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Abstract
In modern computer and telecommunication networks, traffics are transmitted

based on packet-mode protocols. Due to the dynamic as well as the complicated
properties of networking and the spread of broadband and internet access, one of
the major issues is packet loss. Some of the protocols, like Transmission Control
Protocol (TCP), can tackle this problem and recover losses, but for Real-time
Transport Protocol (RTP), packet delivery cannot be guaranteed, which will
significantly affect the Quality of Experience (QoE) for services. Therefore, on one
hand, a preventive solution that can forecast the packet loss is needed to help build
an adaptive mechanism and improve the QoE, and on the other hand, studies of
packet loss can help to understand the network status, e.g., congestion.

In this thesis, we will focus on RTP-based Real-time Communication (RTC)
services, and comprehensive analyses for a case study based on two RTC applications
will be conducted to understand the specific properties of packet loss. On top of
that, several machine learning approaches will be developed to predict losses based
on historical statistics of packets.

In particular, an improvement to the command-line tool Retina will be made to
derive the exact number of packet losses, and then, the dataset about statistics of
RTP packets will be analyzed, processed, and utilized to feed the machine learning
models. Finally, in-depth studies will be performed as well.
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Chapter 1

Introduction

1.1 Motivation

In the modern lives of human beings, telecommunications and internet communica-
tions are the most indispensable ways to exchange information. It is without doubt
that people can barely carry out daily activities without them. The volume of
traffic produced by both humans and machines reaches an incredibly vast number
as more sophisticated technologies are introduced into the communication field and
people’s needs continue to rise. According to the Global Internet Map 2021[1], the
global traffic on international links in 2021 reaches around 280 terabytes per second
(Tbps) at peak hour and around 180 Tbps on an average scale, while the numbers
in 2020 are only 190 and 110 Tbps. Moreover, peak international internet traffic
increased at a compound annual rate of 30% between 2016 and 2020. Meanwhile,
based on Global Mobile Data Traffic[2], traffic generated by mobile devices, one
of the most significant and popular methods, will reach 77.5 exabytes per month
in the world in 2022, increasing 36% from 2021 and about 7 times higher than in
2017. Consequently, while the enormous quantity and explosive growth signify the
prosperity of contemporary society and increase industry profits as well as national
revenues, they also have a tendency to bring about more issues, such as slow
and unreliable content delivery, lowering the QoE for all types of communication
services, among which, RTC applications face a lot of challenges that require the
service provider to exert more effort.

Nowadays, RTC applications reach every corner of modern-day life, and RTP is
one of the most prevalent network protocols that plays a crucial role in delivering

1



Introduction

real-time content for RTC. From a commercial and leisure standpoint, RTP services,
such as streaming media and video teleconference, are essential tools for today’s
society since they enable connections among people for work, entertainment, or
personal errands from remote. In particular, when it comes to the great pandemic of
COVID-19, the increasing demands for telecommuting due to lockdown result in a
huge boost for RTC applications. The traffic volume is increased by 15-20% almost
within a week, and web conferencing applications show a dramatic increase of more
than 200% during business hours[3]. Moreover, the rise of COVID-19 caused a
tremendous global spike in the video conferencing market, amounting to 5.77 billion
in 2020[4], which substantially facilitates the growth of business applications. For
example, Zoom expects to boost revenue by 200% and profits by 300% in 2020, and
predicts that it will nearly double its revenue to more than $1.78 billion in 2021
and, as a result, triple its stock price from about $69 to $208[5]. On top of that,
there was already a huge trend before the strike of the pandemic: in 2019, out of
more than 1300 business professionals, 55% of respondents agree that companies
that use video conferencing are more collaborative; usage of video communication
at work has increased for 48% of respondents as compared to two years ago; and
80% of business professionals use video conferencing for meetings, while 78% use
it to facilitate team meetings[6]. Not surprisingly, the market will continue to
grow from USD 6.87 billion in 2020 and reach a staggering amount of USD 14.58
billion by 2029[4]. Additionally, video conferencing is also an energy-friendly and
economically viable way to participate in a meeting by avoiding business travel,
which helps reduce energy consumption and waste production and eventually cut
nearly 5.5 million metric tons of CO2 emissions by 2020[7]. Thus, it is significantly
important for scientists and engineers to devote more resources to studying RTC
traffic in order to improve the QoE perceived by users and guarantee a higher level
of service.

It is undeniable and quite natural that users tend to expect the best quality in
telecommunications services, and thus, in order to attract more customers and gain
higher subscriber loyalty, the service providers ought to be aware of the users’ QoE
and work to make improvements. The International Telecommunication Union
states that QoE is "The degree of delight or annoyance of the user of an application
or service. It results from the fulfillment of his or her expectations with respect to
the utility and/or enjoyment of the application or service in the light of the user’s
personality and current state"[8]. The QoE can be affected by human influence
factors, system influence factors, and context influence factors[9], and out of all the
factors, the most relevant and objective are probably those related to the network
performance.

For RTC applications based on RTP, one of the most common and vital problems
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affecting QoE is packet loss. RTP also relies on packet switching, like other
telecommunications protocols do, to aggregate data into packets that can be sent
over networks. However, unlike TCP, which has the function to detect packet losses
and recover them by retransmission, RTP applications suffer from the phenomenon
of packet loss, resulting in penalties in QoE for users. In this context, it is exactly
due to the inherent difficulties of preventing and recovering losses, we need to come
up with reliable and effective solutions that can detect the network circumstances
and predict the potential losses. As a result, the system could monitor the network
performance and adapt itself to changing configurations by taking precautions to
avoid prospective packet losses or referring to a proper recovery strategy depending
on the information retrieved from RTP traces, and the QoE for users can finally
be maximized.

1.2 Objective

In recent years, when it comes to prediction problems, machine learning techniques
have been proven to be effective. The objective of this thesis, which focuses on RTP
traces, is to propose various machine learning approaches and then highlight the
one that performs the best to predict the existence of packet loss in the near-term
future based on the past statistics about the aggregations of RTP packets for a
certain duration.

In general, this thesis is an elaboration of the command-line tool Retina[10].
Particularly, the main datasets are derived according to the packet captures obtained
from two RTC applications during multiple real video conferences.

Moreover, we will adhere the traditional pipeline of developing machine learning
models to enhance the ability for data processing, data analysis, model tuning,
etc., and consolidate the knowledge of machine learning and networking. On top of
that, we will outline the difficulties and discuss the constraints of the problem, and
finally propose solutions for model optimization. Additionally, extra data gathered
from some common RTC applications, e.g. Google Meet, will be analysed as well
to deepen the understanding of packet loss across multiple domains and to check
the versatility of algorithms.

Finally, the latent as well as ultimate goal is to demonstrate the feasibility of
forecasting losses and the potentiality of implementing the algorithm into real-case
scenarios to effectively and reliably reduce the packet loss and, as a result, improve
QoE for users.
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1.3 Literature review

Numerous works related to RTC applications address topics like classification of
RTP flows, network management, and so on. Meanwhile, attention was also drawn
to the analysis and prediction of packet loss. This section will focus on the current
state of the art and go over several related works produced by other professionals.

In 2004, Lopamudra Roychoudhuri and Ehab S. Al-Shaer[11] focused on the
prediction of packet loss in real-time audio streams based on the available bandwidth,
delay variation, and trend, enabling proactive error recovery for real-time audio
over the Internet. They have identified the delay at the capacity saturation point
of a path as the loss threshold delay, after which packet loss is more likely, and
then tracked the trends of the delay as an indication of congestion causing packet
loss. In particular, they have formalized a delay-loss correlation model to define a
loss predictor approach and evaluated the performance through a simulation.

After two years, Fernando Silveira Filho and Edmundo de Souza e Silva[12] have
evaluated different hidden Markov chain based models as predictors of short-term
loss statistics and proposed an adaptive algorithm to estimate near future losses
based on recent measurements and compare the accuracy of different underlying
models. They have developed a novel recursive algorithm that evaluates the
distribution of the number of packets lost in a time window in the future given the
recent history, and lastly, they have proposed a hierarchical hidden Markov model
(HMM) that has lower computational complexity.

Hooman Homayounfard[13] has addressed in his PhD thesis the issue of defining
a Data Mining (DM) model for packet switching in the communications network.
The main idea behind his work and related research projects is that time-series of
network performance parameters, with periodical patterns, can be used as anomaly
and failure detectors in the network. His project finds frequent patterns in delay and
jitter time-series to be used in real-time packet-loss predictions. He has proposed
two models for approximation of delay and jitter time-series and prediction of
packet-loss time-series — namely the Historical Symbolic Delay Approximation
Model (HDAX) and the Data Mining Model for Smart Routing in Communications
Networks (NARGES) using two kinds of datasets: (i) the Distributed Internet
Traffic Generator (D-ITG) and (ii) the OPNET Modeller (OPNET) datasets.

Instead of predicting the packet loss, Manish P Ganvir and Dr. S.S.Salankar[14]
refereed to the forecasting of packet loss rate by proposing an artificial neural
network trained with Particle Swarm Optimization (PSO) as a training algorithm.
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In recent years, the authors of [15] specifically focused on the video loss prediction
in wireless network by obtaining a model that observes the Service and Experience
Quality Metrics, such as PSNR (Peak Signal-to-Noise Ratio) and packet loss.
They have outlined a methodology and mathematical model for video quality loss
in the wireless network from simulated data, and the methodology is based on
logarithmic and exponential mathematical functions with parameters defined by
linear regression. Furthermore, Dr. Kalpana Saha and Tune Ghosh[16] have adopted
machine learning techniques to predict packet losses for providing autonomous Call
Admission Control (CAC). In particular, decision trees and logistic regression are
used, and based on the performance derived from experiments and observations,
the decision tree model gives the better result.

According to the status quo, the majority of methods for predicting packet
loss are based on the end-to-end delay, which necessitates observations and data
collection from both packet sender and receiver because the delay is calculated
by the difference between the time taken for a packet to be transmitted across
the network from source and the time taken for the packet received at destination.
In contrast, the premise of this thesis is that the only information available is
the statistics about packets that have been received, which means the system is
observing the network condition on just one side of the communication without
the need for detection on other sides. It is simply because, on the one hand,
the packet loss and its causal phenomena such as congestion may only affect a
few participants in RTC applications; on the other hand, the QoE refers to the
individual perception of the service quality, which may differ from the application’s
overall performance. However, it has been widely proved[17][18][19] that delay has
a strong correlation with packet loss, which means the prediction based on delay
is more likely to result in better performance. In contrast, firstly, the statistics
about packet aggregation may not be characteristic if we do not have a lot of
losses. Secondly, the statistics from various applications may differ from each other.
Thirdly, errors and uncertainties can occur during the collection, integration, and
calculation of packets as well as the subsequent computation of statistics. All of
these aforementioned factors could lead to more challenges for prediction.

1.4 Thesis outline

The rest of this thesis is as follows:

• Chapter 2 introduces the general background knowledge about RTP, the
information about Retina and overviews of machine learning approaches;
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• Chapter 3 presents the preliminary work related to Retina, packet loss
characterization, and data preprocessing;

• Chapter 4 formulates the problem, and in the meantime, illustrates the
metrics used for model evaluation and possible challenges;

• Chapter 5 focuses on the development of six machine learning approaches
and the corresponding results;

• Chapter 6 refers to certain preferable machine learning methods derived
previously to perform in-depth analyses regarding real case scenarios, model
optimization and extra data from more applications;

• Chapter 7 draws conclusions, and presents the limitations and future works.
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Chapter 2

Background

In this chapter, in order to better understand the context, we will review the
background knowledge of RTP, specifically in terms of RTC and packet loss.
Moreover, the introduction of Retina will be presented. Finally, all of the machine
learning approaches that have been implemented will be briefly introduced as well.

2.1 RTP

The Real-time Transport Protocol (RTP)[20] provides end-to-end network transport
functions suitable for applications transmitting real-time data, such as audio, video
or simulation data, over multicast or unicast network services. Applications typically
run RTP over UDP to make use of its multiplexing and checksum services, but
RTP does not provide any mechanism to ensure timely delivery or provide other
quality-of-service guarantees. RTP consists of two closely-linked parts: (i) the
real-time transport protocol (RTP), to carry data that has real-time properties;
(ii) the RTP control protocol (RTCP), to monitor the quality of service and to
convey information about the participants in an on-going session. RTP is used
in multiple scenarios, such as audio and video conferences. Moreover, there are
several important terminologies[20] related to RTP for this thesis:

• Synchronization source (SSRC): the source of a stream of RTP packets,
identified by a 32-bit numeric SSRC identifier carried in the RTP header
so as not to be dependent upon the network address. All packets from a
synchronization source form part of the same timing and sequence number
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space, so a receiver groups packets by synchronization source for playback. It
is randomly chosen by the source at session startup.

• Port (either source port or destination port): the abstraction that transport
protocols use to distinguish among multiple destinations within a given host
computer. RTP depends upon the lower-layer protocol to provide some
mechanism such as ports to multiplex the RTP and RTCP packets of a session.

• Payload type: it is a 7-bit number that identifies the format of the RTP
payload and determines its interpretation by the application. It is the type of
coding used in the packet payload. For example, for Jitsi Meet, "111" means
audio and "114" means video.

• Sequence number: it is a 16-bit numeric identifier that indicates the original
sending order and increments by one for each RTP packet sent. Details are in
paragraph 2.1.2.

In the following, we will review several key elements that are important for this
thesis.

2.1.1 RTC

Real-time communication (RTC) is used to describe all types of live telecommuni-
cation that take place with negligible latency or transmission delays. RTC services
include mobile telephony, voice over IP (VoIP), teleconferencing, instant messaging,
interactive gaming, etc. Nowadays[21], for RTC applications, RTP is still most
widely adopted as the fundamental protocol. Additionally, there are multiple other
protocols and solutions cooperating with RTP to support RTC applications, among
which, WebRTC1 is one of the most important and popular tools. WebRTC[22] is
a set of high-level and standardized APIs used in browsers and mobile applications
for video and audio communication. It represents the standard way for RTC
applications to run via the web and organize the use of different protocols.

In this thesis, we focus on two types of RTC applications for online meetings
supporting audio, video, and screen sharing: Cisco Webex Teams2 and Jitsi Meet3.
Both of them use RTP for streaming multimedia content along with STUN (Session

1https://webrtc.org/
2https://www.webex.com/team-collaboration.html
3https://meet.jit.si/
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Traversal Utilities for NAT) and TURN (Traversal Using Relays around NAT) for
session establishment. In particular[21]:

• Webex Teams (or Webex for short) is a business-oriented service that offers
paid plans for enterprises and institutions that require video call service. It is
available as a standalone application for PC and mobile devices, but it can
also be used through browsers that support the WebRTC standard.

• Jitsi Meet (or Jitsi for short) is a free-of-charge RTC application that provides
a simple browser-based user interface for WebRTC-compliant browsers. It is
fully open-source and it is possible to run a private Jitsi server or rely on the
public service available online.

Moreover, the data4 from both applications is collected based on 62 hours of real
calls. Note that in the later stage, data from more RTC applications will be
included as well, and the reasons we focus on these two applications are: i.) The
ground truth for packet loss is available in a convenient way; ii.) The quantity of
the collected data is abundant.

2.1.2 Packet loss

Packet loss is an undesired phenomenon of one or more packets failing to reach the
destination when travelling through the network, and it can be caused by issues
related to networks, hardware, software, or security reasons. In particular, it is
mainly due to the following two reasons:

• Network congestion is the major cause of packet loss. It is an inherent
phenomenon occurring in network elements when the input rate of packet flow
exceeds the capacity of the network node or link. When the quantity and rate
of incoming packets overwhelm a certain router in a network, the buffer tends
to overflow and has no choice but to drop the packets intentionally. Packet
loss can be considered as an indicator of congestion so that the study of packet
loss can also help understand network congestion, and the prediction as well
as the consequent reaction can be referred to as a heuristic way to tackle
congestion.

4This is supported by the ML4QoE group from the SmartData@PoliTO center on big data
and data science and Cisco Systems Inc.
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• Wireless networks are more prone to packet loss than wired networks due to
the probable effects of weak signal strength, distance, physical obstacles, and
natural or human-made interference. It is an issue related to network medium
because of system noise, hardware failure, software corruption and many
more[23]. Moreover, packet loss problem is more complicated and difficult to
handle in mobile networks and the observed loss rates are much higher than
in the stationary case[24].

It is for these reasons that the difficulties in packet loss prediction are highlighted.
However, although we do not distinguish the causes of packet loss in this thesis and
instead focus on the characteristics of statistics of packets with or without losses
for the two applications (Webex and Jitsi) we are working on, network congestion
is still the major reason for packet loss because the data is collected in relatively
steady and decent network conditions.

The effect of packet loss can be severe, resulting in the degeneration of QoE. In
general, packet loss leads to the reduction of network throughput, corruption of
data integrity, growth of latency, etc. For RTC applications, packet loss can be even
worse since what we need is the fast delivery of packets rather than guaranteeing
the delivery. It can result in audio inconsistency, video frame deficiencies, temporal
interruptions, and other issues. A typical example can be seen in Fig2.1[25].
Therefore, these not only require a strategy for mitigation of packet loss effect but
also strengthen our motivation.

On the one hand, for some protocols, it is possible to detect and recover packet
loss, such as TCP. The Transmission Control Protocol is able to ensure reliable
delivery of packets by identifying the packet loss based on packets without acknowl-
edgement and consequently recovering them through retransmission. Furthermore,
in order to cope with congestion, which is responsible for most of the packet
losses, TCP also introduces several congestion control strategies such as slow start,
congestion avoidance, fast retransmit, and fast recovery.

On the other hand, RTP does not guarantee the successful delivery of packets
because it runs over UDP, which does not detect and deal with packet loss since
UDP doesn’t refer to retransmission, which causes delay and is not appropriate
in real-time communications. For RTC applications, 0-1% of packet loss is good,
1%-2.5% is acceptable, 2.5%-5% is poor, 5%-12% is very poor, and greater than
12% is bad[26]. However, RTP enables applications to resort to some mechanisms
to tackle packet loss: the indication of the number of packet loss in the RTCP
receiver report, the variation of bit rate based on congestion level, etc. Moreover,
some specific approaches are implemented to deal with packet loss, like Forward
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Figure 2.1: An example of packet loss effect

Error Correction (FEC) for audio packet loss[11]. But this is far from adequate,
simply because all the technologies have their drawbacks, and on top of that, the
lost packets are no longer available, which reinforces even more our motivation to
develop a preventive method informing the system and reacting to loss before it
occurs.

Technically, for RTP, packet loss can be identified and packet sequence can
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be restored by the receiver based on the sequence number[20] provided by the
RTP header. The sequence number is a 16-bit number that is randomly chosen at
session startup and increased monotonically by one for each RTP data packet sent,
which means that, theoretically, a series of consecutive RTP packets ought to have
a consecutive sequence number and one or more missing values of discontinuity
indicate the corresponding lost packets. This is the exact logic to derive the actual
number of packet losses when it comes to the work related to Retina described in
section 3.1.

2.2 Retina

Retina[10]5 stands for Real-Time Analyzer, and it is an open-source command-line
tool written exclusively in Python that produces rich and complex statistics from
RTC traffic. Based on one or more raw packet captures of RTC traffic, Retina is
able to derive a log of statistics and track the evolution of the stream over time for
RTP flows in csv files. The architecture of Retina is in Fig.2.2. In the following,
we will check out three aspects related to Retina.

Figure 2.2: Retina architecture

2.2.1 Packet capture

Packet capture, or its abbreviation - pcap, is an application programming interface
(API) for capturing network traffic. A pcap file is created by analyzer software like

5https://github.com/GianlucaPoliTo/Retina
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Wireshark6 to collect and store packet information with payload in an encryption
format during network communication, and it can be used to analyze the network
characteristics. Retina directly works with one or more pcap files to derive statistics
about RTP packets. Packets will be distinguished by different flows for the entire
RTP traffic and then aggregated into multiple time bins for a continuous time
series. Additionally, pcap files are also used in conjunction with Wireshark during
the thesis development to investigate specific RTP packet contents.

2.2.2 Outputs of Retina

Besides the plots of network traffic, the most important output of Retina is the
data sheet in a csv file containing multiple types of statistics for a certain time
aggregation. The data is collected for different flows7 in the traffic following the
time series, and the duration of each sample is the time aggregation (time bin)8.
Retina allows users to configure the time aggregation over which the statistics
are computed, and as a result, it is able to derive the overall behavior for all the
packets in each time bin. In this thesis, we will always refer to the time bin of 500
milliseconds9.

Regarding the statistics, there are 96 specific types in total and they are mainly
about the following categories10:

• Interarrival: the difference between the arrival time of the current packet
and the previous one. For example, the "interarrival_mean" is the mean value
for all the interarrival time in a time bin.

• Length UDP: UDP length of the current packet, which is the total length

6https://www.wireshark.org
7A flow is characterized by its SSRC, IP address of source and destination, port of source and

destination, and payload type. Different flows may share the same time series but with various
characteristics, so that we need to deal with them differently and separately.

8The time aggregation or time bin is characterized by its corresponding start timestamp, which
means the difference between any adjacent samples (time bins) is exactly the length (500 ms in
our case) of the configured time aggregation.

9In this thesis, work is completed using time bins with a fixed length of 500 milliseconds
because it is an appropriate duration for having an adequate number of time bins with packet
loss and forming a distinct trend that can be used to characterize packet loss. However, it is also
a good idea to investigate the variation of time bins in the future.

10Details are in https://smartdata.polito.it/rtc-classification/
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of the UDP header and data. For example, "len_udp_std" is the standard
deviation of UDP lengths of all packets in a time bin.

• Inter-length: the difference between the UDP length of the current packet
and the previous one. For instance, "interlength_udp_min" is the minimum
difference in UDP length between any two adjacent packets in a time bin.

• RTP inter-timestamp: the difference between the current packet RTP
timestamp and the previous one. The RTP timestamp reflects the sampling
instant of the first octet in the RTP data packet[20]. The initial value of the
timestamp is generated randomly, and certain consecutive RTP packets may
have equal timestamps if they are produced at the same time.

• Inter-time sequence: the difference between the sequence number and the
RTP timestamp of the current packet. The initial value for RTP timestamp
and sequence number are both generated randomly, but multiple consecutive
RTP packets may have the same timestamp if they are produced at once,
while the sequence number is always monotonic.

The statistics can be considered as the characteristics of all the received packets in
a time bin. If the traffic during a certain time bin experiences losses in between, the
missing packets will affect the overall behavior not only for the target time bin but
also the neighborhood time bins, because the congestion is not an instantaneous
phenomenon but an evolution in the network, which may not induce losses at the
beginning but influence the traffic continuously and result in an extraordinary
pattern with respect to normal conditions. In this thesis, we will refer to these
statistics as features to characterize the time bin with or without loss and make
predictions. The work in this thesis is totally based on the outputs of Retina as a
data-driven problem.

2.2.3 An issue of Retina

Retina was designed specifically to output statistics for packet captures without
taking into account the packet loss. Thus, the major problem of Retina is that
it can only output an estimation of packet loss but not be able to derive the
exact number of packet losses in a time aggregation. Although our prediction is
only about the existence of packet loss in the near future, regardless of the exact
number of losses, the actual quantity is substantially useful when it comes to the
understanding of packet loss and the analysis of the traffic. Therefore, the first
task of this thesis, which will be presented in the next chapter, is to improve upon
the old version to obtain the exact quantity of packet losses in each time bin.
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2.3 Algorithm introduction

As one branch of artificial intelligence, machine learning is the study of computer
algorithms that improve automatically through experience. It serves and supports a
series of applications ranging from data mining programs that discover general rules
in large data sets to information filtering systems that automatically learn users’
interests. In this thesis, we have developed multiple machine learning approaches
to learn the underlying patterns of packet loss phenomena based on the statistics
and apply the knowledge to identify and predict potential losses in the future.

