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Summary

Multi-Agent Pathfinding (MAPF) is the problem of planning the trajectory of many
agents, from their start location to their respective destination, while sharing the same
environment and avoiding collisions. It is part of the AI field of Planning and unifies
concepts of Applied Mathematics, Computer Science, and Robotics.

MAPF started being studied during the last decades of the 20th century, but only
after 2000 some practical solutions were presented. Over the last few years, it acquired
more interest, especially from the application point of view, thanks to the development of
advanced Robotics Systems. Well-known accomplishments include warehouse automation
in Industry 4.0. During the last decade, many companies began to use AI-driven mobile
robots’ motion planning in fulfillment centers. Worldwide companies count up to tens of
thousands of these robots for Pick & Place jobs, continuously moving inside warehouses
extended for up to 80 000 m2 without generating conflicts between each other. This au-
tomation brought not just efficient results from the production point of view, but also
economically in terms of hundreds of thousands of new job positions.

Specific planning algorithms are fundamental for fast, ordered, and functional agents’
operability. Since planning on previously unknown domains requires some ways to build
a navigation map of the environment, algorithms are divided into graph-based and grid-
based models. Researchers and companies mainly focus on the latter case, grid-based
planning, which means the environment is abstracted as a grid whose nodes may contain
at most one agent. Time is discretized, and each robot can make a single action, move
or wait, at each step. For multi-agent systems, the two main pathfinding techniques are
centralized (coupled) or decentralized (decoupled). Centralized algorithms aim at finding
a solution from the point of view of a higher entity. This centralized planner tries to
reduce a global system objective function by treating all agents as a whole composite
object in the ensemble environment. Oppositely, decentralized methods plan agents’ paths
independently and then apply specific techniques to solve possible occurring conflicts.
Each agent tries to optimize its user objective function.

In this work, we focus on decentralized grid-based solvers. Many ideas can be exploited
to develop decentralized methods, such as priorities, abstractions, and hierarchies. More-
over, specific techniques exist that avoid conflicts between agents.

The first objective of this project is to make a thorough review of the literature, focus-
ing on similarities and differences between the literature algorithms.

Secondly, inspired by a specific real-world problem, we develop a simple method and
five optimized variants, taking inspiration from the approaches available in the literature
or exploiting new ideas. In the first simple algorithm, there is no cooperation, so agents
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act selfishly, and we apply a basic random-style collision avoidance technique to let them
escape imminent conflicts. Optimized variants exploit ideas of computational optimiza-
tion, intelligent movements, and congestion awareness to obtain better performances.
The specific real-world problem requires that all these developed algorithms work in an
online setting, dealing with agents coming at any time into the system. Useful techniques
are then put together in a final optimized version that we compare with some of the
best-working literature’s cooperative decentralized algorithms. During the experimental
analysis, we focus on different variables, mainly number of avoided conflicts and search
method function calls, sum of time steps, maximal path length, and time consumption.
We implement these methods and simulate systems using Object Oriented Programming
with Python programming language. Both real and synthetic benchmark domains are
taken directly from the research community website. Data from simulations are visual-
ized and analyzed with MATLAB and R software. Finally, PowerPoint is used to enhance
the charts.

Our final goal is to establish connections to well-known Applied Mathematics concepts:
Game Theory and Network Traffic Flow. We consider Game Theory to understand the
best choice an agent should make when close to possible conflicts and to be pushed in
less congested areas while still looking for its shortest path. Network Traffic Flow helps
us to quantify the performance of decentralized algorithms with respect to the central-
ized counterpart. Indeed, solutions coming from decentralized algorithms for MAPF can
be interpreted as user optimum traffic assignments, while centralized versions reflect the
system point of view.

In conclusion, with this work, we deeply examine different techniques to improve the
performance of basic decentralized algorithms. After a complete experimental phase, we
show decentralized algorithms based on cooperation outperform selfish ones. Finally,
we present Game Theory and Network Traffic Flow as ways to improve decentralized
algorithms and quantitatively compare them to centralized methods, opening the doors
to interesting future connections. To the best of our knowledge, these two concepts have
never been considered when developing MAPF solvers.
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Chapter 1

Introduction to the General
Problem

In this chapter, we present the general Multi-Agent Pathfinding framework. In the first
section, we make a historical review of the main ideas developed to solve Multi-Agent
Pathfinding problems. In the second section, we first focus on the formal definition of
classical MAPF, with the main properties of the case. Then, we give an overview of these
years’ studied variants.

1.1 MAPF: Literature Review

1.1.1 Historical Introduction
Starting from the mid-20th century, the study of collective behavior for multi-agent sys-
tems acquired increasing interest, both from the research community and from the prac-
tical point of view of companies.
By collective behavior, we mean the agents’ behavior when sharing the same environ-
ment. By cooperation, instead, we mean the subclass of collective behaviours character-
ized by the cooperation between agents (Cao et al. [1997]).

The first studies on collaboration go back to the 1940’s when researchers started an-
alyzing the behavior of many robots within the same environment. At the end of the
1980’s, many new areas are involved in the increasing results of cooperative robotics.
Connections between the development of innovative robotics systems, theoretical results
from other fields, and other studied problems are fundamental for the overall progress.

1.1.2 Grid-Based Multi-Agent Pathfinding
One of the main studied problems in cooperative robotics is the path planning and motion
planning problem, i.e., to plan the motion of many agents in the same environment without
collisions between robots.
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Multi-Agent Path Finding (MAPF) is a specific multi-agent planning problem.
The task is to plan paths for a group of agents to a set of target destina-
tions, with the constraint that the agents will be able to follow these paths
concurrently without colliding with each other (Silver [2005]).

In classical MAPF, agents are assumed to occupy exactly one vertex, having no vol-
ume, no shape, and move at a constant speed. By contrast, motion planning algorithms
consider these properties too: at each time step, an agent belongs to a configuration
instead of just a vertex. A configuration specifies the agent’s location, orientation, ve-
locity, etc., and an edge between two configurations represents kinematic motion. Several
notable MAPF variants are steps towards closing this gap between classical MAPF and
motion planning (Ma and Koenig [2017], Stern et al. [2019]).

MAPF started being studied in the last decades of the 20th century. Only at the
beginning of the 21st century some practical solutions were presented. Today, the main
fields of interest are the gaming industry, automation for Industry 4.0, traffic management
for smart mobility, air traffic control, autonomous driving, underground mining, military
field, disaster rescue, and monitoring.

Since planning on previously unknown domains requires some ways to build a navi-
gation map of the environment, algorithms are divided into graph-based models and grid-
based models (Zelinsky [1992]). Researchers and companies mainly focus on the latter
case, grid-based planning, which means the environment is abstracted as a grid whose
nodes may contain at most one agent. This document focuses on grid-based abstraction.
Time is discretized, and each robot can make a single action, move or wait, at each step.

1.1.3 From Single-Agent to Multi-Agent Solvers
MAPF is a generalization of the single-agent problem, also known as the shortest path
search problem. In the middle of the 20th century, a fast, optimal, and complete [1.2.3]
heuristic search method [5], called A* Algorithm (Hart et al. [1968]), was developed,
outperforming the well-known Dijkstra’s Algorithm (Dijkstra [1959]). During the last
decade of the 20th century and the first years of the new century, A*’s time complexity
was improved. The choice of the heuristic function [1.1.5] is the key to improving the
speed of the search method (Holte et al. [1996]), and for many years the research commu-
nity followed this intuition to produce better algorithms.

Single-agent techniques can be adapted to the multi-agent case in the following way.
We build an environment composite of the single-agent environments and treat the set
of agents as an “extended” single entity. Here, we can apply the single-agent methods.
Without building an appropriate search space, the traditional formulation of the pathfind-
ing problem as a single-agent search on a bi-dimensional space is not suitable (Erdmann
and Lozano-Perez [1987]). Such algorithms take the name of centralized algorithms.
In other words, centralized planning considers all agents together.

The majority of centralized algorithms are not only optimal but also complete.
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Centralized methods do not consist only of search algorithms. Many researchers have
tackled multi-agent path planning problems from the point of view of mathematical opti-
mization problems, e.g., exploiting linear and quadratic programs. These specific central-
ized methods often have good theoretical properties like optimality, but the computational
complexity limits their applications to small teams with few obstacles.
In this document, we focus on the algorithmic view of MAPF.

Even though we can extend single-agent methods to multi-agent systems, MAPF
is much more challenging than the single-agent case, being a PSPACE-hard problem
(Hopcroft et al. [1984], Surynek [2010]) 1. The main drawback of such methods is the
time and memory consumption. They are exponential in the dimension of the composite
configuration space, i.e., in the number of agents. Moreover, the simple application of
single-agent methods like A* to ensemble spaces for the multi-agent case is not enough to
find a solution. Indeed, when adapting such methods we must establish a way to avoid
conflicts.

To deal with this problem, one could think about finding the optimal path for each
agent, then combine these optimal paths while avoiding conflicts. So the idea is to subdi-
vide the main problem into single-agent search problems, and each agent programs its path
from the origin to the corresponding destination. Then we combine the single results re-
moving possible conflicts. The associated methods are called decentralized algorithms
(also called coupled or distributed) 2. These methods are computationally efficient from
the time point of view: the time required for producing the solution scales well with the
number of agents. On the other hand, they are sub-optimal (or bounded sub-optimal, in
the best cases) and incomplete. So the main characteristic of these alternative methods
is to look for a trade-off between completeness and optimality of the solution to improve
the performance (Wang et al. [2008]).

To conclude, we know in advance there is no universal winner between centralized
and decentralized algorithms. It depends on the specific problem. Interestingly, during
the first decade of 2000, there was an explosion in the development of MAPF decoupled
algorithms.
In this document, we consider decentralized algorithms, generally preferred in real appli-
cations w.r.t centralized ones.

1One problem is said to belong to class P if there exists a polynomial complexity algorithm to
solve it. Complexity class NP contains class P and other computational problems. The most likely
conjecture is that P /= NP . Today, we have no certainty about this. The problems that could be
used as separators between the two classes are the NP-complete problems, i.e., the "most difficult
problems" inside the NP class (Crescenzi et al. [2012]).

2The main partition of MAPF solvers is in centralized and decentralized. Decentralized approaches
are sometimes referred to as decoupled (and centralized ones are coupled) or distributed. Some articles
establish a partition in centralized/decentralized, coupled/decoupled, and distributed, e.g., Sharon et al.
[2015], Wiktor et al. [2014]. In this document, we follow the binary partitioning of centralized (i.e.,
coupled) and decentralized (i.e., decoupled, distributed), such as Silver [2005], Wagner and Choset [2011],
Luna and Bekris [2011], Ryan [2008a], van den Berg et al. [2009].
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1.1.4 MAPF Partition
We can partition MAPF algorithms both from the point of view of the specific technique
used as a basis (Felner et al. [2017]) and from the point of view of how agents interact
with each other.

MAPF partition: basis technique

• Search-Based Algorithms: these methods are based on search; leading examples are
CA* algorithm and its variants, HCA* and WHCA* (Silver [2005]).

• Rule-Based Algorithms: these algorithms include specific movement rules for different
scenarios; examples of rule-based algorithms are push and swap, parallel push and
swap, and push and rotate (Luna and Bekris [2011] , Sajid et al. [2012] , Wiktor
et al. [2014] , De Wilde et al. [2013]).

• Hybrid Algorithms: these algorithms contain both movement rules and massive
search.

MAPF partition: agents’ interaction

• Cooperative Pathfinding: here, each agent has full knowledge of all other agents and
their planned routes; cooperative agents will follow paths that are planned for them
or obey constraints on their movements; in particular, agents may be willing to take
longer routes to their goals to avoid colliding with other agents (Silver [2005] , Wang
et al. [2009]).

• Non-Cooperative Pathfinding (also known as Self-Interested Pathfinding): agents do
not know others’ plans; they only try to minimize their costs (e.g., human drivers’
behavior). A self-interested agent might follow a path that causes other agents to
delay or even not find their destinations. Formally, a self-interested agent in MAPF
always chooses to follow the path with the best individual social welfare (Bnaya et al.
[2013]).

• Hybrid Pathfinding (also known as Agent-Centered Search): here, agents do not have
access to global information about the world, but just some local window or radius
around each agent (Koenig [1996] , Jansen and Sturtevant [2008] , Koenig [2001]).

• Antagonist Pathfinding: every agent tries to reach its goal while preventing the others
from reaching theirs.

1.1.5 MAPF Solvers: Concepts
Many ideas can be exploited to develop decentralized methods. Some fundamental un-
derlying concepts are:

• Priority;
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• Configuration Space-Time;

• Abstraction;

• Heuristics;

• Hierarchy.

Priority

One well-known idea to solve MAPF problems is to assign priorities to agents. Planning
for multi-agent systems in which we assign priorities is called prioritized planning. In
this setting, the problem to avoid collisions between two agents falls to the agent with
lower priority (Stern [2019]).

There are many techniques to assign priorities, mainly divided into:

• fixed priority values assignment;

• varying priority values assignment.

Moreover, the priority assignment may be random or based on further knowledge of the
problem.

The first developed methods using priority considered a fixed scheme (Warren [1990]).
Examples of randomly generated priorities are in Bnaya et al. [2013]. Further works are,
e.g., Ryan [2008b] , Ryan [2008a] , Čáp et al. [2012] , Čáp et al. [2015] , Velagapudi et al.
[2010].
While prioritized planning is fast in simple grids, it is highly sensitive to the priority
scheme. Fixed priority solvers may not solve specific classes of problems because we
may choose a path for one agent that impedes finding a solution for another successively
processed. This is why dynamically changing priority schemes were introduced.

One of the first to use dynamically changing schemes was Bennewitz et al. [2001], while
more recently Wang et al. [2009] , Chen et al. [2009] , Regele and Levi [2006]. Dynamically
changing priorities can also be assigned based on heuristics [1.1.5]. An example is Wang
et al. [2008], in which cycling conflicts are avoided by letting the agent with a higher node
density heuristic value pass (i.e., the agent with a higher number of computed paths that
pass through the node). Silver [2005] presents some algorithms with fixed priority assign-
ments, then slightly modifies them, obtaining the same effects of dynamically changing
priorities.

The computational efficiency and simplicity of prioritized planning algorithms is the
main reason for their extensive use.
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Configuration Space-Time

The concept of priority is strictly connected to that of Configuration Space-Time. Indeed,
to find a plan for the agent with the ith priority may require an agent to wait in its cell.
Thus this becomes the shortest path problem in a time-expansion graph (Stern [2019]).

When talking about configuration, we generally refer to motion planning: a configu-
ration specifies the agent’s location, orientation, velocity, etc., and an edge between two
configurations represents kinematic motion. In classical MAPF, agents are assumed to
occupy one vertex, with no volume, and no shape, and move at a constant speed [1.2.4].
In this specific case, we talk about space-time reservation table.
A space-time reservation table is a three-dimensional table indexed by both (x, y)
location in the world and a time t. The value of an entry (x, y, t), if it exists, is the unit
that will be occupying the given cell then (Sturtevant and Buro [2006]).

The first paper presenting the idea of configuration space-time is Erdmann and Lozano-
Perez [1987]. More recently, the first to apply the idea to grid maps was Silver [2005].
Other examples are Regele and Levi [2006] and Sturtevant and Buro [2006]. Ma et al.
[2019] explore the space of all possible partial priority orderings as part of a novel system-
atic and conflict-driven combinatorial search framework to guarantee completeness.

Abstraction

The use of space-time reservation tables is linked to the concept of abstraction. Abstrac-
tion is the process of replacing one initial state space, i.e. the map, by another the map,
called search graph or abstract space, that is easier to search (Holte et al. [1996]). So
an abstraction can be seen as the process of reducing the resolution of the map while
maintaining connectivity information in the abstraction.

Abstraction models can be subdivided into grid-based models and graph models [1.1.2].
Using a grid map is the most popular approach to abstract a real-world navigation map
into a search space. The map is discretized into a grid of atomic locations called tiles.
Then we define one node for each accessible tile and undirected edges between adjacent
nodes so that it is possible to move from one node to the other.

Space-time reservation tables are one form of state space abstraction. Particular men-
tion deserves WHCA* (Silver [2005]) that adds an intermediate layer of abstraction equiv-
alent to the base level state space for w steps and the abstract level state space for the
remainder of the search. There are many other examples of abstraction. Wang et al.
[2008] abstracts the grid map into a flow-annotated search graph. Ryan [2008a] exploits
specific subgraph structures of the map to abstract the search. Wagner and Choset [2011]
, Sharon et al. [2013] , Sharon et al. [2015] , Barer et al. [2014] add one further abstraction
by building search trees. Henkel and Toussaint [2020] presents a novel method to abstract
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a map into a directed roadmap graph that allows for collision avoidance in multi-robot
navigation.

Heuristic

In the last decades of the 20th century, many researchers have investigated abstraction as
a means of automatically creating admissible heuristics for single-agent heuristic search.
In pathfinding, a heuristic function is a function telling us how close we are to the
goal. A heuristic is admissible if it never overestimates the cost of getting from a state
to the goal in the starting space. Examples of heuristics are the Manhattan Distance,
the True Distance Heuristic, the node density, or the Sum of Individual Costs (SIC). By
exploiting this function, it is possible to speed up search [5].

The best example of a heuristic search is A*, which requires the heuristic to be ad-
missible. Other single-agent heuristic search algorithms are presented in Edelkamp and
Eckerle [1997] and Hernández and Meseguer [2005]. MAPF solvers examples are Standley
[2010] , Silver [2005]. The MAPF solver WHCA* employs a heuristic search in a space-
time domain based on HCA* and is limited to a fixed depth. HCA* uses an algorithm
called RRA* to reuse search data when computing the heuristic distance, reducing the
computational cost. Heuristic functions can be adapted for specific purpose too, generally
to assign priorities (Silver [2005], Wang et al. [2009]). To solve conflicts, some methods
add random noise to the heuristic function (Silver [2005]). Wang et al. [2008] modifies
the heuristic to favor straighter paths in a flow-annotated search graph. Other examples
of heuristics are connected to the rule-based algorithms (Luna and Bekris [2011] , Sajid
et al. [2012] , Wiktor et al. [2014] , De Wilde et al. [2013]).

Hierarchy

The concept of hierarchy is strictly related to abstraction. By hierarchy, we mean the
hierarchy of abstractions of the search space to ease the search mainly for large problem
spaces. More in detail, hierarchical approaches have two main phases:

1 . building the hierarchical search framework;

2 . use of this framework for pathfinding.

The first step in building the framework for hierarchical search is to define a topological
abstraction of the maze. Once the abstract graph has been constructed and the intra-
edge distances (i.e., the distance between clusters) computed, the grid is ready to use a
hierarchical search. During the second phase, we compute an abstract path. Then, for each
node in the abstracted graph, we compute the path inside of it. Finally, we can convert the
abstract path into a sequence of moves on the original grid. This final part is called path
refinement. Path smoothing can be used to improve the quality of the path-refinement
solution.
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The hierarchy can be extended to several levels, transforming the abstract graph into
a multi-level graph. So each level in the hierarchy is a more abstract map version. In
a multi-level graph, nodes and edges have labels showing their level in the abstraction
hierarchy. We perform pathfinding using a combination of small searches in the graph at
various abstraction levels (Botea et al. [2004]).

Up to 2004, the hierarchy was mainly a two-level hierarchy. One well-known example of
a two-level hierarchy is that of Sharon et al. [2013]: a specific tree structure abstraction is
considered for search, then nodes are checked to be solutions at the lower level. Examples
of a two-level hierarchy are Čáp et al. [2012] and its variants presented in Barer et al. [2014].
Holte et al. [1996] noted the choice of hierarchy is critical, and a too large hierarchy could
perform worse than simple ones. In Silver [2005], WHCA* adds one intermediate level of
abstraction to HCA*, by considering a window of size w in which to apply cooperation
between agents. Multi-level hierarchical pathfinding are shown in Sturtevant and Buro
[2005], Botea et al. [2004], Sturtevant and Buro [2006], Ryan [2008a], Surynek [2009].

1.2 MAPF: Formal Definition, Properties, and Vari-
ants

Researchers in Theoretical Computer Science, Artificial Intelligence, and Robotics have
studied multi-agent pathfinding under slightly different names.
The literature is full of many kinds of different definitions, assumptions, and notations.

