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Abstract 
 
Many aspects of engineering nowadays focus on improving what has already been invented, to 
better existing technology. The idea behind this paper is just that. This paper will discuss what is 
optimisation and the need for optimisation in different applications. In what follows, an 
optimisation tool will be developed to help students and academics properly construct their 
problems and objectives and find suitable and feasible arrangements to solve or optimise them. The 
tool is a graphical user interphase constructed using MATLAB functions. It has been applied to a 
case study called: “Uncertainty Effects on Bike Spoke Wheel Modal Behaviour”. In addition, an 
original approach to problem dimensionality reduction has been introduced and applied on the 
provided case study with varying results and future possibilities. 
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Introduction 
 
Since the start of time, creatures evolved in ways that would increase their chances of survival. That 
could be seen as a form of optimization. Optimisation can be defined as the betterment of a situation 
or the use of a resource to fulfil certain requirements. In a more direct approach, people use 
optimisation methods instinctively and sometimes unconsciously every day, such as choosing a 
product that offers the best compromise between quality, quantity, and price. Optimisation 
problems are not always so simple. During a traffic or an accident, the shortest route isn’t always 
the fastest one to a destination. Many variables and unknows are involved that can change the shape 
and outcome of what was previously perceived as the best solution for the problem. Optimisation is 
an act that people perform daily, from which they find solutions rather quickly because they are 
veterans in the fields of their expertise. However, when the challenges become too complicated with 
parameters that are highly dependent and faced with multiple constraints and new risks, it becomes 
necessary to revise previous solutions and admit that current knowledge or techniques are not 
enough to optimize the problem. Optimisation in its simplest form is a mathematical equation or 
formula with certain variables. The task is to find the best relationship between those variables 
within a set of constraints that allow to achieve the desired outcome (such as maximizing profits 
while reducing sales). In the above example, under normal circumstances, companies would rely on 
economies of scale. Unfortunately, that would not benefit this business since much of the produced 
goods will be redundant and hence further increase the cost. So, here one would need to tackle this 
issue from a different perspective. The company can increase the prices, but the outcome depends 
on the level of correlation between price and the number of sales. So, ultimately it may result in 
decreasing the profit; similarly with lowering the quality to cut costs. An extensive study is needed 
to reach a favourable decision. Optimisation tools have been created to assist and facilitate the 
decision-making process. One such tool is the aim of this thesis paper. The Optimisation Panel is a 
friendly graphical user interphase that can solve most optimisation problems. 
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1. Preliminary optimisation introduction 
 
Every optimisation problem consists of decision variables, an objective function, and constraints. 
The decision variables are the main interest of the optimisation procedure. They are the values that 
can be reproduced and modified in a real-world setting. The objective function is the mathematical 
translation of a real-world problem. The solution of the objective function can be remodelled into a 
set of actions and decisions in which the end purpose is to replicate the desired simulated outcome. 
The functions can be simplified or tackled head on. However, “Simplicity is a principle, not a rule” 
[15]. Simplification can expedite the optimisation procedure and efficiently offer viable solutions to 
extremely complex problems. Nevertheless, it is not always crucial to invest in such methods, or it 
may not even be possible There is an infinite number of variables that can be introduced to a single 
study. Normally, most of these variables can be omitted due to their lack of importance, inability to 
control, or to their low probability of occurrence. Moreover, instead of maximizing or minimizing a 
certain objective, it becomes necessary to work towards achieving conflicting needs. Hence, it is 
important to introduce a list of constraints that trap the solutions within a range of favourable and/or 
feasible arrangements. 
 
 
1.1 Types of optimisation problems 
 
With multidimensional equations, the type of the problem can dictate which optimisation procedure 
to follow, as some can be quite complex and unnecessarily lengthy while others can be applied only 
to special formats. 
 
 
1.1.1 Linear programming 
 
In a Linear Programming (LP) problem, the objective function f(x) and constraints C(x) are all 
linear functions of the decision variables. Each have the following form respectively: 
 

 0
1

( )
n

i i
i

f a a x
=

= +x  (1.1.1.1) 
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i

C c x c
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Where ai and ci are constant coefficients, and x is the (n x 1) vector of decision variables xi. 
 
 
1.1.2 Quadratic programming 
 
In a Quadratic Programming (QP) problem, the objective function is a quadratic function while the 
constraints are linear (refer to equation 1.1.1.2). A quadric is a surface defined by a second-degree 
algebraic equation. A quadratic objective function has the following generic form: 
 
 ( ) Tf b= + +x x Hx Ax  (1.1.2.1) 
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Where x is the (n x 1) vector of decision variables and xT is its transpose. H and A are (n x n) and 
(1 x n) matrices respectively with constant elements and b is a constant coefficient. The 
construction of the H and A matrices are explained in pages 33 and 34. 
 
 
1.1.3 Quadratic constraints and conic optimisation 
 
The constraints are quadratic functions (refer to equation 1.1.2.1). If the quadric surface resembles 
that of a cone, the problem becomes a Second Order Cone Programming (SOCP) [1], in which the 
vector solution of decision variables is constrained to lie within a cone. Equation 1.1.3.1 represents 
the canonical constraint C(x) of a n dimensional problem: 
 

 2 2
1

2
( ) :

n

i
i

C x x
=

x  (1.1.3.1) 

 
Where x is the (n x 1) vector of decision variables xi. 
 
 
1.1.4 Mixed integer programming 
 
A Mixed-Integer Programming (MIP) problem is one where some or all the decision variables are 
constrained to be of integer value. This approach closes in on real world optimisation problems. 
It forces a discrete nature on the decision variables. Multiple iterations are performed until an 
integer valued vector solution is found that is closest to the optimum solution. 
 
 
1.1.5 Constraint programming 
 
Constraint Programming (CP) does not just refer to having constraints, it refers to the type of 
constraint. It originated from artificial intelligence research where the problems require assigning 
symbolic values which are finite in number and are usually presented by integer values. The most 
common of these constraints is the all-different constraint [4] where a n set of decision variables 
needs to be arranged in a non-repeating order P. If a position is repeated, then the solution is 
invalid. 
 
 
1.1.6 Smooth nonlinear optimisation problems 
 
A nonlinear problem is one in which the objective or at least one of the constraints is a nonlinear 
function. Smooth indicates that the functions used, and their derivatives are continuous. Examples 
of nonlinear functions include polynomials of second-degree or higher, variables divided by each 
other, radicals, and transcendental functions such as log, exp, sine and cosine. Quadratic 
programming is a special case of Smooth Nonlinear Problems (SNLP). 
 
 
1.1.7 Non-smooth optimisation problems 
 
Non-Smooth Problems (NSP) are the most difficult optimisation problems to solve. They refer to 
problems that are nondifferential at their maximisers and minimisers. Hence, gradients and 
derivatives generally cannot be used to determine the direction of the function. During iterative 
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procedures, a current solution may not be able to lead to a better one. Therefore, in most NSPs, a 
sample of possible solutions is gathered and the best one is chosen. They rely on random sampling 
of possible solutions which can yield different results on each run depending on the chosen points. 
The type of optimisation tool to use depends on the nature of the optimisation problem. The 
Simplex method is most suitable for linear programming problems, while the genetic algorithm is 
preferred to be used for more complex and complicated problems. Different optimisation tools will 
be discussed further on. 
 
 
1.2 Local vs global optimisation 
 
The object of any optimisation procedures is to find the optimum of the objective function that 
satisfies the constraints of the problem. However, in an unconstrained problem, there might not 
always exist an optimum. 
 
 
1.2.1 Local optimisation 
 
A local optimum is the minimum or maximum of the objective function in a limited region of the 
solution (bounded solution). If ƒ is the objective function defined over a set X and S is a subset of 
X, then the point x* ∈ S is a local maximiser of ƒ(x) if 

( ) ( ) 0 such that, ,  *   ƒ ƒ )  (distance S    →   x x x x x , whereas x*s is the local minimiser 

if ( ) ( )ƒ ƒ *   s S  x x x . 
Hence, an objective function can have multiple local optima. If the function has a single optimum, 
then the local optimum is also the global one. Local optimisation methods can be used to find the 
global optimum if the region where the global optimum resides is known, or if the local optimum is 
the same as the global optimum. This is an efficient way to reduce computational time and effort. 
 
 
1.2.2 Global optimisation 
 
A global optimum is the minimum or maximum of the objective function over the entire search 
space. Every objective function has a global optimum or else it could not be optimised.  
The global minimum can be found as the minimum of all the local minima. Similarly, the global 
maximum is the maximum of all the local maxima. The definition of the global optimiser is the 
same as that of the local optimiser, but instead of S being a subset of the search input X, it is the 
search input X. 
If the objective function has more than one global optimum, then the value of the function is the 
same at these respective inputs. In this case, the problem becomes multimodal. The global 
optimisation algorithm is used when little is known about the shape or behaviour of the objective 
function, as well as, when there are interfering local optima. 
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Figure 1.2.1 – Example of local and global optima of a one-dimensional problem [16]  
 

 
 

Figure 1.2.2 – Example of local and global maxima of a two-dimensional problem [17]  
 
Unimodal problems can be solved through direct approaches. However, most problems are 
multimodal in nature since the desired target often depends on variable parameters and conflicting 
interests. It is noteworthy to say that the local/ global optima can be themselves functions. The 
objective function can have variable or time-dependent coefficients and thus the optima may 
depend on these changeable parameters. 
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1.3 Constraints 
 
The main aim of constraints is to limit the range of variability of the system or problem. They 
generally refer to the limitations or restrictions imposed on the decision variables. A constraint does 
not change the shape of the function but defines the region of acceptable solutions. The most 
common constraint is the boundary constraint in which the decision variables are trapped between 
an upper bound (UB) and a lower bound (LB). If the variables are not left constrained, then the 
lower bound is denoted with -∞. If the variables are not right constrained, then the upper bound is 
denoted with +∞. The distance between the two bounds represents the range of the system. The 
system can also have multiple boundary conditions. Constraints include the equality, and the 
inequality constraint functions. The variables are either permitted to or excluded from certain values 
within the range of the system. These conditions can also prohibit two decision variables from 
having the same value. The constraint functions are not necessarily linear functions. They can 
introduce new relations between the decision variables or a level of correlation among the 
parameters. The problem description and system requirements should be analysed very thoroughly 
to determine which relations should be written as equalities and which as inequalities. 
 