In this section, six machine learning methods developed and implemented in this
thesis in terms of classification and anomaly detection will be briefly introduced in
order to give a fundamental insight into the methodologies for predicting packet
loss.

2.3.1 Classification

Classification in machine learning is the process of using computer algorithms to
recognize and categorize objects, and thus to help separate automatically a large
number of targets into corresponding classes. In our case, the categories are time
bins with or without packet loss, and what we need to do is to develop machine
learning algorithms based on different characteristics of the two classes to derive a
classifier with decent performance. In particular, we have referred to four different
algorithms described in the following:

Decision tree A decision tree (DT) is a decision-making tool using a tree-like
structure to go from observations of an object to finally drawing conclusions about
the target value. It is a non-parametric supervised learning method for creating a
model that predicts the value of a target by learning simple decision rules inferred
from the data features. For classification, each node in the tree is a decision node
that refers to a certain feature value as a specific threshold, for example, the one
that maximizes the information gain, to split the tree until reaching child nodes in
the same category. An example can be seen in Fig.2.3

A decision tree is one of the most popular and traditional machine learning
algorithms for classification due to its simplicity, low cost, and good interpretability.
However, it tends to create over-complex trees, leading to overfitting that does
not generalize the data very well. In this thesis, we refer to the Python package
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Figure 2.3: An example of decision tree

scikit-learn to implement decision trees.

Neural network A neural network (NN), also known as an artificial neural
network (ANN) or deep learning, is a class of machine learning algorithms that
use a network of connected units (neurons) capable of adapting to states and
exchanging information to perform classification or regression. It is a concept
inspired by biological neural networks in animal brains, and it tries to recognize
latent relationships and patterns in data based on a process that resembles the
way the human brain operates. In our case, we have developed two types of neural
networks: deep neural network (DNN) and long short-term memory neural network
(LSTM NN).

A DNN is a typical neural network with multiple intermediate layers other than
the input layer and output layer. Fig.2.411 shows an example of the DNN structure.
It is a feedforward network following a multi-layered perceptron (MLP) structure
that retrieves data from the input layer and transmits information through the
network to the output layer, and consequently, modifies the weight as well as the
bias of each neuron through backpropagation based on the difference between
outputs and desired values.

LSTM NN is a type of recurrent neural network (RNN) that relies on connections
between nodes that form a directed or undirected graph along a temporal sequence
so that it works better for dynamic behavior. LSTM outperforms RNN for inputs

11https://www.ibm.com/it-it/cloud/learn/neural-networks
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Figure 2.4: An example of DNN structure

over a long period of time by replacing RNN cells with LSTM cells (Fig.2.512)
including an input gate, an output gate, and a forget gate. LSTM is able to use
internal states to memorize a sequence of inputs so that it does not lose information
if the sequence has correlations in between. In our case, in order to make a
prediction, we will refer to the statistics in the past, which are a series of values
affected by packet loss. Thanks to LSTM, we are able to extract the latent trend
of a series of statistics instead of treating them individually.

Figure 2.5: The LSTM cell

An artificial neural network typically works efficiently and versatilely. On the

12https://en.wikipedia.org/wiki/Long_short-term_memory
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contrary, due to the lack of interpretability, it normally works as a black box. In
this thesis, we refer to TensorFlow to implement both DNN and LSTM.

Random forest Random Forest (RF) is an ensemble supervised learning method
that elaborates on decision trees. For classification, random forest constructs a
number of classification trees with different selections from inputs and training
paths, and refers to the majority of output categories as the predicted class. The
basic mechanism is illustrated in Fig.2.613.

Figure 2.6: An example of how random forest works

As one of the most important machine learning algorithms, although random
forest requires more computational resources and training time, it can overcome
the problem of overfitting and tends to have better performance. In this thesis, we
refer to scikit-learn to implement random forest and, at the same time, we also
refer to imbalanced-learn to deal with imbalanced datasets.

Gradient boosting tree Gradient boosting[27] is a machine learning technique
that sequentially builds relatively simple models in which each one tries to optimize
the model and make a prediction based on the error generated by the previous one.
Similar to random forest, gradient boosting tree or gradient boosting decision tree
(GBDT) is also an ensemble machine learning method that elaborates on decision

13https://community.tibco.com/wiki/random-forest-template-tibco-spotfire
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trees to fit a tree on the residual error of the previous tree instead of building
parallel trees.

In particular, in order to implement GBDT, we will use eXtreme Gradient
Boosting (XGBoost)14 which still refers to the principle of gradient boosting but
improves upon it by introducing regularization to avoid overfitting.

2.3.2 Anomaly detection

Anomaly detection, as known as outlier detection, is a group of machine learning
algorithms that endeavor to recognize rare events or observations that do not follow
normal behavior or predetermined rules and significantly deviate from the majority
of the targets. Such suspicious cases may produce unusual and distinguishable
patterns that can be used in machine learning approaches to detect anomalies. In
this thesis, we have tried two methods in the following:

Isolation forest Isolation forest (IF) is an unsupervised anomaly detection
method that tries to explicitly isolate the outliers from the dataset rather than
constructing a profile of normal cases. It starts from a random value in a random
feature and splits the dataset into separate portions. Such a process can be realized
by a binary tree. Then, it continues repeating the partition until all the data at
the node has the same values and finally outputs an anomaly score for each data
point. For an outlier, it is easier to separate from the rest of the samples due to its
deviation from normal cases and results in a shallow depth in the tree, while for
normal instances, they are close to each other because of similar behaviors and,
thus, it is harder to be isolated, leading to a deep depth in the tree. A simple
example describing the isolation process is in Fig.2.715. In this thesis, isolation
forest is also realized by scikit-learn.

Autoencoder An autoencoder is a special type of artificial neural network that
has the same shape of input and output layers with a bottleneck in between.
Fig.2.816 shows an example structure. It tries to retrieve the input data, learn
the latent representation, and reconstruct the input as much as possible. An

14https://xgboost.readthedocs.io/en/stable/
15https://en.wikipedia.org/wiki/Isolation_forest
16https://medium.com/analytics-vidhya/autoencoders-with-tensorflow-2f0a7315d161
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(a) Normal data point (b) Anomalous data point

Figure 2.7: An example of isolating a non-anomalous and an anomalous point in
a 2D Gaussian distribution

autoencoder consists of two components: the encoder and the decoder, in which
the encoder tries to summarize the input and reduce the dimension to feed the
bottleneck, and the decoder attempts to reproduce the input with a smaller
reconstruction error. In order to make the autoencoder work for anomaly detection,
we use it as an unsupervised machine learning method by only inputting normal
cases. As a result, the NN can only learn the latent representation of normal cases,
and with an input of an outlier, the autoencoder will reconstruct the input the way
it reconstructs a normal case and therefore generate a larger error. In this thesis,
we develop the autoencoder by TensorFlow.

Figure 2.8: An example of autoencoder
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Chapter 3

Dataset description

The objective is to predict the presence of packet loss based on statistics about
previously received packets. In this chapter, we present the detailed description of
the dataset that we will be working on, starting from the data source to the final
clean and well-structured data sheet. In particular, all of the preliminary work will
be discussed, and besides the introduction of the procedure deriving the actual
number of packet losses for Retina, we will focus on data preprocessing and packet
loss characterization, and finally be ready to formulate the problem.

3.1 Work related to Retina

In the first place, it is essential to derive the quantity of packet loss. Retina collects
packets for each flow and aggregates them into certain time bins (500 ms in our
case) to calculate statistics, and what we need is the number of packet losses in
each time bin.

Based on chapter 2.1.2, losses can be detected through the investigation of
sequence numbers. Therefore, the way is to gather the sequence numbers of all
packets in a flow and then identify the missing values to reveal packet loss. If the
difference in sequence numbers between two contiguous packets is greater than one,
it means one or more sequence numbers are missing. In other words, one or more
packets are lost. To sum up, the number of packet loss can be calculated as:

nloss = seqt − seqt−1 − 1,

in which nloss is the number of packet loss between adjacent packets, seqt is the
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sequence number of the packet at current timestamp and seqt−1 is the sequence
number of packet at previous timestamp. At last, the packet aggregation process
also includes information about the number of packet losses for each time bin by
summing up the number of losses between any continuously received packets in a
time bin. However, there are still three concerns that may lead to mistakes that
we should be aware of:

1. The RTP sequence number is generated randomly for the first packet and
increased by 1 for each of the following packets sent, but it won’t keep growing
to infinity because the sequence number space is limited. The RTP sequence
number is a 16-bit number and the maximum is 216 − 1 = 65535 while the
minimum is 0. When the sequence number reaches the maximum, it will start
over from 0 and this kind of mechanism can be considered a transition. If we
encounter a series of sequence numbers with a transition among them in a
time bin and do not take into account the problem, it will generate mistakes1

to packet loss calculation.

2. We may have multiple duplicates of packets with the same sequence number
due to: (i) a sender somehow detects that a packet is not transmitted correctly
(the packet actually arrives without problems at the receiver end), and then it
might retransmit the exact packet and result in duplicates at the destination;
(ii) problems related to hardware, software, or networks. It is a huge problem
for the calculation of the number of losses. For example, we have a series of
sequence numbers of [100, 101, 102, 100, 103, 104] in which the second "100" is
a duplicate. As a result, the packet loss will be [0, 0, -3, 2, 0]. Not to mention
that it will lead to more problems if the duplicate arrives at a different time
bin.

3. RTP does not guarantee in-order delivery. RTP packets are sent from the
sender in order with incremental sequence numbers and are supposed to arrive
at the receiver in the same order as well. But in reality, due to the intrinsic
property of RTP and the dynamic and complicated situations of networks, a
certain destination may encounter chaotic arrivals of packets with sequence
numbers that are out of order. This is not a big problem for RTP since the
receiver is able to restore the order based on the sequence number and "declare"
the arrivals with a very short and acceptable delay.

1For example, we have a series of sequence numbers: [65533, 65534, 65535, 0, 1, 2]. If we
do not identify the transition, the resulting packet loss will be [65534-65533-1, 65535-65534-1,
0-65535-1, 1-0-1, 2-1-1], that is [0, 0, -65536, 0, 0], which is absolutely a mistake.
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However, when it comes to the identification of packet loss, this has to be taken
into consideration because we are dealing with packets following a time series
and the aggregations for time bins are also in sequence so that we can utilize
the previous information to predict future packet loss, but the out-of-order
arrivals and the corresponding out-of-order sequence numbers actually follow
an in-order time series, which will lead to an incorrect calculation of packet
loss. For instance, a series of RTP packets with sequence numbers from 1
to 10 are sent in order but they arrive at the destination not in the original
order and result in sequence numbers of [1, 2, 3, 4, 6, 5, 7, 8, 9, 10]. If we do
not restore the order, the resulting packet losses are [0, 0, 0, 1, -2, 1, 0, 0, 0],
but in reality, there’s no loss at all. It is not a problem if these packets are
aggregated into the same time bin since the summation of the losses is still
0, but if they are clustered into two neighboring time bins2, it will yield an
incorrect calculation of packet loss in both of them. In other words, we must
solve the problem since we are dealing with packet loss in different time bins
and an out-of-order packet that is supposed to arrive at a certain time bin
but actually arrives at the previous or following time bin will lead to incorrect
calculation. Not to mention that it may also interact with the aforementioned
problems and generate even more mistakes.

The problems mentioned above may affect the packet loss calculation separately
or along with each other to generate even more errors, which will in turn mistakenly
treat the time bin with loss as one without loss or the other way around, and for a
data-driven problem, if the original labels of data are incorrect, the result will be
biased, inaccurate, and even totally wrong. Thus, it is vital to solve the problems
by taking into account all the aforementioned aspects, and it is also better to deal
with all the sequence numbers for the entire flow and then make aggregation instead
of the other way around. The flowchart of the proposed solution is in Fig.3.1. In
particular:

• The block of checking the existence of transitions is simply because we need
to deal with sequence numbers between two transitions, either between the
start of the flow and the first transition, or between the last transition and
the end of the flow, separately so that it is possible to eliminate the potential
errors induced by transitions. Furthermore, out-of-order arrivals of packets

2For example: we have two time bins with timestamp 12:10:00:000 with sequence number
[1, 2, 3, 4, 6] and 12:10:00:500 with [5, 7, 8, 9, 10]. The out-of-order packet is the one with
sequence number 5, and the resulting packet losses for them are [0, 0, 0, 1] and [1, 0, 0, 0], which
is incorrect and corrupts two flawless time bins.
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Figure 3.1: Flowchart of packet loss calculation for a flow

may also occur around the transition3. Therefore, we also need to extract
those out-of-order near transitions and put them back in the correct position.

• The blocks for dropping duplicated sequence numbers will only eliminate the
same sequence number for an individual segment between transitions (start
or end of the flow), since it is possible to have the same sequence number if
there’s a transition. Note that the drop action will also drop the timestamp,
but this is not a problem because duplicates will induce errors for the packet
loss calculation, while on the other hand, they are not packet loss.

• For an individual segment, we simply sort sequence numbers in an ascending

3e.g., a series of sequence numbers of [65533, 0, 65534, 65535, 1, 2] or [65533, 65535, 0, 65534,
1, 2].
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order because there’s no transition in between. Consequently, possible out-
of-order arrivals will not generate any problems after the sort, and more
importantly, by considering all the sequence numbers in the entire flow, the
problems related to out-of-order arrivals in another time bin will also be solved
after the sort.

Additionally, Retina allows users to include log files (txt for Webex and log
for webRTC), which are available from specific applications or browsers and have
information related to RTP traffic, including the record of packet loss, which can
be used as the ground truth. At the beginning, we also referred to them to evaluate
the correctness of outputs, but this kind of log file is not always accessible and is
not accurate, so we can only use them as a reference.

As a consequence, the first job of this thesis is done. Based on the procedure
mentioned above, we are finally able to derive the actual quantity of packet loss in
each time bin for all flows in RTP traffic, and make them available and put them
together with statistics for the same time bins in the Retina output, which is the
final data sheet we are working on for the prediction.

Moreover, as mentioned in section 2.1.1, we are working with two RTC applica-
tions (Webex and Jitsi) and the data is collected during dozens of hours of real
calls, including 70 teleconferences with two or more participants. Note that the
type of network is either WiFi or Ethernet, and mobile networks like 4G or 5G are
never used. All the RTP traffic of each call is recorded and captured by Wireshark
on one side of the communication, which means we are observing the traffic on this
side. Thus, there are two types of packets: received packets and sent packets, and
packets that are sent out from the end of the observation do not have losses (on
this end) because they are assumed to be generated without errors and losses can
only occur after being sent out. In general, the RTP traffic is divided and recorded
into multiple pcap files (details are in Table.3.1), and by running the new version
of Retina, 70 csv files are generated to be the dataset for further analysis. In
particular, each file is composed of multiple rows in which each row corresponds to
a time bin4 of 500 ms and 87 columns including timestamps for time bins, statistics,
number of packet losses, name of the flow and other redundant information. At
this stage, we can start the actual work related to packet loss prediction. Note
that in the following stages, we merge datasets from both applications all together
as an integrated dataset and work with it instead of using them independently to
distinguish a specific application. This is because Webex and Jitsi both refer to

4A time bin of 500 ms represents a data sample with the statistics calculated over 500 ms,
which means in 1 second, we have 2 samples.
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RTP as the base network protocol for real-time communication so that they share
similar characteristics, and another reason will be illustrated in paragraph 3.2.1.

Description Value
Number of pcap files 70 (Webex: 21, Jitsi: 49)
Total duration [hour] 66.51 (Webex: 20.81, Jitsi: 45.7)

Average duration [minute] 57.83 (Webex: 59.45, Jitsi: 57.13)
Maximum duration [hour] Webex: 2.25, Jitsi: 2.11

Minimum duration [second] Webex: 80.5, Jitsi: 103.5
Start time of data collection 2020-04-17 07:59:45
End time of data collection 2021-01-18 15:03:18

Maximum number of participants 6
Minimum number of participants 2

Table 3.1: Summary of the data collection

3.2 Data preprocessing and packet loss charac-
terization

After the operation of Retina with the complete function of obtaining the number
of packet losses, over all the pcap files, we get multiple raw datasets, which are not
ready for the implementation of machine learning methods because we still need to
perform data preprocessing and packet loss characterization to have an integrated
and well-structured dataset. In general:

• Data preprocessing is a typical procedure during machine learning develop-
ment or data mining to eliminate errors, remove irrelevant information, select
useful segments, and so on. Normally, it is composed of data cleaning, data
transformation, and data reduction. In our case, we have in raw data redun-
dant information about packets sent from our own end, missing values due
to inconsistent timestamps, different scales of values, complex situations for
flows, etc., which require a series of preprocessing steps that will be discussed
in detail in the following.

• Packet loss characterization is actually the analysis and characterization
of time bins5 with loss, and the comparison with respect to time bins without

5In the following, time bins with loss or without loss may also be expressed as "loss" time bins
or "no-loss" time bins for simplicity. Similarly, for datasets of time bins with loss or without loss,
simple expressions are "loss" dataset/data/sample/set or "no-loss" dataset/data/sample/set.
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loss. It is the key process to help analyze as well as understand packet loss
phenomena in the network for our particular RTC applications and gain useful
and meaningful features that can describe the behaviors of packet loss and be
utilized for machine learning approaches. We will conduct overall analyses for
all datasets and comparable characterizations in an average manner.

Moreover, the characterization of the exact time bin with loss is not useful
because we are trying to predict the presence of packet loss in a future time
bin whose information is not currently available, so that we cannot correlate
the knowledge of the time bin with loss with the status of the time bin in the
future. In other words, what we care about is the characteristics of time bins
right before the loss, which can be utilized to derive the trends and features
of the RTP flow as we are approaching the loss, and it is exactly based on
this tendency that we can make predictions using machine learning methods.
However, the overview of time bins with loss across all the RTP traffic in terms
of distribution, quantity, statistics, and so on, is significant to help understand
the properties of packet loss and reveal the difficulties for prediction.

Technically, in order to forecast the potential packet loss in the future by
making use of statistics in the past, we need to find a way to differentiate
the behavior of statistics. On one hand, the statistics are supposed to have a
steady state when all the packets arrive successfully, while on the other hand,
the packet loss will have an impact because when it comes to the calculation
of statistics in a time bin, a missing packet could lead to a bias. For example,
it enlarges the interarrival time between two adjacent packets that ought
to have a packet/packets in between and eventually influences the average
interarrival time of the time bin. Moreover, as mentioned before, packet loss
can be considered as an indicator of network congestion since it is the major
source of loss phenomena, and congestion is not an instantaneous event but
a cumulative process that also influences the packets’ successful arrival and
consequently affects the statistics of them. For instance, when congestion
occurs, the affected router in the network starts to accumulate packets in its
buffer and further induces an increasing delay for each packet that is about
to arrive and waits in the buffer. This kind of situation will eventually lead
to the variation of arriving packets until the congestion is solved. That is to
say, the network is experiencing a progressive and continuous change as we
are approaching the packet loss, which will be reflected in the changing of
statistics of received packets not only near the packet loss but also from a
relatively long time ago, while on the contrary, without the influence of loss,
the statistics of received packets are calculated taking into account all the
packets without a critical variation over time. To sum up, the characterization
of packet loss is actually the process of finding the trend of the statistical
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changes so that we are able to tell apart a "loss" time bin from a "no-loss"
time bin and exploit certain types of statistics with an evident tendency for
machine learning approaches.

Data preprocessing is blended with packet loss characterization, which helps
make decisions, and the overall architecture is in a flowchart (Figure 3.2) divided
into 4 major steps:

1. Process for each file;

2. Process for each flow;

3. Process after removing missing values;

4. Final dataset generation.

In the following, we will follow them step by step to check out the packet loss
distribution, characterize packet loss, select features, and finally, derive the dataset
that can be directly used during machine learning method development.

3.2.1 Process for each file

The first step is a process for all the csv files containing raw data of RTP traffic,
and at this stage, a preliminary analysis of packet loss is performed as well.

Preprocessing

First of all, we need to read data from all csv files to generate seventy data sheets,
and each of them contains a timestamp, all types of statistics, number of packet
loss, flow name6 and some redundant information for each time bin.

6A flow name is a combination of SSRC, IP address of source, IP address of destination, port
of source, port of destination, and payload type. The column is named "flow", which is enough
to distinguish flows so that we can get rid of the rest of the columns like "p_type", specifically
describing each entity. For example, (’0xd38ab074’, ’192.168.152.62’, ’192.168.152.144’, 51066,
58205, 111), "0xd38ab074" is SSRC, "192.168.152.62" and "192.168.152.144" are IP addresses,
"51066" and "58205" are ports, and "111" is payload type.
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Figure 3.2: Flowchart of data preprocessing and packet loss characterization
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Besides the removal of useless columns, including the name of the software,
label for audio or video, IP address for source or destination, port for source or
destination, and so on and so forth, the most important process is to eliminate the
flow generated from the end of observation. As mentioned at the end of section
3.1, the flow with the source being on our own side does not have any losses when
the traffic collection is done on our side. The packets produced by our end will be
sent out and potential losses will only occur after the delivery, which cannot be
detected based on our observation.

The way to tell apart the flow of our own end from multiple ends is based on
the IP address of the source. If the source IP address of a flow starts with "192", it
means this flow is transmitted from our end to the other end of the communication
because in modern network communications, network address translation (NAT) is
applied to avoid the need to assign a new IP address to every new host and solve
IPv4 address exhaustion. Through NAT, an IP address will be translated into
another common address when a packet is transmitted from the local network to
the outside, and when a packet is received at the gateway of the local network, the
IP address of the source is a translated version, which is totally different. However,
in our case, there are flows with source and destination IP addresses that both begin
with "192," and this is simply because the flow is a peer-to-peer communication
in which both sides of the flow are in the same local network. Under this special
circumstance, we also need to eliminate such flows because there is no way to know
which one is generated from our end and packet loss is also unlikely to occur in a
local network.

Additionally, we also remove flows with a total length (duration) smaller than
or equal to 5 seconds (number of time bins smaller than or equal to 10), and the
reason will be presented in the later stage.

As a consequence, by filtering the flows and removing useless information for
each file, we complete the first step of data preprocessing and obtain multiple
meaningful RTP flows for each file. In general, we have 1217 flows in total that are
transmitted from outside for 70 RTP traces, and based on these flows, we can get
an overview of packet loss.

Preliminary analysis of packet loss:

The preliminary analysis of packet loss will take into account quantity, distribution,
situations for both applications, etc.
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Overview of overall quantity To start with, an overview of the total quantity
for all flows can help understand how RTP traffic is affected by packet loss and
how many losses we have. Before that, we need to define two terms:

• A sparse loss means a time bin with loss and in its neighbourhood of 5
seconds (10 samples before this time bin and 10 samples after), there’s no
more time bin with loss.

• A concentrated loss means a time bin with loss and in its neighbourhood of
5 seconds, there’s at least one more time bin with loss.

A summary of six types of quantities is in Table 3.2. Time bins with loss only occupy
1.52% of the total quantity, which is a very small amount with respect to time
bins without loss. However, the small percentage does not indicate a good quality
of communication because, on one hand, the losses are not equally distributed
over all flows, and for some flows, we encounter a lot of losses compared to other
flows. On the other hand, around three-fourths of all the time bins with losses are
concentrated losses, which means losses tend to occur at the same time, resulting
in an aggregation of losses because the causal phenomenon, congestion, induces
losses at certain times and the effect will linger for a while, keeping generating
losses. This kind of burst of losses significantly affects communication. Moreover,
regarding the actual number of packets sent, most of them are successfully received
and only 0.36% are lost, which is a good performance, but it is still an issue if the
lost packets carry critical information. The analysis of overall quantity gives us an
overview of the RTP traffic, but this is not enough and we need to dive into details
regarding both applications and packet loss distributions.

