
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Autonomous and Softwarized
Management of Disaggregated Open

Optical Networks

Supervisors

Prof. Vittorio CURRI

Giacomo BORRACCINI

Candidate

Renato AMBROSONE

Company Supervisors
Consortium GARR

Ing. Paolo BOLLETTA

October 2022



Abstract

Given the continuous growth of data traffic demand, the optical network man-
agement of current infrastructures has become a key factor: Internet pervasiveness
has enlarging fast with fiber-to-the-home (FTTH), 5G and future 6G technologies.
In the last decade, software-defined network (SDN) concepts have been applied
within the optical communication world, making optical networks dynamic and
programmable. This has been achieved thanks to the adoption of a single network
operative system and the virtualization of the network elements (NEs) forming the
physical layer (PHY). The latter can be achieved by means of device disaggrega-
tion, vendor-neutral control and multi-vendor inter-operability: Internet service
providers and network operators are now interested in these solutions, avoiding
vendor lock-in and cutting down on capital expenses. Network virtualization and
disaggregation lay the foundation for the creation and the manipulation of a virtual
object called digital twin (DT) of the network: a data structure modelling and
emulating the behavior of the real system. In the wake of the Yet Another Next
Generation (YANG) data model, other implementations were born aiming to unlock
vendor-neutral control and independent device virtualization. Cooperating with
the standardization bodies (e.g. IETF, ITU-T, IEEE, OIF), the largest part of
Internet Service Providers (ISP) promoted various activities in order to achieve
agreements for network disaggregation and automation. In particular, we have
recently seen the birth of various consortia specialized in improving the efficiency
of various aspects of the management of an optical network.

In this work, firstly, a SDN architecture is defined in a context of open and
disaggregated optical networks. Consequently, an implementation for a centralized
network controller managing open and disaggegated optical networks has been
developed. The main goal is to enable the independent management of control
and data planes, engaging dynamic operations and expanding the possibilities of
optimization degrees. The conceived SDN architecture has three main actors: the
optical network controller (ONC), each optical line controllers (OLCs) and the
PHY-DT. The communication among the actors is performed defining a software
orchestrator called open optical transport network controller (OOTNC), operating
as dispatcher and integrating additional functionalities in terms of network manage-
ment and control. Different data models, frameworks and protocols are investigated:
Network Configuration Protocol (NETCONF) as a network management protocol,
from IETF, YANG model for NE virtualization, from OpenConfig, reconfigurable
optical add & drop multiplexers (ROADM) models, from OpenROADM, open
network operating system (ONOS) as a SDN controller, from Open Networking
Foundation (ONF), and GNPy for quality of transmission (QoT) estimation, from
Telecom Infra Project (TIP). Using a custom representational state transfer (REST)
application, ONOS is able to retrieve information regarding the network topology

i



and the network status. Furthermore, additional endpoints allow to set the esti-
mated LP modulation format. GNPy is integrated within the PHY-DT as QoT
estimator. The developed software framework has been conceived also to promptly
react in case of link or node failures, firstly evaluating the amount of lost traffic
and then recovering the issue.

ii





“Stay hungry, stay foolish.”
Steve Jobs





Acknowledgements

Having reached the end of my study path, I feel the need to thank all those who
have been by my side over the years, all those who have dedicated a minute to me,
all those who have a word towards me.

First of all I have to thank all the PLANET team for the support they have
provided me over the last few months. In particular, I want to thank my supervisor
Giacomo: thank you for the patience of these months, for your dedication and
consistency in your explanations. Thanks to prof. Vittorio Curri for the trust he
has placed in me and for the great opportunities you have given me in recent months.

Thanks to my academic tutors, Gloria Vuagnin, Matteo Colantonio and Paolo
Bolletta for their esteem in me granting me carte blanche during my project but
always dedicated to showing me the route.

Thanks to all my friends, to those who had a word for me at any time of the day
or night, to those who have been behind my paranoia and my anxieties.

Thanks to my family, my uncles, my cousins, and especially my parents for being
the constant guide throughout my life.

Thanks to my grandparents, who illuminate my path every day.

Renato

vi





Table of Contents

List of Tables x

List of Figures xi

Acronyms xvii

1 Motivation and Goals 1

2 Fundamental Concepts 2
2.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Software Defined Networking . . . . . . . . . . . . . . . . . 4
2.2 Open Optical Networks . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Optical Network Elements . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Optical Amplifier . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Optical Line System . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 ROADM: Reconfigurable Add & Drop Multiplexer . . . . . . 12
2.3.5 Transponder and Transceiver . . . . . . . . . . . . . . . . . 13

2.4 Optical Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Optical Transmission Techniques . . . . . . . . . . . . . . . 13
2.4.2 Multiplexing Techniques . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Modulation Format . . . . . . . . . . . . . . . . . . . . . . . 16

3 Network Architecture 18
3.1 Software Defined Open Optical Networks . . . . . . . . . . . . . . . 18
3.2 Optical Network Virtualization and Slicing . . . . . . . . . . . . . . 21

3.2.1 Terminal Device Emulation . . . . . . . . . . . . . . . . . . 22
3.2.2 ROADM Device Emulation . . . . . . . . . . . . . . . . . . 22
3.2.3 Northbound Interface . . . . . . . . . . . . . . . . . . . . . . 23

3.3 SNR-Based Network Abstraction . . . . . . . . . . . . . . . . . . . 24
3.3.1 The Generalized SNR . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.4 Open Optical Networks Components . . . . . . . . . . . . . . . . . 27
3.4.1 Optical Network Controller . . . . . . . . . . . . . . . . . . 28
3.4.2 Physical Layer Digital Twin . . . . . . . . . . . . . . . . . . 28
3.4.3 Optical Line Controller . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Local Optimization Global Optimization . . . . . . . . . . . . . . . 32

4 Open Optical Transport Network Controller 37
4.1 Software Interaction and Structures . . . . . . . . . . . . . . . . . . 37

4.1.1 Optical Network Controller . . . . . . . . . . . . . . . . . . 38
4.1.2 Quality of Transmission Estimator . . . . . . . . . . . . . . 39
4.1.3 Optical Line Controller . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 ONOS New Optical REST-API Interfaces . . . . . . . . . . 42
4.1.6 Logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Use-Case and Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Laboratory Network Setup . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Results 51
5.1 Physical Layer Characterization and QoT-E . . . . . . . . . . . . . 51
5.2 Recovery experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Traffic Deployment . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Future Applications and Developments 61

A Code 63
A.1 app.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 virtualTopology.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 httpHandler.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4 database.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 83

ix



List of Tables

5.1 PHY Characterization [70]. . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 EDFA Optimal Working Point [70] . . . . . . . . . . . . . . . . . . 53
5.3 Network Transmission Performance Validation Results [70] . . . . . 53
5.4 Times related to the various steps performed during recovery. . . . 58

x



List of Figures

2.1 Network topology with switching nodes. . . . . . . . . . . . . . . . 3
2.2 Information are divided into packet and devices are not aware of the

network topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Increase of network traffic in north America during the last decades [5]. 5
2.4 Optical connection transparent matrix before 2010. The blue squares

show how the network was very underutilized. . . . . . . . . . . . . 5
2.5 Optical connection transparent matrix after SDN introduction. The

colors are the potential capacity deployable in a source-destination
couple transparent connection, changes depending on how we deploy
the traffic in the physical layer. . . . . . . . . . . . . . . . . . . . . 5

2.6 Orchestration techniques applied to European network. . . . . . . . 6
2.7 Aggregated network topology with closed software interaction. . . . 7
2.8 Disaggregated network example, showing ROADMs, Transponders

and OLSs interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.9 Optical nodes within an optical network are in charge to rout traffic.

Connections between different nodes are transparent if there is no
electrical conversion along the path. . . . . . . . . . . . . . . . . . . 8

2.10 Between each optical node, signal amplification is exploited thanks to
optical amplifiers. A line is composed from fiber spans and amplifiers,
making an Optical Line System. . . . . . . . . . . . . . . . . . . . . 9

2.11 The optical fiber inside is made with two components having different
refractive index in order to obtain total refraction. . . . . . . . . . . 9

2.12 The image represents the fundamental quantities that come to at-
tention when performing a splice between two fibers . . . . . . . . . 10

2.13 EDFA the image represents the fundamental quantities that come
to attention when performing a splice between two fibers. . . . . . . 11

2.14 An optical amplifier can be modeled through two fundamental quan-
tities, which are the optical gain and the introduced ASE noise. . . 11

2.15 An optical line system composed by fiber spans and amplifiers. . . . 12

xi



2.16 ROADM internally rely on N WSS in ingress and N WSS for the
egress. Those are connected in full mesh. Then, thanks to local
transponders the traffic can be added or dropped. . . . . . . . . . . 12

2.17 Picture showing different sizes of non-standard transceivers. . . . . 13
2.18 Standard transponder with standard slots, capable to handle a

certain number of transceivers. . . . . . . . . . . . . . . . . . . . . . 13
2.19 Mach Zehnder Intensity Modulation Direct Detection transceiver

example. Signal is coded thank to a binary codification. Above a
threshold voltage, IMDD codes a high bit, under this voltage low
bit is coded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.20 Thanks to WDM, a two dimensional modulation space can be exploited. 15
2.21 WDM gets multiple signal in input and is capable to multiplex all

in a single fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.22 TDM is based on alternating the different signals with respect to time. 16
2.23 Shows amplitude modulation(b), frequency modulation(c), phase

modulation(d) starting from a digital signal (a) [21]. . . . . . . . . . 17
2.24 Constellation diagram for ASK(a), PSK(b), QPSK(c), multilevel-

QPSK(d) [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 With traditional closed approach, each devices exchanges information
with its neighbour. In this scenario, each device will make its own
forwarding decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Software defined network schema. Devices keep a simple data plane
exposing standard interfaces. Control plane is moved into a central-
ized controller above which it’s possible to run multiple applications
solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Network emulation is usually based on standard YANG models and
NETCONF interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Network slicing over virtualized disaggregated optical network [31]. 22
3.5 Logical view of YANG model OpenROADM v2.2 device [39]. . . . . 23
3.6 Example of NBI [39]. A standard interface is required both for a

known external endpoint, and for a standard communication between
controller and devices. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 A transceiver BER vs SNR curve is capable to fully describe devices
behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 If in a network emulation it’s possible to run a simulation capable
to retrieved the overall GNSR from source to destination, relying on
this simulation, it possible to identify to most suitable modulation
format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xii



3.9 A lightpath crosses multiple device. If each devices can be described
in terms of gain and noises, a connection suffers of all the amplifica-
tion and noise introduced by devices going through. . . . . . . . . . 26

3.10 Open and disaggregated optical network architecture is composed
by different controller for different components, connected through
standard interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Optical network controller lightpath establishment [32]. . . . . . . . 28
3.12 QoT-e’s view on a network topology. A lightpath is connecting two

end points [32]. The DT can characterize all the lines crossed by a
LP and keeps its values. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.13 Each OLS is completely emulated as a single entity and exposed to
the optical network controller though standard interface [32]. . . . . 30

3.14 T-API structure offer multiple services that can be exploited from
other actor in the network. . . . . . . . . . . . . . . . . . . . . . . . 31

3.15 Graphical representation of the GSNR behavior. The chart describes
the difference between a linear environment, where power can be as
be as possible without effect on the GSNR, and the non linear envi-
ronment where the NLI noise will decreases the GSNR proportionally
with channel power. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.16 Optical line system with ILAs, BST and PRE. Each component is
fully characterized in terms of gain, ASE and NLI. . . . . . . . . . 33

3.17 OLS portraying each amplifier’s output power as the input of follow-
ing one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.18 Single amplifier GSNR behaviour. The chart describes that the
maximum GSNR value can be obtained when the derivative is equal
to zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 General structure of the whole framework. Open Optical Transport
Network Controller relies on various data structures and rest interface
to build a complete network controller. . . . . . . . . . . . . . . . . 38

4.2 ONOS’ process for requesting a traffic request [60]. (a) The request
is received through a TAPI interface, internally ONOS checks its
validity and applies its own RWSA algorithms. Then, through NBI
and SBI the configurations are sent to the devices. . . . . . . . . . . 39

4.3 GNPy has a general structure [65]. GNPy rely on a core engine
within all the propagation is performed and the GSNR is evaluated.
Then, it proposed input data interface and output data interface. . 40

4.4 In this routing space simple example, only two path (with two
directions) and 4 channel are shown. Only channel 2 and 3 are
available, while channel 1 and 4 are marker as unavailable. . . . . . 42

xiii



4.5 Routing space and modulation format have been build in order to
have the same structure. Thus, all the rows will contain all the path
and the columns have been obtained on the basis of the spectral
information, therefore the columns of both of DFs appear to be
consistent with each other. Therefore, a third DF can be obtained
by superimposing the previous two. Each value of this structure will
contain the modulation format if available, zero otherwise. . . . . . 43

4.6 Relying on on the data structure obtained, through a column sorting
operation, it is possible to derive the best modulation format available
to satisfy the request. The row index will be the path to follow,
the column index will be the channel to be occupied, while the DT
value will be the modulation format. In the example shown in the
figure, the path chosen is "T-0_R-1_R-2_T-1", on channel 3 which
guarantees a bit rate of 200Gbps. Then, the total amount of bit rate
is decreased, and the routing space is updated by imposing a zero
on the path-channel pair no longer available. . . . . . . . . . . . . . 43

4.7 Describes the generic architecture flow [70]. It’s divided in three
main phases exploiting communication between all components. . . 46

4.8 Cassini AS7716-24SC with 8 x DCO cards, 16 x QSFP28 100G
Ethernet ports, management port and console port. . . . . . . . . . 48

4.9 Lumentum ROADM Graybox with: variable gain pre-amp and
booster EDFAs, twin 1x20/1x9/1x32 WSS for express and add/drop
fan-out, OCM implementing channel monitoring and OSC termination. 49

4.10 Internal Lumentum ROADM Schematic. . . . . . . . . . . . . . . . 49

4.11 Scheme of the set-up of the experiment in the laboratory. The
topology has a triangular shape with the cassini located in the
vertices, therefore, each endpoint can be reached through a path and
a long one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Topological view of ONOS on the triangular network. Two devices
have been added through docker: ASE ensures that the network is
full shaped and an optical spectrum analyzers. . . . . . . . . . . . . 52

5.2 Wireshark [74] traffic capture with all the traffic requests. The figure
shows how OOTNC exploits both its own ONOS endpoints and
those created ad hoc for this experiment. The amount of time it
takes to exchange messages is about 2 seconds, while OOTNC is
ready to accept other requests after others 17 seconds. . . . . . . . 54

xiv



5.3 Lightpath request flowchart. Each connection request is handled by
OOTNC by asking the best modulation format to the DT. Then, a
number of requests towards the ONC is generated consistent with
the bit rate to be allocated. For each request that was successful, all
the data structure are updated and the connection’s data are kept
within the database. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Wireshark traffic capture for a traffic request. The request has been
satisfied through two connections in about 11 seconds. . . . . . . . 56

5.5 Wireshark traffic capture for the recovery phase. The image shows
how, once the request has been received, the communication first
takes place with GNPy with the aim of obtaining the new modulation
formats, from which the various requests to be sent to ONOS are
obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv





Acronyms

AM Amplitude Modulation

API Application Programming Interface

ASE Amplified Spontaneous Emission

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

DT Digital Twin

FDM Frequency Division Multiplexing

FM Frequency Modulation

FSK Frequency Shift Keying

FTTC Fiber To The Cabinet

FTTH Fiber To The Home

GNPy Gaussian Noise simulation in Python

gRPC gRPC Remote Procedure Calls

GSNR Generalized Signal-to-Noise Ratio

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

ILA In Line Amplifier

xvii



IMDD Intensity-Modulation Direct Detection

IP Internet Protocol

LOGO Local Optimization Global Optimization

L-PCE Lightpath Computation Engine

MEMS Microelectromechanical system

NBI NorthBound Interface

NLI Non Linear Interference

NSI Network Slice Instance

OLC Optical Line Controller

OLS Optical Line System

ONC Optical Network Controller

ONF Open Networking Foundation

ONOS Open Network Operating System

OOK On Off Keying

OOPT PSE Open Optical and Packet Transport Physical Simulation Environ-
ment

OOTNC Open Optical Transport Network Controller

OSaaS Optical Spectrum as a Service

OSGi Open Service Gateway initiative

OSI Open Systems Interconnection

OTDR Optical Time Domain Reflectometer

PM Phase Modulation

PSK Phase Shift Keying

QoT Quality of Transmission

xviii



QoT-E Quality of Transmission Estimator

QPSK Quadrature PSK

ROADM Reconfigurable Optical Add-Drop Multiplexer

RPC Remote Procedure Call

RSWA Routing and Spectrum Wavelengths Allocation

SDN Software Defined Network

SNR Signal to Noise Ratio

SSH Secure SHell

TAPI Transport API

TDM Time Division Multiplexing

TIP Telecom Infra Project

WDM Wavelength Division Multiplexing

YANG Yet Another Next Generation

xix



Chapter 1

Motivation and Goals

The continuous growth of internet traffic demand forced optical networks to move
through new communication and management technologies. Due this shift towards
open and disaggregated optical networks, many researchers and telcos were drawn
to the potential benefits of this approach.

However, these technologies have no more then 10 yeas, so, despite the born of
many consortia aiming at standardization, there are still many areas of development.

In the view of the above, this work aims both to provide a global knowledge
of open and disaggregated optical networks and to demonstrate their potential.
With this purpose, a custom orchestrator framework has been developed. Within
this orchestrator, a QoT-E software will be integrated. QoT-e potential will be
tested within an hard failure recovery use chase demonstrating how automatic
traffic recovery is be feasible thanks to the disaggregation and standard interfaces.

The manuscript is divided into three main parts:

1. Firstly, an introduction is provided to the world of optical networks and signals,
describing the main components and the SDN approach. This part includes
"Chapter 2 - Fundamental Concepts" chapter.

2. Then, the SDN approach is applied to optical networks from a theoretical
point of view in order to achieve optical network virtualization. This part
includes "Chapter 3 - Network Architecture" chapter.

3. Finally, in this perspective, the structure of the developed software framework
is presented and obtained results are discussed providing also possible future
developments. This part includes Chapter 4 - Open Optical Transport Network
Controller", "Chapter 5 - Results" and "Chapter 6 - Future applications and
developments" chapters.