 
1.3.1 A project management triangle example 
 
In project management, the three major constraints are time, cost, and scope, also known as the 
project management triangle [5]. These unique constraints are dependent on each other and thus 
altering one will affect the other two. Each constraint is linked to the following objectives. The time 
constraint refers to the time division of tasks and the duration of the project. The scope constraint 
refers to the features and goals of the project. The cost constraint refers to the budget of the project, 
the necessary expenses to finish the project on time and within its scope. One way to maximise the 
profit (objective function) could be by reducing costs. However, this might affect the quality of the 
product which might result in losing the competitive advantage in the market. Another way could be 
by expanding the scope and thus the customer base (to increase sales). Nevertheless, there is a risk 
of prolonging the product release date into the market and losing initiative, and consequently a need 
to increase costs to accommodate for the new product design. Looking at this example, it is 
impossible to reach a perfect result (a fast releasing, high quality, and low-cost product). 
Constraints are integrated into the problem, not to find the perfect solution, but a better feasible one. 
It allows a range of variability that offers a compromise between the different decision variables. 
Someone might look at the problem from a different perspective and note that, from the first glance, 
the profit equation: 
 
 P( , )s c price s c=  −  (1.3.1.1) 
 
does not include a time variable, where s and c are the number of sales and costs respectively. A 
solution that optimizes both the scope and limits the costs is reached at the expense of time. 
However, it would be soon realised that it is a false solution when sales do not match expectations. 
When writing constraints, they can be either implicit or explicit. Explicit constrains are explicitly 
defined, where the decision variables are restricted to a given set of values. Implicit constraints, on 
the other hand, depend on design parameters that cannot be explicitly defined or measured. 
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1.4 Objective Function 
 
The objective function is the target of optimisation that needs to be minimized or maximized to find 
its corresponding decision variables that satisfy a set of constraints. 
 
 
1.4.1. Fitness function 
 
If the objective function is the target of optimisation, then the fitness function guides the 
optimisation process. A fitness function is a special form of an objective function. It can be the 
same as the objective function if the only goal is to either maximise or minimise the given objective 
function. However, in multi-objective and constraint problems, it takes a different form. It is mainly 
used in genetic programming and genetic algorithms. It defines the goal of the genetic algorithm. It 
compares how good or fit two solutions are to the problem’s set of aims. Hence, it defines the 
relative importance of a design, where higher values correspond to a better design. It is a function 
that maps the solution representation into a real scalar value. So, it is a function of the form: ƒ: 
Γ→R, where Γ is the space of vectorial solutions. 
The fitness function is a way to incorporate constraints on the shape of the fitness landscape. Each 
fitness function corresponds to an objective. In a multi-objective optimisation problem, a final 
fitness function is established as a combination of these multiple fitness functions. 
Once the objective functions are optimised and a set of solutions is presented, a selection process 
performed by the fitness function takes place that evaluates the fit of the set. 
 
 
1.4.2 Deterministic vs probabilistic models 
 
A deterministic model does not have random elements. The results of each iteration do not change 
if the initial conditions are the same. On the contrary, the solution of a probabilistic model changes 
with each iteration even if the initial conditions are preserved. The occurrence of events in a 
deterministic system is known with accuracy while that of a probabilistic system is hard to predict. 
If a data is missing or its contribution is unknown, then probabilistic data are used to enrich 
deterministic datasets and to scale deterministic models. 
To direct the flow of a probabilistic problem, brute force is used to control certain aspects of the 
model and thus turning it into a deterministic one by eliminating the randomness in each iteration. It 
is noteworthy to mention that the brute force approach is not an optimisation technique. It is merely 
a control strategy. 
 
 
1.4.3 Optimal configuration 
 
It is important to differentiate between optimum and optimal. Optimum is the best while optimal 
refers to the best possible. Due to many reasons or constraints, it is not always possible to consider 
the optimum of the objective function as a feasible solution to the optimisation problem. 
Performance optimization is an iterative method of creating and monitoring modifications to an 
application or problem. Hence, by continuously changing the problem description, it is likely to 
further optimize the previously perceived solution. These modifications can include design changes 
or new constraint introduction. 
 
 



 12 / 67 

 
2. Optimisation strategies 
 
The optimisation strategy used depends on the complexity of the problem and the level of risk 
associated with it. For each strategy, the outcomes need to be properly defined, the database 
arranged, and the precision, performance, and implementation need to be continuously monitored. 
In what follows, are some demonstrations of well-known and commonly used optimisation 
strategies. Each is an iterative procedure which models the NLP for a given iterate xk, where k . 
The solution of the subproblem is used to construct the new iterate xk+1 which should converge to 
the optimiser of the NLP as k tends to ∞. 
 
 
2.1 Simplex method 
 
In 1947, George Bernard Dantzig [8] created the simplex algorithm. The simplex method is an 
approach for solving linear models. The optimal solution exists on the vertices. It is a systematic 
procedure that relies on finding pivot points to reduce row elements above and below the unitary 
pivot point to zero through row operations. It was designed to be able to solve linear programming 
problems by hand instead of relying on software. 
To apply the simplex method, the problem must be transformed into the standard form. A standard 
form satisfies three requirements: 

• The problem is a maximisation problem. It is sufficient to multiply both sides of the 
objective function by a -1 to change it from a minimisation problem to a maximisation 
problem. 

• All constraints are in a less than or equal to inequality. The greater than or equal to 
inequality can be inverted by multiplying both sides by -1. 

• All variables are positive. 
The following linear programming problem is obtained: 
 

 
1

max
n

i i
i

z a x
=

=  (2.1.1) 
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j ji i j
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C x c x c
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  (2.1.2) 

 
Where n and m are the numbers of decision variables and constraint conditions respectively, ai is the 
constant coefficient of the ith variable xi. in the objective function, and cji is the constant coefficient 
of the ith variable xi in the jth constraint equation. 
Afterwards, slack variables are added to change the inequality constraints to equality ones. 
For the objective function, all right terms are moved to the left and the equation becomes equal to 
zero. The equations are then rewritten in a table or matrix form with the top row representing all the 
variables in the system, the last row and the rows in-between containing the coefficients of the 
objective function and the constraints respectively corresponding to each variable, and the last 
column holding the equality values for each row. 
 

 
1
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n
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z a x
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− =  (2.1.3) 
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Where sj is the slack variable of the jth constraint equation and b represents the right-hand term of 
each equation. 
Optimality is reached when all the values in the last row are greater than or equal to zero. The 
method revolves around finding the pivot point which is the intersection between the pivot column 
and the pivot row. The pivot column is the one containing the smallest number (greatest negative 
number) in the last row. The pivot row corresponds to the one with the lowest indicator. The 
indicator is the value of the equality (last column) divided by its respective coefficient in the pivot 
column. 
The pivot row is then divided by the value of the pivot point to have a unitary pivot value. After 
that, row operations are performed with the pivot row to change the values of all the other 
coefficients in the pivot column to zero.  
Optimality needs to be checked for each new table. If optimality is not reached, another iteration is 
performed by finding the new pivot point and redoing the previous steps. 
After the last iteration, the optimal values can be identified. A basic variable has a single 1 in its 
column and all other values are zero, else, it is non-basic. The optimal solution of a non-basic 
variable is zero. For a basic variable, the optimal solution is the intersection of the last column with 
the row containing the 1 value. 
For a two/three-variable system, the solutions can be found graphically by plotting the graphs of the 
constraints and the objective function. 
Consider the following 2D problem: 
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 (2.1.6) 

 
There are two ways to find zmax graphically. The first is by transforming the objective function into 
a 2D line by assuming that z is a constant. Hence, the following equation is formed: 
 

 2 1
40 1
30 30

x x z= − +  (2.1.7) 

 



 14 / 67 

By taking z = 0, equation (2.1.7) can also be plotted. Since z is a positive value, as z increases, the 
line of equation (2.1.7) would be shifted upward. Hence by moving the straight line with slope -4/3 
along the feasible region, the optimal solution is found when the line is tangent to the feasible 
region, except at point A (the origin) which is a impractical solution. 
The second graphical method depends on the extreme points. Since the objective function can only 
be tangent to the feasible region at its extremities, plotting the objective function can be omitted and 
instead, the value of z is calculated at each of the extreme points. The highest value of z is then at 
the optimal solution. 
The shaded region in figure (2.1.1) is the feasible region which is the intersection of all the 
constraint equations (in red). The yellow line is the translation of the objective function (equation 
2.1.7). Both figures below yield the same solution which is x1 = 6 and x2 = 3. 
 

 
 

Figure 2.1.1 – Representation of a graphical solution  
 

Table 2.1.1 – Evaluation of extremities. 
 

Extreme Points x1 x2 z 
A 0 0 0 
B 0 8 240 
H 2 7 290 
J 6 3 330 
G 8 0 320 

 
 



 15 / 67 

 
2.2 Genetic algorithm 
 
Genetic Algorithm (GA) is a process based on natural selection. It drives the biological evolution of 
species. 
In a population (optimisation problem), there are many individuals with different characteristics, in 
addition to unforeseen events or mutations. In every population, there exists dominant individuals 
with dominant features and non-dominant individuals with recessive features. Naturally, most of the 
offspring of the population will resemble their dominant parent but still inherit some characteristics 
of their less dominant parent, and in the case of a mutation, these recessive characteristics may 
become more apparent. It is a probabilistic system. Hence, more dominated solutions have a higher 
probability of occurring. However, using the pareto-based fitness assignment which gives equal 
probability of reproduction to all non-dominated members of the population, non-dominated 
solutions have a higher fitness than dominated solutions. The probability of being selected to the 
population depends on the fitness value. Genetic operators are used to explore the research space 
more effectively. The crossover operator, as in figure 2.2.1, uses a random cut-point crossover 
method. Two parents are chosen, and two child solutions are created, where the first child takes 
after the first part of the first parent and the second part of the second parent, while the second child 
takes after the second part of the first parent and the first part of the second parent. On the other 
hand, the mutation operator, as in figure 2.2.2, picks at random one or more operations to substitute 
into the child’s genetic sequence. 
 

