repair time 
that can improve machine availability significantly. [7] 

The required degree of fault prevention strongly depends on the complexity of the system and its 
applications. For example, bearings are among the most critical components that have wide 
application ranges in many industries and have proven to be reliable when properly applied. As rolling 
element bearings have been gradually employed in more severe application with higher loads, speeds 
and restricted lubrication, thanks to improvements in materials, design, lubrication technology and 
service-life, condition monitoring and fault detection have become important to ensure safe operation 
of rotating machines. So, many approaches, such as thermal, oil debris and vibration analysis have 
been introduced in diagnostic operation. [3] 

The most advanced approach to fault diagnosis is represented by Intelligent Fault Diagnosis (IFD), 
that is based on the application of machine learning theories, opening to an interesting way to release 
the contribution from the human labor, since the algorithm can automatically recognize the health 
status of machines. [4] 

This chapter opens with a brief analysis of failure causes and a review of the main types of analysis 
used in fault detection with a focus on vibration analysis, that is involved in this work. Then, there is 
a description of the fault signatures and the characteristic frequencies of defects in bearings. In the 
last part of the chapter the machine learning algorithms, used in this work, and the way to train them 
are presented. 

7.1 FAILURE CAUSES 

The most important failure means, which can cause localized defects on bearings, are wear. crack, 
fatigue, corrosion, brinelling and lubrication starvation. On the other hand, inadequate maintenance, 
improper assembling and harsh operating conditions, such as insufficient lubrication or very high 
speed or acceleration, are responsible for the generation of distributed defects. [7] [3] 

7.1.1 Wear damage 

Wear is a frequent source of damage and occurs due to dirt and foreign particles entering the bearing 
because of inadequate sealing or contaminated lubrication. This increases the friction between metal 
contacts, that leads to a change in raceway profile and gives them a dull appearance due to abrasive 
effects. Wear damage gradually deteriorates the bearing, leading to an alteration in elements profiles 
and diameters (geometric errors) and increasing clearance. 
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Non-uniform diameters of worn rolling elements causes cage frequency vibration to be produced as 
the sequence of balls rotating through the load zone is period with the cage rotation frequency. 

7.1.2 Fatigue damage 

Fatigue damage is induced by loading: in loaded configurations, after a certain amount of time a 
minute fatigue crack begins below the surface and propagates towards the surface as the loading 
continues, until a piece of metals breaks away, leaving a pit in the contact area. If the bearing 
continues in its service operations, the damage spreads due to stress concentration. Fatigue effects 
grow faster in case of overloads, over speeding or oil starving, so the bearing may fail before the 
predicted lifetime. The surface damage severely disturbs the nominal motion of the rolling elements 
by introducing short time impacts repeated at the characteristic rolling element defect frequencies. 

7.1.3 Corrosion damage 

Corrosion damage results in rust on the bearing elements, which originates from the exposure to 
water, acid, acid lubrication or to external elements in case of incorrect storage and causes excessive 
noise during operation. Corrosion may be also caused by condensation, that originates from sudden 
cooling of the bearing in humid air from the working temperature and can damage its components 
even before the installation. Rust particles also have an abrasive effect that generates wear, while rust 
pits form the initiation sites for subsequent flaking and spalling. 

7.1.4 Brinelling 

Brinelling consists in permanent indentation created by rolling element overload. It can be seen as 
regularly spaced indentations distributed over the entire raceway circumference with a shape similar 
to the Hertzian contact. It may be caused by static loading, which leads to observable plastic 
deformation of raceways, vibration and shock loads and increases bearing noise and vibration, leading 
to a premature failure. In fact, each indentation acts as a small fatigue site producing sharp impacts 
with the passage of rolling elements. Continued operation leads to the development of spalling effects. 

7.1.5 Lubrication starvation 

Inadequate lubrication in terms of quantity and quality is responsible for the premature failure of 
bearings because it leads to skidding, slippage and bearing seizure phenomena. In the Hertzian contact 
zones contacting surface weld together and then they are torn apart due to high loads, as if there was 
not a sufficient lubrication. This may happen for the cage-roller, roller-race and cage-race contacts 
and can severe consequences because high temperatures can anneal the bearing elements, reducing 
hardness and fatigue life. 
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7.2 FAULT DETECTION 

The detection of faults in bearings, which has been recognized an important aspect for preventing 
catastrophic failures and planning effective maintenance, can be conducted following several 
approaches, such as thermal analysis, oil debris analysis and vibration analysis. [3] 

7.2.1 Thermal analysis 

Thermal analysis is a tool that can generates warnings about the overheating of the bearing system, 
but it cannot be used to identify the type and size of defects. It is performed employing thermocouples 
or other types of temperature monitoring devices at the inlet and outlet of the test chamber. 

7.2.2 Oil debris analysis 

Debris analysis is usually employed for those bearings that use oil lubrication and consists of oil 
sampling to find metal particles, analytical tests and data interpretation. There are many oil debris 
analysis techniques such as elementary spectroscopy, wear particle analysis, fine particulates 
analysis, molecular analysis and electrochemical chemistry, that can provide information on quantity, 
form and size distribution of the debris, leading to the damage type detection. 

Only a small amount of oil debris extracted from oil analysis can reveal the severity of rolling contact 
fatigue wear and this can be a critical indication that the bearing has to be changed. Even if this type 
of analysis cannot differentiate between the type of damaged component because of the material 
similarity, this technique is often used along with the vibration analysis in bearing condition 
monitoring programs. 

7.3 VIBRATION ANALYSIS 

Each rotating machine has its own vibration signature as result of the rotation of all the components 
of the mechanical system, such as motors, shafts, gears and bearings. Rolling element bearings play 
a significant role in machinery vibration, because their structural elements act as springs and add mass 
to the whole system, defining the vibration response to external time-varying and excitation forces, 
that produce time-varying loads. Those forces are accounted in the bearing design, but they can be 
greatly amplified by imperfections and defects in bearing components. 

The detection of progressive bearing deterioration during operation through vibration measurements 
has been in use for a long time and has become more economically convenient in recent years. 
Vibration diagnostics usually consist in extracting features from a signal and associating them with 
healthy or faulty components. 

A healthy bearing under constant load is likely to move towards steady state dynamic equilibrium 
because of the symmetry in rolling bearing elements, while the strength of vibration may increase 
when a defect occurs, since a transient force takes place each time a component contacts the defective 
surface, resulting in rapid accelerations. [3] 
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However, the success of any monitoring program largely depends on the accuracy of the 
measurements, so the measuring instrumentation must be properly calibrated, the sensor mounting 
should not limit the frequency and dynamic ranges of sensors and measurements must be always 
taken at the same locations. The measurements of machine vibrations can be made using a wide range 
of transducers, such as velocity transducers, microphones, which are inexpensive tools for the non-
contact vibration measurement and piezo-electric accelerometers, that are the most used transducers, 
thanks to their wide frequency response and dynamic range and the possibility to use acceleration for 
computing velocities and displacements. [7] 

The most common techniques for the vibration analysis are the time-domain and the frequency-
domain techniques. 

7.3.1 Time-domain techniques 

Time-domain vibration signals, if properly understood, contain much information. 

The most straightforward technique is the visual inspection of the time-domain waveform. Figure 7.1 
shows simulated vibration signal waveforms of 0.4 s from a bearing containing an inner (above) and 
an outer (below) raceway defect. Repeated impacts can be observed at the time periods corresponding 
to the interval 𝑇𝐵𝑃𝐹𝐼  and 𝑇𝐵𝑃𝐹𝑂 . In the first plot the amplitude modulation, that depends on the 
entering and exit of the defect from the load zone is also visible. 

