
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Container Migration for Mobile Services

Supervisors

Prof. Carla Fabiana CHIASSERINI

Prof. Paolo GIACCONE

Candidate

Yenchia YU

Academic Year 2021-2022

Abstract

Nowadays, the development of edge computing technologies enables the deploy-
ment of time-sensitive and large-data-volume services on infrastructure, which
significantly promotes the development of the applications like connected vehicles
and the intelligent industry. Together with the development of mobile communi-
cation technologies (e.g., 5G), edge computing architecture is gaining more and
more traction, leading people to imagine the possibility of deploying time-critical
mobile services on edge to reduce computational power requirements on mobile
devices, especially in application scenarios like autonomous driving or unmanned
aerial vehicles (UAVs).

However, in actual practice, the deployment of time-critical mobile services on
the edge server still has many challenges, especially the communication latency.
When a mobile client moves, the communication latency between service and client
will increase as the communication distance increases, which is mainly related to
the unpredictable network congestion. In this case, the communication latency will
no longer be guaranteed when the mobile client reaches a specific distance with
respect to the fixed edge service. The most feasible solution to this problem is to
enable the mobility of mobile services among the edge network, making the mobile
services can always be reachable in the edge server close to the mobile client. Since
edge services are normally containerized, service migration in the edge network
could be generalized into container migration. Even though compared to the VM
migration, container migration is very lightweight and flexible, the migration costs
and benefits still need careful balancing in time-critical services migration.

In the work of this thesis, the study on container migration technology will focus
on the following two aspects: container migration realization and migration cost
modeling. In the part of container migration realization, general requirements and
constraints for container migration will be discussed. And in practice, Podman
container will be used to containerize services since it has better integration with
CRIU, a key tool to realize container migration on Linux machines. In the part
of migration cost modeling, the container migration cost will be studied from the
aspect of service downtime and migration resource usage (including CPU, memory,
storage, and network usage). An overall cost model will be proposed in order to
define different migration policies for different kinds of edge applications.

Since container migration is a new study topic in the edge computing area, the
study in this thesis will focus more on the low-layer migration implementation and
performance. Future work could concentrate on the study of high-layer orchestration
or the discussion of the extreme conditions on container migration, completing the
technical stack and pushing the adoption of this technique in real applications.

Table of Contents

1 Introduction 1
1.1 Context and Problem Statement . 3
1.2 Thesis Structure . 4

2 State of the Art Review 6
2.1 Category of Container Migration 6

2.1.1 Stateless Container Migration 6
2.1.2 Stateful Container Migration 7

2.2 Stateful Migration Time and Downtime 10
2.2.1 Cold Migration . 10
2.2.2 Pre-copy Migration . 11
2.2.3 Post-copy Migration . 12

2.3 Related Works . 13

3 Background Technologies 14
3.1 Containerization: Podman . 14
3.2 Container Checkpoint/Restore: CRIU 15
3.3 File Synchronization . 17

3.3.1 Rsync . 17
3.3.2 Borg . 18

3.4 SDN: Open vSwitch . 19

4 Realization Stack: Migration File Synchronization 21
4.1 Analysis Methodology . 21
4.2 Deduplication performances . 23

4.2.1 Rsync Deduplication . 23
4.2.2 Borg Deduplication . 28

4.3 System related performance . 30
4.3.1 CPU Cost Measurement . 31
4.3.2 Memory Cost Measurement 33
4.3.3 Storage Cost Measurement 33

ii

4.3.4 Network Cost Measurement 34
4.4 Synchronization Tool For Container Migration 35

5 Realization Stack: Stateful Container Migration 37
5.1 Stateful Local Application . 37
5.2 Application Dirty Page Rate Control 39
5.3 Applications Containerization . 41
5.4 Process migration with CRIU . 42
5.5 Container Migration Procedure . 43

5.5.1 Cold Migration . 46
5.5.2 Pre-Copy Migration . 48
5.5.3 Comparison of cold and pre-copy migration 50

6 Realization Stack: Overlay Network 55
6.1 Stateful edge application . 55
6.2 Linux TCP connection repair . 57
6.3 Linux Namespace . 58
6.4 Podman container overlay network 60
6.5 Podman container migration with overlay network 61
6.6 Overlay network monitoring . 64

7 Management Stack: Migration Cost Model 69
7.1 Cost Model Definition . 69
7.2 Migration Cost Estimation . 73

8 Management Stack: Migration policies 76
8.1 Policies related to containers properties 76
8.2 Migration strategy . 79

9 Conclusions 82
9.1 Future works . 83

Bibliography 84

iii

Chapter 1

Introduction

Nowadays, the development of edge computing technologies enables the deployment
of time-sensitive and large-data-volume services on infrastructure, which signifi-
cantly promotes the development of the applications like connected vehicles and
the intelligent city. More specifically, the main concept of the edge computing
is to allow the computation to be performed at the edge of the network, which
can be any computing or network resources physically close to the client. As
Figure 1.1 shows, in the edge computing paradigm, the clients act as both the
data producer and consumer. They can request services and content from the
cloud. More importantly, they can perform computing tasks from the edge/cloud.
However, in this very general paradigm, the clients are mostly considered to be
fixed and do not move by time. According to the definition in [1], the edge should
be able to perform computing offloading, data storage, caching, and processing, as
well as distribute request and delivery services from cloud to user.

Figure 1.1: Edge computing paradigm [1]

1

Introduction

With the development of mobile communication technologies (e.g., 5G), the
study of edge computing architecture has gradually moved its target to support the
deployment of mobile services. Generally speaking, a mobile service is the service
that provides computational power and information from static servers to the mobile
clients. Such design has the advantage of reducing the resource consumption on
mobile devices but also has the weakness of high communication load and unstable
communication performance. In recent study, people have started to consider
the possibility of deploying time-critical mobile services on edge, especially for
application scenarios like autonomous driving or unmanned aerial vehicles (UAVs).

Such kind of computational paradigm is normally considered as Mobile Edge
Computing (MEC), which was first proposed by the European Telecommunication
Standard Institute (ETSI) in 2014 [2]. The general architecture of MEC system is
as Figure 1.2 shows. It contains two main key components: the mobile deceives
and the MEC servers. The MEC servers are topically small-scale data centers
deployed by the cloud and telecom operators in close proximity to end users and
can be co-located with wireless APs [3]. Even though the general system seems
quite simple, there still exist many challenges to be solved before implementing
such kind of system.

Figure 1.2: Architecture of the MEC system [3]

According to [3], the major challenges to implement the MEC system include four
aspects. The first aspect is the deployment of the MEC system. The problem to be
considered includes the site selection for MEC servers, MEC network architecture
design, and server density planning. The second aspect is related to caching system
management in MEC server. As mentioned in the previous part, the edge server is
the mediator with limited resources between the client and the cloud. The way the
mobile edge server caches the services and related data should be carefully designed
in order to guarantee its availability and efficiency. The third aspect is mobility

2

Introduction

management for MEC. Since the mobile device is moving, the corresponding service
on the MEC server should be able to follow the trajectory of the user in order to
guarantee and optimize the quality of service (QoS). And the last aspect of the
challenge is related to energy saving.

1.1 Context and Problem Statement
In the current times, edge computing applications are normally deployed in a
virtualized environment like containers. In this case, the study of the mobility of
edge applications can be generalized into the mobility of containers. The purpose
of this thesis is to validate the mobility of containers and research the container
migration solution for mobile services working in edge networks like MEC systems.
To be more specific, imagine that in a time-critical mobile application scenario
like connected vehicles, one of its key QoS indexes is the communication latency
between the mobile client and its corresponding services. In the current edge
solution, the mobile service is deployed on a specific edge server. When the mobile
client moves, the communication latency between service and client will increase as
the communication distance increases, which is mainly related to unpredictable
network congestion. In this case, the communication latency will no longer be
guaranteed when the mobile client reaches a specific distance with respect to the
fixed edge service. The most feasible solution to this problem is to enable the
mobility of mobile services among the edge network, making the mobile services
can always be reachable in the edge server close to the mobile client. Since edge
services are normally containerized, service migration in the edge network could be
generalized into container migration.

This thesis will discuss the performance and implementation of container mi-
gration based on the result of experiments and simulations. The study will cover
the topic of container migration from realization to management stack. In the
realization stack, the study will focus on file synchronization, service containeriza-
tion, container checkpoint/restore, and container network migration. The major
contribution in this stack is the adoption of overlay network architecture to solve
container network migration problems. In the management stack, the contribution
is the proposal of an optimization model to minimize the migration cost.

3

Introduction

1.2 Thesis Structure
The work done in this thesis is presented according to the following organization.

Chapter 1 - Introduction

The first chapter introduces the high-level motivation of this thesis. It discusses
the reason for the container migration study and lists this thesis’s target.

Chapter 2 - State of the Art Review

The second chapter introduces the state of the art of container migration tech-
nologies. In this chapter, the difference between stateful and stateless migration is
discussed. The techniques of stateful migration and their corresponding downtime
model are dentally introduced. Meanwhile, a brief summary of recent studies on
stateful container migration is also presented in this chapter, aiming to provide an
overview of the study in this area.

Chapter 3 - Background Technologies

The third chapter introduces the background technologies used in this thesis. In
this chapter, the general implementation and the main features of the tools in four
categories are introduced: containerization, checkpoint/restore, file synchronization
and software defined network.

Chapter 4 - Realization Stack: File synchronization

The fourth chapter demonstrates the result of the performance test on two selected
file synchronization tools. In this chapter, the performance matrix to be compared
includes the file deduplication rate, CPU usage, memory usage, storage usage, and
network usage. According to the test result, the optimal file synchronization tool
to be used in the container migration scenario is determined.

Chapter 5 - Realization Stack: Stateful Container Migration

The fifth chapter demonstrates the implementation detail and the result of stateful
container migration. In this chapter, the implementation of the stateful application
is firstly introduced. Then, the method and detail to containerize the stateful
application are discussed. Then, the migrated state of the application with different
migration methods is validated. In the end, the performance of different migration
methods is compared

4

Introduction

Chapter 6 - Realization Stack: Overlay Network

The sixth chapter demonstrates the implementation and test of an overlay network
among containers during migration. In this chapter, the reason why container
migration needs network management is firstly discussed. Then the container
overlay network implementation detail is introduced. In the end, a common real
edge service is used to test the container migration over the overlay network.

Chapter 7 - Management Stack: Migration Cost Model

The seventh chapter introduced a migration cost model for container migration
management. In this chapter, a simple migration cost model based on the edge
resources usage is created.

Chapter 8 - Management Stack: Migration Policies

The eighth chapter discusses the policies for container migration. In this chapter,
the policies for the selection of migration techniques and migration strategies
are introduced. Especially, the iterative pre-copy migration strategy is detailed
introduced and validated.

Chapter 9 - Conclusion

The ninth chapter concludes the container migration topics presented in this thesis.
In this chapter, the advantages and weaknesses of container migration are discussed.
And future research directions in this area are proposed.

5

Chapter 2

State of the Art Review

This chapter provides a state-of-the-art review of the core concept of this thesis
and the related works. Specifically, Section 2.1 reviews the main migration tech-
niques, while Section 2.2 provides the corresponding migration downtime models.
Section 2.3 summarizes the recent works related to service migration.

2.1 Category of Container Migration
The study of virtual environment migration techniques begins with virtual machines
(VMs) migration. Migrating VMs between different physical hosts inside a data
center could help achieve the goal of energy efficiency, load balancing, and high
availability [4]. With the development of virtualization technologies, containers
become more and more popular, especially in edge computing scenarios. Most of
the key concepts of container migration techniques inherits from the VM migration.
Since the containers are much "lightweight" than the VMs (see Section 3.1 for
more details), the migration of containers is much faster and consumes much less
resources than VM migration. However, migrating containers among resource
limited edge servers still need carefully balancing the migration efficiency and the
migration cost. So people proposed many different kinds of migration methods. In
summary, the migration techniques can be catorgorized into two classes, which are
stateless and stateful migration.

2.1.1 Stateless Container Migration
Stateless container migration means that the container losses its whole states
during the migration procedure. Even though it sounds unreasonable, the stateless
migration fit the nature of containers. In the original design, the containers are
built to be stateless. It means that the containers should contain only the stateless

6

State of the Art Review

applications. By definition, a stateless application/process is a process that does
not store any knowledge or references to the past transactions. Each transaction
of the process is made as if it is from scratch by the first time. In this case, the
process has no so called "state" to be transferred to the destination during the
migration procedure. There only needs two simple steps to perform the stateless
container migration: 1) Re-initiate the container from the same base image on the
destination host, and 2) shut down the old container. However, in modern times,
most of the applications are stateful. So even thought the stateless migration is
very simple and efficient, it is less used in real practise.

2.1.2 Stateful Container Migration

Stateful container migration means that the container preserves all its state during
the migration procedure and being able to continue working from its last state
before migration after it is resorted on the destination host. On contrary to
the stateless container migration, the container to be migrate should be stateful,
which means that it should contains stateful applications. Otherwise, the stateful
migration becomes meaningless. And by definition, a stateful application is the
application that performs with the context of previous transitions and the current
transaction may be affected by the previous ones. Since in stateful container
migration, the majority of the states to be migrate is the memory states of the
container/application. The realization of stateful migration normally needs the help
of external tools to perform the checkpoint and restore operation. And according
to different procedure to transfer the memory state of the application, the stateful
container migration can again be classified into three basic classes, which are cold,
pre-copy and post-copy migration.

Cold Migration

Cold migration is the technique to migrate a container with single checkpoint and
synchronize procedure. As Figure 2.1 shows, there are three steps to perform
the cold migration. First, checkpoint the container and shutdown the container.
Second, synchronize the checkpoint image to the destination host. Third, restore
the container from the checkpoint image. The reason why this migration method is
considered to be "cold" is because that the original container is shut downed when
the checkpoint procedure is finished. The container can not provide any service
before it is restored. With respect to other "warm/live" migration procedure, such
kind of migration is a "cold" procedure.

7

State of the Art Review

Figure 2.1: Cold migration procedure

Pre-copy Migration

Pre-copy migration is a live migration technique that migrates a container with
twice checkpoint and synchronize procedure. As Figure 2.2 shows, there are five
steps to perform the pre-copy migration. The first step is called pre-checkpoint.
In this step, the external tool only checkpoints the container’s memory content
and leave the original container running. The second step is to synchronize the
first checkpoint image to the destination. Then, in the third step, the external tool
compares the current memory content with the previous checkpoint and finds out
the dirty memory pages (the memory pages with changed content compared to the
first checkpoint). After the dirty pages are find out, the external tool checkpoints
the dirty pages and the remaining non-memory states and shutdown the container.
The fourth step is to synchronize the second checkpoint image to the destination
host. The last step is to restore the container on the destination host from the
first and second checkpoint image. When the container is restored, the container
continues working from the state before the second checkpoint. With pre-copy
migration, the container can continue provide services until the second checkpoint.
The duration when the application in the container is interrupted is much shorter
than the cold migration. And step 1 to 4 can be iteratively repeated in order to
reach an even smaller interruption time.