Description Quantity[-] Percentage[%]

Total time bins 2137727 -
Time bins with loss 32472 1.52

Sparse loss 7374 0.34 (22.4)
Concentrated loss 25098 1.18 (77.6)

Total packets 59393645 -
Total lost packets 216735 0.36

Table 3.2: Summary of quantities for all flows
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Overview of quantity for each application Although both Webex and Jitsi
rely on RTP for real-time communication and share similar characteristics for
statistics, it is still important and necessary to investigate the distribution of packet
loss for each of the applications.

In the first place, a bar chart in Fig.3.3 shows the total quantities for "loss"
and "no-loss" time bins of each application, and from it, Jitsi has more data than
Webex, which coincides with the fact that Jitsi has more RTP traffic collections of
49 files out of 70, and this also holds for the quantity of time bins with or without
loss for both applications. On top of that, both applications possess an awfully
similar percentage of around 1.5% for time bins with loss, which indicates that the
"loss" time bins are distributed identically for both applications and rarely occur
with respect to "no-loss" time bins.

Figure 3.3: Quantities of time bins with or without loss for Webex and Jitsi

Moreover, the study of the quantity of time bins is not adequate and in order to
further comprehend the packet loss phenomenon for each application, the cumulative
distribution function (CDF) of the number of packet losses in a single time bin and
the empirical distribution function (ECDF) of duration between any consecutive
"loss" time bins7 for both applications are presented in Fig.3.4. On one hand, based
on Fig.3.4a, around 65% for Webex and 70% for Jitsi of time bins with loss only

7Consecutive "loss" time bins means two time bins where there’s no loss at all in between.
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(a) CDF of number of packet
loss in a time bin

(b) ECDF of duration between consecutive "loss" time bins

Figure 3.4: Detailed information of packet loss for both applications

have 1 packet loss in 500 ms, while most of the "loss" time bins (around 95%)
for both applications have a small number of packet losses less than or equal to
10, which means in most cases, regardless of the application, we have a small
number of packet losses. Meanwhile, we also have very few cases of "loss" time
bins with packet losses greater than one hundred, and especially for Jitsi, certain
time bins even have packet losses of more than one thousand, which is possibly
due to unexpected Internet disconnection, software issues or equipment failure. We
do not exclude this data because: (i) they are very few and they are still losses
after all; (ii) the exact cause remains unknown. On the other hand, according to
Fig.3.4b, in general, around 80% of the durations between adjacent "loss" time bins
are shorter than 17 s and, in some extreme cases, we have durations greater than
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1000 seconds, indicating a long RTP session without any loss and a good quality of
communication. In particular, zooming in the figure, around 30% of durations are
0.5 s, which means the subsequent "loss" bin out of the consecutive bins comes right
after the previous one, and 60% are less than 5 s, which demonstrates that larger
amounts of losses are aggregated over a time window of 5 seconds. Additionally,
there are 36,309,637 packets sent and 135,930 lost, occupying 0.37% for Jitsi, while
there are 23,089,095 packets sent and 81,040 lost, occupying 0.35% for Webex,
which is similar to the previous percentage of 0.36% for the entire dataset.

In a word, despite the fact that Webex has relatively a few more packet losses
in a time bin according to the CDF, both applications share almost the same
distribution. Together with the analysis in terms of quantity, although Webex and
Jitsi are two completely different applications, the circumstances of packet loss
phenomenon for both of them resemble each other very much, which proves that it
is reasonable to put all the datasets together.

Based on the preliminary analysis of packet loss, we gain an elementary under-
standing and some intuition about the packet loss phenomenon in our specific case.
On top of that, each file is broken down into several RTP flows that are ready for
further processing and analysis. Note that from now on, all the data processing,
analyses, and the subsequent predictions are based on flows instead of the entire
set of packets in a certain call. Although multiple RTP flows may stream over the
same time, which means the prediction along a time series may make more sense
by taking into account all the previous information about packets regardless of the
source or type, it is still feasible and reasonable to deal with flow by flow because:

• The streaming of different RTP flows may overlap over a certain time duration,
but the start or the end of each flow is different in most cases, which means
the number of flows in a certain time bin may be different from another one,
and thus the quantity of features (statistics) we can retrieve varies along the
time and cannot feed a unified machine learning model with a fixed input
shape.

• Another possible way to consider all the flows is to average the behaviors in
a certain time bin. But, on one hand, the averaging of different flows will
introduce more errors and loss of information. On the other hand, different
flows have different scales of values for statistics, and in order to average them,
a normalization process is necessary to reduce the scale, but the normalization
of values in one time bin is not adequate since the packets from a flow in 500
ms cannot represent the overall characteristics and reflect the actual range of
values of the flow.
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• Retina calculates statistics based on each flow, and thus the combination of
multiple flows will reduce the effect of packet loss over statistics with respect
to an individual flow, which eventually leads to an ambiguous result.

3.2.2 Process for each flow

The second step is based on data about all the flows derived above, and at this
stage, we can take a glance at the trend of statistics with respect to packet loss in
flows to give a rough characterization of packet loss.

Preprocessing

The prediction is for the presence of packet loss instead of the quantity of packet loss,
so first we convert the quantity of packet loss in a time bin to the existence condition
of packet loss for the time bin. In other words, we create a binary label for each time
bin (each data sample or each row in the data sheet) for each flow in our dataset:
0 represents time bin without loss (number of packet loss in a time bin = 0) and
1 represents time bin with loss (number of packet loss in a time bin > 0).

Secondly, a normalization process is needed due to the fact that statistics from
various flows may have different numerical scales. For example, a flow of medium-
quality video has a bit rate of around 2500 kbps while a flow of audio has a bit
rate of around 200 kbps. Normalization is the process of modifying values on
different scales to a notionally common scale. By reducing or increasing the scales
of different ranges of values to a common scale, issues caused by different scales of
values in flows can be eliminated without losing the original trend and distribution
of statistics in our dataset. Another potential advantage is that machine learning
approaches tend to work better with values of smaller scale. Specifically, for all the
values of each type of statistics in each flow, we perform a min-max normalization
to bring all values into the range [0,1] and the formula is:

x′
i = xi − Xmin

Xmax − Xmin

,

in which x′
i is the normalized value of a certain original statistic value xi, and Xmax

and Xmin represent the maximum and minimum value of a certain type of statistic
X in a flow.

Finally, there’s still another critical issue about missing values. In our dataset,
each flow does not stream continuously along time, which means our dataset for

35



Dataset description

each flow cannot guarantee the continuity in terms of timestamp and the duration
between two adjacent time bins might be larger than 500 ms. In other words,
the information between these kinds of contiguous time bins is missing. Without
taking care of such a problem, both analysis and prediction of packet loss will
definitely lead to erroneous results because the dependency of previous statistics
for prediction may include values from dozens of seconds or even several minutes
ago, which are not informative and not correlated with current conditions at all8.
In order to solve the problem, one possible solution is to replenish all the missing
values by interpolation based on the position of the missing values with respect
to "loss" time bins. For example, if a missing value is 3 seconds before a time bin
with loss, we can fill in the void with the average value of all the time bins with a
"loss" time bin in the next 3 s. However, interpolation may not be appropriate in
our case because: i,) discontinuity in flows is very common in reality, which means
frequent replenishment with interpolation cannot represent the actual behaviour;
ii,) interpolation will introduce errors and uncertainties due to averaging; iii,)
interpolation may lead to results that meet our expectations since a lot of time bins
are derived based on mean values, which are smoother to eliminate extreme cases.
Therefore, we decide to refer to another approach by discarding all the missing
values. In order to guarantee the continuity of time bins, we only keep available
time bins between two adjacent missing values9 that have a duration greater than
5 s in between. That is to say, we only retain continuous time bins with sequential
timestamps that have a whole duration larger than 5 s. A better illustration can
be seen in Fig 3.5 and the reason why we refer to 5 s as a threshold is discussed

Figure 3.5: The strategy of discarding or keeping data due to missing values

in the next section. Apparently, based on the removal of improper time bins, we
break down the original flow into multiple individual sub-flows with continuous

8For example, if we refer to the past 3 seconds (6 samples) to make a prediction and the
timestamp for each time bin in ascending order is: "2022-05-17 09:09:40.500", "2022-05-17
09:09:45.500", "2022-05-17 09:09:46.000", "2022-05-17 09:09:46.500", "2022-05-17 09:09:47.000",
"2022-05-17 09:09:47.500", we will encounter an unexpected duration (the information in this
duration is missing) of 5 s between the first and second timestamp and include a value from 7 s
ago, which is supposed to be a value from 5 s ago.

9Two missing time bins that should have existed and there’s no more missing values in between.
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time bins lasting more than 5 s (the number of time bins greater than 10 samples)
as a whole, and from now on, they are ready for further analysis for consecutive
time series and feature selections without worrying about the missing values.

Rough characterization of packet loss:

The information about time bins from the near future is unknown, and in order
to predict the presence of packet loss, the available resources in possession are
statistics for each time bin in the past, so it is necessary to ascertain the types of
statistics that can be utilized to characterize the time bin with packet loss. More
precisely, the characterization of packet loss is not the description of the loss itself
but actually the trend analysis of statistics in a certain number of time bins right
before the target time bin in the future. As a result, it allows us to distinguish the
future time bin with or without loss using machine learning approaches based on
different trends of statistics in the past.

Based on previous preprocessing, we derive the dataset for each flow, and in this
section, we focus on the rough characterization of packet loss in terms of certain
random flows and some random bins to cast a glance at some samples and obtain a
fundamental understanding of statistical trending. Prior to this, the time window
of study must be defined in order to determine the number of statistics in time
bins for analyses and subsequent predictions. In our case, we decide to refer to a
length of 5 seconds10 because it is neither too long to include useless information
from a relatively long time ago that has nothing to do with the future target time
bin, nor too short to lose potentially helpful and informative values, leading to an
inadequate quantity of features, not to mention that an adjustment of the time
window to a shorter duration is also available if it’s needed during the machine
learning approach development. This is also the reason why we discard the data
between adjacent missing values if the length is not greater than 5 seconds (10
samples). Additionally, with a duration less than or equal to 5 seconds, we do not
have a time window of 5 seconds but even in the worst case scenario, when the
length is only 5.5 seconds (11 samples), we still have at least one sample at the end
that can be used since a 5 s-long time window of study before it with continuous
time bins is available. Moreover, for the sake of characterization of packet loss,
we also need to distinguish between different conditions of packet loss and make
comparisons with respect to the behavior of time bins without loss, because the

10A time window of 5 seconds right before the target time bin with or without loss consists of
10 time bins (10 data samples) of 500 ms.
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sparse loss and the concentrated loss both have a significant amount that cannot
be ignored. In particular, we define three cases in the following:

1. Case 1: The five-second time window with no loss at all is located right
before a time bin with loss. In other words, a "loss" time bin with no loss in
the past 5 seconds. In this case, we want to know the effect of packet loss on
statistics in the past 5 seconds without the interference from other losses.

2. Case 2: The five-second time window with at least one "loss" time bin in it is
located right before the time bin with loss. In other words, a "loss" time bin
with a loss or losses in the past 5 seconds. In this case, the amplification of
effect due to extra losses in the past 5 seconds will be indicated.

3. Case 3: The five-second time window has no loss in it at all, and in its
neighborhood of three seconds, there’s no loss either. In this case, we want to
detect the behavior of statistics without the influence of packet loss, and the
introduction of a neighborhood time window without loss will eliminate the
impact of a possible "loss" time bin on the head or tail of the time window of
study to ensure the reliability of the evaluation of statistics.

A graphical illustration is in Fig.3.6, and the same strategy will be applied also for
the fine characterization of packet loss in section 3.2.3.

Figure 3.6: Three cases of time window of study

Overall behaviour of losses in a flow First of all, it is not harmful to check
the global patterns of statistics with respect to packet loss for a flow to take a peak
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at packet loss from a holistic perspective. Here, we refer to two random flows and
present the behavior of bit rate, which is the number of bits that are conveyed
per unit of time. As shown in Fig.3.7, the top figure indicates that the bit rate
experiences some dramatic changes around packet loss while the normal cases range
from 10 to 30 kbps, and from the bottom graph, the missing values discussed in
section 3.2.2 are confirmed by the discontinuity at the beginning, and the changes
in bit rate are irregular with unpredictable behavior. Although it provides a brief
overview of the flow, the overall behavior cannot assist us in making predictions
because we refer to a much smaller scale of time duration, which requires elaborate
analyses focusing on the time window of study defined above. Thus, we do not
perform additional comparisons for other types of statistics.

Figure 3.7: Patterns of bit rate and packet loss for two random flows

Behaviour of a sampled loss Secondly, by focusing on the time window of
study, we extract a random loss to examine the patterns of certain statistics. Note
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that in this paragraph, the three cases are not implemented since we focus on a
random loss from a random flow regardless of the conditions, and the correlations
between statistics and the "loss" time bin are not considered either, so that the
categories of statistics are chosen arbitrarily to represent diverse behaviours. In
Fig.3.8, the blue line in each graph shows the patterns of the mean value of
interarrival time, the kurtosis of interarrival time, the bit rate, the percentage of
unique UDP length, and the summation of the number of RTP markers, and the
red lines indicate the packet loss condition for each time bin where the peak stands
for a "loss" time bin. The mean values of interarrival time experience an irregular
change at the beginning and a gentle increase as approaching the loss, whereas the
kurtosis indicates a drop near the loss followed by an abrupt rise. Meanwhile, both
the bit rate and percentage of unique UDP length have similar behaviour, with a
valley around 1.5 seconds before the loss. Moreover, the quantity of RTP markers
doesn’t change with respect to the packet loss.

Figure 3.8: Patterns of 5 types of statistics with respect to a random loss in a
random flow

Based on the aforementioned analyses, we can confirm the variation of statistics
that meet our expectations and can be utilized to identify time bins with loss.
Furthermore, they also give us an intuition of which statistics could be considered
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features and which should be neglected. However, this is just the behavior for
one "loss" time bin, which absolutely cannot represent the whole flow, so in the
following, we will average the behaviors, taking into account the entire flow to
grasp the overall patterns and referring to the three cases of time window to make
comparisons.

Average behaviour of losses Finally, averaging11 all the statistics of each time
bin in the target time window of study in a flow regarding three different cases can
reflect the behavior of the "loss" time bin from an overall point of view to cover and
represent various patterns as much as possible. In this paragraph, we look over
two example statistics12 from two random flows, distinguishing the three cases.

On the one hand, Fig.3.9 illustrates the patterns of the mean value of interarrival
time in two flows for the three cases. According to Fig.3.9a and Fig.3.9b, the mean
values of interarrival time experience irregular changes with distinct behaviors
regardless of flows or cases. Although Fig.3.9c indicates a stationary result for both
flows when there’s no packet loss, which can be proved not only by the average
value with tiny and negligible variations but also by the low standard deviation,
while both of the other two cases show various degrees of fluctuations, the mean
value of interarrival time might not be a good choice for identifying "loss" time bins
and making predictions because it doesn’t share a common pattern across different
flows and cases, leading to equivocal results.

On the other hand, the same types of plots for the fourth moment of UDP inter-
length are presented in Fig.3.10. Firstly, based on Fig.3.10c, the same behaviour
of steady state for "no-loss" time window still holds with a rather lower standard
deviation. Secondly, Fig.3.10a shows that we still cannot find anything in common
with case 1. However, a similar trend of increasing in advance and decreasing
afterwards is illustrated in Fig.3.10b when there are extra losses affecting the time

11So-called averaging means that we examine all the time bins in a flow or a sub-flow and,
for a certain type of statistic, calculate the mean value of all the values in the corresponding
time bins that meet certain specific conditions (the case of the time window of study and the
location). After that, such a mean value of the target statistic represents the average behavior
of the corresponding time bin in the corresponding time window of study. Note that, in the
following fine characterization of packet loss, we will also refer to this process to comprehend the
overall patterns of statistics in the time window of study by taking into account all the time bins
in the entire dataset instead of an individual flow.

12We do not perform more analyses and explain the meaning of the statistics simply because
the average behaviors of the entire dataset instead of certain flows are more important and
meaningful, which will be performed in section 3.2.3.
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(a) Case 1

(b) Case 2

(c) Case 3 (with standard deviation)

Figure 3.9: Average behaviour for the mean value of interarrival time in the time
window of study for three cases

window together with the loss at the end, which means the fourth moment of
UDP inter-length might be helpful to recognize the packet loss due to the identical
pattern and might be possible to work as a feature for prediction since around 70%
of "loss" time bins are concentrated losses with similar conditions to Case 2.
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(a) Case 1

(b) Case 2

(c) Case 3 (with standard deviation)

Figure 3.10: Average behaviour for the fourth moment of UDP inter-length in
the time window of study for three cases

The average behaviors for random flows are not enough because we have thou-
sands of flows in the entire dataset and a random one is not representative and
informative enough. At this stage, by removing missing values, we break down
each flow into multiple individual datasets (sub-flows), which are ready for the
most significant process to finally derive the useful features.
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3.2.3 Process after removing missing values

The third step is the process for datasets without missing values. Through previous
preprocessing, we have in our possession a great number of individual datasets
with sequential time bins without discontinuity for all sub-flows. Based on the
new datasets, we can perform more analyses regarding the packet loss to further
comprehend its distribution and condition, and eventually be able to characterize
the packet loss based on the average behavior among all individual datasets. In
the end, proper feature selection and elaboration will be conducted based on the
fine characterization to generate the final dataset.

Further analysis of packet loss

After the removal of missing values, we inevitably lose some data due to the
inadequate duration of continuous time bins. As a result, we have 2098640 time
bins left and 30504 of them are time bins with losses, of which 7342 (24.1%) are
sparse losses and 23162 (75.9%) are concentrated losses. Additionally, a summary
regarding the number of packet losses is in Table 3.3 and it almost coincides with
the CDF derived in paragraph 3.2.1. Furthermore, the further analyses focus on the
number of packet losses in different types of "loss" time bins and the distribution of
"loss" time bins in terms of the time window of study.

Number of packet loss
in a time bin[-]

Number of corresponding
time bins[-] Percentage[%]

1 21019 68.91
2 4162 13.64
3 1657 5.43
4 783 2.57
5 491 1.61
6 384 1.26
7 247 0.81
8 177 0.58

More than 8 1584 5.19

Table 3.3: Summary of number of time bins for different quantities of packet loss
after removing missing values

Number of packet loss in time bins of sparse or concentrated loss For
sparse and concentrated loss defined in paragraph 3.2.1, we want to know the
correlation between the quantity of packet loss and the loss category. The bar chart
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in Fig.3.11 show the quantity of time bins with different numbers of packet losses
for sparse and concentrated losses, and the tables present the related percentage.
One on hand, for both types of losses, most of the packet losses in a time bin range
from one to ten, which is the same as the CDF in paragraph 3.2.1 with around
95% of packet losses in time bins being less than or equal to 10. On the other
hand, according to Fig.3.11a, 80.75% of time bins in sparse loss only have 1 packet
loss, and this is greater than the percentage (68.91%) of the same type of time
bin in the whole dataset, which means the time bin of sparse loss tends to have a
lower amount of packet loss. At the same time, according to Fig.3.11b, the number
of time bins with only one loss occupies 65.15% which is less than the quantity
in the whole dataset, and the percentages for time bins with more losses become
larger with respect to sparse loss, which indicates that a concentrated loss time
bin is inclined to encounter more losses. The reason for this could be that the
concentrated loss is caused by a more severe congestion or other stronger network
problems that have a larger impact and last longer to cause more packet losses,
whereas the minor congestion or problem accounting for the sparse loss is less
detrimental.

(a) Sparse loss

(b) Concentrated loss

Figure 3.11: Bar chart with percentage table of quantity of time bins for different
types of loss and different numbers of packet loss

Distribution of time bin with loss for the time window of study For
the time window of 5 seconds, we want to know the loss condition in it after
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encountering a loss. Keep in mind not to confuse the definition with respect to
concentrated loss, since concentrated loss needs to have at least one packet loss
in its neighborhood, while in this case, the existence of previous losses is ignored.
Fig.3.12 shows the number of "loss" time bins at different positions in the time
window of study after any time bins with loss. Firstly, for all "loss" time bins,
there is a 27.59% chance of having another "loss" time bin right after encountering
a loss, which means plenty of "loss" time bins are next to each other. Secondly,
as the duration between losses increases, we have fewer chances of encountering
another loss. Thirdly, all of these types of "loss" time bins with loss at most in their
previous 5 seconds occupy 62.3% of all the losses, which is less than the percentage
of concentrated loss. Generally speaking, it is very likely to encounter another loss
after a loss, which means it is also very likely to include the statistics related to
another "loss" bin or even more losses in the characterization of a loss.

Figure 3.12: Number of "loss" time bins with loss in its following 0.5 to 5 seconds

Fine characterization of packet loss

Based on all of the individual datasets without missing values, we perform a fine
characterization of packet loss, taking into account the average behavior over the
entire dataset, so that for each statistic in the three types of time windows of study,
it allows us to capture the overall patterns which can represent the characteristics
of most "loss" time bins. Although the averaging process would introduce errors
and loss information to some degree, the fine characterization of packet loss is still
the key procedure to determine the most appropriate and informative statistics
that are strongly correlated with packet loss for prediction.
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To study the correlations with packet loss comprehensively, we conducted fine
characterization for each type of statistics considering different time windows of
study, and we will present seven examples of statistics for different degrees of
correlation in the following. Note that in each plot, the blue line represents the
time window of study for case 1, the red line represents case 2, and the green line
represents case 3. Furthermore, each time instance is ordered chronologically, and
each value corresponding to a timestamp represents the average value across the
entire dataset for the same type of time bin of 500 ms. Additionally, for cases 1 and
2, the packet loss occurs in the time bin 500 ms after the end of the time window,
and for case 3, there’s no loss either in the time window nor in its neighborhood of
3 seconds.

Strong positive correlation Fig.3.13 shows the average patterns of the standard
deviation of interarrival time and the percentage of the quantity of maximum UDP
length. Generally speaking, they both have positive correlations with packet loss as
approaching "loss" time bin regardless of the window types, while for case 3, both
of them present a steady state when there’s no packet loss affecting the flow. Due
to the strong correlations and evident differences between cases 1, 2 and 3, they
can be selected as features for prediction. In particular, the standard deviation of
interarrival time in a time bin indicates the degree of fluctuation of interarrival time.
As we are close to the "loss" time bin, the effect of congestion or other network
problems becomes severe enough to induce larger delays between affected packets
with respect to other normal packets. Consequently, we will encounter certain
peculiar interarrival times, which eventually lead to a larger standard deviation.
Although for case 1 in Fig.3.13a, it experiences a gentle variation from the past
4000ms to 2500ms, the overall pattern still follows an ascending tendency.

Strong negative correlation As getting closer to packet loss, the minimum
value of interarrival time for each time bin in the time window possesses a declining
trend, which can be proved by Fig.3.14a. Such a phenomenon occurs because the
interarrival time tends to be longer and longer because of the persistent effect of
congestion as time goes on in cases 1 and 2, and after the normalization process,
the minimum interarrival time will have an even smaller scale when we have several
larger values. When we are away from packet loss, due to the relatively weak
influence of loss, the interarrival time tends to have a homogeneous performance,
leading to a larger value of the minimum after normalization even if the absolute
value is smaller. Meanwhile, a similar decreasing pattern for the standard deviation
of the difference between timestamp and sequence number is illustrated in Fig.3.14b.
On top of that, both statistics follow a stable trend for case 3, so that they are
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(a) Standard deviation of interarrival time

(b) Percentage of the quantity of maximum UDP length

Figure 3.13: Two examples of statistics for strong positive correlation

eligible for the feature selection.