1



Chapter 2

Fundamental Concepts

According to an ancient Greek myth, Pheidippides – a Greek messenger – had
to run from Marathon to Athens to deliver news of the victory of the battle of
Marathon, and then collapsed and died. If he had had a modern smartphone
connected to a 5G network, it would have taken a few milliseconds to send the
same message, and it would have made much less effort. Unluckily, this myth is
set in 490 BC and the era of electrical communication began in 1830 through the
advent of telegraphy [1].

In this chapter, a brief introduction is outlined regarding the evolution of
the networking. Then, the world of optical networking is explored, conducting a
complete overview of the main components and their role within an optical network.

2.1 Historical Overview
Communication has always been crucial in human life, since earliest times the
human beings felt the need to communicate remotely, before with rudimentary
tools, as smoke signals, and then with increasingly complex instruments. So long
as human progress is based on the exchange of information, data networks are the
basis of today’s society.

In the 1870s, the electric telephone was developed as a result of previous work
with harmonic telegraphs. As the first industrial services were introduced, telephone
technology advanced swiftly, and by the middle of the 1880s, telephone exchanges
had been established in all of the country’s main cities. The largest network
based on electrical communication technology was the switching network developed
everywhere in the world starting from the end of the XIX century [2]. This network
allowed every telephone connected to the network to be directly communicate with
the others by means of dedicated lines manually set using switching plugs. This
infrastructure is still exploited to exchange data information.

2



Fundamental Concepts

During the last decades of the XX century, communication moved towards
switching data networks. Thanks to the introduction of the network switches
(Fig. 2.1), communication is no more performed through a dedicated channel, but,
data can go from any source to any destination without a dedicated channel. A
computer network utilizing exclusively network switches is known as a completely
switched network [3]. For this purpose, switching nodes are network elements
capable to route the traffic to the next node until they reach the end device without
concerning with content of data.

Figure 2.1: Network topology with switching nodes.

Connections can be established through two main techniques:

• Circuit switching, implements a dedicated connection between two network
nodes. This solution is rarely used at upper layer [4] due to several drawbacks:

1. Inefficiency: once the connection is established between two end points,
all capacity is dedicated to that single connection. If no data are trans-
ferred, all the capacity can be wasted.

2. Delay: the amount of time required to establish a single connection would
be too high compared to the expected quality of service.

Although this option is inefficient, it remains a common method to implement
point-to-point connections at the physical level, so long as dedicated connection
is needed to transport information in electromagnetic field.

3



Fundamental Concepts

• Packet switching, implemented thanks to the introduction of analog-to-
digital information transport switches. Commonly used above the physical
layer, the original transmitted data can be re-built at the receiver since the
information can be divided in different parts, and each one can be indepen-
dently routed inside the network. The role of each switching node is to store
and forward each received packet. The main advantage is that the single line
connecting two nodes can be used to transport packets related to different
couple of source-destination nodes (Fig. 2.2).

Figure 2.2: Information are divided into packet and devices are not aware of the
network topology.

Since its adoption, optical networks has always provided sufficient bandwidth to
satisfy all the requests.
So, up until the early 2000s, optical networks were static, with no need to achieve
greater capacity.

2.1.1 Software Defined Networking
Starting from 2010, the performance growth of optical networks could not keep
up with the demand for internet data traffic (fig. 2.3). Switching to the use of
coherent optical technologies at the expense of IMDD [6], a better exploitation
of the network was possible. However, the optical network infrastructure is still
underutilized (Fig. 2.4). To increase the exploitation of the infrastructure, the solu-
tion that has been pursued was in the application of a software defined networking
(SDN) [7] approach at the physical layer, transforming the transport in a virtualized
function controlling and adapting the physical layer to the request coming from the
application layer. Thus, referring to the optical connection transparent matrix in
Fig. 2.5, the scenario has been completely modified, reaching a full colored matrix.

4



Fundamental Concepts

Figure 2.3: Increase of network traffic in north America during the last decades [5].

Figure 2.4: Optical connection
transparent matrix before 2010.
The blue squares show how the
network was very underutilized.

Figure 2.5: Optical connection
transparent matrix after SDN in-
troduction. The colors are the
potential capacity deployable in
a source-destination couple trans-
parent connection, changes de-
pending on how we deploy the
traffic in the physical layer.

5



Fundamental Concepts

This means that the orchestration of the optical network can bring to the
maximization of its capacity, avoiding the operators to install additional new
optical fiber cables. However, the actual networks are made-up of devices whose

Figure 2.6: Orchestration techniques applied to European network.

implementations are closed software solutions, with all the problems that this
approach brings [8, 9, 10].

2.2 Open Optical Networks
Nowadays, mostly on the Internet infrastructure is covered by transparent optical
infrastructure. Upon these, many degree of openness are possible [11]:

• Aggregated network: closest solution where all the network is managed
as a single entity. All the software and hardware components are closed,
proprietary and from a single vendor. This solution does not provide space
for openness(Fig.2.7).

• Partly disaggregated network: different segment of the network are still
managed in a closed way, but the different pieces of the network are build
upon different operator devices.

6



Fundamental Concepts

Figure 2.7: Aggregated network topology with closed software interaction.

• Fully disaggregated network: in this scenario, each element of the network
can be from different vendors and each network element can be abstracted in-
side the SDN controller using standard model and controller through standard
protocols (Fig.2.8).

Figure 2.8: Disaggregated network example, showing ROADMs, Transponders
and OLSs interfaces.

The implementation of open and disaggregated solutions allows to establish a
vendor-neutral communication between the control system and the network devices,
implying easier management of the infrastructure, also in terms of modernization
and updating, and with a wider margin of maneuver.

7



Fundamental Concepts

An optical signal spreads across all the network infrastructure, but, depending on
network transparency, many configurations are possible [12]:

• Transparent Optical Network: optical network where the signal is propa-
gated without any regeneration from any source to any destination. In this
scenario, only transparent optical circuit are deployed (Fig. 2.9). The largest
part of the core networks are transparent.

Figure 2.9: Optical nodes within an optical network are in charge to rout
traffic. Connections between different nodes are transparent if there is no electrical
conversion along the path.

• Translucent Optical Network: optical network in which the signal of a
connection is regenerated in at least one intermediate node, passing from
the optical domain to the electrical one and vice versa to avoid excessive
degradation of the signal.

• Opaque Optical Network: extreme case in which no transparent switch
are present and in each node re-generation of the optical signal is performed.
Due the huge regeneration, the power consumption is relevant.

2.3 Optical Network Elements
An optical network is a transparent infrastructure with switching node connected
by optical line systems, with the possibility to add and drop optical data traffic at
edge nodes.

8



Fundamental Concepts

Figure 2.10: Between each optical node, signal amplification is exploited thanks
to optical amplifiers. A line is composed from fiber spans and amplifiers, making
an Optical Line System.

2.3.1 Optical Fiber

Figure 2.11: The optical fiber inside is made with two components having different
refractive index in order to obtain total refraction.

An optical fiber cable is a glass pipe composed by two parts with different
refractive index called core and cladding (n1 and n2 in Fig. 2.11). The peculiar
physical phenomenon in optical fibers exploited in optical communications is the

9



Fundamental Concepts

total internal reflection, which is obtained by making a light beam collimate inside
the core with an angle of incidence below a critical threshold, θc, described by the
Snell’s law (acceptance angle of optical fibre, Eq. 2.1), guiding the light through
the fiber.

sin θ1

sin θ2
= n2

n1
(2.1)

θc = arcsin n2

n2
(2.2)

The splicing operation allows to join two pieces of fiber both to repair a cable
from a cut or to increase the length of a span avoiding the use of mechanical
connectors. During the fiber-to-fiber coupling, the axial alignment represents a
fundamental action, that should be realized with a precision higher than the core
diameter, of the order of few µm.

Figure 2.12: The image represents the fundamental quantities that come to
attention when performing a splice between two fibers

2.3.2 Optical Amplifier
Optical amplification is a physical quantum mechanism where an energy transfer
takes place from a laser pumping optical power to a propagating optical signal [13].
This phenomenon is enhanced properly doping the fiber glass with erbium, from
which the erbium-doped fiber amplifiers (EDFAs) take name. Providing the correct
wavelength to the EDFA’s core containg erbium ions, an amplification of the input
signal is achieved. The amount of the gain depends on the pumping scheme and
from the other atoms within the core. The main drawback of this solution is
the presence of noise generated by spontaneous emission adding noise to the hole
signal [14](Fig. 2.13).

An amplifier used for transmission and for networking can be summarized as a
gain and additive noise (Fig. 2.14).

10



Fundamental Concepts

Figure 2.13: EDFA the image represents the fundamental quantities that come
to attention when performing a splice between two fibers.

Figure 2.14: An optical amplifier can be modeled through two fundamental
quantities, which are the optical gain and the introduced ASE noise.

2.3.3 Optical Line System
An optical line system (OLS) is a optical transparent link connecting two adjacent
nodes. It is usually bidirectional, consisting of three main components:

• Fiber spans: with a dedicated fiber for each direction.

• In-line optical amplifiers: each ILA is made of two amplifiers, one for each
direction.

• Booster and/or pre-amplifier: amplifiers placed at the output/input of switch-
ing nodes. Typically, boosters and pre-amplifiers are integrated within the
switching node.

11



Fundamental Concepts

Figure 2.15: An optical line system composed by fiber spans and amplifiers.

2.3.4 ROADM: Reconfigurable Add & Drop Multiplexer
The ROADM is a key component of an optical node and it is in charge of imple-
menting switching operations. In general, each node in an optical network has a
ROADM for each degree of direction, able to route the traffic through the node
according to a specified path or to add/drop the local traffic. The principle is
that any input at any wavelength can be addressed to any output in a transparent
way [15]. As shown in Fig. 2.16, each ROADM presents a WSS [16] at both
input and output. In order to perform the switching operations, it is necessary to
physically connect the ports of the WSSs among the different ROADMs.

Figure 2.16: ROADM internally rely on N WSS in ingress and N WSS for the
egress. Those are connected in full mesh. Then, thanks to local transponders the
traffic can be added or dropped.

At the state of the art, the optical switching within the WSS is performed
through micro electro-mechanical systems (MEMS) realized with liquid crystal on
silicon (LCoS).

12



Fundamental Concepts

2.3.5 Transponder and Transceiver
The key component which allows to transmit and receive optical signals within the
optical infrastructure is the optical transceiver. Historically, these devices ware
a closed solution implemented by different vendors [17]. By the way, in the recent
years, integration on chip and standardization brought to the birth of plugable
transceivers [18] (Fig.2.17). A transponder is a device hosting a certain number

Figure 2.17: Picture showing different sizes
of non-standard transceivers.

Figure 2.18: Standard
transponder with standard slots,
capable to handle a certain
number of transceivers.

of pluggable transceiver (Fig. 2.18).

2.4 Optical Signal
As within optical networks signal is transmitted across nodes, signal cannot be
propagated using electrical signals. This technique is acceptable only if transmitter
are receiver have a direct connection. Another significant example concerns EDFA
amplifiers working in the optical domain.

2.4.1 Optical Transmission Techniques
Within all the communication medium many transmission techniques have been
studied [19]. In the optical signals, the possible modulation techniques that have
been established in the course of history are essentially two.

Intensity Modulation Direct Detection

IMDD is the simplest modulation transmission techniques, used until 2010 but
still employed at the edge node. It is based on OOK and 10 Gbps connection

13



Fundamental Concepts

standard. With this technique the light is switched on and off quickly, with a
threshold beyond which the signal represents the high bit, the low bit otherwise.

Figure 2.19: Mach Zehnder Intensity Modulation Direct Detection transceiver
example. Signal is coded thank to a binary codification. Above a threshold voltage,
IMDD codes a high bit, under this voltage low bit is coded.

Coherent Optical Technologies

IMDD was suitable until around 2007, when since the smartphone revolution, the
demand for bandwidth to the internet has increased exponentially. Since that
moment, investments in the optical network have increased, and today WDM is the
standard for the core of the network and is also gaining ground within datacenters.
With coherent optical, modulation format is multilevel modulation format. In the
IMDD only amplitude is exploited to communication, conversely, coherent uses
both amplitude and phase. This gives two degree to design modulation (Fig. 2.20).

2.4.2 Multiplexing Techniques
At the state of the art, a single signal can carry up to 400 Gbps, occupying tens
of Giga Hertz in the spectrum. The next step is to use exploit the fiber in a
larger spectral region. The main idea is to use the same technique employed
in wireless communication: frequency division multiplexing (FDM). Because of
historical reasons, the same technique applied to optical fiber communication is
called Wavelength Division Multiplexing (WDM).

14



Fundamental Concepts

Figure 2.20: Thanks to WDM, a two dimensional modulation space can be
exploited.

Figure 2.21: WDM gets multiple signal in input and is capable to multiplex all
in a single fiber.

Another available technique is Time Division Multiplexing (TDM). This is
not engaged in the optical world, but it is exploited in the electrical domain. TDM
is used to multiplex different tributary at low bit rate in the electrical domain,

15



Fundamental Concepts

adjusting the bit rate for optical communication.

Figure 2.22: TDM is based on alternating the different signals with respect to
time.

2.4.3 Modulation Format
Regardless of the medium used to carry the information, these can be coded
in analog or digital. Analog solutions have been heavily used for multimedia
purposes as they allow to have a faithful representation of the original content. On
the contrary, as the digital coding rely on discretization it is more exploited for
transmissions [20]. Inside a fiber, an optical analog signal wave can be described
as:

E(t) = ê a cos (ω0t − ϕ) . (2.3)

Depending on the element, many modulation are possible:

• Amplitude Modulation (AM) (a in 2.3);

• Frequency Modulation (FM) (ω in 2.3);

• Phase Modulation (PM) (ϕ in 2.3).

These techniques can be used even for digital modulation: Amplitude-shift
keying (ASK), Frequency-shift keying (FSK) and Phase-shift keying
(PSK), as shown in 2.23.

Starting from the first years of XXI century, a new approach exploiting both
amplitude and phase modulation has been introduced [22]. To better understand
this solution, Eq. 2.3 can be re-written as:

A = a eiϕ (2.4)

16



Fundamental Concepts

Figure 2.23: Shows amplitude modulation(b), frequency modulation(c), phase
modulation(d) starting from a digital signal (a) [21].

Fig. 2.24 sums it up via constellation diagram [23]. The first two subfigures (a and
b) show the ASK and the PSK modulations. Fig. 2.24-c shows the Quadrature-PSK
(QPSK), a phase modulation using 4 possible values transmitting two bits. The
Last example is the multilevel QPSK, carrying out a larger number of bits.

Figure 2.24: Constellation diagram for ASK(a), PSK(b), QPSK(c), multilevel-
QPSK(d) [21].

17



Chapter 3

Network Architecture

Actually, optical networks are handles via a monolithic approach with a single
closed controller. Open and disaggregated networks require a control structure.
In this scenario, modularity is fundamental feature in order to keep separation of
concerns. As in multi-vendor scenario each domain exposes a standard interface,
thus, OSaaS [24] is one of the possible targets.

3.1 Software Defined Open Optical Networks
In traditional network approach, each network device is build upon three architec-
tural planes [25]:

• Control plane: in charge of computing the local forwarding state. Usually,
this operation is performed through distributed protocol implemented in
each device. Usually this action happens exchanging some information about
device’s state (neighbor, connected links cost etc..).

• Data plane: processing and delivery of packets with local forwarding state.
Data plane aim to compute a forwarding decision according to the packet
header and the computed forwarding state.

• Management plane: in purpose of providing interfaces towards a human
figure who must interact with the device in order to configure it or read
telemetry values.

Although the network devices are equipped with a logical separation of the 3
planes, they are however equipped with an operating system with proprietary
interfaces(fig. 3.1). This severely limits both a multivendor network and the ability
to change the behavior of the devices themselves. In SDN approach the devices did
not have to be compatible each other, they must be compliant only with the header

18



Network Architecture

Figure 3.1: With traditional closed approach, each devices exchanges information
with its neighbour. In this scenario, each device will make its own forwarding
decision.

of the transported packet. Furthermore, a centralized solution aims to simplify
the devices’ architecture, moving control plane into a centralized controller. In
this way, the network elements are only in charge to forward packet following rules
pushed from the controller. Thus, to make upgrading and adding features easier,
these devices need to be more software defined focused.

The concepts of SDN can be applied to the various levels that make up the
OSI [4] stack, allowing its application also to the physical layer [26, 27]. Thanks
to the transparent optical packet switching [28], the optical controller is moved
from the network node’s control plane to the the overall SDN controller. The latter
approach is explained in fig. 3.2.
The data plane is kept within network device, who, will follows the configurations
pushed from the control plane. The control plane, is moved into a centralized
controller running a network operating system relying on network topology ab-
straction. Above this network abstraction, many behaviour can be implemented
through application plane run on the network map abstraction.

Furthermore, SDN can solve several problems inherited from the traditional
networking approach:

• Network management: troubleshooting a network issue is cumbersome
operation and typically no automatically recovery solutions are implemented.
An SDN and open approach will simplify failures detection and recovery.

19



Network Architecture

• Network evolution: actually, if a network device has to be updated it or a
is needed a new feature needs to be added direct connection is required [11]. If
the logic is moved out from the device, this operation will be easier. Assuming
that a feature needs to be included within the network, only the control
plane into the centralized device has to be updated. Furthermore, this is not
the main advantage, because, with a closed approach it is not possible to
add a new feature in network device due the proprietary software. On the
contrary, an open approach unlock the possibility to develop and install all the
possible solution. Develop proprietary software is usually a solution feasible
for medium-large network [29].

• Network design: different networks follow different philosophy in their
design, this because no formal principles exist and each network manager
choose different solution when a network has to be build.

Figure 3.2: Software defined network schema. Devices keep a simple data plane
exposing standard interfaces. Control plane is moved into a centralized controller
above which it’s possible to run multiple applications solutions.

If the control plane needs to be moved into the centralized controller, all the
behaviours and the knowledge of the network has to be emulated. Primarily, full
knowledge of network topology and installed equipment is needed, then, all the
network operations must be emulated by providing a standard solution. Actually
there aren’t standard solution to control the hardware: each vendor has its own
language. Also transport operations need to be virtualize, but, a standard solution
is provided by OpenFlow [30].

Fig. 3.10 summarizes the modular approach spreading out within open optical
networks.

20



Network Architecture

Figure 3.3: Network emulation is usually based on standard YANG models and
NETCONF interfaces.