Post-copy Migration

Post-copy migration is a live migration technique that migrates a container with
single checkpoint and synchronize procedure. As Figure 2.3 shows, there are
eight steps to perform the post-copy migration. The first step is to suspend the
container and perform the checkpoint. However, different from the cold and pre-copy
migration, the post-copy migration technique only checkpoints a minimal subset

8

State of the Art Review

Figure 2.2: Pre-copy migration procedure

Figure 2.3: Post-copy migration procedure

of the execution state of the container (CPU state, registers and, optionally, non-
pageable memory). In the second step, the minimum state image is synchronized to
the destination host. In the third step, the container is restored form the minimum
state checkpoint image. In this case, when the application inside the container
accesses the non-transmitted memory pages, the process generates memory page
faults. Instead of crashing the process, the memory page daemon running on the
destination host catches the page faults (step 4) and sends requests of the memory
pages to the memory page daemon on the original host (step 5). When the memory
page daemon on the original host receives the memory page requests, it retrieves
the target memory pages from the suspended container (step 6) and transmits
them back to the memory page daemon on the destination host (step 7). When
the destination memory page daemon has the required memory pages, it provides
the memory pages to the container and consumes the memory page faults. Such

9

State of the Art Review

kind of migration technique can minimize the migration time. But the migration
procedure is more complex. And if the restored container frequently accesses the
non-synchronized memory pages, the performance of the restored container could
decrease due the the frequent memory retrieve procedure.

2.2 Stateful Migration Time and Downtime
For the stateful container migration, the most important performance index are the
migration time and migration downtime. The migration time is the total duration
to finish the entire migration procedure. The migration downtime is defined as the
duration of the interrupt of the containerized service due to container migration.
For different stateful migration techniques, the migration downtime is different.

2.2.1 Cold Migration
According to [5], the detailed timeline of the cold migration procedure is as Figure 2.4
shows. The migration time is equal to the sum of checkpoint time Tc, transfer time
Tt, and restore time Tr as Equation 2.1 shows. Due to the container is stopped
when the migration procedure starts and is resumed when the migration procedure
finished, the migration downtime of cold migration is equal to the migration time
as Equation 2.2 shows.

Tmigrate = Tc + Tt + Tr (2.1)

Tdown = Tmigrate (2.2)

Figure 2.4: Cold migration timeline[5]

10

State of the Art Review

2.2.2 Pre-copy Migration
According to [6], the detailed timeline of the pre-copy migration procedure is as
Figure 2.5 shows. This migration model was designed for VM migration. Since
the migration of VM and container are consistent in the conceptual point of view,
we can inherit the model to container migration. With the proposed migration
procedure, the total migration time can be summarized as Equation 2.3 shows.
In the equation,Tpre means the total duration of the pre-migration,initialization
and reservation phase. And Tmem represents the iterative memory copy and stop-
and-copy phases. Tpost is the total duration of commitment, post-migration and
activation phases. Comparing the the cold migration, the total migration time
Tmigrate of pre-copy migration is longer. On the other hand, the migration downtime
of pre-copy migration is calculated as Equation 2.4 shows. Td represents the
duration to perform the stop and copy operation and transmit the dirty memory
pages. T

′
post means a part of post migration time in which the migrated container

is not complete activated. As the result, the exact migration downtime of pre-
copy migration is strongly dependent to the dirty page rate of the container to
be migrate. Comparing to other migration method, the migration downtime of
pre-copy migration can be the shortest when the dirty page rate of the container is
relatively small. On the other hand, the pre-copy migration may consumes a large
amout of network resources during the iterative memory copy phase.

Tmigrate = Tpre + Tmem + Tpost (2.3)

Tdown = Td + T
′

post (2.4)

Figure 2.5: Pre-copy migration timeline[6]

11

State of the Art Review

2.2.3 Post-copy Migration
According to [7], the timeline of the post-copy migration procedure is as Figure 2.6
shows. This migration model was designed for VM migration. Since the migration
of VM and container are consistent in the conceptual point of view, we can inherit
the model to container migration.The total migration time is summarized as
Equation 2.5 shows. Tprepare is the time between initiating the migration and
transferring the state of the container to the target node. In this phase, the
minimum states (processor states and non-pageable memory) to be transmitted is
checkpointed. Ttransmit is the duration to transmit the minimum checkpoint state.
Tresume includes the time to restore the container from the minimum checkpoint
image and the time to fetch the missing memory pages from the original host. In
this case, the duration of Tresume is strongly correlated to the container’s memory
size and structure. Since post-copy does not require iterative copy of the memory,
the total migration time is normally shorter than pre-copy migration. For the
migration downtime of post-copy migration, it is equal to the transmission time of
the minimum states. To be notice, the migration downtime of post-copy migration
normally is longer that pre-copy migration. The reason is that for post-copy
migration it needs to transfer all the non-pageable memory in the downtime phase
while the pre-copy migration migration method only transfers the dirty memory
pages.

Tmigrate = Tprepare + Ttransmit + Tresume (2.5)

Tdown = Ttransmit (2.6)

Figure 2.6: Post-copy migration timeline[7]

12

State of the Art Review

2.3 Related Works
The recent study of VM/container migration covers different phases from migra-
tion technique introduction to migration orchestration. which provide the a rich
knowledge base for the study of this thesis.

Migration Techniques. [8] gives a detailed summary on the state of art on the
migration techniques, which provides a quick insight to the related technologies. [9]
focuses on the migration techniques used in network edge, which provides a more
specific knowledge align to the target of this thesis.

Migration Network Managements. The study of network management during
migration targets at guarantee the cross VM/container connection can be restored
without re-connection after the migration. To reach this target, architectures based
on different technologies are proposed: MPTCP [10], QUIC [11], PMIPv6 [12],
LISP [13], and so on. However, the applicability and implementation difficulty of
these technologies need to be carefully balanced. More detailed discussion will be
done in the future section.

Actual Application Migration. In the study related to actual application
migration, [14] provides an example of the migration of an MQTT based AR appli-
cation which was directly containerized by container runtime runC [15]. However, in
this example, it only preserves the MQTT session states during the migration and
adopts connection handoff method to manage the network problem. The study [5]
provides an example to migrate mobile core network components containerized
by Docker container. And it mentioned that the TCP connection problem during
migration could be solve with TCP re-establishment feature from Linux version
3.5.

Migration Orchestration. In the study related to migration orchestration, the
orchestration model mostly focus on minimizing the migration downtime (e.g. [6],
and [16]), and resource usage cost during the migration (e.g., [17], and [18]).

13

Chapter 3

Background Technologies

3.1 Containerization: Podman

Figure 3.1: Virtual machines vs containers

In edge/cloud computing architecture, there are two commonly used tools to
create isolated environments for different applications: virtual machines (VM) and
containers. The chief difference between these two techniques is the level of isolation.
As Figure 3.1 shows, a VM is an emulation of a physical computer. For each VM,

14

Background Technologies

the emulation starts from the operating system level, which makes the environment
inside the VM completely independent from the host operating system and the
hypervisor. The VM hypervisor is the tool to create and manage VMs. With
this architecture, VMs provides a securer and completely isolated environment.
However, such kind of architecture has the shortcomings like long starting time and
low efficiency. In container architecture, the containers create isolated environments
from the user space. In this case, all containers running on the same host machine
share the same operating system kernel. The container engine is the software that
accepts user requests, pulls images, and runs the container from the end user’s
perspective. Even though in this architecture, the isolation level of the container is
relatively lower, the containers show the advantage in image size, start time, and
efficiency. Compared to VM, the property of the container is more suitable for the
mobile service migration scenario.

There are many different implementations of container engines, including
Docker [19], LXD [20], Podman [21], etc. Considering the support on the function of
container migration, Podman is selected to be the container engine in the following
study. Podman is a daemonless, open-source, Linux native container engine. It
targets to make it easy to run, build, share and deploy applications using Open
Containers Initiative (OCI) Containers and Container Images. It relies on an
OCI-compliant Container Runtime (runc, crun, runv, etc) to interface with the
host operating system and creates the running containers.

A Podman container is the runtime initiation of a container image. It is a
standard Linux process isolated by namespace. Containers under the control of
Podman can either be run by root or by a non-privileged user. To be noticed,
the containers should be run by the root user in order to perform the migration
function. The container image is a file comprised of system libraries, system tools,
container metadata, application executable, and other necessary information to run
a container. Podman uses the container images in the format defined by OCI, which
defines the layers and metadata. When an application needs to be containerized,
the executable of the application can be built into a image layer from scratch or on
top of a proper parent image. This process could be done automatically by the
container engine with a command script such as the Dockerfile.

3.2 Container Checkpoint/Restore: CRIU
Checkpoint/Restore In Userspace (CRIU) [22] is a Linux software that can freeze
a running container (or an individual application), checkpoint its state to disk,
and restore it to a local or remote machine in the checkpointed state with the
checkpoint file. CRIU is one of the most commonly used tools to perform container
migration. Most of the popular container engines (e.g., Podman, Docker, and LXC)

15

Background Technologies

have different levels of integration with CRIU to support the containers’ mobility.

There are two main steps to checkpoint a process (or a container, which is a
tree of processes) with CRIU. First, CRIU uses Linux system call ptrace() to
pause and seize a running process in order to collect the necessary information
for checkpointing. The way CRIU obtains the detailed information is to read and
dump the process data from Linux userspace interface /proc/<PID>/*. Secondly,
after CRIU obtains all the necessary information, CRIU collects the states (majorly
the memory content) of the process using a parasite code. To perform this step,
CRIU first pauses the target process. When the process is paused, a parasite
code is injected into the process. After the injection, the process is released and
continues running together with the parasite code. At this moment, the parasite
code can see and access everything the process can see and access. Meanwhile,
the parasite code acts as a daemon waiting for commands from the main CRIU
process. When the preparation of the checkpoint is ready, the main CRIU process
commands the parasite code to dump the states of the target process to disk. After
the state dumping is finished, the parasite code is removed from the process. At
this moment, the checkpoint procedure is finished. Users can command CRIU to
kill or leave the target process running after checkpointing with a simple option.
From the perspective of the target process, it is unaware of all the operations done
by CRIU. No additional operation is needed on the target process side to support
the checkpoint procedure. In this view, CRIU shows its advantage of being able to
checkpoint any Linux process.

CRIU can restore the checkpointed process (or container) to the original or a
new machine. In the latter condition, the checkpoint image should be copied to
the destination host in advance. To restore the checkpointed process with CRIU,
four main steps are required. First, CRIU reads the checkpoint image and finds
the information about the shared resources (e.g., files and shared memories) with
the process to be restored. CRIU will first restore the shared resources before
restoring the checkpointed process. Secondly, CRIU re-creates the checkpointed
process (and its children processes) by calling fork() system call on the new host.
Thirdly, CRIU restores all resources (e.g., open files, namespaces, and sockets)
to the newly created process except for the resources of memory mapping exact
location, timers, credentials, and threads. The reason for delaying the restoring
of mentioned resources is that they should be restored when other resources are
completely restored. In the last step, CRIU restores the remaining resources and
releases the control of the target process. The restored process will continue running
from exactly the same state as the original process when it is checkpointed. To
be noticed, the restoring process requires the PID of the original process (and its
children processes) is not occupied on the host machine. Otherwise, the restoring
fails at the very beginning of the procedure.

16

Background Technologies

3.3 File Synchronization

3.3.1 Rsync

Rsync [23] is a famous file synchronization tool on Unix-like operating systems. The
basic function of this tool is to efficiently copy the target files to a local or remote
directory. It is famous for its delta-transfer algorithm during file synchronization.
As Figure 3.2 shows, when rsync performs file synchronization, it splits the file
into blocks. Then, the destination rsync daemon sends the checksum of the blocks
to the source rsync daemon (where the modified new files locate). Then, rsync
applies a rolling block on the new files and performs the checksum on the rolling
blocks. When the checksum of a rolling block matches one of the checksum values
received from the destination, the block can be considered unchanged. After the
rolling block goes through the entire new file, all the changes on the new file can
be found out. In the data transfer phase, rsync only sends the new changes to the
destination and insets the changes to the correct position of the files on the remote.
The delta-transfer algorithm significantly reduces the amount of data to be sent
over the network. Moreover, during the data transfer phase, rsync provides options
for applying different compression algorithms. With the property of high efficiency,
rsync is commonly adopted in the use-cases like daily backup and data recovery.

Figure 3.2: Delta-transfer algorithm

17

Background Technologies

3.3.2 Borg

BorgBackup (Borg) is a tool duplicated to provide an efficient and secure way to
backup data to a local or remote respository. It is famous for its deduplicating
backup feature. The structure of the backup repository is as Figure 3.3 shows.
On the highest level is the manifest of the repository. It references all archives
in the repository, acting as the register map. The archives are the immutable file
representing the backups. However, the archives itself does not storing any data of
the back files. The real backup files are splited and stored in chunk objects. The
archives only stores the IDs of chunks which construct a specific backup. Every
time user creates a new backup, borg splits the backup files into chunks with a
specific algorithm and checks if any of the chunks match the ones already exist
in the repository (even if the chunk is from complete different file). Borg only
stores the chunks which do not have any match in the old repository. In this
case, the backup files in the same repository are deduplicated, which significantly
reduced the requirement on storage for multiple backups. When the user wants to
restore a specific version of backup, borg collect the file chunks with corresponding
IDs according to the archive and reconstruct them to normal files. With the nice
deduplication feature and additional optional security features, borg are commonly
used in daily backup and secure storage scenarios.

Figure 3.3: Borg object graph [24]

18

Background Technologies

3.4 SDN: Open vSwitch
Software-defined networking (SDN) is an approach of network management that
targets at making the network more flexible and easier to manage. Compared to
the traditional network that uses dedicated hardware devices to control the network
traffic, SDN proposes to create and control the network via software. The SDN
architecture separates the network into the control and the data plane. In the
control plane, there may exist one or more SDN controllers. The SDN controller is a
centralized network intelligence that can orchestrate and manage the network. They
decide how network traffic is handled according to the user’s setting/programming.
The data plane is responsible for forwarding the traffic based on the control plane’s
decision.

Open vSwitch (OvS) [25] is a powerful tool for constructing an SDN data plane.
It is a multilayer software switch that supports standard management interfaces
and opens forwarding functions to programmatic extension and control. There are
two interesting features of OvS for container migration scenarios, listed as follows:

• Geneve, GRE, VXLAN, STT, and LISP tunneling

• QoS (Quality of Service) configuration, plus policing
Open vSwitch is composed of a set of components with specific functions as

Figure 3.4 show. The components targeted at implementing the function of OvS
are located in the kernel and userspace layer, with the functions as follows:

• ovs-vswitchd: is a daemon that implements the switch.