 
 

Figure 2.2.1 – Example of crossover operator [6] 
 

 
 

Figure 2.2.2 – Example of mutation operator [6] 
 
The last operator used in genetic algorithms is the selection operator. Many selection criteria exist, 
but they differ with the way they either evaluate or compute the fitness of the individuals. A well-
known selection operator is the Fitness Proportionate Selection (FPS), also known as the Roulette 
Wheel Selection (RWS) where any individual can be selected. However, the probability of that 
happening depends on the individual’s fitness. Individuals with higher fitness values have a higher 
chance of getting selected according to equation (2.2.1). 
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i
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j
j
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f

=

=


 (2.2.1) 

 
Where pi is the probability of the individual with fitness fi to be selected and n is the number of 
individuals. 
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Figure 2.2.3 represents the optimisation procedure regarding genetic algorithms. The initial 
population is chosen randomly from the research space. Operators are applied to the population and 
solutions are presented. A selection process takes place that discards infeasible solutions. If the 
termination criteria are not met, another iteration of the solution is performed. 
 

 
 

Figure 2.2.3 – Differential evolution process [7] 
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2.3 Trust region method 
 
A trust region is a subset of the solution space where an appropriate model is trusted to be an 
acceptable representation of the objective function. A quadratic approximation of the objective 
function is often chosen as the model which is the second-order Taylor polynomial of the function. 
The trust region is often chosen as a hypersphere. 
 
 
2.3.1 Taylor expansion 
 
The Taylor expansion to the order k approximates a k times differential function at a given point. 
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Where: 
 
 x  (2.3.1.3) 
 
Hence the kth order Taylor polynomial is defined as: 
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A linear approximation is a 1st order Taylor polynomial which is also the tangent to the function at 
that point. 
 
 1( ) ( ) ( )( )P x f a f a x a= + −  (2.3.1.5) 
 
The approximate error of Taylor polynomial is: 
 
 ( ) (x) (x) ( )( )k

k k kR x f P h x x a= + = −  (2.3.1.6) 
 
Which tends to zero as x tends towards a. 
The approximation becomes more accurate in the region surrounding the point a as the order of the 
polynomial increases. Hence a quadratic polynomial is a better approximation than a linear one. 
 

 2
2

( )( ) ( ) ( )( ) ( )
2

f aP x f a f a x a x a


= + − + −  (2.3.1.7) 
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Figure 2.3.1.1 – The 1st, 5th,7th, and 9th order Taylor polynomial at x = 0 for f(x) = sin(x) [13] 
 
In the case of a multivariable function, the single partial derivative is substituted with a matrix of 
partial derivatives. 
 

 1

| | 2 | |

(x)( ) ( ) ( )( ) ( ) ( ) ( )( )
!

k
T

k

D ff f f h


 


 

−

= =

 + − + − − + − x a x x a x a x a x x a  (2.3.1.8) 

 
Where ( )D f x  is a squared ( )n x n  matrix composed of the α order partial derivatives of the 
function ƒ(x) and ( )f x  is the gradient of ƒ(x) where: 
 
 1 2[ ... ]T n

nx x x= x  (2.3.1.9) 
 

 
1 n

f ff
x x

  
 =  

  
 (2.3.1.10) 

 
The Hessian (H) is a second order partial derivative matrix which corresponds to 2 ( )D f x : 
 

 

2 2 2

2
1 1 2 1

2 2 2

2
2 1 2 2

2 2 2

2
1 2

n

n

n n n

f f f
x x x x x

f f f
x x x x x

f f f
x x x x x

   
 
    

 
   
 

=      
 
 
   
 
     

H  (2.3.1.11) 

 
Hence, the quadratic approximation q(x) in a region N around xk can be written as: 
 

 T1( ) ( ) (( )( ) ) ( )( )
2k k k k k k kq f f= + − + − −x x x x x x x H x x x  (2.3.1.12) 

 
The hypersphere trust region is defined as: 
 
 k k−  x x  (2.3.1.13) 
 
Where xk is the centre and ∆k is the radius of the trust region at the k iteration. 
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2.3.2 Methodology 
 
Starting from an initial point x, the algorithm aims to find another point with a higher optimality 
value by approximating a complex objective function ƒ with a simpler quadratic function that 
resembles the behaviour of the original function inside a neighbourhood around x, known as the 
trust region. The method revolves around computing s by solving the trust region subproblem: 
 
 { ( ), }q NOptimum s s

s
 (2.3.2.1) 

 
Where N is the trust region and q is the quadratic approximation of the objective function. 
For a minimisation problem, if ƒ (x + s) ≤ ƒ(x), then the trust region is moved to become the 
neighbourhood of point (x + s). Else, the trust region is reduced in size. The same occurs in a 
maximisation problem, but the condition becomes: ƒ (x + s) ≥ ƒ(x). 
By substituting q (s + x), the subproblem becomes: 
 

 1{ ( ) ( ) ( ), }
2

T f fOptimum + +  s H x s x s x s
s

 (2.3.2.2) 

 
The solution to the subproblem satisfies the following equation: 
 
 ( )I f+ = −H s  (2.3.2.3) 
 
Where I is the identity matrix and λ is the Lagrange multiplier of the subproblem. 
λ is found by solving: 
 

 1 ( ) 0
2,

T f f
s




 
 + + − −  = 

 
s Hs s s  (2.3.2.4) 

 
There exists different literature on how much to expand or contract the trust region. However, this 
paper will not be discussing them. 
In conclusion, the trust region method consists of four steps: 

• Formulating the trust region subproblem. 
• Solving the subproblem for s. 
• If ƒ (x + s) < ƒ (x) (for minimisation) or ƒ (x + s) ≥ ƒ (x) (for maximisation), then x = x + s. 
• Adjusting ∆ according to preferred literature. 

 
After completing the above four steps, a new iteration is conducted starting from the new acquired 
point and trust region radius. The iterations can be halted once convergence is reached. 
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Figure 2.3.2.1 – Visual representation of an optimisation performed  
with trust region algorithm [14] 
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2.4 Interior point method 
 
Interior point method, also known as barrier method, is used to solve linear and nonlinear convex 
optimisation problems. The algorithm is a minimisation solver. If the problem is a maximisation 
one, it is sufficient to multiply the objective function by -1. Starting from a general problem 
description as equation (2.4.1), it is necessary to transform the problem into the standard format. 
 

 

min ( )

( ) 0
( ) 0

nx
f

g
suchthat

h



 
 

= 

x

x
x

 (2.4.1) 

 
The problem format consists only of the barrier function to minimise and the set of equality 
constraints. The inequality constraints are converted into equality ones through the subtraction of 
slack variables which are positive by nature. 
 

 

min ( )

( ) 0
0

nx
f

c
suchthat



= 
 

 

x

x
s

 (2.4.2) 

 
Where s is the vector of slack variables and c(x) is: 
 
  ( ) ( ) , ( )c x g h= −x s x  (2.4.3) 
 
Finally, the inequality constraints are integrated into the objective function to make up the barrier 
function as such: 
 

 1
min ( ) ln( )

( ) 0

n

m

i
x i

f s

suchthat c




=

−

=

x

x
 (2.4.4) 

 
Where μ is a small positive scalar called the barrier parameter, and m is the size of s and the number 
of inequality constraints in g(x). 
 
Another form of the problem neglects the use of slack variables and integrates g(x) directly into the 
barrier function. 
 

 1
min ( ) ln( ( ))

( ) 0

n

m

i
x i

f g

suchthat h




=

−

=

x x

x
 (2.4.5) 

 
The search points are limited to the interior feasible space. The overpass of the inequality 
constraints is prevented by modifying the objective function with a barrier term that restricts the 
unconstrained value within the region of acceptable solutions. 
As μ converges to zero, the solution of the barrier function tends to that of the original 
unconstrained objective function. 
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The barrier problem should satisfy the Karush-Kuhn-Tucker (KKT) conditions for the solution to be 
optimal. The theorem states that if f(x), g(x), and h(x) are continuously differentiable at an optimal 
point p, then there exists constants μ and λ, called the KKT multipliers, that satisfy the following: 
 

 

For minimising ( ) : ( ) ( ) ( ) 0
For maximising  ( ) : ( ) ( ) ( ) 0

( ) 0, ( ) 0
0

g( ) 0

p p

p p

p

p

f f h g
f f h g

h g

 + − =

− + − =

= 



=

x p p λ p μ

x p p λ p μ

p p
μ

p μ

 (2.4.6) 

 
By applying the KKT conditions to problem (2.4.4), the following is obtained: 
 

 

1

1

( ) ( ) ( ) ( ) 0 [ , ]

c( ) 0 0

( ) 0

1 ( )

1( ) ( ) ( )
)

( 0
(
)

0

m

i
i i

m

i
i

n m

i

s
s

f h g

f c f c suchthat

and
or

h a
g

nd g







=

=

+ + − =  + − = = 

= − =

= 



 + −  =





x x λ x x λ z x x s

x X

x

Ze e

x

x

x

x

λ
x

 (2.4.7) 

 
Where n is the size of the problem’s initial variables, e is a unit vector, X is the diagonal matrix of 

xi and Z is the diagonal matrix of 
0

i

i

for i n
z

for i n
x


 
 

=  


 
 

. 

 
By applying the Newton-Raphson method to the KKT conditions, the following solution is 
developed: 
 

 

1

1 1

( )
0

( )( )
( )( )

k k k

z x

x
k k kk k

T

k k k k k

k

k

kk

k

cc
c

f
c 



−

− −

 +  +  
= −    

  

−



 

= −





xW X Z

d X e z X Z

xx d
x d

d

λ

x  (2.4.8) 

 
Where xk is the point at the kth iteration, W is the Hessian of the barrier function, while the deltas 
are the search direction of the problem. 
A step size α is chosen to determine the values of the following iterations. It can be calculated by 
decreasing the merit function or through filter methods. However, those two approaches will not be 
discussed further. It is often acceptable to assign α a value ≤ 1. 
 

 
1

1

1

x
k k k k

k k k k
z

k k k k









+

+

+

= +

= +

= +

x x d

λ λ d

z z d

 (2.4.9) 

 
The iterations can be stopped once convergence is reached. 
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2.5 Sequential quadratic programming 
 
A major advantage of the sequential quadratic programming (SQP) is that the algorithm is forgiving 
during the computation phase. The iterates xk are not obliged to be inside the feasible region if they 
converge correctly towards the optimiser of the problem. 
The problem (2.4.1) will be reintroduced again. The solution begins by converting the objective 
function into its quadratic approximation and the constraints into their linear approximations. 
 