3.2 Optical Network Virtualization and Slicing
According to [31, 32] the demand for internet traffic is growing more and more
under the pressure of smart working, cloud services, high resolution streaming etc.
Thus, deploying dynamic optical infrastructures at high data rates that can serve
these various application types, each with their unique access and network resource
use patterns, is a major problem for network operators.
Basing on [31]: "A virtual optical network is a set of virtual optical nodes inter-
connected together that share a common administrative framework. Optical node
virtualization is the creation of a virtual representation of an optical network node,
based on an abstract model that is often achieved by partitioning or aggregation.
Within a virtual optical network, virtual connectivity (virtual link) is defined as
a connection between one port of a virtual network element to a port of another
virtual network element."

Optical Network Virtualization is the killer feature for most current and future
technologies:

• Network Slicing: is a basic requirement for modern FTTx and 5G connec-
tivity and this is ongoing request from the operator to improve networking.
Slicing is based on a shared infrastructure and a network slice instance (NSI)
is a fully instantiated logical network that satisfies specified network require-
ments for a given service. It is made up of a collection of network functions
and the resources necessary to deploy those (fig. 3.4).

• Quality of Transmission Estimation: cannot be achieved without network
virtualization in order to build a network’s digital twin and compute LP’s
GSNR estimation.

21



Network Architecture

Figure 3.4: Network slicing over virtualized disaggregated optical network [31].

3.2.1 Terminal Device Emulation
One of the main emulation project is the OpenConfig project which goal is to
define vendor-independent YANG data models [33]. This project covers multiple
functionalities, and according to their official guide [34], Open Config can deal
with:

• Common data models: representations of data that are consistent and
coherent, created by users for vendor-independent administration in a wide
range of networking use cases.

• Streaming telemetry: all devices based on OpenConfig principles, stream-
ing telemetry is a subscription-based strategy for effectively and precisely
monitoring network devices [35, 36]. This technique is much more secure,
efficient and reliable than SNMP [37].

• Management protocols: based on gRPC, a contemporary, secure RPC
framework designed for distributed services, device management and control
protocols.

• Testing and compliance: automated testing of OpenConfig implementations
for compliance that is independent of vendor.

3.2.2 ROADM Device Emulation
ROADM Device Emulation is achieved thanks to OpenROADM project [38]. One
of the main objectives, is to be able to configure ROADM through centralized SDN

22



Network Architecture

controlled, instead of needing human intervention. The YANG device model itself

Figure 3.5: Logical view of YANG model OpenROADM v2.2 device [39].

is fairly detailed. On a macro level, it identifies a first section pertaining to the
device information (shared language,node id, vendor’s model,GPS location, etc.)
then it is followed by a section that contains a list of circuit packs defining the
physical design, such as ports and current racks and shelves
The use of openROADM and openConfig has been widely exploited [40].

3.2.3 Northbound Interface

The variety of controller interfaces necessitates the usage of specialized plugins,
which makes extension challenging and expensive. A standard interface that can
be used by many vendors and domains and has similar models is clearly needed to
serve as a controller NBI (fig. 3.6).

23



Network Architecture

Figure 3.6: Example of NBI [39]. A standard interface is required both for a
known external endpoint, and for a standard communication between controller
and devices.

3.3 SNR-Based Network Abstraction
Transceivers used in dual polarization coherent optical transmission enable a fully
flexible management if, the channels they propagate on is a dual polarization
Additive white Gaussian noise [32].
A transceiver can be fully described in terms of the BER vs SNR curve (Fig.3.7)
or by analytical expressions [41]:

PM-BPSK: BER = 1
2erfc

ó
OSNR

Kpen

(3.1)

PM-QPSK: BER = 1
2erfc

öõõô OSNR
Kpen

2 (3.2)

PM-8QAM: BER = 2
3erfc

ó
3
14

OSNR

Kpen

(3.3)

PM-16QAM: BER = 3
8erfc

ó
1
10

OSNR

Kpen

(3.4)

Moreover, if the OSNR over a lightpath can be calculated, also the feasible
modulation format (therefore the bit rate) over the same lightpath (Fig.3.8) can be

24



Network Architecture

Figure 3.7: A transceiver BER vs SNR curve is capable to fully describe devices
behaviour.

exploited. In order to compute the OSNR over a certain lightpath, a centralized
controller owning all the topology is needed. Thus, network element should be
equipped with standard northbound interface and standard model [32].

Figure 3.8: If in a network emulation it’s possible to run a simulation capable to
retrieved the overall GNSR from source to destination, relying on this simulation,
it possible to identify to most suitable modulation format.

25



Network Architecture

3.3.1 The Generalized SNR
In transparent optical network, each transparent connection from a source to a
destination is called lightpath. In order to be considered transparent a lightpath
requires wavelength continuity from source to destination. Each lightpath is a
dual polarization AWGN, and each noise affecting the channel is composed by
amplified spontaneous emission (ASE) and non liner interference (NLI). Because
of this multiple source, the SNR metric for transparent lightpaths in an optical
network is defined GSNR:

GSNR = PCUT

PASE + PNLI

· FP (3.5)

where PCUT is the power of the channel, PASE and PNLI are respectively the
accumulated ASE and NLI. FP is a factor ≤ 1 for the accumulated filtering
penalty [42]. Noise is accumulated because a lightpath is a transparent connection
from any source to any destination, so, if a crossed node can be represented as a
gain A and a noise n, a connection from a transmitter and receiver is the cascade
of the effect for each element (Fig. 3.9).

Figure 3.9: A lightpath crosses multiple device. If each devices can be described
in terms of gain and noises, a connection suffers of all the amplification and noise
introduced by devices going through.

If all the gain and noise are known, at the receiver side the GSNR can be written
as:

GSNR = P0A0..AN

Pn0A1..AN + Pn1A2..AN + .. + PnN

(3.6)

To accumulate the GSNR introduced with different cascade, it’s convenient to use
the inverse of GNSR:

ISNR = 1
GSNR

= Pn0A1..AN + Pn1A2..AN + .. + PnN

P0A0..AN

(3.7)

Pi+1 = PiAi (3.8)

ISNR = 1
GSNR

= Pn0

P0A0
+ Pn1

P1A1
+ .. + PnN

PNAN

=
NØ

i=0

1
GSNRi

(3.9)

26



Network Architecture

Thus, if a model for every element crossed in the lightpath can be written, total
GSNR can be summarized as single network element contribution:

GSNR = 1qN
i=0

1
GSNRi

(3.10)

So, in a optical layer if each network element can be abstracted with its GSNR
impairment, the overall GSNR can the calculated over every path in the network.
Thus, if in the virtual representation of the network (fig. 3.8), all the lightpaths’
GNSR can be obtained, then, using a software capable to sum the single GSNR
contribution, the overall GSNR can be transformed into feasible modulation format
fully automatizing the physical layer. These kind of software are the so called
quality of transmission estimator.

3.4 Open Optical Networks Components
An open and disaggregated optical network requires different optical data and
control plane controllers. Unlike unique-vendor network, which management is
handled through a single monolithic closed controller, openness and disaggregation
requires new control solutions in line with this philosophy [43].

OPTICAL NETWORK CONTROLLER PHYSICAL LAYER DIGITAL TWIN

A C

B

TRX

TRX

TRX

ROADM A

API

OLS Vendor 1
Vendor 2

ROADM B

TRX

TRX

OLC

API

TRX

Booster/Preamp

In-Line Amplification Site

API

RWSA
Failure 
Detection

OPEN STANDARD INTERFACES

O
P

E
N

 S
TA

N
D

A
R

D
 IN

TE
R

FA
C

E
S

L-PCE

Topology 
Abstraction

Telemetry
TRX ROADM AMP OTDR

Database

Engine
OLS Optimization and Control

Physical Layer Description/Dataset
Transceiver/ROADM Characterization

Lightpath 
Requests

PHYSICAL LAYER

Vendor 3

OLC

OPTICAL LINE CONTROLLER
Device 
Polling

Interrupt 
Management

Device 
Configuration

ROADM C

OPTICAL NODE

Figure 3.10: Open and disaggregated optical network architecture is composed by
different controller for different components, connected through standard interfaces.

27



Network Architecture

3.4.1 Optical Network Controller
In SDN optical network, advantages coming from the use of ONC are widely
known [44]. ONC is the only component capable to handle the various network
element because of its view across the whole network. Usually, ONC initiates and
keeps a connection with all the network elements (transceivers, ROADMs, etc..).
Thus, ONC is capable to build a topology abstraction. Furthermore, ONC will be
in charge to provide this abstraction to those which request it.

As direct device communication offers to set devices behaviours, the optical
controller will be in charge of routing and spectrum wavelengths allocation, to
serve lightpath requests. This kind of request usually arrives from the upper layers
(IP, ethernet) specifying source and destination nodes. Being the only one with a
complete view of the topology, it can apply a series of routing algorithms to find the
best path through the nodes of the network, selecting the same wavelength among
all the node ensuring wavelength continuity. Relying on topology abstraction
and direct connection with OLCs and devices, ONC can receive through open
and standard interfaces, notifications about topology updates. This, allows to
understand new possible nodes within the network, but also detect failures.

Figure 3.11: Optical network controller lightpath establishment [32].

3.4.2 Physical Layer Digital Twin
As introduced in the latter chapter, in order to estimate a the GSNR across a
lightpath a QoT-E software in needed. The total amount of GSNR across a LP is
closely related to ASE noise and NLI noise. However, it was demonstrated that the

28



Network Architecture

GSNR’s value it’s more affected by ASE than from NLI [45]. In turn, ASE noise
is strictly related to EDFAs working points crossed within the OLS [46]. Various
machine learning (ML) approach has been tested in order to solve this problem [47,
48, 49]. Thus, in addition to QoT-e, DT is also in charge to compute the correct
working point for the amplifiers in the network.

Figure 3.12: QoT-e’s view on a network topology. A lightpath is connecting two
end points [32]. The DT can characterize all the lines crossed by a LP and keeps
its values.

3.4.3 Optical Line Controller
The OLC is a part of the control plane and it is in charge to set the working point
for all the amplifiers. OLC is also the only component capable to intercept the
interrupt from the amplifiers and forward these to the centralized controller. An
optical line controller is usually a proprietary software handling an OLS. Since
within an optical network more OLS are present, often more than OLC are present,
even from different vendors. Because of this, between proprietary controller software
and others control plane components, a standard interfaces are needed. An OLC
communicates with ILAs, booster (BST) and pre-amplifier(PRE) through APIs.
At boot phase, OLC has to start an OLS probing, composed of three steps:

• ILAs, BST and PRE have to be set with known settings.

• All necessary metrics must be measured.

• Devices in OLSs need to be watched through polling.

29



Network Architecture

Figure 3.13: Each OLS is completely emulated as a single entity and exposed to
the optical network controller though standard interface [32].

3.4.4 Interfaces
Interfaces are a fundamental component into the open optical architecture. With
standard interfaces, each component needs to be compatible only with predefined
interfaces. This also simplify the development, allowing to change component
without needing to deal with new interfaces.

Transport-API (TAPI)

The Open Networking Foundation (ONF) created the standard API known as
T-API (Transport API). A TAPI server have to:

• Obtain hardware and topology details from the network.

• Control connectivity services.

T-API has been designed to allow network operations across a multi-layer, multi-
domain, multi-vendor transport infrastructure within a SDN context. By serving
as an interface between controllers at various levels, T-API can be used to manage

30



Network Architecture

network resources at various degrees of abstraction. An interface between a number
of network domain controllers and an upper-level network orchestrator that serves
as a multi-domain or hierarchical controller would be an illustration of a typical
T-API configuration. The IETF RESTCONF protocol [50] specification is used

Figure 3.14: T-API structure offer multiple services that can be exploited from
other actor in the network.

by the TAPI RESTCONF NBI RESTful web services interface when creating its
interfaces. It rely use of the TAPI YANG data models [51], which are outlined in
the YANG specification. The following IETF specifications are employed:

• RESTCONF Protocol RFC 8040.

• YANG Specification RFC 6020 [52].

• Hypertext Transfer Protocol HTTP 1.1 - RFCs 7230-7237 [53].

The following resources are part of the RESTCONF specification:

• restconf/data (Data API): Create/Retrieve/Update/Delete (CRUD) based
API for the entire data tree defined in the TAPI information model YANG
models.

• restconf/operations (Operations API): small number of operations de-
fined as RPCs in the TAPI information model and YANG models make up an
RPC-based API.

• restconf/data/ietf-restconf-monitorinestconf-state/streams (Notifi-
cations API): RESTCONF notification protocol.

31



Network Architecture

• restconf/yang-library-version): The "ietf-yang-library" YANG module
that this server has implemented is identified by this required leaf as having a
revision date.

• restconf/data/ietf-restconf-monitorin:restconf-state/capabilities: leaf
to notify the server’s ability to support query parameters.

3.5 Local Optimization Global Optimization
The GSNR is a crucial metric for modelling optical fiber propagation performance,
and is given by:

GSNR = PCUT

PASE + PNLI

= PCUT

PASE + ηPch3
(3.11)

Equation 3.11 has been plotted in fig. 3.15. As GSNR depend on the channel
power, the amplifier gains have to the set carefully. It is possible to notice how the
equation has a maximum, which can be calculated. Furthermore, the point is very
robust because it is located in a curve that is not very sensitive to uncertainties.
Thus, by choosing carefully the input power, GSNR can be maximized. Amplifiers
are the elements in charge of the power, because the output power is the result
of the input power multiplied for the gain. OLCs are in duty to set the correct
working point.

Figure 3.15: Graphical representation of the GSNR behavior. The chart describes
the difference between a linear environment, where power can be as be as possible
without effect on the GSNR, and the non linear environment where the NLI noise
will decreases the GSNR proportionally with channel power.

In order to consider a generic OLS, in fig. 3.16 an OLS with N amplifier is
shown.

32



Network Architecture

Figure 3.16: Optical line system with ILAs, BST and PRE. Each component is
fully characterized in terms of gain, ASE and NLI.

Regarding a transmission between node A and node B, GSNR degradation can
be written as:

GSNRAB = Pout,AGoL1G1 . . . LNGN

PASE,0L1G1 . . . LNGN + (PASE,1 + PNLI,1) L2G2 . . . LNGN+
. . . + (PASE,N + PNLI,N)

Maximize a GSNR means to minimize the opposite of GSNR received ad node B,
who can be written as:

1
GSNRAB

= PASE,0L1G1 . . . LNGN + (PASE,1 + PNLI,1) L2G2 . . . LNGN

Pout,AGoL1G1 . . . LNGN

+

. . . + PASE,N + PNLI,N

Pout,AGoL1G1 . . . LNGN

The different contribution can be separated:

1
GSNRAB

= PASE,0L1G1 . . . LNGN

Pout ,AGoL1G1 . . . LNGN

+ (PASE,1 + PNL,1) L2G2 . . . LNGN

Pout ,AGoL1G1 . . . LNGN

+

. . . + (PASE,N + PNLL,N)
Pout ,AGoL1G1 . . . LNGN

(3.12)
Which can be simplified as:

1
GSNRAB

= PASE,0

Pout ,AGo

+ (PASE,1 + PNLL,1)
Pout ,AGoL1G1

+ .. + . . . + (PASE,N + PNLL,N)
Pout ,AGoL1G1 . . . LNGN

(3.13)
Now, the inverse of GSNR is divided into the contributions of amplifier and fiber
span.

33



Network Architecture

Figure 3.17: OLS portraying each amplifier’s output power as the input of
following one.

OLS is capable to set the gain of amplifiers, so the equation can be rewritten as
the input power of each fiber span:

1
GSNRAB

= PASE,0

Pout ,AGo

+ (PASE,1 + PNLI,1)
Pin,1L1G1

+ . . . . + (PASE,N + PNLI,N)
Pin,NLNGN

(3.14)

The model of ASE noise is described by:

PASE,i = Pbase (Gi − 1) Fi ≃ PbaseGiFi Pbase = hf0Bn (3.15)

Furthermore the NLI noise is described by:

PNLI,i = ηNLL,iP
3
in,iLiGiBn (3.16)

These noise power description can be substituted within the inverse of GSNR:

1
GSNRAB

= GoPbas F

Pout Go

+
G1

1
Pbase F1 + L1ηNLL,1BnP 3

in,1

2
Pinn, L1G1

+

. . . +
GN

1
Pbase FN + LNηNL,NBnP 3

n,N

2
Pin,NLNGN

The gain of each amplifier can be simplified:

1
GSNRAB

= Pbase F0

Pout ,A

+
Pbase F1 + L1ηNLL,1BnP 3

in,1

Pin,1L1
+

. . . +
Pbase F1 + LNηNLL,NBnP 3

in,N

Pin,NLN

34



Network Architecture

The gain as been simplified, so the problem has to be solver in terms of output
power. Each term only depend on a single amplifier contribution, thus, each term
can be written as:

GSNR0 = Pout ,A

Pbase F0
GSNRi = Pin,iLi

Pbase Fi + LiηNLL,iBnP 3
in,i

(3.17)

So, the generic expression can be simplified into:

1
GSNRAB

= 1
GSNR0

+
NØ

i=1

1
GSNRi

(3.18)

Thus, the total inverse GSNR is given by the sum of the booster amplifier plus every
amplifier contribution. This means that the optimization of the line is a problem
of optimizing every component. So, this method is called local optimization
global optimization.

max {GSNRAB} ⇔ max {GSNRi} ∀i = 1, . . . , N (3.19)

The optimization problem can be solved equating the first derivative to zero
according to fig. 3.18.

Figure 3.18: Single amplifier GSNR behaviour. The chart describes that the
maximum GSNR value can be obtained when the derivative is equal to zero

Single GSNR’s value is described by 3.17, so optimal input power and the
relative GSNR can be computed as:

Popt ,i = 3

ó
FiLiPbase

2BnηNLl,i

⇔ GSNRi, max = 2
3

3

öõõô 1
2ηNLL,iBn (FiLiPbase )2 (3.20)

35



Network Architecture

As introduced, from 3.20 input power is directly proportional to the ASE and
inversely to the NLI. By adding all the contributions, it is possible to calculate the
GSNR across the OLS.

1
GSNRAB

= ISNRAB = Pbase F0

Pout ,A

+ 2
3

NØ
i=1

3
ñ

2ηNLL,iBn (FiLiPbase )2 (3.21)

ηNLL
∼=

16
27π

log
I

π2

2
|β2| R2

s

α
N

2 Rs
∆f

ch

J
α

|β2|
γ2L2

eff

R3
s

(3.22)

In 3.22 worst chase with Nch is considered, otherwise adding a new channel could
cause a disservice.