In the following, we will mainly refer to Ma and Koenig [2017] and Stern et al. [2019]
for formally describing MAPF, its elements, and its variants. The authors introduced a
unified terminology to "navigate through and understand existing literature and to establish
appropriate baselines for comparison".

1.2.1 Formal Definition
MAPF is an example of a multi-agent planning problem in which the task is to plan paths
for a group of agents to a set of target destinations. The key constraint is that the agents
must follow these paths concurrently without colliding with each other (Silver [2005]).

Let us focus on the Classical (Offline) MAPF problem.

Definition 1 The main inputs to a classical MAPF problem are:

• an undirected graph G = (V,E);

• a set of k agents (e.g., robots, cars, characters, ...);

• a function s : [1, . . . , k] → V , mapping an agent to a source vertex;

• a function t : [1, . . . , k] → V , mapping an agent to a target vertex;
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Time is discretized. In every time step, each agent is located in a single graph vertex and
can perform a single action.

An action is a function a : V → V such that a(v) = v′ means that if an agent is at
node v and performs a, then it will be in node v′ in the next time step. There are two
types of actions: wait (the agent stays in its current node another step) and move (the
agent moves from its current node v to an adjacent one in the graph, v′).

Generally, for a sequence of actions π = (a1, . . . , an) and an agent i, the location of
the agent after executing the first x actions in π, starting from its source s(i), is denoted
by πi[x]. A sequence of actions π is a single-agent plan for agent i if and only if
executing this sequence of actions in s(i) results in being at t(i). A solution is a set of k
single-agent plans, one for each agent.

1.2.2 Objective functions
Researchers developed many objective functions to evaluate the MAPF solution. The
most common ones are makespan and sum of costs.

• Makespan. It is the number of time steps required for all the agents to reach their
target. For a MAPF solution π = {π1, . . . , πk}, the makespan of π is defined as
max1≤i≤k|πi|.

• Sum of costs. This objective function is given by the sum of time steps required
for every agent to reach its target. The sum of costs of π is defined as

q
1≤i≤k |πi|

and is also known as flowtime.

These are not the only possible objective functions. Others could be, for example, the
total non-waiting actions required to reach the target, sometimes referred to as the sum-
of-fuel, or the maximum number of agents reaching their targets within a given time,
i.e., deadline.

1.2.3 Characteristics
MAPF Solvers

MAPF algorithms for finding valid solutions can be partitioned into three classes: optimal
solvers, sub-optimal solvers, and bounded sub-optimal solvers (Barer et al. [2014]).

• Optimal Solvers. When they find a solution, these methods bring an optimal one,
i.e., no other solutions are better than this.

• Unbounded Suboptimal Solvers. Many existing MAPF solvers aim at finding a
solution fast while allowing the returned solution to be suboptimal. Most suboptimal
MAPF solvers are unbounded, i.e., they do not provide any guarantee on the quality
of the returned path.

• Bounded Subptimal Solvers. A bounded suboptimal search algorithm accepts a
parameter w (sometimes known as 1+ϵ) and returns a solution that is guaranteed to
be less than or equal to w×C∗, where C∗ is the cost of the optimal solution. Bounded

25



Introduction to the General Problem

suboptimal search algorithms provide a middle ground between optimal algorithms
and unbounded suboptimal algorithms. Setting different values of w allows the user
to control the trade-off between runtime and solution quality.

A fundamental property MAPF solvers might or might not have is the completeness.
A MAPF solver is complete if it always finds a solution to the problem when it exists.

Conflicts

The goal of MAPF solvers is to find a solution without collisions. To achieve this, the
notion of conflicts during planning is necessary.
Let πi and πj be a pair of single-agent plans.

• Vertex conflict. A vertex conflict between two single-agent plans occurs if and
only if according to these plans the agents are planned to occupy the same node at
the same time step. Formally, there is a vertex conflict between πi and πj if and
only if there exists a time step x such that πi[x] = πj [x].

• Edge conflict. An edge conflict between two single-agent plans occurs if and only
if according to these plans the agents are planned to traverse the same edge at
the same time step in the same direction. Formally, an edge conflict between πi

and πj occurs if and only if there exists a time step x such that πi[x] = πj [x] and
πi[x+ 1] = πj [x+ 1].

• Following conflict. A following conflict between two single-agent plans occurs if
and only if one agent is planned to occupy a vertex that was occupied by another
agent in the previous time step. Formally, a following conflict between πi and πj

occurs if and only if there exists a time step x such that πi[x + 1] = πj [x] (this
definition may be used to avoid problems in case of default/failure inside the system).

• Cycle conflict. A cycle conflict between a set of single-agent plans occurs if and
only if the same time step every agent moves to a vertex that was previously occupied
by another agent, forming a "rotating cycle" pattern. Formally, A cycle conflict
between a set of single-agent plans πi, πi+1, . . . , πj occurs if and only if there exists a
time step x in which πi[x+1] = πi+1[x] and πi+1[x+1] = πi+2[x] . . . and πj−1[x+1] =
πj [x] and πj [x+ 1] = πi[x].

• Swapping conflict. A swapping conflict between two single-agent plans occurs if
and only if the agents are planned to swap locations in a single time step. Formally,
a swapping conflict between πi and πj occurs if and only if there exists a time step
x such that πi[x+ 1] = πj [x] and πj [x+ 1] = πi[x]. This conflict is sometimes called
edge conflict. Note, a swapping conflict is a cycle conflict for two agents.

From the definitions above, we have the following implications:

edge conflict ⇒ vertex conflict

cycle conflict ⇒ following conflict
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swapping conflict ⇒ following conflict

swapping conflict ⇒ cycle conflict

Hence:
forbidden vertex conflict ⇒ forbidden edge conflict

forbidden following conflict ⇒ forbidden cycle conflict

forbidden following conflict ⇒ forbidden swapping conflict

forbidden cycle conflict ⇒ forbidden swapping conflict

To properly define a classical MAPF problem, one needs to specify which types of conflicts
are allowed in a solution.

Behavior at target

In a classical MAPF solution, the agents may reach their target at different time steps,
so we have to define how an agent behaves in the time steps after it has reached its final
node but before everyone has reached its target. The two common assumptions for how
agents behave at their targets are stay at target and disappear at target.

• Stay at target. An agent stays at its target until all agents have reached their
targets. This waiting agent will cause a vertex conflict with any plan that passes
through its target after it has reached it.

• Disappear at target. When an agent reaches its target, it immediately disappears.
So, it won’t collide with anyone once arrived.

Note, if the agent-at-target behavior is stay at target and the objective function is sum
of costs, then one needs to specify how staying at a target affects the sum of costs. The
common assumption is that an agent staying at its target counts as a wait action unless
it is not planning to move away from this location.

Intuitively, the easiest hypothesis to avoid future obstacles is agents disappear at the
target.

1.2.4 Variants
MAPF on Weighted Graphs: Different moves duration and costs

In the classical MAPF setting, we assume each action takes exactly one time step. In more
complex MAPF literature motion models, different actions may have different duration.
In this latter case, the graph representing the potential locations that agents may occupy
becomes a weighted graph where every edge’s weight represents the time needed to traverse
this edge (or the cost to use that edge).

The types of weighted graphs used in research include:

• MAPF in 2k-neighbor grids. Such maps are a restricted form of weighted graphs
in which every vertex represents a cell in a two-dimensional grid. The move actions
of an agent in a cell are all its 2k neighboring cells, where k is a parameter.
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• MAPF in Euclidean Space. This is a generalization of MAPF in which ev-
ery node represents a Euclidean point (x, y) and the edges represent allowed move
actions.

From Pathfinding to Motion Planning: Closing the gap with more realistic
settings

In classical MAPF, agents are assumed to occupy one vertex, with no volume or shape,
and move at a constant speed. On the other hand, motion planning algorithms directly
consider these properties. There, an agent belongs at each time step to a configuration
instead of only a vertex, where a configuration specifies the agent location, orientation,
velocity, etc., and an edge between configurations represent kinematic motion.

Several MAPF variants are steps towards closing this gap between classical MAPF
and motion planning. In MAPF with large agents, agents have a specific geometric
shape and volume. In MAPF with kinematic constraints, we consider kinematic
constraints over agents’ actions.

MAPF with more tasks

While in the classical MAPF each agent has the only task of reaching its target cell,
several extensions consider agents with more than one target.

• Anonymous MAPF. In this case, the objective is to move the agents to a set
of target vertices, but it does not matter which agent reaches which target. In
other words, every agent can be assigned to any target (but necessarily a one-to-one
mapping).

• Colored MAPF. Here, agents are grouped into teams with a set of targets. This is
a generalization of the anonymous MAPF. One can generalize colored MAPF even
further, assigning a target and an agent to multiple teams.

• Online MAPF. In online MAPF (also called Lifelong MAPF), a sequence of
MAPF problems is solved on the same graph. Online MAPF can be classified as
follows:

– Warehouse model. A fixed set of agents solves a MAPF problem, but after
an agent finds a target, it may be tasked to go to a different target, taking
inspiration from MAPF for autonomous warehouses.

– Intersection model. Here, new agents may appear while the others are follow-
ing their plan, and each agent has the only task to reach its target. This setting
takes inspiration from autonomous vehicles entering and exiting intersections.
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Chapter 2

Introduction to the Specific
Problem

In the previous chapter, we presented the general MAPF framework, starting from the
historical background, presenting its main features, and arriving at variants of the classi-
cal MAPF. Let us now focus on the specific problem we tackle in this document.

This work is part of a larger project on decentralized solutions for large-scale path
planning problems. In particular, It has the final objective to develop a solution to the
classic MAPF problem (Ma and Koenig [2017], Stern et al. [2019]) with the following
characteristics:

• large grid 1 with ≈ 15,000 cells;

• a small number of obstacles ( ≈ 14,000 free cells );

• no narrow passages;

• 75,000 agents moving on the grid daily with 7,000 at peak hour;

• online setting, with new agents appearing any time and having to reach their targets;

• agents disappearing at target, with some potential queue formation;

• goal: maximize daily throughput.

This request refers to the problem of automation inside a large warehouse. A physical
grid of tiles composes the floor. Over this grid, apart from fixed obstacles, tiles are either
free or occupied by at most one skid. A skid (also called cart agent) is a squared mobile
device that moves from tile to tile, carrying specific objects, like boxes, from an origin

1Although this work focuses on grid environments, the presented algorithms apply equally to more
general pathfinding domains. Any discontinuous environment can be used, as long as every agent’s
route is planned with discrete motion elements.
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to the corresponding destination tile. These skids correspond to the mobile agents of the
classical MAPF setting, but in this case, we have a new kind of agent, the tile.

The two types of intelligent agents, i.e., skids and tiles, communicate with each other
to accomplish the MAPF goal. 2 Specifically, a generic cart agent stays on a tile agent (so
the latter is occupied). It builds the shortest path considering the grid as empty except
for the fixed obstacles. Then, it starts moving on that path, one step at a time. Before
moving to a new tile, it checks its availability: if the tile is available, i.e., not occupied, it
moves there (so the new tile becomes busy and the first one available), otherwise the cart
agent has to proceed differently (waiting without changing cell, moving to another cell,
or appropriately moving to the interested cell). This method is useful when dealing with
the following conflicts [1.2.3].

Once the skid reaches its goal, we assume it exits the system (disappear at target). In
more realistic situations, the mobile agent could come back to the origin, to carry new
uploaded boxes to new destinations. Intuitively, this last kind of problem is similar to a
lifelong MAPF problem [1.2.4], in which each cart agent completes a task (in our case,
to go from the origin to the destination), and then another one (to come back from the
destination to the origin).

The goal is to maximize the number of agents reaching their destination in one day,
i.e., the daily throughput.

We include the possibility of agents to appear any random time in the grid (online
setting [1.2.4]). For this reason, while implementing our algorithm, we must avoid online
skids being inserted upon occupied cells [6.1.1].
While developing our initial algorithm, we first opted for an offline setting then we ex-
tended it to the case of online agents.

Many types of conflicts may arise during the solving phase [1.2.3]. The majority of the
literature articles consider only vertex and edge conflicts.

Thanks to the specific problem framework and the implementation technique [3.1],
vertex conflicts never happen.

As the reader may imagine, we should consider many more aspects to apply a MAPF
search algorithm to reality. For example, in physical applications, failures could arise.
One should model the possibility that some hardware component breaks, not enabling the
physical passage of the skid from one to another tile. We could use a warning function to
disable that specific neighborhood temporarily.

Problems like this are out of the objectives of this document. We assume no robot
motion failure will occur.

2We use interchangeably the terms skids, mobile agents, cart agents, and the terms tile, node, and
cell.
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Chapter 3

Implementation & Analysis

3.1 Coding
A crucial part of this work consists of the code implementation of the developed MAPF
algorithms. While the developed algorithms are decentralized, the implementation of the
multi-agent system is centralized on an Intel Core i3 PC. So necessarily, the code manages
the agents sequentially, whereas they are processed contemporarily in warehouse applica-
tions. This is not a restriction, as long as we guarantee that the ordering of how agents
are processed doesn’t negatively influence the results [6.1.1].

Object Oriented Programming 1 is fundamental to simulate multi-agent systems with
hundreds or thousands of mobile agents. We use Python programming language, version
3.9 (python) for coding, being profitable both in terms of power and computation speed.

It is possible to simulate and solve MAPF problems by considering every skid and tile
as belonging to a specific data structure.

Every skid is sequentially processed as follows. It checks whether the tile of interest
is available (in real applications, communication protocols are needed). If so, it occupies
the cell. Otherwise, it proceeds differently. In this way the only possible type of conflict
is the edge collision; there is no possibility of vertex collisions [1.2.3]. Despite this, we
are not limiting the set of possible applications. Indeed, from a practical point of view, it
cannot happen that two skids make availability requests simultaneously for the same tile.
In other words, tiles dominate the movement of skids.

To guarantee uniform speed for the skids, we impose in the codes that no agent can
make more than one action. Without this, the algorithm would produce very different
results.

So we conclude that considering tiles as agents has the major advantage of avoiding
vertex conflict. Nevertheless, while tiles avoid physical cell sharing, this doesn’t preclude

1Object Oriented Programming (OOP) is a programming paradigm that relies on the concept
of "objects" which can contain data and code (https://en.wikipedia.org/wiki/Object-oriented_
programming).
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deadlocks formation around cells. For this reason, in this work, one of the primary objec-
tives is to reduce congested areas.

3.2 Analysis & Visualization
To compare different algorithms, with different grids and scenarios, we measure some
specific variables as outcomes of the run code [7]. We summarize and analyze these
results using the MATLAB software (MathWorks). Further statistical aspects are considered
with R too (Foundation). All these charts are enhanced using PowerPoint tool from the
Microsoft Office package. An example is shown in Figure 8.1.

To visualize the simulated scenarios, we use specific Python libraries. For compu-
tational reasons, we check the performance on simple small grids with few agents. This
helps us not only to evaluate the correctness of the implemented algorithm but also to
understand specific behaviors.
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Chapter 4

Benchmarks

4.1 Benchmark Grids and Scenarios
To simulate multi-agent systems, we consider specific real and synthetic domains devel-
oped by the MAPF researchers and uploaded on the MAPF community website (Koenig
[2022], Stern et al. [2019]). The database contains more than 30 benchmark grids (both
real and synthetic), described as text files, every one containing as many rows and columns
as the dimension of the grid. This text contains two types of characters:

• ’.’: this character indicates a grid’s node free of fixed obstacles;

• ’T’ / ’@’: this means that a specific cell contains a fixed obstacle; mobile agents
cannot move there.

For each of these benchmark grids, there are 25 (× 2) benchmark scenario sets. Each
benchmark scenario file contains a list of agents’ start/goal locations, with a maximum
length of 1000 randomly generated start-goal couples. The idea is to consider problems
where we add one agent at a time until an algorithm cannot solve a problem in a given
time/memory limit.

In this document, we focus on 3 benchmark grids:

• 48 × 48 empty grid. This domain doesn’t have any fixed obstacle, so the number of
free cells is 48 × 48 = 2304 (without considering skids); recalling [2], to simulate a
50% of free cells occupied by mobile agents, we should consider approximately 1200
agents. This is what we do in [7].

• 256 × 256 Boston grid (Figure 4.1). The number of free cells is 47768. To simulate
a 50% of occupied cells, we should consider close to 23400 skids. For computational
reasons, we limit ourselves to a maximum of 1200 agents in the domain.
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• 128 × 128 Maze Grid 1 (Figure 4.2). The number of free cells is 14818. To simu-
late the 50% of occupied cells, we should consider close to 7500 skids. Again, for
computational reasons, we limit ourselves to a maximum of 1200 agents.

Figure 4.1: Boston Benchmark Grid.

Figure 4.2: Maze Benchmark Grid.

1When we apply our algorithms to these more complex grids, we have additive information on their
properties, specifically, the length of the paths and the presence of narrow passages.
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Moreover, we build two specific small benchmark grids (and the corresponding bench-
mark scenarios) to be used for checking the correctness of our algorithms (Figures 4.3a,
4.3b, 4.4).

(a)

(b)

Figure 4.3: Custom Benchmark Grid. Agents must navigate from Si to Gi.
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Figure 4.4: Second Custom Benchmark Grid. Agents must navigate from Si to Gi.

4.2 Benchmark Algorithms (from the literature)
As presented in [1.1], the literature is full of decentralized MAPF algorithms. Silver [2005]
can be considered as the masterpiece of decoupled MAPF approaches. Its three decentral-
ized MAPF algorithms contain innovative ideas of cooperation between agents, starting
a new era in which agents don’t focus on themselves anymore, but navigate taking care
of the others’ actions, either completely from the start to the end of their journey or
partially. Even today, the most advanced methods are based on these ideas.

We initially focus on a self-interested policy, where agents don’t share their world’s
knowledge with any other [1.1.4]. Then we improve this basic approach, introducing
some form of cooperation by letting agents share some properties but still trying to solve
conflicts locally, not in advance. In [8.2.2], we compare our best version with the three
Silver’s "benchmark" algorithms, showing cooperation outperforms selfishness, although
sometimes the latter may find solutions where the former doesn’t.

In the following, we give a full description of these algorithms, respectively, CA*,
HCA*, and WHCA*, reviewed with the following point:

• method;

• year;

• solution;

• approach;

• motivation;
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• brief description;

• hierarchy;

• abstraction;

• conflicts;

• priority;

• heuristic;

• behavior at target;

• pros and cons.

Before this, we recall the algorithm LRA* that Silver defined as "the current video-
games industry standard" in 2005 and that the cooperative approaches outperform.

Finally, we specify which will be considered in [8.2.2].

4.2.1 LRA* (Local Repair A*)
• Method. Decentralized method for MAPF.

• Year. Before 2005.

• Solution. Suboptimal solution.

• Approach. Offline approach.

• Motivation. This algorithm was the video-games-industry standard in 2005. It is
the decoupled adaptation of the A* algorithm.

• Brief description. Each agent searches for a route to the destination using the
A* algorithm, ignoring all other agents except its current neighbors. The agents
then start following their routes, until a collision is imminent. Whenever an agent
is about to move into an occupied position it instead recalculates the remainder of
its route. Cycles are possible, so it is usual to try and add some modifications to
escape such problems.

• Hierarchy. No hierarchy is considered in this algorithm.

• Abstraction. Grid maps are the most popular approach to abstract a real-world
navigation map into a search space. The map is discretized into a grid of atomic
locations called tiles. Then, the standard way to build a search graph from a grid
map is to define one node for each accessible tile; we define undirected edges be-
tween adjacent nodes, so moving between two adjacent locations is allowed in both
directions. We discretize the virtual environment into a grid of tiles. Then easily we
obtain a graph structure.
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• Conflicts. Whenever an agent is about to move into an occupied position it instead
recalculates the remainder of its route. Cycles are possible, so it is usual to try and
add some modifications to escape such problems. One possibility is to increase an
agent’s agitation level every time it is forced to reroute. Agents will hopefully escape
from the problematic area, as they behave increasingly randomly.

• Priority. Priority is not taken into account in this algorithm.

• Heuristic. This search method is substantially an adaptation of A*. So the heuristic
is any admissible heuristic used in A*. Since increasing agents’ agitation levels helps
escape cycles problems, it modifies this heuristic. In particular, random noise is
added to the A* heuristic, proportionally to the agitation level.

• Behavior at target. Once the destination is reached by the agent, it doesn’t move
anymore. Consequently, it may block off parts of the map to other agents.