 

T1( ) ( )( ) ) ( ) )
2

)( )

min ( (

( )
)

g( 0
( ) ( ( ) 0

n k k k k
x

k

k

k

k

k

k

k

k

g
sucht

f

hat
h h

f


+ − + − −

−

−

+  
 

+ = 

x
x

x x x x x x H x x x

x x x
x x x

 (2.5.1) 

 
It is recommended to transform all inequality constraints into equality ones. This can be done 
through the addition/subtraction of positive numbers known as the slack variables. 
 
 ( ) 0g − =x s  (2.5.2) 
 
Where s is the slack variable. 
 
By applying the linear approximation to (2.5.2), the problem becomes: 
 

 
( , )

T

x
min ( (

( ) g( 0
(

1( ) ( )( ) ) ( ) )
2

)( ) ( )
)( )) ( 0

n p k k k k k k

k k kk

k k k

x s

g
suchthat

h

f

h

f
+

+ − + −

+ 
 

+ =

−

=

− 

− − −

x x x

x
x

x x x H x x x

x x x s s
x x x

 (2.5.3) 

 
Where p is the number of inequality constraints g(x) and the size of s. 
However, SQP is preferred to be used on problems of the form: 
 

 ,

T

( ) x

1( ) ( )( ) ) ( ) )
2

, )( ) ,

min ( (

( , ( ( 0)) ( )

n p k k k k k k

k

x

k k k k k k

s

ksuchthat c

f

c

f

c
+

+ − + − −

− + =−+ 

x x x x x x H x x x

s x s x x x s s sx
 (2.5.4) 

 
Where: 
 
 ( ) [ ( ); ( ) ]c h g= −x x x s  (2.5.5) 
 
The KKT conditions are applied to (2.5.4) to solve the SQP subproblem. 
 

 
1( ) ( )

( ) ( )
g( ) ( )

k x k k k

k x k

k x s k

c f x
h h

g

++ = −

 = −

 − = −

H d x λ

x d x
x d d x

 (2.5.6) 

 
Such that: 
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 1

1

k k x

k k s

+

+

= +

= +

x x d
s s d

 (2.5.7) 

 
s0 is calculated from x0 as follows: 
 
 0 0( )g=s x  (2.5.8) 
 
The iterations continue until convergence is reached. 
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Convergence of the error 
 
Convergence is best linked to consistency of the solution. A mathematical model is said to be 
convergent if after each iteration, the solution tends to a constant. 
If an actual solution exists, then the error is the absolute difference of the actual solution to the 
current solution. 
 
 *

kerror x x= −  (2.6.1) 
 
Where xk is the solution at the kth iteration and x* is the actual unknown solution. 
 
The error can be re-written as a geometric sequence of the form: 
 
 1k ke e+ =  (2.6.2) 
 
Where μ is a constant and α is the order of convergence. 
 
In theory, the number of iterations required to reach an acceptable approximation of the actual 
solution decreases as the order of convergence increases. 
To find the value of α, a logarithmic transformation is applied on the division of two consecutive 
errors: 
 

 1

1 1 1

ln ln ln lnk k k k

k k k k

e e e e
e e e e

 

 





+

− − −

       
= = =       

       
 (2.6.3) 

 
Hence, 
 

 

1

1

ln

ln

k

k

k

k

e
e
e

e



+

−

 
 
 

=
 
 
 

 (2.6.4) 

 
μ can be found from (2.6.2): 
 

 1k

k

e
e

 +=  (2.6.5) 

 
α needs at least three iterations to be calculated from which afterwards, μ can be computed. The 
values of α and μ will differ slightly with each iteration. However, they can be rounded to 
approximate reasonable values. Usually, the values of α and μ are standardised and depend on the 
method of iteration used. For example, the Bisection Method has an order of convergence of 1 and 

μ = 1/2 1
1
2k ke e+

 
= 

 
, since the value of the next iteration is the mean value of the solution 

interval. 
It is possible to estimate the number of iterations needed to reach the desirable solution if and only 
if the model is converging; meaning, the error is decreasing with each iteration. 
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Since the error is a geometric sequence, it can be written as a function of the first error: 
 
 ( )0

k

ke e=  (2.6.6) 
 
Where the first error depends strictly on the initial value. Which is why, choosing an initial value in 
the region of the solution can greatly decrease the computation time. 
The iterations stop when the error is less than or equal to a predefined tolerance ε. 
 
 ( )0

n
e =  (2.6.7) 

 
Where n is the final iteration. 
 
By applying the logarithmic transformation, like (2.6.3), the expected number of iterations can be 
found. 
 

 
0

log
log

n
e



=  (2.6.8) 
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3 Optimisation Panel 
 
The Optimisation Panel (OP) is a GUI application exploiting the MATLAB function  to 
solve optimisation problems. The GUI is aimed towards the simple user with mostly educational-
oriented problems, and the more sophisticated user riddled with complex experimental problems. 
 
 
3.1 Fmincon function 
 
Fmincon is a nonlinear constrained problem optimisation solver in MATLAB. It finds the minimum 
of a multivariable constrained objective function. It has the following general syntax: 
 
 ( )   ,  0,  ,  ,  ,  ,  ,  ,  ,  fmincon f nonlcon options=x x Α b Aeq beq lb ub  (3.1.1) 
 
Each term should be represented as in the above order. If any term is unspecified, it cannot be 
removed if a following term is used. It should be set to []. 
Some terms can be omitted from the general expression and more simplified versions can be used 
depending on the nature of the constraints. The most simplified syntax of the fmincon function is: 
 
 ( )   ,  0,  ,fmincon f=x x A  b  (3.1.2) 
 
Where f is the objective function to be optimised, x is the vectorial solution, and x0 is the vector of 
initial conditions/values. 
 
The solution should satisfy the following linear inequality: 
 
   A x  b  (3.1.3) 
 
Where A is the linear inequality matrix, and b is the inequality vector. 
The above syntax can be expanded by adding equality restraints: 
 
 ( )   ,  0,  ,  ,  ,  fmincon f=x x A b Aeq beq  (3.1.4) 
 
Such that: 
 
     =Aeq x beq  (3.1.5) 
 
Where Aeq is the linear equality matrix and beq is the equality vector. 
 
A more expanded version includes the upper and lower bound of each variable in x. 
 
 ( )   ,  0,  , , ,  ,  ,  fmincon f=x x A b  Aeq beq lb ub  (3.1.6) 
 
Where lb and ub are respectively the lower bound and upper bound vectors. 
 
However, the boundary constraints can be integrated into the linear inequality matrix A and hence, 
syntax (2.2.4) can still be used. 
Non-linear conditions can be applied by using nonlcon. 
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 ( )   ,  0,  ,  ,  ,  ,  ,  ,  fmincon f nonlcon=x x A b Aeq beq lb ub  (3.1.7) 
 
Through a function: 
 

 

[ , ] ( )

@ ;

function c ceq g
c
ceq

end
nonlcon g

=

=

=

=

x

 (3.1.8) 

 
Such that: 
 
 ( )   0 c x  (3.1.9) 
 
 ( )  0 ceq =x  (3.1.10) 
 
Where c(x) and ceq(x) are respectively the nonlinear inequality function and nonlinear equality 
function to be satisfied for x. 
 
A vectorial form can be used to return other relevant values. 
 
 [ ],   ___( )fval fmincon=x  (3.1.11) 
 
Where fval is the value of the objective function at the solution x for any used syntax. 
 
The options term is set using the optimoptions function and it is the last possible term to add to the 
fmincon function syntax: 
 
 ( )  ' ', ' ', '___', ' ', '___' ;options optimoptions fmincon Display Algorithm=  (3.1.11) 
 
More attributes can be added to the above function. Each has a default value. 
 
In summary, below are all the components of a fmincon optimisation problem: 
 

 

min ( )

( ) 0
( ) 0

x f

c
ceq

 

 =



=

 

x
A x b

Aeq x beq
x
x

lb x ub

 (3.1.12) 
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3.2 Graphical user interphase application 
 
A Graphical User Interphase (GUI) is an interactive visual system for computer software. A GUI 
displays a screen that conveys information and requests certain inputs from or actions to be taken by 
the user by interacting with the objects on the screen. These objects are plentiful with a specific 
purpose. They can be in the form of a pushbutton that initiates a command if pressed, an edit box 
that evaluates the data written inside it, an option list, or etc. Users can interact with the GUI 
through pointing devices such as a mouse, keyboard, or touch screen by moving over the GUI 
component and pressing it. 
 
MATLAB offers three ways to create an app: 

• Live Editor converts a script into a simple app where users are given the choice to modify 
variables. 

• App Designer or the GUIDE tool uses the drag and drop mechanism to customise the 
appearance of the GUI while the code is developed in the MATLAB editor. 

• The programmer can manually write the code by using functions to define the layout and 
behaviour of the GUI. 

For more added control, the GUI is created programmatically. The only functions used are the ones 
compatible with the 2016b version of MATLAB. Hence, uifigure-based [10] functions are omitted. 
Most of the visuals on the screen can be made by means of the uicontrol [11] function which has the 
following syntax: 
 
 ( ), ,uicontrol parent Name Value  (3.2.1) 
 
Its parent is a figure made from the figure function. If the parent is not specified, by default, a new 
figure is constructed to contain the uicontrol component. It can be written as is or it can be assigned 
as an input to a variable. This allows to manipulate the element after further coding. 
Name refers to the attribute given to the element and Value is the output of the defined attribute. 
Some Name-Value pairs can also be layout features to control the appearance of the UI element 
such as font size and colour. The position attribute (Name)’] 
 of the UI element can be assigned through the position vector (Value). 
 
  (' '    , )Position left bottom widthc uicont heirol ght=  (3.2.2) 
 
Left and bottom indicate the directional distance from the figure frame. While width and height 
indicate the size of the UI component. 
The following list represents all the possible Values for the style attribute: 
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Figure 3.2.1 – Style – Value pairs [11] 
 
A table-styled element was constructed independently through the uitable [12] function because this 
value is not supported by uicontrol. It has the same syntax as uicontrol but with additional row and 
column attributes. 
 
 ( ), ,uitable parent Name Value  (3.2.3) 
 
The value of the data attribute is either a numeric, logical, string, or cell array. The array 
dimensions define the number of columns and rows of the table. Each table cell is occupied by its 
respective array value. The rows and columns of the UI table can be assigned names/values as well 
by using the RowName and ColumnName attributes respectively. 
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3.3 Optimisation panel guide 
 

 
 

Figure 3.3.1 – Optimisation Panel 
 
Four parts need to be specified to solve an optimisation problem: the decision variables, the 
constraints, the objective function, and the objective of the optimisation. 
 