36



Chapter 4

Open Optical Transport
Network Controller

In accordance with the previous chapters, typically software within an open optical
networks are divided into modules. [54]. However, so long as multiple projects are
ongoing, no global solution is available. One of the purposes of this project, is the
exchange of information between ONC and DT, in order to deploy lightpaths with
the best modulation format. In order to perform this communication, there are
two main possibilities:

• Integrate the code inside the ONC in order to contact the digital twin before
starting the RWSA procedure.

• Create an external request handler acting as a dispatcher between all the
components on the network.

The first approach has been discarded due to too many drawbacks: massive changes
to a specific ONC would make the project too tied to the single implementation
and adaptation to a new ONC would force to restart all the coding. In this chapter,
a tool capable to handle a traffic request has been developed. This tool aims
to harmonize multiple software modules through existing standard model and
interfaces.

4.1 Software Interaction and Structures
As all the logic as been moved out from the ONC a new component has been
defined: Open Optical Transport Network Controller(OOTNC). The purpose of
this software is to be able to provide a higher level interface, capable of accepting
traffic requests and managing them automatically. Furthermore, OOTNC does

37



Open Optical Transport Network Controller

not limit itself to accept connections requests implementing the lightpath, but
through a QoT-E software , it verifies the best modulation format feasible across the
path. Hence, this framework manages to satisfy a traffic demand by guaranteeing
continuity of wavelength, transparency and the best possible modulation format.
All this takes place in times that can be considered acceptable when compared
with current scientific literature.

As shown in 4.1, OOTNC, rely on multiple data structure build upon data incoming
from the different network controllers.

OOTNC

Digital Twin

REST API

Optical Network Controller

REST
API

intent req

Routing space

Ch 1 Ch 2 Ch 3

Pa
th

 1

1 0 1

Pa
th

 1

1 1 0

Modulation formats

Ch 1 Ch 2 Ch 3

Pa
th

 1

1 4 4

Pa
th

 2

1 2 4

MD AND RS

Ch 1 Ch 2 Ch 3

Pa
th

 1

1 0 4

Pa
th

 2

1 2 0

while(bitRate > 0)

OOTNC 

Digital Twin

REST API

Optical Network
Controller

REST
API

Virtual
Topology

Routing
Space

Spectral
Information 

STD
INTERFACE

OLS #1

OLS #2 

OLS #N

ROADM EQU

LOGGER

Traffic matrix

T0 T1

T0 0 400

T1 400 0

OOTNC LOGGER

Routing Space

Traffic matrix

T0 T1

T0 0 400

T1 400 0

INTERRUPTCONTROLLER

.

1

2

3

Figure 4.1: General structure of the whole framework. Open Optical Transport
Network Controller relies on various data structures and rest interface to build a
complete network controller.

4.1.1 Optical Network Controller

The ONC chosen for this experiment is ONOS [55]. ONOS is an open-source
project, moslty developed in java [56], with Apache Maven [57] as build system.
Moreover, Karaf [58] is used as OSGi [59] module.

Although ONOS has been developed to work as a SDN controller for TCP/IP
relying on OpenFlow, a lot of work has been done to exploit the same software to
control physical layer [60, 61]. ONOS is an intent based software [62].

38



Open Optical Transport Network Controller

Figure 4.2: ONOS’ process for requesting a traffic request [60]. (a) The request is
received through a TAPI interface, internally ONOS checks its validity and applies
its own RWSA algorithms. Then, through NBI and SBI the configurations are sent
to the devices.

4.1.2 Quality of Transmission Estimator
Gaussian Noise in Python (GNPy) is an open-source, vendor-neutral QoT-e soft-
ware [63]. GNPy is developed by Open Optical Packet Transport Physical Simula-
tion Environment (OOPT–PSE) within Telecom Infra Project (TIP) [64]. GNPy
architecture is described in fig. 4.3.

GNPy requires a set of input data for each of the network components along the
path in order to get useful GSNR results. These parameters are offered in stable
versions either as a series of Microsoft Excel files that are automatically translated
into an analogous JavaScript object notation (JSON) format. The ASE noise and
the NLI disturbance caused by the nonlinear fiber propagation are calculated using
the parameters as inputs in combination.

In order to retrieve the total GSNR along the path, amplifiers description is
needed. According to [66], three possible model for EDFA are possible:

• Complete description of the white-box, which allows us to access all the
network functions of the device.

• Model provided by the manufacturer that allows access to only some features
of the device decided by the vendor.

• Black box model where nothing can be accessed.

GNPy aims to guarantee a multi-vendor support, however, many scenarios do not
offer a complete description of the network. Because of this, GNPy proposes a
probing tool capable to understand amplifiers configuration. Within the probing
technique, some data like fiber spans needs to be characterized.

39



Open Optical Transport Network Controller

Figure 4.3: GNPy has a general structure [65]. GNPy rely on a core engine within
all the propagation is performed and the GSNR is evaluated. Then, it proposed
input data interface and output data interface.

The physical layer characterization starts with optical time domain reflectometer
(OTDR) analysis in order to measure each fiber span length. To virtualize a single
fiber span we need to estimate:

• α(f): loss coefficient function

• l(0): input connector losses.

• l(LS): output connector losses.

40



Open Optical Transport Network Controller

• l(0 < z < LS): losses detected by the OTDR

• CR: Raman efficiency scale factor.

Before running the simulation, GNPy executes an optimization algorithm in order
to maximize the GSNR value. Then, the evaluation of GSNR is done through
cognitive approach setting the amplifier’s working point and estimating the value
for each OLS.

4.1.3 Optical Line Controller
Since the amplifiers on which the experiment was carried out do not have an open
controller, the characterization of these was exploited using a black-box approach.
After the calculation of the working points has been carried out, as these do not
expose standard interfaces for setting the values, the working point have been set
via SSH.

4.1.4 Data Structures
OOTNC rely on multiple data structures. Some of these, are data structure
populated through data incoming from other software components like ONC, while,
other structures are retrieved from database as external configurations.

Spectral Information

Spectral Information is a data structure build upon static external configuration
providing the central frequencies for all the signals following the ITU-T standard [67].
The purpose of this data structure is to provide a single configuration for channel
frequencies for use in all software modules.

Virtual Topology

Virtual Topology is a set for classes describing nodes within the network. Each NE
is described in terms of:

• IP+NETCONF_Port: this is provided from ONC which is the network element
handling all the connections.

• Custom Name: in order to provide a more readable version to the user, a
custom name is set. Usually, T followed by an incremental index in used to
describe the endpoints, then, R followed by an incremental index in used to
describe the ROADMs. A dataframe keeps the bind between custom names
and IPs.

41



Open Optical Transport Network Controller

• Neighbors: is a list of all the neighboring nodes, which allows to obtain the
description of the network in terms of connections.

Routing Space

Relying on virtual topology and spectral information, RS can be build. Starting
from virtual topology, all the feasible paths within the network can be computed.
Then, according to spectral information and retrieving all the available frequencies
in the network, channel abstraction can be used. Spectral occupation is retrieved
from onos.

Figure 4.4: In this routing space simple example, only two path (with two
directions) and 4 channel are shown. Only channel 2 and 3 are available, while
channel 1 and 4 are marker as unavailable.

In order to keep the routing space and the modulation format information, two
python dataframes [68] have been created. Those have been created in order to
be overlappable. Each row represents a possible path among the network, and
each column represents a feasible channel. As a free channel is represented as 1
and a busy is represented through 0, a logical AND between routing space and
modulation formats dataframe will provide a table with all the modulation format
for all the free channels within the network (fig. 4.5). In this way, in order to select
the best modulation format, OOTNC just needs to select the maximum value and
read row and column’s value (fig. 4.6). After that a path, modulation format and
channel have been selected, a request for the ONC is built and sent with all the
parameters.

4.1.5 ONOS New Optical REST-API Interfaces

As described in the general structure, a communication interface is needed to
exchange data between ONOS and OOTNC. During the develop, different solutions
have been evaluated:

42



Open Optical Transport Network Controller

Figure 4.5: Routing space and modulation format have been build in order to
have the same structure. Thus, all the rows will contain all the path and the
columns have been obtained on the basis of the spectral information, therefore
the columns of both of DFs appear to be consistent with each other. Therefore, a
third DF can be obtained by superimposing the previous two. Each value of this
structure will contain the modulation format if available, zero otherwise.

Figure 4.6: Relying on on the data structure obtained, through a column sorting
operation, it is possible to derive the best modulation format available to satisfy
the request. The row index will be the path to follow, the column index will be the
channel to be occupied, while the DT value will be the modulation format. In the
example shown in the figure, the path chosen is "T-0_R-1_R-2_T-1", on channel
3 which guarantees a bit rate of 200Gbps. Then, the total amount of bit rate is
decreased, and the routing space is updated by imposing a zero on the path-channel
pair no longer available.

TAPI

TAPI has been already introduced, and fig. 4.2 describes how it is possible to accept
requests through this interface [69].

Optical Network Model REST API

A REST module is already present in ONOS, including only three endpoints:

43



Open Optical Transport Network Controller

• GET - /intents: Get the optical intents on the network.

• POST - /intents: Submits a new optical intent.

• DELETE - /intents/intentId: Delete the specified optical intent

Custom Application

The last possible solution is to not use a ready-made solution but create a custom
one. TAPI would have been the best solution from the point of view of compatibility
and extensibility, however, build-in onos’ TAPI implementation has a lot of troubles
and a new one is ongoing. While, optical network model REST API inside ONOS
doesn’t offers all the needed information, and because of these a new custom
application with all needed REST endpoints as been developed:

• POST - /newoptical/intents: accepts a body with new intent description.
The main different with the build-in solution is the possibility to specify the
modulation format. ONOS will push the intent from the "ingressPoint" to the
"egressPoint" through the "suggestedPath".

1 {
2 "appId": "org. onosproject . newoptical ",
3 " ingressPoint ": ingress_point ,
4 " egressPoint ": egress_point ,
5 " bidirectional ": False,
6 "signal": {
7 " channelSpacing ": " CHL_50GHZ ",
8 " gridType ": "DWDM",
9 " spacingMultiplier ": spacing_multiplier ,

10 " slotGranularity ": 4
11 },
12 " suggestedPath ": {
13 "links": links
14 },
15 " modulationFormat ": mf
16 }

This endpoint, if was able to configure all devices within the network, returns
the new intent’s id, errors otherwise.

• GET - /newoptical/intents: returns all the intents allocated in the network
with all the characteristics.

44



Open Optical Transport Network Controller

• DELETE - /newoptical/intents/id: deactivate the intent with specified id.

• POST - /newoptical/path-status: accepts a list of paths in the body
request and returns all the free frequencies for all the specified paths.

• GET - /newoptical/central-frequency: in order to build a coherent spectral
information between ONC and OOTNC, both controllers have to use the same
central frequency. So, during the boot phase this end point is used to retrieve
the central frequency from the ONC upon that channels number are build .

• GET - /newoptical/links-status: retrieve all the free frequencies for all the
links in the network with a granularity of 12,5 GHz. This end-point enable to
retrieve the status from the network: according to the frequencies specified
inside the spectral information for each path and for each link inside the path,
all the available channel can be computed for all the path inside the network.

4.1.6 Logger
In order to be able to implements some recovery feature, the characteristics of the
active connections must be kept in memory. So, a logger system is needed. The
logger was implemented through MongoDB: a NoSQL database, using JSON-like
documents.

1 {
2 _id: ObjectId (’62 daa5e007ff4000e8f06835 ’),
3 path: ’T-0_R -0_R -2_T -1’,
4 bitRate : 200,
5 modulationFormat : 4,
6 channel : ’CH -6’,
7 time: ISODate ( ’2022 -07 -22 T13:28:00.870Z’)
8 }

Listing 4.1: Intent LOG example

As shown in listing 4.1, a record is composed by:

• id: field automatically filled by MongoDB, analogue to key in relational db.

• path: string containing all the devices crossed by the intent. All the ROADMs
have "R" as root than a number to identify the device precisely, "T" is used
for transponders. OOTNC keeps a data structure to bind this nomenclature
with specific IP address.

45



Open Optical Transport Network Controller

• bitRate: used in the recovery part to compute the total lost bit rate after a
failure.

• modulationFormat: keeps the modulation format selected on the intent.

• channel: maintains the channel used for the lightpath. Through signal
information data structure, channel-id and the central frequency and be
swapped.

• time: timestamp added by MongoDB once the record is saved.

4.2 Use-Case and Flows
The use case that has been exploited, in addition to managing a connection request,
also aims to activate a recovery procedure when an error is reported. Figure 4.7
shows what the main steps are and which messages are changed between ONC, DT
and OLSs. The experiment is divided into three phases:

O
N

C
P

H
Y

-D
T

REST API

REST API

PHY

Virtual 
Topology

Lightpath 
Request

OLCs Time

SRC/DST 
Nodes

TRXs/ROADMs 
Connections

Application/IP Layer

Physical Layer 
Topology

DEPLOYMENT RECOVERY

TRX

Lightpath 
Establishment

TRX

RWSA
Lighpath 

Deployment
Path 

Feasibility

Lightpath Establishment

!" Path A !# Path BFailure

Virtual 
Topology
Update

Paths’ 
Modulation 

Formats

L-PCE

QoT-E

Estimating 
Lost Traffic

Physical Layer 
Topology 
Update

TRXs/ROADMs 
Connections

SRC/DST 
Nodes

Paths’ 
Modulation 

Formats

L-PCE

QoT-E

Figure 4.7: Describes the generic architecture flow [70]. It’s divided in three main
phases exploiting communication between all components.

1. Boot: primarily, framework needs to understand the network characteristics.
In this case, ONC has the task of providing the description of the nodes that
make up the network, while the DT communicates with the OLSs to obtain the

46



Open Optical Transport Network Controller

physical characteristics of the network. Also in this phase, OOTNC requests
the status of the network from the ONC in order to build the routing space.
At the end of this phase, OOTNC has knowledge of both the topology and the
state. The network could have been assumed to be completely free, however,
in a context of full spectral load it is possible to obtain information on which
channels are modulated. Also, this way the framework in question may not
be the only player on the network.

2. Lightpath deployment: this phase has been revised with respect to the one
present in the literature. The main purpose is to obtain information about
the best modulation format available, and select the path for the connection
in consistency with it. For this purpose, when OOTNC receives a connection
request, before starting the lightpath establishment phase, it asks the DT
which are the possible modulation formats for each path having the same
pair of source and destination. By combining these MFs and the information
contained in the RS, OOTNC sends a specific request to ONOS towards the
custom endpoints that have been created. ONOS will reply with intent’s
characteristics, which will be saved in the DB and the RS is updated marking
the channel as busy. Among the information returned there is also the amount
of allocated bit rate, which is decreased with respect to the requested bit rate.
If this value should be greater than zero, then OOTNC iterates the same
procedure allocating other connections until all the bit rate is satisfied.

3. Recovery: one of the most exploited use chase in disaggregated optical
networks is a hard and soft failure scenario [71]. This implementation is also
a modification of what is present in the literature, with the aim of carrying
out a recovery procedure consistent with the lightpath deployment. OOTNC
exposes an endpoint where it is possible to notify the failure of a link or a node.
Therefore, previously introduced logger can be exploited, through which all the
connections lost due to failure can be retrieved. From this information, it is
possible to reconstruct the amount of traffic lost for the source and destination
pairs involved. Thus, it is possible to build traffic requests that are in line
with the previous point, and the recovery will take place automatically. Also
in this case, the difference with what is already present in the literature is that
the recovery is done by selecting the path according to the best modulation
format.

47



Open Optical Transport Network Controller

4.3 Laboratory Network Setup

4.3.1 Devices
Cassini AS7716-24SC

The Cassini packet transponder makes it simple for network operators to upgrade
and expand their existing metro and long-haul Dense Wavelength Division Mul-
tiplexing (DWDM) networks to support new 100G capacities as well as Layer 3
and inter-datacenter services. With 3.2Tbps of system throughput and a 1.5RU

Figure 4.8: Cassini AS7716-24SC with 8 x DCO cards, 16 x QSFP28 100G
Ethernet ports, management port and console port.

form factor, the Cassini is based on Broadcom StrataXGS Tomahawk Plus switch
technology. In addition to eight linecard slots for a customizable combination
of extra 200GbE ports or DCO optical connections based on coherent DSP and
optical transceivers from top optical technology partners, the Cassini design fea-
tures sixteen fixed 100 Gigabit Ethernet QSFP28 ports. The Open Network Install
Environment (ONIE), which facilitates the installation of network operating system
(NOS) software, is preinstalled on the open network switch. This NOS software
includes the open source alternatives Open Network Linux and various commercial
NOS products. For safe encrypted communications on client-side links as well as
metro or wide area connections, Cassini supports Ethernet and optical line cards
with MACsec security.

The TRXs are Lumentum CFP2-DCO coherent pluggables that are set up to
provide 4 separate signals (DP-QPSK or DP-16-QAM modulated) and continually
track the associated bit error rate (BER).

48



Open Optical Transport Network Controller

Lumentum ROADM-20 Whitebox

A route-and-select architecture can be used to build a flexible-spectrum colorless-
directionless (CD-F) or colorless-directionless-contentionless (CDC-F) ROADM
solution using the TrueFlex® Twin Wavelength Selective Switches (Twin 2x9, Twin
2x20, or Twin 2x32 depending on application demand). Modern switchable gain
preamp and booster EDFAs offer a significantly wider dynamic range and improved
NF performance than older variable-gain EDFAs. While the EDFA is not in use, a
dynamic gain operation range can be chosen.

Figure 4.9: Lumentum ROADM Graybox with: variable gain pre-amp and
booster EDFAs, twin 1x20/1x9/1x32 WSS for express and add/drop fan-out, OCM
implementing channel monitoring and OSC termination.

Figure 4.10: Internal Lumentum ROADM Schematic.