• Pros & Cons. LRA* is known to have many drawbacks when applied to complex
environments. If bottlenecks occur in crowded regions, they may take arbitrarily
long to be solved. While caught in a bottleneck, agents constantly reroute in an
attempt to escape, requiring a full recomputation of the A* search almost every
turn. This leads to visually unintelligent behavior. Each agent makes a change in
route independently, leading to cycles in which the same location may be visited by
agents repeatedly in a loop.

4.2.2 CA* (Cooperative A*)
• Method. Decentralized method for MAPF.

• Year. 2005.

• Solution. Suboptimal solution.

• Approach. Offline approach.

• Motivation. This algorithm is developed to overcome the drawbacks of Local Re-
pair A* by using cooperative search.

• Brief description. The task is decoupled into a series of single-agent pathfindings.
Each search is performed in three-dimensional space-time taking into account the
planned routes of other agents. After calculating each agent’s route, the states
along the path are marked on a reservation table and are considered impassable (for
precisely the duration of the intersection) and avoided during searches by subsequent
agents.

• Hierarchy. No hierarchy is considered.

• Abstraction. Each single-agent search is performed in three-dimensional space-time
taking into account the planned routes of other agents. After calculating each agent’s
route, the states along the path are marked on a reservation table and are considered
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impassable and avoided during searches by subsequent agents. The reservation table
represents the agent’s shared knowledge about each other’s planned routes. It is a
sparse data structure marking off regions of space-time.

• Conflicts. This method avoids conflicts, but it may be so restrictive that any
decoupled greedy algorithm that pre-calculates the optimal path will not be able to
solve some classes of problems, as explained in the following.

• Priority. Any decoupled greedy algorithm that pre-calculates the optimal path will
not be able to solve some classes of problems. This can happen when a greedy
solution for one agent prevents any solution for another agent. In general, such
algorithms are sensitive to the ordering of the agents, requiring sensible priorities to
be selected for good performance.

• Heuristic. CA* uses heuristics to search the single-agent path. Any admissible
heuristic can be used, such as Manhattan distance (but we should consider better
heuristics to help reduce the computation).

• Behavior at target. Once the destination is reached by the agent, it doesn’t move
anymore. Consequently, it may block off parts of the map to other agents.

• Pros & Cons. One drawback of this algorithm is the heuristic choice (as previously
stated, we should consider better heuristics to help reduce the computation since the
Manhattan distance gives a poor performance in more challenging environments).
Even more important, there are some classes of problems that Cooperative A* cannot
solve.

4.2.3 HCA* (Hierarchical Cooperative A*)
• Method. Decentralized method for MAPF.

• Year. 2005.

• Solution. Suboptimal solution.

• Approach. Offline approach.

• Motivation. A drawback of CA* is the choice of an appropriate admissible heuristic.
In particular, we should consider a heuristics better than Manhattan distance to help
reduce the computation. One method for improving a heuristic based on abstractions
of the state space is to use Hierarchical A* (abstract distances are computed on-
demand, which is more appropriate in a dynamic context), the basis for Hierarchical
Cooperative A* (HCA*).

• Brief description. HCA* is just like CA* with a more sophisticated heuristic,
the true distance heuristic, using RRA* (Reverse Resumable A*) to calculate the
abstract distance on-demand. In particular, RRA* executes a modified A* algorithm
in a reverse direction.
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• Hierarchy. A hierarchy refers to a series of abstractions of the state space, each
more general than those previous, and is not restricted to spatial hierarchy. HCA*
uses a simple hierarchy containing a single domain abstraction, ignoring both the
time dimension and the reservation table.

• Abstraction. Recall abstraction works by replacing one state space with an-
other, the ’abstract’ space, that is easier to search. The abstraction is a simple
2-dimensional map with all agents removed. Abstract distances can thus be viewed
as perfect estimates of the distance to the destination, ignoring any potential inter-
actions with other agents.

• Conflicts. Similarly to CA*, this method avoids conflicts, but it may be so restric-
tive that any decoupled greedy algorithm that pre-calculates the optimal path will
not be able to solve some classes of problems.

• Priority. Similar to the priority of CA*.

• Heuristic. Heuristics are used both in the abstraction phase and when using RRA*
to reuse search data. In one case, the heuristic is the true distance, while in the
other it is the Manhattan distance heuristic.

• Behavior at target. Once the destination is reached by the agent, it doesn’t move
anymore. Consequently, it may block off parts of the map to other agents.

• Pros & Cons. This method overcomes CA*’s heuristic problems by computing
abstract distances on-demand, via Hierarchical A*. One of the issues with Hierar-
chical A* is how to best reuse search data in the abstract domain and this is solved
considering RRA* search in the abstract domain.

4.2.4 WHCA* (Windowed HCA*)
• Method. Decentralized method for MAPF.

• Year. 2005.

• Solution. Suboptimal solution.

• Approach. Offline approach.

• Motivation. CA* and HCA* present three main issues:

– when an agent sits at its destination, it may block off parts of the map to other
agents;

– sensitivity to agents ordering;
– high computational cost.

WHCA* solves these problems by windowing the search.
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• Brief description. Windowing the search means cooperative search is limited to a
fixed depth specified by the current window. Each agent searches for a partial route
to its destination and then follows it. At regular intervals, the window is shifted
forward and the algorithm computes a new partial route. To ensure the agent heads
in the correct direction, only the cooperative search depth is limited to a fixed depth,
while the abstract search is executed to full depth. So the search is reduced to a
w-step window using the abstract distance heuristic introduced for HCA*. Finally,
we can reuse the RRA* search results for each consecutive window.

• Hierarchy. We said HCA* uses a simple hierarchy containing a single domain
abstraction, ignoring the time dimension and the reservation table. In WHCA*, a
window of size w is like an intermediate abstraction. Hence we substantially have
two levels of abstraction, an intermediate and a complete one.

• Abstraction. A window of size w is like an intermediate abstraction, equivalent
to the base level state space for w steps and the abstract level state space for the
remainder of the search. In other words, other agents are only considered for w steps
(via the reservation table) while ignored for the remainder of the search.

• Conflicts. With respect to previous algorithms, WHCA* avoids possible conflicts of
agents blocking the motion of others. Cycles are indeed possible using this algorithm.
To solve this, the agent’s agitation level increases every time it must reroute, as
previously explained.

• Priority. With this algorithm, it is possible to plan paths for groups of agents at
different time steps. So the priority is fixed (similarly to CA* and HCA*) for agents
inside the same group but changes between groups. This brings the same advantages
as dynamic priorities.

• Heuristic. This algorithm uses heuristics in different moments. The search is
reduced to a w-step window using the abstract distance heuristic introduced for
HCA*. As for HCA*, WHCA* can use the Manhattan distance heuristic in the
RRA* search phase. Finally, the distance heuristic is modified when cycles are
formed: random noise is added to the distance heuristic in proportion to the agitation
level, hoping the increasingly random movement will help agents escape from the
problematic area.

• Behavior at target. The windowed search can continue once the agent has reached
its destination. The agent’s goal is no longer to reach the destination, but to complete
the window via a terminal edge.

• Pros & Cons. There are at least three issues with previous algorithms. One issue
is how they terminate once the agents reach their destination. If an agent sits on
its destination, it may block off parts of the map to other agents. Ideally, agents
should continue to cooperate after reaching their goals so that an agent can move off
its destination and allow others to pass. A second issue is sensitivity to agent order.
Although it is sometimes possible to prioritize agents globally, a more robust solution
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is to dynamically vary the agents’ order. A third issue is that the previous algorithms
must calculate a complete route to the destination in a large three-dimensional state
space. By windowing the search, WHCA* mainly solves these problems. With
respect to centralized approaches, this method can significantly improve scalability
and speed. However, such a method is incomplete. It provides no guarantees for the
total running time and is unable to a priori tell whether it would succeed in finding
a solution to a given instance.

4.2.5 Implementation: Drawbacks
Our algorithm’s optimized version is compared with CA* and HCA*. We also imple-
mented a simplified version of WHCA* 2, where the search is windowed, but we don’t
partition agents in sequentially processed groups, which instead would be useful in real-
time scenarios while interleaving planning and execution, e.g., in interactive computer
games. Our WHCA* simplified version hardly finds solutions even for few agents.

Finally, we implemented a Multi-agent A* version to check the difference between
centralized and decentralized algorithms. Despite the correctness of the code, the disad-
vantages of centralized pathfinding in terms of time and space computational complexity
are obvious, even for few agents on a small empty grid.

In conclusion, we proceed with the more constraining but still powerful (decentralized)
cooperative pathfinding versions, i.e., CA* and HCA*.

2Silver showed many steps to improve HCA*, up to a complete version of WHCA* (Silver [2006]).
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Chapter 5

Single-Agent Search Methods
on Graphs

This chapter reviews the main shortest path methods for single agents (Dijkstra’s and A*
search), starting from the basic graph search techniques. We integrate their description
with figures showing how they work on simple grids. Because of its advantages over the
other algorithms, we use A* as the search function for developing our MAPF solvers.

5.1 Introduction to the Shortest Path Search
The shortest path search between two nodes is a fundamental operation on graph
structures 1.

Definition 2 In the general problem setting, a weighted graph is a pair G = (V , E),
where V is the set of vertices, and E is the set of edges (i.e., links connecting pairs of
vertices), with real numbers assigned to edges (the weight of an edge).
An unweighted graph is a weighted graph with unitary edges weights.
A path is a sequence of vertices (v1, . . . , vn) such that vi is adjacent to vi+1 for 1 ≤ i < n.
The cost of a path is given by the sum of all its edges’ weights.
The shortest path problem is the problem of finding the path with the minimal cost.

We may tackle this problem differently, depending on the specific objective we have:

• all-pairs shortest path;

• single-pair shortest path;

• single-source shortest path;

• single-destination shortest path.

1https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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Specifically, if the goal is to find the shortest path between all node pairs (all-pairs
shortest path problem), more efficient methods are different than those used when we
are interested in finding the shortest path from one single node (single-source short-
est path problem). The two other types of shortest path problems are the single-pair
shortest path problem, the problem of finding the shortest path connecting two generic
nodes, and the single-destination shortest path problem, where we look for the
shortest path from all vertices to a single destination node 2.
Moreover, the best algorithm choice depends on the edges values properties: some algo-
rithms are capable of working on graphs with just positive edges weights (e.g., Dijkstra’s
Algorithm), while others are suitable even for problems on graphs with null or negative
weights (e.g., Bellman-Ford Algorithm) (Crescenzi et al. [2012]).

We further subdivide in informed and uninformed algorithms 3.

• Informed search (or heuristic search) algorithms exploit a "knowledge function"
(heuristic function) to find efficiently one or more solutions to a given search
problem. The heuristic function is used to establish the best search order (i.e.,
priorities) to reduce the overall cost 4.

• Uninformed search (or blind search) algorithms explore all possible states with-
out exploiting any other information to solve the problem. Generally, it is inefficient
since, by discarding any further knowledge, its computational cost explodes with the
number of states 5.

The two main advantages of heuristic search over blind search are reduced computational
cost and the avoidance of a computational explosion while searching.
The price to pay is the lack of completeness: uninformed search techniques bring always
optimal solutions (when they exist), but informed searches don’t.

For our analyses, we focus on single-source shortest paths between grid nodes. Here,
the weights between edges are always positive. First, we analyze uninformed methods,
graphically showing their drawbacks, followed by examples of heuristic search techniques
(Stout [1997]).

2https://en.wikipedia.org/wiki/Shortest_path_problem
3https://www.geeksforgeeks.org/difference-between-informed-and-uninformed-search-in-ai/
4https://www.okpedia.it/ricerca_informata
5https://www.okpedia.it/ricerca_non_informata
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5.2 Breadth-First Search (for the shortest path)
Considering a start node, this method iteratively extracts its neighbors. They are put
into the frontier of the search. Then neighbors of neighbors are extracted and added
to the frontier too, which tends to enlarge. This loop is the basis for all search algorithms
on graphs, including the state-of-the-art A* method.

Since Breadth-First Search is used for many graph problems, the loop doesn’t build the
paths by itself. It simply tells how to visit everything on the map. With a data structure
(typically a dictionary) containing each node’s parents (i.e., those nodes that have been
visited at the previous time step), we reconstruct the shortest path, going backward from
the goal to the start node.

In Figure 5.1 we show an example of how this specific search method explores a generic
8×8 empty grid, starting from a specific location (node S in position (x, y) = (6, 1)). Ev-
ery single loop expands the frontier of dashed light-blue nodes in all directions by adding
a node’s neighbors. Each figure’s window shows the expansion up to a certain depth.

The search stops after extracting all the network nodes, even without specific infor-
mation about the destination. Despite this, if the goal location is known, we could speed
up the process by introducing the possibility of an early exit: the search terminates
whenever the destination node is reached. The early exit still guarantees an optimal so-
lution because all the eventually unexplored nodes won’t belong to any such optimal path.

This method suffers from two obvious problems.

1 . We need an improved method that saves the cumulative cost since in generic maps
the steps may not be equal.

2 . It searches in all directions instead of directing its focus toward the goal.

The Breadth-First method is an uninformed search algorithm.
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5.3 Bidirectional Breadth-First Search (for the short-
est path)

This specific enhancement speeds up the process by a factor of 2 by running Breadth-First
Search contemporarily both from the start and the goal location. The search stops if the
two frontiers have a shared node (early exit setting) or when all the network nodes have
been reached.

Figure 5.2 presents the first steps of the Bidirectional Breadth-First Search on a 8 × 8
empty grid starting from node S (position (x, y) = (6, 1)) and heading to node G (posi-
tion (x, y) = (0, 3)). Compared with Figure 5.1, now the grid has approximately double-
covered nodes for each maximal depth.

The drawbacks of Bidirectional Breadth-First Search are the same as the previous
algorithm.
Bidirectional Breadth-First method is an uninformed search algorithm.
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5.4 Depth-First Search
Depth-First Search (DFS) is the complement to Breadth-First Search: while the latter
visits all a node’s siblings (nodes at the same depth with the same father) before any
children, the Depth-First method’s idea is to visit all node’s descendant before any of
its siblings. In other words, in Breadth-First Search, siblings are visited before children,
while in Depth-First Search, siblings are visited after children. A fundamental parameter
of Depth-First Search is the depth limit.

As intuition suggests, BFS is more suitable for searching vertices closer to the given
starting node, while DFS is better when goal nodes are away from the origin. In this last
case, BFS’s time and space consumption are higher than in DFS.

Table 5.1 shows a direct comparison between depth-first search in terms of time and
space complexity, completeness, and optimality.

BFS DFS
Time complexity O(n+m) O(n+m)
Space complexity O(n+m) O(m)
Completeness Yes No
Optimality Yes No

Table 5.1: Comparison between Breadth-First Search (BFS) and Depth-First Search
(DFS) as graph and tree search algorithms. n stays for the number of nodes, while
m is the number of edges. Time and space complexity are considered. BFS is always
complete, but there may be situations in which DFS doesn’t find a solution even if one
exists. Finally, different from BFS, DFS is a suboptimal solver.

In Figure 5.3 we show the functioning of Depth-First Search applied to the usual 8 × 8
empty grid starting from a source node S in position (x, y) = (6, 1). Assuming a coun-
terclockwise ordering of the neighbors to be visited as that in the top-left part of the
algorithm, it is quite understandable the evolution of the search on this simple grid: the
search will proceed on the right until the border is reached, then it will proceed upwards,
and so on.

To avoid infinite loops, every time a node is expanded, we check whether the neighbor
we are considering was already visited. If so, we compare the associated costs as described
in Dijkstra’s Algorithm [5.6]. The idea of signing nodes and comparing costs lets us un-
derstand if a specific node has to be revisited or not. This helps avoid infinite loops, not
only in DFS but in all graph search methods.

As previously done, we could explore all the grid, or include an early exit check: if the
extracted node coincides with the goal node, then the algorithm stops. As shown in Table
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5.1, the problem with considering an early exit is that DFS could extract a sub-optimal
solution. To understand this, consider Figure 5.3 again. If the goal node were in position
(x, y) = (0, 3), the algorithm with the early exit technique would return a longer path,
going all along the grid border.

Drawbacks of BFS are included in those of DFS too.
Depth-First Search is an uninformed search method.

48



5.5 – Iterative-Deepening Depth-First Search

5.5 Iterative-Deepening Depth-First Search
This is an enhancement of DFS. The depth limit choice is quite important, but not easy
to make. If we impose a too small depth, we might not reach the goal node. On the other
hand, a deep search could be costly or even unnecessary.
The remedy imposed by Iterative-Deepening Depth-First Search consists in applying DFS
consecutively, each time increasing the depth parameter until the goal is reached.

The idea of this algorithm is shown in Figure 5.4. As we can see, the search begins at
small depths and increases over time.

The behavior is similar both to DFS and BFS. So, we conclude this is a compromise
between the two techniques, proceeding in-depth and amplitude at the same time.
This is an uninformed search algorithm.
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5.6 Dijkstra’s Algorithm
In many problems, we should consider maps with varying costs for passing from a cell
to an adjacent one. Contrary to Breadth-First and Bidirectional Breadth-First methods,
this is a classical approach for traversing graphs with weighted edges.

First, the set of unsigned vertices equals the set of nodes minus the starting vertex.
During the initialization step, we look for all the followers of the starting vertex. The
shortest path between the starting node and its successors is the edge weight. The starting
node is the predecessor of these vertices. These values are saved into a priority queue with
the corresponding nodes, defining the frontier. After this, the algorithm passes to the next
step, the iterated one.

The iterated step consists in extracting the node with higher priority from the frontier,
i.e., the one with a smaller cost from the origin vertex. We consider its neighbors, but
before adding them to the frontier (as done in Breadth-First Search), Dijkstra’s algorithm
assigns a priority value for each.

The priority value is the cost of the shortest path from the origin vertex to that
considered node. To compute the cost of the path, we proceed as follows. We compare
the priority value assigned to the neighbor to the cost of the path passing through the pre-
decessor of the considered neighbor. If the second priority is smaller than the previously
assigned value, we update the cost. If the neighbor doesn’t have an assigned priority yet,
i.e, it is unsigned, then we assign the cost of the path passing through its predecessor.

Algorithm 1 Dijkstra’s Search Code.
1: frontier = PriorityQueue()
2: frontier.put(start, 0)
3: came_from = dict()
4: came_from[start] = None
5: while not frontier.empty() do
6: current = frontier.get()
7: if current == goal then
8: break
9: end if

10: for next in graph.neighbors(current) do
11: if next not in came_from then
12: priority = heuristic(goal, next)
13: frontier.put(next, priority)
14: came_from[next] = current
15: end if
16: end for
17: end while

Figure 5.5 shows Dijkstra’s Search on an 8 × 8 empty grid with movement costs: for
easier comprehension, we assigned green/red values on the left-upper part of each cell;
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the movement cost between two adjacent nodes is given by the maximum between the
two corresponding values. At the same time, on the right-bottom corner of the vertex,
we have the cumulative smallest cost required to move from the origin to that specific
position. This last value is used by the algorithm to understand which frontier node to
expand first.

This figure is split into two parts, to compare the behavior on two grids with slightly
different cell values. This is an example where different cell values imply different shortest
paths. In this way, we see both the search process and the different consequences for
different grids. More specifically, while computing the shortest path, higher cell values in
positions (3, 4) ad (4, 4) bring higher priority values for the corresponding nodes. Nodes
in positions (3, 1) and (4, 3) will be expanded first, opening new positions that will bring
the shortest path (Figure 5.5d).

As previously done, we could explore all the grid, or include an early exit check: if
the extracted node coincides with the goal node, then the algorithm stops. Even though
this method solves the problem of searching on graphs with varying edge costs, the other
drawback remains: we are ignoring the direction along which to easily find the solution.
This is an uninformed algorithm.
Code 5.6 shows the coded algorithm 6.

6Credits to: https://www.redblobgames.com/pathfinding/a-star/introduction.html
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5.7 Best-First Search
Both Breadth-First Search and Dijkstra’s Search have the drawback of a frontier expand-
ing in all directions. This is good if we search shortest paths to many or even to all the
graph’s nodes. On the other hand, it might be unnecessary if we know the goal position. A
powerful method exploiting this knowledge is the informed algorithm of Best-First Search.

The idea is the same as before: to expand the frontier towards the destination in the
best possible way. Like in Dijkstra’s algorithm, we use a priority queue to decide which
frontier node to expand first. But now we assign a higher priority to nodes we estimate
to be closer to the goal vertex, instead of considering the length from the source.