For example, regarding the first plot, the time distance between two peaks is Δ𝑡𝑝𝑒𝑎𝑘𝑠 = 0.0254 s and 
the theorical 𝑇𝐵𝑃𝐹𝐼 is: 

 𝑇𝐵𝑃𝐹𝐼 =
60

10.824 𝑛
= 0.0254 𝑠 (7.1) 

Vibration signals may be very complicated and impacts cannot be so clearly distinguishable if the 
whole mechanical system is composed of many components, making the visual recognition of defects 
difficult, as it can be seen in Figure 7.2. For that reason, it is convenient to extract some characteristic 
parameters, starting from the time-domain signal 𝑥(𝑡): [57] 

• peak level: it is defined as the half difference between the maximum and minimum vibration 
level, but it is not always a good indicator, because false data caused by noise can have a 
strong effects on this feature 

 𝑃𝑒𝑎𝑘 =
1

2
(max 𝑥(𝑡) − min 𝑥(𝑡)) (7.2) 

• mean: it is the average vibration level 

 �̅� =
1

𝑁
∑𝑥𝑖(𝑡)

𝑁

𝑖=1

 (7.3) 

• standard deviation: it is the amount of dispersion of a set of values 
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 𝑆𝑇𝐷 = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2
𝑁

𝑖=1

 (7.4) 

• RMS value: it is the normalized second statistical moment of the signal or its standard 
deviation 

 𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (7.5) 

• crest factor: it is the ratio of the peak value to the RMS of the signal and it is an index of its 
impulsive nature: the crest factor increases in presence of discrete impulses. 

 𝐶𝐹 =
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 (7.6) 

• kurtosis: it is the normalized fourth statistical moment of the signal and provides a measure 
of the impulsive nature of the signal. A Gaussian distributed signal has got 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 3. 

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁 − 1

∑ (𝑥𝑖 − �̅�)
4𝑁

𝑖=1

𝑆𝑇𝐷4
 (7.7) 

• shape factor: it is the ratio of the RMS and mean of absolute values of the signal 

 𝑆𝐹 =
𝑅𝑀𝑆

1
𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1

 (7.8) 

• impulse factor: it compares the height of the peak values to the mean level of the signal 

 𝐼𝐹 =
𝑃𝑒𝑎𝑘

1
𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1

 (7.9) 

• clearance factor: it is the peak value divided by the squared mean value of the square roots of 
the absolute amplitudes; it is maximum for healthy bearings and start goes on decreasing for 
defective ball, defective outer and defective inner race respectively 

 𝐶𝐿𝐹 =
𝑃𝑒𝑎𝑘

(
1
𝑁
∑ √|𝑥𝑖|
𝑁
𝑖=1 )

2 (7.10) 

• skewness: it is the measure of the asymmetry of a signal distribution 

 𝑆𝑘𝑒𝑤 =

1
𝑁 − 1

∑ (𝑥𝑖 − �̅�)
3𝑁

𝑖=1

𝑆𝑇𝐷3
 (7.11) 
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Figure 7.1: Simulated time-domain vibration plots of a defective bearing on the inner race (top) and outer 
race (bottom) 



79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7.2: Experimental time-domain vibration plots of a defective bearing on the inner race (top) and 
outer race (bottom) 
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7.3.2 Frequency-domain techniques 

Frequency analysis is a method used to extract the frequency content from the time-domain signal 
and it consists in the measure of vibration over many discrete neighboring narrow frequency bands. 

Discrete Fast Fourier analysis of the time waveform is the most popular method to derive the 
frequency domain signal, but also the envelope analysis is gaining popularity. Power spectrum can 
be used to locate the defects by relating the defect characteristic frequencies to the mayor frequency 
components: a baseline spectrum is taken when bearing is in good conditions and the comparison 
with subsequent data is used to locate those frequencies in which significant increase in magnitude 
have occurred. 

The conversion from a time-domain vibration signal to a frequency-domain one is computed through 
the Fourier Transform: 

 𝑥(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
+∞

−∞

𝑑𝑡 (7.12) 

The operation on digitized data can be performed through the Discrete Fourier Transform: 

 𝑥(𝑘) = ∫ 𝑥(𝑛)𝑒−𝑗2𝜋
𝑘𝑛
𝑁

𝑁−1

𝑛=0

𝑑𝑡 (7.13) 

The vibration level at each frequency represents the vibration over a narrow frequency band centered 
at the designed frequency with a bandwidth determined by the conversion parameters employed. [58] 

Being 𝑠𝑘  the spectrum for 𝑘 = 1,2, … , 𝐾, where 𝐾 is the number of spectrum lines, and 𝑓𝑘  is the 
frequency of the 𝑘th spectrum line, the main frequency-domain features are: 

• mean frequency: it is the average spectral vibration level 

 𝑥𝑓̅̅̅ =
1

𝐾
∑𝑠𝑘

𝐾

𝑘=1

 (7.14) 

• frequency center:  

 𝑥𝑓𝑐 =
∑ 𝑓𝑘𝑠𝑘
𝐾
𝑘=1

∑ 𝑠𝑘
𝐾
𝑘=1

 (7.15) 

• root mean square frequency:  

 𝑅𝑀𝑆𝐹 = √
∑ 𝑓𝑘

2𝑠𝑘
𝐾
𝑘=1

∑ 𝑠𝑘
𝐾
𝑘=1

 (7.16) 

• standard deviation frequency:  

 𝑆𝑇𝐷𝐹 = √
∑ (𝑓𝑘 − 𝑥𝑓𝑐)

2
𝑠𝑘

𝐾
𝑘=1

∑ 𝑠𝑘
𝐾
𝑘=1

 (7.17) 
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Envelope analysis is another very common method in defect diagnosis and it was developed in early 
1970s by Mechanical Technology Inc. The fundamental concept involved in the envelope analysis is 
that each time a localized defect makes contact under load with another bearing component, an 
impulse with a very short duration compared to that of the interval between pulses vibration is 
generated. So, its energy is distributed across a wide range of frequencies and many resonances of 
the system are excited. The frequencies of occurrence of impulses are referred to the bearing 
characteristic frequencies. 

This impulsive excitation is normally repetitive in bearings, so the energy is concentrated in a narrow 
band, which makes easier the detection of faults. 

The envelope spectrum is obtained through the High Frequency Resonance Technique (HFRT), 
which involves three steps: 

• band-passing or high passing a measured signal with a chosen resonant frequency 
• demodulating the filtered signal with a full-wave rectifier 
• low-pass filter application to cancel high-frequency components and retain the low-frequency 

information associated with bearing defect 

From the application of those filters centered at structural resonances, defect-induced vibration can 
be separated from the background noise; the demodulation operation extracts the defect-induced 
vibration signal and the use of frequency domain clearly identifies the repetitive occurrence of 
defects. 

7.3.3 Fault signatures and characteristic frequencies 

When a single component of a bearing is defective because of one of the causes mentioned in Section 
7.1, it easy to identify the fault signature, since each time a rolling element rolls over the defect, an 
impulsive force occurs causing the whole bearing system to vibrate. Thus, the bearing starts vibrating 
at its natural frequency and the response rapidly decays due to internal damping. The fundamental 
frequency of the response waveforms is the rate at which the rolling elements roll over the defect. For 
that reason, each type of defect is characterized by its own frequency that depends on the components 
on which the defect occurs, the bearing geometry and the rings rotational speeds. 

Fundamental characteristic frequencies generated in rolling bearings cover a wide range of 
frequencies and can interact giving a complex signal, that is further complicated by the presence of 
other sources of mechanical, structural or electromechanical vibration of the system. 