49



Open Optical Transport Network Controller

4.3.2 Topology
The network topology used in the experiment is shown in the figure 4.11. The
network implements a triangular topology with three ROADM a two transponders.
Line 1 is composed by 6 single mode fiber spans with as many Erbium Doped Fiber
Amplifiers; five spans of 100Km are used to compose Line 2A and Line 2. The

ONC
PHY-DT

Figure 4.11: Scheme of the set-up of the experiment in the laboratory. The
topology has a triangular shape with the cassini located in the vertices, therefore,
each endpoint can be reached through a path and a long one.

triangular arrangement each end device (A-B-C) can be reached from a short path
or a long one. For instance, if our source is A and the destination is C, a lightpath
can go through ROADM-1 and ROADM-3 or through ROADM-1, ROADM-2 and
ROADM-3. Each transponder has four CFP2-DCO transceivers modulating four
channels centered at 192, 193, 194 and 195 THz. A server equipped with Ubuntu
20.04 runs ONOS with the custom REST application running on. Inside ONOS a
docker container is configured to shape the output of an ASE noise source, yielding
71 channels that, together with the 4 CUTs, build the 75 channels fully covering
the C-band.

50



Chapter 5

Results

This chapter will present all the results obtained within this experiment.
The first part will present all the PHY characterization and all the feasible modu-
lation formats. Then, all the results from the recovery use case will be shown.

5.1 Physical Layer Characterization and QoT-E
As first, physical layer characterization is exploited in order to understand all the
parameters needed in GNPy. Table 5.1, report all the physical layer characterization.
Thanks to the physical layer characterization, GNPy can calculate the optimum
working points of each amplifier (tab. 5.2). As extensively discussed in the previous
chapters, once the amplifiers can be described in terms of gain and noise, GNPy can
compute in GSNR along the entire path. Equal to this it is then possible to obtain
the modulation format. BER’s measures and GNPy prediction are presented in 5.3:

First of all, it is possible to notice how the DP-16-QAM modulation format
is not feasible at the long path, but only at the short path. Then, observing the
values of the simulation on BER obtained through GNPy, it is possible to notice
how all these are conservative, with an acceptable margin along all the lines.

5.2 Recovery experiment
The purpose of the experiment is to demonstrate how it is possible to achieve
automatic recovery after a hard failure. This type of scenario has been extensively
exposed in the literature [72, 71, 73], however, this solution not only aims to reroute
lost traffic, but does so by choosing the path according to the best modulation
format that can be offered. ONOS’ topology view is shown in 5.1.

51



Results

LINE SPAN LSLSLS

[km]
CRCRCR

[1/W/km]
DDD

[ps/nm/km]
l(0)l(0)l(0)
[dB]

l(LS)l(LS)l(LS)
[dB]

1

1 65.5 0.34 16.6 5.5 0.1
2 65.3 0.34 16.8 1.4 0.3
3 65.5 0.44 16.7 1.6 0.1
4 65.6 0.34 16.7 0.2 1.4
5 65.2 0.42 16.7 0.5 0.4
6 65.8 0.34 16.5 0.1 1.3

2A

1 106.2 0.34 17.5 3.6 0.2
2 107.5 0.44 17.9 1.2 0.7
3 106.2 0.44 17.7 1.5 0.1
4 108.8 0.42 17.7 0.6 0.1
5 108.3 0.42 17.8 0.2 0.1

2B

1 106.2 0.42 17.9 1.1 0.2
2 106.8 0.34 17.7 0.1 0.1
3 106.4 0.34 17.7 0.2 0.7
4 107.3 0.42 17.8 0.2 0.1
5 108.3 0.42 17.8 0.5 2.3

Table 5.1: PHY Characterization [70].

Figure 5.1: Topological view of ONOS on the triangular network. Two devices
have been added through docker: ASE ensures that the network is full shaped and
an optical spectrum analyzers.

5.2.1 Boot
The first phase, OOTNC needs to boot and fill all the data structures. In this case
it is assumed that the network and the ONC are up and running. Fig. 5.2 shows
all the traffic request between OOTNC and ONOS. At the end of the boot phase,
all the OOTNC’s data structures will be populated and updated with the current

52



Results

LINE AMPLIFIER G
[dB]

T
[dB]

POUT
[dBm]

1

BST – – 21.8
ILA 1 15.0 -0.1 –
ILA 2 15.0 -1.4 –
ILA 3 15.0 0.0 –
ILA 4 15.0 0.6 –
ILA 5 15.7 -1.0 –
PRE – – 20.0

2A

BST – – 21.8
ILA 1 23.3 -5.0 –
ILA 2 22.1 -5.0 –
ILA 3 21.6 -1.9 –
ILA 4 22.9 -1.0 –
PRE – – 23.0

2B

BST – – 19.2
ILA 1 22.0 -5.0 –
ILA 2 22.2 -4.8 –
ILA 3 23.3 -1.9 –
ILA 4 23.0 -1.4 –
PRE – – 20.0

Table 5.2: EDFA Optimal Working Point [70]

LP 1 (A ->C) LP 2 (A ->B ->C)
CUT 1
DCO

(192 THz)

CUT 2
ACO

(193 THz)

CUT 3
DCO

(194 THz)

CUT 4
ACO

(195 THz)

CUT 1
DCO

(192 THz)

CUT 2
ACO

(193 THz)

CUT 3
DCO

(194 THz)

CUT 4
ACO

(195 THz)
GNPy Prediction

[dB] 24.0 23.7 23.7 23.6 18.4 17.8 18.1 17.6

QPSK
(100G)

BER 1.6e-8 9.5e-8 1.2e-08 8.6e-08 4.2e-05 1.9e-04 3.5e-05 1.4e-04
GSNR

[dB] 27.1 24.6 27.5 24.7 19.1 17.7 19.2 18.0

Margin
[dB] 3.1 0.9 3.8 1.1 0.7 -0.1 1.1 0.4

16-QAM
(200G)

BER 3.9e-03 9.9e-3 4.2e-03 1.1e-02 – – – –
GSNR

[dB] 26.3 25.0 26.0 24.7 – – – –

Margin
[dB] 2.3 1.3 2.3 1.1 – – – –

Table 5.3: Network Transmission Performance Validation Results [70]

state of the network.

53



Results

Figure 5.2: Wireshark [74] traffic capture with all the traffic requests. The figure
shows how OOTNC exploits both its own ONOS endpoints and those created ad
hoc for this experiment. The amount of time it takes to exchange messages is about
2 seconds, while OOTNC is ready to accept other requests after others 17 seconds.

5.2.2 Traffic Deployment
As first, a traffic request as the one in the listing 5.1 is generated.

1 {
2 "src": "T -0",
3 "dst": "T -1",
4 " bit_rate ": 400,
5 "qot -e" : true
6 }

Listing 5.1: Within the request the path is not specified, but only the source and
destination node and the amount of traffic that must be allocated in terms of Gbps.
A Boolean specifies whether DT should be used to evaluate the modulation format.

Figure 5.3 schematises all the requests that are exchanged before allocating the
traffic. Once the request has been received, based on the virtual topology present
in itself, OOTNC will ask the DT for all modulation formats for all paths that have
the same source-destination pair as the request just received. Relying on the GNPY
prediction, all the modulation format will be returned to OOTNC. According
to the simulation, the shortest path (CASSINI-1 -> ROADM-1 -> ROADM-3
-> CASSINI-2) can provide intents with a 16-QAM modulation format. At this
point, OOTNC will build the requests to be sent to the ONC until the bit rate
is exhausted. All the intents characteristics are saved within a database. All the
messages exchanged are reported in 5.4 and according to this, to total amount to

54



Results

   OOTNC

Digital Twin

REST API

Optical
Network
Controller

REST
API

Connection 
Request

Routing space

Ch 1 Ch 2 Ch 3

Pa
th

 1

1 0 1

Pa
th

 1

1 1 0

MD AND RS

Ch 1 Ch 2 Ch 3

Pa
th

 1

1 0 4

Pa
th

 2

1 2 0

while(bitRate > 0)

OOTNC 

Digital Twin

REST API

Optical Network
Controller

REST
API

Virtual
Topology

Routing
Space

Spectral
Information 

STD
INTERFACE

OLS #1

OLS #2 

OLS #N

ROADM EQU

LOGGER

OOTNC LOGGER

Routing Space

Traffic matrix

T0 T1

T0 0 400

T1 400 0

INTERRUPTCONTROLLER

.

1

2

3

Modulation
Formats

Figure 5.3: Lightpath request flowchart. Each connection request is handled by
OOTNC by asking the best modulation format to the DT. Then, a number of
requests towards the ONC is generated consistent with the bit rate to be allocated.
For each request that was successful, all the data structure are updated and the
connection’s data are kept within the database.

time to serve a request of 400Gbps is about 11 seconds.

5.2.3 Recovery
At this point, the network is in a stable situation, with two intents active along
the short path. By exploiting the OOTNC endpoints reported in listing 5.2, an
error is reported about a link break. In this case, the OOTNC virtual topology is

55



Results

Figure 5.4: Wireshark traffic capture for a traffic request. The request has been
satisfied through two connections in about 11 seconds.

updated allowing to emulate the breaking of a link.
1 {
2 "type": "link",
3 "srg": "R -0",
4 "dst": "R -2"
5 }

Listing 5.2: Broken link notification. The type is needed because even breaking a
node is supported.

OOTNC supports both the possible breaking of a link and that of a node. In this
specific use case the breaking of a link has been simulated. A link is expressed in
terms of source and destination, as links are always considered to be unidirectional.
Recovery phase is articulated in steps:

1. Topology Update: Once the notification of the error is received, the frame-
work has the task of updating all the data structures. In particular, within the
routing space all the lines containing the link specified in the error are zeroed.

2. Lost traffic estimation: the purpose of the experiment is not only to provide
an alternative path to the fallen one, but to allocate through this all the traffic
lost on the broken path. It is therefore necessary to query the database by
retrieving all the paths that contain the broken link (or node). In the example,
entries will be the two active connections:

1 {
2 path: ’T-0_R -0_R -2_T -1’,
3 bitRate : 200,
4 modulationFormat : 4,
5 channel : ’CH -6’,
6 time: ISODate ( ’2022 -07 -22 T13:28:00.870Z’)
7 }

Listing 5.3: First intent json returned from the database after the query that
searches for all the paths containing the broken link.

56



Results

1 {
2 path: ’T-0_R -0_R -2_T -1’,
3 bitRate : 200,
4 modulationFormat : 4,
5 channel : ’CH -26’,
6 time: ISODate ( ’2022 -07 -22 T13:29:00.560Z’)
7 }

Listing 5.4: Second intent json returned from the database after the query that
searches for all the paths containing the broken link.

In this way it is possible to compute all the lost traffic (in terms of bit rate)
for all the source-destination couple.

3. L-PCE: given the modification of the topology, the previous structure that
preserves the modulation formats is invalidated and OOTNC needs again to
contact the DT for the modulation formats along the paths of interest.

4. Lightpath Establishment: with all data and all data structures intent
recovery can be performed. OOTNC will automatically create a new intent
request with the same source-destinations fields and bit rate equals to the
computed lost traffic.

1 {
2 "src": "T -0",
3 "dst": "T -1",
4 " bit_rate ": 400,
5 "qot -e" : true
6 }

Listing 5.5: New request that is created by OOTNC and handled by itself. The
request is exactly the same as the one sent before the break, however, as the
topology has been changed, the controller will allocate different paths than it did
before.

This request can be handle like a normal intent request since the routing space
has been updated and the broken paths are marked as not available.

In table 5.6 all the time for all the steps are reported. Topology update and lost
traffic estimation are negligible when compared with the others, given the efficiency
of the data frames used. Instead, the other two have a much greater weight, but
for different reasons. L-PCE is a process CPU-bound [75], while the lightpath
establishment is strongly influenced by the response times of the equipment.

57



Results

Interaction Time [s]

Topology Update 0.017
Lost Traffic Estimation 0.012

L-PCE 6.580
Lightpath Establishment 4.870

Total Recovery 11.708

Table 5.4: Times related to the various steps performed during recovery.

The complete answer provided by OOTNC is reported in 5.6. Through the logger,
OOTNC is capable to retrieve the two broken paths, and these are replaced with 4
intents because the only feasible path has a lower modulation format according to
GNPy’s simulations. The total time is approximately 23,5 seconds: about 11,5 for
each broken intent. Considering that, this is the total amount (sum of database
query, bit rate computation etc.) and that for each broken path two paths are
needed, these results look in accordance with existing literature.

1 {
2 " brokenPaths ":[
3 {
4 " bitRate ":200,
5 " channel ":"CH -6",
6 "id":"62 daa5e007ff4000e8f06835 ",
7 " modulationFormat ":4,
8 "path":"T-0_R -0_R -2_T -1"
9 },

10 {
11 " bitRate ":200,
12 " channel ":"CH -26",
13 "id":"62 daa5e007ff4000e8f06836 ",
14 " modulationFormat ":4,
15 "path":"T-0_R -0_R -2_T -1"
16 }
17 ],
18 " allocatedPaths ":[
19 {
20 "path":[

58



Results

21 {
22 " bitRate ":100,
23 " channel ":"CH -26",
24 " modulationFormat ":2,
25 "path":"T-0_R -0_R -1_R -2_T -1"
26 },
27 {
28 " bitRate ":100,
29 " channel ":"CH -46",
30 " modulationFormat ":2,
31 "path":"T-0_R -0_R -1_R -2_T -1"
32 }
33 ],
34 " recoveredPath ":"62 daa5e007ff4000e8f06835 ",
35 " recoveryTime ": 11.43623971939087
36 },
37 {
38 "path":[
39 {
40 " bitRate ":100,
41 " channel ":"CH -6",
42 " modulationFormat ":2,
43 "path":"T-0_R -0_R -1_R -2_T -1"
44 },
45 {
46 " bitRate ":100,
47 " channel ":"CH -66",
48 " modulationFormat ":2,
49 "path":"T-0_R -0_R -1_R -2_T -1"
50 }
51 ],
52 " recoveredPath ":"62 daa5e007ff4000e8f06836 ",
53 " recoveryTime ": 11.970945596694946
54 }
55 ],
56 "dst":"R -2",
57 "srg":"R -0",
58 " totalRecoveryTime ": 23.417049884796143 ,
59 "type":"link"
60 }
61

59



Results

Listing 5.6: Recovery results

All the exchanged messages are reported in 5.5. This result are coherent with the
flow described in the previous chapters and the time is coherent with the ones
described below.

Figure 5.5: Wireshark traffic capture for the recovery phase. The image shows
how, once the request has been received, the communication first takes place with
GNPy with the aim of obtaining the new modulation formats, from which the
various requests to be sent to ONOS are obtained.

60



Chapter 6

Future Applications and
Developments

The work just completed has shown the potential of an open and disaggregated
optical network. The network disaggregation enables the development of tools
independent from vendor implementations. Furthermore, separation of concerns is
even empowered, allowing modularization and the utilization of standard interfaces.

Thus, two important conclusions has been achieved in this thesis work exploiting
openness and implementing disaggregation:

1. Network automation is enabled and the carried out experiments encourage
its adoption, allowing to manage massive data traffic. Recovery of soft and
hard failures can be performed thanks to network virtualization, in addition
to re-routing lost connections.

2. Quality of transmission estimation is the main novelty. While automation has
been already explored on the other open systems interconnection (OSI) layers,
QoT estimation has been used within the automated optical network frame-
work as peculiar feature of the PHY, allowing the maximization of network
performance.

The experimental results have been obtained in the photonics laboratory of LINKS
Foundation, performing both the automated management of connections on a
QoT-validated real optical network and the recovery procedure of the lost data
traffic after the detection of a hard failure.
The main future goal will be testing the whole framework within a different network
topology using a larger variety of multi-vendor devices. Thanks to the collaboration

61



Future Applications and Developments

with GARR, it is in program to validate the software within their laboratory aiming
to add QoT estimation in the production network if encouraging results will be
achieved. In the meanwhile, the framework development will go ahead towards a
DevOps orientation. Lastly, a contribution for the development of a Transport-API
for GNPy is planned.

62



Appendix A

Code

A.1 app.py

1 from time import s l e e p
2

3 from f l a s k import Flask , r eque s t
4 from json import load
5

6 from components import h t tp_ut i l s
7 from pandas import DataFrame , read_json
8 from components import v i r tua l_topo logy
9 from components import db

10

11 app = Flask (__name__)
12 ht tp_ut i l s = ht tp_ut i l s . HttpUt i l s ( )
13 ap iVers ion = " / api−v0 "
14

15 v i r tua l_topo logy = vi r tua l_topo logy . VirtualTopology ( )
16 v i r tua l_topo logy . bui ld_routing_space ( )
17

18 intent_db = db . Database ( )
19 intent_db . connect_db ( " l o g g e r " )
20

21 spectra l_info_db = db . Database ( )
22 spectra l_info_db . connect_db ( " s p e c t r a l _ i n f o " )
23 spectra l_info_db . save_spect ra l_ in fo ( )
24

25

26 @app . post ( ap iVers ion + ’ / i n t e n t s ’ )
27 de f post_intents ( ) :
28 content_type = reques t . headers . get ( ’ Content−Type ’ )
29 i f content_type == ’ a p p l i c a t i o n / j son ’ :

63



Code

30 t ry :
31 request_body = reques t . j son
32 source = request_body [ " s r c " ]
33 dest = request_body [ " dst " ]
34 bi t_rate = request_body [ " b i t_rate " ]
35 i s_qot_required = request_body [ " qot−e " ]
36 i f " suggested_path " in request_body :
37 suggested_path = request_body [ " suggested_path " ]
38 re turn a l locate_path ( is_qot_required , source , dest ,

b it_rate , suggested_path )
39 e l s e :
40 re turn a l locate_path ( is_qot_required , source , dest ,

b i t_rate )
41

42 except KeyError as e r r :
43 pr in t ( e r r )
44 re turn f ’ Missed param : { e r r } ’ , 422
45 e l s e :
46 re turn " Request must conta in a j son body " , 422
47

48

49 @app . post ( ap iVers ion + ’ / i n t e n t s / a l l −channe l s ’ )
50 de f pos t_a l l_ intent s ( ) :
51 content_type = reques t . headers . get ( ’ Content−Type ’ )
52 i f content_type == ’ a p p l i c a t i o n / j son ’ :
53 t ry :
54 request_body = reques t . j son
55 min_ch = request_body [ "min−ch " ]
56 max_ch = request_body [ "max−ch " ]
57 suggested_path = request_body [ " suggested_path " ]
58 re turn a l l o ca t e_a l l_channe l s ( suggested_path , min_ch ,

max_ch)
59 except KeyError as e r r :
60 pr in t ( e r r )
61 re turn f ’ Missed param : { e r r } ’ , 422
62 e l s e :
63 re turn " Request must conta in a j son body " , 422
64