Weak correlation Fig.3.15 shows the average behaviour for the maximum UDP
length in each time bin. In spite of the slight rising tendency at the end of the
time window for cases 1 and 2, most of the patterns share the same condition
with respect to case 3, with steady behavior when there’s no packet loss, which
means the correlation between packet loss and maximum UDP length is not intense
and the loss phenomenon can only affect the statistics recently. In this context,
referring to maximum UDP length as a feature for prediction is not a wise choice,
but it cannot be ignored that the statistics in the past 1000 ms and 500 ms are
still informative enough to be selected separately.

Opposite correlation According to Fig.3.16, the mean value of the difference
between the UDP lengths of adjacent packets in time bins follows a decreasing
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(a) Minimum interarrival time

(b) Standard deviation of the difference between timestamp and sequence number

Figure 3.14: Two examples of statistics for strong negative correlation

Figure 3.15: Maximum UDP length for weak correlation

trend at the end of the time window for case 1, but holds an increasing trend for
case 2 when there are extra losses in the time window. Despite the fact that it has
a distinct behavior with respect to a stable pattern in case 3, the mean value of
the difference cannot be used as a feature for prediction because there’s no way to
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distinguish between cases 1 and 2.

Figure 3.16: Mean value of difference between UDP length of current packet and
the previous one for opposite correlations in case 1 and case 2

No correlation The "interlength_udp_min_max_R" represents the ratio of the
minimum value for the difference between the UDP lengths of adjacent packets,
and it tries to capture the importance of the minimum in a non-linear way in a
time bin. According to Fig.3.17, it fluctuates a lot with irregular patterns over time
for all three cases and thus has nothing to do with the packet loss. Therefore, even
though the variation in case 3 is relatively small, it should be completely discarded
during the feature selection for prediction.

Figure 3.17: Ratio of minimum difference between UDP length of current packet
and the previous one for no correlation between statistics and packet loss

Based on the results of fine characterization of packet loss, we have located 15
types of statistics that have obvious patterns, strong correlations with packet loss,
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and steady state in case 3 without the impact of packet loss. As a result, we are
ready to select the features and generate structured data sheets for each individual
dataset in the following preprocessing.

Preprocessing

The preprocessing during the process after removing missing values deals with each
individual dataset and transforms them into well-structured datasets with class
labels and meaningful statistics, which will be finally integrated into a single large
dataset to feed the machine learning methods.

Feature selection The first step in preprocessing is to choose columns that
correspond to useful features for prediction based on a fine characterization of
packet loss and to remove useless columns with features that do not correlate to
packet loss or have only weak relationships.

The process for fine characterization of packet loss has derived 15 features, but
there are also correlations among the features themselves, which means if we refer to
all of the 15 features, we would include information that is repetitive and needless.
In order to remove features that are redundant and reduce the size of the dataset
for simplicity, we first perform a correlation analysis by evaluating the Pearson
correlation between each possible pair of features, and then randomly eliminate
one of the pairs if they have a Pearson correlation coefficient in absolute terms
greater than 0.9. According to the heat map in Fig.3.18, which indicates the results
between each pair of features, we confirm the internal relationships with a high
Pearson coefficient between several features. For example, the "interarrival_std"
and the "interarrival_max_min_diff" have strong correlation in between with a
Pearson coefficient of 0.9 because they both reflect how the values of interarrival
time in a time bin are close to the mean or spread out over a wider range.

Based on the correlation analysis, we eliminate four more features, leaving 11
for prediction. A summary of the feature selection process can be seen in Table.3.4.
Most of the selected features are related to interarrival time, which is the time
between the arrival time instances of two adjacent packets. This is because the
causal phenomenon of congestion leads to a longer waiting time in the affected
router and thus introduces delays for packets which are directly reflected on the
interarrival time. Finally, besides the columns describing packet loss and timestamp,
we only keep columns corresponding to the 11 chosen features, which means for
each individual data sheet, we only have 13 columns in total.
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Figure 3.18: Heat map of correlations among all the selected features

Feature expansion With the feature selection process, each individual dataset
has the necessary statistics for each time bin with or without loss, but what we
actually need are the statistics in the time window of 5 seconds right before the
target time bin. Therefore, the second step is to expand features by generating
statistics for the past 5 s for each time bin in each dataset. In other words, for
each time bin, we pretend it to be the target time bin in the future so that we need
to include the past 10 values for each type of statistics as the actual features to be
used to make a prediction, and the original 11 features are no longer useful and can
be deleted since they are supposed to be unknown. Note that, for each individual
dataset, we need to remove the first 10 samples since we don’t have enough data
for the previous 10 samples. Consequently, we generate 10 features for each of
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Feature Name Feature Description Kept

interarrival_std Standard deviation of interarrival time ✓

interarrival_min Minimum value of interarrival time ✓

interarrival_max Maximum value of interarrival time ✓

interarrival_skew Skewness of interarrival time ✓

interarrival_moment4 4th moment of interarrival time ✓

interarrival_max_min_diff Difference between the maximum and
minimum of interarrival time ✓

interarrival_max_min_R Ratio of maximum value for interarrival time

interarrival_min_max_R Ratio of minimum value for interarrival time

interarrival_max_value_count_percent Percentage of quantity of
maximum value for interarrival time ✓

len_udp_std Standard deviation of UDP length

len_udp_moment4 4th Moment of UDP length ✓

len_udp_max_min_diff Difference between the maximum
and minimum of UDP length ✓

len_udp_max_value_count_percent Percentage of quantity of
maximum value for UDP length ✓

inter_time_sequence_std Standard deviation of difference between
timestamp and sequence number ✓

inter_time_sequence_max_min_diff Difference between the maximum and minimum for
the difference between timestamp and sequence number

Table 3.4: Summary of feature selection process

the 11 statistics to eventually gain 110 features13 for prediction. Finally, we are
able to derive multiple well-structured datasets about time bins with timestamp,
conditions about packet loss, and features of statistics in the past 5 seconds.

3.2.4 Final dataset generation

At this stage, we have filtered out flows generated from the observation side, removed
useless columns, normalized each flow, dealt with missing values, characterized the
average pattern for packet loss, and selected as well as expanded features for each
individual dataset, which is ready for a combination with all the potential problems
solved. Before the last step of dataset combination, we also assign a numerical ID

13For example, "interarrival_std_minus_500ms" means the standard deviation of interarrival
time in the time bin from 500 ms ago.
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and name it as "flow_id" to datasets14 to distinguish different flows for future use.

As a result, we pool all of the individual datasets to create a large, well-
structured, and clean dataset ready for machine learning method implementation
and manipulation. The final dataset has 2,028,660 rows in which each row represents
a time bin, and 113 columns in which we have the timestamp, the binary class label
for the presence of packet loss, the flow ID for potential usages, and 110 columns
as features for 11 statistics in the previous time window of study. A screen shot of
the entire dataset in Python Pandas dataframe format is shown in Fig.3.19.

3.3 Summary

This chapter includes a complete explanation of the preliminary work associated
with the dataset, starting with the generation of the raw data and concluding
with the construction of the final dataset. More significantly, we obtain numerous
statistics from the characterization of packet loss that could be used as features for
machine learning methods.

Firstly, we improve the command-line tool Retina by taking into account all
potential problems as well as using sequence numbers to calculate the exact number
of packet losses in a time bin. As a consequence, we get 70 csv files with all the
necessary information.

Secondly, we perform the data preprocessing together with data analysis in order
to generate the meaningful, well-structured, and clean dataset needed for machine
learning algorithm implementation. In particular, the procedure is divided into 4
steps:

1. The process for each file deals with any individual files by filtering RTP flows
and eliminating useless information. Meanwhile, it also provides a general
overview of the phenomenon of packet loss, taking into account quantity,
distribution, etc.

2. The process for each flow extracts meaningful RTP flows out of each file
and performs a preliminary characterization of packet loss regarding either an
entire flow or a single "loss" time bin by defining the time window of study.

14Note that the flow ID is not assigned to each individual dataset but to datasets from the
same flow, which means multiple individual datasets may have the same flow ID.
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Afterwards, it normalizes the data in each flow and removes missing values to
produce multiple sub-flows.

3. The process after removing missing values selects 11 types of statistics
based on the comprehensive characterization of packet loss in an average
manner as well as the correlation analysis and eventually derives 110 features
according to the 5-s-long time window of study. In the meantime, a thorough
analysis is carried out to better understand the distribution of packet loss.

4. The final dataset generation process combines all individual datasets to
form a complete dataset including 2,028,660 time bins with class label, features,
and other useful information.

Finally, we possess the final dataset to resolve the prediction problem from a
data-driven point of view. Prior to that, it is necessary to formally define the
problem and illustrate metrics used to assess performance and potential challenges
in the next chapter.
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Figure 3.19: A screenshot of the final dataset
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Chapter 4

Problem statement

With the preprocessing on datasets generated by Retina for RTP traffic, we obtain
a final dataset that is officially ready for machine learning approach development
and implementation. In this chapter, we will present the problem, metrics for the
evaluation of model performance, and potential challenges we may face.

4.1 Problem formulation

The primary objective of this thesis is to predict the existence of packet loss in
a time aggregation based on the statistics of previously received packets. More
specifically, we are observing the RTP packet flow on one side of the communication
and at any time instance, we want to predict and identify the presence condition
of packet loss among all the future packets in the exact next 500-milliseconds-long
time bin based on predefined and carefully chosen statistics about successfully
received packets in each time bin of 500 ms (10 time bins in total) following a
chronological order in the exact past 5 seconds. Mathematically speaking, the
problem can be defined as:

Yt→t+0.5 =f(X1,t−0.5→t, ..., X1,t−5→t−4.5; ..., Xi,t−n×0.5→t−(n−1)×0.5, ...; ...),

i ∈ Z, n = 1..10, X ∈ [0,1], Y :

1, loss;
0, no loss.

,
(4.1)

in which Yt→t+0.5 is the predicted binary label representing the presence of packet
loss in the time bin from the current time instance to the next 0.5 s (500ms) and
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Xi,t−n×0.5→t−(n−1)×0.5 is the normalized ith type of statistics calculated over all the
received packets in the time bin of 0.5 s from the time instance of t − n × 0.5
to t − (n − 1) × 0.5. And we are expected to find a machine learning approach
f() utilizing statistics X as features to output the correct label Y for packet loss
condition in the near future.

A simple conclusion that can be drawn based on the formulation and the dataset
is that the features follow a discrete time sequence and the problem is a time-series
based prediction problem, which means it may make sense to resort to certain
machine learning methods that typically work well for time series problems, like
Autoregressive Integrated Moving Average (ARIMA) or Kalman filter. However, our
problem has a lot of distinctions with respect to traditional time series problems:

• In each RTP session, we have multiple flows with different durations, start
times, and end times, which means at any given time instance, we may have
a different number of flows, leading to different shapes of input for machine
learning models. If we want to use a uniform model with a fixed size of input
for all the flows in any time instance, we need to average the values across all
the flows, which leads to more errors as well as bias and information loss.

• As opposed to a lot of time series problems with numerical targets like
temperature forecasting, the output of our problem is a binary label, which
does not have a strong statistical correlation with previous features.

• A huge advantage for solving classical time series problems is the inclusion of
the latest data for updating the model and avoiding deviation from the trend.
On the contrary, this kind of moving window strategy is not affordable in
our problem because we are dealing with a real-time application with a time
scale of hundreds of milliseconds, which is not enough for retraining a model
based on the newest collected packets. In other words, the problem requires a
predetermined, pre-trained, and universal machine learning model that works
and responds quickly to any type of legitimate input. Not to mention that
the amount of data for retraining is also not adequate.

• Unlike many traditional time series problems with strong and obvious peri-
odicity, such as seasonality or hourly period, our problem is totally ruleless,
with not only irregular packet loss but also most of the cases being lossless.

Therefore, it makes more sense to seek help from other types of machine learning
methods as described in section 2.3. On one hand, our problem can be considered
as a classification problem with binary class labels if we assume that the sequential
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features of statistics are all independent and discrete values1. On the other hand,
a packet loss can be considered an unexpected event, in other words, an anomaly
that rarely occurs during communication. Instead of identifying both classes of
"loss" and "no-loss" time bins, we can refer to anomaly detection to isolate packet
loss from normal cases. In summary, instead of following the conventional analysis
of the time series prediction problem, we will refer to classification and anomaly
detection to identify or distinguish "loss" time bins in the future to make the
prediction come true.

4.2 Metrics

A brief introduction of metrics for measuring and describing model performance
will be presented in this section. For both classification or anomaly detection, the
outputs of models will be either correct or incorrect binary labels for both classes.
Hence, we will refer to the following commonly used metrics and terminologies for
now:

1. Confusion matrix is a specific table in order to indicate algorithm perfor-
mance by visualizing the exact quantity of correct or incorrect predictions for
all classes. An example of a confusion matrix for binary classification is in
Table.4.1, in which:

Predicted class
Actual class 0 1

0 True Negative False Positive
1 False Negative True Positive

Table 4.1: Confusion matrix

• True Positives (TP): correct predictions for class 1.
• True Negatives (TN): correct predictions for class 0.
• False Positives (FP): outputs that are classified as class 1 but actually

belong to class 0.

1They are not exactly independent. We still rely on the trend of features, but for classification,
the tendency is represented by the values of features instead of the correlations among features as
well as class labels.
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• False Negatives (FN): outputs that are classified as class 0 but actually
belong to class 1.

2. Accuracy is the most direct and intuitive measurement that shows the
percentage of correct predictions over all samples, and it is calculated as
follows:

Accuracy = TP + TN

TP + TN + FP + FN
.

3. Precision describes the portion of the predictions for a specific class that are
correct. It is calculated as the ratio between the correctly predicted objects of
a class and the total predicted objects of that class:

Precision = TP

TP + FP
.

4. Recall illustrates the model’s performance in a specific class and can be
considered as the accuracy of that class. It is defined as the ratio between the
correct predictions from a class and all the samples from that class:

Recall = TP

TP + FN
.

5. F1 score evaluates the overall performance of the model, taking into account
both precision and recall, and it is calculated as the harmonic mean of them:

F1 score = 2 × precision × recall

precision + recall
.

Note that, i.) for precision, recall, and F1 score, they are measurements for a specific
class, and in order to evaluate the overall performance of the model considering
both classes, we will also consider the macro average values; ii.) due to the intrinsic
property of imbalanced quantity for both classes, some of the metrics mentioned
above are not useful. We will discuss this issue in section 5.1.3.

4.3 Challenges

Before going into the details of the methodologies, we foresee some challenges and
obstacles that will impede the model’s performance due to inherent and substantial
properties of the problem:
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• According to the fine characterization in section 3.2.3, certain statistics do
follow a trend as approaching the packet loss in an average manner, but due
to the potential different reasons for the packet loss phenomenon and the
dynamic as well as complicated network conditions, there still exist a great
number of flows that do not follow the same trend or even have a trend. For
example, the same rough characterization for another two flows in terms of
the standard deviation of interarrival time is in Fig.4.12 and for cases 1 and
2, both flows follow an increasing trend at the beginning and a decreasing
trend as they approach the packet loss, while the trend is in a steady state for
case 3. However, they are totally different from the average behaviour of the
standard deviation of interarrival time over the entire dataset presented in
Fig.3.13a with an upward tendency, which means by referring to the standard
deviation as a feature for prediction, the model will probably not work for
these two flows.

• In our problem, according to paragraph 3.2.1, most of the "loss" time bins
belong to concentrated losses, which indicates that it is difficult to distinguish
the "no-loss" time bins between adjacent concentrated losses since they are
close to both losses and thus are easily affected by packet loss.

• Based on paragraph 3.2.1, most "loss" time bins for both applications only
have 1 packet loss. On the other hand, a time bin could have hundreds or
even thousands of packets, which infers that the impact of only one packet
loss will be diluted, so that the trend of statistics may not be influenced a lot
in some cases.

• According to Fig.3.3, both applications only have around 1.5% "loss" time bins.
Our dataset is extremely imbalanced, leading to an imbalanced classification
problem, which is a classification predictive modeling problem where the
dataset has skewed class proportions and the distribution of samples across
the classes is not equal. Normally, an imbalanced dataset would force the
model to bias towards the majority class and result in poor performance for
the minority class.

• Although the data collection is done with a standardized procedure to avoid
external and environmental disturbances as much as possible, the RTP packets
are still captured at different times on different devices with dynamic as well
as volatile network conditions, which means that it is nearly impossible to

2For flow "0x1fdc0d51, 193.122.15.164, 192.168.1.105, 54676, 57047, 111", there’s no "loss"
time bin for case 2.
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(a) Case 1

(b) Case 2

(c) Case 3 (with standard deviation)

Figure 4.1: Average behaviour of the standard deviation of interarrival time in
the three cases for another two random flows

formalize a completely stable environment and the variations among statistics
could be induced by other sources instead of only packet loss.

In a word, the prediction of packet loss is a very hard problem with numerous
obstacles to be tackled, in which some difficulties cannot be avoided due to the
intrinsic properties of the RTP communications and the dataset, but the disturbance
due to the imbalanced dataset can be somehow relieved by the sampling strategies
described in the next chapter.
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Methodology and
experimental result

In this chapter, we will demonstrate all the machine learning approaches in terms of
classification and anomaly detection and their corresponding experimental results.
Additionally, for certain methodologies, some specific and technical discussions
will be presented as well. More importantly, in order to compare models and
investigate performance while focusing on the models themselves rather than the
prediction problem, we simplify the work flow without taking into account possible
elaborations and optimizations. In other words, the evaluation results from the
methodologies developed in this chapter are references instead of the final solid
solutions so that we are able to allocate the best approach in a convenient way and
perform in-depth analyses to delve into the prediction problem in the next chapter.

5.1 Decision tree

To begin with, we use the decision tree as a fundamental method as well as a refer-
ence to help better understand the prediction problem, illustrate possible outputs,
and determine the configurations of the training phase and model evaluation for
subsequent approaches.
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5.1.1 Sampling strategy

According to Fig.5.1, "loss" time bins only occupy 1.39% of all the time bins in the
final dataset, which leads to an imbalanced classification problem as described in
section 4.3. The most common way to solve the problems caused by imbalanced
data is to balance the majority and minority classes by artificially modifying the
quantities for them to reach a comparable number. Such a process is called sampling.

Figure 5.1: Quantity of time bins with or without loss

The imbalanced dataset is not a problem during the test phase but extremely
affects the model during the training phase. Therefore, we design three extra
sampling strategies for training and compared the results with the model trained
on the original dataset without sampling. Note that for the model development, we
randomly extract 70% of the entire dataset as the training dataset and the rest 30%
as the test dataset1, and refer to this partition as the base scenario. Fig.5.2 helps
visualize the sampling strategies and quantities for both classes in each strategy.
In particular:

1Notes: i.) The original dataset will be first split into "loss" datasets with only samples
representing time bins with packet loss and "no-loss" datasets with only samples for time bins
without packet loss, and we always shuffle both datasets before model development; ii.) Then, we
extract 70% from either dataset and combine them afterwards for training, and regard the rest of
both datasets as test datasets; iii.) As a result, the portions for training and testing will be the
same for both classes.
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Figure 5.2: Training dataset: quantity of time bins with or without loss for
sampling techniques and base scenario

• Original dataset refers to the imbalanced base scenario without sampling
technique. The model trained on this dataset will suffer from the issues caused
by imbalanced data.

• Undersampling means reducing the amount of "no-loss" training dataset to
the same amount of "loss" training dataset as in the base scenario, with 70%
of the original "loss" dataset. Consequently, we achieve a balance between
both classes for training but significantly cut down the entire training dataset.
The undersampling is done randomly, which means the discarded portion of
the original "no-loss" training dataset is randomly chosen. Due to the vast
reduction of "no-loss" training set, we may lose information about time bins
without loss.

• Oversampling maintains the quantity of "no-loss" training dataset but aug-
ments the "loss" training dataset to the same amount by the Synthetic Minority
Oversampling Technique (SMOTE)[28], which selects the nearest neighbors
along the line drawn among samples in the feature space to generate new
samples and is proved to be an effective method for oversampling. As a result,
we artificially and intentionally generate a new training set with a very large
number of samples and equality for both classes. Oversampling will increase
the "loss" training set to around 70 times more than the original one, which
means most of the new "loss" data generated will not be real and, thus, tend
to introduce errors.

• Combination of undersampling and oversampling aims at reducing the
quantity of "loss" training set and increasing the quantity of "no-loss" training
set to the same amount at the same time. In our case, we refer to 10 times
of the original "loss" training set. Note that the undersampling is also done
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randomly and the oversampling is also done by SMOTE. As a result, we reach
a balance not only between classes but also between sampling strategies to
neither penalize the "no-loss" training set too much nor amplify the "loss"
training set too much.

5.1.2 Experimental result

We have trained four independent decision trees without any specific configurations
for simplicity on the four types of training datasets and tested the models on test
datasets. The results in terms of metrics are summarized in Table.5.1, and the
resulting confusion matrices are in Fig.5.3.

Training dataset Original Undersampling Oversampling Combination
Accuracy 0.97 0.68 0.93 0.84

Precision
Macro average 0.55 0.50 0.52 0.51

Class 0 0.99 0.99 0.99 0.99
Class 1 0.11 0.01 0.06 0.01

Recall
Macro average 0.56 0.68 0.61 0.66

Class 0 0.98 0.68 0.94 0.84
Class 1 0.14 0.67 0.29 0.48

F1 score
Macro average 0.55 0.41 0.53 0.47

Class 0 0.99 0.81 0.96 0.91
Class 1 0.12 0.02 0.10 0.03

Table 5.1: Summary of metrics for the results of decision trees on different training
datasets

According to the experimental results:

• All four models output decent accuracy, except for the undersampled training
dataset. The same distinct behaviour also applies to the recall and F1 score
for "no-loss" time bins, class 0.

• All models predict class 0 very well because the precisions are always very
high with the same value of 0.99, but they predict class 1 very poorly because
of the awfully low precisions that range from 0.01 to only 0.11, resulting in
a stationary macro average precision of around 0.5. They all present a poor
ability from an overall perspective for class 1 due to very low F1 scores ranging
from 0.02 to 0.12 and, thus, result in a weak overall prediction performance
with a mediocre macro average F1 score ranging from the minimum of 0.41 to
the maximum of merely 0.55.
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(a) Original (b) Undersampling

(c) Oversampling (d) Combination

Figure 5.3: Confusion matrices for the results of decision trees on different training
datasets

• Even though the model trained on original training dataset without sampling
generates the highest F1 score to show the best general performance mainly
due to the best prediction output for class 0, it still cannot be considered for
further analyses since it can only identify 1198 actual "loss" time bins out of
8461 resulting in the lowest recall of only 0.14 for class 1, which proves the
negative influence of imbalanced dataset and totally fails our objective.

• The undersampling technique is very good at predicting time bins with loss in
the future due to the highest number of correct classifications as well as the
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recall of class 1. On the contrary, we have a huge number of incorrect classifi-
cations with a quantity of 633377 for class 0 on account of the information
loss from the tremendous decrement of the "no-loss" training dataset. It would
be a lot of waste of network resources if we frequently reacted to each of these
incorrect predictions.

• A model based on oversampling strategy solves the problem of undersampling
by only generating 38400 incorrect predictions for class 0 since the information
is adequate. However, because of the errors and uncertainties brought by
unreal and generated data, it merely identifies 2468 "loss" time bins, which is
a little bit better than the original training dataset but still not preferable.

• Obviously, the combination of undersampling and oversampling produces a
balanced performance between the other two sampling strategies, with higher
recall for class 1 but lower recall for class 0 compared to oversampling and
higher recall for class 0 but lower recall for class 1 compared to undersampling.
It can be considered as a compromise between the introduction of errors due
to oversampling and information loss due to undersampling.

