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Abstract

Slip Control is a common topic on high performance race cars vehicle dynamics.
Differently from common passenger cars, in this application the main goal is fo-
cused on the vehicle dynamic performances improvement. This can be achieved
enhancing the vehicle control system capability to properly deliver the right
amount of torque to the tires in every working condition.
The subject of this analysis is the development of the Slip Controller for the For-
mula Student 4-Wheel-Drive (4WD) electric race car of Squadra Corse PoliTO.
The prototype is embedded with 4 independently controlled electric motors,
which drive one wheel each, giving very high flexibility to the torque delivery.
Due to the non-linearity of the tire contact patch interaction with the ground,
a proper Controller should be implemented to guarantee good slip control per-
formances also in non-linear conditions.

This work aims to propose a solution to improve the vehicle slip control with
the development of a Fuzzy Logic (FL) Slip Controller. This solution has been
designed to overcome the limitations imposed by the usage of model-based con-
trollers, which require higher amounts of data, sensors and track validations
to achieve similar performances. This makes the FL Slip Controller a cost
effective solution both in terms of required testing and computational effort.
A Proportional-Integral-Derivative (PID) Slip Controller is also proposed as a
benchmark, being the most simple, diffused and yet a quite effective solution,
despite its linear approach.
The different solutions are implemented and tested in a Matlab-Simulink and
VI-grade CarRealTime co-simulation environment. The quality of this approach
is studied and evaluated through simulations and correlation analysis with the
real vehicle track data.

Comparative analysis have been performed between the proposed solutions. In
order to quantify the performances improvement brought by the proposed con-
trollers, several Key Performances Indicators (KPI) have been introduced. The
selected KPIs embrace basic physics, vehicle dynamics and lap-time simulation
aspects. Since the analysis is focused on the behaviour of the controller on dif-
ferent working conditions, each of them is characterized by different key aspects.
Overall results of the vehicle in normal track drive situations, represented by
the different Formula Student (FS) Events, are also analysed.
The comparisons have been performed between the non-controlled vehicle, the
PID Slip controller version and the FL Slip Controller one. The results show
the improvement brought by the FL Controller in particular, in every KPI. The
same KPIs are also used to study the application of the FL Slip Controller on
the real race car. They show performances improvement with respect to the
non-controlled vehicle, as lap-time improvement in the FS Acceleration of the
5% and the increase of the combined acceleration during cornering of the 6%.
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1 Introduction

The design of a race car is mainly focused on the performance enhancement of
the vehicle. The majority of the design choices in this application can be sum-
marised in a trade-off between costs, lightweight design and reliability. Today,
due to the increase of electronically-controlled devices and electric actuators, it
is possible to bring great improvement in vehicle dynamic performances, with
enhanced control strategies. Furthermore, the introduction of new clever con-
trollers can be done exploiting already available technologies, optimizing costs
and without the addition of more weight.
The subject of this work is the analysis of the performances that a new con-
troller, a Slip Controller, can bring to a full electric race car. The vehicle under
analysis is the Formula Student race car of the Politecnico di Torino racing
team, Squadra Corse PoliTO. With a 4-independent-motors powertrain, the
vehicle controllability is at the center of the design, being one of the most im-
portant reason to choice such architecture, rather than a lighter and cheaper
2WD solution.
The development and tuning processes of the control systems are fundamen-
tal to extract the most from such solutions. To do so, several tools can be
exploited. The V-model is proposed as software development organising tool,
while cutting-edge simulation technologies, as those proposed by VI-grade, are
used to improve and optimise the controller tuning and subsequent testing.

1.1 Vehicle Dynamics Controllers
Integrated Chassis Control (ICC) is a central topic in modern vehicle dynamics.
The increasing number of on-board chassis actuators is enhancing the possi-
bilities towards integration of controllers. The main topics are referred to im-
provement in safety, comfort and performance. The spreading of ICC is being
boosted also by the introduction of electric motors, in hybrid and electric vehi-
cles, that increase the number of the possible control strategies and controllers
performances because of the electric motor high controllability.

The ICC can be classified in two principal categories: Downstream Architec-
tures and Upstream Architectures[1].
The former category refers to an horizontal structure of the control hierarchy,
in which the control systems work independently until being coordinated at the
lowest level of the structure, i.e. the actuators level. This is a bottom-up archi-
tecture which guarantees higher recovery possibilities, since the malfunctioning
of a controller does not prevent the correct working of the others.
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Figure 1: Downstream ICC Architecture Example[1]

The latter category, instead, refers to top-down architectures, in which
high-level multivariable controllers are placed between the sensor/state
estimations and the actuators levels[1]. An example of multivariable control
can be the multi-layer coordination, in which the controllers coordination and
monitoring is subdivided in a control stack as the one that follows[1]:

1. The supervision strategy: it defines the control mode and computes the
signal references, dependently on the states

2. The high-level controller: computes the control actuations to follow the
references

3. The coordination strategy: it selects the control logic dependently on the
decisions performed by the supervision strategy

4. The CA strategy: it distributes the control actuation signals to the actu-
ators systems

5. The individual actuator control: it delivers the final control action to each
selected actuator

6. The physical layer: here the actuators perform what the previous layers
have asked them
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Figure 2: Upstream ICC Architecture Example[1]

The Control System that will be analysed in this work better suits the Down-
stream approach. The different controllers are, in fact, coordinated at the end
of the torque control pipeline, with a logic of minimum: the Chassis Control
actions are guaranteed unless they overcome the limits imposed by the Power
Control or the Slip Control.
It follows a summary of the most diffused ICC strategies.

Attitude control

Attitude control consists into the improvement of ride comfort and ride per-
formances, reducing the vehicle body motions, i.e. the roll, heave and pitch
motions. It includes Active Suspension Systems (ASS), Continuous Damping
Control (CDC) and Active Roll Control (ARC). The most common actuators
exploited to perform these actions are the semi-active and the active suspension
systems, with which is possible to dynamically act on the suspension stiffnesses
and/or damping values.
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Slip Control

Slip Control embraces all the control strategies that act with the goal of longitu-
dinal slip reduction of the tires of the driving wheels. The two main categories
in which the Slip Controllers divide are: Traction Control Systems (TCS) and
Antilock Braking Systems (ABS). These controllers work with signals coming
from wheel rotational speed measurement and tire longitudinal slip estimators
to detect the onset of tire slippage or tire locking conditions, which are critical
for the safety of the vehicle passengers, and to correct them.
While the ABS commonly works acting on the braking system, the TCS is able
in some cases to properly control also the motor torque. These controllers usu-
ally work with proper actuation routines, that are adapted dependently on the
estimated road conditions, to increase as much as possible the on-board safety.
They also find application in sports cars, increasing the traction and braking
capabilities of the vehicles.

Yaw Control

This category of controllers is characterised by the tracking of chassis yaw rate
and side slip angle references to ensure vehicle stability and to enhance the ve-
hicle dynamic performances. The two main typologies of controllers that apply
these strategies are the Torque Vectoring (TV) and the Electronic Stability Pro-
gram (ESP).
The TV commonly works with the application of positive torque on the driving
wheels. The torque distribution is controlled in a way that a torque unbalance
between the two sides of the vehicle is generated, causing a resultant moment.
This yaw moment is exploited modifying the vehicle balance attitude towards
understeer or oversteer. With common passenger cars the tendency is to ob-
tain an understeering behaviour, which is a safer and easier to control by non-
professional drivers. With sports cars, instead, the goal can be to have a vehicle
balance as near as possible to the neutral steering, leaving higher degrees of
freedom to the drivers to describe the desired trajectories. This control system
is quite advanced and frequently requires specific actuators, e.g. electronically
controlled differentials of electric motors dedicated to single driving wheels. For
this reason, its diffusion is quite narrow in current vehicles, but it is likely to
grow in the near future.
The ESP usually works similarly with respect to the TV, but acting on the
brake system. This allows to implement this control system on the most of
the currently developed vehicles, exploiting technologies already available, for
example, for ABS applications. However, differently from the TV, the ESP is
mainly applied for safety reasons.
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1.2 Squadra Corse PoliTO Formula Stu-
dent Race Car

Formula Student

Squadra Corse PoliTO is the FS racing team of Politecnico di Torino, for the
Electric Vehicles category. Formula Student is an engineering competition in
which more than 200 University teams from more than 60 countries challenge.
The competition is commonly divided into three main categories: Combus-
tion Vehicles, Electric Vehicles and Driverless Vehicles. As mentioned, Squadra
Corse PoliTO competes in the Electric Vehicles class, which has become the
widest and most competitive in the last years.

Being an engineering competition and not a racing championship, Formula Stu-
dent is highly comprehensive of the different engineering disciplines. In fact, ev-
ery Formula Student competition is divided into two main parts: Static Events
and Dynamic Events.

Figure 3: Formula Student Events
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The Static Events are three: the Engineering Design, the Cost and
Manufacturing and the Business Plan Presentation.
The Engineering Design Event consists into the presentation of the engineering
choices performed to design the race car. These choices must be explained and
justified to a group of judges, who are experts belonging to different areas of
the automotive industry.
During the Cost and Manufacturing event, it is asked to the teams to explain
and justify their cost related decisions and the approach to an effective and
sustainable manufacturing.
Finally, the Business Plan Presentation consists in a simulation of a real
Business Plan case study. The goal is to find the best and innovative business
idea to position the team’s race car on the market. The entire business process
must be defined, from the market evaluation and the financial analysis to the
company organization.