65

66 de f a l l o ca t e_a l l_channe l s ( path , min_ch , max_ch) :
67 centra l_f requency = vi r tua l_topo logy . cent ra l_f requency
68 path_onc = vi r tua l_topo logy . translate_path_to_onc ( path )
69

70 centra l_f requency = f l o a t ( centra l_f requency ) ∗ 1e9
71

72 f o r ch in [ min_ch , max_ch − 1 ] :
73 channe l_mul t ip l i e r = ( v i r tua l_topo logy . s p e c t r a l _ i n f o .

f requency [ i n t ( ch ) ] − centra l_f requency ) / 50 e9

64



Code

74 re sponse = ht tp_ut i l s . post_intent_on_onc (2 ,
channe l_mult ip l i e r , path_onc )

75

76 re turn
77

78

79 de f a l locate_path ( is_qot_required , source , dest , b it_rate ,
suggested_path=None ) :

80 i f not i s_qot_required :
81 i f suggested_path i s not None :
82 pr in t ( " sending the r eques t to the SDN c o n t r o l l e r with the

path : " , suggested_path )
83 re turn reques t
84 e l s e :
85 pr in t ( " sending reque s t to the SDN c o n t r o l l e r without path

" )
86 e l s e :
87 i f suggested_path :
88 i f suggested_path in v i r tua l_topo logy . paths :
89 re sponse = ht tp_ut i l s . post_intent_on_dt ( s r c=source ,

dst=dest , suggested_path=suggested_path )
90 e l s e :
91

92 re turn ’ Suggested path i s not pre sent in the network ’
, 422

93 e l s e :
94 re sponse = ht tp_ut i l s . post_intent_on_dt ( s r c=source , dst=

dest )
95

96 mf_df = DataFrame . from_dict ( re sponse [ " modulation_format " ] )
97

98 pr in t ( " Modulation Formats : " )
99 pr in t ( mf_df )

100

101 al located_paths_desc = [ ]
102

103 whi le b i t_rate > 0 :
104 pr in t ( " rout ing space " )
105 pr in t ( v i r tua l_topo logy . rout ing_space )
106 r s = v i r tua l_topo logy . rout ing_space
107

108 r e s u l t s = eva luate_ava i lab le_channe l s ( mf_df , r s )
109 i f r e s u l t s i s None :
110 break
111 e l s e :
112 t ry :
113 mf , channel , path = rwsa ( r e s u l t s )
114

115 except IOError as e r r :

65



Code

116 pass
117

118 al located_path_desc = send_req_to_onc (mf . item ( ) ,
channel , path , v i r tua l_topo logy . cent ra l_f requency )

119 pr in t ( " a l l o c a t e n d path desc : " )
120 pr in t ( al located_path_desc )
121

122 i f not al located_path_desc == −1:
123 al located_paths_desc . append ( al located_path_desc )
124 i f a l located_path_desc [ " b i tRate " ] > 0 :
125 bi t_rate −= allocated_path_desc [ " b i tRate " ]
126 e l s e :
127 pass
128 i f l en ( a l located_paths_desc ) == 0 :
129 re turn "No path a l l o c a t e d " , 504
130

131 _ = vir tua l_topo logy . update_rs_path_status ( path ,
channel [ 3 : ] )

132

133 r e s = reque s t . j son
134 r e s [ " a l l o ca t edPaths " ] = al located_paths_desc
135 intent_db . save_paths ( r e s )
136 re turn r e s
137

138

139 de f send_req_to_onc ( modulation_format , channel , path ,
cent ra l_f requency ) :

140 path_fix = l i s t ( path )
141 path_fix [ −1] = path [ 2 ]
142 f ixed_path = ’ ’ . j o i n ( path_fix )
143 path_onc = vi r tua l_topo logy . translate_path_to_onc ( f ixed_path )
144

145 i s _ r e s p o n s e _ s u c c e s s f u l l y = False
146 t e s t = 0
147

148 pr in t ( " channel : " , channel )
149

150 centra l_f requency = f l o a t ( centra l_f requency ) ∗ 1e9
151

152 channe l_mul t ip l i e r = ( ( v i r tua l_topo logy . s p e c t r a l _ i n f o . f requency [
i n t ( channel [ 3 : ] ) ] − centra l_f requency ) / 50 e9 ) − 1

153

154 whi le ( not i s _ r e s p o n s e _ s u c c e s s f u l l y ) and t e s t < 3 :
155 re sponse = ht tp_ut i l s . post_intent_on_onc ( modulation_format ,

channe l_mult ip l i e r , path_onc )
156 i f r e sponse == 400 :
157 t e s t += 1
158

159 e l s e :

66



Code

160 i s _ r e s p o n s e _ s u c c e s s f u l l y = True
161 i f t e s t > 3 :
162 re turn −1
163 break
164 mf_deployed = response [ " modulation " ]
165 trx_mf2bitrate = load_json ( " . / r e s o u r c e s / trx_mf2bitrate . j son " )
166 bit_rate_dep = trx_mf2bitrate [ mf_deployed ]
167

168 al located_path_desc = {
169 " path " : path ,
170 " channel " : channel ,
171 " modulationFormat " : i n t ( modulation_format ) ,
172 " b itRate " : i n t ( bit_rate_dep )
173 }
174

175 re turn al located_path_desc
176

177

178 @app . post ( ap iVers ion + ’ / e r r o r s ’ )
179 de f pos t_error s ( ) :
180 content_type = reques t . headers . get ( ’ Content−Type ’ )
181 i f content_type == ’ a p p l i c a t i o n / j son ’ :
182 t ry :
183 request_body = reques t . j son
184 pr in t ( request_body )
185 i f request_body [ " type " ] == " l i n k " :
186 sub_path = request_body [ " s rg " ] + ’_ ’ + request_body [ "

dst " ]
187 paths_to_be_recovered = intent_db . find_path ( sub_path )
188 pr in t ( paths_to_be_recovered )
189 broken_paths = [ ]
190 new_paths = [ ]
191

192 f o r path in paths_to_be_recovered :
193 broken_paths . append ( path [ " path " ] )
194 s rg = path [ " path " ] [ 0 ] + path [ " path " ] [ 1 ] + path [ "

path " ] [ 2 ]
195 dst = path [ " path " ] [ −3 ] + path [ " path " ] [ −2 ] + path [

" path " ] [ −1 ]
196 new_path = al locate_path ( True , srg , dst , path [ "

b itRate " ] )
197 new_paths . append ( new_path )
198 intent_db . delete_path_from_id ( path [ " _id " ] )
199

200 request_body [ " broken_paths " ] = broken_paths
201

202 re turn request_body , 200
203 re turn "Ok" , 200
204 except Asse r t i onErro r as e r r :

67



Code

205 re turn f ’ bad reque s t { e r r } ’ , 422
206 e l s e :
207 re turn ’ bad req ’ , 422
208

209

210 @app . get ( ap iVers ion + ’ / paths ’ )
211 de f get_paths ( ) :
212 r e s = {
213 " paths " : v i r tua l_topo logy . paths
214 }
215 re turn r e s
216

217

218 @app . get ( ap iVers ion + ’ / dev i c e s ’ )
219 de f get_devices ( ) :
220 r e s = {
221 " dev " : v i r tua l_topo logy . nodes_custom_to_ip
222 }
223 re turn r e s
224

225

226 @app . get ( ap iVers ion + ’ / l i n k s ’ )
227 de f ge t_l inks ( ) :
228 r e s = {
229 " l i n k s " : v i r tua l_topo logy . links_custom_to_ip
230 }
231 re turn r e s
232

233

234 @app . d e l e t e ( ap iVers ion + ’ / i n t e n t s ’ )
235 de f d e l e t e _ a l l _ i n t e n t s ( ) :
236 i n t e n t s = ht tp_ut i l s . get_intents_from_onc ( )
237 appId = reques t . a rgs . get ( ’ appId ’ )
238

239 f o r i n t e n t in i n t e n t s :
240 ht tp_ut i l s . d e l e t e_ in t en t ( i n t e n t [ " key " ] , app l i ca t i on_id=appId )
241 re turn "Done " , 204
242

243

244 de f eva luate_ava i lab le_channe l s ( df_mf : DataFrame , df_rs : DataFrame ) :
245 index_mf = df_mf . index . va lue s
246 df_rs_se l = df_rs . l o c [ index_mf ]
247 df = df_mf ∗ df_rs_se l
248

249 df_zeros = df . t ranspose ( ) . sum ( )
250 i f d f_zeros . sum ( ) == 0 :
251 re turn None
252 index_zeros = df_zeros . index . va lue s

68



Code

253 df_clean = df . l o c [ [ c o l f o r c o l in index_zeros i f df_zeros [ c o l ] !=
0 ] ]

254

255 df_clean . to_csv ( " . / r e s u l t s /and . csv " )
256 re turn df_clean
257

258

259 de f rwsa ( df : DataFrame ) :
260 df . to_csv ( " . / r e s u l t s / r e s . csv " )
261 i f d f . empty :
262 r a i s e IOError ( " rwsa cannot p roce s s empty dataframe " )
263 sort_index = df . t ranspose ( ) . max( ) . sor t_va lues ( ascending=False ) .

index . va lue s
264 df_sorted = df . l o c [ sort_index ]
265

266 se lected_path = df_sorted . i l o c [ 0 ]
267 path = df_sorted . index . va lue s [ 0 ]
268 channel = se lected_path . idxmax ( )
269 mf = se lected_path [ channel ]
270

271 re turn mf , channel , path
272

273

274 i f __name__ == ’__main__ ’ :
275 app . run ( host=" 1 2 7 . 0 . 0 . 1 " , port =5001)
276

277

278 de f load_json ( f i l e_path ) :
279 with open ( f i l e_path , ’ r ’ ) as f :
280 data = load ( f )
281 re turn data

A.2 virtualTopology.py

1 import j son
2

3 from numpy import argmin , array
4 from numpy import abs as abs_np
5 from path l i b import Path
6 from pandas import DataFrame
7 from components import h t tp_ut i l s
8 from components import db
9

10 from o s i . core . i n f o import Spec t ra l In f o rmat i on
11 from o s i . t o o l . c o n f i g u r a t i o n s import Conf ig

69



Code

12

13 root = Path ( __file__ ) . parent . parent
14

15 http = ht tp_ut i l s . HttpUt i l s ( )
16

17

18 c l a s s VirtualTopology :
19 de f __init__( s e l f ) :
20 s e l f . _nodes = {}
21 s e l f . _paths = [ ]
22 s e l f . _routing_space = None
23 s e l f . _nodes_ip_to_custom = {}
24 s e l f . _nodes_custom_to_ip = {}
25 s e l f . _links_ip_to_custom = {}
26 s e l f . _links_custom_to_ip = {}
27 s e l f . _grid_type = "FIXED"
28

29 spectra l_info_db = db . Database ( )
30 spectra l_info_db . connect_db ( " s p e c t r a l _ i n f o " )
31

32 s i_j son = spectra l_info_db . ge t_spec t ra l_ in fo ( )
33 c o n f i g = Config . as_conf ig ( s i_ j son )
34 s e l f . _spect ra l_in fo = Spec t ra l In f o rmat i on . from_config ( c o n f i g )
35

36 i f not a l l ( spac ing == s e l f . _spect ra l_in fo . s lot_width [ 0 ] f o r
spac ing in s e l f . _spect ra l_in fo . s lot_width ) :

37 s e l f . _grid_type = "FLEX"
38

39 device_response = http . get_devices_from_onc ( )
40 i f dev ice_response i s None :
41 re turn
42

43 d e v i c e s _ l i s t = device_response [ " d ev i c e s " ]
44

45 roadm_count = 0
46 terminal_count = 0
47 f o r dev i c e in d e v i c e s _ l i s t :
48 custom_name : s t r
49 i f dev i c e [ " type " ] == "ROADM" :
50 custom_name = ’R− ’ + s t r ( roadm_count )
51 roadm_count += 1
52 i f dev i c e [ " type " ] == "TERMINAL_DEVICE" :
53 custom_name = ’T− ’ + s t r ( terminal_count )
54 terminal_count += 1
55

56 custom_name = topo_fix [ dev i c e [ " id " ] ]
57

58 f o r dev i c e in d e v i c e s _ l i s t :
59 i f dev i c e [ " type " ] == "TERMINAL_DEVICE" :

70



Code

60 content = http . get_ports_on_dev_id ( dev i c e [ " id " ] ) [ "
por t s " ]

61 por t s = [ e l f o r e l in content i f e l [ " type " ] == " och " ]
62 s e l f . _nodes [ s e l f . _nodes_ip_to_custom [ dev i ce [ " id " ] ] ] [ "

por t s " ] = por t s
63

64 l ink_response = http . get_links_from_onc ( )
65

66 l i n k s _ l i s t = l ink_response . j son ( ) [ " l i n k s " ]
67

68 f o r l i n k in l i n k s _ l i s t :
69 ip1 = l i n k [ " s r c " ] [ " dev i c e " ]
70 ip2 = l i n k [ " dst " ] [ " dev i c e " ]
71

72 ip_and_port1 = l i n k [ " s r c " ] [ " dev i c e " ] + ’ / ’ + l i n k [ " s r c " ] [
" port " ]

73 ip_and_port2 = l i n k [ " dst " ] [ " dev i c e " ] + ’ / ’ + l i n k [ " dst " ] [
" port " ]

74

75 s e l f . _links_ip_to_custom [ ip_and_port1 + ’− ’ +
ip_and_port2 ] = s e l f . _nodes_ip_to_custom [

76

l i n k [ " s r c " ] [ " dev i c e " ] ] + "_" + \
77

s e l f . _nodes_ip_to_custom [ ip2 ]
78 s e l f . _links_custom_to_ip [
79 s e l f . _nodes_ip_to_custom [ ip1 ] + "_" + s e l f .

_nodes_ip_to_custom [ ip2 ] ] = ip_and_port1 + ’− ’ + ip_and_port2
80

81 s e l f . _nodes [ s e l f . _nodes_ip_to_custom [ ip1 ] ] [ "
connected_nodes " ] . append ( s e l f . _nodes_ip_to_custom [ ip2 ] )

82

83

84 s e l f . compute_all_paths ( )
85 pr in t ( s e l f . _paths )
86

87 s e l f . _centra l_frequency = http . get_centra l_frequency ( ) [ "
centra lFrequency " ]

88

89 @property
90 de f s p e c t r a l _ i n f o ( s e l f ) :
91 re turn s e l f . _spect ra l_in fo
92

93 @property
94 de f paths ( s e l f ) :
95 re turn s e l f . _paths
96

97 @property
98 de f nodes_custom_to_ip ( s e l f ) :

71



Code

99 re turn s e l f . _nodes_custom_to_ip
100

101 @property
102 de f links_custom_to_ip ( s e l f ) :
103 re turn s e l f . _links_custom_to_ip
104

105 @property
106 de f rout ing_space ( s e l f ) :
107 re turn s e l f . _routing_space
108

109 @property
110 de f centra l_f requency ( s e l f ) :
111 re turn s e l f . _central_frequency
112

113 de f compute_all_paths ( s e l f ) :
114 f o r s r c in s e l f . _nodes :
115 f o r dst in s e l f . _nodes :
116 i f s r c != dst :
117 i f "T−0" in s r c or "T−1" in s r c :
118 i f "T−0" in dst or "T−1" in dst :
119 paths = s e l f . f ind_paths ( src , dst )
120 f o r path in paths :
121 i f path not in s e l f . _paths :
122 s e l f . _paths . append ( path )
123

124 de f f ind_paths ( s e l f , s t a r t , end , path =[ ] ) :
125 graph = s e l f . _nodes
126 path = path + [ s t a r t ]
127 i f s t a r t == end :
128 re turn [ path ]
129 i f s t a r t not in graph . keys ( ) :
130 pr in t ( " Node not in chart " )
131 re turn [ ]
132 paths = [ ]
133 f o r node in graph [ s t a r t ] [ " connected_nodes " ] :
134 i f node not in path :
135 newpaths = s e l f . f ind_paths ( node , end , path )
136 f o r newpath in newpaths :
137 paths . append ( newpath )
138 re turn paths
139

140 de f bui ld_routing_space ( s e l f ) :
141 f ree_channel_res = http . get_al l_free_channe l ( )
142 l i nk s_s ta tu s = [ ]
143 i f f ree_channel_res i s None :
144 re turn
145 i f " Links " not in free_channel_res :
146 pr in t ( "No l i n k found " )
147 re turn

72



Code

148 f o r l i n k in free_channel_res [ " Links " ] :
149 sor ted_freq = array ( so r t ed ( l i n k [ " a v a i l a b l e " ] , key=f l o a t ) )
150 l i nk s_s ta tu s . append ({
151 s e l f . _links_ip_to_custom [ l i n k [ " s r c " ] + "−" + l i n k [ "

dst " ] ] : so r ted_freq
152 })
153

154 i f s e l f . _grid_type == "FIXED" :
155 spac ing = s e l f . _spect ra l_in fo . baud_rate [ 0 ] / 1e9
156 l i n k s _ a v a i l a b i l i t y = {}
157 f o r l i n k in l i nk s_s ta tu s :
158 f o r k in l i n k . keys ( ) :
159 i f k . s p l i t ( "_" ) [ 0 ] != k . s p l i t ( "_" ) [ 1 ] :
160 c h a n n e l _ a v a i l a b i l i t y = [ ]
161 f o r s i gna l_ f r eq in s e l f . _spect ra l_in fo .

f requency :
162 s i gna l_ f r eq = s i gna l_ f r eq / 1e9
163 f_min = s i gna l_ f r eq − spac ing / 2
164 f_max = s i gna l_ f r eq + spac ing / 2
165 a v a i l a b l e = True
166 f o r key , va lue in l i n k . i tems ( ) :
167 avai lable_min_freq = value [ argmin (

abs_np ( f_min − value ) ) ]
168 avai lable_max_freq = value [ argmin (

abs_np ( f_max − value ) ) ]
169 i f abs_np ( avai lable_min_freq − f_min )

< 6.25 and abs_np (
170 avai lable_max_freq − f_max) <

6 . 2 5 :
171 next_freq = avai lable_min_freq
172 whi le next_freq <

available_max_freq :
173 next_freq = next_freq + 12 .5
174 i f not ( next_freq in value ) :
175 a v a i l a b l e = False
176 break
177 e l s e :
178 a v a i l a b l e = False
179 c h a n n e l _ a v a i l a b i l i t y . append ( a v a i l a b l e )
180 l i n k s _ a v a i l a b i l i t y [ key ] =

c h a n n e l _ a v a i l a b i l i t y
181

182 pathIndex = [ ]
183

184 f o r path in s e l f . _paths :
185 path_as_a_string = " "
186 f o r idx , element in enumerate ( path ) :
187 path_as_a_string += element
188 i f idx != l en ( path ) − 1 :