The characteristic frequencies are the following ones: 

• FTFI: fundamental train frequency relative to inner raceway 
• FTFO: fundamental train frequency relative to outer raceway 
• FTF: fundamental train frequency 
• BPFO: ball pass frequency on an outer race defect 
• BPFI: ball pass frequency on an inner race defect 
• BSF: ball spin frequency 
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and they are defined as follows: 

 𝐹𝑇𝐹𝐼 =
1

2
 𝑓𝐼𝑅(1 − 𝛾) (7.18) 

 𝐹𝑇𝐹𝑂 =
1

2
 𝑓𝑂𝑅(1 + 𝛾) (7.19) 

 𝐹𝑇𝐹 =
1

2
(𝐹𝑇𝐹𝐼 + 𝐹𝑇𝐹𝑂) =

1

2
 [𝑓𝐼𝑅(1 − 𝛾) + 𝑓𝑂𝑅(1 + 𝛾)] (7.20) 

 𝐵𝑃𝐹𝑂 =
𝑍

2
(𝑓𝐼𝑅 − 𝑓𝑂𝑅) (1 − 𝛾) (7.21) 

 𝐵𝑃𝐹𝐼 =
Z

2
 (𝑓𝐼𝑅 − 𝑓𝑂𝑅) (1 + 𝛾) (7.22) 

 𝐵𝑆𝐹 =
𝑑𝑚
2 𝐷𝑟

 (𝑓𝐼𝑅 − 𝑓𝑂𝑅) (1 − 𝛾) (7.23) 

where: 

 𝑓𝐼𝑅 =
𝜔𝐼𝑅
2𝜋

 (7.24) 

 𝑓𝑂𝑅 =
𝜔𝑂𝑅
2𝜋

 (7.25) 

In case of stationary outer ring and rotating inner ring: 

 𝐹𝑇𝐹 =
1

2
 𝑓𝐼𝑅(1 − 𝛾) (7.26) 

 𝐵𝑃𝐹𝑂 =
𝑍

2
𝑓𝐼𝑅(1 − 𝛾) (7.27) 

 𝐵𝑃𝐹𝐼 =
𝑍

2
𝑓𝐼𝑅 (1 + 𝛾) (7.28) 

 𝐵𝑆𝐹 =
𝑑𝑚
2 𝐷𝑟

𝑓𝐼𝑅(1 − 𝛾) (7.29) 

The frequency equations assume that there is no sliding in the rolling element movement, but in 
practice its motion is a combination of rolling and sliding. Thus, the real characteristic defect 
frequencies may differ slightly from those predicted, but this is also very dependent on the type of 
bearing, operation conditions and fits. 

It is very important when comparing vibration signature that data are obtained at identical shaft 
rotational speeds, since, as it can be seen in above mentioned formulas, vibration frequencies are 
dependent on velocity, so both frequencies and amplitudes may differ a lot for different working 
conditions. [1] 
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Imperfections on the raceway surface and rolling element interact to produce other discrete 
frequencies and sidebands that are summarized in  

 
Table 7.1 

 
Table 7.1: Frequencies related to surface imperfections [1] 

7.3.4 Raceway defects 

A discrete defect on the inner raceway will generate a series of high energy pulses at a rate equal to 
the ball pass frequency relative to the inner raceway. The amplitude of pulses varies, because, since 
the inner ring rotates, the defect enters and exits the load zone, so the signal is modulated in amplitude 
at the inner ring rotational frequency. In the frequency domain this gives rise to a discrete peak at the 
𝐵𝑃𝐹𝐼  and a pair of sidebands equally spaced by 𝑓𝐼𝑅  at the two side of the main frequency. 
A discrete fault on the outer race will generate a series of high energy pulses at a rate equal to the ball 
pass frequency relative to the outer raceway 𝐵𝑃𝐹𝑂  and, since the outer ring is fixed, only that 
frequency and its multiple are stressed. 

Figure 7.3 and Figure 7.4 show the frequency-domain (obtained through the Fast Fourier Transform 
method) and squared envelope plots of a simulation of 60 s with a radial load 𝐹𝑟 = 62.4 kN, an inner 
ring rotational velocity 𝑛𝐼𝑅 = 120.6405 rpm and with the presence of a defect on the inner (former 
plot) or on the outer raceway (the latter). 

Vertical lines highlight the multiple of the characteristic frequencies 𝐵𝑃𝐹𝐼 and 𝐵𝑃𝐹𝑂 respectively. 
In case of the presence of a defect on the inner raceway, sidebands spaced by a length equal to the 
inner race rotational frequency 𝑓𝐼𝑅. 

In this case 

 𝑓𝐼𝑅 =
𝑛𝐼𝑅
60

= 2.01 Hz (7.30) 

Surface defect 
Frequency 

Component Imperfection 

Inner raceway 

Eccentricity 

Waviness 

Discrete defect 

𝑓𝐼𝑅 

𝑛 𝑍 𝐹𝑇𝐹𝐼± 𝑓𝐼𝑅 

𝑛 𝑍 𝐹𝑇𝐹𝐼± 𝑓𝐼𝑅 

Outer raceway 

Eccentricity 

Discrete defect 

 

𝑛 𝑍 𝐹𝑇𝐹𝑂  

𝑛 𝑍 𝐹𝑇𝐹𝑂± 𝑓𝐼𝑅 
𝑛 𝑍 𝐹𝑇𝐹𝑂±𝐹𝑇𝐹𝑂 

Rolling element 

Diameter variation 

Waviness 

Discrete defect 

𝑍 𝐹𝑇𝐹𝑂 
2𝑛 𝐵𝑆𝐹+𝐹𝑇𝐹𝑂 
2𝑛 𝐵𝑆𝐹+𝐹𝑇𝐹𝑂 

Surface defect 
Frequency 

Component Imperfection 

Inner raceway 

Eccentricity 

Waviness 

Discrete defect 

𝑓𝐼𝑅 

𝑛 𝑍 𝐹𝑇𝐹𝐼± 𝑓𝐼𝑅 

𝑛 𝑍 𝐹𝑇𝐹𝐼± 𝑓𝐼𝑅 

Outer raceway 

Eccentricity 

Discrete defect 

 

𝑛 𝑍 𝐹𝑇𝐹𝑂  

𝑛 𝑍 𝐹𝑇𝐹𝑂± 𝑓𝐼𝑅 
𝑛 𝑍 𝐹𝑇𝐹𝑂±𝐹𝑇𝐹𝑂 

Rolling element 

Diameter variation 

Waviness 

Discrete defect 

𝑍 𝐹𝑇𝐹𝑂 
2𝑛 𝐵𝑆𝐹+𝐹𝑇𝐹𝑂 
2𝑛 𝐵𝑆𝐹+𝐹𝑇𝐹𝑂 
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and the distance between the highlighted central and the first sideband frequency is 

 Δ𝑓 = 2.02 𝐻𝑧 (7.31) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.3: Frequency-domain vibration plots of defective bearing on the inner race (above) and outer race 

(below) 
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Figure 7.4: Envelope plots of defective bearing on the inner race (above) and outer race (below) 
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7.4 INTELLIGENT FAULT DIAGNOSIS (IFD) 

Intelligent Fault Diagnosis (IFD) refers to the application of machine learning theories to machine 
fault diagnosis. In the past, traditional machine learning algorithms began to reduce the human 
intervention in machine fault monitoring: form the debut in the 1950s to the 2010s Artificial Neural 
Networks (ANN), Support Vector Machine (SVM), k-Nearest Neighbor (kNN) have been the most 
used algorithms. The health status of a machine could be predicted extracting sensitive features from 
vibration data. From the 2010s deep learning theories reformed IFD: traditional algorithms could 
recognise the health status of machines, but feature extraction still depended on human labor and only 
small databases could be handled; instead, deep learning approaches, which include deep belief 
networks (DBP) and convolutional neural networks (CNN), can automatically learn fault features 
from collected data. Thus, these models are expected to directly connect the raw monitoring data to 
the corresponding health status of machines, further reducing the contribution of human labor. [4] 

In this section there is a review of SVM and kNN algorithms that have been used in this work to 
perform fault diagnosis. 

7.4.1 Support Vector Machine (SVM) 

Support Vector Machine is an AI algorithm that can handle very large feature spaces, because the 
dimension of the classified vectors used for the training phase does not have an influence on the 
performance as it happens for conventional classifiers. Thus, SVM is a good approach for fault 
diagnosis, since vibration features may not have to be limited. SVM has also good generalization 
properties compared to conventional classifiers, because in the training phase the structural 
misclassification risk is minimized, whereas traditional algorithms minimise the empirical risk. 