The Dynamic Events, instead, are related to the real race cars that compete on
the race track against each others. It must be clarified that no wheel-to-wheel
racing is allowed in Formula Student and, in fact, the score of almost every
event depends only on the relative time spent to complete the test with respect
to the best one. The only exception is made by the Efficiency Event, in which
the score is based on the energy efficiency of the team during the Endurance
Event.
The other Dynamic Events are four: the Acceleration Event, the SkidPad Event,
the Autocross Event and the Endurance Event.
The Acceleration Event consists into an acceleration from standing still on a 75
meters long straight line.
The SkidPad event is characterized by two adjacent circles of 9.125 meters of
radius and a track width of 3 meters. The driver has to complete two times the
right hand side circle and than two times the left hand side one. The score is
the average between the time spent to complete the second circle of each side.
The Autocross Event is a single lap of a defined race track, with a length of
around 1 kilometer and a minimum track width of 3 meters.
Finally, the Endurance Event, the most important event. It is divided into two
stints of 11 kilometers each, each driven by a different driver. In this event, not
only the vehicle performances are tested, but also the vehicle overall reliability
and its energy management capabilities.
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Squadra Corse PoliTO Prototype

Vehicle main data

Mass without driver 211 kg

Front mass repartition 47.5 %

Wheelbase length 1.525 m

Track width 1.2 m

CoG height (from the ground) 0.28 m

Tires and wheels
185/40 R13 slick tires on
13” OZ Racing magnesium-
aluminum alloy rims

Aerodynamic Cl*A 4.78

Aerodynamic Cd*A 1.48

Nominal High Voltage (HV) battery pack capacity 7.7 kWh

Maximum HV battery pack voltage 574.2 V

Table 1: Squadra Corse PoliTO prototype main data

Figure 4: Squadra Corse PoliTO SC22 ”Aurora”
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The 2022 Squadra Corse PoliTO prototype is an open-wheel single-seater
formula-like race car. The vehicle structure is characterized by a CFRP and
aluminum honeycomb sandwich panels monocoque; a steel tubes and
aluminum tubes roll-over protection structure and an aluminum honeycomb
crashbox for front impact protection. The fully adjustable pushrod
suspensions are made of CFRP tubes and are connected with racing uniball
joints to the monocoque and to the machined aluminum uprights.
The electric powertrain is the AMK Formula Student racing kit. It consists of
4 IGBT inverters that supply one SPM-IPM Electric Motor each. Each motor
is able to generate a maximum of 21 Nm of Torque and it is limited at 20000
rpm. The powertrain is able to develop up to 140 kW at 600 V DC, but it is
limited at 80 kW of Electric Power at the HV battery pack output due to
Formula Student regulations[2]. The motors are mounted outboard on
dual-stage planetary transmissions that reduce the motors speed with a final
ratio of 14.69:1.
The HV battery pack is composed by 2 parallels of 132 series of pouch Li-Po
cells. The battery pack has a capacity of 15.2 Ah or 7.7 kWh at the nominal
voltage.
The on-board communications run on four Controller Area Networks (CAN)
that are handled by the Vehicle Control System on the dSpace MicroAutobox
II Electronic Control Unit. The Control System is also responsible for the
dialogue with the HV Battery Monitoring System (BMS) and with the
inverters.
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1.3 VI-grade CarRealTime Simulation

The workflow proposed to analyse and develop any control system with Matlab-
Simulink in co-simulation with VI-CarRealTime follows the V-model approach:

Figure 5: Project V-model

The V-model is a development and testing method. It consists into a sequence
of actions: from a general approach, the design goes down to the particular
and then it goes back in the opposite direction, during the testing. The
advantages brought by this method are related to the complete project
understanding, since also the testing and validation phases are defined before
the beginning of the development[3].
Some of the main sections of the V-model, from the Development to the
System testing, exploit Matlab-Simulink and VI-CarRealTime environments.

Matlab-Simulink is considered as commonly known and no further descriptions
of the software are reported.
VI-grade defines VI-CarRealTime as a ”virtual modelling environment targeted
to a simplified 4 wheels vehicle model”. With VI-CarRealTime it is possible
to create a high-fidelity digital twin of the real vehicle, with the possibility to
assemble the real car system through its most important subsystems.
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The VI-CarRealTime digital twin of Squadra Corse PoliTO is characterized by:

• Real mass and mass distribution values of: sprung masses, unsprung
masses and driver mass

• Full vehicle CAD estimated inertias

• Real vehicle overall dimensions: wheelbase length, track width, CoG po-
sition, etc...

• Aerodynamic Forces maps in function of the front and rear ride heights
as results of the validated CFD model

• Full suspensions and steering system elasto-kinematic model imported
from MSC Softwares Adams Car environment

• Full powertrain model: motors outboard positioning, traction, coasting
and braking torque vs speed maps, powertrain efficiency maps, rotors
inertia, transmission ratio and transmission efficiency

• HV battery model (on which correlation analysis have been performed)

• Tire Pacejka Magic Formula 6.1 model with data coming from the Pirelli
TIR file

• Real mechanical braking system data

VI-CarRealTime offers the possibility to perform mainly three typologies of
simulations: the standardized maneuvers, the file driven events and the max
performance events.
The standardized maneuvers represent the common automotive benchmark ma-
neuvers, which are characterized by precisely defined sequences of actions that
the driver model has to perform, in open or closed loop. The file driven events
are completely customisable: the user can define the sequence of actions, the
path, the speed profile and many other variables of the simulation.
Finally, there are the max performance events. These simulations are charac-
terized by a reference path, subdivided in sectors, that the driver model has
to follow and a maximum distance that defines the maximum deviation that
the vehicle can reach from the reference path. The driver model can be tuned
with 3 different parameters in these events, called Performance Factors (PF):
Longitudinal PF, Lateral PF and Braking PF. Increasing a PF means increasing
the driver exploitation of the vehicle performance limit in that condition. If the
vehicle fails to remain within the maximum distance from the path, the simula-
tion is stopped. Then, the PF that caused the limit to be exceeded are reduced
of a predefined quantity and the simulation is started again from the end of the
previous sector: this is called iteration. It can be noticed that the number of
iterations, during comparative analyses between controllers, can be an indicator
of the higher or lower controllability of the vehicle. In fact, a lower number of
iterations means that the driver model has been capable of running the same
sector with higher PF without overcoming the maximum distance threshold.
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Simulink and VI-CarRealTime co-simulations

Figure 6: VI-CRT and Matlab-Simulink co-simulation

The VI-CarRealTime and Simulink co-simulation environment permit to
import into the Simulink environment the vehicle model. During the
simulation, the CarRealTime defined event is run, but the user can select a
part of the input signals necessary for it and override them with the Simulink
model produced signals. Furthermore, the CarRealTime model returns in
feedback a huge amount of vehicle states signals. Some examples of the most
important data are: vehicle chassis velocities and accelerations, tires forces,
High Voltage battery data (voltage, current, State Of Charge (SOC), etc...)
and suspensions data, both kinematics and dynamics. These data represent an
even higher number of signals with respect to those coming from the real
vehicle sensors, increasing the possibilities of tuning and comparatives of the
different controllers. It is important to focus on the fact that these tuning
possibilities can be obtained months before the real vehicle is ready to be
tested, leaving to the race track only the finest tuning.
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1.4 Thesis Outline

This Thesis project is structured as follows:

1. Chapter 2 presents the necessary theoretical background to develop and
analyse the discussed topics. It is mainly focused on vehicle kinematics,
vehicle dynamics and automatic control logics

2. Chapter 3 presents the methodologies applied on the development of the
studied controller and the strategies related to the analysis of the results

3. Chapter 4 is the conclusion of this work. The final analysis of the results
of the simulations data and the real track application data are shown,
following the methods previously discussed
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2 Theoretical Background

In order to proper develop and implement a control strategy as the Slip Control,
it is necessary to understand which typologies are already available and diffused,
and which of them can best suit in the scope of application.
Once analysed the different control solutions, it is important to study the se-
quence of mathematical equations that are necessary to estimate the controller
input signals, which can be not available from sensors readings. This is due
to the high costs and complexity of the necessary instruments, that can make
them not applicable in situations as the analysed one in this work.
Finally, a physical model is proposed as a possible solution to implement a
model-based Slip Controller. The quality of the estimations produced by the
available data and the chosen equations is discussed. This study is concluded
with an analysis of the reasons which have led to the decision to concentrate
the development of the Slip Controller on a peculiar solution as the Fuzzy Logic
Controller.

2.1 Slip Controllers for Electric Vehi-
cles: State of Art

Battery Electric Vehicles (BEV) can rely on the possibility of proper torque
control algorithms to perform control strategies, as slip controllers, with the
direct actuation on the electric motors. With respect to a conventional In-
ternal Combustion Engine (ICE), the electric powertrain has the potential to
improve the performances of wheel slip control in traction and braking condi-
tions. This is due to the higher precision in torque modulation with respect to
the hydraulic/electro-hydraulic braking systems and the ICE[4].
The electric motors bring with them several additional advantages, as the pos-
sibility to reduce the wear of the braking system components and to recover
kinetic energy with the regenerative braking. This brings relevant improvement
in the energy efficiency of the vehicle, other than the increase in performance
and safety. For example, the actuation of an electric motor used to perform
some slip control can be either a simple input torque reduction or a regenerative
torque application. Another example can be the modulation of the regenerative
braking torque used to perform some ABS: the wheel lock avoidance permits
to maintain the possibility to regenerate the energy, that would not be possible
with no rotational speed of the motor.

In this chapter, several Slip Control algorithms are discussed, which represent
the actual state of art regarding the control strategies applied on BEV.
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2.1.1 PID Controller

The Proportional-Integrative-Derivative (PID) is commercially the most dif-
fused controller. The reasons can be found on its simplicity and its overall good
performances, that make it results in a cost and complexity effective solution.
The PID controller actuation is dependant on three different actions:

• Proportional: it returns a contribute proportional to the reference error.
It is mainly used to reduce the steady-state error and the rise time but it
increases the overshoot.

• Integrative: it returns a contribute proportional to the integral of the
reference error. It is mainly used to eliminate the steady-state error but
it increases the overshoot.

• Derivative: it returns a contribute proportional to the derivative of the
reference error. It works with a damping effect on the signal, reducing the
overshoot and the oscillations around the reference. It highly increases
the command activity.

The complete control linear problem results in the following:

C(t) = −Kpe(t)−Ki

R
e(t) dt −Kd

de(t)
dt (1)

Figure 7: PID Controller Structure[5]

The controller tuning can be performed with different methods. The most
simple tuning methodology is the Trial and Error one[6]. It consist into an
iterative process in which the tuning parameters are manually changed after
each simulation in order to obtain the controller desired behaviour. The
tuning starts from the Proportional parameter until the rise time and the
reference tracking are acceptable.
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Subsequently the final controller behaviour at steady-state can be tuned, intro-
ducing and modifying the Integrative parameter. The Derivative parameter is
finally tuned to find the proper trade-off between rise time and overshoot and
also to reduce the steady-state oscillations around the reference.
Other examples of the most diffused PID Controller tuning methods are those
introduces by Ziegler-Nichols: the Step Response Method and the Frequency
Response Method[5]. Finally, it is important to cite the online tuning proce-
dure that can be implemented. Through model-based approach, it is possible
to exploit Matlab-Simulink Graphic User Interfaces (GUI) tools that allow to
manually o automatically tune the PID contoller, with the only input of the
desired phase margin.

The proposed PID Controller for Slip Control application works on a tire lon-
gitudinal slip signal. The estimation of the longitudinal slip and the selection
of the longitudinal slip reference will be discussed in chapter 3.3.2.