• ovsdb-server: a lightweight database server that ovs-vswitchd queries to obtain
its configuration.

• ovsdb: a network-accessible database system.

• fast datapath module (optional): a high-performance forwarding module using
a Linux kernel.

To provide a flexible management of the switch, OvS also provide a set of components
target at provide management function, listed as following:

• ovs-vsctl: a tool for querying and updating the configuration of ovs-vswitchd.

• ovs-appctl: a tool that sends commands to running Open vSwitch daemons.

• ovs-ofctl: a tool for querying and controlling OpenFlow switches and con-
trollers.

• ovs-dbtool: a tool to manage ovsdb.

• ovs-dpctl: a tool for configuring the switch kernel module.

19

Background Technologies

Figure 3.4: Open vSwitch system architecture

20

Chapter 4

Realization Stack: Migration
File Synchronization

In the realization of container migration, one of the most critical and basic stacks
is file synchronization. There are two types of files need to be synchronized in
the migration procedure: container image and checkpoint image. The container
image is the base image to create/restore the container on the host machine.
The synchronization of this kind of image is not time critical since it can be pre-
downloaded to a specific machine and used whenever needed. Online container
image repositories such as Docker Hub can easily distribute the container image
to different host machines. So, the container image is not the target of the study
in this thesis. On the other hand, the synchronization of the checkpoint image
can significantly affect the overall performance of container migration. In different
migration methods, the more efficient the checkpoint image synchronization is, the
lower migration downtime will be, and lower dirty memory pages will be generated.
Considering that the resources on the edge server (e.g., CPU, memory, network,
disk) are limited, the study of this chapter will focus on finding the optimal setting
for checkpoint image synchronization. Famous file synchronization tools on Linux
operating system "rsync" and "borg" are selected as the main tools to be studied.

4.1 Analysis Methodology
The study of the file synchronization tools will be based on experiments. The
performance matrix to be analysis includes deduplication efficiency, CPU usage,
memory usage, network usage and storage. In the test of deduplication performance,
dedicated test scenarios will be designed and applied to each tool according to their
property in order to find the maximum capability. According to [26], the system
related performance matrix can be obtained with different tools on Linux system.

21

Realization Stack: Migration File Synchronization

In our study, the following tools will be used:

• CPU: time -p <pid>

• Memory: cat /proc/<PID>/statm

• Network: nethogs

• Storage: du -sh <file>

With these tools, we can obtain the information related to the interested
performance matrix, listed at following:

• User mode CPU seconds: Total number of CPU-seconds directly used by
the process (in user mode), in seconds.

• Kernel model CPU seconds: Total number of CPU-seconds used by the
system on behalf of the process (in kernel mode), in seconds.

• Elapsed real time: Elapsed real (wall clock) time used by the process, in
[hours:]minutes: seconds.

• Percentage of the CPU: Percentage of the CPU that this job got, equal to
(CPU user time+ CPU kernel times)/ CPU elapsed time, in percentage.

• Maximum resident set size:The peak resident set size (Peak RSS or Max
RSS) refers to the peak amount of memory a process has had up to that point,
in bytes.

• File size: The total size of the synchronized file,in bytes.

• Transmitted data size: Transmitted data size, in bytes.

To ensure the common baseline for the test and comparison of the target tools,
the experiments in this chapter are done on a bare machine with the following
settings:

• OS: Ubuntu 20.04

• CPU: Intel® Core™ i7-7700HQ CP @2.8GHz

• Memory: 16GiB DDR4 System Memory

• Network: Intel® Dual Band Wireless-AC 8265 (WiFi 5)

• Storage: Samsung MZVLW512HMJP (512GB SSD)

22

Realization Stack: Migration File Synchronization

4.2 Deduplication performances
4.2.1 Rsync Deduplication
In order to simplify the setting of the test environment and avoid intra-machine
synchronization optimization, the deduplication performance test of rsync is done
with two containers running on the same host as Figure 4.1 shows. In container 1,
a file of random bytes will be generated/modified by a python script, and Rsync
will be used to sync the file to container 2. The synchronization log printed by
rsync (includes the sent/received bytes and transmission speed) will be collected
into a log file for further analysis.

Figure 4.1: Rsync deduplication test topology

Basic deduplication behavior test
As mentioned in Section 3.3.1, rsync synchronizes the files using the delta-transfer

algorithm, which transfers the file in blocks of a specific size. However, how will
rsync behavior when the change of the file is less than one block size is not clear in
the documentation. In order to understand the exact behavior of rsync, a test is
done with the procedure as Listing 4.1 shows. The synchronization block size of
rsync is set to 1024 bytes. In each iteration, 128 random bytes are added to the
end of the file and synchronized to remote with rsync. The sent and received data
amount can be obtained from the log of rsync on the master host (container 1 in
Figure 4.1). To be noticed, the data compression option during transmission is
turned off.

23

Realization Stack: Migration File Synchronization

Listing 4.1: Rsync test algorithm (fixed block size and data increase rate)
1 SET del ta −t r a n s f e r b lock s i z e to 1024 bytes
2 FOR i IN RANGE [1 ,N] :
3 Open the e x i s t i n g f i l e
4 Add 128 random bytes to the end o f the f i l e
5 Save and c l o s e the f i l e
6 Use rsync to synchron ize to remote
7 Sleep 1 second

Figure 4.2: Rsync basic deduplication behavior test result

The test result is as Figure 4.2 shows. The x-axis is the total size of the file to
be synchronized. The raised trend of the sent data amount is because when the
size of the changed file is less than the block size of the delta-transfer algorithm,
rsync will synchronize all the data in that changed block. When the total changed
size of the file is larger than a block size (1024 bytes in this test), the sent data
amount in that iteration decreases, and the received data amount increases a step.
This phenomenon is because this additional block is full and unchanged in the
future synchronization, so rsync only checks the block’s checksum and no longer
re-transmits it.

24

Realization Stack: Migration File Synchronization

Deduplication performance with different block size
With the basic deduplication behavior test of rsync, it is clear that rsync can not

deduplicate the old data when the size of old data is smaller than one synchronization
block. So the setting of block size is crucial to the synchronization performance.
In order to understand the effect of block size, a test as Listing 4.2 is performed.
In the test, the data increase rate is fixed to 5120 bytes per iteration. The size of
the synchronization block varies from 128 bytes to 6400 bytes, with the step of 128
bytes in each iteration. The sent and received data amounts are obtained from the
log of rsync on the master host (container 1 in Figure 4.1). To be noticed, the data
compression option during transmission is also turned off.

Listing 4.2: Rsync block size test algorithm (fixed data increase rate)
1 FOR i IN RANGE[1 ,N] :
2 Open the e x i s t i n g f i l e
3 Add 5120 random bytes to the end o f the f i l e
4 Save and c l o s e the f i l e
5 SET del ta −t r a n s f e r b lock s i z e to (128∗ i) bytes
6 Use rsync to synchron ize to remote
7 Sleep 1 second

Figure 4.3: Rsync deduplication behavior under different block size

25

Realization Stack: Migration File Synchronization

The test result is as Figure 4.3 shows. When the block size of the delta-transfer
algorithm is less than 1024 bytes, the sent data size in each synchronization is more
or less close to the increased data size (5120 bytes). It gives efficient synchronization
in the aspect of the sent data amount. However, the received data size increases
rapidly in this phase because the small block size leads to more checksum data
being sent from the remote to perform the deduplication check as the total size of
the file increases by iteration. When the block size is larger than 1024 bytes, the
synchronized data in the final block is difficult to be completely filled. In this case,
the data in the last block is synchronized again in the next iteration, leading to
the increase in the sent data. However, due to the large block size, even though
the total file accumulates in each iteration, the received data size increases slowly
in this phase. However, comparing the scale of sent and received data size, the
smaller block size provides a better overall synchronization performance.

Deduplication performance with slight change at the beginning of file
In the previous test, a specific amount of random bytes were added to the

end of the file and synchronized to remote in each iteration. In this kind of test
scenario, the deduplication performance of rsync is very well. It is interesting to
ask whether the deduplication algorithm works when the random bytes are added
to the beginning of the file. To answer this question, a test is done as Listing 4.3
shows. In the test, the block size is set to 128 bytes. The file to be synchronized is
initiated with 1024 random bytes and synchronized to the remote. In each iteration,
a random byte is added to the beginning of the file.

Listing 4.3: Rsync test algorithm (extreme slight change)
1 SET del ta −t r a n s f e r b lock s i z e to 128 bytes
2 I n i t i a t e the f i l e with 1024 random bytes
3 Synchronize the f i l e to remote with rsync
4 FOR i IN RANGE[1 ,N] :
5 Open the e x i s t i n g f i l e
6 Add 1 random byte to the beg inning o f the f i l e
7 Save and c l o s e the f i l e
8 Synchronize the f i l e to remote with rsync
9 Sleep 1 second

The test result is as Figure 4.4 shows. When only 1 byte is added to the
beginning of the file, the sent data amount observed by rsync is only 136 bytes,
which is much less than the original file size. This phenomenon proves that the
deduplication algorithm works well even if an extremely slight change happens at
the beginning of the file. However, compared to the change of the file, the overhead
to perform the synchronization is much larger. It leads to the conclusion that the
synchronization cost is considerable when there is only a slight change in the file.

26

Realization Stack: Migration File Synchronization

Figure 4.4: Rsync deduplication behavior with small random bytes added to the
beginning of file

Deduplication performance with random modification in file
In the container migration scenario, it is more common to face the condition that

there has a "replacement" of content in parts of the file to be synchronized (especially
the memory content of the checkpoint image of the container). In order to analyze
the deduplication performance of rsync under this condition, a simulation test is
done. In the test, a file of 1024 random bytes is generated and synchronized to the
remote. Then, traverse the local file. Each byte has a probability of 0.5% to be
replaced with another random byte. After the modification, the file is synchronized
to remote with different block size settings. The result is as Table 4.1 shows. When
the size of the synchronization block is smaller, it is more possible for rsync to find
complete unchanged blocks and deduplicate them in the second synchronization.
When the block size is larger than 256 bytes, the content in each block has some
slight changes, so the deduplication algorithm does not work. However, when the
block size is smaller, more checksum data need to be sent to the origin, which leads
to a larger amount of received data in the second synchronization. In order to
improve the synchronization efficiency of rsync in this kind of scenario, the block
size setting needs to consider the distribution of the "replaced" content in the file.
Only a "matched" block size can make the deduplication algorithm works well.

27

Realization Stack: Migration File Synchronization

Table 4.1: Random modification synchronization test result

Block size [bytes] 32 64 128 256 512
1st sync sent [bytes] 1122 1122 1122 1122 1122
1st sync recv [bytes] 35 35 35 35 35
2nd sync sent (max) [bytes] 400 530 880 1122 1122
2nd sync recv (max) [bytes] 280 135 85 60 50

4.2.2 Borg Deduplication
As mentioned in Section 3.3.2, borg deduplicates the backup file by compar-
ing the file chunks. So, to test and obtain the optimal deduplication perfor-
mance of borg, the key is to configure the chunking algorithm properly. Ac-
cording to the borg documentation, each file chunk’s size is not a constant
value. Borg chunker cuts the target files into chunks according to the Buzhash
algorithm, which is a rolling hash algorithm. The chunker produces a chunk
in the size of 2HASH_MASK_BITS bytes every time the last HASH_MASK_BITS
bits of the hash are zero. In order to adjust the chunking behavior, borg pro-
vides an option "–chunker-params=CHUNK_MIN_EXP, CHUNK_MAX_EXP,
HASH_MASK_BITS, HASH_WINDOW_SIZE" to set the chunking parameters,
with the meaning listed as following:

• CHUNK_MIN_EXP: minimum chunk size, default equal to 19 (219 bytes).

• CHUNK_MAX_EXP: maximum chunk size, default equal to 23 (223 bytes).

• HASH_MASK_BITS: target chunk size, default equal to 21 (221 bytes).

• HASH_WINDOW_SIZE: default 4095 bytes.

According to the borg documentation, when the chunker parameter setting is
configured to "–chunker-params=10,23,16,4095", the chunker creates a large number
of file chunks and costs more resources. However, it results in a fine-grained
deduplication performance. So in the following test, this setting is adopted as the
basic test configuration.

The test topology of borg is as Figure 4.5. The tested file will be backed up
to a local repository by borg. Since the remote repository of borg is implemented
with SSHFS, which is different from the file synchronization concept we study, the
remote repository of borg will not be detailly studied in this thesis (more details
will be discussed in Section 4.3.4). In each test, a file containing 1MB or random
bytes will be generated and backed up to the archive. Considering the realization
of borg’s deduplication function, the following five test scenarios are designed to
validate the deduplication performance:

28

Realization Stack: Migration File Synchronization

• Test 1: Add 1024 random bytes to the end of the file.

• Test 2: Add 1024 random bytes to the beginning of the file.

• Test 3: Replace the first 1024 bytes of the file with different random bytes.

• Test 4: Randomly replace bytes in the file with a probability of 0.5

• Test 5: Replace the first 1024 bytes of the file with different random bytes
and modify the name of the file.

Figure 4.5: Borg deduplication test topology

The test result is as Table 4.2 shows. Comparing the file and backup archive
size in tests 1-3, we can conclude that the deduplication algorithm of borg works
very well when only a small continuous portion of the file is changed. The result
in test 4 shows that when the change of the file is distributed to the entire file,
even if only a small amount of data is changed, the deduplication algorithm of
borg is completely failed. It shows that the deduplication algorithm of borg is not
very robust to every scenario. However, the result of test 5 shows the strength of
borg that other synchronization tools do not have: perform deduplication among
different files. Comparing the number of archive file chunks in each test, it is easy
to find out that the deduplication performance of borg strongly correlates to the

29

Realization Stack: Migration File Synchronization

Test 1 Test 2 Test 3 Test 4 Test 5
Original file size [KB] 1024 1024 1024 1024 1024
Modified file size [KB] 1025 1025 1024 1024 1024
1st archive size [MB] 1.05 1.05 1.05 1.05 1.05
2nd archive size [MB] 1.05 1.05 1.05 1.05 1.05
Total archive size [MB] 1.06 1.15 1.13 2.11 1.15
File duplication rate 99.90% 99.90% 99.90% 99.95% 99.90%
Archive deduplication rate 99.05% 90.48% 92.38% N/A 90.47%
of chunks in 1st archive 17 13 14 14 23
of chunks in 2nd archive 17 13 14 22 23
of resued chunks 14 10 11 0 20

Table 4.2: Borg deduplication test result

number of reused chunks. Due to the special algorithm borg adopted to generate
the file chunk, even though the original file size in each test is the same, the number
of generated archive chunks is different. In conclusion, the dynamic of archive
chunks generation of borg does bring more security to the file storage but also
brings more challenges in the performance of file deduplication.