Figure 5.6 shows the functioning of this method on an 8×8 empty grid with movement
costs: we assigned green/red values on the left-upper part of each cell; the movement cost
between two adjacent nodes is given by the maximum between the two corresponding val-
ues. On the right-bottom corner of frontier vertices, we have the estimated cost required
to move from that specific position to the goal location. This last value is used to choose
which frontier node to expand first. In the case of many frontier nodes with the highest
priority, the choice is random.

This is an example of heuristic search, where we define an heuristic function to have an
estimate of the distance to the goal location. Closer nodes are extracted first. Although
it is fast, generally this search method doesn’t find optimal solutions. The reason why
this happens is the use of the heuristic function: it just gives an estimate of the distance
to the goal, but in some cases, this could lead to the passage through costly areas (like in
our example). In Figure 5.6 the Manhattan distance was used as heuristic function 7.

The heuristic choice guaranteeing optimality is the true distance heuristic. It
substantially calculates the shortest path between the goal and the analyzed node. But
this means an optimal search method should be used for Best-First Search to be optimal
too. In conclusion, an optimal algorithm cannot be based just on an estimate.

7The Manhattan distance between two grid nodes is the sum of their projections on the x and y
axes.
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5.8 A* Algorithm
The best two algorithms so far are Dijkstra’s and Best-First Search. Dijkstra’s algorithm
produces optimal paths with a costly technique since the frontier expands in all direc-
tions. Best-First Search is a heuristic search method that exploits a heuristic function to
estimate the distance from the goal location. It guarantees a higher speed in finding the
solution but brings a solution that is not necessarily optimal.

A* algorithm merges the advantages of both these two methods, guaranteeing an op-
timal solution in reduced time. The priority value equals the sum of the distance of the
node from the starting position with the estimated distance between the node and its
destination (based on the heuristic function definition). The vertex with a smaller sum
(i.e., an estimate of the path value passing from that node) is the first to be analyzed.
Let us see more in detail.

The A* algorithm maintains two sets, the OPEN list, and the CLOSED list. The
OPEN list contains those nodes that need to be examined, while the CLOSED list
keeps track of those that have already been examined. Initially, the OPEN list contains
just the initial node, and the CLOSED list is empty. Each node n in the graph maintains
the following additional information:

• g(n): the cost of getting from the initial node to n;

• h(n): the estimate, according to the heuristic function, of the cost of getting from n
to the goal node;

• f(n) = g(n) + h(n): intuitively, this is the estimate of the best solution that goes
through n.

A* has a main loop that repeatedly gets the node, n, with the lowest f(n) value from the
OPEN list (in other words, the node that we think is the most likely to be part of the
optimal path).
If n is the goal node, then we are done, and we return the solution by backtracking from
n. Otherwise, we remove n from the OPEN list and add it to the CLOSED list. Next,
we generate all the possible successor nodes of n.
For each successor node n′, if it is already in the CLOSED list and the copy there has an
equal or lower f estimate, then we can safely discard the newly generated n′ and move on
(we can do this since a copy with a better estimate on the CLOSED list means we have
already looked at it, and the new copy won’t do any better). Similarly, if n′ is already in
the OPEN list and the copy there has an equal or lower f estimate, we can discard the
newly generated n′ and move on (we’re going to be looking at a better version of n′ later,
so no need to keep this one round). If no better version of n′ exists in either the CLOSED
or OPEN lists, we remove the worst copies from the two lists and set n as the parent of
n′. We also have to calculate the cost estimates for n′. Lastly, we add n′ to the OPEN
list and return to the beginning of the main loop.
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A* is a best-first search algorithm where the merit of a node n, f(n), is the sum of the
actual cost of reaching that node from the initial state, g(n), and the estimated cost of
reaching the goal state from that node, h(n).
Code 5.8 shows the coded algorithm 8.

Algorithm 2 A∗ Search Code.
1: frontier = PriorityQueue()
2: frontier.put(start, 0)
3: came_from = dict()
4: cost_so_far = dict()
5: came_from[start] = None
6: cost_so_far[start] = 0
7: while not frontier.empty() do
8: current = frontier.get()
9: if current == goal then

10: break
11: end if
12: for next in graph.neighbors(current) do
13: new_cost = cost_so_far[current] + graph.cost(current, next)
14: if next not in cost_so_far or new_cost < cost_so_far[next] then
15: cost_so_far[next] = new_cost
16: priority = new_cost + heuristic(goal, next)
17: frontier.put(next, priority)
18: came_from[next] = current
19: end if
20: end for
21: end while

Figure 5.7 shows the functioning of this method on an 8×8 empty grid with movement
costs: we assigned green/red values on the left-upper part of each cell; the movement cost
between two adjacent nodes is given by the maximum between the two corresponding val-
ues. On the right-bottom corner of frontier vertices, we read the estimated cost required
to move from that specific position to the goal location. This last value is used to choose
which frontier node to expand first. In the case of many frontier nodes with the highest
priority, the choice is random. We specify each node’s parent with black arrows. These
arrows represent the pointer to the parent and are saved in the specific data structure for
computing the path once the goal is reached.
Figure 5.7b shows the situation in which the parent node is changed for the vertex in
position (x, y) = (4, 4). This is useful to understand that sometimes the process could
extract again some nodes to update this information.

8Credits to: https://www.redblobgames.com/pathfinding/a-star/introduction.html
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A* has the property that it will always find an optimal solution to a problem if the
heuristic function never overestimates the actual solution cost. Its major drawback is
that it requires exponential space in practice. Depending on the situation, A* is preferred
to Dijkstra and vice versa. Indeed, A* exploits the heuristic to move along the most
promising direction, while Dijkstra’s search explores uniformly every direction. This last
approach is useful when we are looking for alternative optimal paths.
A* is an example of a heuristic search.
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Figure 5.1: Breadth-First Search example. The grid is the 8 × 8 empty square (16 free
tiles). The search starts from node S in position (x, y) = (6, 1). The expanding frontier
is made by dashed light-blue nodes. Already visited nodes are represented in shadowed
blue color.
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Figure 5.2: Bidirectional Breadth-First Search example. The grid is the 8 × 8 empty
square (16 free tiles). The search starts both from node S in position (x, y) = (6, 1) and
the goal G in (x, y) = (0, 3). The expanding frontier is made by dashed light-blue nodes.
Already visited nodes are represented in shadowed blue color.
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Figure 5.3: Depth-First Search example. The grid is the 8×8 empty square (16 free tiles).
The search starts from node S in position (x, y) = (6, 1). The expanding frontier is made
by dashed light-blue nodes. Already visited nodes are represented in shadowed blue color.
The order neighbors are visited is counterclockwise.
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(a)
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(b)

Figure 5.4: Iterative-Deepening Depth-First Search example. The grid is the 8 × 8 empty
square (16 free tiles). The search starts from node S in position (x, y) = (6, 1). The ex-
panding frontier is made by dashed light-blue nodes. Already visited nodes are represented
in shadowed blue color. The order neighbors are visited is counterclockwise.
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(a)
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(b)
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(c)
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(d)

Figure 5.5: Dijkstra’s Search example. The grid is the 8 × 8 empty square (16 free tiles).
It is not homogeneous. Cell values are specified with green/red values on the left-upper
part of each cell. On the right-bottom corner of each vertex, we have the cumulative
smallest cost required to move from the origin to that specific node. The search starts
from node S in position (x, y) = (6, 1), while the goal G is in position (x, y) = (0, 3).
The expanding frontier is made by dashed light-blue nodes. Already visited nodes are
represented in shadowed blue color. The green dashed line is the built shortest path.
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(a)
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(b)

Figure 5.6: Best-First Search example. The grid is the 8 × 8 empty square (16 free tiles)
with movement costs. Cell values are specified with green/red values on the left-upper
part of each cell. On the right-bottom corner of each vertex, we have the estimated
distance to the goal. The search starts from node S in position (x, y) = (6, 1) and goes
to the destination node G in position (x, y) = (0,3). The expanding frontier is made by
dashed light-blue nodes. Already visited nodes are represented in shadowed blue color.
The computed path is shown in green dashed line, but the true shortest path is the red
one.
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(a)
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(b)
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(c)

Figure 5.7: A* Search example. The grid is the 8 × 8 empty square (16 free tiles) with
movement costs. Cell values are specified with green/red values on the left-upper part
of each cell. On the right-bottom corner of each vertex, we have the estimated distance
to the goal. The search starts from node S in position (x, y) = (6, 1) and goes to the
destination node G in position (x, y) = (0, 3). The expanding frontier is made by dashed
light-blue nodes. Already visited nodes are represented in shadowed blue color. The
computed path is shown in green dashed line. The black arrows represent the pointer to
the node’s parent. This is useful when finally computing the shortest path.69
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Chapter 6

Decentralized Algorithms

6.1 Basic Model Introduction
We distinguish three main elements to develop an algorithm capable of solving the problem
of Online MAPF:

• choice of a specific conflict avoidance technique;

• choice of a way to insert new agents in the system without occupying already taken
tiles;

• choice of agents’ ordering (only during implementation, while in practice, they are
processed contemporarily).

Note, it is reasonable to consider the third point for a decentralized/decoupled approach
because the algorithm is implemented on a single PC [3], necessarily managing every agent
sequentially. This is not a restriction while simulating real multi-agent systems, as long
as we guarantee the order avoiding loop pathological agents’ behaviors [6.1.1].

Next, we describe all the three above-mentioned steps for our simplest method.

6.1.1 Basic Search
Conflict Avoidance

The first step we consider for solving our MAPF problem is to choose an appropriate
collision avoidance technique. There are many possibilities in the literature.

In our basic search algorithm, we develop a simple version, with a random-style
collision avoidance. In few words, when possible conflicts occur, we randomly choose
one skid. This skid frees its tile to let the other pass on it 1.

1We define as possible conflicts those situations in which two skids are close to generating a
conflict, i.e., whenever an agent plans in vain to move to an occupied cell.
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More specifically, given two agents, A and B, close to colliding in the next time step,
we randomly choose one of them, e.g., agent A; it tries to move away to let the other
agent pass. If agent A has some available free tile in its neighborhood (i.e., the agent is
not blocked), it can move there and let agent B occupy the tile. On the other hand, if
A is blocked, then both agents wait. In the case of highly dense areas, this could bring
scenarios in which many agents are fixed in their positions for many time steps. In such
cases, this problem is solved if we order skids differently at each time step.

Consider the swap conflict avoidance example in Figure 6.1. We just described the
right-hand side scenario. While following their shortest path to the corresponding desti-
nations, agents A and B incur into adjacent tiles at time step T . To avoid a collision at
time T+1, our algorithm chooses randomly which agent has to free the tile to let the other
skid pass (in other words, which agent will occupy the other agent’s cell). At the bottom
on the left of the image, agent A passes, while B moves away. B chooses randomly its
new position (the left cell in this case). Analogous reasoning is done on the right-hand side.

This is a basic suboptimal strategy since conflicting agents have to modify their path,
augmenting the time required to reach their goal. Moreover, the randomness introduces
"unintelligent" skids movements.

For experimental analysis, the reader has to know that in our developed algorithms,
apart from when specifically imposed, every agent replans at each time step. We will see
in [6.2.2] that changing this improves the computational cost.

Adding new online agents to the system

As presented in [1.2.4], MAPF is partitioned into Offline and Online versions. In our
setting, we assume new agents may come to the system anytime. This is called MAPF
intersection model setting.

To simulate randomly arriving skids, we implemented a specific section: when all the
agents have chosen the action for a specific time step, we either put or not a new agent
in the system. Substantially, a new agent enters the system with a probability extracted
from a Bernoulli distribution. Before being physically put into the system, we must check
the starting tile is actually unoccupied. From a practical point of view, in this way, we
exclude situations where a skid is added to an existing one. If the cell is free, we insert
the cart agent, and the new tile is set as occupied, whereas in the other case, the agent is
added to a "waiting" queue.

Let us focus on a scenario without this strategy (Figure 6.2). Suppose agent C is
directly associated with a tile, already occupied by another agent, say A (time T + 1 in
Figure 6.2a). Consider the case where A is processed before C. If A leaves the cell, it
will be set as unoccupied. Now, another skid, B, could be processed, after A, before C. B
might move to the tile that has just been left by A since it is set to unoccupied. But this
would be an error because that cell is occupied by C (time T + 5 in Figure 6.2b). It is
clearly the best choice for agent C to wait to enter the system until the supposed starting
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cell is free, to avoid such conflicts.
This check is useful when the grid has many moving agents, with highly congested

areas. As soon as a free tile is assigned to the new online agent, it computes its path and
starts moving on the grid.

The implementation of this part doesn’t affect negatively the search performance. For
this reason, during the experimental analysis, we mainly focus on the offline setting. All
the developed variant search methods are capable of working both offline and online. The
comparison is easier in the offline version. Anyway, we present results with online skids
too.

Agents random ordering

If our search method was just based on random-style collision avoidance (plus the online
setting), even in small empty grids, we would have problems when the number of agents
increases. This is not caused by the choice of an offline or an online setting, but by the
combination of this specific collision avoidance and the sequentiality of the agents during
the process.

Suppose we have a highly congested area and consider two adjacent agents, A and B;
A has to change its tile but is blocked, while B wants to move to A’s tile. A coded loop
would imply a fixed ordering while processing agents. If agent A is blocked and waits, the
only thing B can do is to wait too. Hence, if A is processed before B, then B is fixed as
long as A doesn’t move. Even worse, if agent C wants to move to B’s position, the queue
of waiting agents would be longer (Figure 6.3). Clearly, in real-world applications, this
dependency doesn’t exist, and, as a consequence, neither these pathologies.

Agents’ random ordering at each time step is used to reduce, or even remove, these
loops. Before being processed during a specific time step, we randomly permute the order-
ing of the agents. Again, as done for collision avoidance, we are introducing randomness
into our system to remove unwanted situations (these pathological situations may be in-
terpreted as local minima of our MAPF problem).

In conclusion, the permutation of the agents is fundamental to removing pathological
situations in which some loops prevent us from finding a solution to MAPF.
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Pseudo Code

Here we show the Pseudo Code 6.1.1 of the described basic search, integrated with Table
6.1, summarizing its main properties.

Algorithm 3 Basic Search Pseudo Code
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: else (agent not at target → planning)
12: compute individual shortest path avoiding walls and consider the next

possible position;
13: if the next possible tile is occupied then
14: if the other agent has not been considered yet then
15: if possible, one of the two agents is randomly chosen and occupies

the other cell (and previous tile becomes blank);
16: if agent position and goal coincide then
17: remove the agent (disappear at target);
18: end if
19: else
20: wait;
21: end if
22: else
23: cart agent occupies the available tile and previous tile becomes blank;
24: if agent position and goal coincide then
25: remove the agent (disappear at target);
26: end if
27: end if
28: end if
29: end if
30: end for
31: end while

(Note the shortest path is built using A* algorithm)
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File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints No
Notes -

Table 6.1: Basic Search properties summary.

6.2 Basic Search Variants
We have shown a simple search to solve Online MAPF instances, basic search. Now, we
aim to apply some alternative or integrative techniques to this method, obtaining new
algorithms. In [7.3] we deeply focus on their comparison. Here, we limit ourselves to
giving a detailed description.

The main ideas behind our variants are summarized in:

• intelligent movements exploiting traffic-inspired human interaction and specific rules;

• computational complexity reduction;

• congestion awareness;

• conflict avoidance techniques used to encourage the motion of skids closer/further
to their destination;

6.2.1 Basic Search + Optimized Pre-Conflict Avoidance
Model Description

Many papers in the literature propose some solving techniques directly from the road
traffic world. Inspired by agents’ movements in road networks, we modified the way skids
behave when approaching conflicts, obtaining more intelligent movements, by introducing
some traffic rules.

• If the cell the skid plans to occupy is at the moment occupied for a small amount
of time, then the agent waits. The idea is taken from how drivers behave when road
bottlenecks are forming: every driver waits for the others to move on. This waiting
time doesn’t have to be much if the traffic doesn’t flow badly.

• If the cell is occupied for a considerable amount of time, but different agents have
been occupying it, the skid waits. Consider an intersection between two roads, one
highly congested and the other free. A driver on the second road trying to pass the
intersection observes a queue of moving cars and waits until they are all passed. This
consciousness is fundamental in general to solve vertex conflicts.
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• If the cell is occupied for a significant amount of time by the same skid, then the
other waiting agent applies some conflict avoidance technique to move towards its
goal. From a road traffic perspective, a driver’s motion could be blocked for example
by some works on the road. In some way, the car needs to move away.

For this purpose, we introduce a data structure to save the skids ids associated with
the tile over the last few events (arrivals, departures), not time steps, on each tile. A node
updates its movements every time an agent enters or leaves. If nothing happens, the tile
doesn’t modify anything. This cell memory isn’t linked with the time steps. In fact, on
a specific time step, one tile may modify its history many times (for example, when one
agent leaves and another enters)2.

Hopefully, the agents’ motion is clever, at the cost of a higher time spent waiting,
increasing the overall sum of costs and makespan.

It is interesting to compare basic search and basic search with optimized pre-conflict
avoidance in terms of the number of avoided conflicts [7.2.2]. We should observe a higher
number of avoided conflicts in the second case because an agent close to a possible conflict
checks the tile’s history and waits for a not negligible amount of time before trying to
solve this possible collision. Every time step where the agent is still waiting, the number
of possible collisions increments. Hence, while in the basic search we solve the possible
conflict immediately, in the optimized approach we correctly count many times some
possible conflicts between the same two agents.

Pseudo Code

In Pseudo Code 6.2.1 and Table 6.2 we show the pseudo code and the summarizing table.
(Note the shortest path is built using A* algorithm)

File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints No
Notes Variant of Basic Search with

optimized agents’ behavior before conflict avoidance

Table 6.2: Basic Search + Optimized Pre-Conflict Avoidance properties summary.

2This doesn’t prevent the algorithm from being a decoupled MAPF solver, since agents are always
on their own while planning and moving. The difference is that we assign some common knowledge.
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Algorithm 4 Pseudo Code: Basic Search + Optimized Pre-Conflict Avoidance
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: else (agent not at target → planning)
12: compute individual shortest path avoiding walls and consider the next

possible position;
13: if the next possible tile is occupied then
14: if it is occupied for a small amount of time then
15: wait;
16: else
17: if there is a sequence of moving objects then
18: wait;
19: else
20: if the other agent has not been considered yet then
21: if possible, one of the two agents is randomly chosen and

occupies the other cell (and previous tile becomes blank);
22: if agent position and goal coincide then
23: remove the agent (disappear at target);
24: end if
25: else
26: wait;
27: end if
28: end if
29: end if
30: else
31: cart agent occupies the available tile and previous tile becomes blank;
32: if agent position and goal coincide then
33: remove the agent (disappear at target);
34: end if
35: end if
36: end if
37: end if
38: end for
39: end while
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6.2.2 Basic Search + Computational Optimization on Search
Calls

Model Description

A key element influencing the computational complexity in MAPF solvers is the number
of search method calls.

Here, we improve the basic algorithm by reducing the number of search method calls.
With basic search we compute the shortest path at each time step for each skid, while
now the shortest path is computed only at the beginning, to let the process start and
whenever a possible conflict is solved. Let us see more in detail.

In basic search, every single mobile agent uses the shortest path to decide which is
the best neighbor cell to move on. If it is already occupied, then the conflict avoidance
technique is taken into account. Independently on the occurrence of possible conflicts, in
the following time step the same agent would recall the search method to compute the
shortest path and determine the best position in its neighborhood for that step, disre-
garding previous information.
Now, instead, we reduce the calls, speeding up the algorithm, thanks to a data structure
memorizing the computed shortest path. The skid checks the next position from this data
structure (generally a list of nodes). Whenever that position is free, it moves there. This
nodes’ list is modified only after possible collisions when the agent moves away from its
position.

The number of search method calls reduction is impressive as we can see from the
experiments in [7.2.3], implying a reduced total CPU time too.

Pseudo Code

Comparing Pseudo Code 6.1.1 and Pseudo Code 6.2.2, the difference is clear. In pseudo
code 6.1.1, for each time step, for each skid, we compute the shortest path even before
deciding whether to move or wait; now we compute only when strictly needed, otherwise,
we exploit the path calculated at the previous time step.

In Table 6.3 we consider the summary of this method. Apart from the use of the search
function, basic search and this variant are identical.