By referring to figure (3.3.2), each variable has six components and should be uniquely defined. 
The Add button is enabled after the variable has been named. The description of the variable can be 
left empty. However, if the variable is dimensionless, the unit should be assigned as '-'. The lower 
and upper bounds represent the range of the variable which are numeric values. If the variable is 
unbounded, the value should be set to -inf or +inf. The initial value should lay within the range as it 
is the value taken for the first iteration. 
Press the Add button to save the variable. If it is correctly defined, it will be added to the table, else, 
the user will receive an error message on the wrongly inputted field. 
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Figure 3.3.2 – Decision Variable_Add 
 

 
 

Figure 3.3.3 – Decision Variable Table Example 
 
The user is given the choice to upload the completed list of the decision variables from an 
independent .m file by pressing the Load button (figure 3.3.4) adjacent to the table and selecting a 
file. 
 

Press 

 
 

  
 

Figure 3.3.4 – Decision Variable_Load 
 
The user is also given the ability to edit a variable already inserted into the table by selecting the 
cell whose contents they wish to modify, typing the new input in its corresponding text box, and 
pressing the Edit button (figure 3.3.5). 
If the user wishes to remove a variable from the table, they can select any cell from the row 
containing the variable and pressing the Delete button (figure 3.3.6). 
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Figure 3.3.5 – Decision Variable_Edit 
 
 

 

Press 

 
 

Figure 3.3.6 – Decision Variable_Delete 
 
The objective of the optimisation can be either a minimisation or a maximisation, which can be 
chosen by checking either the Minimise or Maximise checkbox (figure 3.3.7). The objective 
function is constructed by selecting one of the four options in the popup menu (figure 3.3.7). 
 
 

  
 

Figure 3.3.7 – Objective Function Options 
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The Linear option requires the user to input a numeric vector whose components are the coefficients 
of the decision variables in the order they are introduced in the table. The first coefficient, however, 
should be the solitary term of the equation. The objective function ƒ(x) has the form of equation 
(1.1.1.1). 
 
 
 
 
 

 

[a0, a1, a2] 

 
 

Figure 3.3.8 – Option 1_Linear 
 
Such that, 
 

 0
1

0 1

( )

[ , ,..., ,..., ]

n

i i
i

p n

f a a x

CoefficientsVector a a a a
=

= +

=

x
 (3.3.1) 

 
Where n is the number of decision variables and ai is the coefficient of the ith variable. 
 
The Quadratic option requires the user to input a H matrix and an A vector in addition to the 
solitary term. 
 

 
 

Figure 3.3.9 – Option 2_Quadratic 
 
The objective function has the form of equation (1.1.2.1). A is a horizontal vector containing the 
coefficients of each first-degree variable. H is a square matrix where the diagonal elements are the 
coefficients of the squared decision variables. For representative purposes, the following equation 
will be considered as the expanded form of (1.1.2.1). 
 

 
1

2
0 0

1 2 1
( )

n n n
T

ii i ij i j i i
i j i

f a a x a x x a x a
−

= = =

 
= + + + = + + 

 
  x X HX AX  (3.3.2) 

 
Where n is the number of decision variables, ai is the coefficient of the ith variable, aii is the 
coefficient of the squared ith variable, and aij is the coefficient of the product of the ith and jth 
variables. 
 
The H matrix can be constructed in different ways as illustrated below since all forms produce the 
same result. 
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11 12 13 11 11 12 13

12 22 23 12 22 22 23

13 23 33 13 23 33 33

11 12 13 22 23 33

0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0

[ , , ;0, , ;0,0, ]

a a a a a a a
H a a a a a a a

a a a a a a a
H a a a a a a

     
     

=  
     
          

=

 (3.3.3) 

 
The nth Polynomial requires the user to input the solitary term and a matrix whose dimension 
represents the highest degree in the equation 
 
 
 
 
 
 

 

a0 

[a11, a12, a13; a21, a22, a23] 

 
 

Figure 3.3.10 – Option 3_nth Polynomial 
 
The objective function is composed only of the summation of powered variables. Thus, it has the 
following form: 
 

 0
1 1

( )
p n

j
ij i

i j
f a a x

= =

= +x  (3.3.4) 

 
Where p is the number of decision variables, n is the degree of the equation, and aij is the coefficient 
of the ith variable to the power j. 
 
The array is a ( )p x n  matrix constructed such that each row contains all the coefficients of a 
variable starting from the lowest degree to the highest one. 
The Other enables the Load File to work, and the user can share an independent .m file. 
 
 
 

  
 

Figure 3.3.11 – Option 4_Other 
 
The user can input a linear equality matrix and a linear inequality matrix. Each matrix is ( 1)p x n + , 
where p is the number of equalities or inequalities, and n is the number of decision variables. The 
first element of each row is the solitary term of the constraint while the rest are the coefficients of 
each variable. Each constraint equation is either equal to the solitary term in case of equality or less 
than the solitary term in case of inequality. 
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[beq, Aeq] 
[b, A] 

 
 

Figure 3.3.12 – Constraints _ Linear Equality and Inequality 
 
Such that, 
 

  =

 

Aeq x beq
A x b

 (3.3.5) 

 
Where Aeq and A are the equality and inequality linear matrices and beq and b are the equality and 
inequality vectors respectively. 
 

 

( ,1) ( ,1)
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( , 2) ( , 2)
( , 2) ( , 2) 1
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size size

size size n
size size

=

=

= =
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A b
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Aeq A
b beq

 (3.3.6) 

 
Where n is the number of decision variables. 
 
The non-linear constraints, if they exist, can be loaded (figure 3.3.13) onto the GUI as well from an 
independent .m file. If the functions are written correctly, they will be displayed on the adjacent text 
box. 
 

 
 

Figure 3.3.13 – Constraints _ Non-linear 
 
Once all terms of the problem have been specified, the user can choose to enable the plot and/or 
save options at the bottom of the GUI (figure 3.3.14) before pressing the Find Optimum button 
(figure 3.3.15). If enabled, the program will display three or four figures with graphs of the values 
of the objective function, the variables, and the non-linear constraints at each iteration. The fourth 
figure will only be plotted if a normalisation procedure is performed, which depends on the 
boundaries of the decision variables introduced. The values of the objective function and the 
variables will be saved in a .txt file after each iteration as well. 
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Figure 3.3.14 – Plot and Save 
 

 
 

Figure 3.3.15 – Final Step 
 
The user can load/input the decision variables, objective function, and constraints independently or 
all at the same time from a single .m file by pressing the Load Problem button (figure 3.3.16). 
 

 
 

Figure 3.3.16 – Load Problem 
 
However, for any of the Load buttons to work, the user should follow the standard format for the .m 
file. 
The decision variables are assigned to a (n 6)x  cell called Optim.x in which n is the number of 
decision variables. The six components of each decision variable are arranged as follows: 
 
 . {' ', ' ', ' ', , , ;...}Optim x String String String Value Value Value=  (3.3.7) 
 
Where the first three components are strings defining the decision variable’s name, description, and 
unit in this order. The last three components are numerical and represent the lower bound, initial 
value, and upper bound of the decision variable respectively. 
Each decision variable follows the restrictions mentioned previously. If the cell is written correctly, 
the decision variables will be displayed inside the table. Otherwise, an error message will be 
displayed instead. 
 
The objective function is assigned to a variable called Optim.obj_func. The constraints are 
assigned to variables as follows: 

• Optim.A and Optim.b are numeric and are the linear inequality matrix and the linear 
inequality vector respectively. 

• Optim.Aeq and Optim.beq are numeric and are the linear equality matrix and the linear 
equality vector respectively. 

• Optim.c is a (1 )cx n  cell of function handles where nc is the number of non-linear 
inequality constraints. 

• Optim.ceq is a (1 )ceqx n  cell of function handles where nceq is the number of non-linear 
equality constraints. 
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The linear constraint equations can be omitted from their respective matrices and vectors and added 
to the non-linear ones. Any of the above constraint variables can be left empty or unassigned. If any 
variable is missing, it will be considered empty. 
The objective of the problem is defined through the variable Optim.Opt_case. It can be 
assigned only two values: 'Min' or 'Max'. 
The user can also define the option setting of  through the variable . 
the syntax is defined in (3.1.11). If it is not introduced,  will work based on its default 
settings. 
 
 
3.4 External code examples 
 
A variant of the Rosenbrock function will be used to test the functionality of the GUI Optimisation 
Panel. Three different formats of the same function will be applied as .m files to help the user 
understand the versatility of the Optim.obj_func options. 
 
 
3.4.1 Rosenbrock function 
 
The Rosenbrock function is a valley function whose minimum is known. It is used as a test to study 
the performance of optimisation algorithms.  It has the following general form: 
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Where N is a natural number, and ,N a b x . 
The function is made up of the summation of N-1 subfunctions f (xi, xi+1), whose minimum is easily 
and directly calculated by setting the gradient of the subfunction to zero. 
 

 2 2
1 1 1

1

( , ) , 2( ) 4 ( ), 2 ( ) 0i i i i i i i i
i i

f ff x x x a bx x x b x x
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+
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 (3.4.1.2) 

 
The minimum of the subfunction is given by: 
 
 2

1min ( , ) ( , ) 0i if x x f a a+ = =  (3.4.1.3) 
 
Since the derivative of the sum is the sum of the derivative, then the partial derivatives of each 
subfunction are added together to form the gradient of the function. Each subfunction has only two 
partial derivatives that are not null, which correspond to their variables. Except for the first and last 
variables (x1 and xN), each two consecutive subfunctions have exactly one variable in common. 
Hence, the syntax of the gradient element at any partial derivative is given as: 
 

 2 2 2 2
1 1 2 1 1 1 1

1

( ) 2( ) 4 ( ) 2 ( ) 2( ) 4 ( ) 2 ( )p p p p p p N N
p N

f f ff x a bx x x b x x x a bx x x b x x
x x x − + −

   
  = = − − − − + − − − −       

x

(3.4.1.4) 
 
Where 1 p N  . 
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A solution to (3.4.4) is 2a a a =  x . However, it is not unique. Multiple optima may surface as 

more variables are introduced to the equation. Nevertheless, 2a a a =  x  is always a global 
minimiser of the Rosenbrock function. Only for a = 1, the value of the global minimum is zero for 
any N. While for 1a  , the minimum moves further away from zero as N increases. 
 