4.3 System related performance
In order to test the system resource usage performance of the file synchronization
tools under different conditions, the following performance matrix will be collected
from the following test scenarios:

• original: Sync/backup the original file to the remote machine/repository,
original file size is 100 MB.

• add begin: When remote machine/repository already has the original file, add
1024 bytes to the beginning of the local file and then sync/backup to remote
machine/repository

• add begin 1: When remote machine/repository already has the original file,
add only 1 byte to the beginning of the local file and then sync/backup to
remote machine/repository (extreme condition)

• add end: When remote/repository already has the original file, add 1024 bytes
to the end of the local file and sync/backup to remote/repository

• modify begin: When remote/repository already has the original file, modify

30

Realization Stack: Migration File Synchronization

1024 bytes at the beginning of the local file and sync/backup to remote/repos-
itory

For the file synchronization tools rsync and borg, the block/trunk size setting
significantly affect the synchronization performance. In order to make them work
under a similar baseline, the following settings are adapted to the corresponding
tools:

• Borg chunker size: –chunker-params=10,23,16,4095

• Rsync block size: -B 1024

4.3.1 CPU Cost Measurement
The result of CPU cost measurement is as Figure 4.6 shows. In general points of
view, borg consumes more CPU resources than rsync. In Fig.4.6a, it is interesting
to point out that the CPU usage of rsync is very high in synchronizing the original
file. However, the elapsed time in this procedure is much shorter than in other
scenarios. In order to make this behavior easier to understand, we also plotted the
value of the CPU usage multiplies by the elapsed time. This value equals the user
mode CPU time plus the kernel mode CPU time. The value in the "origin" scenario
returns to a similar level as other test cases. Among all the test scenarios, the
"modify begin" scenario has the highest elapsed time, meaning it takes the longest
time to complete the synchronization task. The reason is that the modification at
the beginning of the file will take rsync more time to perform the rolling checksum
(for the delta-transfer algorithm) and to send out the modified file blocks.

For the measurement result of borg (as Figure 4.6b show), the value of CPU
usage times elapsed time for all cases is basically the same. However, the elapsed
time in the "original" scenario is longer than other cases. The main reason is related
to the creation of the initial archive and managing all the archive chunks (no exit
chunks in this case).

31

Realization Stack: Migration File Synchronization

(a) Rsync

(b) Borg

Figure 4.6: File synchronization tools CPU usage usage measurement

32

Realization Stack: Migration File Synchronization

4.3.2 Memory Cost Measurement
The result of memory cost measurement is as Figure 4.7 shows. In conclusion, borg
uses more memory (around 10 times) than rsync during the backup/sync procedure.
And during the synchronization/backup procedure, the way to change the file has
no significant effect on the memory usage of the tools.

Figure 4.7: Memory usage test result (borg and rsync)

4.3.3 Storage Cost Measurement
The result of storage cost measurement is as Figure 4.8 shows. In the "original"
scenario, rsync synchronize the file to the remote. In this case, the synchronized
file’s size is exactly the same size as the original local file. In the case of the borg,
it splits the files into chunks and stores them in the local repository. There are
some overheads in the backup due to the chunking, so archive size is a little larger
than the actual size of the file. In the rest test scenarios, the synchronized files
by rsync are all in the same size of the original file. However, for borg, the size of
archives in these cases is much smaller than the original file. The reason is that
the archive of the original file is already in the repository. Borg only backup the
modified chunks of the file. Since the modification is relatively small, the size of

33

Realization Stack: Migration File Synchronization

new stored chunks is also very small.

Figure 4.8: Storage usage test result (borg and rsync)

4.3.4 Network Cost Measurement
The result of network cost measurement of rsync is as Figure 4.8 shows. In
the "original" scenario, no file exists on the remote destination. When rsync
synchronizes the local file to the remote, it behaves as directly sending a file to the
remote without applying the delta-transfer algorithm. So, in this case, the received
data measured by rsync is close to zero (10−5 MB level). However, the received
data measured by the externel tool "nethogs" is much larger. The reason for this
phenomenon is that rsync only measures the user data it actually transmits. Instead,
nethogs as an external tool, measures all the data rsync communicates with the
remote host, including other necessary network overheads (e.g., packet header, ssh
establishment packets). In other test scenarios, we can see that the communication
overhead is relatively small compared to the actual payload. Furthermore, the
smaller transmitted data amount in these cases again proves that the delta-transfer
algorithm does help rsync reduce a huge amount of network traffic, significantly
increasing the synchronization efficiency.

34

Realization Stack: Migration File Synchronization

On the other hand, the network cost of borg is not discussed in this thesis. As
Figure 4.5 shows, the backup repository of borg is located on the local host in
this test. Borg does provide the option to make borg synchronize the backup to
the remote. However, borg implements this function with an SSHFS, which is a
network file system based on SSH File Transfer Protocol (SFTP). In this kind of
implementation, the file is directly stored in the remote file system without a local
replica. Since the behavior is quite different from the "synchronization" concept we
discuss here, this thesis does not study the network property of borg.

Figure 4.9: Rsync network usage test result

4.4 Synchronization Tool For Container Migra-
tion

With the study of rsync and borg in this chapter, the deduplication behavior and
file synchronization performance of these two tools are clear to us. Considering the
usage of them in the container migration scenario, rsync is more suitable for this
use case than borg. The reasons for this conclusion are listed in the following:

• More robust to random changes: In the container migration scenario,

35

Realization Stack: Migration File Synchronization

the major component in the checkpoint image is the application’s memory.
In the general case, the changes in the memory page are random. According
to the previous test, the deduplication algorithm of rsync can perform better
than borg when proper block size is configured.

• Less consumption on system resources: In edge computing scenario, the
system resources are valuable and limited. According to the previous test,
rsync consumes fewer resources than borg in the sense of CPU and Memory.

• Simpler architecture: From the usage point of view, rsync is simpler than
borg. With rsync, synchronization can be easily performed by specifying the
location of the synchronization source and destination. But borg needs to
create a specific repository for the backup.

36

Chapter 5

Realization Stack: Stateful
Container Migration

The stateful container migration targets at moving a container together with its
internal working states (including container’s states and application states) from
one host machine to another. The most noteworthy advantage of this technique
is that the migrated container can restore to the working state before migration
on the new host and avoid the long warmup time. In order to perform stateful
container migration, there are three main basic steps:

1. Freeze a running container and checkpoint its states to disk.

2. Move the checkpoint image to the destination host.

3. Restore the container from the checkpoint image.

To freeze and checkpoint a container, one of the most powerful tools is CRIU
(Checkpoint/Restore In Userspace). As mentioned in Section 3.2, it supports
most of the migration methods. Among the most popular container engines,
Podman container has the best integration with CRIU. So the container migration
experiments in this thesis will be done with Podman and CRIU. However, the
Podman container has not yet integrated the post-copy migration method in CRIU
so the study will focus on cold and pre-copy container migration.

5.1 Stateful Local Application
A stateful application is the one that performs with the context of previous
transactions, and the current transaction may be affected by what happened during
previous transactions. The simplest stateful application is a simple counter, as
Listing 5.1 shows.

37

Realization Stack: Stateful Container Migration

Listing 5.1: Simplest stateful application: counter
1 #inc lude <s t d i o . h>
2 #inc lude <uni s td . h>
3 i n t main () {
4 long long n = 0 ;
5 whi le (1) {
6 p r i n t f ("%l l d \n " , ++n) ;
7 s l e e p (1) ;
8 }
9 re turn 0 ;

10 }

However, the simple counter can not represent the common property of stateful
applications. In order to better study the migration behavior, a stateful application
simulator is designed as Figure 5.1 shows. The application’s states can be catego-
rized into memory state and non-memory state. The non-memory state includes
the CPU states, the network states, and so on. In most cases, the non-memory
state is stable and relatively small in size. The memory state is the memory the
application allocated for the specific working scenario. Typically, the memory state
is dynamic and relatively large in size.

Figure 5.1: Basic stateful application simulator

In order to quantify the dynamic of an application’s memory content, which
affects the migration performance most, the concept of dirty page rate is proposed.
The dirty page rate is defined as the number of "dirty" memory pages an application
can generate per second. In Linux operating system, the size of a memory page
by default is 4096 bytes. A memory page is considered to be "dirty" even if only
one byte of the memory page is modified. To simulate the application’s memory

38

Realization Stack: Stateful Container Migration

behavior, the simulator modifies the memory content byte by byte in each iteration.
In this thesis, the stateful application simulator is implemented in the C language.
In order to understand the behavior of an C based application, tool uftrace [27]
can be used to trace the application. The trace result is as Fiugre 5.2 shows. The
generation of a random byte to modify the memory content takes around 0.12 us.
So, in theory, the dirty page rage of the simulator is around 2034 pages per second
(when the application allocates more than 2034 pages).

Figure 5.2: Trace result of stateful application simulator

5.2 Application Dirty Page Rate Control
In Section 5.1, the stateful application simulator is implemented with the maximum
dirty page rate it can achieve. However, in the actual case, the change of the
application’s memory content will not always stay at the highest rate but statistically
converge to a mean speed. In order to better simulate the state of an application,
the previous stateful application simulator needs some modification to simulate
the behavior of specific dirty memory pages rate.

dpr = changedBytes
pageSize · elapsedTime (5.1)

dprNEW = dirtyPages
timeInterval (5.2)

39

Realization Stack: Stateful Container Migration

Figure 5.3: Stateful application simulator with controllable dirty page rate

In order to reach this target, the key is related to the definition of the dirty page
rate. In most cases, the dirty page rate is defined as the fraction of the number of
changed bytes to the memory page size and elapsed time as Equation 5.1 show.
With this definition, it is tough to precisely control the dirty page rate since it is
difficult to precisely control the number of changed bytes in the memory content
within a specific elapsed time. To solve this problem, the dirty page rate could be
re-defined as Equation 5.2 shows. The dirty page rate is defined as the fraction of
the number of dirty pages and the time interval to compare the memory content. In
the container migration scenario, a memory page is considered "dirty" even if only
one byte in the memory page is changed. Meanwhile, for a single memory page,
even if its content has changed multiple times between two checkpoint procedures,
this memory page will still be considered as a single dirty page. With these two
special properties, the stateful application simulator with controllable dirty page
rate can be implemented as Figure 5.3 shows. Between the comparing time interval,
the application simulator iterates page by page among a specific set of memory
pages. And in each iteration, only one byte in the memory page is modified. After
changing one byte in a memory page, the application checks whether the comparing
time interval is exceeded or not. Since the execution time to change one byte
in a memory page is very short, the checking of the time interval is very precise
and sensitive. When the comparing time interval exceeds, the iteration moves to
the next set of memory pages. When the external tools (e.g., CRIU) measures
the number of dirty page of the application with a period as the comparing time
interval, the calculated dirty page rate will be stable and precise as we desire. In
theory, if we assume it takes 0.12us to change one byte in the memory content, the
maximum controllable dirty page rate could reach 8.3 ∗ 106 pages per second (only

40

Realization Stack: Stateful Container Migration

if the application allocates more than 8.3 ∗ 106 memory pages).
In order to validate the controllable dirty page rate simulator design, a test is

done with the new simulator and obtains the result as Figure 5.3 shows. In this
test, the new implementation of the simulator is containerized. It allocates 100MB
of memory at the initialization phase. As Figure 5.4b shows, in the pre-dump
procedure, Podman dumped 24442 memory pages. When the target dirty page
rate is set to 30 pages/s, 33 dirty memory pages are obtained after 1 second as
Figure 5.4b shows. And 1003 and 5004 dirty pages are obtained when the target
dirty page rates are set to 1000 pages/s and 5000 pages/s. The additional dirty
pages might be generated by the non-controllable memory content of the application
simulator (e.g., memory used by the timer). When the target dirty page rate is
large enough, the effect of the non-controllable memory becomes negligible.

(a) Podman pre-dump log (b) Podman dump log (target dpr=30)

(c) Podman dump log (target dpr=1000) (d) Podman dump log (target dpr=5000)

Figure 5.4: Controllable stateful application simulator container checkpoint test

5.3 Applications Containerization
The containerization of the application means running the application inside a
container. And the container is created and managed by the container engine.
Since performing container migration requires the container engine to have a good
integration of CRIU, Podman is selected as the container engine. The container
engine creates a container from the container image. Due to the migration of the
Podman container does not yet support the migration of the container’s file system,
the application’s executable should be pre-built into the container image. Moreover,

41

Realization Stack: Stateful Container Migration

the container image should be synchronized to the target host machine before the
container migration. In this section, the stateful application simulator introduced
in Section 5.1 is selected as the application to be containerized. There are two
ways to build the application executable into a container image: from scratch and
from a base image. The instructions for Podman to build a container image could
be written in "Container file" or "Dockerfile" format.

Table 5.1: Application container image size

scratch ubuntu alpine busybox
Base image size 0 75.2MB 5.87MB 1.46MB
App library shared shared static static
App size 20KB 20KB 872KB 872KB
Container image size 4.07MB 75.2MB 6.77MB 2.37MB

As Table 5.1 shows, when the container image is built from scratch or from
base image ubuntu, the applications can be compiled with dynamic linking to the
shared library. In this condition, the size of the stateful application simulator is
very small. However, when building the container image from scratch, the shared
libraries and other tools to support the running of the application are copied
into the container image, which makes the final container image size much larger.
The container image built from the ubuntu base image has a very similar size
to the base image. However, the base image itself is very large. So ubuntu base
image is not the optimal method to create the container image. Because of the
minimization property of base image alpine and busybox, the application should be
statically compiled with the used libraries. In this case, the size of the application’s
executable becomes much larger. However, since the base image of the busybox is
very small, the final container image is small enough and suitable for the migration
scenario.

5.4 Process migration with CRIU
The study of this thesis aims at statefully migrating a containerized application.
As introduced in Section 3.2, the nature of container migration with CRIU is the
migration of a tree of processes. So, the first experiment is to validate the process
migration with CRIU is stateful or not. The simplest stateful application, a counter
as Listing 5.1 shows, is selected as the process to be migrated. The migration
topology is as Figure 5.5 shows.

The migration procedure and result are as Figure 5.6 shows. The first step is to
run a process of a counter on VM 1 and obtain its PID (Step 2 in Figure 5.6a).

42

Realization Stack: Stateful Container Migration

Figure 5.5: Process migration test topology

Then, the process can be checkpointed with CRIU (Step 3 in Figure 5.6a). Since
the process can only be checkpointed under the root permission, the owner of the
checkpoint images should be changed to a normal user (Step 4 in Figure 5.6a) in
order to allow rsync to synchronize them to the remote (Step 5 in Figure 5.6a).
Once the checkpoint image is synchronized to the remote VM, CRIU can restore
the process from the checkpoint image. As Figure 5.6b shows, the restored counter
starts counting from where it was checkpointed. In conclusion, the process migration
with CRIU is stateful.