(Note the shortest path is built using A* algorithm)
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Algorithm 5 Pseudo Code: Basic Search + Computational Optimization on Search Calls
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: else (agent not at target → planning)
12: consider the next possible position (from the pre-computed shortest

path);
13: if the next possible tile is occupied then
14: if the other agent has not been considered yet then
15: if possible, one of the two agents is randomly chosen and occupies

the other cell (and previous tile becomes blank);
16: compute the new shortest path (for the involved skids);
17: if agent position and goal coincide then
18: remove the agent (disappear at target);
19: end if
20: else
21: wait;
22: end if
23: else
24: cart agent occupies the available tile and previous tile becomes blank;
25: if agent position and goal coincide then
26: remove the agent (disappear at target);
27: end if
28: end if
29: end if
30: end if
31: end for
32: end while
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File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints No
Notes Variant of Basic Search with

reduced number of search method calls

Table 6.3: Properties summary of Basic Search + Computational Optimization on Search
Calls.

6.2.3 Basic Search + Traffic Directions
Model Description

As we have done previously for basic search with optimized pre-conflict avoidance [6.2.1],
again we take inspiration from the road traffic to build a new version of our algorithm.

The main idea is to impose some agents’ motion restrictions on specific grid areas, like
one-way streets in road networks. In this work, we study the effect of restricting horizontal
movements: for some grid rows, cart agents can move only in the positive direction, while
for other rows they move oppositely, in the negative direction. No constraint is applied
for up and down movements. Around fixed obstacles, we impose no restrictions (apart
from the motion on the obstacle cell). In other words, we modified the grid’s structure in
terms of admissible movements.

To better understand this, we plot and show in Figure 6.4 the resulting grid, starting
from our custom map (Figure 4.4). Cyan rows correspond to those rows in which it is
NOT possible to move left, while in fuchsia rows oppositely right moves are NOT possible.
Tiles around fixed obstacles are yellow-colored: agents can move in any direction except
those pointing to the fixed obstacle.

From the implementation point of view, this implies just some modification in the
definition of nodes’ neighborhoods.

These constraints can be modified for the specific grid and application. In Figure 6.4
we impose the verse to alternate at each row. But other choices are possible, also in
the vertical direction. Figures 6.5 and 6.6 show the grid for two different constraints on
the admissible movements. Figure 6.5 represents our custom grid when we impose that
couples of rows admit the same movements. Instead, Figure 6.6 shows the grid when
groups of four rows have the same movement constraints.
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We expect a more clever motion of the skids, but constraining the topology of this
specific graph is not good from the overall cost point of view. Notice the similarity and
the differences between basic search + optimized pre-conflict avoidance and basic search
+ traffic directions.

• Both the algorithms aim at improving the intelligence of skids while moving in
crowded systems, at the cost of a higher computational cost and sum of time steps.

• In the first case we consider a restriction of the agents’ actions, while in the second
method the restriction is imposed on the topology itself.

In general, by imposing restrictions on systems, some problems arise. Agents find more
difficulties in moving towards their goals, raising the maximum number of time steps and
the time cost. In [8.2.1] we check this.

In [1.2.4], we said in realistic situations, such as fulfillment centers, agents should
be capable of going from their origin to many destinations, such as charging areas or
new shelves. A mobile-robots automated warehouse is generally an extended platform
with different locations for different jobs. Some areas are specific for pick & place, while
somewhere else these vehicles are charged. In that case, it is useful to introduce movement
constraints to separate those robots heading to different areas.

Pseudo Code

The pseudo code of the method is shown in 6.2.3, while the summary table is in 6.4.
(Note the shortest path is built using A* algorithm)

File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints Some cells restrict the possible movements
Notes Variant of Basic Search with

traffic directions

Table 6.4: Properties summary of Basic Search + Traffic Directions.
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Algorithm 6 Pseudo Code: Basic Search + Traffic Directions
1: build the set of obstacles (e.g. walls);
2: IF DIRECTION CONSTRAINTS ARE IMPOSED, BUILD APPROPRIATELY THE

RESTRICTIONS ON THE GRID;
3: while skids are moving to their destinations do
4: if new online skid agent is added to the skids’ set then
5: if possible, add the mobile agent to the corresponding starting cell;
6: end if
7: shuffle the agents’ order;
8: for skid agent = 1, ..., k do
9: if the agent has not been considered yet then

10: if agent position and goal coincide then
11: remove the agent (disappear at target);
12: else (agent not at target → planning)
13: compute individual shortest path (considering direction constraints)

avoiding walls and consider the next possible position;
14: if the next possible tile is occupied then
15: if the other agent has not been considered yet then
16: if possible, one of the two agents is randomly chosen and occupies

the other cell (with no restriction on direction) (and previous tile becomes blank);
17: if agent position and goal coincide then
18: remove the agent (disappear at target);
19: end if
20: else
21: wait;
22: end if
23: else
24: cart agent occupies the available tile and previous tile becomes blank;
25: if agent position and goal coincide then
26: remove the agent (disappear at target);
27: end if
28: end if
29: end if
30: end if
31: end for
32: end while
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6.2.4 Basic Search + Congestion Awareness
Model Description

When developing a MAPF solver we have to pay particular attention to the possible for-
mation of highly populated areas. In too highly congested areas, the search may bring
deadlocks and no progress.

In this enhancement of our basic method, agents try to pass through less uncongested
zones. We talk about congestion awareness. To model congestion, we memorize the
areas where every skid’s path passes and let agents know this when computing their
shortest path. The grid nodes are grouped in macro cells, and the corresponding grid of
macro cells is called macro grid. Each macro cell has a specific positive cost. Starting
from a homogeneous macro grid, every mobile agent computes its shortest path using the
costs of the macro grid. Then it updates the costs of the macro cells: for those macro
cells through which the path passes, we add a +1, representing the marginal congestion
contribution. Other agents then try to follow alternative routes along which the overall
cost is smaller. If we proceed in this way for all the processes, the values of the macro
cells will explode. To avoid this, every time an agent is processed again, it first removes
its previously inflicted costs on the macro cells by applying a −1 and recomputes its path,
adding +1 in the corresponding macro cells. If the collision avoidance technique causes a
skid movement, then we don’t modify the macro grid.

In some sense, skids look for a trade-off between maximizing the distance from congested
areas and minimizing the total travel time and cost.

With congestion awareness, skids tend to visit less "expensive", i.e., less crowded areas.
Agents tend to encounter each other less than in the case without congestion awareness.
Hence, by comparing this enhancement with the basic search [7.2.5], we expect that for the
same number of agents, this second version gives a smaller number of conflicts. Moreover,
the number of time steps should be lower since, when agents deal with possible conflicts,
they unavoidably add time steps to reach their destination.
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Pseudo Code

Here we show the pseudo code 6.2.4 of this variant and its summary in Table 6.5.

Algorithm 7 Pseudo Code: Basic Search + Congestion Awareness
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: modify the grid weights;
12: else (agent not at target → planning)
13: modify the grid weights, compute individual shortest path avoiding walls

and consider the next possible position;
14: if the next possible tile is occupied then
15: if the other agent has not been considered yet then
16: if possible, one of the two agents is randomly chosen and occupies

the other cell (and previous tile becomes blank);
17: if agent position and goal coincide then
18: remove the agent (disappear at target);
19: modify the grid weights;
20: end if
21: else
22: wait;
23: end if
24: else
25: cart agent occupies the available tile and previous tile becomes blank;
26: if agent position and goal coincide then
27: remove the agent (disappear at target);
28: modify the grid weights;
29: end if
30: end if
31: end if
32: end if
33: end for
34: end while

(Note the shortest path is built using A* algorithm)
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File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints No
Notes Congestion awareness through a macro grid

Table 6.5: Properties summary of Basic Search + Congestion Awareness.

6.2.5 Basic Search + New Conflict Avoidance based on Agents’
Distance from Origin/Destination (first version: Destina-
tion)

Model Description

As previously observed, there are many ways to manage possible conflicts, not necessarily
based on randomness. We consider two different versions of the basic search where the
random-style collision avoidance is substituted by another one considering the estimated
distance (closeness in one version, remoteness in the other) from the destination of agents.
For all previously developed algorithms, conflicts are solved by randomly choosing which
one of the two agents to pass. No attention is given to the position of the agent on its
path. Now, we remove some randomness by imposing the closest or furthest agent to
pass, depending on the version. In the first version, we suppose the closest to be the
chosen one. In some sense, this implies the agents tend to become even more selfish while
arriving close to their destination. If the distance is the same, we proceed randomly. In
the second version, the furthest will be selected. In this case, the agents tend to become
more generous while approaching their target node. It is interesting to compare the two
performances [7.2.6].

With respect to the basic search, the difference in the code is now we have a deter-
ministic check for choosing the passing agent, instead of a random one. Even though this
only implies a small difference from the implementation point of view, during experimen-
tal analysis we confirm that by removing randomness, we are substantially constraining
the agents’ motion, easily bringing undesirable results.

These presented conflict avoidance techniques work well in the case of swapping col-
lisions. But generally, this is not always the case. There may be situations where one
of the two involved agents has no intention to occupy the other cell. Hence, if randomly
chosen, the agent would occupy the other tile even though it is not in his path. In this
sense, guaranteeing one agent passes doesn’t imply it gets closer to its goal. The first
version favors the agents closer to their destination. This may be useful if we consider
disappearing at target since substantially we are pushing agents to conclude their path.
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Pseudo Code

In 6.2.5 and 6.2.5, we show the pseudo code for the first and the second version respectively,
while the summaries are in Tables 6.6 and 6.7.

Algorithm 8 Pseudo Code: Basic Search + New Conflict Avoidance(1)
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: else (agent not at target → planning)
12: compute individual shortest path avoiding walls and consider the next

possible position;
13: if the next possible tile is occupied then
14: if the other agent has not been considered yet then
15: if possible, between the two agents, the one CLOSER to its des-

tination occupies the other cell (and previous tile becomes blank); if the distance is
the same, proceed randomly;

16: if agent position and goal coincide then
17: remove the agent (disappear at target);
18: end if
19: else
20: wait;
21: end if
22: else
23: cart agent occupies the available tile and previous tile becomes blank;
24: if agent position and goal coincide then
25: remove the agent (disappear at target);
26: end if
27: end if
28: end if
29: end if
30: end for
31: end while

(Note the shortest path is built using A* algorithm)
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Algorithm 9 Pseudo Code: Basic Search + New Conflict Avoidance(2)
1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: else (agent not at target → planning)
12: compute individual shortest path avoiding walls and consider the next

possible position;
13: if the next possible tile is occupied then
14: if the other agent has not been considered yet then
15: if possible, between the two agents, the one FURTHER to its

destination occupies the other cell (and previous tile becomes blank); if the distance
is the same, proceed randomly;

16: if agent position and goal coincide then
17: remove the agent (disappear at target);
18: end if
19: else
20: wait;
21: end if
22: else
23: cart agent occupies the available tile and previous tile becomes blank;
24: if agent position and goal coincide then
25: remove the agent (disappear at target);
26: end if
27: end if
28: end if
29: end if
30: end for
31: end while
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File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Deterministic based on destination distance
Permutation Yes
Topology Constraints No
Notes Deterministic collision avoidance

Table 6.6: Properties summary of Basic Search + new conflict avoidance based on agent’s
distance from destination.

File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Deterministic based on origin distance
Permutation Yes
Topology Constraints No
Notes Deterministic collision avoidance

Table 6.7: Properties summary of Basic Search + new conflict avoidance based on agent’s
distance from the origin.
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Figure 6.1: Swap conflict avoidance example. The grid is the 4×4 square (16 tiles). Skids
are the blue squares (A and B). Individual planned shortest paths are indicated with green
arrows. Black arrows are for the possible moves the agent has to apply to let the other
pass; the red one is randomly chosen.
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(a)
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(b)

Figure 6.2: Online Naïve Approach: Drawback. The grid is the 4 × 4 square (16 tiles).
Skids are the blue squares (A, B, C). Individual planned shortest paths are indicated with
red arrows.

93



Decentralized Algorithms

Figure 6.3: Fixed Processing Order: Drawback. The grid is the 4 × 4 square (16 tiles).
Skids are the blue squares (A, B, C, X, Y, Z). X, Y, Z are blocked for some reason. In
order, A, B, C want to move (individual planned shortest paths are indicated with red
arrows). Due to the fixed processing order, they are blocked consequently.

Figure 6.4: Traffic directions on Custom Benchmark Grid. Cyan rows correspond to
those rows in which it is NOT possible to move left, while in fuchsia rows oppositely right
moves are NOT possible. Tiles around fixed obstacles (black) are yellow-colored: agents
can move in any direction except those pointing to the fixed obstacle. Red cells and green
cells indicate, respectively, start and goal nodes. Blue cells correspond to skids’ positions.
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Figure 6.5: Traffic directions on Custom Benchmark Grid. Cyan rows correspond to
those rows in which it is NOT possible to move left, while in fuchsia rows oppositely right
moves are NOT possible. Tiles around fixed obstacles (black) are yellow-colored: agents
can move in any direction except those pointing to the fixed obstacle. Red cells and green
cells indicate, respectively, start and goal nodes. Blue cells correspond to skids’ positions.

Figure 6.6: Traffic directions on Custom Benchmark Grid. Cyan rows correspond to
those rows in which it is NOT possible to move left, while in fuchsia rows oppositely right
moves are NOT possible. Tiles around fixed obstacles (black) are yellow-colored: agents
can move in any direction except those pointing to the fixed obstacle. Red cells and green
cells indicate, respectively, start and goal nodes. Blue cells correspond to skids’ positions.
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Chapter 7

Experimental Analysis

Previously, we described the evolution of MAPF solvers and their main properties. Then
we presented our developed algorithms for solving MAPF from a self-interested or slightly
cooperative point of view.

In the following, we analyze in detail the simulation results. For every algorithm, we
study the performance on a 48 × 48 empty grid map. Then we check if patterns repeat
on different benchmark grids [4.1]. All of this is done exploiting graphical representations
using MATLAB, R, and PowerPoint, where we define the performance in terms of:

• number of avoided conflicts;

• number of A* search method calls;

• sum of time steps / sum of costs;

• maximum number of required steps / maximum cost;

• Speed and time consumption.

After this, we compare the algorithms, determining effects, pros, and cons. We combine
the best techniques into an improved version of the basic search.
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7.1 Performance measures

7.1.1 Number of avoided conflicts
It is clear now that the first objective of a multi-agent pathfinding algorithm is to find
a way to bring each agent to its destination without interfering with the other’s path.
But if our method routes skids in a way that significantly reduces the number of possible
conflicts, then we have two main advantages:

• the total computation required to escape conflicting situations is dramatically re-
duced;

• consequently, even a low-quality conflict avoidance policy would be usable.

We exploit this note when considering congestion awareness.
For these reasons, during our experimental analysis, we pay particular attention to the
number of conflicts avoided by the algorithm.

Oppositely to the self-interested setting, with cooperation, there are no techniques to
deal with possible conflicts. The cooperative approach itself avoids conflicts; this is not
done locally. For this reason, in cooperative pathfinding, we don’t consider this variable
[8.2.2].

7.1.2 A* search method calls
Even before considering a collision avoidance technique, we need a way to compute the in-
dividual shortest paths. As previously said [5], there are many possible search algorithms
for this purpose. We choose the A* search method since it gives optimal individual paths
with reduced time and memory consumption [5.8].

To speed up the search, we also want the algorithm to make a small amount of A*
calls. If we think about applying A* initially for every skid and then each time we have
to replan, we would like to have a few conflicting situations. On the other, if we apply A*
at each step, independently of whether a collision was just avoided or not, we hope the
total number of steps is as small as possible.
In other words, the number of search method calls is strictly related both to the number
of avoided conflicts and the sum of timesteps.

To conclude, we must pay attention to the number of A* calls.

7.1.3 Sum of Time steps - Sum of Costs
This is an interesting objective function in MAPF problems, describing how many overall
actions are required for the system to conclude the task.

In practical situations, the sum of time steps, or sum of costs [1.2.2], is used to check
the efficiency of the search method. If every action, move or wait, has an assigned cost,
e.g., in terms of energy, oil, or money, we would like to reduce it as much as possible.
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Interestingly, the sum of time steps gives an insight into the behavior of skids in the
system too. Of course, MAPF visualization is the best way to understand how objects
are moving in the system, but the sum of time steps is useful for this too.
A small sum of costs is a symbol of neat movements, while if agents have aesthetically
unpleasant or inefficient behaviors, this causes an increment in the total sum. To define
our agents as autonomous, we want them to apply reasonable movements, contributing
to a small sum of time steps 1.
In the algorithms where agents are self-interested, we expect the local repair (i.e., the
collision avoidance techniques) will cause these kinds of unwanted behaviors. Intuitively,
with higher cooperation between skids, their behavior gets better.

We are using the sum of time steps and the sum of costs interchangeably, but they
generally are different quantities. For grids with unitary edge cost, these two quantities
coincide. On the other hand, to represent more real-world environments, we may consider
non-homogeneous grids and operations too, implying a difference both quantitatively and
qualitatively. Next, we will sometimes impose varying costs on the grid and observe the
difference between the over-mentioned quantities.

7.1.4 Maximum individual number of steps - Maximum individ-
ual cost

The other most used objective function for MAPF problems is the makespan, i.e., the
maximum number of time steps required for all agents to reach their target.

Similarly to the sum of costs, we may want to model real situations where agents have
limited capacity, for example, in terms of energy or mechanical consumption. Consider a
multi-robot system. If each electric robot has 8 hours of autonomy, quite realistically, we
don’t want them to turn off in the middle of the grid.

The makespan objective function is not related to the sum of costs. There may be
situations where the search algorithm produces an elevated sum of costs but with a small
makespan, or, conversely, the sum can be small but one agent has a high cost to reach
its destination. So, generally, we don’t expect any specific connection between the two
evolutions.

As noticed, the sum of time steps and the sum of costs are different for a non-
homogeneous grid. This applies to the makespan too. When analyzing the concept of
congestion awareness, by including some varying weights on edges, we will present this
difference.

1Concerning the behavioral interpretation, the sum of fuel (non-waiting actions required to reach
the target) objective function is even better.
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7.1.5 CPU time consumption and connected aspects
Every program we run requires a series of operations to be executed sequentially. A pro-
gram is an ordered sequence of instructions, each coded as a binary sequence. A CPU is
a device implemented in a microprocessor, used to execute one instruction at a time. Its
fundamental operation is the execution of an instruction.
Three phases are involved in the execution of an instruction, and they are repeatedly exe-
cuted over time: extraction (from the memory), decoding, and execution of the instruction.
If we are asking to compute a huge amount of operations, the algorithm runs in an ele-
vated amount of time. Despite this, if our CPU is slow in the execution, even with few
operations there might be a high time consumption.

Our search algorithms are run on a PC with an Intel CORE i3 microprocessor. A
stronger microprocessor would use less CPU time.

In our work, we want these algorithms to find a solution in a small amount of time. So,
we consider the time required to run the code, even though we know it is specific to the
microprocessor we are using, and it depends on whether the PC is executing other jobs
too. For this reason, results are not as well reading as for the other variables, but we still
find trends, like when a method or a grid brings better or worse solutions. Sometimes,
we also analyze the percentage of skids that arrived at the destination before a given
time, specifically 5 and 10 seconds. This improves our understanding of the algorithm’s
performance.
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7.2 Experimental analysis

7.2.1 Experimental analysis: Basic Search
Basic Search on 48x48 empty grid

The first variable we analyze is the number of avoided conflicts (Figure 7.1). Intuitively,
while increasing the number of agents, each skid has a higher probability of meeting other
agents during its path. Since the number of agents increases, we expect the number of
possible conflicts to grow exponentially.
The experimental results confirm our intuition.

With up to 200 agents, the variable is always lower than 1000 (5x factor). With a
double number of agents, the possible collisions quadruplicate (10x factor). 800 skids
imply up to 30000 potential conflicts (more than 35x factor).

Let us now consider the number of search method calls for the 48 × 48 empty grid.
Figure 7.1a confirms a connection between the number of conflicting situations and the
sum of individual time steps. The growth is exponential, with a higher variability on the
right-hand side of the chart. We can even notice similar spikes while increasing the agents
in the system.