The Structural risk minimization (SRM) is an inductive principle of use in machine learning 
introduced by Vladimir Vapnik and Alexey Chervonenkis [59] and is implemented in the training 
phase by the minimization of 

 𝐸𝑡𝑟𝑎𝑖𝑛 + 𝛽 𝐻(𝑊) (7.32) 

where 𝐸𝑡𝑟𝑎𝑖𝑛 is the training error, e.g. the mean square between the value of the learned model and 
the label of the data vector, and 𝐻(𝑊) is a regularization function that controls the trade off between 
minimizing the training error and minimizing the expected gap between the training and test errors. 
The cost function of the algorithm can be written as: 

 𝐽(𝑤) =
1

2𝑛
∑(ℎ𝑤(𝑥𝑖) − 𝑦𝑖)

2

𝑛

𝑖=1

+
𝜆

2
∑𝑤𝑗

2

𝑑

𝑗=1

 (7.33) 

On the other hand, the Empirical Risk Minimization (ERM) is a principle that is used to give 
theoretical bounds to machine learning algorithms performance. The core idea behind ERM is that 
we cannot know how well an algorithm can work in practice using new data, because their distribution 
is unknown, but its performance can be evaluated on a known set of training data. 

 

 

https://en.wikipedia.org/wiki/Alexey_Chervonenkis
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Thus, the empirical risk is computed by averaging the loss function of the training set: 

 𝑅𝑒𝑚𝑝(ℎ) =
1

𝑛
∑𝐿(ℎ(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 (7.34) 

The learning algorithm chooses the hypothesis ℎ̂ that minimizes it: 

 ℎ̂ = argℎ∈𝐻min𝑅𝑒𝑚𝑝(ℎ) (7.35) 

Given a set of data input 

𝐱𝒊     𝑖 = 1, 2, … ,𝑁 

where 𝑁 is the number of samples, which have labels indicating their class, in the linear case (Figure 
7.5) SVM theory supposes that there exists a hyperplane with function 

 𝐰T 𝐱 + 𝑏 = 0 (7.36) 

which implies 𝑦𝑖(𝐰𝑇 𝐱 + 𝑏 = 0) ≥ 1,    𝑖 = 1,… ,𝑁 

 

 

 

 

 

 

 

 

 

 

 

 

Taking into account the possible presence of noise in data with the slack variable 𝜁𝑖 and the error 
penalty constant 𝛽, the optimal hyperplane that separates data can be obtained as a solution to the 
following optimization problem: 

 
minimize   

1

2
‖𝒘‖2 + 𝛽∑𝜁𝑖

𝑁

𝑖=1

 

subject to    {
𝑦𝑖(𝐰

𝐓 𝐱𝒊 + 𝑏 = 0) ≥ 1 − 𝜁𝑖 ,    𝑖 = 1,… , 𝑁
𝜁𝑖 ≥ 0,                                             𝑖 = 1,… , 𝑁

 

(7.37) 

Figure 7.5: Plot of maximum-margin hyperplane and margins for a linear SVM with 
two classes 
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Replacing the weight vector 𝐰 with 

 𝐰 =∑𝛼𝑖𝑦𝑖𝐱𝒊

𝑁

𝑖=1

 (7.38) 

the optimization problem can be written in the form 

 𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖(𝐱𝒊

𝑁

𝑖,𝑗=1

𝐱𝒋) + 𝑏) (7.39) 

SVM can also be used in nonlinear classification problems applying kernel functions, that map the 
𝑛 -dimensional input vector 𝐱  into a 𝑙 -dimensional feature space to make a linear classification 
feasible. 

Using the non-linear vector function 

 𝚽(𝐱) = (𝜙1(𝐱),… , 𝜙𝑙(𝐱)) (7.40) 

the decision function can be written in the form: 

 𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖(𝚽
𝐓(𝐱𝐢) 𝚽(𝐱𝐣)

𝑁

𝑖,𝑗=1

) + 𝑏) (7.41) 

The kernel function returns the dot product of the feature space mapping from the original data points: 

 𝐾(𝐱𝒊, 𝐱𝒊) = (𝚽𝐓(𝐱𝐢) 𝚽(𝐱𝐣)) (7.42) 

There are many types of kernel functions, such as linear, polynomial and Gaussian RBF (radial basis 
function). The selection of the most suitable kernel is crucial, because it defines the feature space in 
which the training set data will be classified. [60] [61] 

7.4.2 k-Nearest Neighbors (kNN) 

k-Nearest Neighbors algorithm is a non-parametric supervised learning methos developed by Fix and 
Hodges [62] in which the input is made of the 𝑘 closest training samples of a dataset and the output 
for a classification problem is a class membership: the object is assigned to the class most common 
among its k nearest neighbors. 

Given a set of observations 

 𝐷 = {(𝐱1, 𝑦1),… , (𝐱𝑛, 𝑦𝑛)} (7.43) 
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where 𝐱𝑖 is the feature vector and 𝑦𝑖 is the corresponding class label and (𝐱𝑖, 𝑦𝑖) is assumed to be 
i.i.d. from some unknown distribution 𝑃 of (𝐱, 𝑦) on 𝑅𝑑 × {𝜔1, … , 𝜔𝑀}, the goal is the design of a 
function 𝜙𝑛 ∶  𝑅𝑑 → {𝜔1, … , 𝜔𝑀}  that maps a feature vector 𝐱  into its desired class from 
{𝜔1, … , 𝜔𝑀}. 

The performance of the classifier is evaluated through the probability error 

 𝐿(𝜙𝑛) = 𝑃{(𝐱, 𝑦): 𝜙𝑛(𝐱) ≠ 𝑦} (7.44) 

If the underlying distribution is known, then the optimal decision rule that minimizes the probability 
of error is the bayes decision rule: 

 𝜙∗(𝐱) = argmax𝑃(𝑦| 𝐱) (7.45) 

It can be shown that at any given point 𝐱 the probability that its nearest neighbor 𝐱′ belongs to class 
𝜔𝑖  converges to the corresponding a posteriori probability 𝑃(𝜔𝑖|𝐱′) as the number of reference 
observations goes to infinity and it was shown by Cover and Hart [63] that under some continuity 
conditions on the underlying distribution the asymptotic probability of error 𝐿𝑁𝑁 for a multi-class 
kNN classifier is bounded by 

 𝐿∗ ≤ 𝐿𝑁𝑁 ≤ 𝐿∗ (2 −
𝑀

𝑀 − 1
𝐿∗) (7.46) 

where 𝐿∗ is the optimal Bayes probability of error and 𝑀 is the number of classes. Thus, the nearest-
neighbor rule is asymptotically optimal when the classes are not overlapping. [64] 

Practically, in the classification phase, after the constant 𝑘 has been defined by the user, an unlabelled 
vector is classified by assigning the label which is most frequent among the 𝑘 training samples that 
are nearest to that query point. The distance metric is usually represented by the Euclidean distance, 
Hamming distance or correlation coefficients. In the example shown in Figure 7.6, the test sample 
can be classified as a blue square or a red triangle: if 𝑘 = 3 is selected, it is assigned to red triangles 
because the nearest points are represented by two triangles and one square, whereas if 𝑘 = 5 it is 
assigned to blue squares. 

A drawback of this algorithm occurs when the class distribution is skewed: a class tends to dominate 
the prediction of new samples, because its examples tend to be common among the 𝑘  nearest 
neighbors due to their large number. This issue can be avoided introducing a weight proportional to 
the inverse of the distance from the point that has to be labelled to the examples. 

The value of 𝑘 deeply affects the classification performance [65]: larger values reduce the effects of 
noise but make less distinct boundaries between classes. Accuracy is also affected by the presence of 
noisy or irrelevant features, or if the feature scales are not consistent with their importance. For that 
reason, feature selection and scaling algorithms play an important role for kNN and the most used 
methods are principal component analysis (PCA), linear discriminant analysis (LDA) and canonical 
correlation analysis (CCA) [66]. Finally, data-reduction is one of the biggest problems when working 
with huge datasets, because only some of data point are usually needed for accurate classification and 
those are called prototypes: after the recognition of the outliers, the dataset is divided into the 
prototypes that are used for classification decisions and the absorbed point that can be correctly 
classified using prototypes and can be removed from the training set. 