Since the PID Controller is a Single Input Single Ouput (SISO) Controller,
it can control only a single longitudinal slip signal. The Controller input, which
is the longitudinal slip error, is the result of the sum of the slip reference and
the slip signal, the latter is taken with the negative sign. If the longitudinal slip
error becomes negative, this means that the longitudinal slip signal is above the
threshold and so a controller action dependant on the entity of the error and on
the tuning parameter of the controller will be produced.
The controller action works as a torque reduction signal that summed up with
the actual torque request generates the final torque request.
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2.1.2 Explicit Nonlinear Model Predictive Con-
troller

The recent Control Science literature regarding the Slip Control topic shows
growing interest in model-based control, with focus on the model predictive
control (MPC)[4]. A model based controller heavily depends on mathematical
equations to represent the system to be controller.
The MPC, in particular, works predicting the evolution of the system in a finite
period of time, called the prediction horizon, and computes the control action
dependently on the references it has to track, with the performances that has
been decided during the tuning procedure of the controller.

Generally, due to the highly nonlinear behaviour of the tire slip, a nonlinear
approach with MPC (NMPC) shows better performances. In the most com-
mon NMPC implementation, the implicit one, a nonlinear programming (NLP)
problem is solved on-line at each sampling time. If the required sampling time
is high, as for what regards the real-time applications, it can be difficult to
implement this kind of controller due to the high computational load[4]. For
this reason, explicit approach to the NMPC can be preferable. In this case, the
solution is computed offline with the usage of a multiparametric (mp) quadratic
programming (QP) with numerical approximation of the NLP problem. Than,
the control action can be computed online in real time with the current system
states and parameters.
The explicit NMPC requires the formulation of an optimization problem for
a finite prediction horizon, usually including constraints both on controller in-
puts and outputs. It can consists into the minimization of a cost function.
The parameters of the cost function are the states and the inputs of a model
that describes the problem. The most common model and its equations will be
discussed in the following chapter 2.3.

Figure 8: Explicit NMP Slip Controller Structure[4]

23



2.1.3 Sliding Mode Controller

The Sliding Mode Controller is a Variable Structure Controller (VSC), which
includes different functions that translates the plant states into a control surface.
The switching between the different functions is determined by the switching
function[7]. A general structure for a sliding mode controller exploits a switching
function which causes the change of the control action sign dependently on the
two sides of it. The threshold that defines the passage from a side to another
is called sliding surface. The sliding surface can have a certain thickness, called
boundary layer, that causes a smoother passage from a condition to another:
this reduces the chattering around the sliding surface. The control strategy
works moving the system trajectory towards the sliding surface, guaranteeing
the system stability. For this reason, the thickness of the boundary layer defines
the robustness of the control method.

Figure 9: Various Sliding Mode Controllers[7]

The above figure shows the two discussed typologies of sliding surfaces: the
upper one belongs to a controller without boundary layer, while the lower one
to a controller with boundary layer.

The application of the sliding mode controller on the Slip Control problem is
based on the longitudinal slip control. The controller, in fact, minimizes the slip
when it overcomes a certain reference, bringing it back to the slip stable region.
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2.1.4 Fuzzy Logic Controller

FL control has become an important approach regarding the design of non linear
controllers because of many factors. It is, in fact, quite simple to design, does
not rely on complex mathematical models and equations and its implementation
is usually helped by commercially common tools[8]. The first development of a
FL controller was possible thanks to Mamdani work in 1974[9] and its mathe-
matical fundation was stated by Wang in 1994[10].
The FL approach is based on a knowledge-based approach that exploits lan-
guage variables. This permits an easier design of the problem when a physical
and mathematical model is not present or the quality of the data to describe
the model is not valid enough. Furthermore, it also permits to rely on initial
data present only in a qualitative form. To do so, with FL is possible to exploit
fuzzy rules to derive control actions from the inference system inputs. A fuzzy
rule is a conditional statement, expressed in the form IF-THEN[8], while the
deduction of the rule is the inference.

Figure 10: Fuzzy Logic Structure[8]

The general structure of a Fuzzy Inference System (FIS) is characterized by
three main blocks: fuzzification, inference engine and defuzzification. The fuzzi-
fication and the defuzzification are the procedures that permit the translation
of a numerical variable into a fuzzy variable. They are performed through some
membership functions sets. A fuzzy variable is a number, that usually lies be-
tween 0 and 1 or even -1 and 1, that is the result of the degree of membership
of the variable to every membership function of its set.
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A set of a membership functions depends on the language variables that
designer chooses for the description of that input variable. There are different
typologies of membership functions, dependently on their shape: triangular,
trapezoidal, bell and Gaussian. The triangular function is the most common
because of its computational efficiency and simplicity[8], that makes it
convenient for real time applications.

Figure 11: Fuzzy Logic Controller triangular Membership Functions set[8]

The inference engine describes the set of fuzzy rules that translate the fuzzy
input variables into one or more fuzzy output variables. The most diffused ap-
proach for what regards the input variables is to exploit the controlled variable
error with respect to a reference and the derivative of that error. For what
regards the outputs, instead, they represent the controller actions.

Finally, the definition of the rules can be approached with two main methods:
the Mamdani approach and the Sugeno-Takagi approach. Usually Mamdani
inference is recommended for use because it produces stronger control actions
in certain cases[8]. With this method, a rule is defined for every combination of
the inputs language variables. It follows the construction of a table, as the one
proposed in the following example:

Table 2: Fuzzy Logic Controller General Table of Rules[8]
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The most diffused tuning procedures are related to algorithms as the Genetic
or the Pattern Search ones, with the goal of finding local minimum points in
the control surface, that represent the stability of the systems.

For what has been discussed in this chapter, the FL Controller suits particularly
for a control strategy as the Slip Control. The reasons can be found in the
lack of experimental data for what regards the contact patch forces, with the
consequence of poor estimations performed by the model. This and the structure
of the proposed FL Slip Controller will be analysed with higher depth in chapters
2.3 and 3.3.1.
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2.2 Vehicle Data Estimation

The implementation of a Slip Controller requires input signals that can properly
represent the onset of the tires slippage or blocking conditions. It is common
to estimate the tire states, as the tire side slip angle or tire longitudinal slip, to
obtain these signals that are very complex and expensive to measure on track.
This chapter proposes a sequence of vehicle physical estimations, that are nec-
essary to obtain proper longitudinal slip signals.
Furthermore, a possible method is proposed to estimate the tire contact patch
forces. These estimations are necessary for the implementation of the vast ma-
jority of the model-based Slip Controllers. Since in chapter 2.3 it is presented
a model to perform such implementation, also the evaluation of the necessary
data to build the model is shown.

Every estimation performed in this chapter is compared with the output of
the VI-CarRealTime and Simulink co-simulation. The simulation is based on
a FS Skidpad Event, in which it is possible to appreciate both transient and
steady state vehicle behaviour. These make this event very useful to study
both longitudinal and lateral dynamics, in an environment that can be repro-
duced during the track tests for correlation analysis. The blue curves represent
the simulation output, while the orange curves represent the new estimations
results.

Figure 12: FS Skidpad Event track

28



2.2.1 Vehicle States Estimation

Dual Track Model

Figure 13: Dual track model

The kinematic model exploited to perform the vehicle states estimation is the
dual track model. In vehicle dynamics is common to exploit single track model
but, for FS applications, some of its hypothesis are not suited. In particular,
the wheelbase and track dimensions are not negligible with respect to the most
common values of cornering radius of the competitions. For this reason it is
not possible to collapse the outer wheels into a center one (one for each track)
to simplify the model. The vehicle side slip angle is represented with the letter
β, the wheels steering angles with δ, the tires side slip angles with the letter α
and the tires longitudinal slip ratios with the letter σ.

Vehicle Side Slip Angle

The vehicle side slip angle, also known as attitude angle, is defined as the angle
between the vehicle CoG velocity vector and the vehicle XY plane[11]. The
attitude angle is usually estimated, since its measurement is complex and ex-
pensive. The common practice consists into the application of states estimators
as the Extended Kalman Filter (EKF).
The race car of Squadra Corse PoliTO is embedded with a SBG Systems Ellipse-
N, a system composed by an Inertial Measurement Unit (IMU) and a GPS. This
tool is embedded with an EKF that is aided by the velocity measurement pro-
vided by the single antenna GPS.
A simplified approach regarding the estimation of the attitude angle is proposed
in this chapter.
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• Vehicle Side slip angle:

β(k) = (acentr(k)
VCG(k) − r(k))(t(k)− t(k − 1)) (2)

• Centripetal acceleration:

acentr(k) = ay(k)cos(β(k − 1))− ax(k)sin(β(k − 1)) (3)

The proposed formulas approach the side slip angle estimation relying only on
measured signals, in particular the vehicle longitudinal and lateral
accelerations. The signal is produced from the discrete integration of its
derivative. The attitude angle derivative is the result of the difference between
the centripetal acceleration and the yaw rate. In this approach, the centripetal
acceleration is calculated with an iterative process, exploiting its previously
estimated value.

Figure 14: Side Slip Angle comparison

Figure 14 shows the comparative analysis performed between the side slip angle
resultant from the VI-CarRealTime simulation and the output of the proposed
approach. The plot shows a good correlation between the two signals.
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Tire Side Slip Angle

The generation of a lateral force due to the contact between the tire and the
ground can occur only due to a lateral deformation of the tire itself.

Figure 15: Tire Side Slip Angle[12]

The tire side slip angle is the angle that generates between the XY plane of
the tire contact patch reference frame and the tire velocity vector, due to the
mentioned deformation. It is possible to compute this tire angle with a
kinematic analysis of the dual track model, starting from the vehicle side slip
angle and the wheel steering angle. The proposed formulas to obtain the side
slip angle are the following:

• Front Tires Side Slip Angle:

αi = arctan(
Vy+r∗xi

Vx−r∗yi
)− δi (4)

• Rear Tires Side Slip Angle:

αi = arctan(
Vy+r∗xi

Vx−r∗yi
) (5)
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The results of this estimation are depicted in the following figure, in
comparison with the CarRealTime simulation output.

Figure 16: Tire Side Slip Angle comparison

The quality of the estimation is acceptable, both in transient and in steady
state conditions.

32



Wheel Longitudinal Velocity

Figure 17: Wheel Reference Frame and angles[13]

The wheel longitudinal velocity is necessary for the longitudinal slip
estimation that wheel be discussed in chapter 2.2.1. It represents the velocity
of the origin of the wheel reference frame. This velocity can be evaluated from
a kinematic analysis of the dual track model. In the Appendix it is possible to
find the mathematical steps necessary to define the following formulas.