By looking at the y-axis values, we find the following relation:

sum of steps ≈ # A∗ search calls + # avoided conflicts

Since the code processes sequentially every agent, whenever a possible conflict could hap-
pen, generally, but not necessarily, one of the two agents has not been considered yet.
Once agents escape the possible collision, the unconsidered agent is marked as considered,
it doesn’t recompute its path and is not analyzed until the next step. So, during that
step, we count two individual actions, one single A* search call, and one avoided conflict.
In this case, the relation holds as equality.
On the other hand, if both agents have been marked as considered, there are two A*
function calls, one occurred possible collision, but just 2 ≥ 3 individual actions. Hence,
the relationship is just an approximation.

We have noticed the sum of time steps is strictly related to the number of search
method calls.
While increasing the number of agents, the number of paths increases too. Moreover, the
higher the number of paths, the higher the number of possible conflicts. To deal with
conflicts, further time steps are needed. This explains the exponential behavior of the
sum of time steps (Figure 7.1b).

If we impose movement costs on the grid, we should substitute the sum of time steps
with the sum of costs. The approximate relation obtained previously doesn’t hold any-
more. Indeed, movements are associated with weights.
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(a)
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(b)

The CPU time required to solve the problem is approximately linear in the first part
and almost exponential on the right-hand side (Figure 7.1b). Before 600 skids, we wait
no more than 15 seconds, linearly in the number of agents, meaning the algorithm is very
good when the grid is sparsely populated. This reminds the advantage of a decentralized

103



Experimental Analysis

(c)

Figure 7.1: Basic Search performance. We consider the 48 × 48 empty grid. On the
x-axis, we have the number of agents (from 1 to 1000), while on the vertical axis we show
7 different performance measures.
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approach over centralized ones: the latter is proven to require an exponential computa-
tional cost.
In the variant shown in [6.2.2], agents only replan when conflicts are avoided. The CPU
time is expected to increase less rapidly. Moreover, we don’t expect any influence neither
in the number of avoided conflicts nor in the sum of time steps.

The drawback of this algorithm is agents are completely self-interested [1.1.4]. Using
local collision avoidance implies agents apply aesthetically unpleasant moves if they are in
crowded areas. Hence, it is more difficult for them to reach their destinations [7.3]. The
computational cost chart confirms this: the evolution is almost exponential when going
from 600, to 800, up to 1000 agents.

To understand deeper the time consumption of the basic search, we can refer to the
last two charts of Figure 7.1, where we control the percentage of skids that finished their
job before the thresholds of 5 and 10 seconds. Starting from 500 agents, the number of
agents that arrived before 10 seconds falls from 100% to < 10% for 800 agents. From 300
to 500 skids, more than half the number of skids use more than 5 and less than 10 seconds
to reach the corresponding goal, on average.

Interestingly, note the high variability of the arrivals percentage under 5 seconds when
the number of skids is around 300 and that of arrivals under 10 seconds when we consider
around 500 agents, respectively. The variability is due to two elements:

• trivially, when we have few agents, changing the y-axis value of only one of them may
highly change the mean; increasing the number of individuals reduces this effect;

• randomly permuting agents at each loop brings different behaviors even when adding
one single agent to the system [7.3].

The first contribution tends to decrease and asymptotically disappear when augmenting
the agents, whereas the second contribution persists.

Concerning the maximum number of time steps, we have a less clear exponential
growth, because added agents may have the origin and destination very close or far from
each other. It’s the randomness in the position of the origin and the goal that causes this
spiky chart. Furthermore, the random permutation of agents’ order at each loop plays a
key role. It is interesting to compare the makespan and the sum of time steps for different
seeds, as described below [7.2.1].
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Basic Search on 48x48 empty grid: Comparison between performances using
different seeds

We previously described the advantages of permuting the agents while performing the
basic search. We introduced the ordering to solve pathological loops like those where
agents are blocked by others already processed (Figure 6.3). Consider such a situation.
Randomness guarantees in the future the blocked skid will be processed first (i.e., its
priority is higher than that of the other involved skids) and will push away some agent
from its immediately planned next step [6.1.1].

We want to understand if the permutation influences the number of avoided conflicts
and how much. For this, we compare the results of 5 basic search’s runs, each with a
different seed used to guide the generation of pseudo-random permutations: 10, 5, 1, 1234,
111. Different random permutation seeds modify the results (not all the "spikes" coin-
cide), but if the trend is quite the same, we can proceed with one specific seed.

From Figure 7.2, we notice 4 out of 5 curves almost coincide (apart from the per-
centage of arrivals, which may depend on the jobs the PC is concurrently doing). Slight
differences are observable when the number of agents exceeds 600, but the overall trend
is the same. When we have few agents, the number of possible conflicts and pathological
loops (deadlocks) are reduced. By adding skids, paths tend to intersect each other with
an exponential increase both in the number of possible collisions and in the number of
deadlocks. A good or bad ordering may reduce or enlarge this behavior, respectively.
Hence, when we increase the skids’ cardinality, we observe more differences between runs
with different seeds.

Particular mention deserves the makespan values. From searches with different seeds,
by increasing the number of agents, we notice a similar sum of costs but very different
makespan values. Two considerations come from this.

• Permuting agents to simulate agents’ speed in deciding what to do is useful for some
skids, not others. Indeed, some agents may occupy cells that help reach their goal,
whereas others don’t route where they would. While the overall system has the same
behavior, different permutations bring different makespans. For this reason, the sum
of time steps chart shows similar values, but the maximum of the required time steps
is highly variable.

• In this setting, the sum of time steps outperforms the makespan since the latter
could be misleading.

Some permutations are better than others, depending on the specific skids’ scenarios.
Nevertheless, our code implementation requires many loops so many different permuta-
tions are used during the process. A bad ordering of the agents will negatively influence
our search for at most one step. The same interpretation works for good skid order-
ing. Consequently, the permutation is itself very important in MAPF, as many articles
show. By applying different orderings at each iteration, the positive or negative effect is
restricted to a small portion of the process. That is the advantage of randomly assigning
priorities at each step, and explains why the differences are small.
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(a)
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(b)
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(c)

Figure 7.2: Comparison of the basic algorithm with 5 different seeds. We consider the
48 × 48 empty grid. On the x-axis, we have the number of agents (from 1 to 800), while
on the y-axis we show 7 different performance measures.
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Since all the other algorithms exploit this permutation idea, we can proceed with our
analysis considering a specific seed (e.g., 10).

Figure 7.3 shows the same results, but now the number of skids goes from 50 to 800,
with stepsize equal to 50. This is useful when considering more complex algorithms for
time-computational reasons.

Basic Search on other benchmark grids

Finally, we deeper study the basic search on other grids. Figures 7.4 and 7.5 show the
performance charts obtained applying this method to two other benchmark grids, Boston
grid (Figure 4.1) and Maze Grid (Figure 4.2), respectively.

Concerning the Boston grid, the first 3 charts (Figure 7.4a) show an approximately
linear growth, especially for the number of A* method calls and the sum of individual
steps. This is different from the case of the empty grid, where we have seen a clear
exponential trend.

The absence of proportionality is confirmed by Table 7.1.

Basic Search
Avoided conflicts Search method calls Sum of time steps

# Agents Empty Grid Boston Grid Ratio Empty Grid Boston Grid Ratio Empty Grid Boston Grid Ratio
100 157 563 3.59 3337 20150 6.04 3458 20632 5.97
200 731 2129 2.91 7094 39897 5.62 7611 41529 5.46
300 1669 5671 3.40 11066 62861 5.68 12228 66807 5.46
400 3767 11842 3.14 16502 88844 5.38 18994 96571 5.08
500 5834 36442 6.25 21308 137228 6.44 25043 158067 6.31
600 10139 34873 3.44 29019 152864 5.27 35439 173874 4.91
700 16624 59921 3.60 38739 200816 5.18 48742 235258 4.83
800 25590 72233 2.82 51194 232706 4.55 66246 274188 4.14
900 38440 119490 3.11 67686 306552 4.53 89789 372284 4.15

Table 7.1: Comparison of the Basic search performance between the empty and the Boston
grid. Three variables are analyzed: number of avoided conflicts, number of A* calls, and
the sum of individual time steps. Ratio columns represent the ratio between the values
for the same variable but different grids.

As we can see from the ratios between the values for different grids, they are not pre-
served.
Furthermore, they are unexpectedly different concerning different variables. We would
expect similar ratios between different grids when changing the analyzed variable because
of the approximate relation shown above. To understand this, we recall the relation above
is just an approximation, so there may be some cases where it is not true. In particular,
when the grid is sparsely populated, i.e., the number of agents is reduced and there are
many empty areas, the number of avoided conflicts is too small for the relation to hold.
A higher number of skids is needed.
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(a)

111



Experimental Analysis

(b)

Figure 7.3: Comparison of the basic algorithm with 5 different seeds. We consider the
48 × 48 empty grid. On the x-axis, we have the number of agents (from 50 to 800 with
stepsize 50), while on the y-axis we show 5 different performance measures.
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(a)
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(b)

Figure 7.4: Basic Search performance. We consider the 256 × 256 Boston grid. On the
x-axis, we have the number of agents (from 50 to 800 with stepsize 50), while on the y-axis
we show 5 different performance measures.
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(a)
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(b)

Figure 7.5: Basic Search performance. We consider the 128 × 128 Maze grid. On the
x-axis, we have the number of agents (from 50 to 800 with stepsize 50), while on the
y-axis we show 5 different performance measures.
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This is what happens with the Boston grid: even though the number of considered agents
is the same as the empty grid, it is so small for the dimension of the grid that the number
of avoided conflicts, hence the number of A* method calls, are too small and the approx-
imation becomes false.

As we may imagine, the same considerations hold for the 128 × 128 maze grid (Figure
7.5), where again there are no trends on the 3 main variables, as shown in Table 7.2.

Basic Search
Avoided conflicts Search method calls Sum of time steps

# Agents Empty Grid Maze Grid Ratio Empty Grid Maze Grid Ratio Empty Grid Maze Grid Ratio
100 157 2519 16.04 3337 23646 7.09 3458 25469 7.37
200 731 9213 12.60 7094 50714 7.15 7611 56899 7.48
300 1669 31690 18.99 11066 95788 8.66 12228 114375 9.35
400 3767 70788 18.79 16502 163572 9.91 18994 203255 10.70
500 5834 123665 21.20 21308 245970 11.54 25043 313448 12.51
600 10139 191916 18.93 29019 347358 11.97 35439 450923 12.72
700 16624 280001 16.84 38739 472553 12.20 48742 622067 12.76
800 25590 368354 14.39 51194 596554 11.65 66246 792514 11.96
900 38440 541385 14.08 67686 822474 12.15 89789 1108206 12.34

Table 7.2: Comparison of the Basic search performance between the empty and the maze
grid. Three variables are analyzed: number of avoided conflicts, number of A* calls, and
the sum of individual time steps. Ratio columns represent the ratio between the values
for the same variable but different grids.

Let us see more in detail the concept of skids’ percentage inside the grid.
To see a crowded situation proportional to that of the empty grid’s case with 800

agents, we should have Boston and Maze grids with respectively:
x/47768 = 35% → x = 16719

and
x/14818 = 35% → x = 5186

having 800/(48 × 48) = 35% occupied-by-agents cells in the empty grid 2.
For computational reasons, we analyzed up to 1200 agents in the online approach [8.2.1].
This is approximately equal to the percentage required for the specific problem [2].

In conclusion, it is not possible to find clear proportional trends between complex big
grids and the simple 48 × 48 domain. For more similar results, we should consider the
same percentage of occupied cells, instead of the same number of agents.

For all the presented graphs, notice the variability increases while increasing the num-
ber of agents. We give an explanation of this in [7.3].

247768 is the number of obstacle-free cells on the Boston map. In the maze, it is equal to 14818.
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7.2.2 Experimental analysis: Basic Search + Optimized Pre-
Conflict Avoidance (Variant 1)

Variant 1 on 48x48 empty grid

By exploiting the drivers’ behavior on congested roads, we see agents waiting some time
steps before dealing with the possible collisions. So the same conflict is correctly counted
many times [6.2.1]. We can easily explain the makespan chart in Figure 7.6b, where the
maximum number of steps for the optimized algorithm is always higher than the simple
one.

The "waiting effect" is not restricted to the maximal length of the path, but to all
agents. From this, the sum of individual steps is higher too, and the corresponding graph
is correct (Figure 7.9a). The exponential behavior is justified by the exponential behavior
of the basic search.

We set the memory of the tiles for at most three previous events. Hence, as said in
[6.2.1], we generally expect a 3x factor growth of the number of avoided conflicts.
The run code confirms this (Figure 7.9a).
In Table 7.3 we show 8 equidistant values both from the basic search and this optimized
variant. The corresponding mean value ratio is 2.33. Interestingly, this proportionality is
also shown in the high variability of the values for more than 600 skids too: the values
range triplicates.

Empty Grid
Avoided conflicts

# Agents Basic Search Variant 1 Ratio
100 167 388 2.32
200 718 1483 2.07
300 1756 4004 2.28
400 3412 8090 2.37
500 6400 14505 2.27
600 10651 25124 2.36
700 16670 39920 2.39
800 26547 69156 2.61

Table 7.3: Comparison between basic search and variant 1 for 8 different values of the
number of conflicts. Data come from the empty grid scenario. Ratio columns represent
the values ratio between the basic search and the variant 1.

The number of avoided conflicts influences the previously described variables, so we
focus more on this by presenting the linear regression obtained by the least squares method
(Figure 7.7).
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(a)
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(b)

We analyzed the relation between the basic search and the variant 1 with a linear ap-
proximation, where on the x-axis we have the # of possible conflicts for the first method
while on the y-axis we analyze the same variable but for the optimized version.
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(c)

Figure 7.6: Comparison between basic search and variant 1. We consider the 48 × 48
empty grid. On the x-axis, we have the number of agents (from 1 to 800), while on the
y-axis we show 7 different performance measures.
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Figure 7.7: Comparison between basic search and variant 1 in terms of the number of
avoided conflicts. For the same number of agents, on the x-axis we present the value
obtained when using the basic method, whereas on the y-axis we give the variant 1 ’s
value. The regression line is shown in blue color.

The β coefficient (angular coefficient) is 2.78 3.
Note 2.78 /= 3, because many times while waiting before acting, the possible conflict is
solved differently. This proves the utility of this variant. The more the average is below
3, the more useful is the method.

There are two main drawbacks of variant 1.

• Like for the basic method, the path is replanned each time, implying an unnecessary
huge amount of search function calls, even more than in the simple case.

3We stress the fact that linear regression comes from the least squares optimization problem.
For this latter method, we don’t make any statistical assumption on the residual distribution, whereas,
for the linear regression, that is a particular case of the Statistics’ Linear Model, we assume ∼
N (0, σ2). In our case, data spread out while increasing the number of agents (variance increases ⇒
heteroskedasticity), against this assumption. To make a statistical inference, we should appropriately
modify our model.
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• Our main objective function, i.e., the sum of time steps, is too high with respect to
the basic search.

These drawbacks reflect on the time consumption. The total required CPU time is
higher than the basic algorithm, and the arrivals’ percentage dramatically falls.

The percentages in the last two charts get together when reaching 800 skids because
both algorithms require more than 10 seconds for each agent to reach its destination.

Variant 1 on other benchmark grids

All the five main variables show higher values than in the basic algorithm also when we
consider the Boston’s and Maze grids (Figures 7.8 and 7.9).

We remark that the percentage of occupied cells is much smaller than for the 48 × 48
empty grid, given the same number of mobile agents. While 800 skids equal the 35% of
the empty grid, when taking into account Boston’s grid the percentage falls to 2%, and it
is 5% for the Maze grid. Hence, it has no sense to compare the values for these grids.

Apart from this, even in these two more complex grids, we observe a proportionality
between the basic search and the optimized variant.
The ratio values are summarized in Table 7.4.

Avoided conflicts
Boston Grid Maze Grid

# Agents Basic Search Variant 1 Ratio Basic Search Variant 1 Ratio
100 563 1342 2.38 2519 8989 3.57
200 2129 6370 2.99 9213 49539 5.38
300 5671 16898 2.98 31690 107319 3.39
400 11842 35442 2.99 70788 208257 2.94
500 36442 53405 1.47 123665 332372 2.69
600 34873 116974 3.35 191916 498253 2.60
700 59921 165815 2.77 280001 835232 2.98
800 72233 241596 3.34 368354 1151288 3.13
900 119490 340312 2.85 541385 1351034 2.50

Table 7.4: Comparison between basic search and variant 1 for 9 different values of the
number of conflicts. Data come from the Boston grid and the Maze grid scenarios. Ratio
columns represent the values ratio between the basic search and the variant 1.

When we have more than 600 agents for all three methods, adopting this variant
technique is costly, especially from the point of view of time consumption.
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(a)
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(b)

Figure 7.8: Comparison between basic search and variant 1. We consider the 256 × 256
Boston grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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(a)
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(b)

Figure 7.9: Comparison between basic search and variant 1. We consider the 128 × 128
Maze grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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7.2.3 Experimental analysis: Basic Search + Computational Op-
timization on Search Calls (Variant 2)

Variant 2 on 48x48 empty grid

The only fundamental difference between the basic search and the version with the com-
putational optimization on the search method calls (variant 2 ) is in the latter case, we
replan only when strictly needed, instead of doing so every time we consider an agent.

This version optimizes the computational point of view. There is no improvement in
the system.

The number of avoided conflicts, the sum of time steps, and the makespan are the same
as the basic search. This is shown correctly in Figure 7.10.

The number of A* method calls and the total CPU time (Figures 7.10a and 7.10b)
show the positive effect of the new approach. The number of search function calls is
highly optimized, speeding up the process too.

Table 7.5 shows the number of A* calls and the CPU time required by the algorithm to
find a suboptimal solution to the MAPF problem on the 48 × 48 empty grid. At the same
time, we show the percentage value compared to the basic search. Observe the massive
improvement when the grid contains few agents. The positive effect tends to decrease (but
never disappears) when increasing the number of skids. Indeed, as the agents increase,
many more possible conflicts occur, meaning much more time replanning is needed.

Variant 2 on other benchmark grids

The same advantages are shown on the more complex Boston grid and the Maze (Figures
7.11 and 7.12, respectively).

Note the exponential trend in the A* calls variable growth almost disappears. Only
when surpassing 600 skids we notice a slight curve. This is reasonable.
When we have few agents, the number of possible collisions is so small that we replan no
more than ten times for each agent. This is especially observable for the two bigger grids.
In highly crowded grids, replanning is frequent, but the effect of this optimized computa-
tion is always positive because the steps with no collisions increase too.

This idea is very efficient and we could use it for any variant.

Interestingly, depending on the choice of the algorithm, we may be interested in dif-
ferent objective functions. If we think about applying A* initially for every skid and then
each time we have to replan, we would like to have few conflicting situations. On the
other hand, if we apply A* at each step, we hope the total number of steps is as small as
possible.
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(a)
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(b)

To conclude, this variant improves the basic method, bringing the number of A*
method calls and the total CPU time to grow linearly with the number of agents, which
is one of the main goals of decentralized algorithms.
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(c)

Figure 7.10: Comparison between basic search and variant 2. We consider the 48 × 48
empty grid. On the x-axis, we have the number of agents (from 1 to 800), while on the
y-axis we show 7 different performance measures.
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Avoided conflicts
Empty Grid

# Agents Basic Search Variant 2 Percentage
100 3337 285 8.5%
200 7094 959 13.5%
300 11066 2029 18.3%
400 16502 4072 24.7%
500 21308 5841 27.4%
600 29019 9395 32.4%
700 38739 13584 35.1%
800 51194 18842 36.8%

CPU Time [s]
Empty Grid

# Agents Basic Search Variant 2 Percentage
100 1.4 0.2 14.3%
200 3.3 0.7 21.2%
300 5.3 1.0 18.9%
400 6.3 2.5 39.7%
500 7.5 2.8 37.3%
600 10.4 4.7 45.2%
700 14.0 6.6 47.1%
800 19.7 9.2 46.7%

Table 7.5: Comparison between basic search and variant 2 for 8 different values of the
number of conflicts and the time consumption. Data come from the empty grid scenario.
The last column represents the ratio (in percentage) between the variant 2 and the basic
search.

7.2.4 Experimental analysis: Basic Search + Traffic Directions
(Variant 3)

Variant 3 on 48x48 empty grid

Inspired by the functioning of road networks, we modify the grid’s structure by specifying
some "admissible" movements. From the implementation point of view, this implies just
some modification when defining nodes’ neighborhoods.