73



Code

189 path_as_a_string += ’_ ’
190 pathIndex . append ( path_as_a_string )
191

192 n_mod_ch = len ( s e l f . _spect ra l_in fo . f requency )
193 columns = [ f ’CH−{ i + 1} ’ f o r i in range (n_mod_ch) ]
194

195 r s = DataFrame ( )
196

197 f o r i_path , path in enumerate ( s e l f . _paths ) :
198 df = DataFrame ( index =[ pathIndex [ i_path ] ] )
199 temp = path [ 0 ]
200 i s_path_avai lab le = l i n k s _ a v a i l a b i l i t y [ path [ 0 ] + ’_ ’ +

path [ 1 ] ]
201 f o r next in path [ 1 : ] :
202 i s_path_avai lab le = [ a and b f o r a , b in z ip (

i s_path_avai lable , l i n k s _ a v a i l a b i l i t y [ temp + ’_ ’ + next ] ) ]
203 temp = next
204 df [ columns ] = [ i s_path_ava i lab le ]
205 r s = r s . append ( df )
206 r s . to_csv ( " . / r e s u l t s / rout ing_space . csv " )
207

208 s e l f . _routing_space = r s
209

210 de f update_rs_path_status ( s e l f , path , channel ) :
211 s e l f . _routing_space [ f "CH−{channel } " ] . l o c [ path ] = Fal se
212 re turn s e l f . _routing_space
213

214 de f translate_path_to_onc ( s e l f , custom_path ) :
215 nodes = custom_path . s p l i t ( "_" )
216 path = [ ]
217 temp = nodes [ 0 ]
218

219 f o r node in nodes [ 1 : ] :
220 custom_link_name = s e l f . _links_custom_to_ip [ temp + ’_ ’ +

node ]
221 l i n k = [ custom_link_name . s p l i t ( "−" ) [ 0 ] , custom_link_name .

s p l i t ( "−" ) [ 1 ] ]
222 temp = node
223 path . append ( l i n k )
224 re turn path
225

226 de f g e t_ f r e e_t ransce i v e r ( s e l f ) :
227 f o r dev_id , dev in enumerate ( s e l f . _nodes ) :
228 i f " por t s " in s e l f . _nodes [ dev ] :
229 f o r port in s e l f . _nodes [ dev ] [ " por t s " ] :
230 i f port [ " i sEnabled " ] == True :
231 port [ " i sEnabled " ] = Fal se
232 pr in t ( port [ " port " ] , dev )
233 re turn port [ " port " ] , dev

74



Code

234

235 @property
236 de f nodes ( s e l f ) :
237 re turn s e l f . _nodes
238

239

240 i f __name__ == ’__main__ ’ :
241 vt = VirtualTopology ( )
242 vt . bui ld_routing_space ( )

A.3 httpHandler.py

1 from async io import s l e e p
2

3 import r eque s t s
4 from reque s t s . auth import HTTPBasicAuth
5 import j son
6 from path l i b import Path
7

8 root = Path ( __file__ ) . parent . parent
9

10 DT_HOST = " l o c a l h o s t "
11

12 c l a s s HttpUt i l s :
13 @staticmethod
14 de f post_intent_on_dt ( src , dst , suggested_path=None ) :
15

16 body = {
17 " s r c " : s rc ,
18 " dst " : dst
19 }
20

21 i f suggested_path :
22 body [ " suggested_path " ] = suggested_path
23

24 t ry :
25 re sponse = reque s t s . post ( f " http ://{DT_HOST}:5001/ api−v0/

modulation−formats " , j s on=body )
26 pr in t ( re sponse )
27 re turn response . j son ( )
28 except r eque s t s . except i ons . HTTPError as er rh :
29 pr in t ( e r rh )
30 except r eque s t s . except i ons . ConnectionError as e r r c :
31 pr in t ( e r r c )
32 except r eque s t s . except i ons . Timeout as e r r t :

75



Code

33 pr in t ( e r r t )
34 except r eque s t s . except i ons . RequestException as e r r :
35 pr in t ( e r r )
36

37 re turn −1
38

39 @staticmethod
40 de f get_centra l_frequency ( ) :
41 t ry :
42 re sponse = reque s t s . get ( f " http ://{HOST}:8181/ onos/

newopt i ca l r e s t −app/ newopt ica l / c ent ra l −f r equency " ,
43 auth=HTTPBasicAuth( ’ kara f ’ , ’

ka ra f ’ ) )
44 re turn response . j son ( )
45 except r eque s t s . except i ons . HTTPError as er rh :
46 pr in t ( e r rh )
47 except r eque s t s . except i ons . ConnectionError as e r r c :
48 pr in t ( e r r c )
49 except r eque s t s . except i ons . Timeout as e r r t :
50 pr in t ( e r r t )
51 except r eque s t s . except i ons . RequestException as e r r :
52 pr in t ( e r r )
53 re turn −1
54

55 @staticmethod
56 de f get_ports_on_dev_id ( device_id ) :
57 t ry :
58 re sponse = reque s t s . get ( f " http ://{HOST}:8181/ onos/v1/

dev i c e s /{ device_id }/ por t s " ,
59 auth=HTTPBasicAuth( ’ kara f ’ , ’

ka ra f ’ ) )
60 re turn response . j son ( )
61 except r eque s t s . except i ons . HTTPError as er rh :
62 pr in t ( e r rh )
63 except r eque s t s . except i ons . ConnectionError as e r r c :
64 pr in t ( e r r c )
65 except r eque s t s . except i ons . Timeout as e r r t :
66 pr in t ( e r r t )
67 except r eque s t s . except i ons . RequestException as e r r :
68 pr in t ( e r r )
69 re turn −1
70

71 @staticmethod
72 de f post_intent_on_onc (mf , spac ing_mult ip l i e r , path ) :
73 l i n k s = [ ]
74 pr in t ( " spac ing mux : " , spac ing_mul t ip l i e r )
75

76 with open ( root / ’ r e s o u r c e s / ports_lab_f ix . j son ’ ) as
j s o n _ f i l e :

76



Code

77 por t s_f ix = j son . load ( j s o n _ f i l e )
78

79 src_dst = por t s_f ix [ s t r ( i n t ( spac ing_mul t ip l i e r ) ) ]
80 f o r l i n k in path :
81 json_element = {
82 " s r c " : l i n k [ 0 ] ,
83 " dst " : l i n k [ 1 ]
84 }
85 l i n k s . append ( json_element )
86 i f l i n k [ 1 ] . s p l i t ( " / " ) [ 0 ] == " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 1 : 8 3 0 " :
87 json_element = {
88 " s r c " : " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 1 : 8 3 0 / 3 0 0 1 " ,
89 " dst " : " ne tcon f : 1 9 2 . 1 6 8 . 8 8 . 3 1 : 8 3 0 / 3 0 0 1 "
90 }
91 l i n k s . append ( json_element )
92

93 i f l i n k [ 1 ] . s p l i t ( " / " ) [ 0 ] == " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 2 : 8 3 0 " :
94 json_element = {
95 " s r c " : " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 2 : 8 3 0 / 5 2 1 0 " ,
96 " dst " : " ne tcon f : 1 9 2 . 1 6 8 . 8 8 . 3 2 : 8 3 0 / 4 1 1 0 "
97 }
98 l i n k s . append ( json_element )
99

100 i f l i n k [ 1 ] . s p l i t ( " / " ) [ 0 ] == " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 3 : 8 3 0 " :
101 json_element = {
102 " s r c " : " netcon f : 1 9 2 . 1 6 8 . 8 8 . 3 3 : 8 3 0 / 3 0 0 1 " ,
103 " dst " : " ne tcon f : 1 9 2 . 1 6 8 . 8 8 . 3 3 : 8 3 0 / 3 0 0 1 "
104 }
105 l i n k s . append ( json_element )
106

107 i ng re s s_po int = {
108 " dev i c e " : src_dst [ 0 ] [ " s r c " ] . s p l i t ( " / " ) [ 0 ] ,
109 " port " : src_dst [ 0 ] [ " s r c " ] . s p l i t ( " / " ) [ 1 ]
110 }
111 egres s_po int = {
112 " dev i c e " : src_dst [ 1 ] [ " dst " ] . s p l i t ( " / " ) [ 0 ] ,
113 " port " : src_dst [ 1 ] [ " dst " ] . s p l i t ( " / " ) [ 1 ]
114 }
115

116 l i n k s [ 0 ] = src_dst [ 0 ]
117 l i n k s [ −1] = src_dst [ 1 ]
118

119 body = {
120 " appId " : " org . ono sp ro j e c t . newopt ica l " ,
121 " i n g r e s s P o i n t " : ingress_point ,
122 " eg r e s sPo in t " : egress_point ,
123 " b i d i r e c t i o n a l " : False ,
124 " s i g n a l " : {
125 " channelSpacing " : "CHL_50GHZ" ,

77



Code

126 " gridType " : "DWDM" ,
127 " s p a c i n g M u l t i p l i e r " : spac ing_mult ip l i e r ,
128 " s l o t G r a n u l a r i t y " : 4
129 } ,
130 " suggestedPath " : {
131 " l i n k s " : l i n k s
132 } ,
133 " modulationFormat " : mf
134

135 }
136

137 pr in t ( body )
138 re sponse = reque s t s . post ( f " http ://{HOST}:8181/ onos /

newopt i ca l r e s t −app/ newopt ica l / i n t e n t s " , j s on=body ,
139 auth=HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’ )

)
140

141 pr in t ( re sponse . status_code )
142 i f r e sponse . status_code != 200 & response . status_code != 201 :
143 re turn response . status_code
144 re turn response . j son ( )
145

146 de f request_free_channel_on_paths ( s e l f , paths_json ) :
147 t ry :
148 re sponse = reque s t s . post ( f " http ://{HOST}:8181/ onos/

newopt i ca l r e s t −app/ newopt ica l /path−s t a tu s " ,
149 j s on=paths_json , auth=

HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’ ) )
150 re turn response . j son ( )
151 except r eque s t s . except i ons . HTTPError as er rh :
152 pr in t ( e r rh )
153 except r eque s t s . except i ons . ConnectionError as e r r c :
154 pr in t ( e r r c )
155 except r eque s t s . except i ons . Timeout as e r r t :
156 pr in t ( e r r t )
157 except r eque s t s . except i ons . RequestException as e r r :
158 pr in t ( e r r )
159 re turn −1
160

161 de f get_al l_free_channe l ( s e l f ) :
162 t ry :
163 re sponse = reque s t s . get ( f " http ://{HOST}:8181/ onos/

newopt i ca l r e s t −app/ newopt ica l / l i nk s −s t a tu s " ,
164 auth=HTTPBasicAuth( ’ kara f ’ , ’

ka ra f ’ ) )
165 re turn response . j son ( )
166 except r eque s t s . except i ons . HTTPError as er rh :
167 pr in t ( e r rh )
168 except r eque s t s . except i ons . ConnectionError as e r r c :

78



Code

169 pr in t ( e r r c )
170 except r eque s t s . except i ons . Timeout as e r r t :
171 pr in t ( e r r t )
172 except r eque s t s . except i ons . RequestException as e r r :
173 pr in t ( e r r )
174

175 de f get_devices_from_onc ( s e l f ) :
176 t ry :
177 re turn r eque s t s . get ( f " http ://{HOST}:8181/ onos/v1/ dev i c e s "

,
178 auth=HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’ ) )

. j s on ( )
179 except r eque s t s . except i ons . HTTPError as er rh :
180 pr in t ( e r rh )
181 except r eque s t s . except i ons . ConnectionError as e r r c :
182 pr in t ( e r r c )
183 except r eque s t s . except i ons . Timeout as e r r t :
184 pr in t ( e r r t )
185 except r eque s t s . except i ons . RequestException as e r r :
186 pr in t ( e r r )
187

188 @staticmethod
189 de f get_intents_from_onc ( ) :
190 t ry :
191 re turn r eque s t s . get ( f " http ://{HOST}:8181/ onos/v1/ i n t e n t s "

,
192 auth=HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’ ) )

. j s on ( ) [ " i n t e n t s " ]
193 except r eque s t s . except i ons . HTTPError as er rh :
194 pr in t ( e r rh )
195 except r eque s t s . except i ons . ConnectionError as e r r c :
196 pr in t ( e r r c )
197 except r eque s t s . except i ons . Timeout as e r r t :
198 pr in t ( e r r t )
199 except r eque s t s . except i ons . RequestException as e r r :
200 pr in t ( e r r )
201

202 @staticmethod
203 de f de l e t e_ in t en t ( key=None , app l i ca t i on_id=" org . ono sp ro j e c t .

op t i c a l −r e s t " ) :
204 t ry :
205 r e s = reque s t s . d e l e t e ( f " http ://{HOST}:8181/ onos/v1/

i n t e n t s /{ app l i ca t i on_id }/{ key} " ,
206 auth=HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’

) ) . j s on ( )
207 re turn r e s
208 except r eque s t s . except i ons . HTTPError as er rh :
209 pr in t ( e r rh )
210 except r eque s t s . except i ons . ConnectionError as e r r c :

79



Code

211 pr in t ( e r r c )
212 except r eque s t s . except i ons . Timeout as e r r t :
213 pr in t ( e r r t )
214 except r eque s t s . except i ons . RequestException as e r r :
215 pr in t ( e r r )
216

217 de f get_links_from_onc ( s e l f ) :
218 re turn r eque s t s . get ( f " http ://{HOST}:8181/ onos/v1/ l i n k s " ,
219 auth=HTTPBasicAuth( ’ kara f ’ , ’ ka ra f ’ ) )
220

221 @staticmethod
222 de f post_topology_on_dt ( vt ) :
223

224 t ry :
225 re sponse = reque s t s . post ( f " http ://{DT_HOST}:5001/ api−v0/

v i r t u a l −t o p o l o g i e s " , j s on=vt )
226

227 re turn response . j son ( )
228 except r eque s t s . except i ons . HTTPError as er rh :
229 pr in t ( e r rh )
230 except r eque s t s . except i ons . ConnectionError as e r r c :
231 pr in t ( e r r c )
232 except r eque s t s . except i ons . Timeout as e r r t :
233 pr in t ( e r r t )
234 except r eque s t s . except i ons . RequestException as e r r :
235 pr in t ( e r r )
236 re turn −1

A.4 database.py

1 from json import load
2 from pymongo import MongoClient
3 from path l i b import Path
4 import datet ime
5 from re import IGNORECASE, compi le
6 from bson . o b j e c t i d import ObjectId
7

8 MONGO_HOST = " l o c a l h o s t "
9 MONGO_PORT = " 27017 "

10 MONGO_DB = " l o gg e r "
11 MONGO_USER = " root "
12 MONGO_PASS = " example "
13

14 root = Path ( __file__ ) . parent
15

80



Code

16

17 c l a s s Database :
18 de f __init__( s e l f ) :
19 s e l f . _db = None
20

21 de f connect_db ( s e l f , database=MONGO_DB) :
22 u r i = "mongodb : //{} : {}@{}:{}/{}? authSource=admin " . format (

MONGO_USER, MONGO_PASS, MONGO_HOST, MONGO_PORT,
23

database )
24 c l i e n t = MongoClient ( u r i )
25 s e l f . _db = c l i e n t . admin
26

27 de f save_paths ( s e l f , paths ) :
28 l o g g e r = s e l f . _db . l o g g e r
29 f o r path in paths [ " a l l o ca t edPaths " ] :
30 a l located_path = {
31 " path " : path [ " path " ] ,
32 " b itRate " : path [ " b itRate " ] ,
33 " modulationFormat " : path [ " modulationFormat " ] ,
34 " channel " : path [ " channel " ] ,
35 " time " : datet ime . datet ime . utcnow ( )
36 }
37 post_id = l og g e r . insert_one ( a l located_path ) . in s e r t ed_id
38 re turn 0
39

40 de f f ind_path ( s e l f , sub_path ) :
41 l o g g e r = s e l f . _db . l o g g e r
42 regx = compile ( " ^ .∗ " + sub_path + " . ∗ " , IGNORECASE)
43 mon_paths = l o g g e r . f i n d ({ " path " : regx })
44 paths = [ ]
45 f o r path in mon_paths :
46 paths . append ( path )
47 re turn paths
48

49 de f delete_path_from_id ( s e l f , _id ) :
50 l o g g e r = s e l f . _db . l o g g e r
51 l o g g e r . delete_one ({ ’ _id ’ : ObjectId ( _id ) })
52 re turn _id
53

54 de f save_spect ra l_ in fo ( s e l f ) :
55 pr in t ( " Saving s p e c t r a l i n f o to db " )
56 spectra l_info_db = s e l f . _db . s p e c t r a l _ i n f o
57 with open ( " r e s o u r c e s / triangular_network_launch_spectrum . j son "

, " r " ) as r e a d _ f i l e :
58 spec t ra l_ in fo_j son = load ( r e a d _ f i l e )
59 spectra l_info_db . update_one ({ ’ _id ’ : 0} , { " $ s e t " :

spec t ra l_ in fo_j son } , upser t=True )
60 re turn

81



Code

61

62 de f ge t_spec t ra l_ in fo ( s e l f ) :
63 spectra l_info_db = s e l f . _db . s p e c t r a l _ i n f o
64 re turn spectra l_info_db . find_one ({ " _id " : 0})

82



Bibliography

[1] Roland Wenzlhuemer. «The development of telegraphy, 1870–1900: a Eu-
ropean perspective on a world history challenge». In: History Compass 5.5
(2007), pp. 1720–1742 (cit. on p. 2).

[2] W.H. Page and A.W. Page. The World’s Work. Doubleday, Page & Company,
1907. url: https://books.google.it/books?id=3IfNAAAAMAAJ (cit. on
p. 2).

[3] Peter L Dorlan. An introduction to computer networks. Autoedición, 2016
(cit. on p. 3).

[4] Yadong Li, Danlan Li, Wenqiang Cui, and Rui Zhang. «Research based on
OSI model». In: 2011 IEEE 3rd International Conference on Communication
Software and Networks. IEEE. 2011, pp. 554–557 (cit. on pp. 3, 19).