• Front wheels longitudinal velocity:

Vx,i = r ∗ cos(αi) ∗ ( R∗cos(β)−xi

cos(δi)−cos(αi)
) (6)

• Rear wheels longitudinal velocity:

Vx,i = r ∗ cos(R ∗ cos(β)− xi) (7)

The quality of the estimation is analysed comparing the signal with the cor-
respondent output of the CarRealTime simulation.
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Figure 18: Wheel Longitudinal Velocity

Also in this case, the comparison shows positive results, since the correlation is
good.
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Tire Longitudinal Slip

As for what regards the generation of cornering force, the tire deforms in order
to develop the longitudinal force.

Figure 19: Tire Longitudinal Slip[12]

In traction conditions, for example, the foremost part of the contact zone is
compressed. The value of the effective rolling radius R

′

e is smaller than the one
characterizing the free rolling and is usually smaller than the loaded radius Rl.
The angular velocity Ω of the wheel becomes grater than the pure rolling one
Ω0. In this case, it is possible to define a longitudinal slip as follows[12]:

• Tire Longitudinal Slip:

σ = Ω
Ω0

− 1 (8)

In this work, however, it has been decided to exploit another definition used to
represent this physical aspect. Since the FL Controller works with variables that
represent percentages, it has been decided to follow this approach to represent
the slip. To do so, many different formulas are present in literature. The chosen
one, mentioned in [14], is the following:

• Tire Longitudinal Slip* Ratio:

σ∗
i =

ωi∗Ri−Vx,i

max(ωi∗Ri,Vx,i)
(9)

Since this formula does not represent the proper definition of the longitudinal
slip, in this work it will be reported as longitudinal slip* ratio. The proposed
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formula exploits Vx, the estimated wheel longitudinal velocity that has been
previously discussed.

Figure 20: Tire Longitudinal Slip* Ratio comparison

Figure 20 shows the correlation of the estimation with the CarRealTime
simulated signal. The quality of the correlation is good, especially in transient
conditions in which this phenomenon is quite difficult to estimate with a
proper precision.
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2.2.2 Tires Forces Estimation

Tire Contact Patch Forces - Normal Force

The estimation of tire forces is fundamental in vehicle dynamics control strate-
gies. In chapter 2.3, the physical model proposed as a possible approach to
model based slip control is presented. This model exploits the contact patch
forces estimation that is going to be shown in this section.
The force estimation starts with the normal force, which is used as input for the
estimation of the other contact patch forces. The normal force is not directly
dependant on the tire characteristics, differently from the other forces that are
analysed in this chapter. Considering a flat road, it depends on two main ty-
pologies of forces: the aerodynamic forces and the vehicle loads. In a simplified
analysis as the one that follows, the aerodynamic contribute is represented by
the lift force, characterized by the lift coefficient Cz. With vehicle loads, it is
possible to refer to the vehicle static load (caused by its mass) and to the load
transfers. In particular, the longitudinal load transfer is due to the longitudinal
acceleration and the lateral load transfer is due to the lateral acceleration.

Figure 21: Example of load transfer: lateral[13]

The formulas exploited for the computation of the normal forces of each
contact patch are the following:

• Aerodynamic Forces:

Fz,aero = 1
2ρairCzAV 2

x (10)

• Longitudinal load transfer:

Fz,long = mass ∗ ax ∗ hCG

wheelbase (11)

• Longitudinal load transfer:

Fz,lat =
mass ∗ ay ∗ hCG

track (12)
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Figure 22: Estimated tires Vertical Forces

Figure 22 shows a comparison between the CarRealTime simulated normal
forces and the estimated ones. Even if the trends look correct and the error
between the two signals is relatively quite small, it is still relevant and this error
will affect also the following estimations.
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Tire Contact Patch Forces - Longitudinal Force

As it has already been mentioned, the longitudinal force is caused by the de-
formation of the tire thread. Hans B. Pacejka introduced in the early 90s sev-
eral formulas, known as Magic Formulas, to represent the phenomena of the
forces developed due to tire and ground interaction. These formulas have been
evolved during the years, increasing their complexity and, consequently, their
fidelity with the reality. The most common formulation of a Magic Formula is
the following[13]:

Figure 23: Tire Longitudinal Force Magic Formula[13]

The Magic Formulas are characterized by many different parameters, that are
computed through data fitting techniques of experimental data; an example
can be the non-linear least squared method. These parameters are usually
collected for industrial application in files called ”TIR files”. Typical results of
the output of the Pacejka formulas are reported in the following figure:

Figure 24: Tire Longitudinal Force

The tire longitudinal force estimation proposed in this work exploits the Magic
Formula in its 6.1 version. It takes into account the dependence on the normal
force, the tire longitudinal slip, the wheel velocity, the tire pressure and the
combined slip.
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Figure 25: Estimated tires Longitudinal Forces

The previous Figure shows the correlation between the estimated forces and
the CarRealTime simulated ones. The error between the two signals is
generally small, but in some local cases it becomes quite relevant. As already
mentioned, the estimation is affected from the errors already present in the
inputs, as for example in the contact patch normal forces.
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Tire Contact Patch Forces - Lateral Force

The tire lateral force is the resultant of the stresses caused by the deformation
of the tire thread[12].

Figure 26: Tire Lateral Force

The approach to the estimation of the lateral force is the same of the
longitudinal one. It takes into account the dependence on the normal force, the
tire side slip angle, the wheel velocity, the tire pressure and the combined slip.
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Figure 27: Estimated tires Lateral Forces

The comparison between the two sets of forces signals shows very good results
for the estimation of the forces at the rear tires, while it is worse at the front.
The fact that the most of the estimation error is at steady state, as it happened
also with longitudinal forces estimation, shows the strong dependence of the tire
forces on the normal load on the contact patch.

42



2.3 Slip Control Model

The model-based controllers work exploiting mathematical models to define the
desired control action. A possible solution, as already mentioned, for the slip
control strategy can be also a model-based controller. In this chapter, it is pro-
posed a model that can be suitable for such application.
The model is based on a starting equation, which is the derivative of the longi-
tudinal slip*. The slip* derivative is mainly dependant on the slip* itself, on the
wheel angular acceleration and on the longitudinal acceleration of the vehicle.
The former is evaluated with the wheel moment balance, while the latter with
a simplified longitudinal dynamics model of the vehicle.

Figure 28: Longitudinal dynamics and wheel moment balance models[15]

The mathematical equations used to describe these models are the following:

• Longitudinal slip* derivative:

d
dtσ(t) = r d

dtωw(t)− d
dtVx(t) (13)

• Wheel moment balance:

d
dtωw(t) =

1
Jw

(Td − Tb − Fxr) (14)

• Vehicle longitudinal dynamics:

d
dtVx(t) =

1
mass (

P
i Fx,i − Fx,aero) (15)

Fx,aero = 1
2ρairCxAV

2
x (16)

The model-based controllers performances strongly depend on the quality of
the model, in particular this is related to its capability to represent the physical
phenomena in the most accurate way. The accuracy depends on the quality
of the data used to build the model and on the complexity of the equations it
exploits. It is important to focus, however, on the fact that higher complexity
equations can require data that are difficult to obtain with a proper precision
and they can also increase the computational load required to solve them.
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In order to evaluate the quality of the model and the quality of the estimated
data necessary to solve it, several comparison have been performed between the
VI-CarRealTime simulations and the model outputs, in the same conditions.
The same Skidpad event already discussed in chapter 2.2 is exploited, since
these estimations derive from the ones shown there.

Wheel Angular Acceleration

Figure 29: Wheel Angular Acceleration

Figure 29 shows the model behaviour in the estimation of the wheel angular
acceleration. The first part of the simulation occurs in transient conditions
and it is possible to analyse the huge difference between the two behaviours.
In steady state conditions, instead, the correlation is much higher. The reason
is dependant on the high sensitivity of this equation on the values of the
transmitted ground and the tire longitudinal force. As it has already been
shown, the precision with which the longitudinal forces are estimated is not
always acceptable. In this equation, this problem is enlarged, since small
errors on the forces estimation can lead to very high errors in the angular
acceleration estimation. This problem is so evident, that in certain cases the
angular acceleration can result negative even if the vehicle speed is growing.
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Tire Longitudinal Slip* Derivative

Figure 30: Tire Longitudinal Slip* Ratio Derivative

Figure 30 shows the model behaviour in the estimation of the longitudinal slip*
derivative. Also in this case, the problems are the same of the wheel angular
acceleration estimation: the transient dynamic is not correctly represented.
This is due to the strong dependence of the slip* derivative on the wheel
angular acceleration, causing the propagation of the previously discussed error.

The main problem with these estimations is that their worst performances oc-
cur in transient conditions. The slip controller, however, works exactly in these
conditions, under strong non-linearities of the phenomena. For these reasons
and also due to the relevant computational load required for non-linear model-
based controllers, it has been preferred to concentrate on different solutions.
The Fuzzy Logic controller, as already mentioned, is well suited to be applied
on situations in which some difficulties in the model estimations suggest to dis-
card the model-based solutions.

In chapter 3.3, the development of the Fuzzy Logic controller is discussed. The
first part works as a framework for the contest in which the FL slip controller
is positioned inside the Control System of Squadra Corse PoliTO. A PID slip
controller is also proposed as a benchmark, as already discussed.
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3 Methodology

This chapter main section consists into the presentation of the methods to de-
velop the FL Slip Controller. Following the V-model approach, it is necessary
to introduce the context, at system level, in which the new Slip Controller will
operate: the Vehicle Control System. The way in which the torque request for
the inverter is produced and the way in which the motors are controller are so
presented.

Furthermore, a benchmark controller is briefly introduced: the PID controller.
The reasons behind this choice and a short description of its implementation
are proposed.

The FL controller development, as mentioned, follows the V-model. The sub-
system design, development and tuning procedures are shown in detail. The
chapter concludes with the presentation of the final phase, that consists into
the validation and the results analysis methods. The validation analysis are
performed on the VI-CarRealTime model in comparison with real data from the
track. Since the entire process is performed in co-simulation with that model, it
is fundamental to validate its result, before the final testing and the final results
analysis. The results analysis are useful to show the performances improvement
brought by the new controller, in comparison with the non-controlled vehicle
and the benchmark controller.

3.1 Vehicle Control System

Figure 31: Vehicle Control System
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The Vehicle Control System is the responsible for the handling of the informa-
tion coming from the four on-board Controller Area Networks (CAN). The first
one is dedicated to the Low Voltage system communication, in which electronic
boards compliant with Formula Student rules and sensors acquisition boards di-
alogue. The second one is dedicated to the HV BMS. The third and the fourth
CAN are dedicated to two inverters each, a couple per each side of the vehicle.
The Vehicle Control System is completely developed in Matlab-Simulink envi-
ronment and it is compiled in C programming language, with dSpace propri-
etary compiler, to run on the Electronic Control Unit. The Control System
works merging the information coming from the four CAN in order to produce
the necessary signals to correctly close the High Voltage circuit, with the actua-
tion of the three High Voltage Battery relays, and the signals necessary for the
inverters to produce the desired speed control of the motors, depending on the
driver requests through the accelerator and brake pedals.