 
 

Figure 3.4.1.1 – Rosenbrock function for n = 2, a = 1 and b = 100 
 
 
3.4.2 Handle function 
 
A handle function is created, in MATLAB, by assigning @(x) to the beginning of the anonymous 
function. x is the vector of variables used inside the equation. Taking the objective function to 
optimise, the decision variables introduced must be written as x(i)s. 
 

 
 

Figure 3.4.2.1 – Handle function .m file example 
 
The above figure displays the problem and the anonymous function to optimise. The objective 
function is a 2-dimensional Rosenbrock function. 
The minimum value of all the iterations yielded the following results: 
 

Table 3.4.2.1 – Results of optimisation. 
 

x x1 x2 
0.78641 0.6177 

fmin 0.045675 
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The following figures represent the convergence of the problem towards the optimal solution. 
 

 
 

Figure 3.4.2.2 – Decision variables 
 

 
 

Figure 3.4.2.3 – Objective function in log scale 

 
 

Figure 3.4.2.4 – Constraint function 
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Figure 3.4.2.5 – Optimisation problem close-up 
 
As observed in figure 3.4.2.5, the function is mostly decreasing in the quadrant connecting the 
centre of the feasible region and the unconstrained minimum of the objective function [1, 1]. Hence, 
the optimal solution to the problem is along a contour heading to the optimum at the boundary of 
the feasible region, as illustrated in figure 3.4.2.6. 
 

 
 

Figure 3.4.2.6 – Graphical representation of the optimisation problem 
 
The algorithm is an iterative procedure, and the results are approximants of the actual solution. 
 
 
3.4.3 External function 
 
MATLAB allows the user to write and execute their own functions by using the  
command. Each function is assigned a function name and a set of inputs enclosed in parenthesis. 
In this example, a N-dimensional Rosenbrock function is constructed as the objective function and 
loaded into the GUI as an external function. 
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Figure 3.4.3.1 – External function .m file example 
 
The previous results were replicated, and the solution in table 3.4.2.1 was computed again as were 
the graphs and the number of iterations. 
 
 
3.4.4 External application 
 
The code in figure 3.4.4.1 was converted into an application using the application compiler feature 
in MATLAB. The application was then loaded into the GUI from a .m file as in figure 3.4.4.2. 
 

 
 

Figure 3.4.4.1 – Rosenbrock external application 
 

 
 

Figure 3.4.4.2 – Rosenbrock external application .m file example 
 
The minimum value of all the iterations yielded the following results: 
 

Table 3.4.4.1 – Results of optimisation. 
 

x x1 x2 
-0.03082 -0.010556 

fmin 1.0758 
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The following figures represent the convergence of the problem towards the optimal solution. 
 

 
 

Figure 3.4.2.2 – Decision variables 
 

 
 

Figure 3.4.2.3 – Objective function in log scale 
 

 
 

Figure 3.4.2.4 – Constraint function 
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The same problem was introduced in all three cases. So, theoretically, all the solutions should be 
identical, given that the same procedure was performed in all the examples. This applies to the first 
two cases which confirms the repeatability of . However, the results slightly differ in the 
third. The difference is caused from loading the values of the decision variables introduced into the 
Input.dat file before each iteration. The application receives the values from the Input.dat file and 
not directly from the  function evaluation. This slight difference caused the number of 
iterations and the approximation error to increase. 
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4. Case studies 
 
The case study will revolve around a study that was previously performed by E. Bonisoli, A.D. 
Vella, and S. Venturini titled: “Uncertainty Effects on Bike Spoke Wheel Modal Behaviour”. It 
discusses how to achieve a proper modal behaviour of the bike spoke wheel under the effect of 
structural and material uncertainties and ununiform mass and force distribution. An optimisation 
problem was attempted to minimise the relative error between the experimental and analytical 
modes of a spoke bike wheel under the effect of uncertain parameters. 
Modal analysis revolves around determining the natural frequencies and their respective mode 
shapes of a structure under free vibration. The natural frequencies are calculated from the overall 
mass of the structure and its stiffness. Afterwards, the Modal Assurance Criteria (MAC) is used to 
determine the similarity of two mode shapes. If the mode shapes are identical, then the value of the 
MAC is 1. The MAC is mostly sensitive to large differences in the mode shapes unlike small 
differences, which makes it a good indicator to study the correlation between mode shapes. 
 

 
T
j k

T T
j j k k

MAC
  

=
      

φ φ

φ φ φ φ
 (4.1) 

 
Where φj and φk are two eigenvalue vectors. 
 
The eigenvalue analysis provides dynamic properties of the structure by solving the characteristic 
equation of the system: 
 
 ( )2 0w− =K M φ  (4.2) 
 
Where K and M are the stiffness and mass matrices of the system respectively and w2 is the 
eigenvalue also referred to as λ. 
 
The eigenvalues are found by solving the determinant of equation (4.2). 
 
 det 0− =K M  (4.3) 
 
Such that: 
 
 w =  (4.4) 
 
Where w is the natural frequency. The smallest value of w is called the fundamental frequency. 
 
Now, equation (4.2) can be solved for φ for each eigenvalue. φ is also known as the mode 
displacements. After plotting the displacements, the mode shape (the vibratory motion) can be 
observed by alternating the nodal positions between the initial position (usually at rest) and the 
mode displacement positions. The size of φ depends on the degree of freedom of the structure 
(number of nodes), as it represents the displacement of each node in the structure. 
In the case study, the MACW2 was used instead of MAC to include the eigenvalue contribution to 
the correlation index. 
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Like the MAC, the MACW2 gives a value of 1 for identical modes. Hence, the summation of n 
MACW2s of identical modes should yield a value of n. Therefore, equation (4.6) has been chosen as 
an objective function for optimisation, which is the relative error of MACW2 and the mass. 
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 (4.6) 

 
Where m and mref are the modified and reference masses respectively and n is the number of 
experimental studied modes. 
 
A preliminary Finite Element (FE) model with the properties of table 4.1 has been established to 
determine the mode shapes. However, as evident from figure 4.1, it tends to overestimate the 
frequencies of the experimental mode shapes, making the model more rigid than it is. The 
optimisation problem aims to find the best choice of parameters that allow to construct a FE model 
that can optimally translate analytically the experimental mode shapes. 
 

Table 4.1 – Geometric and material properties of FE model. [19] 
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Figure 4.1 – MAC between Experimental Modal Analysis (EMA) 
and preliminary FE model [19] 

 
The intensity of the colour of the points in figure 4.1 represents the correlation of the FEA and the 
EMA. Thus, black is the best correlation corresponding to a MAC of 1, while white is least 
correlated corresponding to a MAC of 0. An ideal MAC figure is diagonal, matching each 
analytical mode to its experimental mode. However, the above figure exhibits relations between 
experimental and analytical modes that should not exist. These unwanted relations appear in areas 
of the graph with concentrated spots and scatter points. 
For the optimisation process, the 7 experimental mode shapes from figure 4.2 have been chosen and 
the starting mass has been set to 1.5774 kg. 
Table 4.2 represents the initial and optimal values of the design parameters which were achieved in 
the optimisation study using . 
 

Table 4.2 – Design parameters with boundaries [19] 
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Figure 4.2 compares the previous MAC calculated using the preliminary FE model with the new 
MAC calculated using the tuned FE model based on the results of the optimisation problem. 
 

 
 

Figure 4.2 – Comparison between initial (left) and optimal (right)  
MAC values [19] 

 
The result of the study has been proven to be valid, meaning that the new tuned FE model is a good 
approximator for experimental mode shapes. This is demonstrated using the dashed black line 
connecting the MAC points in both figures. In the right figure, the black line is almost converging 
into a diagonal straight line. 
 
The optimisation of the case study has been imitated and solved through the optimisation panel. The 
problem does not have constraints besides the boundary conditions. The options for the  
function have been chosen to reduce computation time and might not resemble the choices that 
were made in the case study. However, the results should still be similar. 
The results are displayed below, in addition to the graphs of the iterative procedure. 
 

Table 4.3 – Results of optimisation. 
 

 

Erim ρrim tmult,rim Espokes ρspokes Dspokes N ρgear ρhub Optimum Iterations 
[GPa] [kg/m3] [-] [GPa] [kg/m3] [mm] [N] [kg/m3] [kg/m3] 0.26751 165 50.95 2978 1.984 168.93 8645 1.77 773.83 6162 2312 
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Figure 4.3 – Objective function 
 

 
 

Figure 4.4 – Decision variables 
 

 
 

Figure 4.5 – Normalised decision variables 
 
As  is a deterministic procedure, the difference in results from the case study and the 
values provided by the optimisation panel are only due to the chosen option settings. Nevertheless, 
it can be said with great certainty that the results have been replicated. 
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In what follows, a reduction approach will be implemented to attempt to solve the problem from a 
different perspective. The reduction approach will be based on Buckingham’s pi theorem. 
 
 
Buckingham pi theorem: 
 
The Buckingham’s pi theorem correlates a set of variables or parameters to each other. It states that 
a set of n variables with m primary variables can be rewritten as a set of (n-m) dimensionless groups 
which are referred to as π groups. Any variable in the set can be written as a function of the primary 
variables. A π group has the following general form: 
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Where xm is the vector of primary variables and aj are rational exponents. 
The exponents are computed such that the unit of the function is 1, meaning the result is 
dimensionless. 
Any dimensional physical quantity is represented by a unit of measurement. In the mechanical field, 
these units are either mass (M), length (L), time (T), or f (M, L, T). In the electrical field, another 
set of units is used. Nevertheless, in a purely mechanical problem, the maximum number of primary 
variables that can exist is three. The unit of each of the primary variables chosen should contain at 
least one of the primary units (M, L or T). In addition, they should not be able to be 
nondimensionalised, as in, no solution satisfies equation (4.8). 
 

 ( )
1

dim dim 0
m

aj
mj

j

f x
=

= =mx  (4.8) 

 
The number of primary variables is the same as the number od primary units that exist in the 
problem. By applying Buckingham’s pi theorem to an optimisation problem, the number of decision 
variables to compute can be reduced by m. Hence, the case study will be reintroduced as a 
nondimensionalized problem and the results from the original optimisation procedure will be 
compared to check if the conversion is viable or not. 
 