In a word, all decision tree models have their own merits and disadvantages, but
they all perform poorly by either generating too many incorrect classifications
for "no-loss" time bins or completely failing the prediction with too few correct
classifications for "loss" time bins. Even with an equilibrium in the middle from
the combination strategy, the performance is barely acceptable. However, the
aforementioned poor results actually meet our expectation because: i.) We did not
tune any models with different parameters for better performance since we regard
decision tree as a base model to provide an overview of how machine learning
method works on the problem and an intuitive guidance of how to develop other
methods; ii.) The prediction problem is a hard one with a lot of intrinsic issues
and the sampling techniques can alleviate the pains caused by imbalanced dataset
to some degree but cannot solve the problem completely; iii.) Decision tree is a
relatively simple and weak machine learning architecture that tends to be surpassed
by other sophisticated and powerful methods for a complicated problem.

5.1.3 Discussion about metrics

Imbalanced data brings challenges not only to the prediction problem but also to
the metrics that evaluate the model’s performance because most of the common
metrics that are widely used for classification work under the assumption of a
balanced class distribution. According to the experimental results derived above,
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we cannot rely on all the metrics described in section 4.2 and we will explain the
reasons and finally decide those that will be used for the rest of this thesis in the
following:

• Both accuracy and precision are not reliable due to the domination of class
0. The accuracy and precision of class 0 will always be very high since, in
most cases, we have an excess of correct classifications of class 0, which plays
a crucial and decisive role in the metrics’ calculation. The accuracy will be
determined by the prediction performance for class 0 and barely affected by
class 1. In other words, the accuracy is almost equal to the recall of class 0.
At the same time, the precision of class 1 will always be very low because
even if we are able to achieve a good prediction for "loss" time bins, the
quantity of correct classifications is still not comparable with the quantity
of misclassifications for class 0. As a result, the macro average precision will
always be around 0.5. The accuracy is useful only when the model performs
very poorly for class 0. However, such a bad result can be indicated by other
meaningful metrics as well.

• F1 score can be used to indicate the overall performance, but because it is
partially affected by precision, the F1 score is still not a substantially good
choice. For example, if we refer to the result with the highest F1 score of
0.55, we will end up with a model that cannot identify the "loss" time bin and
totally fails the objective. Therefore, we can only consider the F1 score as a
measurement when the improvement is large because it can reflect the model
enhancement bypassing the constraints due to precision from an overall point
of view.

• Confusion matrix will always be included since it’s simply an explicit illus-
tration of the model outputs rather than a measurement of model performance.

• The most appropriate and reliable metric is related to recall. As the individual
accuracy for "loss" or "no-loss" time bins, the class recall can directly indicate
the prediction performance for either class. The macro average recall can
reflect the global model’s capacity to correctly make classifications, taking
into account both classes.

Hence, in the following machine learning approach development, we will still present
the outcomes related to all the metrics for reference but focus on the recall to
evaluate the models. Note that, in some cases, we still refer to all the metrics for
parallel comparisons.
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On top of that, based on the metrics chosen, we can determine the criteria for
model evaluation to select the best model:

1. Firstly, selecting models with recall for class 0 to be at least 0.80,
which means we can only afford at most 20% misclassifications for
"no-loss" time bins.

2. Secondly, referring to the one with the highest recall for class 1
among the ones selected above, which means the model with the
largest number of correct classifications for "loss" time bins.

These constraints are defined aiming at balancing the performance between classes
so that we are able to generate fewer wrong classifications for the "no-loss" time bin
and recognize the "loss" time bin in the future as much as possible at the same time.
Nevertheless, it cannot be ignored that even with a recall of 0.80 for class 0, we
still end up with a great deal of misclassifications because we had superabundant
"no-loss" time bins originally. This is an issue that cannot be avoided due to the
imbalanced data, and since the objective of this thesis is to predict packet loss, we
have to refer to such thresholds for now to find feasible solutions.

5.1.4 Effect of sampling

In the previous analysis of the combination sampling strategy, we increased the
quantity of "loss" training set to 10 times, but apparently, different degrees of
oversampling also affect the model output. In this section, we present the model
evaluation results in terms of various inflation scales ranging from 1 time to 70
times with a step of 10. Fig.5.4 shows the results of the test phase for 8 models
with different scales of oversampling.

On one hand, as we can see in Fig.5.4a, with the increment of oversampling
from the minimum of no oversampling at all to the maximum of the same quantity
of the original "no-loss" training set, the recall increases for class 0 but decreases for
class 1, which means there’s no way to improve the performance for both classes
at the same time. And since the performance drop for class 1 is more severe with
respect to the improvement for class 0, we experience an overall decline for macro
average recall as in Fig.5.4b. However, the slight decrement of average recall cannot
be used for model selection because the model tends to miss the goal of predicting
packet loss if we keep increasing the amount of "loss" training set. On top of that,
when the oversampling scale equals to 10 times, we reach a recall for class 0 greater
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(a) Class recall

(b) Accuracy, macro average precision, recall and F1 score

Figure 5.4: Class recall and other metrics for the model evaluation with combina-
tion strategy in terms of different oversampling scale

than 0.8 for the first time, which meets our threshold defined in section 5.1.3 and
corresponds to a relatively higher recall for class 1, so that in the following machine
learning method development, we will refer to the 10-times oversampling when a
combination sampling technique is needed.

On the other hand, according to Fig.5.4b, all metrics except recall possess a
rising trend. But the model we select is the one with a sampling quantity of 10
times where the values for metrics including accuracy, precision, and F1 score are
the second worst, which in turn proves the uselessness of those metrics for model
evaluation in our specific case.

5.2 Neural network

The second machine learning method we have developed is the neural network (NN).
In particular, we will refer to deep neural network (DNN) and long short-term
memory (LSTM) neural network, both with a combination sampling strategy of
random undersampling and oversampling by SMOTE.
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5.2.1 Deep neural network

DNN can be used for classification problems with inputs of feature values and
outputs of the approximation for class label. Starting from now on, we will also
take into account the effect of different lengths of time windows before the target
time bin.

Effect of time window:

We have defined a time window of study with 5 seconds and 10 samples in it, which
results in 110 features in total for 11 statistics. However, the statistics in the time
bin far away from the target time bin in the future may not be informative with
respect to those near the future time bin, so in this section, we distinguish the
length of time window to include different numbers of features2 and implement
multiple NNs with a similar simple architecture except for the input shape3 to
briefly understand the effect of the length of time window and select the one with
the best performance for subsequent actual NN implementation.

Fig.5.54 indicates the accuracy of the training set and other metrics of the
test set for different lengths of time window. On one hand, we do experience a
slight performance drop as we reduce the number of features for a corresponding
decreasing window size, especially when it comes to the length of 500 ms and 1000
ms, which means choosing only the very past statistics is not enough. On the
other hand, the results differ very little between the window sizes from 5000ms
to 1500ms, which indicates that statistics included far away from the target time
bin influence the model the same as those in the middle time bins, and selecting

2We examine the length of time window starting from 0.5s (500 ms) to 5s (5000 ms), implying
that the number of features will range from 11 (11 statistics × 1 sample in 0.5s) to 110 (11
statistics × 10 sample in 5s).

3Notes: i.) the number of neurons in the input layer corresponds to the number of input
features. For example, if we are working with a 2 s-long time window, the number of features is
44 (11 statistics × 4 samples in 2 s), and the number of neurons in the input layer is also 44; ii.)
there are two hidden layers, with the first layer having neurons of two thirds of the input layer
and the second layer having one third of the input layer, and the activation function is relu; iii.)
the output layer has two neurons with an activation function of softmax; iv.) we refer to Adam
optimizer with a learning rate of 0.01, the loss is computed by sparse categorical cross-entropy
and the optimizing target metric is accuracy.

4The minus sign for each length represents that it’s the time window before the current time
instance (target time bin for prediction).
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sizes from 1500ms to 5000ms only matters very little for the model performance.
However, at a window size of 3500 ms, we have an extraordinary value of accuracy
for the test set due to the good prediction for class 0, while the other metrics
remain similar. Thus, for DNN, we will refer to 3500 ms as the length of time
window for further model implementation, and as a result, we have 77 features (11
statistics × 7 samples in 3.5 s) left.

Figure 5.5: Resulting metrics of DNN for different time window size

Model tuning:

In order to optimize the NN for better performance, the most important step
is to tune the model by modifying a group of parameters to find the one with
the best output. We refer to a bunch of typical parameters, including number of
layers, learning rate, and so on, to perform one hundred trials of random search
among all the possible combinations of parameters to finally derive the best model
configurations. A complete summary of all parameters as well as the consequential
best combination and other predetermined configurations are shown in Table.5.2.
Finally, we derive a DNN architecture as shown in Fig.5.6.

Final experimental result:

The previous DNN is trained to stop after 10 epochs for simplicity, so we need to
keep training the neural network until it starts to overfit on the training dataset by
including and observing a validation dataset5 for early stopping. As a result, after

5In this case, we select 60% as the training set, 10% as the validation set, and the rest 30%
as the test set, and stop the model training after the accuracy of the validation dataset keeps
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Parameters Value range Best value

Tuned
parameters

Number of hidden layers [1,2,3,4] 3
Number of neurons [20,40,60,80] 1st:60, 2nd:60, 3rd:20
Activation function [relu,tanh] tanh

Dropout [True, False] False
Learning rate [10−4 : 10−2] 0.00074

Fixed
parameters

Number of input neurons 77
Number of output neurons 2 (softmax)

Optimizer Adam
Cost function sparse categorical cross-entropy

Evaluation metric Accuracy*
* The accuracy is applicable here because the training dataset has the same amount for both classes thanks

to the combination sampling strategy.

Table 5.2: Tuned and fixed parameters for DNN

Figure 5.6: Final architecture of deep neural network

25 epochs, we have a final well-tuned and carefully-trained DNN with an accuracy
on training dataset of 0.8512.

The summary of consequential metrics with highlights of recall is in Table.5.3

decreasing for 3 epochs.
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and the confusion matrix is in Fig.5.7. Firstly, the recall for class 0 reaches merely
above our threshold, which means the ability to not misclassify "no-loss" time bins
is acceptable in our case. At the same time, the DNN model is able to identify
5866 out of 8461 "loss" time bins in the future with a recall of 0.69, which is the
highest recall (i.e. the largest amount of correct classification of class 1) we can
get so far. Compared to the decision tree model with the highest recall of 0.67 for
class 1, DNN may not outperform very much in terms of packet loss, but has a
significant improvement for class 0 because, previously, we could only get a recall
of 0.68 for the "no-loss" time bin, while DNN is able to achieve 0.82 now. Moreover,
the DNN model overfits a little bit with an accuracy of 0.8512 on the training set
and a lower one of 0.82 on the test set, but the overfitting is much severer for class
1 with a recall of 0.69. In a word, just as expected, DNN indeed improves the
performance with an acceptable result, but it is without doubt that the overall
performance is still not adequate, which is proved not only by the recall but also
by the macro average F1 score of 0.47.

Metrics Value
Accuracy 0.82

Macro average 0.51
Class 0 0.99Precision
Class 1 0.02

Macro average 0.76
Class 0 0.82Recall
Class 1 0.69

Macro average 0.47
Class 0 0.90F1 score
Class 1 0.04

Table 5.3: Metrics of final DNN model
evaluation

Figure 5.7: Confusion matrix of
final DNN model evaluation

5.2.2 LSTM neural network

LSTM NN is able to process and memorize the entire sequence of input so that it
can better learn the trend of statistics in the time window of study. In this section,
we also refer to the combination strategy to deal with imbalanced data. Besides
the differences between a neuron and an LSTM cell, two major differences between
conventional NN and LSTM NN are the input layer and network connections: i.)
the input layer of LSTM is formed by a sequence of values with a predefined order
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and each value represents a timestamp that will enter into an LSTM cell. Only
this value will enter the corresponding cell so that the LSTM cells also follow the
sequence by processing the timestamps one by one and memorizing the sequence
with a monotonically increasing amount; ii.) the links between two LSTM layers or
between a LSTM layer and a dense layer are not fully connected. It depends on the
output hidden states of the previous layer and the architectures of one-to-many,
many-to-many and so on.

Effect of time window:

First of all, same as DNN, we also try to detect the impact of different lengths of
time windows, and in this case, we exclude the condition of 500 ms since there’s
only one sample for each statistic, which is not enough to form a sequence. With
a simple and predetermined LSTM NN6, we derive the results and present it in
Fig.5.8.

Figure 5.8: Resulting metrics of LSTM NN for different time window size

Similar to DNN, the LSTM NN model also experiences a performance drop
as we reduce the window size, especially for time windows from 1000 ms to 2500
ms. This means that both neural network models follow the basic principle of

6Notes: i.) in this case, the features are no longer independent but must form a queue (a
sequence of timestamps) in the order from earlier to later in the time window for each statistic, and
as a result, each timestamp has 11 different statistics as features and enters into the corresponding
LSTM cell; ii.) there’s only one LSTM layer with the number of LSTM cells being equal to the
number of timestamps in a sequence, and the activation function is relu and the output shape
is number of timestamps × 9; iii.) the output layer has one sigmoid neuron, the optimizer is
Adam with a learning rate of 0.001, the target metric is accuracy and the loss is computed by
binary cross entropy.
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data-driven approaches; the more data included, the better the model tends to be.
However, unlike DNN, with nearly constant values across the time window from
2500ms to 5000ms, the performance degeneration is more serious with a smaller
number of features in smaller time windows. In other words, a longer time window
will include more information to form a longer and more representative sequence
for LSTM NN to better learn the trend among features for a statistic. Therefore,
we will refer to the complete time window of study with a length of 5000 ms for
further model optimization in the following.

Model tuning:

The LSTM NN model optimization is done in a similar way to DNN with 50 times
of random search among the parameters presented in Table.5.4, and the the final
architecture of the LSTM NN model is in Fig.5.9.

Parameters Value range Best value

Tuned
parameters

Number of LSTM layer
(exclude input layer) [0,1,2] 2

LSTM output shape [16,32,48,64]
1st LSTM: 48
2nd LSTM: 16
3rd LSTM: 16

Number of possible
dense layer [0,1,2] 0

Number of neurons 8 to 64
(step of 8) -

Activation function [relu,tanh]
1st LSTM: tanh
2nd LSTM: relu
3rd LSTM: relu

Dropout [True,False] False
Learning rate [10−4:10−2] 0.00274

Fixed
parameters

Input shape 10 timestamps × 11 features
Number of

output neurons 1 (sigmoid)

Optimizer Adam
Evaluation metric Accuracy

Cost function binary cross entropy

Table 5.4: Tuned and fixed parameters for LSTM NN
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Figure 5.9: The architecture of the final LSTM neural network

Final experimental result:

Based on the best LSTM model derived above, we keep training it with a validation
dataset for early stopping of the same configurations in DNN, and after 15 epochs
in total, we finally derive a model with an accuracy of 0.8357 in the training set.

According to the results of the test dataset in Table.5.5 and Fig.5.10, the LSTM
NN model also satisfies the threshold and outperforms DNN a little bit in terms of
predicting "no-loss" time bins with a 1% improvement for the recall of class 0, while
maintaining the performance for class 1 with the same recall. Although the model
enhancement leads to 21292 (319232 misclassifications for class 0 in DNN minus
297940 misclassifications for class 0 in LSTM) fewer misclassifications, obviously,
both neural network models are still not substantially adequate for our objective.

5.3 Random forest

The third machine learning method for classification is random forest. Unlike
previous approaches, we also distinguish different versions of implementation to
deal with imbalanced datasets.
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Metrics Value
Accuracy 0.83

Macro average 0.51
Class 0 0.99Precision
Class 1 0.02

Macro average 0.76
Class 0 0.83Recall
Class 1 0.69

Macro average 0.47
Class 0 0.91F1 score
Class 1 0.04

Table 5.5: Metrics of final LSTM model
evaluation

Figure 5.10: Confusion matrix
of final LSTM model evaluation

5.3.1 Different implementations

The most common way to implement random forest is through the "RandomForest-
Classifier"7 from scikit-learn which is one of the most famous and reliable Python
modules for machine learning, but it also suffers from problems caused by the im-
balanced dataset. Fortunately, there exists another Python module that is specified
and developed relying on scikit-learn for the imbalanced classification problem,
named imbalanced-learn, which introduces "BalancedRandomForestClassifier"8 that
is able to handle imbalanced datasets.

The "BalancedRandomForestClassifier" provides all the functionalities of the
"RandomForestClassifier" and additionally, each tree in the forest will be provided
with a balanced bootstrap sample[29] by first drawing a bootstrap sample from the
minority class and then randomly drawing the same number of samples from the
majority class. It also modifies the way to optimally split the tree by searching
through a set of mtry randomly selected variables instead of searching through
all variables. Furthermore, another way for the random forest to cope with an
imbalanced dataset is by assigning a weight to each class to set up a heavier
penalty for misclassifying the minority class with a larger weight. The class weights
are incorporated into the random forest algorithm in two places: i.) in the tree
induction procedure, class weights are used to weight the Gini criterion for the

7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. We will also call it the
original random forest classifier.

8https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html, we will
also call it the balanced random forest classifier.
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split; ii.) in the terminal nodes of each tree, class weights are again taken into
consideration to determine the class prediction by a weighted majority vote[29].

In our case, we implement and compare random forest algorithms in three
different ways:

1. The original random forest classifier without class weight9 trained on
a balanced training dataset with the combination sampling strategy (random
undersampling and 10-times oversampling by SMOTE).

2. The balanced random forest classifier with class weight trained on the
original imbalanced training dataset without any sampling techniques. The
class weight is simply the multiple between the majority class and the minority
class. In our case, the quantity of "no-loss" time bins is 70 times that of "loss"
time bins, so that the class weight is 70 for class 1 and 1 for class 0.

3. The balanced random forest classifier without class weight trained on
the original imbalanced training dataset without any sampling techniques.

Then, for simplicity, we construct the random forest with 400 trees but without
other specific configurations, and the results in terms of metrics and the confusion
matrix derived from the three different random forest classifiers on the same test
dataset are presented in Table.5.6 and Fig.5.11.

RF classifier Original RF classifier Balanced RF classifier
with weight

Balanced RF classifier
without weight

Accuracy 0.96 0.85 0.81
Macro average 0.57 0.53 0.53

Class 0 0.99 0.99 0.99Precision
Class 1 0.15 0.06 0.06

Macro average 0.72 0.75 0.80
Class 0 0.96 0.85 0.81Recall
Class 1 0.47 0.64 0.79

Macro average 0.60 0.51 0.50
Class 0 0.98 0.92 0.89F1 score
Class 1 0.23 0.11 0.10

Table 5.6: Summary of metrics for the results of different random forest classifiers

In the first place, all three models satisfy the predefined constraints, and among
them, according to our criteria for best model selection, the best one with the

9For original random forest classifier, we only include in this thesis the one without class
weight because the one with class weight performs very poorly and cannot solve the problem
caused by an imbalanced dataset, so it’s not worth discussing.
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(a) Original RF classifier (b) Balanced RF classifier with weight

(c) Balanced RF classifier without weight

Figure 5.11: Confusion matrices for the results of different random forest classifiers

highest macro average recall of 0.80 and the highest recall of 0.79 for
class 1 is the balanced random forest classifier without class weight
trained on an imbalanced dataset. Out of 8461 "loss" time bins in the test set,
it can correctly predict 6694, which is the largest amount up to now and is 828
more than the second-largest from DNN. Given that an improvement of a quantity
of 828 is 9.79% of class 1 in the test dataset, this model advances significantly in
terms of predicting packet loss.

Moreover, the original random forest classifier results in the highest macro aver-
age F1 score of 0.60, with a larger improvement in terms of the overall performance
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with respect to the other two balanced random forest classifiers, and this is mainly
because the misclassifications for class 0 are only 22726, which is comparable to
the correct classifications of 4017 for class 1, leading to an acceptable precision for
the first time, and eventually affecting the F1 score. This classifier can be applied
if we prefer to not waste network resources reacting to packet loss events that are
supposed to be normal cases without loss, and at the same time, the classifier can
still identify around half the actual losses. However, we still refer to the balanced
random forest classifier without weight as the best model for our primary objective.

Additionally, based on the results following the order from left to right in Tab.5.6,
the performance regarding recall experiences a decreasing trend for class 0 but an
increasing trend for class 1, which means: i.) the original RF classifier without
specific internal countermeasures for imbalance is still affected by the imbalanced
dataset and outperforms towards the majority class; ii.) the balanced RF classifier
indeed relieves the issues caused by the imbalanced dataset in a way; iii.) the setting
of class weight will force the model to work better for the majority class instead
of the other way around, which is counterintuitive and the balanced RF classifier
with weight can be regarded as a compromise with an intermediate performance
between the other two models.

5.3.2 Effect of time window

In order to improve upon the best random forest model derived above, we also
investigate the effects of different lengths of time windows as in section 5.2.1 and
the results are in Fig.5.12. From the plot, the overall trend follows a steady state
with a slight decline as we reduce the window size. For random forest models, just
with the statistics in the last time bin, the prediction can still be done with a mild
performance drop. However, the model will yield a vast number of misclassifications
for "no-loss" time bins even with a tiny defect, so we will still refer to the full
five-seconds-long time window of study with relatively best performance to include
statistics as much as possible.

5.3.3 Model tuning and final experimental result

Finally, we are able to tune the balanced random forest classifier without class weight
and with a time window of 5 s by modifying certain parameters to further optimize
the performance. By performing one hundred trials of random search among all
the possible combinations of parameters, we arrive at a group of parameters for
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Figure 5.12: Resulting metrics of balanced random forest classifier without class
weight for different time window size

the best performance. A summary of tuned and best parameters for random forest
is shown in Table.5.7.

Parameter Value range Best value

Number of trees 100 to 1000 (step of 100) 600

Maximum depth of the tree 10 to 100 (step of 10) & None* 90

Maximum number of features to consider
when looking for the best split ["auto", "log2", None]** "auto"

Minimum number of samples
required to be at a leaf node [1,2,4,6] 2

Minimum number of samples
required to split an internal node [2,4,6,8,10] 4

Bootstrap [True,False] False
* None means the default setting where nodes are expanded until all leaves are pure or until all leaves

contain less than the minimum number of samples required to split an internal node.
** "auto": maximum number of features =

ð
number of features;

"log2": maximum number of features = log2(number of features);
None (default): maximum number of features = number of features.

Table 5.7: Tuned parameters for balanced random forest classifier

Consequently, the results regarding metrics and confusion matrix based on the
balanced random forest classifier with optimized parameters derived above are
presented in Table.5.8 and Fig.5.13. Eventually, we do have an improvement with
a 1% increment for recall of class 1 with respect to the original balanced random
forest classifier, but the performance enhancement of 67 more correct classifications
for class 1 and 1037 fewer misclassifications for class 0 is so trivial that it can be
ignored, which indicates that the model tuning process for random forest in our
specific case is not very useful. Nevertheless, the balanced random forest classifier
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without class weight is still the best model according to the criteria.

Metrics Value
Accuracy 0.81

Macro average 0.53
Class 0 0.99Precision
Class 1 0.06

Macro average 0.80
Class 0 0.81Recall
Class 1 0.80

Macro average 0.50
Class 0 0.89F1 score
Class 1 0.10

Table 5.8: Metrics of final balanced RF
model evaluation

Figure 5.13: Confusion matrix
of final balanced RF model eval-
uation

5.4 Gradient boosting tree

The fourth machine learning approach is GBDT, implemented by XGBoost. Simi-
larly, we still follow the procedures for the investigation of time window and model
tuning. Additionally, as suggested by the official documentation10, we can set up a
parameter named "scale_pos_weight"11, which is the ratio between the quantity of
the majority class and the minority class, to handle the imbalanced data so that
we can simplify the model development procedure by using the original dataset
without the need for sampling strategies.