Figure 32: Control System Structure

The Control System most important feature is the torque reference generation,
i.e. the production of the torque request for the inverters, starting from the
driver’s actuation on the accelerator and brake pedals. The driver’s demand is
translated into a signal called ”throttle demand”, which represents the
percentage (positive for traction and negative for regenerative braking) of
accelerator pedal travel or brake pedal pressure (with the maximum levels that
are measured during proper bench tests) respectively. The throttle demand is
reduced dependently on the Power Control.

The Power Control is a PI controller that receives in feedback the HV battery
electric output power. It must reduce the power in order to fulfil the Formula
Student regulations of 80 kW of maximum electric power. The limit must not
be exceeded by the power signal after a sliding-window moving average filter
of 500 ms is applied on it[2]. The controller tuning has been performed with
the trial and error method, exploiting VI-CarRealTime and Matlab-Simulink
co-simulations. Finer tunings have been performed on real test bench facilities
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and, finally, on the race track. The final throttle signal, coming from the sum of
the throttle demand and the power control signal, rescales the maximum pow-
ertrain torque between 0 Nm and the maximum desired torque.

Subsequently, the powertrain total torque request is distributed to the four
motors with a front/right repartition. The torque distribution is static in trac-
tion conditions, while it is dynamically modified during the regenerative phase,
in order to balance the growth of the mechanical braking torque. After that,
and only in traction condition, the Torque Vectoring (TV) control automatically
modifies both the front/rear and the left/right torque repartitions. The gener-
ated torque unbalance is the result of the actuation signal coming from the TV
adaptive PI controller, which adapts the tuning parameters of the PI controller
dependently on the working condition. The working conditions are defined as
combinations of vehicle CoG (Center of Gravity) velocity, longitudinal and lat-
eral acceleration. The goal of the controller is the correction of oversteering and
understeering behaviour of the vehicle, by tracking a kinematic neutral steer-
ing yaw rate reference. The tuning of the almost 5000 working conditions PI
controller parameters have been performed with automatic model-based tuning.

The Slip Controller is the final phase of the Torque Control. Its goal is the
reduction of the tire longitudinal slip* when it overcomes the desired threshold,
that can be modified dependently on the working condition. It works both in
traction condition, i.e. when the tire longitudinal slip* is positive, and in brak-
ing condition, i.e. when the tire longitudinal slip* is negative. The chapter 3.3
of this study concentrates on the development, tuning and testing of this control
system.
Finally, after the Slip Controller, the final torque request signals are produced
(one per each motor), keeping under considerations the limitations due to over-
temperatures of the whole powertrain (including also HV battery over-temperature,
over-current and voltages protections) and motors field weakening. The torque
requests are sent to the inverters, that will be responsible for the speed control
of the electric motors.
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Motors Speed Control

The motors speed control is simpler to implement with respect to a torque con-
trol, since once the imposed speed limit is reached, the inverter autonomously
controls the motor torque to maintain the target speed. It is important to
specify that the Control System produces a torque request, not a speed request.
This is due to the fact that the inverter requires three input signals to control its
motor: the motor maximum speed and the minimum and maximum torque that
the motor can produce to reach the speed limit. The motor maximum speed is
set dependently on the situation (e.g. specific test, dynamic event, etc...) and
kept constant if in traction conditions or set to 0 in braking conditions. The
motor minimum torque is kept constant at the maximum (in absolute value)
regenerative torque that it is desired from the motor. Finally, the maximum
torque is exploited as torque request signal: it is the result of the entire Control
System.

When the motor is at a different speed from the set limit, the inverter will sup-
ply the motor in order to produce the maximum positive torque to accelerate in
traction conditions, or the maximum negative torque to brake in regenerative
torque mode. With the dynamic modification of the maximum torque limit
by the control system, the motor will produced the requested torque in almost
every situation, exception made by the already mentioned situation in which
the motor is effectively at the maximum speed. In this way, the motors torque
will be dependent on the driver requests. This behaviour can be checked with
a feedback signal coming from the motor: the excitation current. AMK, the
powertrain manufacturer, calls this signal ”AMK TorqueCurrent”. By dividing
the signal for the motor torque constant, which is 0.26, it is possible to record
the feedback signal of the real motor output torque.

49



Figure 33: Motors Speed Control

Figure 33 shows how the torque request signal is followed by the motors output
torques with a good precision. The blue dots represent the requested torque
while the orange dots represent the output torque from the torque current
signal; both the signals are plotted in function of the motor speed. The good
overlay between the two signals show the correct functioning of the motors
speed control, since the motors return what the Control System asks them.
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3.2 PID Slip Controller

The PID Controller is the most diffused controller in industrial applications
because, even if its simple to implement and tune, it is able to guarantee ac-
ceptable control performances in most of the conditions. For these reasons, it
has been selected as benchmark solution in this work.
To implement the controller, it has been exploited the Simulink block of the
discrete varying PID.

Figure 34: PID Slip Controller

The tuning procedure has been performed with a Simulink model that worked
as test bench. The model discussed in chapter 2.3 has been exploited to work
as a plant in closed-loop.

Figure 35: PID Slip Controller Tuning Model

The working condition selected to tune the controller has represented what is
considered to be the worst condition for the slip controller: the starting phase
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of an Acceleration run, for a front tire. In this condition, full torque is put
in input by the motor, due to the driver full throttle request, but the tire has
a low vertical force on it due to the longitudinal load transfer caused by the
longitudinal acceleration. This causes that the input torque is maximum when
the available longitudinal force is minimum and this rapidly causes the tire
slippage.
The tuning procedure has been performed with the trial and error method.

Figure 36: PID Slip Control Tuning Results

Figure 36 shows the PID controller tuning results. It shows how, with respect
to the non-controlled situation, in which the longitudinal slip* rapidly
increases towards the full slippage, the PID is able to quickly control the slip*,
guaranteeing good rise time and low overshoot.
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3.3 Fuzzy Logic Slip Controller

3.3.1 Fuzzy Logic Controller Structure

Figure 37: Fuzzy Logic Controller Structure

The structure of the proposed Fuzzy Logic Controller is presented in Figure
3.3.1. The input variables are the slip* error and its derivative, the slip* error
rate. The MFs of the slip* error work between 0, no error, and 1, maximum
error. The MFs of the slip* error rate work also with negative values, since a
negative slip* error represents a situation in which the error is reducing.

Figure 38: Longitudinal Slip Error Membership Functions
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Figure 39: Longitudinal Slip* Error Rate Membership Functions

Four levels of slip* error have been identified, each one represented by a MF:
Low Error (LE), Medium Error (ME), High Error (HE) and Maximum Error
(MAXE). Six levels, instead, have been defined for the slip* error rate:
Negative High Error Rate (NHER), Negative Medium Error Rate (NMER),
Negative Low Error Rate (NLER), Positive Low Error Rate (PLER), Positive
Medium Error Rate (PMER) and Positive High Error Rate (PHER).

Figure 40: Fuzzy Logic Controller Membership Functions

The controller MFs define the controller action. Also these MFs work between
0 and 1, since the goal of the control action is to reduce the input torque: at
most it will be reduced of its entire quantity, with a controller action equal
to 1. Five controller MFs have been defined: Low Control (LC), Medium Low
Control (MLC), Medium High Control (MHC), High Control (HC) and Maxium
Control (MAXC).
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Fuzzy Logic Rules

Slip* Error Rate
vs Slip* Error

NHER NMER NLER PLER PMER PHER

LE LC MLC MHC MLC MHC HC

ME M LC MHC HC MHC HC HC

HE MHC HC HC MAXC MAXC MAXC

MAXE HC HC MAXC MAXC MAXC MAXC

Table 3: Fuzzy Logic Inference System Table of Rules

The table of rules, as it has already been mentioned, is based on the Mamdani
method[9]. To every combination of slip* error MF and slip* error rate MF, a
controller MF is linked. The resultant table of rules defines the inference
engine that links the inputs and the output: a Low Error that has a Positive
High Error Rate, will result in a High Control action.

All the possible combinations between the inputs and the output generate a
control surface, in which all the possibilities are represented. The following
figure shows an example of a fuzzy inference system:

Figure 41: Fuzzy Logic Straight Acceleration Inference System
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3.3.2 Fuzzy Logic Controller Tuning

Tuning Procedure

One of the most important goals of this work is the proposal of a tuning proce-
dure for the FL Slip Controller in analysis. Exploiting the already mentioned
FL Toolbox of MATLAB, it is possible to manually tune the controller, modi-
fying the shape and width of the different MFs but also to modify the rule that
link them. The proposed method is based on the following passages:

1. Definition of a Cost Function

2. Definition of the Standardized Events

3. Controller Optimization

Minimization of the cost function for:

• Slip* Error Membership Function

• Slip* Error Rate Membership Function

• Fuzzy Inference System Rules

• Controller Membership Function

4. Slip* Reference Fine Tuning

The order of the MFs tuning has been decided in order of dependence from the
other, i.e. the more independent MFs are tuned earlier. For example, the Slip*
Error MF is tuned earlier than the Slip* Error Rate MF, due to the dependence
of the latter from the former.
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Cost Function definition

The cost function is a tool that permits to quantify the performances of the
studied controller. The selected cost function for this work is the following:

• Cost: R ti
t0
(s∗actual − s∗reference)dt (17)

The cost function represents the integral of the slip* error with respect to the
time, where the slip* reference is modified dependently on the working condition.
This cost function has been selected because of its simplicity and effectiveness.
The reduction of the integral of the error guarantees the reduction of the over-
shoot, the steady state error and the oscillations around the reference, since it
represents the reduction of the area of the slip* error in function of the time.

In order to reduce as much as possible the dependence on the chosen initial
slip* reference, two different slip* references have been used during the tuning
procedure. One represents a low slip* condition and the other one a medium
slip* condition. The goal was to find similar trends on the cost reduction for
both the slip* references, to have good indications on the performance improve-
ment of the controller.
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Standardized Events

The Standardized event is a set of maneuvers that must represent the specific
working conditions in which the controller will be tuned. The development of
the tuning environment for the FL Slip Controller has required a different event
for everyone of the four working conditions in which the controller is studied. In
order to achieve this result, four VI-CarRealTime standardized maneuvers have
been exploited. Every maneuver definition has required an iterative process to
identify the proper boundary conditions.