91 

 

An algorithm for dataset reduction is the Hart algorithm [67], that is applied to 1NN and selects the 
prototypes 𝑈 such that the classification algorithm with 𝑈 has the same accuracy as if it uses the 
whole set of data. 

 

 

 

 

 

 

 

 

 

 

7.4.3 Features selection and Shapley values 

As discussed in Section 7.4.3, the use of a large set of features extracted from vibration signals can 
reduce the machine learning algorithm accuracy due to information redundancy, increasing at the 
same time complexity and computational effort. Therefore, the extraction of useful information from 
the high-dimensional feature set becomes crucial. For that reason, many dimensionality reduction 
techniques, also called data fusion techniques, have been developed and the principal ones are the 
filter-based, wrapper-based and embedded methods. 

The filter-type feature selection algorithm measures the feature importance focusing on the 
characteristics of each of them, such as variance and relevance to the response; the filter feature 
selection is uncorrelated to the training algorithm, since it is a part of the data pre-processing step. 

The wrapper-type feature selection algorithm takes place in the training phase using a subset of 
features and then adds or removes one of them using a selection criterion, based on the model 
performance that results from adding or removing a selected feature. The training phase is repeated 
until the stopping criterion is satisfied. 

The embedded-type feature selection algorithm learns feature importance as part of the model 
learning process: during the training phase the importance of each feature in the trained model is 
computed, so that the most relevant ones can be chosen. 

These are some of the mostly used dimensionality reduction techniques: 

• Principal Component Analysis (PCA) is a very popular traditional linear dimensionality 
reduction technique that selects the features that represents the maximum variance in input 
data 

Figure 7.6: Example of kNN classification 
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• Linear Discriminant Analysis (LDA) determines the projection direction maximizing the 
distance between the data clusters used for class discrimination 

• Locally Linear Embedding (LLE) [68] is an unsupervised learning algorithm that tries to find 
nonlinear structures in high-dimensional data exploiting the local symmetry of linear 
reconstructions 

• ISOMAP extracts significant features from observed data by retaining local neighborhood 
information. [69] 

In this work the Shapley values were used to highlight the most relevant features in the defect type 
classification of the spherical roller bearing under investigation. Shapley values [70] is a method 
invented to assign pay-outs to players depending on their contribution towards the total playout but 
can be effectively used to measure the global importance of a feature. 

Using the game theory, Shapley values can be explained as follows: given a cooperative game with 
𝑀 players aiming at maximizing a payoff and letting S ⊆ M = {1,… ,𝑀} be a subset of |S| players, 
the contribution function 𝜈(S) , which maps a subset of players to the real number, called the 
contribution of coalition S, describes the total expected sum of payoffs the member of S can obtain 
by cooperation. Thus, Shapley values are a method to distribute the total gains to players and the 
amount that player 𝑗 earns is [71] 

 𝜙𝑗(𝜈) = 𝜙𝑗 = ∑
|S|! (𝑀 − |S| − 1)!

𝑀!
(𝜈(

S⊆M∖{j}

S ∪ {j}) − ν(S)),         j = 1, … ,M (7.47) 

that is a weighted mean over contribution functions differences for all subsets S  of players not 
containing player {𝑗}. The algorithm also accounts for the non-distributed gain 𝜙0 = 𝜈(∅). 

The main properties of Shapley values can be summarized as follows: [72] 

• Efficiency: the total gain is distributed 

 ∑𝜙𝑗

𝑀

𝑗=0

= 𝜈(M) (7.48) 

• Symmetry: if 𝑖 and 𝑗 are two players that contribute equally for all possible coalitions, then 
their Shapley value is the same 

 𝜈(S ∪ {i}) = 𝜈(S ∪ {j}) → 𝜙𝑖 = 𝜙𝑗 (7.49) 

• Dummy player: if a player does not contribute to any coalitions, then his Shapley value is zero  

 𝜙𝑗 = 0 (7.50) 

• Monotonicity: if two games 𝑣 and 𝑣′ a player always makes a greater contribution to 𝑣 than 
to 𝑣′ for all S, then the gain for 𝑣 will be greater than that for 𝑣′: 

𝜈(S ∪ {i}) − 𝑣(S) ≥ 𝜈′(S∪{i}) − 𝑣′(S)    ∀S      →       𝜙𝑖(𝑣) ≥ 𝜙𝑖(𝑣
′) 
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 𝐿∗ ≤ 𝐿𝑁𝑁 ≤ 𝐿∗ (2 −
𝑀

𝑀 − 1
𝐿∗) (7.51) 

• Linearity: if two coalition games described by the gain functions 𝑣 and 𝑤 are combined, the 
distributed gain is the sum of the two gains. This is valid also for a multiplication by a constant 
value: 

 𝜙𝑗(𝑣 + 𝑤) = 𝜙𝑗(𝑣) + 𝜙𝑗(𝑤) (7.52) 

 𝜙𝑗(𝛼 𝑣) = 𝛼 𝜙𝑗(𝑣) (7.53) 

Given a training set of 𝑁  samples 𝐷 = {(𝐱1, 𝑦1), … , (𝐱𝑛, 𝑦𝑛)} used to train a predictive machine 
learning model 𝑓(𝐱) whose outcome should be as close as possible to label 𝑦, Shapley values can be 
used to explain the prediction 𝑦∗ = 𝑓(𝐱∗) for a specific feature vector 𝐱 = 𝐱∗. 

Adopting the game theory, single predictions take the place of payout and features become players. 
Thus, the prediction can be written as 

 𝑓(𝐱∗) = 𝜙0 +∑𝜙𝑗
∗

𝑀

𝑗=1

 (7.54) 

where 𝜙0 = E[𝑓(𝐱)] and 𝜙𝑗∗ is the 𝜙𝑗 for 𝐱 = 𝐱∗. Therefore, Shapley values explain the difference 
between the prediction 𝑦∗ = 𝑓(𝐱∗) and the global average prediction. 

For the computation of the Shapley values for a prediction explanation, the contribution 𝑣(S) for a 
certain subset S has to be defined. This function should take values similar to 𝑓(𝐱∗) when only the 
value of the subset S of these features is known. As cited in Lundberg [73] the expected output of the 
predictive model, conditional to the feature values 𝐱S = 𝐱S∗  of this subset, can be used: 

 𝑣(S) = E[𝑓(𝐱)|𝐱S = 𝐱S
∗] (7.55) 

Thus, the conditional expectation summarizes the whole probability distribution and, if it is 
considered as the prediction for 𝑓(𝐱∗), it is also the minimizer of the squared error loss function. 

In the case of the linear regression model, which can be written in the form 

 𝑓(𝐱) = 𝛽0 +∑𝛽𝑗𝑥𝑗

𝑀

𝑗=1

 (7.56) 

and where all the features are independent, the Shapley values are written as: 

 𝜙0 = 𝛽0 +∑𝛽𝑗𝐸[𝑥𝑗]

𝑀

𝑗=1

 (7.57) 

 𝜙𝑗 = 𝛽𝑗(𝑥𝑗
∗ − 𝐸[𝑥𝑗]) (7.58) 
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In case of dependent features and nonlinear predictive models, no explicit formula exists. If the 
feature vector has got 𝑀 elements the number of possible sets involved in computation are 2𝑀, so the 
exact solution to the problem becomes computationally infeasible for large values of 𝑀. [71] 

There are two main algorithms for the computation of the Shapley values and the difference among 
them is in the definition of the value function. Both of them define the value function such that the 
sum of the Shapley values of a query point over all features corresponds to the total deviation of the 
prediction for the query point from average: 

 ∑𝜙𝑗(𝑣𝑥)

𝑀

𝑗=1

= 𝑓(𝐱) − E[𝑓(𝐱)] (7.59) 