5.5 Container Migration Procedure
There are two methods to migrate a container with CRIU. The first way is to
checkpoint and restore the container from external. In this method, CRIU considers
the container as a tree of processes and directly checkpoints this process tree. In
this case, the migration procedure will be the same as the process of migration
introduced in Section 5.4. However, since the containers are running inside a
complex system (including the container runtime, container engine, and so on),
checkpointing the container from external might lead to some errors or unexpected
behavior. One of the most common errors is that the restored container is out
of the control of the container engine. So, in real practice, people prefer the
"internal" method, which checkpoints and restores the container from the container
engine. With this method, the container engine calls CRIU to perform the container
checkpoint and restore procedure. So the container engine is aware of the migration
of containers and adopts necessary management operations. Compared to the
external method, the internal method is simpler and safer. However, the internal

43

Realization Stack: Stateful Container Migration

(a) Checkpoint a process with CRIU on VM 1

(b) Restore process with CRIU on VM 2

Figure 5.6: Process migration with CRIU

method needs the support from the container engine. Among the popular container
engines, we found that Podman has the best integration whit CRIU. So Podman is
selected as the container engine in this study. But even in this case, Podman only
supports cold and pre-copy migration.

Due to the limited support for the migration method of the Podman container
engine, the following study will only focus on cold and pre-copy migration. The
experiment topology is as Figure 5.7 shows. There are 2 VMs running on the host
machine with the following setting:

• OS: Ubuntu 20.04

44

Realization Stack: Stateful Container Migration

• Linux kernel: 5.15.0-46-generic

• CPU: Intel® Core™ i7-7700HQ CP @2.8GHz

• Memory: 16GiB DDR4 System Memory

• Network: Intel® Dual Band Wireless-AC 8265 (WiFi 5)

• Storage: TOSHIBA (1TB HDD)

The configuration of each VM is as follows:

• OS: Ubuntu 20.04

• Linux Kernel: 5.8.18-050818-generic

• CPU: 2 virtual CPU cores @2.0GHz

• Memory: 4GiB DDR4 System Memory

• Network: Bridged network

• Storage: VirtIO Disk (50GB HDD)

Podman in version 4.2.0-dev and CRIU in version 3.17 are installed in each VM.
The experiment aims to validate the stateful migration of containerized applications
and compare the migration performance of cold and pre-copy migration methods.

Figure 5.7: Podman container migration topology

45

Realization Stack: Stateful Container Migration

5.5.1 Cold Migration
In this experiment, a simple counter as introduced in Section 5.1, is containerized
and migrated using the cold migration method. The migration procedure is as
Listing 5.2 shows. First, run a container with the counter on VM 1. Then checkpoint
the container using Podman’s container checkpoint operation. In the middle loop,
the Ubuntu command taskset is used to limit the checkpoint process to use only
one CPU core. And in the outer loop, the Ubuntu tool time is used to measure the
CPU usage of the checkpoint procedure. Since the Podman container checkpoint
function is working under the root user, the ownership of the generated checkpoint
image should be changed to the normal user to simply the synchronization process.
Then, the checkpoint image is synchronized to VM 2 using rsync. On VM 2, we
can restore the container using Podman’s container restore command. After the
restoration, we can enter the container to see the working status of the counter.

Listing 5.2: Podman container cold migration procedure
1 # On VM 1 −− Checkpoint
2 > sudo podman run \
3 −−runtime / usr / bin / runc
4 − i t −−rm −−name=counter counter
5 > time t a s k s e t −c 1 podman conta ine r checkpo int \
6 −−runtime / usr / bin / runc
7 −c none # No compress ion
8 −e counter . ta r . gz \ # Export checkpo int l o c a t i o n
9 −−pr int −s t a t s \ # Print s t a t i s t i c s measured by Podman

10 counter # Target conta ine r to be checkpo int
11 > chown <user_name> counter . ta r . gz
12 > rsync −acv ./∗ <user@dst_ip >:~/ checkpo int s /
13

14 # On VM2 −− Restore
15 > time t a s k s e t −c 1 podman conta ine r r e s t o r e \
16 −−runtime / usr / bin / runc
17 − i counter . ta r . gz \
18 −−pr int −s t a t s
19 > podman attach counter # Enter the r e s t o r e d conta ine r

The actual migration test procedure and the result are shown in Figure 5.8. The
container on VM 1 is checkpointed when the counter counts to number 5. The
checkpoint duration measured by Podman is around 0.5 seconds. The external
tool time measures the checkpoint procedure lasts for 0.694 seconds, which is
longer than Podman’s measurement. The reason for this difference is that the
measurement of time starts from the checkpoint command executed, which includes
some warmup time for the actual checkpointing procedure. After the container
restoration on VM2 is finished, we immediately enter the container and find out
the counting is from number 7, meaning the container migration is stateful. (The

46

Realization Stack: Stateful Container Migration

missing of number 6 is due to the manual re-entering of the container is too slow.)

(a) Container checkpoint procedure on VM 1

(b) container restore procedure on VM 2

Figure 5.8: Cold migration with Podman container

47

Realization Stack: Stateful Container Migration

5.5.2 Pre-Copy Migration
In this experiment, a simple counter as Section 5.1 introduced is containerized and
migrated using the pre-copy migration method. The migration procedure is as
Listing 5.3 shows.

Listing 5.3: Podman container cold migration procedure
1 ## On VM 1 −− Checkpoint
2 > sudo podman run \
3 −−runtime / usr / bin / runc
4 − i t −−rm −−name=counter counter
5 # Pre−checkpo int conta ine r
6 > time t a s k s e t −c 1 podman conta ine r checkpo int \
7 −−runtime / usr / bin / runc \
8 −−pre−checkpo int \
9 −c none \

10 −e counter_pre . ta r . gz \
11 −−pr int −s t a t s \
12 counter
13 > chown <user_name> counter_pre . ta r . gz
14 > rsync −acv ./∗ <user@dst_ip >:~/ checkpo int s /
15

16 # Checkpoint conta ine r based on pre−checkpo int
17 > time t a s k s e t −c 1 podman conta ine r checkpo int \
18 −−runtime / usr / bin / runc \
19 −−with−prev ious \
20 −c none \
21 −e counter_dump . ta r . gz \
22 −−pr int −s t a t s \
23 counter
24 > chown <user_name> counter_dump . ta r . gz
25 > rsync −acv ./∗ <user@dst_ip >:~/ checkpo int s /
26

27 ## On VM2 −− Restore
28 > sudo podman conta ine r r e s t o r e \
29 −−runtime / usr / bin / runc \
30 −−import . / counter_dump . ta r . gz \
31 −−import−prev ious . / counter_pre . ta r . gz \
32 −−pr int −s t a t s
33 > podman attach counter # Enter the r e s t o r e d conta ine r

In pre-copy migration, the first checkpoint needs to use the option –pre-checkpoint
in the Podman command. With this option, Podman only checkpoints the mem-
ory used by the container and leaves the container running after the checkpoint
procedure is finished. After the first checkpoint image is synchronized, we need to
checkpoint the container again with –with-previous option. In this case, Podman
looks up the previous checkpoint and compares it to find the changed memory
pages (dirty memory pages). In this checkpoint, Podman only checkpoint the dirty

48

Realization Stack: Stateful Container Migration

memory and the rest stats of the container. In the restoration procedure, we need
to identify the location of the first and second checkpoint images. In this case,
Podman will combine the two checkpoints and restore the container to the last
checkpoint state.

(a) Container checkpoint procedure on VM 1

(b) container restore procedure on VM 2

Figure 5.9: Pro-copy migration with Podman container

49

Realization Stack: Stateful Container Migration

The test result is as Figure 5.9 shows. The first checkpoint procedure is done
when the counter inside the container counts to number 5. And the second
checkpoint procedure is done when the counter counts to number 9. After the
container is restored on VM2, we enter the container immediately and see the
container is counting form number 11, which also means the pre-copy migration is
statful, and the container is restored to the last checkpoint state. (The missing of
number 10 is due to the manual re-entering of the container is too slow.)

5.5.3 Comparison of cold and pre-copy migration

In this section, the performance of cold and pre-copy migration with the Podman
container engine is discussed. As Section 2.2.2 introduced, the major difference
between these two techniques is how they migrate the memory state. The im-
plementation of Podman follows the same concept. As Figure 5.8a shows, the
checkpoint image of cold migration includes all the container states. For the pre-
copy migration, as Figure 5.10b shows, the first checkpoint image only contains the
memory pages used by the container. At the second checkpoint, Podman dumps
the dirty pages, and the rest of the container states.

(a) Cold migration checkpoint

(b) Pre-copy migration checkpoint

Figure 5.10: Checkpoint image content comparison

50

Realization Stack: Stateful Container Migration

For a stateful application, most of its stat is the memory content. So the
pre-copy migration seems to be able to remove one of the major components in
the migration downtime: the checkpoint image transmission time. However, the
efficiency of these two techniques needs a deeper study. So, a simple migration
performance test is done to study the size of the checkpoint image and the CPU
usage during checkpointing. The stateful application simulator with controllable
dirty page rate mentioned in Section 5.2 is used in this test. The target dirty page
rate of the application simulator is set to 100 pages/s. For the pre-copy migration,
the second checkpoint is done 1 second after the first checkpoint is finished. So, in
theory, there should be around 0.49 MB of dirty memory to be transmitted at the
second checkpoint. The performance test result is as Figure 5.11 to Figure 5.13
show.

Figure 5.11: Checkpoint image size comparison

Checkpoint image size comparison The checkpoint image size test result is
as Figure 5.11 shows. When the application’s memory usage is small, the second
checkpoint image size in pre-copy migration is close to the theoretical value (0.4
MB). However, the summation of the size of the first (pre-dump) and second
(dump) checkpoint images in the pre-copy migration method are higher than the
checkpoint image of cold migration. Since the small checkpoint image can be
quickly transmitted in a normal speed network, the pre-copy migration could be

51

Realization Stack: Stateful Container Migration

considered to have a lower overall efficiency in this case. When the application’s
memory usage is large, we can notice that the second checkpoint image size in
pre-copy migration is increasing. The main reason for this phenomenon is that
when the application’s memory usage is large, the first checkpoint image size will
also be large. It takes a long time to write the first checkpoint to the disk and
transmits it to the remote. The frozen application is released at some point before
the first checkpoint image is completely stored and transmitted, which leads to more
dirty pages to be transmitted at the second checkpoint. However, even in this case,
the size of the second checkpoint image is much smaller than the cold migration
checkpoint image. At this moment, the overhead of the pre-copy migration becomes
negligible. The efficiency of checkpoint image synchronization becomes very high in
pre-copy migration when the target application allocates a huge amount of memory.

CPU usage comparison in container checkpoint phase The CPU usage
during the checkpoint procedure is as Figure 5.12 shows. For both cold migration
and pre-copy migration, the overall CPU usage is very low and decreases as the
application’s memory usage increases. The main reason is that the major operation
in the checkpoint procedure is the copy operation which requires little CPU resource.
Meanwhile, it is because the elapsed time of the procedure is very large and increases
significantly. In fact, the CPU time for the entire checkpoint procedure increases
when the application’s memory usage increases, as the line "usage*elapsed" in the
figure shows. From the total CPU time usage (pre-dump + dump for pre-copy
migration) point of view, the pre-copy method uses more or less similar CPU time
to cold migration. However, when the application’s memory usage is large, the
elapsed time and CPU time (kernel+user) in the second checkpoint are much less
than the one in cold migration. Such kind of behavior can significantly reduce the
migration downtime due to the checkpoint procedure.

CPU usage comparison in container restore phase The CPU usage during
the checkpoint procedure is as Figure 5.13 shows. The CPU usage in the container
restore phase behaves similarly to the checkpoint phase. To be noticed, the overall
CPU time and the elapsed time of cold and pre-copy migration are very similar.
It means that merging two checkpoint images of the pre-copy migration requires
little CPU resources and does not affect much on the overall performance.

52

Realization Stack: Stateful Container Migration

(a) Cold migration checkpoint CPU usage

(b) Pre-copy pre-dump CPU usage

(c) Pre-copy dump CPU usage

Figure 5.12: CPU usage comparison in checkpoint procedure

53

Realization Stack: Stateful Container Migration

(a) Cold migration

(b) Pre-copy migration

Figure 5.13: container restore CPU usage comparison

54

Chapter 6

Realization Stack: Overlay
Network

In recent works related to container migration (e.g., [14]), the research majorly
only focuses on reducing migration downtime. The container’s networking problem
during the migration usually is not discussed. In some cases, the networking
problem is simply considered to be managed by the orchestrator but without
introducing any implementation details. However, in the scenario of containerized
mobile services migration, the networking problem is not avoidable since mobile
services usually have the capability to communicate with external mobile clients.
The network management problem becomes even more crucial when containerized
services have "always connected" connections. In such kinds of migration scenarios,
the requirement of network management during migration could be summarized
into the following two aspects:

• After service container migration, the external clients should be able to restore
the connection to the migrated service without any additional operation.

• After service container migration, the connection should restore as fast as
possible.

6.1 Stateful edge application
As introduced in Section 5.1, for a local application, the major and dynamic part
of its states are related to the application’s memory content, which contributes
to the majority part of the checkpoint image. The other states (e.g., process
credentials, pipes information, and socket state) are relatively less in size and
typically static. However, in edge applications, the socket state becomes one of the
most important states and contributes a significant part to the checkpoint image.

55

Realization Stack: Overlay Network

Since the TCP protocol is commonly adopted as the communication protocol in
edge applications today, the study of container’s network migration in this thesis
will focus on migrating TCP connections.

To perform the study, the MQTT broker is selected as the edge service to be
migrated. MQTT is one of the most well-known and popular application layer
publish-subscribe protocols based on TCP. It is commonly adopted as the standard
communication protocol in IoT and edge applications. The protocol defines two
types of network entities: client and broker. According to the MQTT clients’
behavior, the clients can be divided into publishers and subscribers. As Figure 6.1
shows, clients will register their interested topic and other information in the
broker’s registration table. The communication messages are identified by topics.
When a publisher sends the messages to the broker, the broker will forward the
messages to subscribers interested in the corresponding topic. When the QoS level
of the communication is set to 1 or 2, acknowledgment from the subscriber for
each message is needed in order to guarantee the reliable communication. The
messages that are sent but not yet acked are considered to be "in-flight" and stored
in the "in-flight" message queue. When the "in-flight" message queue is full, the
new coming messages will not be sent to the subscriber immediately but queued
inside the message queue for different topics. In the study of this thesis, the
registration table, message queue, and in-flight message queue of the MQTT broker
are the memory states that need to be preserved during the service migration. The
connections between the MQTT broker and corresponding clients are the network
states to be migrated.