Straight Acceleration

• Initial speed: 5 m/s

• Final speed: not defined

• End time: 2.5 s

The tuning of the Straight Acceleration Fuzzy Inference System has been per-
formed in a straight acceleration simulation environment. In order to avoid the
speed estimation errors, which can lead to slip* estimation errors, the initial
velocity has been set to 5 m/s. The simulation termination condition has been
decided to be the simulation time of 2.5 seconds. The simulation duration has
been decided in order to stop it after the return of the longitudinal slip* of every
tire of the non-controlled vehicle, which is the worst case, in the stable region
of the curve. After this, no more controller action would be needed in any case.

Acceleration in turn

• Initial speed: 15 m/s

• Final speed: not defined

• End time: 15 s

• Turn radius: 20 m

The tuning of the Acceleration in Turn FIS has been performed in a Constant
Radius Cornering simulation environment. The acceleration in turn working
condition has been simulated with a constant increasing vehicle longitudinal
speed profile. The goal of the mentioned iterative approach has been the iden-
tification of the correct combination of initial speed, turn radius and simulation
end time in order to stop the simulation after reaching the critical speed due
to an oversteering behaviour of the non-controlled vehicle. This is then most
critical situation in acceleration in turn conditions.
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Straight Braking

• Initial speed: 33.33 m/s

• Brake demand: 70

• Brake demand ramp-up time: 0.2 s

• End time: 3 s

The tuning of the Straight Braking FIS has been performed in a straight brak-
ing simulation environment. The choice of the simulation parameters has been
performed in order to simulate a realistic braking condition that could lead to
the full locking of the four tires. The performed iterations have been necessary
to find a proper trade-off between the mechanical and the regenerative braking
torques. This is necessary in order to avoid locking conditions due to the me-
chanical braking, that could not be recovered by the Slip Controller that can
only rely on the electric motors torques.

Braking in turn

• Initial speed: 22 m/s

• Target deceleration: 2g

• Turn radius: 30 m

• End time: 2 s m

The tuning of the Braking in Turn FIS has been performed in a braking in
turn simulation environment. The choices performed to select the simulation
parameters have been done with the same goal of the straight braking ones.
Furthermore, particular attention has been payed on the avoidance of too strong
cornering instabilities that would have caused the failure of the simulation.
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Controller optimization

In this chapter, the analysis is focused on the optimization of every section of
the Fuzzy Logic Controller. Every membership function or set of rules is tuned
on its own, maintaining the others constant.
The selected optimization method works similarly to a simplified mono-dimensional
Pattern Search (PS) algorithm. The multidimensional PS algorithms generally
define a starting point and generate different iterations of the tuning parame-
ters, each one at the same distance from the starting point, but along different
directions [16]. Once found the best solution, new iterations start with the same
logic of the previous phase, but taking the previous solution as starting point.
When, after a certain number of simulations, it is not possible to find a better
solution with respect to the starting point, the distance between the parame-
ters is reduced and the process is repeated again. The convergence to the local
minimum can be found and the distance from it depends on the computational
efficiency that it is desired to obtain.

The method exploited for the tuning of each FL MF is much simpler and it
is based on the possible modifications that can be performed on it. The tuning
starting point, which is represented by the initial shape of the MF, has been de-
fined with symmetric MFs, all with the same dimensions. The only exceptions
are the Zero Slip* Error and Max Slip* Error functions which represent unitary
values of slip* equal to 0 and 1 respectively.
The iterations has been performed with two sequential modalities. The first one
consists into the horizontal displacement of the MFs, without the modification
of MFs shapes or relative distances. Moving the functions towards the right
hand side leads to a decrease of the controller activity, since higher values of
slip* will belong to lower severity MFs. The opposite happens if the MFs are
moved to the left. After no more horizontal shifting is possible, due to the reach
of the borders, the second modality is exploited. It consist into the modification
of the the relative distance between the MFs and their width, in order to push
the controller activity even further towards the increase or the reduction.
The order of the iterations has been defined following the simplified mono-
dimensional PS approach that has already been mentioned. It consists into
three different passages:

1. The first batch of iterations is performed at constant distance from the
starting point, with some simulations towards the control action increase
and the others in the opposite direction. The iterations that follow the
first one of every direction are performed at a constant distance from the
previous one.

2. The second batch of iterations is performed along the direction that has
shown the best trend in the previous phase. In this phase the horizontal
shift is performed at first with constant distance between the MFs until it
is possible. When necessary, also a reduction of distance can be exploited.

3. The final batch of simulation is performed by modifying the MFs width
and shape to reach the desired convergence.

It is important to focus on the fact that FL is highly dependant on the designer
choices and experience, so the acceptability of the convergence to the solution
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of the optimization problem depends also on this aspect.
The order, with which the different entities of the FIS have been tuned, starts
with the two input membership functions: the Longitudinal Slip* Error one
and the Longitudinal Slip* Error Rate one. After these, the focus is put on the
set of Rules that links the two inputs with the output, which is the controller
action. Finally, the last tuning consists into the optimization of the Controller
membership function.

In the next Figures, from Figure 42 to Figure 45, the tuning procedure of the
Straight Acceleration FIS is taken as example: every one of the other three FIS
has been tuned following the same procedure. In the mentioned plots, the FL
controller will be represented with a continuous line, while the PID controller,
taken as benchmark, is represented with a dashed line.

Figure 42: Fuzzy Logic Controller Tuning: Slip* Error in Straight Acceleration

Figure 43: Fuzzy Logic Controller Tuning: Slip* Error Rate in Straight
Acceleration
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Figure 44: Fuzzy Logic Controller Tuning: Rules in Straight Acceleration

Figure 45: Fuzzy Logic Controller Tuning: Controller in Straight Acceleration

As it has already been mentioned, two slip* reference have been defined to
analyse the trends differences. The selected values are 0.1 for the low slip*
reference and 0.3 for the medium slip* reference. It is possible to notice how
the trends of the cost function reduction are similar for the two different
references, in every passage of the tuning process.

The plots also show how the FL controller is already capable of minimizing the
cost function from the tuning starting point, with respect to the PID controller.
The increase of cost function in the first two iterations is caused by the appli-
cation of the first phase of the tuning, in which some simulations are performed
modifying the MFs towards a controller action reduction. Every set of MFs has
shown performances improvement increasing the controller action with respect
to the starting point. The complete tuning process caused the reduction of the
cost function of an entire order of magnitude.
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Slip* Reference Fine Tuning

The final phase of the proposed tuning procedure consists into the tuning of the
fine tuning of the slip* reference for every working condition. In this passage,
the most relevant tuning parameter is the Key Performance Indicator (KPI)
selected for that specific condition. The selection of the KPIs will be explained
in detail in chapter 3.4. The cost function is exploited also in this phase, as
secondary tuning parameter.

Figure 46: Straight Acceleration Slip* Reference Tuning

Figure 46 shows the fine tuning procedure of the slip* reference of the Straight
Acceleration inference system. The blue data refer to the selected KPI for this
working condition, which is the average longitudinal acceleration, and the
orange data represent the cost function. Also in this plot, the continuous lines
describe the FL controller data, while the dashed lines the PID controller. The
plot shows how the FL controller is able to guarantee higher average
acceleration with respect to the PID one, while always maintaining a lower
cost function.
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3.4 Results analysis methodology

Model validation with VI-grade VI-CarRealTime simulations

The VI-CarRealTime and Simulink co-simulations are able to produce many
output signals. As it has already been shown in chapter 2.2.1, some of those
output signals have been used to verify the quality of the introduced estima-
tion. Since also the CarRealTime model is a representation of the real vehicle,
it is important to perform correlation studies between the CarRealTime model
and the real vehicle data. Only after having obtained a good correlation, the
CarRealTime model can be considered reliable for what regards the states esti-
mation and the vehicle dynamic behaviour simulation.
New sets of data have been introduced in order to perform the mentioned cor-
relation analysis. Thanks to the GPS data recorded by the real vehicle, it was
possible to reproduce on CarRealTime the same race track layout that the ve-
hicle ran on during track tests or Formula Student events. Two sets of data are
shown, to represent different approaches to correlation.
The first analysis consists into an open-loop simulation in which several input
signals for the model are taken directly from the raw track data coming from a
Skidpad session in FS Alpe Adria 2022. In particular, the input data are: the
steering wheel angle, the brake input and the four motors output torques.

Figure 47: VI-CRT vs Track Data correlation - Open-loop Skidpad

The correlation results quite good, even though there are a few local
divergences in the lateral acceleration. They are mainly caused by quite strong
correction maneuvers by the driver, which are not perfectly followed by the
simulation.
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The second method exploits data coming from the Formula ATA 2022
Endurance. The chose data represent the most significant 10 km of the race.
The choice of this particular set-up depends on the necessity to perform not
only correlation between the model and the race car dynamic behaviour, but
also energy consumption and battery discharge profile analysis. Finally, the
data taken during a real Formula Student, or Formula SAE in this case, event
that perfectly fit the regulations can be considered of an higher quality and
interest.

To perform the validation, the same vehicle set-up of the race has been repro-
duced:

• Masses in racing conditions: 212 + 67 kg (vehicle + driver)

• Suspension characteristic set-up angles in static conditions

• Motors maximum exploited torque: 7 Nm

• Vehicle maximum speed: 60 km/h

• Aerodynamic pack configuration: low drag

• HV battery initial SOC: 88%

• Tires cold pressures

A max performance event was chosen for the simulation. The maximum path
distance was selected in order to maintain the simulated vehicle as close as
possible to the real driver racing line and the PF have been softly tuned in
order to represent a general starting set of parameters. This was done in order
to have a more general validity of the analysis, avoiding a too deep customization
of the driver model on the specific event.
To perform the vehicle dynamic behaviour correlation analysis, based on the real
vehicle available data, it was chosen to select an Endurance Event lap. The lap
lateral acceleration profile and speed profile are taken under analysis. Side slip
angle data are not reliable enough, since they tend to have strong divergences
when the vehicle undergoes strong accelerations. It is important to mention that
in everyone of the following figures, the blue data represent the real vehicle track
data while the orange ones represent the VI-CarRealTime simulation output.
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Figure 48: VI-CRT vs Track Data correlation - Lateral Acceleration

Figure 48 shows the correlation between the real vehicle and the model
simulation lateral acceleration profile on an Endurance Event lap. It shows
how both the signal transient behaviour, in particular the slopes of the signal
variations, and its maximum values are well reproduced by the simulation. It
is interesting to notice how a real signal has higher ripple with respect to the
simulated one. Due to these reasons, the correlation quality is considered to be
good. The small differences of the distance position of a few peaks can be due
to small racing line differences due to the narrow but still present allowed path
distance in the max performance event simulation.