5.4.1 Effect of time window

To begin with, we also inspect the impact of various lengths of time window with
different quantities of features in the past of the target time bin by only varying

10https://xgboost.readthedocs.io/en/stable/tutorials/param_tuning.html
11It is the ratio between the amount of negative samples and positive samples and is used as a

multiplier applied to every positive label weight, which is similar to the class weight in random
forest. In our case, the value is 70.92.
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the inputs and specifying the "scale_pos_weight" for the implementation of a
basic XGBoost GBDT classifier, and the results are in Fig.5.14. Apparently, the
model follows the same trend as before; the longer the time window, the better the
performance, and it experiences a noteworthy performance decline, especially when
it comes to the time windows with a duration starting from 500 ms to 2500 ms.
Therefore, we will still stick to the 5000 ms-long time window with 10 samples and
110 features for the following model development.

Figure 5.14: Resulting metrics of XGBoost GBDT classifier for different time
window size

5.4.2 Model tuning and final experimental result

In order to improve the performance and finalize the result, we tune the model
by modifying a group of parameters. Then, we apply a random search among
all the combinations of parameters for 100 trails to output those with the best
performance. Moreover, unlike random forest models with parallel trees, GBDT
trains decision trees step-by-step, which means that, theoretically, GBDT can have
any number of training iterations to build numerous successive trees, leading to
possible overfitting on the test dataset. Thus, we introduce a validation dataset
to avoid overfitting by early stopping the model training with limited iterations
(number of trees) based on the observation of AUC (Area Under Curve) under the
PR (Precision-Recall) curve as suggested by the documentation12. Additionally,
for binary classification, the learning objective is to optimize the logistic regression
probability. A summary of all parameters and the corresponding best combination
is in Table.5.9.

12https://xgboost.readthedocs.io/en/stable/parameter.html
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Parameter Value range Best value
Learning rate, which

shrinks the feature weights [0.01, 0.3] 0.270

Minimum loss reduction required to
make a further partition on a leaf node [0, 1] 0.232

Maximum depth of a tree [2, 8] 7
Ratio of subsampling [0.6, 1] 0.885

Subsample ratio of features [0.7, 1] 0.991
L2 regularization term on weights [1, 50] 15
L1 regularization term on weights [0, 50] 41

"scale_pos_weight" [60, 80] 64.832

Table 5.9: All tuning parameters and the best combination for XGBoost GBDT
classifier

Previously, we trained the model with only 100 iterations for simplicity, and
based on the best parameters, we keep training the XGBoost GBDT classifier until
it starts to overfit on the validation dataset. Consequently, after 427 iterations, the
model stops and the results are in Table.5.10 and Fig.5.15. On one hand, the model

Metrics Value
Accuracy 0.96

Macro average 0.59
Class 0 0.99Precision
Class 1 0.18

Macro average 0.73
Class 0 0.97Recall
Class 1 0.49

Macro average 0.62
Class 0 0.98F1 score
Class 1 0.27

Table 5.10: Metrics of XGBoost GBDT
classifier evaluation

Figure 5.15: Confusion matrix
of XGBoost GBDT classifier eval-
uation

performs very well for class 0, with a recall of 0.97 and only 18171 misclassifications.
On the other hand, it can only identify half of the "loss" time bins, leading to a poor
performance on class 1, which means that in our specific case, XGBoost GBDT
classifier outperforms towards the majority class. On top of that, it is worth noting
that the macro average F1 score of 0.62 is the highest one so far, indicating the
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best overall performance.

However, the current training strategy tends to optimize the model to achieve
outstanding performance from a holistic perspective, which is reflected in the
final highest F1 score because the model only stops based on the evaluation of
the AUC under the PR curve, which is biased towards the majority class due to
the domination of "no-loss" time bins. Hence, another solution that balances the
performance between classes is to regard the number of training iterations (trees)
as a parameter and include it in another random search to find the stopping point
where we have a relatively balanced performance by targeting the macro average
recall instead of the default option.

As a result, we allocate another group of parameters13 with a fixed training
iteration of 203 and the final results are in Table.5.11 and Fig.5.16. Fortunately,

Metrics Value
Accuracy 0.85

Macro average 0.53
Class 0 0.99Precision
Class 1 0.07

Macro average 0.80
Class 0 0.85Recall
Class 1 0.74

Macro average 0.52
Class 0 0.92F1 score
Class 1 0.12

Table 5.11: Metrics of final XGBoost
GBDT classifier evaluation

Figure 5.16: Confusion matrix
of final XGBoost GBDT classifier
evaluation

we significantly improve the performance for class 1 with a 25% increase in recall,
and at the same time, the classifier can also reach a recall of 0.85 for class 0 to
meet the threshold. It is without doubt that the upgraded model generates 69230
(87401-18171) more misclassifications for "no-loss" time bins when we try to reach a
balance intentionally and artificially. In general, XGBoost GBDT classifier can be
considered as an effective model with incredible prediction ability for "no-loss" time
bins and decent performance for "loss" time bins, but even with "scale_pos_weight",

13The other parameters are: 0.138 (learning rate), 0.115 (minimum loss reduction), 5 (max
depth), 0.730 (subsampling ratio), 0.840 (subsample ratio of features), 10 (L2 regularization), 38
(L1 regularization), 77.912 ("scale_pos_weight").
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it still suffers from imbalance to pay certain trade-offs, which requires further
optimizations and solutions.

5.5 Isolation forest

The fifth machine learning approach is isolation forest for anomaly detection, which
considers "loss" time bins as outliers and tries to separate them from normal cases
of "no-loss" time bins.

5.5.1 Training strategy

An isolation forest is an unsupervised model that doesn’t construct and induce
trees based on class labels but determines whether an input is an anomaly or not
according to the final depth of the corresponding node. In order to enable isolation
forest to work in a supervised manner, we need to first specify the portion of
anomalies across the training dataset before the training phase so that the isolation
forest model can define what the maximum depth is to consider an input as an
anomaly. In other words, the trained isolation forest model can set a threshold
for anomaly scores to distinguish outliers and normal cases based on the portion
defined above.

In our case, we still apply the seventy-thirty segmentation to define the training
set and test set. In the training dataset, the percentage of "loss" time bins is
1.39% which will then be used by the contamination parameter for the isolation
forest model. Finally, the model consists of 200 trees and is trained without any
specific configurations for simplicity. Additionally, we refer to the original dataset
without any sampling techniques, and the issues caused by an imbalanced dataset
can be neglected because machine learning approaches for anomaly detection are
specifically designed to cope with imbalanced data since anomalies are inherently
rare events, and thus the data for anomaly detection problems are supposed to be
imbalanced. Note that the length of time window for an isolated forest is still 5
seconds without any modifications.
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5.5.2 Experimental result

After the training phase, we can apply the model to evaluate the anomaly conditions
for both the training and test datasets. The resulting metrics are in Table.5.12 and
the confusion matrices are in Fig.5.17.

Metrics Training set Test set
Accuracy 0.97 0.97

Precision
Macro average 0.50 0.50

Class 0 0.99 0.99
Class 1 0.02 0.01

Recall
Macro average 0.50 0.50

Class 0 0.99 0.99
Class 1 0.02 0.01

F1 socre
Macro average 0.50 0.50

Class 0 0.99 0.99
Class 1 0.02 0.01

Table 5.12: Metrics of isolation forest model evaluation for training set and test
set

(a) Training dataset (b) Test dataset

Figure 5.17: Confusion matrices: the results of isolation forest model for training
and test sets

According to the results, although the model is able to identify most of the
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"no-loss" time bins with, so far, the highest recall of 0.99 for class 0 in both datasets
to avoid massive misclassifications appearing in all of the classification models
implemented before, the performance is still very poor because it cannot predict
class 1 and results in an extremely low recall of 0.02 for the training set and 0.01
for the test set, which means the isolation forest model cannot recognize outliers of
"loss" time bins in our case and completely fails the thesis objective.

5.6 Autoencoder

The last machine learning approach is the autoencoder for anomaly detection as
well. An autoencoder is a neural network with a special architecture, and it will
result in a relatively larger reconstruction error if the input is an anomaly since it
only captures the latent representation of normal cases.

5.6.1 Training strategy

The Autoencoder is also an unsupervised machine learning tool, and the general
workflow is similar to the isolation forest implemented in the previous section.
However, the major difference between them is that the autoencoder only takes in
samples for normal cases without any infiltration from outliers. This is because we
want the NN to be only able to learn and reconstruct normal cases, and for any
anomalous inputs, the autoencoder model will endeavor to reproduce them in the
way it reproduces normal cases, leading to a larger difference between the input
for the anomaly and the corresponding output. Therefore, we only include 70%
from the "no-loss" dataset for training and use the rest 30% together with all of
the "loss" dataset for testing.

In particular, we build a simple autoencoder14 with architecture in Fig.5.18, in
which we have 5 hidden layers and 8 neurons for the bottleneck, and regard the
mean absolute error (MAE) between input and output as the reconstruction error,
i.e. the cost function. By also considering the test set as a validation set for early
stopping, we have trained and stopped the autoencoder model after 15 epochs.

14Other parameters:
i.) input shape and output shape: 77 neurons (7 samples in 3.5s × 11 statistics);
ii.) activation function: relu for hidden layers and sigmoid for input and output layer;
iii.) optimizer: Adam with a learning rate of 0.001.
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Figure 5.18: The architecture of autoencoder

5.6.2 Experimental result

The output of the autoencoder model trained before is the reconstruction of any
input feature values within time bins. For the test dataset, we need to compute
the MAE between each pair of input and output, and the way to tell anomalies
apart from normal cases is based on the scale of the MAE. The "loss" time bins
have higher values, while the "no-loss" time bins have lower values. Hence, for
all the resulting MAE, similar to the contamination in an isolated forest, we can
find a threshold above which the corresponding inputs are "loss" time bins. The
threshold is simply allocated in all MAEs using the percentile based on the portion
of anomalies in the test set. In our case, "loss" time bins occupy 4.489% of the test
dataset and thus the percentile is 1 − 4.489% = 95.511%. Fig.5.19 helps visualize
MAEs and the location of the threshold, and as a result, the threshold is equal to
0.1305. As we can see in the figure, most MAEs are located on the left side of the
threshold and concentrated around 0.05.

By applying the threshold on all MAEs, we are able to finally derive the loss
condition for each corresponding input time bin, and the results are in Table.5.13
and Fig.5.20. The autoencoder model slightly outperforms the isolation forest with
a relatively higher recall of 0.05 for class 1, but the general performance is still
very poor and unacceptable, which indicates that it cannot be used for packet loss
prediction either.
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Figure 5.19: Distribution of mean absolute errors and the threshold

Metrics Value
Accuracy 0.91

Macro average 0.50
Class 0 0.96Precision
Class 1 0.05

Macro average 0.50
Class 0 0.96Recall
Class 1 0.05

Macro average 0.50
Class 0 0.96F1 score
Class 1 0.05

Table 5.13: Metrics of autoencoder
model evaluation

Figure 5.20: Confusion matrix
of autoencoder model evaluation

5.7 Summary

At this stage, we have completed the basic machine learning approach development
in terms of decision trees, neural networks, random forest, gradient boosting trees
from classification and isolation forest, autoencoder from anomaly detection.

Generally speaking, classification methods play a dominant role in problem
solving, while anomaly detection methods fail the objective completely. A summary
of performances regarding class recall and macro average F1 score of all models
developed above is in Table.5.14. According to the criteria, only the decision tree
model with an undersampling strategy cannot generate a recall for class 0 above
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0.80, and the best model is the balanced random forest model without class weight
trained on the original dataset with the highest recall of 0.80 for class 1.

Table 5.14: *Summary of all machine learning approaches

Category Model Sampling
strategy

Recall
(class 0)

Recall
(class 1)

Macro average
F1 score

Classification

Decision tree Original 0.98 0.14 0.55
Decision tree Undersampling 0.68 0.67 0.41
Decision tree Oversampling 0.94 0.29 0.53
Decision tree

Combination

0.84 0.48 0.47
DNN 0.82 0.69 0.47

LSTM 0.83 0.69 0.47
Random forest 0.96 0.47 0.60

Balanced random forest
with class weight

Original

0.85 0.64 0.51

Balanced random forest
without class weight 0.81 0.80 0.50

XGBoost GBDT
targeting overall performance 0.97 0.49 0.62

XGBoost GBDT
targeting class recall 0.85 0.74 0.52

Anomaly
detection

Isolation forest 0.99 0.01 0.50
Autoencoder 0.96 0.05 0.50

* The colored cells are notable values discussed in the literature. In particular, red indicates the lowest value
and green is the highest.

On one hand, several classification methods are able to identify around 70% to
80% "loss" time bins and ensure the incorrect classifications for "no-loss" time bins
are less than 20% at the same time. On the other hand, anomaly detection seems
to be able to recognize most "no-loss" time bins, but it cannot predict "loss" time
bins at all with too few correct classifications for class 1 to reach the thesis goal.
The possible reason is that anomaly detection requires a larger difference between
normal cases and outliers, but in our case, due to the complexities of the problem
and the dynamic properties of the network, the distinctions between "loss" and
"no-loss" time bins are not obvious enough, not to mention the variations among
RTP flows. On top of that, the extremely good prediction for class 0 is due to
the threshold based on the portion of "loss" time bins instead of the strengths of
the anomaly detection algorithms themselves. For example, if we modify the class
determination criteria by artificially moving the threshold in Fig.5.19 towards the
left, the autoencoder model will induce more misclassifications for class 0 but still
cannot generate a lot of correct predictions for class 1, which further emphasizes
the failure of anomaly detection methods. Moreover, it’s not worth continuing with
any model tuning as well as optimization for anomaly detection simply because
there’s no potential to foresee an earthshaking improvement. For the exact same
reason, some more analyses and models with similar poor performance regarding
length of time window, LSTM autoencoder, etc., are not included in this thesis.
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In particular, for classification methods, all models follow the same behavior of
working well on "no-loss" time bins with higher recall for class 0 when working poorly
on "loss" time bins with lower recall for class 1 and vice versa, which illustrates
that it is not possible to achieve good performance for both classes at the same
time. On top of that, the best model of balanced random forest presents the
highest recall for class 1 but the lowest for class 0 leading to the largest amount of
misclassifications for "no-loss" time bins. Note that due to the imbalanced dataset
in which we have more than two million "no-loss" time bins, a model will induce a
huge number of misclassifications for "no-loss" time bins even if the decrement in
recall of class 0 is very small. For instance, according to Fig.5.11, the difference
in recall between the original random forest and balanced random forest without
weight is 0.15 (0.96-0.81) but it yields a huge difference of 92107 (114833-22726)
for misclassifications in class 0. Although it cannot be ignored that incorrect
predictions for "no-loss" time bins will generate an excess of wrong outcomes, which
may lead to a waste of network resources for loss reaction, we still refer to the
balanced random forest without weight as the best model, not only because of the
criteria defined before but also the primary objective of this thesis. Since there’s
no way to improve the model for both classes at the same time, we want to find
a balanced behavior in between to try our best to predict packet loss as much as
possible without sacrificing and penalizing too many normal cases at the same
time, and in our case, statistically speaking, a recall of 80% is an acceptable value.

Moreover, from an overall point of view, the first XGBoost GBDT classifier
with the original dataset performs the best, with the highest macro average F1
score of 0.62, while most other models hover around 0.50, because it has the
advantage of effectively identifying "no-loss" time bins with the second-highest
recall of 0.97, and at the same time, it can still predict 49% of "loss" time bins,
which is a mediocre outcome, while the decision tree model with the highest recall
of 0.98 for class 0, can only successfully predict 14% "loss" time bins. Additionally,
although the second XGBoost GBDT classifier is not the best model (second best)
according to the criteria, it can still be considered an excellent one because it only
induces 503 (6761-6258) less correct predictions for "loss" time bins but avoids
26359 (113760-87401) misclassifications for "no-loss" time bins. Meanwhile, with
respect to models with comparable recall for class 0, like the balanced random
forest with class weight, it has the highest recall for class 1 with an improvement
of at least 5%. In a word, the XGBoost GBDT classifier has great potential to
further optimize and the flexibility to tune the performance between classes, so we
will also consider it for in-depth analysis.

To sum up, both balanced random forest classifier without weight and XGBoost
GBDT classifier can produce balanced results with decent performance. Hence, in

94



Methodology and experimental result

the following, we will take into account both of them because of the outstanding
performance and similar training set configuration without sampling techniques.
As a result, we are able to see how far we can go from the two chosen classifiers by
performing deeper analyses to further optimize the models and effectively solve the
problem in the next chapter.
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Chapter 6

In-depth analysis

In this chapter, we will focus on the elaboration of the balanced random forest
classifier without class weight and the XGBoost gradient boosting tree classifier
to perform more in-depth analyses in terms of constraints due to real cases, three
ways for model optimization, and extra data from other sources. Note that in
some of the following analyses, we only check the performance of the balanced RF
classifier because either model optimizations or degeneration apply to XGBoost
GBDT classifier in the same way.

6.1 Constraints due to real case scenarios

For all of the previous analyses and model developments, we always follow pro-
cedures from a data-driven perspective, taking into account only a few realities
of real-time RTP communication for the sake of simplicity, comparability, and
efficiency. In this section, we bring back all the constraints in real-case scenarios
and investigate the impact on the model performance.

6.1.1 Predicting the farther future

Previously, we defined the problem as the prediction of packet loss in the exact
next time bin of 500 ms (i.e. Yt→t+0.5) as in Equation.4.1. However, in reality, this
kind of prediction is feasible but not useful because the system needs time to collect
packets, calculate statistics over time aggregations, perform prediction using the
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predefined model, and finally react to predicted packet loss, which means that the
issues of packet loss can be tackled only after all of these procedures finish with a
certain time consumption. That is to say, if we target the exact next time bin of
500 ms (t → t + 0.5) for any time instance t, the packet loss would have already
occurred after all of the calculations and reactions, rendering everything we have
done obsolete and useless. Therefore, we need to predict a farther future1. For
example, a time bin may be in the next 2000 ms instead of the subsequent one.

Predicting strategy:

To achieve this, we need to be aware of the time consumption of all procedures.
In our case, the predicted time of a target time bin is around 47.39 ms for a
balanced random forest classifier without weight and is even less with only 2.81 ms
for XGBoost GBDT classifier, and the total time consumption including packet
collection, statistic calculation, prediction, and reaction is less than 500 ms, which
indicates that the potential packet loss that can be effectively responded to has to
occur at least 500 ms from the current time instance. To put it in another way, we
must aim for and predict the time bin at least in the next 1000 ms, i.e. Yt+0.5→t+1.
In such a scenario, since we focus on the time window of study, we still predict
the subsequent time bin, Yt→t+0.5, but discard the exact past time bin of 500 ms
(Xi,t−0.5→t) and refer to statistics in time bins from t − 5 to t − 0.5 (Xi,t−5→t−4.5 to
Xi,t−1→t−0.5) to resemble the real-case scenario assuming that we are observing the
communication at t − 0.5. A more representative illustration is in Fig.6.1.

Figure 6.1: Description of new prediction strategy

1We did not consider this aspect during previous model development because, at that time,
we didn’t know the time consumption to determine the time bin for prediction.
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In particular, it is not harmful to investigate time bins not only in the next 1000
ms but also in the next 1500 ms to 3000 ms2. Then, we retrain the two models
with a different quantity of features in a shorter time window and compare their
performance with that of the full time window for the original prediction. The
results in terms of metrics are in Fig.6.2. As expected, with less information and
more uncertainties included due to skipped time bins, the performances of both
models indeed experience a degeneration as they predict farther and farther into
the future, but the declines are not very serious with slight reductions, which means
that it is also feasible to predict a more distant future. Hence, the implementation of
a more complex and superior mechanism with a relatively larger time consumption
but a more outstanding reaction to packet loss is absolutely possible if needed.

(a) Balanced RF classifier

(b) XGBoost GBDT classifier

Figure 6.2: Variation of metrics of the two chosen models with different predicting
target time bin in the future

2In these cases, we simply discard more corresponding time bins in the past and use fewer
available statistics.
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Experimental result:

At last, the detailed results about the new target time bin in the next 1000 ms are
in Table.6.1 and Fig.6.3. With respect to the original results in section 5.3.3 and

Metrics Balanced RF classifier XGBoost GBDT classifier
Accuracy 0.80 0.83

Precision
Macro average 0.52 0.53

Class 0 0.99 0.99
Class 1 0.05 0.06

Recall
Macro average 0.79 0.79

Class 0 0.80 0.83
Class 1 0.79 0.74

F1 socre
Macro average 0.49 0.51

Class 0 0.89 0.90
Class 1 0.10 0.11

Table 6.1: Metrics of the two chosen models in real case scenario targeting a
farther future

(a) Balanced RF classifier (b) XGBoost GBDT classifier

Figure 6.3: Confusion matrix of the two chosen models in real case scenario
targeting a farther future

section 5.4.2, the performance has a 1% drop in recall of class 0 for both models,
and the recall for class 1 also has a 1% drop for the balanced RF classifier but
remains the same for XGBoost GBDT classifier, which is totally acceptable and,
consequently, the possibility and feasibility of model implementation considering a
farther future for the real-case scenario is proved and supported.
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6.1.2 Shuffling strategy for dataset

Normally, for the development of a machine learning approach, the datasets for
training and testing should be randomly selected in order to represent the original
dataset as much as possible, and in previous works, we always completely shuffle
"loss" and "no-loss" datasets before methodology development, which means time
bins from different flows are mixed together and data of flows are distributed almost
homogeneously across training and test datasets. However, this is barely possible
in real-case scenarios because, in reality, we ought to rely on a pre-trained model
without the possibility of model upgrade to make predictions, which means that
the incoming RTP traffic has never been included in model development and is very
different from those used for model training, and thus, the statistics about new
time bins vary from what we have in possession. Although both RTP flows, either
used for model training or retrieved from new RTP sessions for evaluation, have
similar properties, it is still an issue for a data-driven problem and a data-based
model if the information of new data for evaluation is unknown and the patterns
have never been analyzed and included. For this reason, we foresee a performance
drop when it comes to real-case scenarios, and in this section, we will inspect the
possible impacts using the balanced RF classifier without class weight and XGBoost
GBDT classifier.

In order to simulate reality, we need to avoid the mixture of time bins from
all flows and infiltration between training and test datasets. Therefore, instead
of shuffling the entire dataset, we only shuffle3 the dataset according to "flow_id"
(section 3.2.4) that stands for a certain RTP flow to make sure that time bins in
the same flow contained in the training set will not appear in the test set and vice
versa4.

However, shuffling flows for datasets induces two more problems: the evaluation
of performance and finding the most proper combination of flows in the training
set to generate the best performance. On one hand, different datasets for training
due to various random shuffles lead to different performances, and it’s reasonable

3We do not perform shuffles during the previous methodology development simply because
we need to randomly shuffle the dataset multiple times to derive the average behaviour and the
best performance for each model, which is totally a waste of time since the performance drop will
appear regardless of the models.

4In this case, we still refer to the 70-30 partition for training and testing so that there’s no
way to guarantee a clean shuffle at the edge of the partition. But this phenomenon occurs just
for one flow, and only several time bins from the same flow will appear in both sets, which is not
a huge problem with respect to millions of time bins.
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to refer to the average behavior instead of the best, worst, or intermediate one to
evaluate the performance from a general point of view. Such an average behavior
and related information can indicate the overall model performance and stationarity.
On the other hand, the best performance can be considered the upper limit of
the model in certain best-case scenarios. In other words, it is necessary to find a
shuffling result to allocate flows that can represent the entire dataset and cover
most of the patterns in the ideal case. As a result, we have done 50 trials of
random shuffle to retrain 50 models based on different combinations of flows for
both classifiers.