Figure 6.1: MQTT broker states

56

Realization Stack: Overlay Network

6.2 Linux TCP connection repair
In order to realize the migration of a network connection, the first step is to explore
the mobility of the underlying protocol of the connection. In the study of this
thesis, the underlying protocol is TCP. From Linux kernel version 3.5, the TCP
socket includes a special option "TCP_REPAIR". This option is designed for CRIU
to perform active TCP connection migration in 2012 [28]. When this option is
used, the TCP socket will be switched into a special mode where any native TCP
actions performed on the socket do not result in anything. In this condition, CRIU
could dump the state of the TCP connection on the original host and restore the
connection on the new host.

Figure 6.2: TCP repair procedure

The migration procedure is shown as Figure 6.2. Assume the initial TCP
connection is in the "established" state, and the migration is performed on the

57

Realization Stack: Overlay Network

TCP server side. The first step to perform the migration is to switch the socket
on the TCP server into repair mode by an admin manager (step 1). The TCP
client will stay in the "established" state and has no idea about the changes in
the TCP server. Then, the admin manager starts to collect the information about
the connection state (step 2). The collected information includes the maximum
segment size, window size, packet sequence number, timestamps, and the content in
the send and receive queue. After collecting all the required information, the admin
manager closes the socket on the original host (step 3) and moves the collected
information to the destination host (step 4). To be noticed, when the socket is
closed during the repair mode, no "FIN" and "ACK" packets will be sent. So in the
example case, the remote will not be aware that the original TCP server is closed.

Due to the property of TCP protocol, the connection can only be migrated to
the host in the same subnet with the same IP address as the original host. To
restore the connection, the admin manager will create a new socket and put it
immediately into repair mode (step 5). Then, the collected information from the
original host will be restored to the newly created socket (step 6). Once the new
socket has been restored to an approximated state as the one on the old host, the
admin manager switches the socket to the "established" state and sends a window
probe to the remote client (step 7) in order to restart the traffic. After the remote
client receives the probe, the socket and the connection resume to normal working
states (step 8).

Since the Linux TCP repair option is specially designed for CRIU, CRIU has a
very nice integration with the network migration-related API in the Linux socket.
CRIU can act as the admin manager to realize the operation on the socket status.
It is often used to migrate processes with TCP connections among Linux machines.
However, this network migration method requires the migration destination host to
be in the same sub-net to have the same IP address as the original host. There are
more solutions to realize this requirement on bare machines. But in a containerized
environment, additional topological design is needed in order to fulfill the IP address
requirement.

6.3 Linux Namespace
As mentioned in Section 6.2, the migration of a TCP connection requires the source
and destination container have the same IP address. To fulfill this requirement,
manipulating the container’s network namespace could be the solution. A names-
pace is a feature in the Linux kernel that partitions and isolates the resources for
different processes on the host machine. It is the fundamental aspect of containers
(e.g., LXC, Docker, and Podman). Every time a container is created, the container
engine creates a set of namespaces to provide the isolation layer for it. On the

58

Realization Stack: Overlay Network

Linux system, there are eight types of namespaces:

• Cgroup: Isolates Cgroup root directory.

• IPC: Isolates system V IPC, POSIX message queues.

• Network: Isolates network devices, stacks, ports, etc.

• Mount: Isolates mount points.

• PID: Isolates process IDs.

• Time: Isolates boot and monotonic clocks.

• User: Isolates user adn group IDs.

• UTS: Isolates Hostname and NIS domain name.

For the Podman container, there are two ways to manipulate the container’s
namespaces. The first way is to create a container and then manipulate its network
namespace, as the command in Listing 6.1 shows. With the command lsns, all
the namespaces in the host system will be listed. The networking setting of the
container can be easily manipulated when the correct network namespace ID is
found.

Listing 6.1: Manipulate container’s default namespace
1 # Run a conta ine r only with l o i n t e r f a c e
2 > sudo podman run −d −−net=none a l p i n e sh \
3 −c ’ whi l e s l e e p 3600 ; do : ; done ’
4

5 # Find the network namespace o f the conta ine r
6 > l s n s
7 3022332257 net 2 9854 root sh −c whi l e s l e e p 3600 ; do : ; done
8

9 # Create v i r t u a l network i n t e r f a c e (i fA) f o r the conta ine r
10 > ip l i n k s e t netns 9854 dev i fA
11

12 # Bring up the network namespace
13 > nsente r −t 9854 −n ip l i n k s e t i fA up
14

15 # Assign a s p e c i f i c IP address f o r the c rea ted namespace
16 > nsente r −t 9854 −n IP addr add 172 . 16 . 0 . 10/12 dev i fA

However, identifying the container’s namespaces is not always easy, especially
when plenty of containers are running on the same host machine. So, the second
way is to create a customized network namespace and then bind the container to
that network namespace. The procedure is shown in Listing 6.2.

59

Realization Stack: Overlay Network

Listing 6.2: Bind a container to a customized network namespace
1 # Create and br ing up a customized network namespace "nsA" on host

machine
2 > ip netns add nsA
3 > ip l i n k s e t netns nsA nsA_if
4 > ip −n nsA addr add 172 . 16 . 0 . 10/12 dev nsA_if
5 > ip −n nsA l i n k s e t nsA_if up
6

7 # Bind a conta ine r to the customized network namespace
8 > sudo podman run −d −−network ns : / run/ netns / t e s t a l p i n e sh \
9 −c ’ whi l e s l e e p 3600 ; do : ; done

6.4 Podman container overlay network

Figure 6.3: Podman container overlay network topology

With the manipulation of a container’s network namespace, it is possible to
guarantee that the container has the same IP address after migration. However, the
networking problem of container migration is not entirely solved yet. For security
and management issues, the network of different sets of mobile applications should
be isolated from each other and the host. In container architecture, the most
common solution is using the bridge network. For most container implementations,
the bridge network is the default network mode. Containers connected to the
same network bridge are assigned IP addresses in the same subnet and are able to
communicate with each other directly. However, the network bridge is reachable
only for containers on the same machine. Due to the NAT conversion on the
network bridge, it is impossible to reach the container from other machines unless

60

Realization Stack: Overlay Network

the containers are exposed to the host through the port mapping techniques.
However, in this case, from the mobile client’s point of view, the destination of
the connection is not the container but the host server. If the container migrates,
additional operations on the mobile client are needed to recover the connection,
which violates the first requirements mentioned at the beginning of this chapter.
To the problem, the study of this thesis proposed the container overlay network
solution.

An overlay network is a logical network created on top of an existing physical
network. It enables the possibility of creating a distributed network among multiple
host machines. Some containerization tool, such as Docker, has provided overlay
network option for the user during the creation of the container. However, the
containerization tool used in this study, Podman, does not provide any option to
directly create an overlay network with containers. So, an overlay network structure
for the Podman container is designed from scratch with the combination of Open
vSwitch (OvS) as Figure 6.3 shows. There is an OvS installed on each host machine.
The OvSes are pre-configured to connect to each other. The containers running on
each host will be assigned static IP addresses belonging to the same subnetwork
by manipulating their network namespace as mentioned in Section 6.3. Then, the
corresponding virtual network interface of each container will be "plugged" into the
OvS with VETH. At this moment, the overlay network is created, and containers
on different host machines can directly reach each other, as Figure 6.4 shows.

6.5 Podman container migration with overlay
network

With the techniques mentioned in Section 6.2 to 6.4, the network connections of a
container are possible to be migrated. In the study of this thesis, the migration
test is done with an MQTT broker. The network topology for the migration is
designed as Figure 6.5 shows. There are two VMs act as the edge servers in the edge
network. On each VM, OvS is installed and configured to connect to each other.
At the beginning, the containerized MQTT broker and publisher are running on
VM1 and containerized MQTT subscriber is running on VM2. All the containers
are connected to corresponding OvS and work under the same overlay network
segment. In order to make the states of the MQTT broker easier to observe, the
tool "tc" is used to limit the up-link speed of VM1’s network interface, which leads
the messages to be queued inside the MQTT broker. The target of this experiment
is to migrate the container with the MQTT broker from VM1 to VM2. If the
connection between MQTT clients and the broker can recover after the migration,
the queued messages can be delivered to the subscriber. In this case, the container’s
network connection migration can be considered successful.

61

Realization Stack: Overlay Network

(a) Ping result of container 1 on VM 1

(b) Ping result of container 2 on VM 2

Figure 6.4: Podman container overlay network test result

In order to perform the migration of the MQTT broker, the procedure is as
Figure 6.6 shows. The first step is to create an MQTT application in the container
overlay network. On VM1, use "create and bind" method to create a namespace

62

Realization Stack: Overlay Network

Figure 6.5: MQTT overlay network topology

named "mqtt" with overlay network configuration and bind the container of the
MQTT broker to this namespace (step 1). To be noticed, it can not use the "direct
manipulation" method to manipulate the container’s auto-generated namespace.
The main reason is that when the checkpointed container is being restored on
the remote host, Podman can not automatically generate the modified namespace.
Second, create the container for the MQTT publisher on VM1 and use the "direct
manipulation" method to connect the container to the overlay network. Since
the container of the MQTT publisher is not going to be migrated, the "direct
manipulation" method is easier. Third, create the container for MQTT subscriber
on VM2. Then, start MQTT broker, subscriber, and publisher.

After the creation of the experiment environment, the following procedure shows
the way to migrate the container over an overlay network. The first is to slow down
the speed of VM1’s network interface to make the messages queue in the MQTT
broker. When the message queue is almost full, checkpoint the container using
Podman’s command (step 7). Then, release the network speed limit on VM1 and
copy the checkpoint image to VM2. Then create a namespace named "mqtt" on
VM2 (step 9) and delete the one on VM1 (step 8). From the container’s point
of view, the "mqtt" namespace on VM2 is the same as the one on VM1, so the
container can successfully restore on VM2. From the application’s point of view,
the containerized service can be reached from the same IP address before and
after migration. However, from the network point of view, the container has a

63

Realization Stack: Overlay Network

Figure 6.6: MQTT broker migration procedure

completely new MAC address and ARP table. If the container is restored to VM2
directly, it will take some time (around 10 seconds) for clients to notice the change
of the broker’s MAC address and update their own ARP table. Before the ARP
table is updated, the communication between clients and broker will not restore.
So after the new "mqtt" network namespace is created on VM2, we should first
update the ARP table on the client’s container (step 10) and then restore the
checkpointed container to VM2 (step 11). After restoring, the communication will
recover immediately, and the queued message inside the broker will be delivered to
the subscriber.

6.6 Overlay network monitoring
Networking monitoring is an important method to validate the correctness of the
network setting and to find out the bottleneck/bugs in the network design. However,
when the containers are working with an overlay network, the network topology
becomes complex. It is difficult to monitor applications’ communication and trace
a specific packet’s flow. According to the proposed topology of the Podman overlay
network, the corresponding monitoring method is also studied as Figure 6.7 shows.

There are three critical monitoring points in the container overlay topology:

64

Realization Stack: Overlay Network

Figure 6.7: Podman container overlay network monitoring points

container network interface (points 1 and 2), OvS port (point 3), and host network
interface (point 4). To capture the network traffic in the monitoring points, "tcp-
dump" is the simplest tool to use. The motoring methods are shown in Listing 6.3.
Capturing the traffic in monitor point 1 and 2 could help to understand if the
applications are communicating with the outside world correctly or not. However,
in our experiment scenario, due to the containers having different configurations
and behaviors (migrate or not), the monitoring methods are different. For the
containers of MQTT clients (point 1), they are fixed on a specific host machine. So
we can directly enter the container and use "tcpdump" to capture the traffic. For
the container of the MQTT broker, which migrates from one host to another, we
can run "tcpdump" directly inside the customized network interface of the container.
Since the customized network interface will be created before creating or restoring
the container, the complete behavior of the container migration will be recorded.
Capturing the traffic in monitor point 3 could help to understand the working state
of vETH connection between the container and OvS. Since the vETH is created by
connecting container’s network interface and a virtual network interface dedicated
for OvS (in this case named pod-ovs), the traffic could be captured by dumping the
dedicated virtual network interface. Capturing the traffic on monitor point 4 could
help to understand the communication between OvSes on different host machine.
Since OvS by default uses port 4789 on the host’s network interface, the traffic
could be captured by dumping the traffic flow port 4789 on the host’s network

65

Realization Stack: Overlay Network

interface.

Listing 6.3: Podman container overlay network monitoring method
1 # At monitor po int 1 : Capture t r a f f i c i n s i d e f i x e d conta ine r
2 > sudo podman exec − i t <conta ine r name> / bin /bash
3 (conta ine r)> tcpdump −w <output_file_name >.pcap
4

5 # At monitor po int 2 : Capture t r a f f i c from customized conta ine r
network namespace

6 > ip netns exec MQTT tcpdump −w <output_file_name >.pcap
7

8 # At monitor po int 3 : Capture t r a f f i c from ded icated v i r t u a l network
i n t e r f a c e f o r Open vSwitch

9 > tcpdump − i pod−ovs −w <output_file_name >.pcap
10

11 # At monitor po int 4 : Capture t r a f f i c from port 4789 on host network
i n t e r f a c e

12 > tcpdump − i eth0 port 4789 −w <output_file_name >.pcap

The monitoring results are shown in Figure 6.8 6.11. As Figure 6.8 shows, from
the MQTT client’s (publisher) point of view, the MQTT broker’s IP address is
172.16.0.10, which is the overlay network IP address. MQTT client creates an
IPv4 TCP connection with the MQTT broker on top of the overlay network. In
this case, the communication is completely independent to the host machine’s IP
address. In Figure 6.9, it is worth noting that the captured result is completely
the same as Figure 6.8. This monitoring point targets at checking the vETH
configuration between the container and OvS is correct or not. In Figure 6.10, the
monitoring result shows that when the overlay network packets pass the OvS, they
are encapsulated into IPv4 UDP packets in the format of vxlan and route to the
OvS on the corresponding machine. The monitored result in Figure 6.11 shows
that after the MQTT broker migrated to the new host, the TCP connections with
MQTT clients can be directly restored without any handshaking.

66

Realization Stack: Overlay Network

Figure 6.8: Overlay network monitoring inside container of MQTT publisher

Figure 6.9: Overlay network monitoring on vETH connection

67

Realization Stack: Overlay Network

Figure 6.10: Overlay network monitoring between Open vSwitch

Figure 6.11: Overlay network monitoring in migrated container

68

Chapter 7

Management Stack:
Migration Cost Model

The recent study on the container/VM migration management are mostly focused
on minimizing the migration downtime ([6], and [16]). However, due to the limited
resources on the edge servers, the consideration of resource usage during and after
the migration is also very important. So in this chapter, a migration management
model based on edge resources (CPU, memory, store and network) usage is proposed.