• KernelSHAP [73] 
the KernelSHAP algorithm defines the value function of features in S at the query point 𝐱 as 
the expected prediction with respect to the interventional distribution D, which is the joint 
distribution of feature in SC 

 𝑣𝑥(S) = ED[𝑓(𝑥S, 𝑋SC)] (7.60) 

where 𝑥S is the query point value for features in S and 𝑋SC are the features in SC. 
If we assume that features are not highly correlated, the interventional distribution can be 
computed through 

 𝑣𝑥(S) = ED[𝑓(𝑥S, 𝑋SC)] ≈
1

𝑁
∑𝑓 (𝑥S, (𝑋SC)𝑗)

𝑁

𝑗=1

 (7.61) 

where 𝑁 is the number of observations and (𝑋SC)𝑗  contains the values of the features in SC 

for the 𝑗-th observation 
 

• Extension to KernelSHAP [71] 
the extension to KernelSHAP algorithm defines the value function of the feature in S at the 
query point 𝐱 using the conditional distribution of 𝑋SC, given that XS is the query point values: 

 𝑣𝑥(S) = E𝑋
SC
|XS[𝑓(𝑥S, 𝑋SC)] (7.62) 

To evaluate the value function 𝑣𝑥(S) at point 𝑥, the algorithm uses the nearest neighbors of 
that query point; thus, it does not require the assumption of feature independence. On the other 
hand, this algorithm is computationally more expensive, does not support categorical 
predictors and cannot handle missing values in the feature vectors 𝑋. 

The main difference between the two approaches is in the way the feature contribution to the final 
prediction is evaluated: interventional methods (the latter) attribute an influence on 𝑥𝑗 only if the 
value function, computed considering that element, is significantly different if it was computed 
without it; on the contrary, the conditional approach may attribute influence to feature with no 
interventional effect, only because of their presence in the model. Thus, this kind of approach requires 
further modelling of how features are correlated. [74] 
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8 AI ALGORITHM SETUP AND EVALUATION 

This chapter presents the path followed to setup the machine learning algorithm aimed at recognizing 
the presence of defects on the bearing raceways. The main goal of this section is recognizing whether 
numerical vibration paths can be used to train an AI algorithm capable to perform fault detection on 
experimental data obtained from an operating machine. 

The first step is represented by the creation of an experimental vibration database, using the test rig 
presented in Chapter 6, and a numeric one, relying on the nonlinear multi-body dynamic model 
presented in Chapter 4, under the same external radial load, shaft rotation speed, mean temperature 
and defect conditions.  

In the second phase vibration paths are partitioned in shorter segments to get a bigger dataset to train 
the AI algorithm. Then the main time and frequency domain features are extracted and the database 
of features linked to each category of fault (non-defective, inner race fault, outer race fault) is created. 

The third step is represented by the setup of the AI algorithm: training and validation data are selected 
randomly from the numerical database while test data are selected among the experimental data. Then 
SVM and kNN machine learning algorithms are trained and their performance evaluated. 

The last part of this chapter is focused on the selection of the most important features applying the 
Shapley values method. 

8.1 DATABASE GENERATION 

Firstly, two database of vibration paths, the former with experimental data obtained from the bearing 
test rig and the latter with numerical data computed through the nonlinear multi-body dynamic model 
of the bearing in the same conditions of external load, rotation speed, mean temperature and defect 
conditions. Therefore, numerical data were supposed to have the same characteristics of the 
experimental ones. 

Experimental data were obtained imposing different working conditions that are resumed in Table 
8.1. As it can be seen from the table three load cases, ten nominal rotational speeds and three defect 
types were used, so the whole dataset contains ninety vibration paths with a duration of 60 s. 

Since the nominal rotational speed refers to the three-phase motor synchronous velocity, the real shaft 
rotation speed is lower due to the presence of friction in the whole mechanical. The difference 
between the two rotation speed is accounted through the slip parameter. Thus, a tachometer in the test 
rig is necessary to register the true shaft rotation speed. 

Simulated data were obtained using the operating conditions reported in Table 8.1, but imposing for 
each case the shaft rotational speed measured through the tachometer and the mean operating 
temperature of the related experimental case. The duration of numerical simulations was set equal to 
that of experimental paths. 
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Table 8.1: Test rig operating conditions 

8.2  FEATURES EXTRACTION 

The feature extraction activity allows the creation of a database of labelled samples that can be used 
to train, validate and test machine learning algorithms. 

To get more samples, each experimental and numerical vibration path was divided into shorter 
segments: the developed Matlab algorithm allowed the creation of 200 ms , 400 ms  or 800 ms 
segments from original data. 

As it can be seen from Figure 8.1, experimental data are corrupted by noise, coming from the other 
mechanical and electrical components linked to the system. To simulate this phenomenon, white 
Gaussian noise was added to each numerical data segment. Three different cases of signal-to-noise 
ratio (SNR) were considered: 0, 10, −3 and −10 dB (Figure 8.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CASE 1 CASE 2 CASE 3 

Radial load [kN] 0 62.4 124.8 

Nominal speed [rpm] 127, 227, 353, 457, 523, 607, 727, 877, 937, 997 

Defect type non defective (0), inner race defect (1), outer race defect (2) 

Figure 8.1: Comparison of experimental (top) and numerical (bottom) vibration paths for operating 
conditions of 127 rpm and 62.4 kN 
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At this point vibration data segments were ready to feature extraction. In this work twenty-three 
features, taken from Lei et al. [75], were selected: the first eleven parameters belong to the time-
domain, while the other to the frequency domain. The extraction of the frequency-domain features 
was performed after the computation of the fast Fourier Transform algorithm on the time-domain 
signals. All the selected features for this work are listed in Table 8.2. 

After feature extraction activity a sample with twenty-three features and a label depending on the 
defect type was generated from each segment: label 0 refers to non-defective bearing conditions, 
while 1 and 2 are related to a localized damage on the inner and on the outer raceway respectively. 

 

 

 

 

Figure 8.2: Experimental vibration path added with noise with SNR of 10 dB (first), 0 dB (second), -3 dB (third) and -10 dB 
(fourth plot) for operating conditions of 127 rpm and 62.4 kN load 
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Table 8.2: Table of features parameters 

 

 

Time-domain features Frequency-domain features 
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4 𝑠(𝑘)𝐾
𝑘=1

  

𝒑𝟏𝟎 =
𝒑𝟒

𝟏
𝑵
∑ |𝒙(𝒊)|𝑵
𝒊=𝟏

 SF 𝑝21 =
𝑝17
𝑝16

  

𝒑𝟏𝟏 =
𝒑𝟓

𝟏
𝑵
∑ |𝒙(𝒊)|𝑵
𝒊=𝟏

 IF 𝑝22 =∑
(𝑓𝑘 − 𝑝16)

3 𝑠(𝑘)

𝐾 𝑝17
3

𝐾

𝑘=1

  

  𝑝23 =∑
(𝑓𝑘 − 𝑝16)

4 𝑠(𝑘)

𝐾 𝑝17
4

𝐾

𝑘=1
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8.3 AI ALGORITHM DEVELOPMENT 

From the data preparation procedure presented in the section above, nine databases were generated, 
three from experimental data, which differ from the segmentation time interval (200, 400, 800 ms), 
and other six from numerical data, that have different duration (200, 400, 800 ms) and SNR (0 and 
10 dB) of the added white Gaussian noise. Due to the huge number or samples in each database, it 
was decided to use only a part of them for the machine learning algorithm elaboration. 

8.3.1 Training and testing 

For the training and testing phases of the AI algorithm 𝑁 = 2000 labelled samples were selected 
randomly from the original numerical database and split in a ratio 80 − 20 % for the two phases 
respectively. 

The evaluation of the best performing algorithm was conducted using the MATLAB Classification 
Learner App. The machine learning algorithms used in this work and their principal characteristics 
are resumed in Table 8.3 and in Table 8.4. 