Experimental result:

The results in terms of recall are in Fig.6.4, in which the blue dots represent recalls
for class 0, red dots represent recalls for class 1, and green dots are macro average
recalls, and the box plot as well as mean values for all shuffles are on the right side.
Additionally, the best performance among all shuffles indicates the upper limit of
models in the best case scenario, while the mean behavior represents the general
performance. According to the results5:

• For the balanced RF classifier, recalls for class 0 range between 0.6 and 0.7
with a mean value of 0.655 and recalls for class 1 range from 0.3 to 0.6 with a
mean value of 0.416, which presents a huge performance drop of around 15%
in recall for class 0 and 40% in recall for class 1, compared with the original
result. The mean value for the macro average recall is only 0.535, leading to
an extremely poor model like a coin toss with a half-half performance. Even
in the best case scenario, the model can reach the best performance at trial 33
with recall of class 0 being only 0.616, recall of class 1 being only 0.591, and
macro average recall being only 0.604, which is still 20% less than the original
result, not to mention the incredible amount of 230565 misclassifications for
class 0.

• For XGBoost GBDT classifier, the significant performance drop also applies.
The mean values for all recalls are around 0.58, which is about 20% less than
the original result, and the best performance is at trial 34, with recalls of

5In this case, we refer to models with a relatively simple configuration instead of the best
parameters to save time, which means that the model may experience an improvement with
parameter tuning, but it won’t make a huge difference given the significant performance decline.
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(a) Balanced RF classifier

(b) XGBoost GBDT classifier

Figure 6.4: Recalls (class 0 & 1) and macro average recall for the chosen models
with different random shuffles of flows

0.625 (class 0), 0.670 (class 1), and 0.647 (macro average), which are relatively
better than the balanced RF classifier but still very poor.

• Comparing both models, on one hand, the recalls for class 0 are relatively
stable while the recalls for class 1 have larger fluctuations, which indicates
that the real-case scenario affects "loss" time bins more than "no-loss" time
bins since we have less data for class 1 and the patterns for "loss" time bins
are also diverse. On the other hand, unlike in original performance when
a balanced RF classifier generates a more balanced result, XGBoost GBDT
classifier outputs a relatively balanced result in this case, and on top of that,
it is less affected by shuffling flows given the better performance in best case
scenario and mean value of macro average recall. Meanwhile, in a lot of cases,
XGBoost GBDT classifier shows strange behavior where the performance of
the minority class, class 1, is better, which only occurs once for the balanced
RF classifier.

In general, the shuffling flows significantly affect both models, causing them to
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experience a tremendous performance drop that cannot be neglected. Moreover,
we didn’t include another layer of constraint of predicting a farther future in this
section, so the eventual result will be even worse considering all real-case scenarios,
which requires more efforts and analyses to further optimize the models.

6.2 Model optimization

In order to tackle the issues caused by real-case scenarios where the models barely
work, we need more technical solutions to improve the performance and eventually
achieve the thesis goal. In this section, we come up with three approaches in terms
of feature selection based on Recursive Feature Elimination; feature augmentation
based on the preceding existence of packet loss; and "loss" time bin definition based
on the correlation with the quantity of packet loss in a time bin.

6.2.1 Recursive feature elimination

The first optimization for the models is related to feature selection. Previously, we
selected features of statistics based on the fine characterization of packet loss in
section 3.2.3 and referred to those with strong correlations in the time window of
study following a time sequence. However, on one hand, statistics selected based
on visualizations may not be sufficient and representative, and on the other hand,
a discrete feature of a certain statistic in an individual time bin may also contain
critical information for prediction even if adjacent statistics in its neighborhood
are not included in features.

Therefore, a more technical and comprehensive feature selection process is
performed through Recursive Feature Elimination (RFE)[30] which is a feature
selection algorithm that recursively considers smaller and smaller subsets of all
features by dropping out those that are least important and finally retaining the
most crucial ones.

Outcome of RFE:

In our case, we have 96 types of statistics in total initially, and by removing those
that absolutely have nothing to do with packet loss based on visualizations and
domain knowledge, we have in hand 32 statistics left for RFE, including the 11 ones
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selected and used before. We carry out RFE6 to choose the number of features from
10 to 200 with a step of 10, and the results regarding metrics7 for each quantity of
features are posted in Fig.6.5. According to both figures, the model of the balanced
RF classifier without class weight indeed experiences a performance improvement
with a knee of around 30 features as we include more features, but the behavior

(a) Overall metrics

(b) Class metrics

Figure 6.5: Evaluation metrics for the results of Recursive Feature Elimination

6Notes: i.) In order to enable RFE to work, we build a larger dataset with 320 features (32
statistics × 10 samples in 5 seconds) in total; ii.) in this case, we only use the balanced RF
classifier as reference, and there’s no need to perform another round of RFE for XGBoost GBDT
classifier.

7Besides the overall metrics, we also include class metrics to avoid potentially exceptional
behaviors for a specific class.
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starts to become stable with very small fluctuations when the number of features is
greater than 80. Hence, in order to reduce the quantity of features for simplicity as
well as efficiency and make comparison with respect to original features, we refer
to 110 as the final number of features derived based on RFE.

Between new and original features, we only have 37 in common. Seventy-
three selected automatically from new features are different from the original ones
selected based on characterizations and visualizations, and they are mainly about
6 categories8:

• "interarrival_mean": mean value of interarrival time;

• "interarrival_moment3": the third moment of interarrival time;

• "len_udp_mean": mean value of UDP length;

• "len_udp_skew": skewness of UDP length;

• "rtp_inter_timestamp_std": standard deviation of differences between
RTP timestamps;

• "inter_time_sequence_max_value_count_percent": percentage of
the maximum value of differences between timestamp and sequence number.

For example, Fig.6.6 shows the fine characterization done in section 3.2.3 for the
mean value of interarrival time ("interarrival_mean") for the three cases. This
statistic is not selected due to the relatively weak correlation with a gentle increment
as approaching packet loss. But RFE relies on it and the reasons might be: i.)
the patterns are not intense but still visible and distinguishable compared to the
constant behavior in case 3 when there’s no loss; ii.) both cases 1 and 2 share
almost the same behavior, which indicates that the mean value of interarrival
time applies for most "loss" time bins regardless of concentrated or sparse loss;
iii.) besides the difference in trend, the difference between case 1&2 and case 3
in terms of numerical value is very large. The mean value of interarrival time
is always a little bit larger than 0.27 when no packet loss plays its role, while it

8The remaining features are discrete statistics allocated in individual time bins without
following chronological orders. For example, the Kurtosis of interarrival time only has two
features: "interarrival_kurtosis_minus_500ms" in the time bin from 500 ms ago and "interar-
rival_kurtosis_minus_3000ms" from 3000 ms ago. Most of the new features still follow the time
sequence in the time window of study with 10 samples, which means RFE also identifies the
trends and utilizes the characteristics of packet loss for prediction.
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Figure 6.6: Fine characterization of mean value of interarrival time

spans over a smaller range starting from 0.20 to 0.22 when packet loss affects the
communication.

Experimental result:

Finally, we retrain the models based on the new features from RFE, and the results
for the test set are in Table.6.2 and Fig.6.7. Compared with the original results for
both models in section 5.3.3 and section 5.4.2, RFE is truly able to provide more
informative and advantageous features for the problem, and we confirm the model
improvement with 8894 (113760-104866) fewer misclassifications of "no-loss" time
bins and 275 (7036-6761) more correct classifications of "loss" time bins for the
balanced RF classifier, and nearly the same amount of correct classifications of "no-
loss" time bins and 411 (6669-6258) more correct classifications of "loss" time bins
for XGBoost GBDT classifier. Nevertheless, statistically speaking, improvements
of 2% (0.83-0.81) and 3% (0.83-0.80) in recalls of both classes for the balanced
RF classifier are not significant, while for XGBoost GBDT classifier, the recall of
class 1 has a slightly larger rise of 5% (0.79-0.74) but the recall (both are 0.85) of
class 0 remains the same, which indicates that, although the original features are
not the best choice since they are defeated by RFE, they are still sufficient and
meaningful, and features selected according to trends based on visualizations and
characterizations of packet loss can be considered as successful9.

9Notes: i.) in some of the following in-depth analyses, we will still refer to the original features
for the sake of comparisons; ii.) we also try to retrain DNN based on new features, and the
improvement is proved by the recall of 0.87 for class 0 and 0.70 for class 1, which are 5% and 1%
greater than the original ones of DNN.
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Metrics Balanced RF classifier XGBoost GBDT classifier
Accuracy 0.83 0.85

Precision
Macro average 0.53 0.53

Class 0 0.99 0.99
Class 1 0.06 0.07

Recall
Macro average 0.83 0.82

Class 0 0.83 0.85
Class 1 0.83 0.79

F1 socre
Macro average 0.51 0.52

Class 0 0.90 0.92
Class 1 0.12 0.13

Table 6.2: Metrics of the two chosen models with new features based on RFE

(a) Balanced RF classifier (b) XGBoost GBDT classifier

Figure 6.7: Confusion matrix of the two chosen models with new features based
on RFE

6.2.2 Considering packet loss as features

The second model optimization is based on the augmentation of features. Besides
available statistics about packets aggregated in time bins in the past, it is also
possible to consider the presence of packet loss themselves (i.e., class label) in
the past of a target time bin as features for prediction. Therefore, we update the
original dataset with ten new columns of packet loss condition (binary class label)
for each of the 10 time bins in the time window of study to have 120 features
eventually. Note that in this case, we need to discard the first 10 samples for each
individual dataset with continuous time series since the time bins in the past are
not adequate for them.
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Preliminary analysis:

In order to assess the impact of the feature augmentation and determine whether
to proceed, we use and retrain the model of the balanced RF classifier without
weight as a reference, and the results are in Table.6.3 and Fig.6.8.

Metrics Value
Accuracy 0.86

Macro average 0.53
Class 0 0.99Precision
Class 1 0.07

Macro average 0.82
Class 0 0.86Recall
Class 1 0.78

Macro average 0.53
Class 0 0.93F1 score
Class 1 0.13

Table 6.3: Metrics of balanced RF clas-
sifier with loss conditions as features

Figure 6.8: Confusion matrix of
balanced RF classifier with loss
conditions as features

According to the results, adding features about packet loss will improve the
performance for class 0 with a 5% increment (0.86-0.81) in recall but impede
the prediction for class 1 with a 2% (0.80-0.78) drop compared to the original
result, which means that the newly added features about loss conditions optimize
the model towards "no-loss" time bins, and this makes sense because for most
"no-loss" time bins, the past 10 time bins do not have losses either, and all feature
values in the past time window of study are equal to 0, which is more uniform to
present a more remarkable trend with respect to "loss" time bins having an irregular
distribution of packet loss in the past. Moreover, a decrement of 2% results in
only 485 (6694-6209) more misclassifications for class 1 but an improvement of 5%
for class 0 leads to 35629 (114833-79204) more correct classifications. Meanwhile,
compared to those models10 with relatively higher and comparable recalls for class
0 smaller than 0.90, augmented features about loss conditions can significantly
improve the prediction for "loss" time bins with increments for recall ranging from

10i.e., DT with combination strategy has 0.84 (class 0) and 0.48 (class 1), DNN has 0.82 and
0.69, LSTM NN has 0.83 and 0.69, and balanced RF with class weight has 0.85 and 0.64, XGBoost
GBDT classifier towards class recall has 0.85 and 0.74.
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4% (0.78-0.74) to 30% (0.78-0.48), not to mention the better recall for class 0 as
well.

Although the best model remains the same without packet loss conditions as
features according to the criteria, we can still consider this strategy as an effective
one with the potential to improve the model by fulfilling the thesis objective and
avoiding superabundant incorrect predictions at the same time. On top of that,
here we only investigate the performance of the original model without considering
other aspects, and potentially, it could play a more important role in real-case
scenarios to compensate for the diversity among flows, so in the following, we will
continue with more analyses and optimizations by considering the new features as
well as related aspects and making comparisons.

Considering flow shuffling:

The improvement has been proved by the preliminary analysis, and in this section,
we check the influence over performance by performing 10 trials11 of shuffling flows
for both models with the augmented features of packet loss condition in the past.

According to the results12 related to recalls of each trial in Fig.6.9:

• The balanced RF classifier experiences an obvious improvement with respect
to the original result in Fig.6.4a especially when it comes to class 1, with
an increment of 21.9% (0.635-0.416) in the mean value of recall. Together
with the improvement of 6.6% (0.721-0.655) in recall of class 0 and 14.3%
(0.678-0.535) in macro average recall, the new features of packet loss condition
can significantly alleviate the problem caused by flow shuffling to reach an
acceptable performance.

• The XGBoost GBDT classifier presents a huge improvement for the recall
of class 0 with 36.8% (0.948-0.580) and the macro average recall with 18.2%
(0.762–0.580), while it remains almost the same for class 1 compared with the
original result in Fig.6.4b, which illustrates that the augmented features can

11In this case, we don’t need to do it for 50 trials as before because we want to roughly
investigate the performance and perform further analysis, taking into account every aspect later
to save time.

12Note that here we only consider the mean value of recalls to investigate the general performance
and do not take into account the best performance since we have only performed 10 trials.
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(a) Balanced RF classifier (b) XGBoost GBDT classifier

Figure 6.9: Recalls for the chosen models with different random shuffles of flows
considering packet loss as features

help identify most "no-loss" time bins regardless of flows and maintain the
same prediction ability for "loss" time bins at the same time.

• When comparing both models, they share the same behavior as in the basic
model development, where the balanced RF classifier produces a more balanced
performance. At the same time, both models have relatively steady behavior
with small variations for recalls, especially for "no-loss" time bins, which means
that the new features can optimize the models to stabilize the performance in
any case.

In a word, the augmented features of loss condition in the past 5 seconds can sub-
stantially help the models distinguish different time bins even with the disturbance
caused by various flows because: i.) unlike other features with normalized and
diverse values, packet loss condition is a binary feature; ii.) for most "no-loss" time
bins, their past 10 samples are also "no-loss" time bins, which helps the models easily
identify class 0. However, although both models experience significant improve-
ments, the performance of XGBoost GBDT classifier is still better because, on one
hand, the advantage of the balanced RF classifier for class 1 with an enhancement
of 5.9% (0.635-0.576) is not comparable with the drawback for class 0 with a huge
drop of 22.7% (0.948-0.721)13, and on the other hand, a recall of 0.721 for "no-loss"

13A difference of 5.9% for "loss" time bins only indicates 500 samples, but 22.7% for "no-loss"
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time bins doesn’t meet the criteria and will yield massive misclassifications that
are totally not tolerable. Consequently, we only refer to XGBoost GBDT classifier
to derive the final result in the following.

Considering all related aspects:

In this section, we use XGBoost GBDT classifier as our final machine learning
model to obtain the final result, considering every related aspect (4 in total) in
terms of model optimization and constraints caused by the real-case scenario:

• Constraint 1: Referring to the real-case scenario of predicting t + 1 discussed
in section 6.1.1;

• Constraint 2: Shuffling flows to simulate the real-case scenario described in
section 6.1.2, and finding the average behavior for general performance and a
specific combination of flows for the best performance;

• Optimization 1: Referring to the best features derived from Recursive
Feature Elimination in section 6.2.1 rather than the original ones selected
based on packet loss characterization;

• Optimization 2: Using packet loss conditions in the time window of study
before the target time bin as features.

Fig.6.10 shows the results14 of XGBoost GBDT classifier with a similar plot
for 50 trials of shuffling flows as in section 6.1.2. First of all, with all possible
optimizations and constraints, the final model presents a thorough improvement
with acceptable performance based on the mean values of recalls. Secondly, the
model performs very well for class 0 by identifying 94.6% of "no-loss" time bins
but poorly for class 1 by only successfully predicting 54.0% of "loss" time bins.
Moreover, the behavior for "no-loss" time bins is very stable while the prediction
for "loss" time bins has a lot of fluctuations, which indicates that the variations
among flows have a large impact, so that the model can sometimes predict packet

time bins leads to 136230 samples!
14Notes: i.) in this case, we use a relatively simple but constant parameter configuration with

a validation dataset, which means that we may still have a slight improvement with parameter
tuning, and the reason we do not perform model tuning is that it is needed for each trial; ii.) we
also go through the exact same procedure for the balanced RF classifier, but the results are not
good as expected and thus we do not include them in this thesis.
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Figure 6.10: Recalls for XGBoost GBDT classifier with different random shuffles
of flows considering all related aspects

loss efficiently but sometimes barely work. Finally, the model generates a fabulous
result with a recall of 0.944 (class 0), 0.744 (class 1), and 0.838 (macro average) at
trial 34, and thus, in the most ideal case, XGBoost GBDT classifier is very reliable
given the difficulties of the problem.

To sum up, XGBoost GBDT classifier can be considered a useful but not perfect
model, which can identify most of the normal time bins without losses and predict
more than half of the time bins with packet losses in the meantime. Due to the
imbalance between classes, the outstanding performance of class 0 helps avoid a
great deal of misclassifications and, consequently, saves plenty of network resources
for unnecessary reactions. But it is without doubt that the model can only solve
half of the problems induced by packet loss, which partially achieves the thesis
goal.

6.2.3 Correlation with quantity of packet loss

The last optimization is related to the definition of "loss" time bin by considering
the amount of packet loss in a bin. In our dataset, "loss" time bins have different
amounts of packet loss, and previously, we didn’t consider the various quantities
during analyses and model development. Technically speaking, less packet loss in
a time bin is due to a mild congestion or other trivial network problems, which
will slightly affect the RTP sessions and result in fewer influences over statistics
of affected time bins with indistinct and ambiguous trends compared to time bins
with a larger quantity of packet loss caused by relatively more serious network
issues. Hence, "loss" time bins with more losses are supposed to be more easily
predicted because of a more distinctive trend and characteristic. To sum up, there
exist correlations between prediction performance and the number of packet losses,
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so in this section, we try to elaborate on the two chosen models by concentrating
on the quantity of packet loss in each "loss" time bin.

Analysis for quantity of packet loss in time bins for correct
or incorrect predictions:

Firstly, in order to reach the goal, we update the dataset by adding one more column
recording the number of packet losses in each bin, named "num_packet_loss". The
bar chart in Fig.6.11 together with a detailed table illustrates the distribution of
time bins with different quantities of packet loss in the entire dataset, and most
(71.04%) of "loss" time bins only have one loss.

Figure 6.11: Number of time bins with different quantities of packet loss for the
entire dataset

Secondly, we check the distribution of "loss" time bins with various quantities
of loss for correct as well as incorrect classifications of the result from the model
of balanced RF classifier without weight as in Fig.5.13, and compare it with the
original distribution in the entire dataset:

• Fig.6.12 indicates the distribution of time bins with different amounts of packet
loss in outputs of misclassification. Among all of the incorrect classifications
of "loss" time bins, those with only one loss occupy 79.0% which is larger than
the entire dataset with a percentage of 71.04% and in the meantime, time bins
with more losses have smaller portions. Apparently, as expected, target bins
with only one loss are harder to predict with more misclassifications.
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Figure 6.12: Number of time bins with different quantities of packet loss for the
incorrect classifications

• Fig.6.13 presents all the possible numbers of packet losses in any time bin
among correct classifications and their corresponding number of bins. Unlike
before, 68.4% of correct classifications just have one loss, which is similar
to the entire dataset with a small variation, and time bins with more losses
occupy more percentages. On top of that, the correct predictions include a
specific portion of time bins with even more packet losses up to a maximum of
534, while in the misclassifications, the maximum number of packet losses is
only 35, which means that the model is able to successfully make predictions
when it comes to a time bin with a larger quantity of packet losses due to
severe network problems that cause mighty strong impacts on the RTP flows
and, consequently, lead to significant trends in statistics for prediction.

Figure 6.13: Number of time bins with different quantities of packet loss for the
correct classifications
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Based on the results, we prove and confirm the correlation between prediction
performance and the quantity of packet loss in the predicting time bin. The
more losses we have in a time bin, the better model performance we end up
with. Technically, it seems that the relevance is not very strong since in both
classifications, time bins with one loss are the majority. This is a consequence of
the domination of the one-loss time bin in the entire dataset, which is an intrinsic
property of the problem.

Different definition of "loss" time bin:

Although the thesis objective is to predict the future packet loss regardless of the
quantity, solo loss in a time bin can be assumed to be a non-detrimental issue
in our network since we have hundreds and even thousands of received packets
aggregated in a bin. Hence, it is more valuable to perform in-depth analyses in
terms of time bins with losses greater than 1, not only because of the assumption
but also because of the foreseeable better model performance.

In fact, among all of the "loss" time bins in the test set, those with more than
one loss have 343 for incorrect prediction and 2155 for correct prediction, with a
prediction accuracy (recall) of 86.27%. Furthermore, those with more than two
losses have 143 for incorrect prediction and 1122 for correct prediction, resulting in
a further higher prediction accuracy (recall) of 88.70%. Both of them are greater
than the original recall (80%) of class 1 with a significant improvement. Therefore,
another possible solution for model improvement is to change the definition of "loss"
time bin by only considering "loss" time bins with more losses and discarding those
with fewer losses. That is to say, we remove15 a portion of the original dataset to
feed and retrain the models. In particular, we maintain the quantity of "no-loss"
time bins and specify two cases:

1. Regarding time bins with losses greater than 1 as "loss" time bins and removing
time bins with losses equal to 1. In this case, we have 8166 "loss" time bins
left;

15Notes: i.) the removal of data leads to a more imbalanced dataset, but this is not an issue
since both models are able to handle imbalances internally; ii.) in this specific case, time bins
with fewer losses will be totally neglected and we do not care about the prediction for them
during model development. In reality, this is not a problem for discarded "loss" time bins because,
on one hand, it is a preferable outcome if the prediction is class 1 since the bins do have losses,
and on the other hand, it is an acceptable result if the prediction is class 0, since we assume those
with fewer losses are not to be "loss" time bins and they are not harmful.
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2. Regarding time bins with losses greater than 2 as "loss" time bins and removing
time bins with losses equal to 1 or 2. In this case, we have 4310 "loss" time
bins left.

Afterwards, we follow the same procedure of training and testing for the model
of balanced RF classifier16, and the results for both cases are in Table.6.4 and
Fig.6.14. First of all, both cases present an improved performance for both classes

Metrics Case 1 Case 2
Accuracy 0.85 0.87

Precision
Macro average 0.51 0.51

Class 0 0.99 0.99
Class 1 0.02 0.01

Recall
Macro average 0.84 0.87

Class 0 0.85 0.87
Class 1 0.82 0.87

F1 socre
Macro average 0.48 0.48

Class 0 0.92 0.93
Class 1 0.04 0.03

Table 6.4: Metrics of balanced RF classifier for case 1&2 with different definitions
for "loss" time bin

with larger augmentations in recalls. Secondly, case 2 of "loss" time bins with
losses greater than 2 generates a substantially significant improvement by reaching
0.87 for recalls of both classes, which is, as expected, better than not only the
original dataset but also case 1, including time bins with losses equal to 2. More
importantly, case 2 results in the best performance up to now according to the
criteria, and at the same time, it also produces a decent recall of 0.87 for class 0,
leading to only 77665 misclassifications. This is so far the first time that we are able
to balance both classes without having to pay a trade-off and improve performance
for them at the same time. However, although we derive an outstanding outcome
by ignoring time bins with fewer losses, it is without doubt that we cut down the
majority of "loss" time bins to have only a few thousand pieces of data left, which
is totally not comparable with the millions of "no-loss" time bins. In a word, we
artificially simplify the problem to chase a better result, but it may not be worth
the effort to identify just thousands of outliers out of millions of normal cases.

16Here we only use one model to check the effect of the quantity of packet loss for simplicity
and use both models in the later stage when we consider all related aspects.

116



In-depth analysis

(a) Case 1 (b) Case 2

Figure 6.14: Confusion matrices: the results of balanced RF classifier for case
1&2 with different definitions for "loss" time bin

Nevertheless, determining whether an approach is meaningful or not is, of course,
another problem that is related to the requirements of specific applications or QoE
and is out of the scope of the thesis.

Considering all related aspects:

Based on previous analyses, we perceive a great potential to improve the models,
and in this section, we will present the final result by taking into account all of the
related aspects (5 in total) as in section 6.2.2 and concentrating on the correlation
with quantity of packet loss to include one more condition:

• Optimization: Only considering time bins with losses more than 2 as "loss"
time bins and ignoring "loss" time bins with losses less than or equal to 2 by
removing them from the entire dataset.