7.1 Cost Model Definition

Figure 7.1: Optimization scenario

69

Management Stack: Migration Cost Model

The optimization model targets at providing the lowest migration cost solution
in the scenario, as Figure 7.1 shows. In the edge network, there is a set of
destination edge servers E, which are geographically close to the mobile client. The
communication latency between each destination edge servers Lec are pre-measured.
The migration process is triggered when the communication latency of the original
connection LO is larger than a specific threshold Lthr. Assume that the container
migration uses pre-copy migration, with a single iteration of pre-copy. The following
optimization mode targets at minimizing the migration cost from the resource
usage point of view.

Decision variables:

• xe: 0 or 1 (node e is selected at the migration destination or not).

Mobile service related parameters:

• Rdp: container dirty page rate, page/s.

• Mc: Container memory usage, bytes.

• Loadc: CPU load occupied by the container, (0,1].

• Snms: The container’s state size except for memory and network queue.

• Rc: Compression ratio of the dumped container state in file synchronization,
(0,1].

• Nactive: 0 or 1, exist active network connection between service and client
during the migration.

• Sn: Queued message size during TCP connection migration, bytes. Worst
case 10 Mibs.

• TmaxDown: Maximum downtime the service can tolerate.

Host related parameters:

• Spage: Memory page size, default 4096 bytes.

• Loads: Current CPU load of source host, (0,1].

• Loade: Current CPU load on edge server e, (0,1].

• NCe: Total number of CPU cores on host e.

• Me: Available memory on edge server e.

70

Management Stack: Migration Cost Model

• Bse: Bandwidth between the source server and edge server e.

• sps: source server processing speed in IPS per CPU core.

• spe: destination server processing speed in IPS per CPU core.

• CCPUe: Unit CPU usage cost on edge server e, euro/core.

• OCPUe: CPU cost offset, guarantee the minimum CPU cost when load balancing
is considered in the objective function, (0,1].

• CMEMe: Unit memory cost on edge server e, euro/byte.

• CHDDe: Unit storage cost on edge server e, euro/byte.

• CNETe: Unit network cost from source to edge server e, euro/byte.

To be noted, the cost here does not consider the live cycle of the hardware devices.

Secondary parameters:

• TpreSync: The required time to synchronous the pre-dumped image to the
destination.

• Tdump: The required time to completely dump a container based on the
pre-dump image.

• TdumpSync:The required time to synchronous the dumped image to the destina-
tion.

• Trestore: The required time for the destination server to restore the container.

• Tdown: Overall migration down time.

• Dm: Dirty memory generated between pre-dump and dump.

Objective functions:

min
Ø

e

xe ·
5
CCPUe · sps

spe

· Loadc · (Loade + OCPUe)+

+ (CHDDe + Rc · CNETe) ·
· (Mc + TpreSync · Rdp · Spage + Nactive · Sn + Smns) +

+ CMEMe · Mc

6
(7.1)

In the container migration scenario, all the variables change over time. In order
to guarantee that the optimal destination provided by the model is still the optimal

71

Management Stack: Migration Cost Model

one when the actual migration is performed, the solving to the optimization model
should be as fast as possible. In order to reach this requirement, the objective
function of the optimization model is provided as Equation.7.1 shows. In this
objective function, only one decision variable is involved, which is the selection
of the migration destination. In the object function, the migration cost in the
aspect of CPU, memory, storage, and network usage are all considered. With such
a simple mode, a simple iteration and comparison algorithm can be used to find
the solution in a short time.

Constrains:
Tdown ≤ TmaxDown (7.2)

Ø
xe ·

A
Loade + sps

spe

· Loadc

B
≤
Ø

xe · NCe (7.3)

Mc ≤
Ø

xe · Me (7.4)

Ø
xe = 1 (7.5)

Mc

TpreSync
> Rdp · Spage (7.6)

TpreSync = Mc

Rc · (1 − Loads) · sps
+
Ø

e

xe · Mc · Rc

Bse

(7.7)

Dm = TpreSync · Rdp · Spage (7.8)

Tdump = Snms + Nactive · Sn + Dm

(1 − Loads) · sps
(7.9)

TdumpSync =Snms + Nactive · Sn + Dm

Rc · (1 − Loads) · sps

+
Ø

e

xe · (Snms + Nactive · Sn + Dm) · Rc

Bse

(7.10)

Trestore = Snms + Nactive · Sn + Dm + Mcq
e xe · (1 − Loade) · spe · Rc

(7.11)

Tdown = Tdump + TdumpSync + Trestore (7.12)

xe ∈ {0,1} ∀ e ∈ E (7.13)

72

Management Stack: Migration Cost Model

TpreSync, Tdump, TdumpSync, Trestore, Tdown ∈ R+ (7.14)

The constraints bound the selection of the destination host from the following
main aspects. Constrain.7.2 limits that the migration downtime should not exceed
the maximum downtime the application can tolerate. Constrain.7.3 limits that the
CPU load on the migration destination should not exceed its own capacity after
the container migration. Constrain.7.4 limits that the migration destination should
have enough available memory for the migrated container to use. Constrain.7.5
limits that there could only have one migration destination. Constrain.7.6 limits
that the speed of the pre-copy procedure should be faster than the generation of
dirty memory pages in order to guarantee the pre-copy migration is efficient.

7.2 Migration Cost Estimation
Since the migration cost model introduced in Sec.7.1 is defined with real-world
resources cost, the general cost of the migration can be easily estimated. Assume
that the hardware used on the edge servers have the same setting, listed as Table.7.1
shows.

Specification Unit cost
CPU Intel i7 12th gen, 3.6 GHz,12 cores 470 €
Memory 16 GB DDR4 70 €
Storage 512 GB SSD 50 €
Network 2.5 Gbps 30 €/month

Table 7.1: Assumed edge server setting

In this case, the edge server-related parameter can be estimated, as Table.7.2
shows. Assume that the CPU load on each edge server is 0.3 and the available
memory size is 13 GB.

CCPUe 40 €/core Loade and Loads 0.2
CMEMe 4.3 · 10−9 €/byte Spage 4096 bytes
CHDDe 9.39 · 10−11 €/byte Bse 3.2 · 108 byte/s
CNETe 2.16 · 10−12 €/byte NCe 12
Spage 4096 bytes Me 1.3 · 1010 bytes
sps and spe 1.13 · 1011 OCPUe 0.1

Table 7.2: Edge server related parameter estimation

73

Management Stack: Migration Cost Model

Assume that the container to be migrated has the properties as Table.7.3. Since
we assume the container to be migrated does not has an active network connection
during the migration, Sn does not work in this case. Since we only want to estimate
the migration cost, TmaxDown is not considered now. As a result, the estimated
migration cost of this container is 1.64 euros. To be noticed, the resources cost
here do not consider their live cycle. In order to obtain the actual cost, the cost
obtained from the model should be scaled down according to the hardware’s life
cycle.

Loadc 0.1 Rdp 10 pages/s
Rc 0.7 Nactive 0
Mc 108 bytes Snms 107bytes

Table 7.3: Assumed properties for the container to be migrated

(a) CPU usage (b) Memory usage

(c) Memory dirty page rate (d) Checkpoint image compression ratio

Figure 7.2: Estimated migration cost with variations on different container
properties

What’s more, this cost model can help estimate the migration cost change when

74

Management Stack: Migration Cost Model

the container properties have changed. As Figures 7.2 shows, when variate different
parameters in Table 7.3, the change trend on total migration cost can be obtained.
When the CPU load of the container on the host and memory usage of the container
increase, the total migration cost increases significantly. When the container’s dirty
memory page rate and the checkpoint image compression ratio increase, the total
migration cost does not change much.

75

Chapter 8

Management Stack:
Migration policies

In order to reach maximum efficiency during container migration, it is important
to choose the proper techniques in each migration step according to the container’s
properties. In this chapter, the policies for the selection of migration techniques
and migration strategies are discussed. Since the study of this thesis focuses on the
migration of Podman containers, the policies and strategies might not be suitable
for all container implementations.

8.1 Policies related to containers properties

There are three main properties of the container that affects the migration result:
file system state, memory usage and network connection.

File system state. The file system state directly decides whether a Podman
container can be successfully migrated or not. As Table 8.1 shows, a container’s
file system could be modified or not with respect to the base image. When the
container’s file system is complete the same as the based image, the container
can be directly migrated. But when the container’s file system is modified (e.g.,
add, delete or modify), the container can not be directly migrated. Otherwise,
the migration reports an error and is interrupted in the restore phase. In order
to solve this problem, the container with a modified file system can be rebuilt
into a container image and synchronized to the destination host. In this case, the
container’s file system is exactly the same as the new image, and the restoring
process can be successfully done.

76

Management Stack: Migration policies

File system state Migratability
Unchanged Migratable
Modified Not direct migratable

Modified but rebuilt in image Migratable

Table 8.1: Container mobility according to file system state

Memory usage. In container migration, the container’s memory state is one
of the key attributes affecting migration performance. For different memory
characteristic, different methods should be adopted as Table 8.2 shows. For different
memory characteristics of the container, a corresponding example and its migration
performance are also introduced. To be noticed, Tckp means the checkpoint time in
cold migration or (last) second checkpoint time in (iterative) pre-copy migration.
Tsync means the estimated required time to synchronize the checkpoint image or
(last) second checkpoint image in (iterative) pre-copy migration. Tres means the
restore time of the container. Tdowm means the migration downtime, which is equal
to the sum of Tckp, Tsync and Tres. The result is obtained from tests done on VMs
as mentioned in Section.5.5, with a limitation of network bandwidth in 10 MB/s.

When the container uses only a small amount of memory (e.g., 1 MB), the
container’s checkpoint image is relatively small, which can be quickly transmitted
to the destination. In this case, the cold migration method is better since it is easier
to implement and more efficient (though it scarifies some migration downtime).

However, when the target container uses a median amount of memory (e.g., 10
MB), the cold migration might not always be the best choice. When the dirty
memory page rate of the container is not too high (e.g., 100 page/s), the pre-copy
migration method is the better choice. With the pre-copy migration method, the
size of the second checkpoint image (in the stop-and-copy phase) can be significantly
reduced, which requires less synchronization time and leads to a shorter migration
downtime. However, when the dirty memory page rate of the container is high,
the size of the second checkpoint image with the pre-copy method will be close to
the overall memory usage of the container. In this case, the pre-copy method can
not reduce migration downtime and introduces a lot of migration overhead. So
when the dirty page rate of the container is high, it is always better to use the cold
migration method.

When the container’s memory usage is large, the performance in the reduction of
the second checkpoint image’s size of the per-copy migration method becomes worse.
The reason for this phenomenon is that it requires more time to synchronize the first
checkpoint image, and the containerized application generates more dirty memory
pages during this time. The better solution to migrate such kind of container is to
use iterative pre-copy migration method (will be introduced in Section 8.2).

77

Management Stack: Migration policies

Memory
usage DPR Migration

method Example Tckp [s] Tsync[s] Tres[s] Tdown[s]

small low cold 1 MB
10 page/s 0.5 0.1 1.3 1.9

small middle cold 1 MB
50 page/s 0.5 0.1 1.3 1.9

small high cold 1 MB
100 page/s 0.5 0.1 1.3 1.9

median low pre-copy 10 MB
10 page/s 1.1 0.01 1.1 2.21

median middle pre-copy 10 MB
100 page/s 1.1 0.09 1.1 2.29

median high cold 10 MB
1000 page/s 3.6 1 1.5 6.1

large low iterative
pre-copy

100 MB
10 page/s 3.6 0.05 2.4 6.05

large middle iterative
pre-copy

100 MB
100 page/s 3.6 0.45 2.4 6.45

large high cold 100 MB
10000 page/s 6.5 10 8 24.5

Table 8.2: Migration method selection according to container memory usage

Network connections Network management
none none

short period TCP connection network proxy
long period TCP connection overlay network

Table 8.3: Migration method according to container’s network connection

Network connection. In order to preserve the network connection of the appli-
cations inside the container, different kinds of network management is required,
as Table 8.3 shows (this study only discusses TCP connections). When the ap-
plications are without any network connection, the container can be migrated
directly without any management. When the application inside the container has
short-period TCP connections (the duration of connection is short), the better
strategy is to migrate the container when no connection is alive and manage the
IP address problem after migration with simple techniques like network proxy. For
the containers with a long-period TCP connection (the duration of connection is
long, no matter the amount of data transmitted), the overlay network topology is

78

Management Stack: Migration policies

the most operable way to realize stateful network migration.

8.2 Migration strategy
In this section, the overall migration strategy with the pre-copy migration method
is discussed. The reason why the strategy focuses on pre-copy migration is that
it has the potential to achieve minimum migration downtime. According to [6],
the iterative pre-copy procedure could help to reduce the number of dirty memory
pages to be transmitted in the stop-and-copy phase. Together with the migration
cost model, the migration strategy is summarized as Figure 8.1 shows.

On the source server where containerized mobile service is running, the communi-
cation latency with the client is continuously monitored. When the communication
latency with the client reaches a threshold, the migration procedure is triggered
(step 1). Then the source server obtains the communication latency between each
available edge server and the client and their resource usage (step 2). The source
server could apply the migration cost model with the latency and resource usage
information to determine the best edge server to migrate the container (step 3).

Before the migration starts, the source server should send a migration request
to the destination edge server (step 4), which should contain the information of
the container to be migrated. With the information, the destination server can
prepare the environment for the migration: pull the container image from a remote
repository (step 5) and pre-allocate the required resources (step 6). When the
preparation procedure is finished, the destination server sends a response to the
source server (step 7), telling it whether the migration request is accepted or
not. If the migration request is accepted, the source server starts the iterative
pre-copy procedure (steps 8 and 9). When the number of dirty memory pages in
the pre-checkpoint image reduces to a specific threshold, the source server performs
the stop-and-copy procedure (step 10) and synchronizes the final checkpoint image
to the destination host (step 11). When the synchronization is finished, the source
server notifies the destination server to restore the container from the checkpoint
images (steps 12 and 13). The migration downtime is calculated as the duration of
steps 10 to 13.8-0

In theory, the iterative pre-copy procedure could significantly reduce the number
of dirty memory pages in the last checkpoint image (stop-and-copy phase). However,
standard container engines (such as Podman, and Docker) do not initially provide
such an iterative pre-copy function. In order to implement the iterative pre-copy
migration with the Podman container, one of the solutions is to use the delta-
transfer property of rsync (introduced in Section 3.3.1) as Listing 8.1 shows. In each
iteration, Podman pre-checkpoints the target container to the file with the same
name and synchronizes to the destination with rsync. In the first iteration, due to

79

Management Stack: Migration policies

Figure 8.1: Pre-copy migration strategy

the destination having no checkpoint image yet, the amount of data sent by rsync
will be the same as the original checkpoint image size. When the checkpoint image
is large, it might require a long time. But in the following iteration, the transmitted
data size will be the dirty memory generated during the previous synchronization.
When the dirty page rate is not very large, the transmitted data size should reduce
by iteration. When the transmitted data size is less than a specific threshold, the

80

Management Stack: Migration policies

iterative pre-copy procedure could be terminated, and perform the stop-and-copy
procedure.