Figure 49: VI-CRT vs Track Data correlation - CoG Velocity

Figure 49 shows the correlation between the real vehicle and the model simu-
lation CoG speed profile on an Endurance Event lap. This plot correlation is
slightly worse with respect to the lateral acceleration one. The speed profile
representation of the simulation is still quite good, especially the slopes of the
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speed variations look very similar. However, in some cases the steady state
speed is not perfectly overlapping. This can be due to the different lift-and-
coast strategy that the real driver and the driver model performed. It must be
taken into account that Formula Student drivers are not professionals and their
behaviour can be not perfectly repeated on every lap. Finally, also from this
plot the obtained correlation is considered to be good.

The following Figures 50-51-52 show the correlation of the Energy consump-
tion model and the High Voltage Battery model. Differently from this chapter
previous Figures, they show the behaviour of the signals along the entire data
window. It must be clarified how these analysis are highly influenced by the
external environment conditions (e.g. external temperature) that are not mod-
elled in the Squadra Corse PoliTO VI-CarRealTime model. Furthermore the
real vehicle HV battery SOC is only a rough estimation. In fact, since the cells
are not characterized, the SOC is only a cell capacity loss measurement, without
any thermal effect or SOH (State of Health) consideration. Finally, the vehicle
energy consumption has a very high dependence on the real drive behaviour,
which repeatability has already been discussed. With all of these factors taken
under consideration, the shown correlations are still considered quite acceptable,
but it is difficult to identify their validity.

Figure 50: VI-CRT vs Track Data correlation - Energy consumption

The left hand side plot shows the net consumed energy during the Endurance
Event, while the right hand side plot is focused only on the regenerated energy.
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Figure 51: VI-CRT vs Track Data correlation - Battery Pack Voltage

Figure 52: VI-CRT vs Track Data correlation - HV battery pack SOC
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KPI analysis

Once the simulation model can be considered validated, it is possible to per-
form the discussion about the results of those simulations. However, before this
discussion, it is necessary to introduce the method with which the performance
improvements brought by the different proposed solutions have been measured
and compared between them.
The Key Performance Indicators (KPI) are parameters that are used to quantify
the results and improvements that a development brings to a project. In this
study, the KPIs are used into two ways. The first one consist into the quantifi-
cation of the quality of the controller fine tuning together with the cost function
method. In the second one, the KPIs are exploited as tools for the compara-
tives performed to analyse the improvements that the new developed controller
brings with respect to the benchmark controller and the non-controlled vehicle.

Since the controlled tuning is performed in different working conditions, different
KPIs are studied for every situation. Since the main goal of the Slip Controller
is the improvement of the torque transmission to ground, the selected physical
quantities, thought as better representative, are the average accelerations. In
the same conditions and on the same vehicle, higher average accelerations are
directly caused by higher transmitted forces.
For what regards the Straight Acceleration and the Straight Braking working
conditions, the selected KPI is the developed average longitudinal acceleration.
Instead, during the Acceleration in Turn and Braking in Turn conditions, the
selected KPI is the combined acceleration. In these last couple of maneuvers
also the lateral capabilities of the vehicle are at the center of the analysis. An
understeering behaviour of the vehicle would lead to a loss of lateral acceler-
ation, leading to a loss of combined acceleration. An oversteering behaviour,
instead, would lead to a slight increase in lateral acceleration, but a strong
loss in longitudinal acceleration, still causing an overall loss in combined ac-
celeration. For these reasons, an improvement of combined acceleration would
represent not only an increase of transmitted force, but also an improvement of
the vehicle balance. In order to show this behaviour, two additional KPIs are
selected for the Acceleration in Turn working condition, where this behaviour
is straight-forward to show: the side slip angle in function of the CoG velocity
and the side slip angle in function of the lateral acceleration. These two KPIs
have been selected also to show the stability improvement that the controller
cause. The higher stability guarantees lower velocity and lateral acceleration
reduction due to a reduced oversteering behaviour.

Finally, the overall behaviour of the vehicle during normal track drive situa-
tions is tested. To do so, several Formula Student Events are simulated with
Max performance events. The KPIs selected to show an overall improvement
of the vehicle performances in the track drive are: the number of simulation
iterations and the lap-time. As it has already been mentioned in the intro-
duction, the Iterations are very well representative of the vehicle controllability
improvement, due to the fact that the driver model is able to perform the track
drive with higher PF, which means that even pushing more the vehicle limits,
the vehicle is still capable of maintaining an acceptable distance from the ideal
path. It must be clarified that, with different numbers of iterations, which means
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different PF, the lap-time comparison is not valid anymore. The vehicle with
reduced PF can be slower due to the lower vehicle limits exploitation or faster
due to a cleaner racing line, that can be better in some conditions. This makes
the lap-time an unsuitable parameter to measure the improvements brought by
the only controller modifications.
For these reasons, in order to properly compare different lap-times, two types
of simulations are performed. The first typology consist into simulations with
equal starting PF for the different tested vehicle set-ups, in order to simply com-
pare the number of iterations. In the second typology, instead, every simulation
set of PF is properly tuned in order to have the highest possible parameters
values that cause 0 iterations: in this way it is possible to compare the lap-
times with every set-up pushed at its limits. In this way, faster lap-times will
be caused by higher vehicle limits exploitation due to better control systems
behaviour.

KPI Summary

Working condition KPI

Straight acceleration Average longitudinal acceleration

Straight braking Average longitudinal acceleration

Acceleration in turn Average combined acceleration

Acceleration in turn Side slip angle vs CoG velocity

Acceleration in turn Side slip angle vs Lateral acceleration

Braking in turn Average combined acceleration

Overall Simulation Iterations

Overall Lap-time

Table 4: KPI Summary Table
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4 Results

The final chapter of this work shows the results of the performances brought
by the developed Fuzzy Logic Slip Controller. As explained in chapter 3.4, the
KPI analysis have been exploited to evaluate the improvements regarding both
the simulations and the application on the real vehicle. Differently from the
tuning procedure, in which only one example have been brought to represent
the method, the results of every FIS on its relative working condition is going
to be shown. Furthermore, analysis of the whole controller in complete lap-time
simulations are proposed.
For what regard the real vehicle data, instead, the approach is slightly different.
The working conditions are extracted from the data of a couple of laps, selecting
only the sections of those data in which the specific working condition is veri-
fied. Regarding the straight acceleration, however, also an analysis performed
on the FS Acceleration Event is shown, being an easily repeatable environment
on which different track tests can be performed with the same input signals and
external conditions.
The real vehicle data are extracted from track tests, which are performed in
Cerrina Race Track, near Turin. It is a track studied for go-kart racing and, for
this reason, it properly represents a possible FS track. In order to simulate even
better the real racing conditions, the wider corners and straights are limited by
cones.

Finally, a conclusive discussion on the work and the possible future develop-
ments is proposed.

4.1 KPI analysis on simulations

The KPI analysis start with the standardized events in which the controller is
tuned. These are useful to show the final results of the tuning procedure, in
order to compare the behaviour of every FIS separated from the others. With
the Acceleration in turn condition, also simple stability analysis are performed.
The CarRealTime simulations permit to modify the ground friction coefficient,
in order to simulate different grip conditions. All the simulations performed
during the tuning phase have been performed with the standard friction coeffi-
cient, which is 1. In order to perform the results analysis in different conditions,
the friction coefficient has been changed to 0.4, to represent low grip conditions
as, for example, wet tarmac.
Finally, in order to test the overall behaviour of the different controls on the
general vehicle performances, simulations iterations and lap-time are analysed
as explained in chapter 3.4.
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Straight Acceleration

Figure 53: Straight Acceleration KPI

Figure 53 shows the straight acceleration KPI: the average longitudinal
acceleration increase. This figure, as the similar ones that follow, shows the
entire simulations at the left, while at the right it is present the detail of the
final meters of the simulations. Both the controllers are able to improve the
performances with respect to the non-controlled vehicle. Furthermore, the FL
controller shows better performances than the PID.
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Straight Braking

Figure 54: Straight Braking KPI

Figure 54 shows the straight braking KPI: the average negative longitudinal
acceleration increase. In this condition, none controller is able to clearly
improve the performances. The reason can be found on the mechanical
braking torque that becomes predominant as the velocity decreases, reducing
the aerodynamic normal load on tires and thus their grip. This causes that the
performances improvement that is possible to achieve only acting on the
electric motors torques is limited.
Nonetheless, the FL is able to slightly improve the performances, while the
PID has basically the same ones of the non-controlled vehicle.
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Acceleration in turn

Figure 55: Acceleration in turn KPI - Combined Acceleration

Figure 55 shows the first analysed acceleration in turn KPI: the average
combined acceleration increase. In this condition, the PID controller is able to
delay the loss of grip by the vehicle, but at the final meters of the simulation
its performance rapidly enworse. The FL controller, instead, is able to
guarantee higher performances further from both PID controlled vehicle and
non-controlled vehicle.
In this simulation, it is important to concentrate on the fact that the
differences can be caught only in the final meters. This is due to the
progressive increase in speed that brings the vehicle towards its limit
conditions only at the end of the simulation.
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Figure 56: Acceleration in turn KPI - Stability

Figure 56 shows the other two KPIs of the acceleration in turn: vehicle side
slip angle in function respectively of vehicle CoG velocity and lateral
acceleration. The two plots are truncated in the moment in which the side slip
angle would have started to decrease: in this situation the vehicle has
recovered the grip, with the reduction of the oversteer. The two slip controllers
are able to increase the stability, reducing the side slip angle reached before
the grip recovery. The FL controller, in particular, is able to recover the
oversteer at a much lower attitude angle: this causes much lower reduction of
CoG velocity and lateral acceleration, improving the performances.
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Braking in turn

Figure 57: Braking in turn KPI

Figure 57 shows the analysed braking in turn KPI: the average combined
acceleration increase. As for the straight braking, the increase of performance
in this condition is lower. Furthermore, also in this case, the PID improvement
are small with respect to the non-controlled vehicle, while the FL controller
ones are a little higher.
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Iterations

As already discussed in chapter 3.4, the iterations are caused by the driver model
that fails to maintain the vehicle within the maximum allowed distance from
the reference trajectory. An higher number of iterations means that a stronger
reduction of the PF of the simulation occurred. For this reason, in the exact
same simulation conditions, the number of iterations can be exploited as a KPI
to show the improvements caused by the different controllers.
The plots that follow will show both lap-time and iterations of each simulation
in analysis. As reported by the plots legends, in orange it is represented the
simulation lap-time, while in blue the iterations.