Consequently, the results of both models in terms of recall for 50 trials of different
flow shuffles as in section 6.1.2 are presented in Fig.6.15.

According to the results:

• Unlike the result in section 6.2.2, where the balanced RF classifier doesn’t work
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(a) Balanced RF classifier

(b) XGBoost GBDT classifier

Figure 6.15: Recalls for the chosen models with different random shuffles of flows
considering the correlation with quantity of packet loss and all the other aspects

at all, the inclusion of correlation with quantity of packet loss significantly
improves the performance to eventually present a feasible model with a decent
mean value of recalls of 0.882 (class 0), 0.771 (class 1) and 0.827 (macro
average). Additionally, in the best case at trial 19, the accuracy for each class
can reach 90% (0.898 for recall of class 0, 0.907 for recall of class 1, and 0.903
for macro average recall) and more importantly, this is the first time that we
are able to identify 90% of "loss" time bins considering the constraints caused
by real case scenarios.

• For the XGBoost GBDT classifier, the new approach indeed helps the model
improve with respect to the original result in Fig.6.10 with a boost of 14.9%
(0.689-0.540) for class 1 and the ability of maintaining the same outstanding
performance (0.951 & 0.946) for class 0. Although the mean value of recall for
class 1, 0.689, is not a splendid result, it is still more than acceptable given
the difficulty of the problem, not to mention the excellent performance for
"no-loss" time bins and the sensational results at trials 6 and 19 with recalls
of 0.928 (class 0), 0.843 (class 1), 0.886 (macro average) and 0.913 (class 0),
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0.872 (class 1), 0.892 (macro average) in the most ideal cases.

• By comparison, both models show effective prediction capabilities for "loss"
time bins with losses more than 2 from a general perspective, while guaran-
teeing a stable identification for "no-loss" time bins regardless of the flows.
However, there are also two main differences: i.) They exhibit the same behav-
ior in the basic model development, where the balanced RF classifier generates
a more balanced result and the XGBoost GBDT classifier outperforms towards
the majority class, "no-loss" time bins; ii.) The performance of class 1 is more
steady for the balanced RF classifier, which is able to predict 70% of losses
in most of the trials, while the XGBoost GBDT classifier presents relatively
dispersed results in which some cases are even lower than 60%, which means
that the variations among flows in real-case scenarios affect XGBoost GBDT
classifier more.

Generally speaking, both models have similar performance according to the
almost same mean value of macro average recall (0.827 & 0.820), but based on
different requirements of applications or users, we can still differentiate between the
models. For example, if we need more stable behavior or require better identification
for packet loss, the balanced RF classifier could be a more appropriate choice, and
if we do not want to waste resources reacting to wrong classifications, XGBoost
GBDT classifier is the preferable one since most cases are "no-loss" time bins.

To sum up, by considering the correlation between prediction performance
and the quantity of packet losses in a time bin, we make magnificent progress
in avoiding an excessive amount of misclassifications for "no-loss" time bins and
successfully predict "loss" time bins with a larger number of losses. Although it
cannot be ignored that the majority of "loss" time bins are neglected and discarded,
we can still consider the models to be effective and feasible, because the decent
and boosted performance for both classes when it comes to time bins with more
losses which have a severer impact over RTP communications and are more likely
to affect QoE, still demonstrates the capabilities of solving the prediction problem
to some extent and partially achieving the goal of this paper given the difficulties
of the problem. At this stage, we have completed the in-depth analyses for the
models themselves by considering two constraints in real-case scenarios and three
possible optimizations, and eventually, we propose viable solutions either for the
entire dataset or the reduced dataset to predict packet loss in different ways. In
the next chapter, we will deal with more data from other sources with the models
to investigate the performance, feasibility, and latent issues across multiple RTP
applications.
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6.3 Analysis of extra data

In addition to the two main applications, Webex and Jitsi, there are also multiple
extra pcap files for the collection of RTP packets from other applications17. In this
section, we will follow the same procedures of running Retina and data preprocessing
to derive the final dataset to perform further analysis and model development.

6.3.1 Data description

The new data is generated by applications that also rely on RTP to deliver
real-time content but introduce certain modifications for their own interests and
unique functions. Hence, Retina cannot parse some pcap files from applications
like GoToMeeting and Telegram. Additionally, some applications, such as Zoom,
generate a "Mark" to specify the start of a segment in a flow, but the corresponding
sequence number is not monotonically increased by 1 with respect to the previous
packet18, which means Retina will generate errors when it comes to the packet
loss calculation between adjacent packets using sequence number, and thus, it is
necessary to discard pcap files from those applications. Finally, we derive 210 csv
files from Retina outputs.

By performing the exact same data preprocessing for all the outputs as in section
3.2, we gain the final dataset with 384165 time bins in total. Moreover, the bar
chart in Fig.6.16 shows the quantity of "loss" and "no loss" time bins, and the
comparison with the original dataset. In general, the overall number of time bins is
much less than the original dataset. But we have 31431 "loss" time bins occupying
8.18% of the new dataset, which is larger than both the absolute quantity and
percentage of "loss" time bins in the old data. Although we have a greater number
of "loss" time bins, leading to a smaller bias between classes, the new dataset is
still imbalanced.

The reasons for which we did not include these data into previous analysis and

17They are: Facebook, Facetime, Google Meet, GoToMeeting, Houseparty, Instgram, Skype,
Telegram, Whatsapp, Zoom, Microsoft teams, Webex, Jitsi. Although Webex and Jitsi are the
original applications, the new data from them is collected in a different way and not included in
the original model development, so that we still consider them as "new" applications.

18For example, the sequence number of the previous packet is 100 and the current one with
"Mark" is 105, but they are actually consecutive packets that are supposed to have sequential
sequence numbers.
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Figure 6.16: Quantity of "loss" and "no-loss" time bins in new and old dataset

model development are: i.) the ground truth about the number of packet losses
from log files is not available for these applications in a convenient way; ii.) the
quantity of data is not adequate; iii.) variations among multiple applications will
introduce more constraints and noise; iv.) the new data is collected through a
different network that may generate even more uncertainties. However, since we
have already revealed the difficulties of packet loss prediction and proposed several
solutions, it is good practice to take into account more data to further investigate
the feasibility of usage of the models for other applications.

6.3.2 Experimental result

In order to comprehensively study the behavior of new data and make comparisons,
we have proposed and performed five model evaluations based on different cases19

of training and testing:

• Case 1: Using the model of the balanced RF classifier without class weight
trained on the original dataset as in section 5.3.3 to test the new dataset;

• Case 2: Splitting new data into training and test sets, then retraining and

19Notes: i.) In the first three cases, we only use the balanced RF classifier as a reference to
gain a preliminary idea of the performance since the final results are in cases 4 & 5; ii.) In cases
2 & 3, we do not shuffle flows because we want to make comparisons with the original model.
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testing the balanced RF classifier;

• Case 3: Combining the original data and new data all together, then per-
forming training and testing;

• Case 4: Similar to case 3, but considering all related aspects as in section
6.2.2 for the entire combined dataset and only using XGBoost GBDT classifier;

• Case 5: Similar to case 3, but considering all related aspects as in section
6.2.3 by removing time bins with losses less than 3, and using both models.

According to the experimental results regarding metrics and confusion matrix
for the five cases in Table.6.5 and Fig.6.17:

Case* 1 2 3 4 5.1** 5.2***
Accuracy 0.61 0.84 0.84 0.95 0.94 0.97

Precision
Macro average 0.51 0.65 0.55 0.65 0.55 0.59

Class 0 0.93 0.99 0.99 0.99 0.99 0.99
Class 1 0.10 0.32 0.11 0.30 0.10 0.19

Recall
Macro average 0.54 0.85 0.83 0.88 0.94 0.93

Class 0 0.62 0.83 0.84 0.95 0.94 0.97
Class 1 0.46 0.87 0.82 0.81 0.93 0.90

F1 score
Macro average 0.45 0.68 0.55 0.70 0.58 0.65

Class 0 0.74 0.90 0.91 0.97 0.97 0.98
Class 1 0.16 0.46 0.20 0.43 0.19 0.31

* In case 4 & 5, we present the best result out of 50 trials of random shuffles of flows: trial 17 for
case 4 and trial 39 for case 5.

** Balanced RF classifier without class weight.
*** XGBoost GBDT classifier.

Table 6.5: Summary of metrics for results of the models on new dataset in different
cases

1. In case 1, the balanced RF classifier trained on the original dataset presents a
significant performance drop, resulting in recalls of 0.62 (class 0), 0.46 (class
1), and 0.54 (macro average). Besides the variations among applications and
other minor differences, the major reason is the unknown and the uncertainty
embedded in the new data since they have never been included in the model
training, which resembles the real-case scenario of shuffling flows in section
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5.1, balanced RF classifier (f) Case 5.2, XGBoost GBDT classi-
fier

Figure 6.17: Confusion matrices for results of the models on new dataset in
different cases
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6.1.2. The similar results of the recall with a huge decline prove once again
the impact of the real-case scenario.

2. The outstanding performance in case 2, which is 2% greater than the recall
of class 0 and 7% greater than the recall of class 1 for the original results in
Table.5.8 due to the larger amount of "loss" time bins and the less imbalanced
dataset, indicates the feasibility of the model for multiple applications.

3. Similarly, case 3 with a combined dataset also produces a better performance
with a higher recall for class 0 but a lower one for class 1 compared to case 2
because the imbalance is relatively severe, forcing the model to outperform
towards the majority class.

4. Fig.6.18 shows the results of XGBoost GBDT classifier in case 4, with recalls
for class 0 hovering around 0.945, which is almost the same as the original
result in Fig.6.10, and recalls for class 1 having a substantial improvement
of 15.7% (0.697-0.540) in the mean value with respect to the original result,
which indicates that more data regarding "loss" time bins could introduce
more informative knowledge and further optimize the model. Additionally, the
recalls for class 1 are more concentrated with more stable behavior compared
to the original result, with relatively dispersed values ranging from 0.38 to
0.75, which means that, with more available data, the model tends to be less
affected by stochasticity due to different shuffled flows and converge to its
actual performance in real case scenarios. Moreover, in the best case scenario
at trial 17, XGBoost GBDT classifier is able to predict 81% "loss" time bins,
which is a magnificent outcome and even better than all of the basic models
in chapter 5 where everything is ideal without constraints and obstacles.

Figure 6.18: Recalls of XGBoost GBDT classifier in case 4 considering all related
aspects for the entire combined dataset

5. Case 5 presents results for the two selected models considering the correlation
with quantity of packet loss and the similar plots as in Fig.6.15 are posted
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in Fig.6.19. We can conclude that: i.) Both models experience performance
enhancement with increments in the mean values of recalls ranging from 1.6%
(0.967-0.951) to 16.9% (0.858-0.689), indicating that the benefits of more
data also apply when we only take into account the time bins with more
losses; ii.) Both models still follow the same behavior of the balanced RF
classifier, producing more balanced results, but the difference is getting smaller
due to the improvements for both classes. Thus, the balanced RF classifier
might be the proper choice since it outperforms towards class 1 to successfully
predict more "loss" time bins, which better complies with the requirements
and fulfills the objective of this thesis; iii.) The outcomes are more steady
with slight fluctuations, especially for the behaviour of class 1 for XGBoost
GBDT classifier, with values ranging from 0.56 to 0.85 previously but from
0.80 to 0.90 now; iv.) The best performance is at trial 39 for both models,
with unexceptionable recalls of 0.94 & 0.97 for class 0, 0.93 & 0.90 for class 1
and 0.94 & 0.93 for the macro average values, which indicates the extremely
powerful prediction capabilities for the models in the most ideal case.

(a) Balanced RF classifier

(b) XGBoost GBDT classifier

Figure 6.19: Recalls for the chosen models in case 5 considering all related aspects
for the reduced combined dataset without packet losses less than three in a bin
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On top of that, all cases 3, 4, and 5, where we combine the new and old datasets
from multiple applications to have more data, illustrate that, not only can the models
follow a data-driven approach to generate superior performance for both classes
with a larger quantity of available data, they can also find commonalities among
different samples, which presents the interoperability, versatility, and feasibility
of the balanced RF classifier without class weight and XGBoost GBDT classifier
across all applications.

6.3.3 Performances of different applications

Based on the previous analyses, it is feasible to develop machine learning models
across applications using mixed data. Unfortunately, available data with labels
is a valuable resource and not easily accessible, which is a common problem in
the machine learning domain. Therefore, it is good practice to investigate the
operational capability of the chosen models developed and trained based on the
initial target applications with adequate data on each new application so that we
are able to find the possibilities of using the predefined model to predict packet
loss for other applications that have never been analyzed and eventually save time
for model retraining and data collection as well as labeling. Specifically, we will
compare the general performances in terms of the mean value of recall of original
models with model evaluation on each application in three cases20:

• Case 1: Considering all related aspects and using XGBoost GBDT classifier
trained on the original dataset with the best performance at trial 34 as in
section 6.2.2 to test the entire dataset for the new data from each application.

• Case 2: Using the balanced RF classifier trained on the reduced original
dataset with the best performance at trial 19 as in section 6.2.3 to test all
of the new time bins, excluding those with losses equal to 1 or 2 from each
application.

• Case 3: Similar to case 2, but using XGBoost GBDT classifier.

According to the results of each application for the three cases in Fig.6.20:

20The reason why we use the model trained on parts of the original dataset instead of the entire
one is that we want to simulate the real-case scenario and avoid overfitting on the new dataset.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 6.20: Recalls of the result of each application in the three cases with
different classifiers and datasets
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• For all cases, the models do not work for Facetime, Google Meet and Whatsapp,
except that XGBoost GBDT classifier can successfully identify "no-loss" time
bins in cases 1 & 3 but barely predict "loss" time bins for Google Meet.

• For Houseparty and Webex, XGBoost GBDT classifier in case 1 has similar
performance with respect to original results, but the models in cases 2 & 3
experience significant performance decline with reduced dataset, and this is
different from our previous solution in which the consideration of quantity of
packet loss helps optimize the models. On top of that, the models perform
poorly for Webex in all cases, even if the application is the initial one included
in the original dataset, which indicates that data from the same application
also has huge differences internally.

• The models perform acceptably for Instgram and Jitsi with a higher macro
average recall in case 1 and a similar value in case 3. However, the performance
for each class is the opposite, with higher recall for class 1 compared to original
results, and this phenomenon also applies to Facetime and Skype, which means
that the models can easily predict "loss" time bins for these applications but
have trouble identifying "no-loss" time bins. Additionally, similar to Webex,
Jitsi is also one of the original applications but generates relatively poor
performance, which again illustrates the variations among data patterns in
the same application and proves the difficulties of the prediction problem.

• The models work very well for Skype and Microsoft Teams with higher macro
average recalls in all three cases, but it cannot be ignored that the performance
for Skype is the opposite, and thus the models will produce a large amount
of misclassifications for "no-loss" time bins, which might be a problem for
network management even if the prediction for packet loss is fabulous. More
importantly, when it comes to Microsoft Teams, the performances are perfect
with even higher recalls for both classes in all cases, which indicates that
both XGBoost GBDT classifier and the balanced RF classifier trained on the
original applications present outstanding feasibility as well as adaptation and
can be applied to Microsoft Teams.

In a word, following the data-driven principle, the models developed based on
certain data are not suitable for others given the diversity of RTP flows in our
specific problem. Although there’s one applicable solution of Microsoft Teams,
machine learning model development still requires information and knowledge
from as many sources as possible in most cases. However, it is also important
to note that the data collection for each application is not standardized and the
network conditions are not constant, so if we want to dig deeper into various RTC
applications in terms of packet loss phenomena, we need a more comprehensive
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analysis and a well-designed procedure in order to obtain a more precise and solid
solution.

Finally, we officially finished all the analyses and model development and are
ready to draw conclusions in the next chapter.
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Chapter 7

Conclusion

7.1 Summary

To begin with, the thesis objective is to forecast packet loss using past statistics of
received packets in RTP traces in order to reveal the possibilities of implement-
ing a predictive mechanism to improve QoE. In general, the thesis contains the
manipulation and analyses of the dataset related to RTP packets, the machine
learning approach development regarding classification and anomaly detection, the
discussion about constraints in real case scenarios, the proposed solutions for model
optimization, and the analyses for extra data from multiple other applications.
Eventually, the thesis comprehensively presents the properties of the problem and
proves the feasibility of utilizing machine learning models for predicting packet
loss.

In particular, first we elaborate on the open source command-line tool Retian
to calculate the exact quantity of packet loss in a time bin and derive the well-
structured dataset. Meanwhile, besides the various analyses of time bins with or
without loss, we focus on the characterization of packet loss to identify the patterns
in the time window of study, to distinguish "loss" and "no-loss" time bins, and
finally, determine 11 specific features (statistics) for machine learning models.

Secondly, by following the basic procedure of model building, tuning, and
evaluation, we perform the model development for six algorithms: Decision Tree,
Neural Network, Random Forest, Gradient Boosting Tree, Isolation Forest, and
Autoencoder. On top of that, in order to deal with the issues caused by the
imbalanced dataset, we thoroughly investigate the effects of sampling techniques,
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evaluation metrics, various versions of the algorithm and specific parameters. As a
result, classification methods outperform anomaly detection from a general point of
view, and among all the methods, balanced RF classifier without class weight and
XGBoost GBDT classifier are the best ones due to their balanced and outstanding
performance in terms of recall, with values of 0.81 & 0.85 for class 0, 0.80 & 0.74
for class 1, and 0.80 for the macro average.

Furthermore, we inspect the impact of real-case scenarios of predicting a farther
future as well as shuffling RTP flows and end up with significant performance drops.
Afterwards, in order to solve the problem and optimize the best models taking into
account constraints in reality, we come up with three solutions: i.) using Recursive
Feature Elimination to select more informative features instead of those based on
packet loss characterization; ii.) regarding packet loss condition before any target
time bins as features; iii.) only considering time bins with losses more than 2 as
"loss" time bins since more losses have a larger impact on RTP communications.
Consequently, we successfully improve the performance and optimize the models
to have an acceptable result for the entire dataset and an outstanding one for the
reduced dataset.

Additionally, we analyze the new data from multiple other applications with
more losses to investigate the performance of the models over the combined dataset.
Fortunately, we achieve a more stable and magnificent performance in all cases.
Moreover, we also check the feasibility of the models trained on the original dataset
over each application and end up with only one applicable application, Microsoft
Teams. Finally, a summary of recalls for all of the final results is presented in
Table.7.1.

To sum up, based on all of the analyses and results, we can conclude that:

1. For RTP-based RTC applications, packet loss is a rare event that occurs irreg-
ularly. At the same time, RTP traces have numerous complicated properties,
including dynamic evolution, variations among RTP flows, various possible
causal phenomena for losses, different network conditions, etc. As a result,
packet loss prediction is a hard task that requires elaborate analysis, and in
our opinion, the works in this thesis could be a good starting point.

2. Besides the difficulties of the problem, the major issue during model develop-
ment is the imbalanced dataset, which forces the model to outperform towards
the majority class. Consequently, it is impossible to simultaneously improve
the performances for both classes without paying a trade-off, and the only
solution is to sacrifice one class to achieve either an excellent identification
for "no-loss" time bins with a mediocre performance for "loss" time bins or a
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Case* Model
Mean value Best value

class 0 class 1 macro
average class 0 class 1 macro

average
0 Balanced RF 0.655 0.416 0.535 0.616 0.591 0.604
0 XGBoost GBDT 0.580 0.580 0.580 0.625 0.670 0.647
1 XGBoost GBDT 0.946 0.540 0.743 0.944 0.744 0.838
2 Balanced RF 0.882 0.771 0.827 0.898 0.907 0.903
2 XGBoost GBDT 0.951 0.689 0.820 0.913 0.872 0.892
3 XGBoost GBDT 0.945 0.697 0.821 0.951 0.814 0.882
4 Balanced RF 0.933 0.886 0.909 0.939 0.934 0.936
4 XGBoost GBDT 0.967 0.858 0.912 0.970 0.900 0.935

* Case description:

• 0: Entire original dataset with shuffling flows as in section 6.1.2;

• 1: Entire original dataset considering all related aspects, including packet loss as features as in section
6.2.2;

• 2: Reduced original dataset considering all related aspects for "loss" time bins with losses more than 2
as in section 6.2.3;

• 3: Entire combined dataset with new data considering all related aspects, including packet loss as
features as in case 4 of section 6.3.2;

• 4: Reduced combined dataset with new data considering all related aspects for "loss" time bins with
losses more than 2, as in case 5 of section 6.3.2.

Table 7.1: Summary of recalls for all the final results

relatively balanced performance with a better capacity for predicting outliers
but plenty of misclassifications for normal cases.

3. The real-case scenarios in which we need to predict a farther future to effectively
respond to potential losses and deal with the unknowns from new RTP flows
that have never been included in the training phase significantly affect the
model performance in a negative way, which emphasizes again the intrinsic
difficulties of the real-time prediction problem for RTP traces.

4. The three optimization methods are able to conquer the obstacles and ef-
fectively improve the model performance from two perspectives: i.) for the
prediction over the entire dataset, i.e., all the time bins, we have one machine
learning approach that can successfully identify time bins without losses but
performs not very effectively with acceptable performance for "loss" time bins;
ii.) for parts of the dataset, i.e., time bins with losses equalling to 1 or 2
are discarded, we have two methods with better performances but different
optimized directions: one with balanced and intermediate outcomes and the
other one with outstanding performance for "no-loss" time bins but relatively
poor results for "loss" time bins, which allow us to make decisions based on
the requirements of applications or QoE.

5. Given the fact that the majority class of "no-loss" time bins occupies more
than 95% of the entire dataset in any case, even a tiny misclassification ratio
could lead to a huge amount of wrong predictions, which may consume a
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lot of network resources to perform unnecessary reactions. Hence, a good
solution could be the one with a powerful prediction capacity for normal cases.
Although the corresponding relatively poor performance for predicting packet
loss somehow slightly deviates from the thesis objective, a prediction accuracy
ranging around 60% can still be considered a reliable and acceptable one given
the difficulties of the problem, let alone the even better performance with
more available data and outstanding results in some ideal cases.

6. The additional data from extra applications indeed help improve the perfor-
mance since we have more "loss" time bins that contribute more information
and knowledge regarding packet loss to compensate for the defects due to class
imbalance. Moreover, the feasibility of model development across multiple
applications is acknowledged, but the possibility of using one pre-trained model
to test data from other sources is partially rejected. All of the aforementioned
aspects prove that we are following a data-driven approach.

Finally, by considering possible related aspects and edge conditions, we finish
the data analysis, model development, and optimization to derive decent outcomes
in various ways, which successfully prove the feasibility of predicting packet loss
for RTC applications and substantially illustrate the potential of implementing the
algorithm into practical scenarios.

7.2 Limitation and future work

In our case, the data is collected through the connection of WiFi or Ethernet, in
which the major cause of losses is network congestion. However, communications
through cellular networks, like 4G and 5G, also play a crucial role in daily life but
are not considered in this thesis. And cellular networks also include various factors
affecting packet loss, which deserve more research. Therefore, a possible future
work could be related to this, focusing on mobile applications.

Moreover, the thesis only studies the packet loss phenomenon in 500 ms-long
time bins with discrete timestamps. Although we achieve decent results eventually,
it is still good practice to jump out of the box to eliminate the restriction of
time bins. Hence, another future work could be modifying the duration of target
time bins or even concentrating on patterns of received packets themselves with
continuous time series instead of relying on time aggregations.

In a word, as mentioned before, this thesis could be a good start for business
applications by presenting the feasibility of packet loss prediction for improving
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QoE. On top of that, the actual implementation, taking into account all commercial
and technical factors, absolutely needs more analysis and development, which
requires a joint effort by all.
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