[5] Robert W Tkach. «Scaling optical communications for the next decade and
beyond». In: Bell Labs Technical Journal 14.4 (2010), pp. 3–9 (cit. on p. 5).

[6] Jingchi Cheng, Chongjin Xie, Yizhao Chen, Xi Chen, Ming Tang, and Song-
nian Fu. «Comparison of coherent and IMDD transceivers for intra datacenter
optical interconnects». In: 2019 Optical Fiber Communications Conference
and Exhibition (OFC). IEEE. 2019, pp. 1–3 (cit. on p. 4).

[7] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong
Xie. «A survey on software-defined networking». In: IEEE Communications
Surveys & Tutorials 17.1 (2014), pp. 27–51 (cit. on p. 4).

[8] James W Paulson, Giancarlo Succi, and Armin Eberlein. «An empirical study
of open-source and closed-source software products». In: IEEE transactions
on software engineering 30.4 (2004), pp. 246–256 (cit. on p. 6).

[9] Guido Schryen and Rouven Kadura. «Open source vs. closed source software:
towards measuring security». In: Proceedings of the 2009 ACM symposium
on Applied Computing. 2009, pp. 2016–2023 (cit. on p. 6).

83

https://books.google.it/books?id=3IfNAAAAMAAJ


BIBLIOGRAPHY

[10] Srinivasan Raghunathan, Ashutosh Prasad, Birendra K Mishra, and Hsihui
Chang. «Open source versus closed source: software quality in monopoly
and competitive markets». In: IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 35.6 (2005), pp. 903–918 (cit. on
p. 6).

[11] Emilio Riccardi, Paul Gunning, Óscar González de Dios, Marco Quagliotti,
Vıctor López, and Andrew Lord. «An operator view on the introduction of
white boxes into optical networks». In: Journal of Lightwave Technology 36.15
(2018), pp. 3062–3072 (cit. on pp. 6, 20).

[12] Gangxiang Shen and Rodney S Tucker. «Translucent optical networks: the
way forward [topics in optical communications]». In: IEEE Communications
Magazine 45.2 (2007), pp. 48–54 (cit. on p. 8).

[13] Emmanuel Desurvire and Michael N Zervas. «Erbium-doped fiber amplifiers:
principles and applications». In: Physics Today 48.2 (1995), p. 56 (cit. on
p. 10).

[14] AAM Saleh, RM Jopson, JD Evankow, and J Aspell. «Modeling of gain in
erbium-doped fiber amplifiers». In: IEEE Photonics Technology Letters 2.10
(1990), pp. 714–717 (cit. on p. 10).

[15] Yongcheng Li, Li Gao, Gangxiang Shen, and Limei Peng. «Impact of ROADM
colorless, directionless, and contentionless (CDC) features on optical network
performance». In: Journal of Optical Communications and Networking 4.11
(2012), B58–B67 (cit. on p. 12).

[16] Jonathan Homa and Krishna Bala. «ROADM architectures and their enabling
WSS technology». In: IEEE Communications Magazine 46.7 (2008), pp. 150–
154 (cit. on p. 12).

[17] R Senguttuvan, S Bhattacharya, and A Chatterjee. «Design considerations and
effect of manufacturing process variations on UWB transceiver specifications».
In: 2005 IEEE International Conference on Ultra-Wideband. IEEE. 2005,
pp. 553–558 (cit. on p. 13).

[18] JE Johnson, DR Stauffer, and K Gass. «„Implementation Agreement for
Integrated Dual Polarization Intradyne Coherent Receivers “, Optical Inter-
networking Forum». In: Techn. Ber., Nov (2013) (cit. on p. 13).

[19] Schwartz Mischa. «Information transmission modulation and noise». In: (1990)
(cit. on p. 13).

[20] Mischa Schwartz. Information Transmission, Modulation and Noise. McGraw-
Hill, New York, 1990 (cit. on p. 16).

[21] Govind P Agrawal. Fiber-optic communication systems. John Wiley & Sons,
2012 (cit. on p. 17).

84



BIBLIOGRAPHY

[22] Peter J Winzer and Ren-Jean Essiambre. «Advanced modulation formats for
high-capacity optical transport networks». In: Journal of Lightwave Technol-
ogy 24.12 (2006), pp. 4711–4728 (cit. on p. 16).

[23] Andrew S Tanenbaum. Computer networks. Pearson Education India, 2003
(cit. on p. 17).

[24] Kaida Kaeval, Tobias Fehenberger, Jim Zou, Sander Lars Jansen, Klaus
Grobe, Helmut Griesser, Jörg-Peter Elbers, Marko Tikas, and Gert Jervan.
«QoT assessment of the optical spectrum as a service in disaggregated network
scenarios». In: Journal of Optical Communications and Networking 13.10
(2021), E1–E12 (cit. on p. 18).

[25] Truong-Xuan Do and Younghan Kim. «Control and data plane separation
architecture for supporting multicast listeners over distributed mobility man-
agement». In: ICT Express 3.2 (2017), pp. 90–95 (cit. on p. 18).

[26] Steven Gringeri, Nabil Bitar, and Tiejun J Xia. «Extending software defined
network principles to include optical transport». In: IEEE Communications
Magazine 51.3 (2013), pp. 32–40 (cit. on p. 19).

[27] Laia Nadal et al. «SDN-enabled S-BVT for disaggregated networks: design,
implementation and cost analysis». In: Journal of Lightwave Technology 38.11
(2020), pp. 3037–3043 (cit. on p. 19).

[28] Christian Guillemot et al. «Transparent optical packet switching: The Euro-
pean ACTS KEOPS project approach». In: Journal of lightwave technology
16.12 (1998), p. 2117 (cit. on p. 19).

[29] Jose Alberto Hernandez, Marco Quagliotti, Emilio Riccardi, Victor Lopez,
Oscar Gonzalez de Dios, and Ramon Casellas. «A techno-economic study
of optical network disaggregation employing open source software business
models for metropolitan area networks». In: IEEE Communications Magazine
58.5 (2020), pp. 40–46 (cit. on p. 20).

[30] Fei Hu, Qi Hao, and Ke Bao. «A survey on software-defined network and
openflow: From concept to implementation». In: IEEE Communications
Surveys & Tutorials 16.4 (2014), pp. 2181–2206 (cit. on p. 20).

[31] Reza Nejabati, Eduard Escalona, Shuping Peng, and Dimitra Simeonidou.
«Optical network virtualization». In: 15th International Conference on Optical
Network Design and Modeling-ONDM 2011. IEEE. 2011, pp. 1–5 (cit. on
pp. 21, 22).

[32] Vittorio Curri. «GNPy model of the physical layer for open and disaggregated
optical networking». In: Journal of Optical Communications and Networking
14.6 (2022), pp. C92–C104 (cit. on pp. 21, 24, 25, 28–30).

85



BIBLIOGRAPHY

[33] Ana Isabel Montoya-Munoz, Daniela Casas-Velasco, Felipe Estrada-Solano,
Oscar Mauricio Caicedo Rendon, and Nelson L Saldanha da Fonseca. «An
approach based on Yet Another Next Generation for software-defined net-
working management». In: International Journal of Communication Systems
34.11 (2021), e4855 (cit. on p. 22).

[34] http://www.openconfig.net (cit. on p. 22).
[35] Francesco Paolucci and Andrea Sgambelluri. «Telemetry in disaggregated

optical networks». In: 2020 International Conference on Optical Network
Design and Modeling (ONDM). IEEE. 2020, pp. 1–3 (cit. on p. 22).

[36] Francesco Paolucci, Andrea Sgambelluri, Filippo Cugini, and Piero Castoldi.
«Network telemetry streaming services in SDN-based disaggregated optical
networks». In: Journal of Lightwave Technology 36.15 (2018), pp. 3142–3149
(cit. on p. 22).

[37] Andrea Sgambelluri, Francesco Paolucci, and Filippo Cugini. «Telemetry-
driven validation of operational modes in OpenConfig disaggregated networks».
In: (2019) (cit. on p. 22).

[38] http://www.openroadm.org (cit. on p. 22).
[39] Ramon Casellas, Alessio Giorgetti, Roberto Morro, Ricardo Martinez, Ricard

Vilalta, and Raul Muñoz. «Virtualization of disaggregated optical networks
with open data models in support of network slicing». In: Journal of Optical
Communications and Networking 12.2 (2020), A144–A154 (cit. on pp. 23, 24).

[40] Andrea Sgambelluri, Alessio Giorgetti, Davide Scano, Filippo Cugini, and
Francesco Paolucci. «OpenConfig and OpenROADM automation of opera-
tional modes in disaggregated optical networks». In: IEEE Access 8 (2020),
pp. 190094–190107 (cit. on p. 23).

[41] Vittorio Curri. «Software-defined WDM optical transport in disaggregated
open optical networks». In: 2020 22nd International Conference on Transpar-
ent Optical Networks (ICTON). IEEE. 2020, pp. 1–4 (cit. on p. 24).

[42] Mark Filer, Mattia Cantono, Alessio Ferrari, Gert Grammel, Gabriele Gal-
imberti, and Vittorio Curri. «Multi-Vendor Experimental Validation of an
Open Source QoT Estimator for Optical Networks». In: J. Lightw. Technol.
36.15 (Aug. 2018), pp. 3073–3082. doi: 10.1109/JLT.2018.2818406 (cit. on
p. 26).

[43] Ori Gerstel and Victor Lopez. «The need for SDN in orchestration of IP over
optical multi-vendor networks». In: 2015 European Conference on Optical
Communication (ECOC). IEEE. 2015, pp. 1–3 (cit. on p. 27).

86

https://doi.org/10.1109/JLT.2018.2818406


BIBLIOGRAPHY

[44] Ramon Casellas, Ricardo Martınez, Ricard Vilalta, and Raül Muñoz. «Metro-
haul: SDN control and orchestration of disaggregated optical networks with
model-driven development». In: 2018 20th International Conference on Trans-
parent Optical Networks (ICTON). IEEE. 2018, pp. 1–4 (cit. on p. 28).

[45] Alessio Ferrari, Giacomo Borraccini, and Vittorio Curri. «Observing the
generalized SNR statistics induced by gain/loss uncertainties». In: (2019)
(cit. on p. 29).

[46] Vittorio Curri, Andrea Carena, Andrea Arduino, Gabriella Bosco, Pierluigi
Poggiolini, Antonino Nespola, and Fabrizio Forghieri. «Design strategies and
merit of system parameters for uniform uncompensated links supporting
Nyquist-WDM transmission». In: Journal of Lightwave Technology 33.18
(2015), pp. 3921–3932 (cit. on p. 29).

[47] Rui Manuel Morais and João Pedro. «Machine learning models for estimat-
ing quality of transmission in DWDM networks». In: Journal of Optical
Communications and Networking 10.10 (2018), pp. D84–D99 (cit. on p. 29).

[48] Francesco Musumeci, Cristina Rottondi, Avishek Nag, Irene Macaluso, Darko
Zibar, Marco Ruffini, and Massimo Tornatore. «An overview on application of
machine learning techniques in optical networks». In: IEEE Communications
Surveys & Tutorials 21.2 (2018), pp. 1383–1408 (cit. on p. 29).

[49] Javier Mata, Ignacio de Miguel, Ramon J Duran, Noemı Merayo, Sandeep
Kumar Singh, Admela Jukan, and Mohit Chamania. «Artificial intelligence
(AI) methods in optical networks: A comprehensive survey». In: Optical
switching and networking 28 (2018), pp. 43–57 (cit. on p. 29).

[50] Andy Bierman, Martin Bjorklund, and Kent Watsen. RESTCONF protocol.
Tech. rep. 2017 (cit. on p. 31).

[51] Martin Bjorklund. YANG-a data modeling language for the network configu-
ration protocol (NETCONF). Tech. rep. 2010 (cit. on p. 31).

[52] Martin Bjorklund. The YANG 1.1 data modeling language. Tech. rep. 2016
(cit. on p. 31).

[53] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol–HTTP/1.1.
Tech. rep. 1999 (cit. on p. 31).

[54] Marc De Leenheer, Yuta Higuchi, and Guru Parulkar. «An open controller
for the disaggregated optical network». In: 2018 International Conference on
Optical Network Design and Modeling (ONDM). IEEE. 2018, pp. 230–233
(cit. on p. 37).

[55] https://opennetworking.org/onos/ (cit. on p. 38).

87



BIBLIOGRAPHY

[56] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java language
specification. Addison-Wesley Professional, 2000 (cit. on p. 38).

[57] https://maven.apache.org (cit. on p. 38).
[58] https://karaf.apache.org (cit. on p. 38).
[59] Karl Pauls, David Savage, Stuart McCulloch, and Richard Hall. OSGi in

action: Creating modular applications in Java. Simon and Schuster, 2011
(cit. on p. 38).

[60] Alessio Giorgetti, Ramon Casellas, Roberto Morro, Andrea Campanella, and
Piero Castoldi. «ONOS-controlled disaggregated optical networks». In: 2019
Optical Fiber Communications Conference and Exhibition (OFC). IEEE. 2019,
pp. 1–3 (cit. on pp. 38, 39).

[61] Andrea Campanella et al. «ODTN: Open Disaggregated Transport Network.
Discovery and control of a disaggregated optical network through open source
software and open APIs.» In: Optical Fiber Communication Conference.
Optical Society of America. 2019, M3Z–4 (cit. on p. 38).

[62] Andrea Campanella. «Intent based network operations». In: 2019 Optical
Fiber Communications Conference and Exhibition (OFC). IEEE. 2019, pp. 1–3
(cit. on p. 38).

[63] GitHub repository of GNPy. Version v2.0. DOI: 10.5281/zenodo.3458319.
doi: 10.5281/zenodo.3458319. url: https://doi.org/10.5281/zenodo.
3458319 (cit. on p. 39).

[64] https://telecominfraproject.com (cit. on p. 39).
[65] Alessio Ferrari, Mark Filer, Karthikeyan Balasubramanian, Yawei Yin, Esther

Le Rouzic, Jan Kundrát, Gert Grammel, Gabriele Galimberti, and Vittorio
Curri. «GNPy: an open source application for physical layer aware open
optical networks». In: Journal of Optical Communications and Networking
12.6 (2020), pp. C31–C40 (cit. on p. 40).

[66] Jean-Luc Auge, Vittorio Curri, and Esther Le Rouzic. «Open design for
multi-vendor optical networks». In: Optical Fiber Communication Conference.
Optical Society of America. 2019, Th1I–2 (cit. on p. 39).

[67] https://www.itu.int/rec/dologinpub.asp?lang = eid = T − REC − G.694.1 −
202010 − I!!PDF − Etype = items (cit. on p. 41).

[68] Claus Fuhrer, Jan Erik Solem, and Olivier Verdier. Scientific Computing
with Python: High-performance scientific computing with NumPy, SciPy, and
pandas. Packt Publishing Ltd, 2021 (cit. on p. 42).

88

https://doi.org/10.5281/zenodo.3458319
https://doi.org/10.5281/zenodo.3458319
https://doi.org/10.5281/zenodo.3458319


BIBLIOGRAPHY

[69] C Manso, R Muñoz, N Yoshikane, R Casellas, R Vilalta, R Martınez, T Tsuri-
tani, and I Morita. «TAPI-enabled SDN control for partially disaggregated
multi-domain (OLS) and multi-layer (WDM over SDM) optical networks». In:
Journal of Optical Communications and Networking 13.1 (2021), A21–A33
(cit. on p. 43).

[70] Giacomo Borraccini et al. «Independent Data and Control Planes in Partially
Disaggregated Optical Networks: an Experimental Proof of Concept». In:
IEEE-TNSM (submitted) (cit. on pp. 46, 52, 53).

[71] Quan Pham-Van et al. «Demonstration of alarm correlation in partially
disaggregated optical networks». In: Optical Fiber Communication Conference.
Optica Publishing Group. 2020, M3Z–6 (cit. on pp. 47, 51).

[72] Masaki Shiraiwa et al. «Experimental demonstration of disaggregated emer-
gency optical system for quick disaster recovery». In: Journal of Lightwave
Technology 36.15 (2018), pp. 3083–3096 (cit. on p. 51).

[73] Kayol S Mayer, Rossano P Pinto, Jonathan A Soares, Dalton S Arantes, Chris-
tian E Rothenberg, Vinicius Cavalcante, Leonardo L Santos, Filipe D Moraes,
and Darli AA Mello. «Demonstration of ML-assisted soft-failure localization
based on network digital twins». In: Journal of Lightwave Technology 40.14
(2022), pp. 4514–4520 (cit. on p. 51).

[74] Shaoqiang Wang, DongSheng Xu, and ShiLiang Yan. «Analysis and appli-
cation of Wireshark in TCP/IP protocol teaching». In: 2010 International
Conference on E-Health Networking Digital Ecosystems and Technologies
(EDT). Vol. 2. IEEE. 2010, pp. 269–272 (cit. on p. 54).

[75] Andrew Tanenbaum. Modern operating systems. Pearson Education, Inc.,
2009 (cit. on p. 57).

89


	List of Tables
	List of Figures
	Acronyms
	Motivation and Goals
	Fundamental Concepts
	Historical Overview
	Software Defined Networking

	Open Optical Networks
	Optical Network Elements
	Optical Fiber
	Optical Amplifier
	Optical Line System
	ROADM: Reconfigurable Add & Drop Multiplexer
	Transponder and Transceiver

	Optical Signal
	Optical Transmission Techniques
	Multiplexing Techniques
	Modulation Format


	Network Architecture
	Software Defined Open Optical Networks
	Optical Network Virtualization and Slicing
	Terminal Device Emulation
	ROADM Device Emulation
	Northbound Interface

	SNR-Based Network Abstraction
	The Generalized SNR

	Open Optical Networks Components
	Optical Network Controller
	Physical Layer Digital Twin
	Optical Line Controller
	Interfaces

	Local Optimization Global Optimization

	Open Optical Transport Network Controller
	Software Interaction and Structures
	Optical Network Controller
	Quality of Transmission Estimator
	Optical Line Controller
	Data Structures
	ONOS New Optical REST-API Interfaces
	Logger

	Use-Case and Flows
	Laboratory Network Setup
	Devices
	Topology


	Results
	Physical Layer Characterization and QoT-E
	Recovery experiment
	Boot
	Traffic Deployment
	Recovery


	Future Applications and Developments
	Code
	app.py
	virtualTopology.py
	httpHandler.py
	database.py

	Bibliography