 

 

Table 8.3: kNN algorithms characteristics 

 

 

Algorithm Number of neighbors Distance metric Distance weight 

Fine kNN 1 Euclidean equal 

Medium kNN 10 Euclidean equal 

Coarse kNN 100 Euclidean equal 

Cosine kNN 10 cosine equal 

Cubic kNN 10 Minkowski equal 

Weighted kNN 10 Euclidean squared inverse 
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Table 8.4: SVM algorithms characteristics 

Firstly, the above mentioned algorithms were trained and tested using numerical data: 1600 random 
labelled samples were used for training and 400 for testing. All the algorithms were evaluated using 
samples obtained from 200, 400 and 800 ms numerical vibration path segments corrupted by white 
Gaussian noise with SNR equal to 10, 0, −3 and −10 dB. Their accuracy on testing data is reported 
in Figure 8.3. In computation 5-fold cross validation was adopted and all the 𝐷 = 23 features were 
employed. 

From the bar graphs it can be seen that the overall accuracy of all the AI algorithms is very high, as 
expected, and tends to become higher if longer vibration path segments are used. Only in the last 
case, in which white Gaussian noise SNR = 10 dB, the algorithms accuracy is lower, because of the 
stronger corruption of vibration data due to added noise. 

These results led to the consideration that AI algorithm can effectively detect the presence and the 
type of defect in rolling element bearings, so supervised learning algorithms like SVM and kNN can 
be effectively used in IFD. 

 

Algorithm Kernel function Kernel scale 

Linear SVM linear / 

Quadratic SVM quadratic / 

Cubic SVM cubic / 

Fine Gaussian SVM Gaussian 1.2 

Medium Gaussian SVM Gaussian 4.8 

Coarse Gaussian SVM Gaussian 19 



101 

 

Then all the machine learning algorithms were trained and tested using only samples coming from 
experimental vibration paths. Also in this case 1600 samples were used for the training phase and 
400 for the testing one. The testing accuracy of each AI algorithm, computed with samples obtained 
from different time-duration segments (200, 400 and 800 ms), is reported in Figure 8.4. It is evident 
that all kNN algorithms work quite well, but coarse SVM and kNN and linear SVM have a lower 
performance. The result about linear SVM machine was expected because the high nonlinearity of 
bearing model is reflected in the nonlinearity of features and so of the boundaries between classes. 

Figure 8.3: Testing accuracy for training and testing phases with numerical data and different white Gaussian noise SNR: 10 dB (top left), 0 
dB (top right), -3 dB (bottom left) and -10 dB (bottom right) 
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8.4 FEATURE SELECTION WITH SHAPLEY VALUES 

As described in Section 7.4.3, the Shapley values represent the contribution of each feature to the 
outcome of the classification problem handled by the machine learning algorithms. 

Shapley values can be computed through the Matlab command shapley, that evaluates them for a 
specific query point and for all the features. The Shapley value of a feature for a query point explains 
the deviation of the prediction for the query point from the average prediction due to the feature itself. 
For each query point, the sum of the Shapley values of each feature corresponds to the total deviation 
of the prediction from the average. 

In the computation of the Shapley values, the extension to KernelSHAP method was used, because it 
does not require the feature independence assumption. In fact, not all the selected features in this 
analysis are independent, because some of them are linked through mathematical relationships (see 
Table 8.2). 

Figure 8.4: Testing accuracy for training and testing phases with experimental data 
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Shapley values were computed for quadratic SVM and fine kNN algorithms, because, as it can be 
seen from Figure 8.4, if they are trained and tested on experimental data, they are the most accurate 
ones for the two types of algorithms analysed in this work. The boxplots in Figure 8.5 and Figure 8.6 
show the Shapely values of the three defect classes for the two algorithms trained on numerical (on 
the right side) and experimental data (on the left side of the figure). 

Boxplot were obtained training the algorithms with 𝑁𝑡𝑟𝑎𝑖𝑛 = 1600 samples, as it was done for the 
calculation of the previous section, evaluating the Shapley values for 𝑁𝑆ℎ𝑎𝑝𝑙𝑒𝑦 = 100  samples, 
recording their values only for correctly classified points and finally averaging the recorded Shapley 
values for each class (0, 1 and 2) and for each of the twenty-three features. In each box, the central 
mark indicates the median value, while the bottom and top edges of the box indicate the 25th and 
75th percentiles respectively. The whiskers extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually using the '+' marker symbol. Names and 
mathematical definitions of features are resumed in Table 8.2. 

From the analysis of the boxplots related to the quadratic SVM algorithm trained with numerical data 
it can be seen that features 𝑝2 − 𝑝5 (STD, SMRA, RMS, peak) and the last four ones (𝑝20 − 𝑝23) 
have almost the same median value and little variance across the three defect classes, so they can be 
considered as non-relevant features; 𝑝1  (mean) has got the highest median value and very little 
variance for class 1, so it is a relevant feature for defect-free condition; 𝑝6, which is the measure of 
signal skewness, seems to be determinant in the recognition of an inner race defect, since it is positive 
only for class 1; the other features that contribute to this class are 𝑝7 − 𝑝11 (Kurtosis, CF, CLF, SF, 
IF), which all belong to time domain; 𝑝14 and 𝑝15 are the most relevant feature in outer race defect 
recognition, but they have a quite big variance, so they could be ineffective in some cases; they are 
also positive for class 2 and negative for class 0; 𝑝19 has got a strange behaviour, because the median 
value is positive only for class 1, but it has a huge variance, so it cannot be considered as a reliable 
feature. 

In case the SVM algorithm has been trained with experimental samples, it can be seen from the graphs 
that 𝑝1, which is the mean value, does not have any influence (its value is almost zero for all the 
classes), in fact as it can be seen from Figure 9.1, experimental time-domain vibration does not change 
a lot if the type of defect is different and therefore, the mean value is almost the same; STD, SMRA, 
RMS and peak value (𝑝2 − 𝑝5) discriminate classes 0 and 1 from class 2, 𝑝6 (skewness) has got a 
great impact on all the classes, but especially on outer defect class and it has got a great variability; 
frequency-domain features (𝑝12 − 𝑝23) have got a median value near to zero for class 0, so they seem 
to be crucial in the recognition of the type of defect. 

In the boxplots regarding the fine kNN algorithm trained with numerical data, it can be seen that 𝑝1, 
as in the case of quadratic SVM, has got a great impact on class 0, while 𝑝2 − 𝑝5 do not give a 
significant contribution, because they have almost the same value for all the classes; also in this case 
𝑝6 is a relevant feature for inner defect recognition; the other time-domain features (𝑝7 − 𝑝11) have 
almost the same median value in the three cases and have a great variability for the two defect classes, 
so they cannot be considered as reliable; frequency-domain features do not have great influence, 
because they all have big variance and nearly the same median value across the classes; 
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only 𝑝19, which helps to recognize an inner race defect, and 𝑝13 for the recognition of an outer race 
defect are significant features. 

In case of the training phase with experimental data, the mean vibration level, described by feature 
𝑝1, does not play an important role, as it happens for SVM algorithm; 𝑝2 − 𝑝5 discriminate class 2 
from the other ones; 𝑝6 has got a very high variance in all the three cases and but the median Shapley 
value is barely the same; the other time-domain features does not seem to have a high discriminating 
capability; also for kNN algorithm, frequency-domain features are relevant in the recognition of the 
type of defect, so between class 1 and 2. 

From the analysis on the Shapley values made in this section it is evident once more the difference 
highlighted between numerical and experimental data: if the machine learning algorithm is changed, 
the most important features are almost the same, but they have a quite different impact on the 
classification, if the algorithm has been trained with numerical or experimental samples. This can be 
seen in the discriminating capability of the mean value of the signal, which has got a great impact in 
the former case, while it is irrelevant in the latter 
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Figure 8.5: Shapley values of quadratic SVM algorithm trained on numerical data (left) and on experimental data (right) related to the three 
different defect classes 0 (top), 1 (middle), 2 (bottom) 
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Figure 8.6: Shapley values of fine kNN algorithm trained on numerical data (left) and on experimental data (right) related to the three different 
defect classes 0 (top), 1 (middle), 2 (bottom) 
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9 CONCLUSIONS AND FUTURE WORK 

9.1 SUMMARY OF THE OBTAINED RESULTS 

In this work a nonlinear multi-body dynamic model of a spherical roller bearing was presented. It can 
simulate the bearing behavior under average radial load and shaft velocity conditions and the effects 
produced by localized defects on raceways. The effects of the operating temperature and lubricant 
film thickness and damping in the contacts between rolling elements and raceways are also added in 
the model through empirical formulas involving parameters related to geometric and loading 
conditions, lubricant properties, material elasticity, roughness and hardness. 