Table 4.4 – Parameters and units. 
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As seen in table (4.4), all the primary units are used. The diameter, density of the spokes and the 
Young modulus of the spokes will be chosen to represent the length, mass, and time respectively. 
Hence, six π groups can be constructed.  
 

Table 4.5 – π groups 
 

Decision Variables Lower Bound Starting Point Upper Bound 
π1 = Erim / Espokes 0.11111 0.33333 1 

π2 = N / [Espokes Dspokes
2] 0 2.53968e-3 0.02857 

π3 = ρrim / ρspokes 0.11538 0.34615 1.03846 
π4 = ρhub / ρspokes 0.11538 0.34615 1.03846 
π5 = ρgear / ρspokes 0.33333 1 3 
π6 = tmult,rim 0.1 0.75 10 

 
Due to this conversion, the Optimisation Panel will only compute six variables instead of nine, 
which will greatly improve the computational time. On the other hand, the objective function needs 
the values of the original set to compute the relative error. Hence, the function will be slightly 
modified to calculate the original parameters from the values of the π groups provided by 

. 
The problem becomes an underdetermined system since the number of unknows exceeds the 
number of equations. In an underdetermined system, the solution is not unique. The solution 
consists of a basis of the null space and a particular solution. 
 
 Ax = A(u + v) = Au + Av = 0 + b = b  (4.9) 
 
Where x, u and v are the general, null space and particular solutions respectively. A is the matrix of 
equations and b is the vector of equalities of the equations. 
 
By applying the ln operator, the system can be translated into the form of equation (4.9). 
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 (4.10) 
 
Hence the A matrix and b vector are obtained. 
The null space of A is computed to find the u vector (basis solution). 
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Where a, b, and c are free values. 
 
Then the particular solution is computed by substituting with the lower bounds of the major 
variables. 
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Equation (4.13) represents the general solution of the original set of parameters, while equation 
(4.14) represents the constraints which the free variables are subjected to, from which the boundary 
conditions are deduced. 
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The only constraint that needs to be introduced into the problems is 2

2105 3ac   . The density 
constraints are irrelevant since any parameter value that does not satisfy them will correspond to a 
high value of the objective function and will be immediately dismissed. By substituting the π 
groups with their max and min values accordingly, all the other terms of equation (4.14) result in 
the boundary conditions of the free variables, as shown in table 4.6, except for the term 

2
2105 3ac   . 

The initial values of the free variables are calculated in equation (4.15) by reverse calculating 
equation (4.13) and setting the value of x to that of the starting values of the parameters given in 
table 4.2 and the values of the π groups to their starting points in table 4.5. 
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Where ai, bi and ci are the initial values of the free variables a, b, and c respectively. 
 
Table 4.6 introduces all possible combinations of the free variables that can be constructed to 
reduce the number of decision variables. 
 

Table 4.6 – Possible combinations of reduction variables. 
 

Combinations Variables 
Size Boundaries Initial Values 

1 a = b = c 7 1 ≤ π7 ≤ 3 π7 = 1.5 
2 a = b 8 1 ≤ π7, π8 ≤ 3 π7 = 1.5, π8 = 1.5 
3 a = c 8 1 ≤ π7, π8 ≤ 3 π7 = 1.5, π8 = 1.5 
4 b = c 8 1 ≤ π7, π8 ≤ 3 π7 = 1.5, π8 = 1.5 
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Table 4.7 – Reduction optimisation results 
 

1st Combination 2nd Combination 3rd Combination 4th Combination 

Variables Parameters Variables Parameters Variables Parameters Variables Parameters 

π1 0.4142 Erim 
[GPa] 

75.82 π1 0.4039 Erim 
[GPa] 

76.7 π1 0.3581 Erim 
[GPa] 

73.24 π1 0.3687 Erim 
[GPa] 

79.78 

π2 0.0042 ρrim 
[kg/m3] 

3380 π2 0.0032 ρrim 
[kg/m3] 

3430 π2 0.0018 ρrim 
[kg/m3] 

3189 π2 0.0031 ρrim 
[kg/m3] 

3607 

π3 0.71 tmult,rim 
[-] 

2.715 π3 0.6946 tmult,rim 
[-] 

2.288 π3 0.5088 tmult,rim 
[-] 

1.59 π3 0.725 tmult,rim 
[-] 

2.251 

π4 0.4725 Espokes 
[GPa] 

183 π4 0.4541 Espokes 
[GPa] 

189.9 π4 0.4212 Espokes 
[GPa] 

204.5 π4 0.4707 Espokes 
[GPa] 

216.4 

π5 1.1944 ρspokes 
[kg/m3] 

4760 π5 1.2049 ρspokes 
[kg/m3] 

4938 π5 1.1232 ρspokes 
[kg/m3] 

6267 π5 1.1379 ρspokes 
[kg/m3] 

4975 

π6 2.7147 Dspokes 
[mm] 

1.2 π6 2.2882 Dspokes 
[mm] 

1.3 π6 1.5904 Dspokes 
[mm] 

1.4 π6 2.2507 Dspokes 
[mm] 

1.3 

α 1.2204 N 
[N] 

795.4 α 1.2662 N 
[N] 

721.8 α 1.3636 N 
[N] 

488.6 α 1.4425 N 
[N] 

770 

- - ρgear 
[kg/m3] 

5685 b 1.299 ρgear 
[kg/m3] 

5950 b 1.6069 ρgear 
[kg/m3] 

7039 b 1.2756 ρgear 
[kg/m3] 

5661 

- - ρhub 
[kg/m3] 

2249 - - ρhub 
[kg/m3] 

2242 - - ρhub 
[kg/m3] 

2640 - - ρhub 
[kg/m3] 

2342 

Iterations = 243 Iterations = 122 Iterations = 256 Iterations = 188 

Optimum = 0.22007 Optimum = 0.24914 Optimum = 0.26895 Optimum = 0.24646 

 
The below figures will represent the convergence of each combination to its respective optimum. 
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Figure 4.6 – Objective function convergence of the first (top left), second (top right), 
third (bottom left) and fourth (bottom right) combinations. 

 

 

 
 

Figure 4.7 – Constraint convergence of the first (top left), second (top right), 
third (bottom left) and fourth (bottom right) combinations. 
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Figure 4.8 – Decision variables convergence of the first (top left), second (top right), 
third (bottom left) and fourth (bottom right) combinations. 

 
In this case study, the most time is spent on calculating the value of the objective function and not 
on calculating the values of the decision values for each iteration. Hence, reducing the computation 
time is strictly proportional to decreasing the number of iterations. 
As noticed from the results, reducing the number of variables does not necessarily reduce the 
computation time. Another similar observation yields that the number of iterations vary according 
to the correlation among the problem parameters. In the original problem, the decision variables 
(parameters) were independent. However, the parameters calculated through the reduction variables 
are correlated to one or the other through at least one decision variable.  is not aware of 
the inner workings of the objective function. The direction and size of the augmentation of each 
decision variable depend on their effect on the progression of the objective function. The typical 
procedure that  follows relies on testing the individual effect of each decision variable on 
the value of the objective function. When testing a decision variable inside the  
algorithm, more than one parameter is being modified during the calculations of the objective 
function. This change can yield unpredictable results. The objective function may appear falsely 
sensitive to certain variables, which could trap the iterations around a fixed point or in a loop. This 
is noticed in the third combination, where the objective function maintains an almost fixed value for 
more than 100 iterations, and the minimum has already been found at the 75th iteration out of 256 
iterations. The influence of the hidden correlation among the parameters can push away the solution 
from the optimum as in the third combination or draw it closer as in the second and fourth 
combinations. The highest sensitivity to the objective function is expected from the first 
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combination, which justifies the high number of iterations. Yet, it managed to avoid getting trapped 
in a loop and achieved the lowest optimum among the original problem and the other combinations. 
The proof for the influence of this correlation is even more evident when the parameters in the 
original problem were swapped with the π groups, α, b and c. This way the problem remains with 9 
decision variables, but the solution has not been repeated; even though mathematically it could 
have. Below are the results of the substitution: 
 

Table 4.8 – Results of the substitution. 
 

 
By reverse calculating the free variables and the π groups from the solution of table 4.3, the below 
table represents the expected solution for the substitution problem. 
 

Table 4.9 – Results of the reverse calculations 
 

 
Below are the graphical solutions to the substitution problem. 
 

 
 

Figure 4.9 – Objective function 
 

π1 π2 π3 π4 π5 π6 α b c Optimum Iterations 
0.45929 0.002926 0.74704 0.30594 0.78244 1.5747 1.4495 1.5784 1.3386 

0.21628 279 Erim 
[GPa] 

ρrim 
[kg/m3] 

tmult,rim 
[-] 

Espokes 
[GPa] 

ρspokes 
[kg/m3] 

Dspokes 
[mm] 

N 
[N] 

ρgear 
[kg/m3] 

ρhub 
[kg/m3] 

99.86 4599 1.5747 217.43 6156 1.3 798 4816 1883 

Erim 
[GPa] 

ρrim 
[kg/m3] 

tmult,rim 
[-] 

Espokes 
[GPa] 

ρspokes 
[kg/m3] 

Dspokes 
[mm] 

N 
[N] 

ρgear 
[kg/m3] 

ρhub 
[kg/m3] 

50.95 2978 1.984 168.93 8645 1.77 773.83 6162 2313 
π1 π2 π3 π4 π5 π6 α b c 
0.3 0.001462 0.3445 0.2675 0.7128 1.984 1.61 2.2165 1.77 
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Figure 4.10 – Constraint 
 

 
 

Figure 4.11 – Decision variables 
 
In what follows, a graphical representation, evaluation tracking and comparison of the original 
problem and the second combination will be demonstrated. The set up has been performed 
manually and the following results have been obtained.  
For the first representation, the initial values were taken without any modifications. It is worthy to 
point out that the starting conditions for both optimisations are the same. Hence, figures 4.12 and 
4.13 correspond to both optimisations. For simplicity, the optimisation with original setting will be 
referred to as the classical optimisation while the second one will be referred to as the reduction 
optimisation. Another note worth mentioning is that the model has 200 modes and 2146 nodes. 
Nevertheless, for representative purposes, the MACs will be calculated using only 19 modes and 65 
nodes, to generate meaningful and comparable figures. However, due to using only 65 nodes out of 
the 2146 available nodes, the values of the manually calculated relative errors will be augmented 
but the evolution of the procedure should still be evident. 
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Figure 4.12 – Model of starting parameters 
 

 
 

Figure 4.13 – MAC between EMA (FEAright) and FEA (FEAleft) values  
for the 1st iteration 

 
The value of the relative error has been computed according to equation (4.6) to be 0.762 and the 
relative error of MACW2 alone to be 0.4568. Both these values are high and undesirable but 
expected for the unoptimized problem. 
 