This change requires some a priori knowledge of the specific problem, i.e., the structure
of the grid, the fixed obstacles’ positions, and the start and goal positions [6.2.3].

In this work, we focus on algorithms that can be applied to different kinds of grids
without exploiting their specific properties. Moreover, the scenarios we used are randomly
generated [4.1]. We don’t deal with agents going from the same side to the opposite one
or with paths showing some patterns that could be exploited.
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(a)
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(b)

Figure 7.11: Comparison between basic search and variant 2. We consider the 256 × 256
Boston grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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(a)
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(b)

Figure 7.12: Comparison between basic search and variant 2. We consider the 128 × 128
Maze grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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Mainly, we want to understand if these constraints improve the algorithm’s perfor-
mance on generic grids with generic scenarios too.

We consider first the case in which agents have restrictions on the horizontal direction:
alternating on the vertical axis, they cannot move to the left or right (Figure 6.4). In this
way, we improve the basic method by a small percentage (Figure 7.13). With less than
600 agents on the domain, the two performances almost coincide concerning # avoided
conflicts, # A* method calls, and the sum of time steps. Hence, we can say that with
congested areas (35% of the total obstacles-free cells are occupied by mobile agents), it is
useful to impose some constraints to move skids more cleverly, in particular with a smaller
sum of individual path lengths. This is confirmed by looking at the chart of the maximum
number of steps (Figure 7.13b). Finally, the computational cost is smaller than the first
algorithm.

So it seems that by constraining the system, we speed up the process. To better check
on this, we constrain the structure even more and look at the results.

Variant 3 on 48x48 empty grid: Comparison between performances using dif-
ferent topological constraints

So far, we focused on the case where we alternate rows. Two alternatives we developed
consider coupled rows and rows grouped in 4 (Figures 6.5, 6.6, respectively). Anyway, we
can modify these constraints for the specific grid and application.

Interestingly, changing the constraints on the generic empty grid doesn’t improve the
performance of our method. Figure 7.14 shows almost coinciding lines for every variable.
The only difference regards the makespan chart (Figure 7.14b), where some agents may
require different path lengths depending on the structure we impose.

From this, we understand that it is not possible to improve the basic search’s per-
formance by just imposing some general constraints on the domain. We need specific
information about the grid and the agents’ starting and final positions. Without this
further knowledge, our variant is not as effective as it could be potentially. For this rea-
son, we discard this possible improvement. We remind the reader that our attention is to
methods’ application to generic grids and scenarios, aiming to improve them.

Variant 3 on other benchmark grids

When applying these constraints to more complex domains, the performance tends to de-
crease. As we can see from Figures 7.15 and 7.16, when the number of agents is reduced,
for what we said above, the two lines are very close to each other. When we increase
them, the basic method is preferable.
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(b)

By looking at the performance for the Maze grid (Figure 7.16), the tendency is clear:
for a few agents, i.e., up to 400 skids, the performance is the same. When the number of
cart agents is over 600, the basic search outperforms the variant 3, especially for the sum
of individual steps. The relation in terms of time used varies with the number of agents.
This confirms the high dependency on the grid’s structure and the agents’ paths.
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(c)

Figure 7.13: Comparison between basic search and variant 3. We consider the 48 × 48
empty grid. On the x-axis, we have the number of agents (from 1 to 800), while on the
y-axis we show 7 different performance measures.
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(a)
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(b)

In conclusion, we discard this possible improvement because our objective is to analyze
powerful methods for generic grids and scenarios.
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(c)

Figure 7.14: Comparison between variant 3 and two other versions with different topolog-
ical constraints. We consider the 48 × 48 empty grid. On the x-axis, we have the number
of agents (from 1 to 800), while on the y-axis we show 7 different performance measures.
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(b)

Figure 7.15: Comparison between basic search and variant 3. We consider the 256 × 256
Boston grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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(b)

Figure 7.16: Comparison between basic search and variant 3. We consider the 128 × 128
Maze grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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7.2.5 Experimental analysis: Basic Search + Congestion Aware-
ness (Variant 4)

Variant 4 on 48x48 empty grid

We impose costs on the grid’s locations to let agents pass through less uncongested areas.
As we expected, simulations show a reduction in the number of conflicts but a higher
computational cost.

We first consider the comparison with the basic search and the optimized version where
we use a 4 × 4 macro grid [6.2.4] (Figure 7.17). For a small number of agents on the
48 × 48 empty grid, the difference between the simple approach and the case with con-
gestion awareness is negligible. The explanation is that with few skids, the number of
conflicting paths is reduced. The same holds for the number of conflicts and the sum of
time steps.
While incrementing the number of skids, we have the formation of congested areas and
many more conflicts. Congestion awareness pushes agents to isolated locations (thanks to
weights on edges). So skids try to maximize their distance between each other, and at
the same time, they minimize their path to the final vertex. By looking for less crowded
areas, the collisions risk is highly reduced. This justifies why, by increasing the number
of agents, the amount of possible conflicts for the variant 4 is smaller than for the basic
search.

Due to the higher # avoided conflicts, by proceeding without congestion awareness
the solution has a higher sum of individual steps too. Every time two agents are about to
collide, they change the node, augmenting their total path length. So, regarding the sum
of individual steps, the difference between the two algorithms depends on the different
numbers of avoided collisions.
Consequently, also the number of A* calls changes after 600 agents.

In conclusion, despite the higher time consumption, applying congestion awareness
improves the performance of the first basic technique 4.

4In Figures 7.17b and 7.17c, we present the evolution of the sum of costs and the maximum cost,
just for let the reader understand the difference between the sum of costs and the sum of time steps.
Anyway, none of the benchmark grids is weighted. The costs we impose do not exist, they are part of
the congestion awareness framework.
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(b)
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(c)

Figure 7.17: Comparison between basic search and variant 4 with Macro Grid size 4 × 4.
We consider the 48×48 empty grid. On the x-axis, we have the number of agents (from 50
to 800, with stepsize 50), while on the y-axis we show 7 different performance measures.
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Variant 4 on 48x48 empty grid: Comparison between performances using dif-
ferent macro grid dimensions

We focus now on the problem of studying the effect of the macro grid dimension. In
Figure 7.18, on 7 different variables, we compare the same optimized version for different
macro grids dimensions: 4 × 4, 8 × 8, 16 × 16, 24 × 24, 48 × 48.

Increasing the macro grid dimension improves the results, especially the number of
avoided conflicts. Nevertheless, the gap between two "consecutive" lines gets smaller.
There is not much improvement when we pass from 24 × 24 to 48 × 48. In other words,
the performance is similar if we consider a macro cell as a 2 × 2 or a 1 × 1 square (i.e., a
single node).
To let the reader capture this aspect of the different dimensions, we show in Table 7.6
some values for each type of macro grid, giving the percentage of improvement on other
versions.

Avoided conflicts
Empty Grid

No Congestion Congestion Congestion Congestion Congestion
# Agents Congestion Awareness Awareness Awareness Awareness Awareness

Awareness Macro Grid: Macro Grid: Macro Grid: Macro Grid: Macro Grid:
4x4 8x8 16x16 24x24 48x48

Value % % % % %
100 157 134.4% 87.9% 79.6% 58.6% 43.9%
200 731 118.6% 87.8% 77.0% 76.1% 51.2%
300 1669 129.7% 64.8% 82.0% 75.7% 71.4%
400 3767 95.2% 77.2% 69.2% 68.8% 63.7%
500 5834 102.5% 80.5% 71.1% 71.9% 66.2%
600 10139 96.1% 72.7% 63.3% 61.1% 63.6%
700 16624 79.4% 62.7% 54.7% 54.4% 55.4%
800 25590 76.2% 57.7% 52.1% 48.8% 51.9%
900 38440 68.9% 48.4% 44.9% 46.0% 45.7%

Table 7.6: Comparison between basic search and variant 4 for 9 different values of the
number of conflicts. Data come from the empty grid scenarios. Percentage columns
represent the values ratio (%) between the variant 4 and the basic search. 5 different
cases macro grid dimensions are considered.

Comparing the charts of # avoided conflicts (Figure 7.18a) and of the sum of indi-
vidual steps (Figure 7.17b), we observe a smaller improvement in the latter case. This is
correct because the price we pay when avoiding congested areas is a longer path.

Interestingly, we can consider the basic search as a particular case of the variant 4,
where the macro grid has dimension 1 × 1. Increasing the weights at the same time for
every cell doesn’t change the performance. This is another proof for choosing macro grids
with a higher number of nodes.
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(c)

Figure 7.18: Performance of variant 4 with different Macro Grid sizes. We consider the
48 × 48 empty grid. On the x-axis, we have the number of agents (from 50 to 800, with
stepsize 50), while on the y-axis we show 7 different performance measures.
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In conclusion, by increasing the dimension of the macro grid abstraction, we have bet-
ter performances that tend to coincide when this dimension is close to the grid’s dimension.

The problem of congestion awareness is the amount of time needed to update the macro
grid. This cost is higher with the dimension of the macro grid. Complex benchmark grids
require a too high amount of time for our analyses. Hence we don’t take them into account.
As we will see in [8.1.1], with appropriate improvements to the algorithm’s speed, we can
apply congestion awareness to such kinds of grids too.

7.2.6 Experimental analysis: Basic Search + New Conflict Avoid-
ance based on Agents’ Distance from Origin/Destination
(Variant 5)

Variant 5 on 48x48 empty grid

Now we analyze the performance when we use another collision avoidance technique.
Variant 5 is subdivided into two specific approaches:

• Variant 5.1 : when two agents are about to collide, the one CLOSER to its destina-
tion has the priority to occupy the other cell that the other agent necessarily has to
leave.

• Variant 5.2 : when two agents are about to collide, the one FURTHER from its
destination has the priority to occupy the other cell that the other agent necessarily
has to leave.

We implement a deterministic check to choose the passing agent, instead of a random
one, by imposing the closest or furthest agent to pass. This simple difference from the
code programming point of view translates into huge differences in terms of performance.
By removing randomness we are constraining the agents’ motion, often bringing undesir-
able results [8.2.1].

Figure 7.19 shows the performance on the 48 × 48 empty grid for agents going from
50 to 800, incrementing by 50, but simulations showed that even with this grid the skids
may get stuck in deadlocks. We might expect the two alternative policies to show almost
identical results because depending on their distance from the goal, the same agent may
be favored or not. Potentially, every agent can be the leader during a possible conflict.
As a consequence, we might conclude the number of avoided conflicts doesn’t depend on
the collision avoidance technique we used. Interestingly, the performance charts confirm
the opposite: methods’ performance is not always balanced.

Concerning the number of avoided conflicts and A* method calls, and the sum of in-
dividual time steps, results are similar when considering less than 600 agents. After this,
variant 5.1 outperforms both basic search and variant 5.2, that is the worst.
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(b)

Figure 7.19: Comparison between basic search, variant 5.1, and variant 5.2. We consider
the 48 × 48 empty grid. On the x-axis, we have the number of agents (from 50 to 800,
with stepsize 50), while on the y-axis we show 5 different performance measures.
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On the other hand, from the perspective of the CPU time consumption, variant 5.1 is
slightly worse than the other two algorithms. Likely, encouraging those agents closer to
their goals in solving conflicts pushes them towards their final nodes. Oppositely, agents
extend their paths with the second policy, requiring more time steps to conclude their job.

Variant 5.2 has worse outcomes than the basic randomized conflict avoidance tech-
nique. Hence, we prefer not to use this version of variant 5.

Variant 5 on other benchmark grids

We want to confirm the advantage of using variant 5.1 over variant 5.2, also in the case of
the Boston grid and the maze domain. Boston’s scenario is too constrained to be solved
with these deterministic approaches. Even with 150 agents (≈ 0.3% of the grid’s free
cells), there are unresolved loops. Luckily, the Maze grid is simpler, and we show this in
Figure 7.20.

Oppositely to the empty grid, for the Maze grid’s scenario, the basic search is the worst
method regarding avoided conflicts, A* calls, and the sum of steps. The two versions of
variant 5 present similar results, and only when passing from 600 to 800 agents the first
type outperforms the second one. Hopefully, the gap will increase even more with the
number of agents.

In conclusion, variant 5.1 is the best method between these 3 ones. But we cannot
consider it the best technique because pathological situations may form not only for
complex grids but also for the simplest empty environment.
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(b)

Figure 7.20: Comparison between basic search, variant 5.1, and variant 5.2. We consider
the 128 × 128 Maze grid. On the x-axis, we have the number of agents (from 50 to 800,
with stepsize 50), while on the y-axis we show 5 different performance measures.
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7.3 Comparison & Conclusion
We analyzed the performances of our basic search method and 5 variants on different
benchmark grids in terms of experimental number of avoided conflicts, number of A*
search method calls, sum of time steps, maximum number of required steps, speed, and
time consumption.

These variables are highly correlated with each other and guarantee the full compre-
hension of the algorithms’ behavior while augmenting the number of agents in the system.
In Figures 7.21 and 7.22 we show the Correlation Matrix for our variables concerning the
basic search data, using both the Pearson correlation and the Spearman correlation. 5

In particular, the number of avoided conflicts is a fundamental variable linked to all
the others.

Figure 7.21: Pearson Correlation Matrix for the basic search data.

5In Statistics, the Pearson correlation coefficient is a measure of linear correlation between two
sets of data. The Spearman correlation coefficient is a measure of correlation that assesses how well
the relationship between two variables can be described using a monotonic function. A Spearman cor-
relation of 1 results when the two variables being compared are monotonically related, even if their rela-
tionship is not linear (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)(https:
//en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient).
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Figure 7.22: Spearman Correlation Matrix for the basic search data.

We summarize the experimental results.

• Number of avoided conflicts. The optimized pre-conflict avoidance technique, i.e.,
variant 1 [6.2.1] has the worst effect on the number of avoided conflicts since by
waiting for conflicts to be resolved an agent is implicitly risking to collide with
others. The best results are obtained using the traffic directions on the grid (variant
3, [6.2.3]), congestion awareness (variant 4, [6.2.4]), and favouring agents closer to
their goals (variant 5.1, [6.2.5]). They are better than basic search and the optimized
version on the number of search method calls, i.e., variant 2 [6.2.2]. Finally, favoring
agents if they are further from the destination (variant 5.2 ) is worse because closer
agents tend to remain in the system, causing new possible conflicts.

• Number of A* method calls. The problem of variant 1 reflects on the number of A*
search method calls, pretty much higher than any other developed algorithm. As
for the case of number of avoided conflicts, variant 3, variant 4, and variant 5.1 are
better, but now the best results are obtained with variant 2, which was developed to
optimize this variable as much as possible. Finally, variant 5.2 is worse than basic
search, but better than variant 1.

• Sum of individual steps. Trends are always the same: favoring agents closer to their
goals, using traffic directions, or having congestion awareness bring the best results.

• Maximum number of steps. This variable depends on the agents’ characteristics, i.e.,
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start and goal locations, even more than the algorithms. Despite this, variant 4
using congestion awareness brings the best results.

• Total CPU time. While its values depend on the CPU and the jobs the PC is doing,
it helps to understand which are the fastest and slowest algorithms. In the empty
grid, the worst results regard congestion awareness.

As a whole, we observe a similar evolution between the number of avoided conflicts,
the number of A* search method calls, and the sum of individual steps. Indeed, there is
a pattern between them, as we observe in Figure 7.23.
The other two variables have different behavior, but this is reasonable. The makespan
depends primarily on the distance origin-destination. The CPU Time, on the other hand,
depends on the microprocessor type.

Figure 7.23: 48×48 empty grid basic search data. On the lower left half different variables
are visually compared. On the upper right part variables are compared measuring the
Pearson Correlation.

The different performances are clear if we consider more than 600 agents in the system.
We can explain this as follows.
Considering the empty grid with less than approximately 600 agents, i.e., less than 25%
of free cells are occupied by skids, the domain is sufficiently sparsely populated so that
the number of avoided conflicts is small, irrespective of the efficiency of the considered
algorithm. This changes when congested areas increase, especially when the percentage
of skids in the system gets around 40 − 50% (the maximum percentage we analyzed for
the empty grid).
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The percentage of the cells occupied by the agents influences also the variables’ vari-
ance. In particular, all graphical representations showed a higher variability while increas-
ing the number of agents. This variability seems to increase even more after reaching 600
agents. Let us make an example considering the basic search results [7.2.1]. In Figure
7.24, we consider the evolution of the number of avoided conflicts, which we said is one of
the most important variables.

Figure 7.24: Number of avoided conflicts for the basic search. Data are shown in red
circles. The least-squares polynomial (degree 4) is shown in blue. The number of agents
in the system is shown on the x-axis, while on the y-axis the number of avoided conflicts.

The standard deviation from the least-squares polynomial of degree 4 is shown in Fig-
ure 7.25. Here, the variability increases with the higher number of agents.
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Figure 7.25: Residuals of basic search number of avoided conflicts’ data used to fit the
least-squares polynomial (degree 4). Data are shown in red circles. The number of agents
in the system is shown on the x-axis, while on the y-axis the residual values.

The high variability is caused by the randomness in the origin-destination distance ap-
plied to the random permutation of the agents at each step of the process. When passing
from n > 0 to n+ 1 agents, we include a path whose length is short or long, depending on
the origin-destination distance. Since benchmark scenarios contain randomly generated
agents, agent n+ 1 may have a short path connecting its origin to the destination, while
agent n+ 2 could require a higher number of time steps. Interestingly, there is no depen-
dency here on the number of agents. For this reason, even on the left-hand side of the
variables charts, the spiky trend occurs, but with a smaller order of magnitude. When
there are many agents, dense areas and possible conflicts are frequent. Due to the local
conflict avoidance, agents’ overall path is quite longer than with few skids. The presence
of a new agent in a crowded area could influence positively or negatively the path length
of the involved skids, bringing them to shorter or longer paths.
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This explains the higher deviations observed in Figure 7.25. Even though the overall
trend is the same, we observe a dependency on the seed too, as from Figure 7.2, where
different seeds bring different spikes.

The experimental comparison confirmed what we observed while describing our models.

• variant 1 has two main drawbacks. First, as for the basic search, the path is re-
planned each time, implying an unnecessary huge amount of search function calls.
Second, the sum of time steps is too high for the basic search. These drawbacks
reflect on the time consumption.

• The optimization on the number of search method calls, i.e., variant 2, is useful to
reduce A* function calls, but apart from this, the other variables remain unchanged.
It should be appropriately combined with other variants.

• It is not possible to improve the basic search’s performance by just imposing some
general constraints on the domain, as we have done for variant 3. We need specific
information about the grid and the agents’ starting and final positions. Without
this further knowledge, our variant is not as effective as it could be potentially. Our
attention is to methods’ application to generic grids and scenarios.

• Congestion awareness (variant 4 ) pushes agents to isolated locations. So, by looking
for less crowded areas, the collisions’ risk is highly reduced. This justifies why, by
increasing the number of agents, for the variant 4 there are fewer avoided conflicts
than for the basic search. Congestion awareness is useful for those algorithms where
we may incur pathological situations of deadlocks, with crowded areas occupied by
agents that cannot move away. Indeed, the advantage of congestion awareness is it
reduces the number of possible conflicts. This also implies a reduction in the number
of A* calls and the sum of individual steps. Augmenting the macro grid dimension
helps in general. When this is almost equal to the original grid dimension, also
smaller grids have good performances. The only drawback of congestion awareness
is the amount of time needed to update the macro grid but with appropriate im-
provements to the algorithm’s speed [8.1.1], we can apply congestion awareness even
to complex benchmark domains.

• The major drawback of variant 5 is it may bring deadlocks formation (a chain/group
of agents not leaving a crowded area) not only for complex grids but also for the
simple empty environment. They fail where other methods don’t.

It is interesting to analyze the effect of combining congestion awareness and # search
calls optimization since taken individually, they both enhance the basic version, the first
one in terms of the sum of time steps, the other one in terms of the number of A* calls.
Note the basic search is equivalent to its variant 4 where we consider a 1 × 1 macro grid
dimension.
We will check the quality of the resulting method in the next chapter [8.2.1].
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Chapter 8

Final Optimized Algorithm
and Conclusions

8.1 Final Optimized Algorithm
8.1.1 Model Description
We develop a final optimized version of the basic search, exploiting both the computational
optimization on search calls and the congestion awareness.