Figure 58: SkidPad KPI - Iterations Comparative

Figure 59: Autocross KPI - Iterations Comparative
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Figure 60: Autocross Cerrina KPI - Iterations Comparative

Figures 58-59-60 show the iterations reduction KPI in different
VI-CarRealTime max performance events. The max performance events
simulate the correspondent FS Events: a a Skidpad and two Autocross. Two
different race tracks have been exploited for the Autocross event: the standard
CarRealTime Race track and the Cerrina race track. The latter is built from
the GPS data of the race track where Squadra Corse PoliTO performs the
track tests on the real vehicle.
The figures show how the FL slip controller reduces the iterations in every
simulation, even in those where the PID controller is not able to do so. As
already mentioned, it is shown how with different number of iterations, the
lap-time comparison loses significance, since the driver model behaviour
changes. In particular, wider thus slower trajectories are run by the vehicle,
but they become not wide enough to cause an iteration because of the better
control. With lower PF, the vehicle limits will not be overcome, so the
trajectory will become narrower and faster.
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Lap-Time

To perform the lap-time comparatives, a proper approach with the max perfor-
mance events has been used. In order to bring the vehicle performance, in every
set-up, at its limit, the PF of every simulation have been specifically tuned. In
particular, every PF is tuned so that an increase of each one of them of a single
hundredth, would cause an iteration. In this way, the driver model pushes at
the limit the vehicle. The faster lap-time will be the result of the higher PF
that the control has made it possible to handle with zero iterations.
In this analysis, also the Acceleration Event is included. This is not a max per-
formance event, for this reason it was not studied during the iterations analysis.

Figure 61: Acceleration KPI - Lap-Time Comparative
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Figure 62: SkidPad KPI - Lap-Time Comparative

Figure 63: Autocross Cerrina KPI - Lap-Time Comparative

Figures 61-62-63 show the plots of the lap-time KPI. Only the longitudinal PF
is represented in the plots, since it is the most involved in the tuning of the
traction performances. The braking PF is tuned, instead, to represent a
proper racing braking profile.

The PID controller is already capable of lap-time improvement, handling higher
longitudinal PF. However, the FL controller shows even better performances,
especially in the Acceleration and the Autocross events.
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4.2 KPI analysis on Real vehicle appli-
cation

Two different data sets have been exploited to show the KPIs in the real vehicle
data: a set of FS Acceleration Event simulations and a track drive. The latter
has been divided into two sections, both with the same driver and track layout.
In the first section, the FL Slip Controller was fully functioning, while in the
second one it was disabled. Due to the limited time on track and the complexity
provided by the swap of two different controllers (much slower with respect to
the simple turning on and off of one of it), it has not been possible to implement
and test the performances with the PID controller on the real vehicle.
It is important to remember that the driver is not a professional, so the possi-
bility that his confidence with the vehicle set-up and the track layout increased
during the session should not be excluded. For these reasons, it has been decided
to choose as first section the one with the functioning controller, making it work
in worse conditions. The track evolution during the session can be neglected,
since the sessions were short and only the Squadra Corse PoliTO’s vehicle was
present on track.

Figure 64: Real vehicle application - Initial Torque Request
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In order to perform the comparative analysis, one lap per each session has been
selected. The choice criterion consists into the highest similarity between the
torque requests of the two sessions, especially for what regards the maximum
torque values. This is done in order to have comparable inputs, so that the
different output behaviours can better show the influence of the controller.

Figure 65: Real vehicle application - Speed Profile
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Figure 66: Real vehicle application - Longitudinal Slip*

The first overall results of these analysis are shown by Figures 65 and 66.
In the first one, the two laps speed profiles are compared. It is possible to
analyse how the vehicle set-up with the active controller permits higher
accelerations, both in traction and braking conditions (steeper speed
variations). It is possible to suggest also higher velocities in corners, since the
speed profile of the vehicle with the active controller is almost always beneath
the other.
The strong difference around the 400 meters cannot be caused only by better
capabilities of the controlled vehicle, but probably there is also a driver
mistake.

For what regards the second Figure, it shows the comparative between the two
output slip* signals. It is possible to analyse how the general trend shows
a strong slip* reduction overall and even the signals spikes are smaller and
recovered in a faster way.
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Straight Acceleration

The straight acceleration working condition is at first analysed alone, since it
permits a more controllable environment and a smaller number of variables. The
torque request of the two simulations are identical, since basically the accelerator
pedal remains flat-out from the beginning to the end of the 75 meters.

Figure 67: Real vehicle application - Straight Acceleration KPI 1

The left plot of Figure 67 shows how the gain in velocity occurs in the first
part of the acceleration, in which the grip limit on the tires is stronger due to
the low aerodynamic load at low velocities. It is exactly in these conditions
that the Slip Controller can show its capability to increase the transmitted
torque to the ground. This is well shown, as already explained, by the higher
average acceleration (right hand side plot), that leads to a smaller lap-time:
the reduction falls near to the 5%. In order to give a simple term of
comparison, with the same forces transmitted to the ground, a reduction of 5%
of lap-time would have required a reduction of 26.8 kg of vehicle mass.
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Regarding the other data set, a different approach with respect to the
previously shown has been used. In order to separate the single working
condition, the average accelerations have been computed only in the sections
of the lap in which the respective condition was fulfilled. In all the points that
are outside the working condition, the computation of the average acceleration
does not occur and the signal is kept constant.
Every working condition is shown with a GG plot, in which the vehicle
longitudinal acceleration is depicted in function of the lateral one, both
measured in G (for this reason the plot is called GG).
In all the following plots, the non-controlled vehicle data are represented in
blue, while the FL controller ones in orange. A general overview of the
acceleration profiles during the laps is also reported in comparative.

Figure 68: Real vehicle application - Straight Acceleration GG Plot
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Figure 69: Real vehicle application - Straight Acceleration KPI 2

Also in this analysis, it is possible to observe how the performances of the
vehicle improve in the straight acceleration working condition, because of the
FL controller. In fact, the signal of the average longitudinal acceleration of the
vehicle with the controller active is always above the other set-up signal.
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Straight Braking

Figure 70: Real vehicle application - Straight Braking GG Plot

Figure 71: Real vehicle application - Straight Braking KPI

The straight braking KPI shows higher differences between the non-controlled
vehicle and the one with the Slip Controller active with respect to simulations.
The FL controller is again able to guarantee higher average longitudinal
negative acceleration, with a wider gap from the non-controlled vehicle than
expected.
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Acceleration in turn

Figure 72: Real vehicle application - Acceleration in turn GG Plot

Figure 68 and 72 GG plot show very well an important point on which it is
interesting focus. The GG plot is a simple and very useful tool to compare two
drivers or two vehicle performances, but its outliers data must be kept
particularly under attention. In fact, they can be caused by the noise of the
accelerometers and from local high accelerations point that do not represent
the real overall performance. In these GG plot, both vehicles show outliers,
but the non-controlled vehicle have some more that could suggest false higher
performances.
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Figure 73: Real vehicle application - Acceleration in turn KPI

In Figure 73 it is shown how the average combined acceleration, the
acceleration in turn KPI, is always higher in the vehicle in which the FL slip
controller is active. This confirms also the hypothesis that the higher
acceleration points in the GG plot of the non-controlled vehicle were mostly
outliers, that have low weight on the computation of the average acceleration.
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Braking in turn

Figure 74: Real vehicle application - Braking in turn GG Plot

Figure 75: Real vehicle application - Braking in turn KPI

Finally, also in the case of the braking in turn working condition, the vehicle
with the FL slip controller shows higher average combined acceleration with
respect to the non-controlled vehicle. The result again is better than what
expected from simulations.
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4.3 Conclusions

This work aimed to propose a method to design and develop a Slip Controller
for the application on Electric Vehicles.
In order to develop a proper controller, it is necessary to estimate or measure
several vehicles states. The estimation of many of those states, which measure-
ment can be complex and expensive, has shown good results. However, the
output of the model proposed to implement a model-based controller were not
acceptable to do so. For these reasons and after several analysis on different
technologies, the solution that has been implemented consists in a Fuzzy Logic
Controller. The developed controller has been tuned in co-simulation between
Matlab-Simulink and VI-grade VI-CarRealTime and tested on the Formula Stu-
dent race car of Squadra Corse PoliTO.

The development and tuning procedure has shown good results, improving the
controller performances and enhancing the vehicle dynamics, with the controller
active. In order to quantify the improvements brought by the controller in all
the different studied situations, some KPIs have been properly defined and
exploited. These analysis have been performed in several working conditions,
comparing in simulation environment the new controller with the non-controlled
vehicle and a benchmark controller, represented by a PID Slip Controller. The
simulations have shown performances improvement in every condition, even if
in the braking ones the improvement is not so relevant.
The analysis on the real vehicle, instead, have been performed only comparing
the non-controlled vehicle and the FL Slip Controller. Also in these cases the
FL controller has shown good improvements, even better than in simulations,
especially in the braking conditions.

Beyond the data and the KPI metrics, the different drivers have reported strong
and positive feedback. They had the capability to feel the torque reduction
caused by the controller especially during corner exit, while along the straights
they reported a smoother behaviour. Without the controller, their trust in
the vehicle grip during the accelerations was much lower and they frequently
reported the necessity of releasing the accelerator pedal to avoid strong slip-
page, especially during corner exit, precisely were the controller had the highest
control activity.
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Future developments

Future possible improvements regarding the FL Slip Control on its own are dif-
ficult to identify, since the solution has been pushed at its limits. Higher time
on the project could be spent on the race track, with the goal of mapping the
different slip* references for different conditions of ground and tires. It could be
also very useful for the drivers to have several maps of different intensities (that
could be related with different grip conditions), giving them the possibility to
have higher live customization.

Regarding possible developments, that could include the Slip Control, the first
step should be the improvement of the model used and the related estimations.
A possible starting point can be a change in approach regarding the tire forces
estimation method. A solution as the one proposed in [17] can be of interest,
since it does not rely on TIR files. These files, in fact, need proper tuning
on track, with the scaling coefficients, to have higher adherence with the real
conditions of the tire. However, these tests can be expensive and can require
complex set-ups of tests and sensors. The proposed method, instead, relies only
on already available information, as the accelerations, and it is based on a vali-
dated approach.
The following step could be the passage to a 7 Degrees Of Freedom (DOF)
model, in which a 3 DOF rigid vehicle model works in parallel with the slip
derivative model presented in this work. The four remaining DOF, in fact, are
exploited to describe the dynamics of each of the four wheels. Doing so, with
a well designed model, it could be possible to integrate a TV Control with the
Slip Control, with just one controller. Additional references would be required,
as yaw rate and attitude angle references.
A suitable controller for this complex application can to be the eNMPC that
has been presented in this work in chapter 2.1.2. In fact, it could guarantee the
proper performances, with a multi-reference control problem, still requiring low
computational power, because of the explicit formulation of the controller.
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