A Simulink model was developed to carry out the simulations under a wide range of shaft rotational 
velocity, radial load and defect conditions to replicate vibration data obtained from a test rig, 
developed by Brusa et al. [56], which is located at Politecnico di Torino. 

From the simulation results presented in Chapter 5, it could be seen that the model simulates the load 
distribution among rolling elements, the lubricant film thickness and damping coefficient in 
accordance with theory. Numerical vibration data correctly simulate the presence of defects on 
raceways as they present impulsive response when a defect is in the load zone and a rolling element 
falls in it. By performing the FFT on time signals, it was seen that the presence of a defect leads to 
the excitation of the characteristic frequencies of the bearing related to that kind of defect, as it was 
expected. 

Numerical and experimental vibration paths were divided into shorter time segment lasting 200, 400 
or 800 ms and twenty-three features among those of time and frequency domains were extracted 
from each of them. Therefore, from each segment a sample, containing the related features, with a 
label depending on the type of defect, was obtained and a wide database was created. Before the 
feature extraction activity, numerical data were added with a white Gaussian noise with different 
levels of SNR to simulate the noise present in experimental vibration paths, that comes from the other 
mechanical and electrical components of the test rig. 

A number of randomly selected samples was extracted to train many machine learning algorithms 
belonging SVM kNN and their accuracy was tested on a new set of data, taken randomly from the 
unused samples of the same dataset. It could be seen that testing accuracy was close to 100 % and 
had best values for longer time segments. It was also noticed that a higher level of noise worsened 
the performance of the AI algorithms, because defect-induced peaks are hidden. The same operations 
were done using experimental data and the best testing accuracy was achieved by fine kNN, quadratic 
and cubic SVM. Therefore, it was successfully checked that AI algorithms can be used in the 
diagnostics of bearing health conditions. 
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Finally, the Shapley values, which represent the contribution of each feature to the classification of a 
query point, were computed for 100 query points using quadratic SVM and fine kNN algorithms to 
highlight the most relevant feature in IFD. The Shapley values were computed for the algorithms 
trained with both numerical and experimental data and results were compared: it could be seen that 
the most relevant features are nearly the same for the two kinds of AI algorithms, but they differ due 
to the types of data used for the training phase. 

9.2 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK 

The developed nonlinear multi-body dynamic model was designed for spherical roller bearings, but 
it can be easily modified to simulate the behavior of any kind of bearing. A more comprehensive and 
accurate simulation could be obtained with the introduction of two more degrees of freedom (one for 
each ring) in the 𝑧-direction, that allows the simulation of external axial loads and preloads. 

In the first formulation of the model presented in this work the high frequency resonator was not 
added, but it is one of the topics for future developments as well as the inclusion of the two rows of 
rolling elements. Further analysis on the effects of rolling elements slippage and the way to accurately 
simulate it should also be developed. 

As it can be seen from Figure 9.1, which shows time, frequency and envelope spectrum signals for a 
spherical roller bearing under 62.4 kN load, with a rotational speed of 127 rpm and in different 
defect conditions, the numerically simulated bearing and the real one have a quite different behavior. 
From the time signal it is evident that the biggest discrepancy is the vibration amplitude, but it is a 
common problem related to multi-body dynamic models due to the initial assumptions and 
simplifications, as it mentioned in Liu et al. [33]. 

The numerical vibration signal is dominated by the defect-induced peaks, while the experimental one 
seems to be only slightly influenced, since the biggest contribution to acceleration comes from the 
other parts of the mechanical system. This can also be seen from experimental frequency and envelope 
spectra because the highlighted characteristic frequencies are not excited significantly. On the 
contrary, in the plots coming from simulations, characteristic frequencies and their multiples are the 
only excited frequencies. 

Discrepancies between numerical and experimental data can also be seen in extracted features; in 
fact, once algorithms have been trained with numerical data, they can be tested on experimental data 
in a number equal to testing data samples 𝑁𝑡𝑒𝑠𝑡 = 400. The evaluation of testing accuracy was 
performed using samples coming from experimental vibration paths lasting 400 ms and it is reported 
in Figure 9.2. It is evident that overall testing accuracy on experimental data is quite unsatisfactory, 
since it is below 50 %, which is the coin toss case. Moreover, if the SNR level of the white Gaussian 
noise is higher, algorithms tend to work better on testing data and “coarser” algorithms have better 

performances (coarse kNN, coarse SVM). This is a proof of the corruption of experimental vibration 
paths by a random noise. 
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The plot in Figure 9.3 shows the Area Under Curve (AUC) for the selected machine learning 
algorithms tested on experimental data. AUC corresponds to the integral of the Receiver Operating 
Characteristics (ROC) curve, which relates the true positive rate (TPR), or sensitivity, to the false 
positive rate (FPR), or specificity. AUC values are in the range [0,1] and larger values corresponds 
to better classifier performances, since it indicates the ability of the algorithm to distinguish between 
classes: a perfect classifier has 𝐴𝑈𝐶 = 1 , because it always assigns correctly the positive class 
observation to the positive class and does the same for the negative ones, while a random classifier 
has got 𝐴𝑈𝐶 = 0.5, since false positive rate and true positive rate have always the same value. 

From the graph it can be seen that the overall AUC value is not much higher than 0.5, so the 
performance of evaluated algorithms is not good. Moreover, for kNN algorithms AUC becomes 
higher if numerical training data are more corrupted by noise, while it is the opposite in case of SVM, 
which reaches the highest values of AUC in case of linear and quadratic kernels. 

The most common problem found in algorithms is their incapability of detecting faults, as they almost 
classify all samples as non-defective. Better results were obtained with medium and coarse Gaussian 
SVM, especially if the noise added to numerical data is comparable or little higher than the original 
signal (𝑆𝑁𝑅 = 0,−3 dB), because they can detect the presence of the three defect classes, even if 
their accuracy is not high. 

The source of problems seems to be again the big difference in vibration behavior between the 
modelled and real bearing. Thus, machine learning algorithms have a very low accuracy if they are 
trained with numerical data and tested on experimental ones, because extracted features have different 
distributions. 

All those problems could be related to the difference between real and simulated defects; in fact, the 
bearing tested on the rig has got a circular defect with a diameter of 2 mm, while the modelled one 
is 2 mm  wide a has a length equal to the roller contact length. This surely leads to greater 
accelerations. Therefore, the defect model has to be changed, even if the one introduced in this work, 
coming from Wen et al. [52], simulates in a more realistic way than many other bearing models the 
penetration of the rolling element into the defect. 

Lastly, a more comprehensive and accurate simulation of the vibration, that can replicate with better 
precision the experimental data, can be obtained introducing in the dynamic model all the mechanical 
components of the test rig: in this case the number of DoF may increase considerably and so the 
numerical effort. In this case the excited frequencies, which can be seen in experimental frequency 
spectrum, could be simulated. 
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Figure 9.1: Comparison of numerical (left) and experimental (right) time-domain, frequency-domain and envelope signal for non-
defective (top), inner race-defective (middle) and outer race-defective (bottom) bearing 
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  Figure 9.2: Testing accuracy for AI algorithms trained with numerical data affected by white Gaussian noise 
with different SNR and tested on experimental data 

Figure 9.3: AUC of each AI algorithm trained with numerical data corrupted by white Gaussian noise having 
different levels of SNR and tested on experimental data 
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