The following evaluations will be performed at the 25%, 50% and 75% of the iterations computed 
and at the optimum iteration for each optimisation setting. 
 

Table 4.10 – Values of the parameters at 25%, 50%, 75% and optimum iteration. 
 

 Optimisation 
Setting Iteration Erim 

[GPa] 

ρrim 
[kg/m3] 

tmult,rim 
[-] 

Espokes 
[GPa] 

ρspokes 
[kg/m3] 

Dspokes 
[mm] 

N 
[N] 

ρgear 
[kg/m3] 

ρhub 
[kg/m3] 

25% Classical 41 49.27 3103 2.171 180 8055 1.957 865.8 7670 2575 
Reduction 30 58.64 1915 1.414 150.5 3913 1.419 430.6 4109 1599 

50% Classical 82 50.89 2981 1.986 169.2 8666 1.778 779.7 6163 2312 
Reduction 60 75.63 3505 2.016 207.2 5387 1.227 458.3 6688 2627 

75% Classical 123 50.93 2978 1.985 169.3 8651 1.773 776.3 6162 2312 
Reduction 91 149.3 920.3 4.271 264.4 6876 1.363 828.5 13243 4554 

Optimum Classical 128 50.95 2978 1.984 168.9 8645 1.77 773.8 6162 2312 
Reduction 89 76.7 3430 2.288 189.9 4938 1.299 555.7 5950 2242 

 
Table 4.11 – Results of the 20%, 50%, 75% and optimum iteration. 

 
 Optimisation Classical Reduction 

25% RE(MACW2) 0.4643 0.5548 
Overall relative error 0.6172 0.9554 
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50% RE(MACW2) 0.467 0.4406 
Overall relative error 0.479 0.4808 

75% RE(MACW2) 0.4671 0.6818 
Overall relative error 0.4776 1.2457 

Optimum RE(MACW2) 0.4675 0.4201 
Overall relative error 0.4774 0.4301 

 

 

 

 

 
 

Figure 4.14 – MAC between EMA (FEAright) and FEA (FEAleft) values  
for the 25% (top), 50% (top middle), 75% (bottom middle) and the optimum iteration (bottom) of 

the classical optimisation 
 
After the 50th iteration, the rate of change of the relative error decreased; indicating that the 
algorithm has reached the region of the optimum without successfully capturing the optimum. 
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Figure 4.15 – MAC between EMA (FEAright) and FEA (FEAleft) values  
for the 25% (top), 50% (top middle), 75% (bottom middle) and the optimum iteration (bottom) of 

the reduction optimisation 
 
The trajectory of the optimisation is more evident in the figures of the reduction optimisation than 
in those of the classical optimisation. The classical optimisation was faster in the first quarter of the 
optimisation, but afterwards it slowed down in the neighbourhood of the optimum. On the other 
hand, the reduction optimisation exhibited a steady pace. 
The improvement for both optimisations is visible as higher values of MAC shift from one mode to 
another with each representation. 
Remarks: 
1. It is known that the final iteration does not represent the optimum iteration in many cases. It 
simply means that the convergence criteria for  have not been met at the optimum 
iteration, altering the path of the optimisation from the optimum as the algorithm continues looping. 
This is observed in the reduction optimisation, as the optimum iteration occurs before the 91st (75%) 
iteration. 
2.  studies the step value of each variable before deciding the values for the following 
iteration. The 91st (75%) iteration was an undesirable test value that backtracked the optimisation as 
shown from the relative error values and the MAC figure 4.15 (bottom middle). 
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5. Uniqueness of optimisation 
 
Is optimization unique? Theoretically, in some exceptional cases, it might be so. However, the 
human capability is limited, and the computation algorithms are blind and straightforward. They 
cannot deviate from the path laid ahead of them, the path they were programmed to follow. 
Different algorithms yield different yet close solutions to the same optimisation problem. If so, then 
on what basis is a given solution an optimum? Perfection is an illusion and from a mathematical 
point of view, knowing that 0.99 is equal to 1, an optimum solution can have many contradicting 
values. However, from a physical point of view, it is not so. In the case study of the thesis, a 
reduction approach was implemented to change the form of the variables without altering the 
objective function or the optimization algorithm, to discover other feasible solutions. Expanding 
from this point, what other techniques exist to readdress the direction of the optimisation sequence? 
The following problem has been used as an example to implement the different strategies: 
 

 

( ) ( )2
1 2 1

2 2
1 2

1

2

22min ( )  1

1 0
[2 4]

10 10
20 20

i

f x x x

x x

x
x

= − + −

+ − 

= −

−  

−  

x

x  (5.1) 

 
Where f is the objective function, x is the vector of decision variables and xi is the vector of initial 
values. 
 
5.1 Initial point 
 
After solving problem (5.1) using , the following table has been constructed: 
 

Table 5.1.1 – Optimisation results of problem (5.1) 
 

 Initial Values 20th Iteration 23rd Iteration (optimum) # Iterations 
x1 2 0.845745285 0.814125626 

59 x2 -4 0.581483001 0.726686687 
f (x1, x2) 65 0.041697515 0.038630723 

 
The problem has been solved again but with taking the values of the 20th iteration as the initial 
values: 
 

Table 5.1.2 – Optimisation results of problem (5.1) with new 
initial values 

 
 Initial Values  

(manually inputted) 
Initial Values 
(1st Iteration) 

62nd Iteration 
 (optimum) 

# Iterations 

x1 0.845745285 0.84575 0.808169382 
62 x2 0.581483001 0.58148 0.588950089 

f (x1, x2) - 0.041698998 0.040919042 
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The chosen initial values were rounded up during the 1st iteration and hence a new optimum was 
calculated based on this new path. Usually, if the initial values were taken as is, the new iterations 
would have ended at 40 (59 – 19) and the same results from iteration 20 to iteration 59 (Table 5.1.1) 
would have been repeated for the modified problem. Even if choosing new initial values changes 
the route of the optimisation, choosing a value nearer to the optimum does not necessarily decrease 
the number of iterations (the optimum is not reached faster) as observed from table 5.1.2. 
 
5.2 Redundant constraints 
 
Adding or omitting constraints will drastically change the route of optimisation even if the 
unconstrained optimum already exists within the pre and/or post-defined constraints.  
The simplest useless constraint is a zero constraint, since 0 ≤ 0. Logically, the addition of such a 
requirement should not change anything throughout the optimisation. However,  is an 
algorithm that is not aware of the form of the objective function or the constraints. It calculates the 
next iteration based on the returned values of these equations and their dimensions. Hence, it is 
sufficient to just change the dimension of the problem to alter its path. 
 

Table 5.2.1 – Optimisation results of problem (5.1) with  
zero constraint 

 
 Initial Values 142nd Iteration (optimum) # Iterations 

x1 2 0.808168802 
142 x2 -4 0.588949002 

f (x1, x2) 65 0.040919284 
 
It is worth mentioning that increasing the dimension of the problem does not have to incite an 
increase in computation time. This is a feature strictly consistent with the zero constraint. 
 
5.3 Introducing new variables 
 
This section was inspired by the successful implementation of the Buckingham phi theorem in the 
section of the case study. However, the Buckingham theorem is usually applied within the physical 
domain. In what follows, the reduction method will be implemented in the mathematical domain. 
Equation (5.3.1) represents a general format to approach the transformation: 
 

 
1

n

i ij j i
j

x x y
=

= +  (5.3.1) 

 
Where aij is a constant coefficient, n is the size of the x vector and y is a vector of variable and zero 
components. The non-zero aijxj and yi components are the new variables of the system. 
 
Applying the format to problem (5.1), the following is obtained: 
 

 1 11 1 12 2 1

2 21 1 22 2 2

x a x a x y
x a x a x y

+ +   
= =   

+ +   
x  (5.3.2) 

 
Note: multiplying by or/and adding a constant to the decision variables only will not alter the 
optimisation results in any way, such as the next example: 
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 1 1

2 2

1
3

x x
x x

+   
= =   
   

x  (5.3.3) 

 
The optimisation of problem (5.3.4), a modified version of problem (5.1), has been tabulated in 
table 5.3.1. 
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 (5.3.4) 

 
Where x* is the vector of the altered decision variables. 
 

Table 5.3.1 – Optimisation results of problem (5.3.4)  
 

 Initial Values 54th Iteration (optimum) # Iterations 
x1

* 2 0.808168655 

56 
x2

* -6 -0.219220648 
x1 2 0.808168655 
x2 -4 0.588948007 

f (x1, x2) 65 0.040919437 
 
Each optimum calculated from each method is different but almost the same. Ideally, as the 
complexity of the problem increases, wider variations in the solutions should become more visible 
(refer to the case study). 
 
Final remarks 
 

 and other similar algorithms will only show one possible solution even in the presence of 
others. For functions with multiple optima, the algorithm, unaware, will lead to the one in its path, 
ignoring the possibility of there being another solution or a better solution. If unsatisfied with the 
results of the optimisation, altering the path can reveal new possibilities. 
An optimum is any solution that is significantly better than the starting point, even if not optimal. 
The optimisation problem does not need to include an abundance of constraints if they are not likely 
to change the course of the optimisation. A careful observation is advised to distinguish between 
relevant and omittable constraints. 
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Conclusions 
 
In the study of the  function used in the creation of the Optimisation Panel, it became 
evident in many cases how disappointing this tool really is. In the presence of multiple feasible 
solutions,  will only point towards one fooling the user to believe that it is the only 
optimum solution. Even if the solution satisfies all the constraints and boundaries, a better one 
might exist that satisfies other unwritten constraints or ambitions. Perhaps, the most common way 
to turn the direction of optimisation is through the choice of the initial point. However, that might 
require the user to have a vague idea on the location of the optimum. In the case study of the thesis, 
a reduction approach was implemented to change the form of the variables without altering the 
objective function or the optimisation algorithm, in an attempt to discover other feasible solutions, 
which inspired the continued research into the nature of optimisation algorithms. 
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