Listing 8.1: Podman iterative pre-checkpoint algorithm
1 FOR i in MaxIterat ions :
2 Pre−checkpo int t a r g e t conta ine r and s t o r e to f i l e PRE_DUMP
3 Synchronize PRE_DUMP to the d e s t i n a t i o n host with rsync
4 IF transmit ted data s i z e by rsync i s sma l l e r than a thre sho ld
5 BREAK
6 Dump the ta r g e t con ta ine r and s t o r e to f i l e DUMP (stop−and−copy)
7 Synchronize DUMP to d e s t i n a t i o n host

In order to validate the iterative pre-copy algorithm, a test is done with the
VMs mentioned in Section 5.5 with the following additional settings:

• Source host network uplink speed: 10 MB/s

• Rsync delta-transfer block size: 1024 bytes

• Container memory allocation: 100 MB

The test result is as Figure 8.2 shows. In all test cases, the transmitted size of
pre-checkpoint images has a significant reduction when the iteration number is
equal to or greater than 2. However, when the container’s dirty page rate increases,
the reduction in transmitted pre-checkpoint image size becomes less.

Figure 8.2: Iterative pre-checkpoint image size

81

Chapter 9

Conclusions

Nowadays, with the development of mobile communication technologies, more and
more mobile application concepts are introduced to the view of the public, including
but not limited to connected vehicles, UAVs, and portable health monitoring systems.
In order to avoid the high communication cost with cloud solutions and the high
deployment cost with local solutions, the corresponding mobile services are normally
deployed in edge networks. However, such kinds of application scenarios require the
system to have a very high quality of service. Even though with the edge solution,
the communication quality requirements might not always be fulfilled, especially
the requirement of communication latency. In this case, enabling service mobility
in edge computing architecture becomes critical. Since mobile services/applications
are normally containerized in edge architecture, the study of service mobility could
be generalized into the study of container mobility.

In the work of this thesis, the complete technical stack of container migration
has been studied. In the realization stack, the background technique to be studied
is file synchronization. The study targets at selecting the most efficient tool for
container checkpoint image synchronization. Two different tools are detailed tested
and analyzed on the performance of file deduplication rate, CPU usage, memory
usage, storage usage, and network usage. In conclusion, "rsync" is selected to be
the optimal tool for container migration synchronization.

In the realization stack, the study focuses on the design of the stateful application
simulator, the containerization of customized applications, and the validation of
basic container migration. To be mentioned, a stateful application simulator with a
controllable dirty memory page rate is designed and validated during the study. It
provides a more accurate simulation of the application’s memory behavior during
migration. In order to create a minimum container image of the stateful application
simulator, different base images and compiling methods are studied. Even though
compiling the C-language-based application with the static shared libraries linking
will increase the size of the application executable, the statically linked executable

82

Conclusions

with the busybox base image can create the minimum container image. With the
container image, stateful containers are created. The basic migration tests validate
the statefulness of different migration methods. They prove that the migration
methods based on the tool "CRIU" are stateful.

In the advanced realization stack, the network management during container
migration is studied. In recent studies, not many works addressed the operable
detail of network management during container migration. So an overlay network
solution is proposed and tested in the study of this thesis. This solution solves the
IP address problem during container migration and guarantees the recovery of the
active network connection. This study also discusses the methods to monitor and
trace the network traffic on the overlay network.

In the management stack, a migration cost model and some migration policies
are proposed. The cost model targets at selecting an optimal migration destination
among the edge network by considering the resource usage during the migration.
To be noticed, the model could estimate the actual migration cost in euro by linking
the cost of the resources to the real world price, helping the operator better design
the management strategy. The migration policies discuss the different selections of
migration techniques when migrating containers with different properties. The study
of the iterative pre-copy migration strategy provides a possible implementation
with the current Podman container and rsync. A simple test is also done to validate
and show the strength of this strategy.

9.1 Future works
In the study of this thesis, the complete technical stack of container migration is
addressed. However, the study focuses more on validating the migration theory
but not the actual deployment. It is reasonable to believe that this work could be
extended for future research.

One limitation in this study is that the container migration procedures are done
with scripts, which is efficient and easy to modify. But in actual deployment, a
more complete system is requires in order to guarantee the reliability and flexibility
of the migration process. Therefore, future studies are suggested to investigate the
design of intelligent migration agents which are capable of communicating with the
orchestrator and automatically adjusting the migration settings.

In addition, the study in this thesis focuses more on the low-layer migration
implementation and performance analysis. Only a small part of container migration
management is discussed. Future work could concentrate on the study of high-layer
orchestration or the discussion of the extreme conditions on container migration,
pushing the adoption of this technique in real applications.

83

Bibliography

[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
Computing: Vision and Challenges». In: IEEE Internet of Things Journal
3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.2579198 (cit. on p. 1).

[2] Mobile-edge computing—Introductory technical white pape. https://portal.
etsi.org/portals/0/tbpages/mec/docs/mobile- edge_computing_-
_introductory_technical_white_paper_v1%2018-09-14.pdf. Accessed:
2022-09-05 (cit. on p. 2).

[3] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief.
«A Survey on Mobile Edge Computing: The Communication Perspective». In:
IEEE Communications Surveys Tutorials 19.4 (2017), pp. 2322–2358. doi:
10.1109/COMST.2017.2745201 (cit. on p. 2).

[4] P. Getzi Jeba Leelipushpam and J. Sharmila. «Live VM migration techniques
in cloud environment — A survey». In: 2013 IEEE Conference on Information
Communication Technologies. 2013, pp. 408–413. doi: 10.1109/CICT.2013.
6558130 (cit. on p. 6).

[5] Shunmugapriya Ramanathan, Koteswararao Kondepu, Miguel Razo, Marco
Tacca, Luca Valcarenghi, and Andrea Fumagalli. «Live Migration of Vir-
tual Machine and Container Based Mobile Core Network Components: A
Comprehensive Study». In: IEEE Access 9 (2021), pp. 105082–105100. doi:
10.1109/ACCESS.2021.3099370 (cit. on pp. 10, 13).

[6] Tianzhang He, Adel Toosi, and Rajkumar Buyya. «SLA-Aware Multiple
Migration Planning and Scheduling in SDN-NFV-enabled Clouds». In: (Jan.
2021) (cit. on pp. 11, 13, 69, 79).

[7] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. «Post-Copy Live
Migration of Virtual Machines». In: SIGOPS Oper. Syst. Rev. 43.3 (July
2009), pp. 14–26. issn: 0163-5980. doi: 10.1145/1618525.1618528. url:
https://doi.org/10.1145/1618525.1618528 (cit. on p. 12).

[8] Tianzhang He and Rajkumar Buyya. «A Taxonomy of Live Migration Man-
agement in Cloud Computing». In: (Dec. 2021) (cit. on p. 13).

84

https://doi.org/10.1109/JIOT.2016.2579198
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/CICT.2013.6558130
https://doi.org/10.1109/CICT.2013.6558130
https://doi.org/10.1109/ACCESS.2021.3099370
https://doi.org/10.1145/1618525.1618528
https://doi.org/10.1145/1618525.1618528

BIBLIOGRAPHY

[9] Carlo Puliafito, Enzo Mingozzi, Carlo Vallati, Francesco Longo, and Giovanni
Merlino. «Virtualization and Migration at the Network Edge: An Overview».
In: 2018 IEEE International Conference on Smart Computing (SMART-
COMP). 2018, pp. 368–374. doi: 10.1109/SMARTCOMP.2018.00031 (cit. on
p. 13).

[10] Yuqing Qiu, Chung Horng Lung, Samuel Ajila, and Pradeep Srivastava.
«LXC Container Migration in Cloudlets under Multipath TCP». In: vol. 2.
IEEE Computer Society, Sept. 2017, pp. 31–36. isbn: 9781538603673. doi:
10.1109/COMPSAC.2017.163 (cit. on p. 13).

[11] Luca Conforti, Antonio Virdis, Carlo Puliafito, and Enzo Mingozzi. «Ex-
tending the QUIC Protocol to Support Live Container Migration at the
Edge». In: 2021 IEEE 22nd International Symposium on a World of Wire-
less, Mobile and Multimedia Networks (WoWMoM). 2021, pp. 61–70. doi:
10.1109/WoWMoM51794.2021.00019 (cit. on p. 13).

[12] Solomon Kassahun, Atinkut Demessie, and Dragos Ilie. «A PMIPv6 approach
to maintain network connectivity during VM live migration over the internet».
In: 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet).
2014, pp. 64–69. doi: 10.1109/CloudNet.2014.6968970 (cit. on p. 13).

[13] Patrick Raad, Stefano Secci, Dung Chi Phung, Antonio Cianfrani, Pascal
Gallard, and Guy Pujolle. «Achieving Sub-Second Downtimes in Large-Scale
Virtual Machine Migrations with LISP». In: IEEE Transactions on Network
and Service Management 11.2 (2014), pp. 133–143. doi: 10.1109/TNSM.2014.
012114.130517 (cit. on p. 13).

[14] Carlo Puliafito, Antonio Virdis, and Enzo Mingozzi. «The Impact of Container
Migration on Fog Services as Perceived by Mobile Things». In: 2020 IEEE
International Conference on Smart Computing (SMARTCOMP). 2020, pp. 9–
16. doi: 10.1109/SMARTCOMP50058.2020.00022 (cit. on pp. 13, 55).

[15] Container runtime: runC. https://github.com/opencontainers/runc.
Accessed: 2022-10-03 (cit. on p. 13).

[16] Gang Sun, Dan Liao, Vishal Anand, Dongcheng Zhao, and Hongfang Yu.
«A new technique for efficient live migration of multiple virtual machines».
In: Future Generation Computer Systems 55 (Feb. 2016), pp. 74–86. issn:
0167739X. doi: 10.1016/j.future.2015.09.005 (cit. on pp. 13, 69).

[17] Sumit Maheshwari, Shalini Choudhury, Ivan Seskar, and Dipankar Raychaud-
huri. «Traffic-Aware Dynamic Container Migration for Real-Time Support
in Mobile Edge Clouds». In: 2018 IEEE International Conference on Ad-
vanced Networks and Telecommunications Systems (ANTS). 2018, pp. 1–6.
doi: 10.1109/ANTS.2018.8710163 (cit. on p. 13).

85

https://doi.org/10.1109/SMARTCOMP.2018.00031
https://doi.org/10.1109/COMPSAC.2017.163
https://doi.org/10.1109/WoWMoM51794.2021.00019
https://doi.org/10.1109/CloudNet.2014.6968970
https://doi.org/10.1109/TNSM.2014.012114.130517
https://doi.org/10.1109/TNSM.2014.012114.130517
https://doi.org/10.1109/SMARTCOMP50058.2020.00022
https://github.com/opencontainers/runc
https://doi.org/10.1016/j.future.2015.09.005
https://doi.org/10.1109/ANTS.2018.8710163

BIBLIOGRAPHY

[18] Zitong Ma, Sujie Shao, Shaoyong Guo, Zhili Wang, Feng Qi, and Ao Xiong.
«Container Migration Mechanism for Load Balancing in Edge Network Under
Power Internet of Things». In: IEEE Access 8 (2020), pp. 118405–118416.
doi: 10.1109/ACCESS.2020.3004615 (cit. on p. 13).

[19] Docker container. https://www.docker.com/. Accessed: 2022-10-03 (cit. on
p. 15).

[20] LXD container. https://linuxcontainers.org/. Accessed: 2022-10-03 (cit.
on p. 15).

[21] Podman container. https://podman.io/. Accessed: 2022-10-03 (cit. on
p. 15).

[22] Checkpoint/Restore In Userspace. https://criu.org/Main_Page. Accessed:
2022-10-03 (cit. on p. 15).

[23] Rsync documentation. https://linux.die.net/man/1/rsync. Accessed:
2022-10-03 (cit. on p. 17).

[24] Borg object graph. https://borgbackup.readthedocs.io/en/stable/
internals/data-structures.html. Accessed: 2022-09-05 (cit. on p. 18).

[25] Open vSwitch. https://www.openvswitch.org/. Accessed: 2022-10-03 (cit.
on p. 19).

[26] Brendan Gregg. Linux Systems Performance. https://www.brendangregg.
com/Slides/LISA2019_Linux_Systems_Performance.pdf. Accessed: 2022-
10-03 (cit. on p. 21).

[27] Uftrace tool. https://github.com/namhyung/uftrace. Accessed: 2022-10-03
(cit. on p. 39).

[28] Jonathan Corbet. «TCP connection repair». In: (2012). url: https://lwn.
net/Articles/495304/ (cit. on p. 57).

86

https://doi.org/10.1109/ACCESS.2020.3004615
https://www.docker.com/
https://linuxcontainers.org/
https://podman.io/
https://criu.org/Main_Page
https://linux.die.net/man/1/rsync
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html
https://borgbackup.readthedocs.io/en/stable/internals/data-structures.html
https://www.openvswitch.org/
https://www.brendangregg.com/Slides/LISA2019_Linux_Systems_Performance.pdf
https://www.brendangregg.com/Slides/LISA2019_Linux_Systems_Performance.pdf
https://github.com/namhyung/uftrace
https://lwn.net/Articles/495304/
https://lwn.net/Articles/495304/

	Introduction
	Context and Problem Statement
	Thesis Structure

	State of the Art Review
	Category of Container Migration
	Stateless Container Migration
	Stateful Container Migration

	Stateful Migration Time and Downtime
	Cold Migration
	Pre-copy Migration
	Post-copy Migration

	Related Works

	Background Technologies
	Containerization: Podman
	Container Checkpoint/Restore: CRIU
	File Synchronization
	Rsync
	Borg

	SDN: Open vSwitch

	Realization Stack: Migration File Synchronization
	Analysis Methodology
	Deduplication performances
	Rsync Deduplication
	Borg Deduplication

	System related performance
	CPU Cost Measurement
	Memory Cost Measurement
	Storage Cost Measurement
	Network Cost Measurement

	Synchronization Tool For Container Migration

	Realization Stack: Stateful Container Migration
	Stateful Local Application
	Application Dirty Page Rate Control
	Applications Containerization
	Process migration with CRIU
	Container Migration Procedure
	Cold Migration
	Pre-Copy Migration
	Comparison of cold and pre-copy migration

	Realization Stack: Overlay Network
	Stateful edge application
	Linux TCP connection repair
	Linux Namespace
	Podman container overlay network
	Podman container migration with overlay network
	Overlay network monitoring

	Management Stack: Migration Cost Model
	Cost Model Definition
	Migration Cost Estimation

	Management Stack: Migration policies
	Policies related to containers properties
	Migration strategy

	Conclusions
	Future works

	Bibliography