• Computational optimization on the number of search method calls. The shortest path
is computed only at the beginning to let the process start and whenever a possible
conflict is solved. We have seen that for basic search the number of search function
calls is highly optimized [7.2.3].

• Congestion awareness. Agents try to pass through less uncongested areas. We
memorize the areas where every skid’s path passes and let agents know this when
computing their shortest path. In particular, the grid nodes are grouped in macro
cells, each one with a specific positive cost. Every mobile agent computes its shortest
path using the costs of the macro grid. Then it updates the costs of the macro cells.
Other agents then try to follow alternative paths with smaller costs [6.2.4].

Every agent chooses the path whose overall cost on the macro grid is minimized. Then, it
keeps moving until the destination is reached or a possible collision occurs. In the latter
case, the possible conflict is solved with the random-style collision avoidance approach
[6.1.1], and the path is replanned. For each replanning, the macro grid is modified too.
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8.1.2 Pseudo Code
The pseudo code of the method is shown in 8.1.2, while the summary is in Table 8.1.

Algorithm 10 Pseudo Code: Basic Search + Congestion Awareness + Computation
Optimization on Search Calls

1: build the set of obstacles (e.g. walls);
2: while skids are moving to their destinations do
3: if new online skid agent is added to the skids’ set then
4: if possible, add the mobile agent to the corresponding starting cell;
5: end if
6: shuffle the agents’ order;
7: for skid agent = 1, ..., k do
8: if the agent has not been considered yet then
9: if agent position and goal coincide then

10: remove the agent (disappear at target);
11: modify the grid weights;
12: else (agent not at target → planning)
13: consider the next possible position (from the pre-computed shortest

path);
14: if the next possible tile is occupied then
15: if the other agent has not been considered yet then
16: if possible, one of the two agents is randomly chosen and occupies

the other cell (and previous tile becomes blank);
17: modify the grid weights, compute individual shortest path;
18: if agent position and goal coincide then
19: remove the agent (disappear at target);
20: modify the grid weights;
21: end if
22: else
23: wait;
24: end if
25: else
26: cart agent occupies the available tile and previous tile becomes blank;
27: if agent position and goal coincide then
28: remove the agent (disappear at target);
29: modify the grid weights;
30: end if
31: end if
32: end if
33: end if
34: end for
35: end while

(Note the shortest path is built using A* algorithm)
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File Generic benchmark file
Approach Online
Solution Sub-Optimal
Conflict Avoidance Random-Style
Permutation Yes
Topology Constraints No
Notes Congestion awareness through a macro grid

+ reduced number of search method calls

Table 8.1: Properties summary of Final Optimized Version (Basic Search + Congestion
Awareness + Computational Optimization on Search Calls).

8.2 Comparison

8.2.1 Comparison with previous algorithms
Figure 8.1 shows the comparison between all the developed algorithms. The last two lines
on the legend correspond to the final optimized version with macro grid dimension 48×48
and 24 × 24, respectively.

This new version outperforms both the simple variant that optimizes the number of
search calls, variant 2 and the version that uses congestion awareness, variant 4.

Thanks to the congestion awareness, the number of avoided conflicts is reduced, with
results better than for traffic (variant 3 ), congestion awareness (variant 4 ), and opti-
mized collision avoidance (variant 5.1 ) approaches, that we said were better than the
basic search from the point of view of # avoided collisions.

Concerning the number of search calls, congestion awareness and optimized computa-
tion of the search method calls together give better results than if taken singularly. The
chart shows an improvement of more than three times the basic search.

The sum of individual steps is consequently the best one with almost linear growth.

Interestingly, even the maximum number of individual steps to reach the destination
is the smallest. This is due to congestion awareness, which guarantees agents don’t have
to replan many times and then can follow mainly their shortest path.

Finally, the only drawback of this new version is the quite high CPU time consumption.
Despite this, we would always prefer this optimized version to the previous ones because
of the advantages for the other variables, especially the sum of time steps.

The basic search with optimized number of A* calls, i.e., variant 2, is equivalent to
this optimized version with 1 × 1 macro grid dimension.
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(a)
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(b)

Figure 8.1: Comparison between all the developed algorithms. We consider the 48 × 48
empty grid. On the x-axis, we have the number of agents (from 50 to 800, with stepsize
50), while on the y-axis we show 5 different performance measures.
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In general, changing the macro grid size brings different results. During the experi-
mental phase with congestion awareness, we observed an improvement when enlarging the
macro grid dimension. When this dimension is very high, results are so close that smaller
macro grids could outperform larger ones. A 24×24 macro grid is better than the 48×48
version, both from the number of avoided conflicts, the number of search method calls,
and the sum of individual steps.

From this comparison we notice that assigning freedom or constraints to the motion
of the skids brings very different results. In particular, by constraining their possible ac-
tions, the performance gets worse, and agents find more difficulties while moving towards
their goals, raising the maximum number of time steps and the time cost.
As said in [6.2.3], variant 1 and variant 3 constrain the movements: in the first case we
consider a restriction of the agents’ actions, while in the second method the restriction is
imposed on the topology itself. Moreover, the two different versions of variant 5 reduce
the set of possible actions for conflict avoidance, whereas, in basic search, randomness
helps to avoid pathological deadlocks. Concerning the variants with congestion aware-
ness, we are not reducing the set of possible paths. Indeed, its main objective is to choose
the best path given the information about the others. There are no constraints.

We can conclude that we need some way to assign the agents / the grid’s structure
more freedom to improve performances. In the following, we describe the goodness of
randomness from another point of view.

Mathematical Optimization and Randomness

MAPF is strongly related to Mathematical Optimization. Some researchers have
tackled multi-agent path planning problems from this point of view [1.1], e.g. exploiting
linear and quadratic programs, in which one possible objective function could be the
total sum of time steps. These specific centralized methods have the problem of being
computationally unfeasible with many agents. Still, the idea of minimizing the objective
function is very interesting.

We know centralized algorithms bring optimal solutions (global optimum), while gen-
erally, suboptimality holds for decentralized ones. This means that, even though they find
a solution to the MAPF problem, the agents’ paths correspond just to a local optimum.

In Mathematical Optimization, both to approximate the objective function and to find
its global minima, it is important to find a trade-off between two important operations,
namely exploration and exploitation.

• Exploration. This operation corresponds to evaluating candidate solutions that
are not neighbors to the current solution (or solutions).

• Exploitation. It corresponds to when a search is done in the neighborhood of the
current solution (or solutions).

By just applying exploitation, the search process might get stuck into local minima. The
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solution is to consider exploration too: generally, the search space is explored by ran-
domly selecting points in areas different from those of the current solution. Consequently,
randomness helps search processes to pass from local minima to global ones.

When considering decentralized approaches, we want to find suboptimal solutions as
close as possible to optimal ones. In terms of local and global minima, this means requiring
our process to reach a solution that is as close as possible to the global minimum.
This justifies the use of randomness in our developed algorithms.

Online setting

As said while introducing the specific problem [2], we intend to model scenarios where
agents enter the system at any time. All the previously presented algorithms are built for
this purpose. Now, we summarize the results of our experiments when considering online
agents too (previous results focus on the offline setting).

The maximum value of agents that we consider during these simulations is 900+300 =
1200. 900 skids start at the beginning of the search process (i.e., offline skids), and the
other 300 are added randomly over time 1. We choose this setting because our final goal is
to reproduce warehouses with more than half of the free cells occupied by mobile agents.
With a total amount of 1200 agents at peak hour, the 48 × 48 empty grid satisfies this
condition. Moreover, adding further agents in case of more complex grid scenarios would
be too costly from the CPU time point of view.

In Table 8.2 we summarize the performances of all the developed algorithms concerning
the main studied variables, using the benchmark 48 × 48 empty grid.

Offline results are preserved in the online setting: except for the time consumption,
the best algorithm is the one combining the basic search with congestion awareness and
computational optimization on the number of search method calls, with a macro grid of
size 24 × 24.

The same results hold for the more complex benchmark grids, as we can see from
Tables 8.3 and 8.4.

In conclusion, our final optimized version is appropriate also to deal with new skids
entering the system at any time.

1Note, in real applications, agents are not added randomly. This is a simpler assumption we make,
without loss of generality.
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8.2.2 Comparison with benchmark algorithms
As we said in [4.2], Silver [2005] is considered the masterpiece of decoupled MAPF ap-
proaches. The ideas of cooperation behind its three developed decentralized algorithms
set a new era in which agents don’t focus on themselves anymore (as for LRA* [4.2.1])
but navigate taking care of the other’s actions, either completely, from the start to the
end of their journey, or partially.

Our algorithm’s optimized version is compared with CA* [4.2.2] and HCA* [4.2.3],
showing cooperation outperforms self-interest, although sometimes these algorithms
don’t find any existing solution. Indeed, we also implemented a simplified version of
WHCA* [4.2.4], but this is likely not to find solutions even for few hundreds of agents.

Furthermore, we implemented a Multi-Agent A* version to check the difference be-
tween centralized and decentralized algorithms. Despite the correctness of the code, the
disadvantages of centralized pathfinding in terms of time and space computational com-
plexity arise even for few agents on a small empty grid.

In Figure 8.2, we show the algorithms’ performances in terms of the sum of time steps,
makespan, and CPU time. We compare the basic search, the two final optimized variants,
CA* and HCA*.

The two benchmark algorithms have similar outcomes. That is reasonable since HCA*
differs from CA* only for the heuristic choice. For each plotted variable, CA* and HCA*
outperform our selfish algorithms.

CA* and HCA* need up to half the sum of time steps required by our best self-
interested approaches. We notice both literature cooperative and our developed self-
interested algorithms show linear growth with the number of agents. This proves the
quality of our optimized version since it gives results similar to cooperative methods,
thanks to the idea of congestion awareness.

The makespan is approximately constant for the implemented benchmarks, while our
best algorithms slightly increase.

Finally, concerning time consumption, cooperation gives dramatically fast results, for
two reasons:

• the number of A* calls is the same as the number of agents, which is sharply smaller
than for our versions;

• our final optimized versions exploit the concept of the macro grid, building and
updating it for every single action;

• from the implementation point of view, our methods are more complex.

Nevertheless, we stop at 800 agents since both Silver’s algorithms fail at finding a so-
lution with a higher number of skids, while our methods succeed.

Interestingly, our basic search is similar to LRA*. The underlying idea of locally
repairing conflicts is preserved in all our optimized versions.
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We conclude the reasons why we have the worst results are connected to those of LRA*.
As noticed by Silver, if bottlenecks occur in crowded areas, they may take arbitrarily
long to be solved, because agents constantly reroute trying to escape, requiring a full
recomputation of the A* search almost every turn. This leads to unintelligent behavior 2.
Each agent makes a path change independently, forming cycles where the same location
may be visited by agents repeatedly in a loop.
Despite this, our algorithm outperforms LRA* for two reasons:

• by using the random-style collision avoidance, there are more ways for an agent to
escape conflicts (involved agents are free to choose who will pass and who will move
away);

• congestion awareness helps to choose less crowded areas, so some form of world
knowledge is used to improve the performance.

Cooperation is the key to planning paths with a highly reduced amount of A* search
method calls, finding solutions faster, with fewer replanning phases than the case of self-
interested approaches. This implies a lower sum of time steps and makespan. Collisions
are avoided intrinsically in advance since agents don’t act individually anymore.

Still, cooperation constrains agents’ motion. Skids must consider the other’s positions
and paths. From a practical point of view, this would require constant communication,
sometimes prohibitively expensive.

2Aesthetically unpleasant or inefficient behaviors must be removed as much as possible. One could
think about improving the self-interested approach, but what has an impact on the efficiency of the
movements is the use of cooperation.
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8.3 Conclusions
Starting from a purely self-interested basic search with random-style collision avoidance,
we improved the performance by introducing ways for agents’ cooperation, specifically
using congestion awareness to push agents into less crowded regions. Since it doesn’t
constrain skids’ motion, our final optimized algorithm outperforms all the previously de-
veloped ones. Agents have a high level of freedom.

Passing to the comparison with some of the most important algorithms in the lit-
erature, we notice cooperation outperforms self-interest, at the cost of higher required
communication and higher risk of not finding any solution. As said in [4.2], "globally
cooperative" approaches, such as CA* and HCA*, may be unnecessary in practical cases
with rising problems in case of agents staying at target and with a too high dependency
on agents’ ordering. Introduced with WHCA*, "local cooperation" solves these difficul-
ties: for every agent, we consider a cooperation window that moves accordingly to the
agents’ position, iteratively up to the corresponding destination. With this last windowed
method, agents both cooperate and have freedom. Nevertheless, because of the elevated
number of replanning phases, cooperation may still cause no solution.

Coming back to our final optimized algorithm, we expect that by reducing the coopera-
tion window results will increase. Indeed, planning too far into the future is not necessary
and sometimes unuseful. We talk about these aspects in the final part of our work.
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Online setting: 900 offline + 300 online
Empty Grid

Sum
Algorithm # Avoided Conflicts # A* Calls of CPU Time [s]

Time Steps
basic search

46483 85956 112497 31.5
variant 1

219691 263606 327311 107.6
variant 2

46483 27994 112497 17.9
variant 3.1

31296 71139 89687 20.5
variant 3.2

31636 71083 89957 27.7
variant 3.3

33553 73416 93117 29.9
variant 4

Macro Grid 4 × 4 30289 68404 85918 393.8
variant 4

Macro Grid 8 × 8 20258 57493 69950 279.7
variant 4

Macro Grid 16 × 16 18989 56236 68187 353.6
variant 4

Macro Grid 24 × 24 18942 55969 67890 491.1
variant 4

Macro Grid 48 × 48 19735 57482 69763 2500.4
variant 5.1

30872 70657 88879 116.0
variant 5.2

155490 205215 288271 87.9
final optimized

variant 20012 18386 70003 3996.9
Macro Grid 48 × 48

final optimized
variant 18672 17457 67659 612.1

Macro Grid 24 × 24

Table 8.2: Online setting: 900 offline agents + 300 online agents. Comparison between
all the developed algorithms in terms of number of avoided conflicts, number of A* calls,
sum of time steps, and CPU time. The benchmark grid is the 48 × 48 empty grid. For
each column, the best value is marked in red color.
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Online setting: 900 offline + 300 online
Boston Grid

Sum
Algorithm # Avoided Conflicts # A* Calls of CPU Time [s]

Time Steps
basic search

161382 409499 498966 6382.9
variant 1

521362 780741 898927 11611.8
variant 2

161382 88782 498966 4034.5
variant 3.1

219161 477236 593086 5543.0
variant 3.2

203667 458956 569072 7312.7
variant 3.3

167437 419326 511173 5006.4
variant 4

Macro Grid 8 × 8 Too high computational cost
variant 5.1

Too highly congested areas
variant 5.2

Too highly congested areas
final optimized

variant 77298 51126 373428 13812.4
Macro Grid 8 × 8

Table 8.3: Online setting: 900 offline agents + 300 online agents. Comparison between
all the developed algorithms in terms of number of avoided conflicts, number of A* calls,
sum of time steps, and CPU time. The benchmark grid is the 256 × 256 Boston grid. For
each column, the best value is marked in red color.
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Online setting: 900 offline + 300 online
Maze Grid

Sum
Algorithm # Avoided Conflicts # A* Calls of CPU Time [s]

Time Steps
basic search

968054 1380718 1889630 28563.6
variant 1

Too high computational cost
variant 2

968054 482778 1889630 15925.6
variant 3.1

1486609 1947279 2691015 45795.7
variant 3.2

1162736 1604380 2218179 26800.0
variant 3.3

662472 1013948 1373763 21258.0
variant 4

Macro Grid 8 × 8 Too high computational cost
variant 5.1

765167 1181417 1588768 39313.9
variant 5.2

Too highly congested areas
final optimized

variant 406671 224938 928605 20100.0
Macro Grid 8 × 8

Table 8.4: Online setting: 900 offline agents + 300 online agents. Comparison between
all the developed algorithms in terms of number of avoided conflicts, number of A* calls,
sum of time steps, and CPU time. The benchmark grid is the 128 × 128 Maze grid. For
each column, the best value is marked in red color.
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Figure 8.2: Comparison between basic and optimized developed selfish algorithms and
literature cooperative benchmarks. We consider the 48 × 48 empty grid. On the x-axis,
we have the number of agents (from 50 to 800, with stepsize 50), while on the y-axis we
show 3 different performance measures.
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Part III

Links to Congestion Games
and Network Traffic Flow
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In this part, we recall the main concepts of Network Traffic Flow and Game Theory,
showing the connections to MAPF problems 3.

Specifically, MAPF can be interpreted as a Network Flow problem. For this reason,
we can study our problem from two different points of view, each one with a specific
objective.

• Traffic Flow Optimization. As said before in this document, decentralized algorithms
have different advantages over centralized ones. But they have the great drawback of
generally being suboptimal. By using the concepts of User Optimum Traffic Assign-
ment (UO-TAP) and System Optimum Traffic Assignment (SO-TAP), it is possible
to quantify how much a decoupled algorithm’s solution is suboptimal, compared to
a centralized one, from the point of view of the generated traffic.

• Game Theory. We know Network Traffic Flow models are examples of congestion
games. Hence, we can apply the concepts of Nash Equilibrium and Best Response to
understand which are the best actions to be applied by the agents close to possible
conflicts, and how to push in the best way agents in less congested areas. The main
problem with traffic networks is there are many agents in the system, so a game
theoretic analysis would generally be more complex.

This establishes a deep connection with Graphs Theory. We intend to use these concepts
in the near future, to understand, describe, and implement smart solutions to the MAPF
problem.

3Theoretical elements are mainly taken from University "Lecture notes on Network Dynamics", by
Giacomo Como and Fabio Fagnani.
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Chapter 9

Network Traffic Flow

In this chapter, we first review the main aspects of Network Flow Optimization. Then,
we show that MAPF can be treated as an optimal transport problem. For this reason, we
can quantify the inefficiency of decentralized approaches over centralized ones in terms of
Price of Anarchy from the Traffic Assignment Problem.

The idea of network traffic flow is also linked to Games Theory, as described in the
next chapter.

9.1 Network Flow Optimization
Network flow optimization is useful to study optimal traffic assignments in traffic networks.
To study network flow optimization, we consider a larger notion of network structure than
that of weighted directed graph. First, we give the definition of weighted directed graph,
then we present the broader concept of directed multigraph.

Definition 3 A directed weighted graph is a triple G = (V , E ,W) where:

• V is the countable set of nodes, also called vertices;

• E ⊆ V × V is the set of links (also called edges);

• W ∈ RV×V
+ is the weight matrix, with Wij > 0 if and only if (i, j) is a link.

We denote with n = |V| the order of the graph. We define links (i, i) as self-loops.

Definition 4 A directed multigraph is a quadruple G = (V , E , θ, κ), where:

• V is the set of nodes;

• E is the set of links;

• θ : E → V and κ : E → V are two functions such that, if e ∈ E, θ(e) and κ(e) are
two distinct nodes representing the start and the termination of link e.
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Two links e1, e2 ∈ E such that θ(e1) = θ(e2) and κ(e1) = κ(e2) are called parallel,
whereas if θ(e1) = κ(e2) and κ(e1) = θ(e2), they are called opposite.

To every unweighted directed graph G = (V , E), a multigraph can be associated by
simply considering G̃ = (V , E , θ, κ), with the same set of vertices and links of the original
G and start and terminal functions defined by θ(i, j) = i, κ(i, j) = j.

Two important matrices in the context of network connectivity are the node-link inci-
dence matrix and the link-path incidence matrix.

Definition 5 A node-link incidence matrix B ∈ RV×E is defined as

Bθ(e)e = +1, Bκ(e)e = −1, Bke = 0 ∀k ∈ V\{θ(e), κ(e)},

for every link e ∈ E that is not a self-loop (i.e., θ(e) /= κ(e)), and Bie for all i in V if e is
a self-loop.

Definition 6 For two nodes o /= d in V such that d id reachable from o, the link-path
incidence matrix A(o,d) in {0,1}E×Γ(o,d) is defined as

A(o,d)
eγ =

; 1 if e is along γ
0 if e is not along γ.

In the following example we show how the concepts of node-link and link-path incidence
matrix apply to the network in Figure 9.1.1

Example 1 Given the graph in Figure 9.1, the link-path incidence matrix A and the
node-link incidence matrix B are:

A =


1 1 0
0 0 1
0 1 0
1 0 0
0 1 1



B =


+1 +1 0 0 0
−1 0 +1 +1 0
0 −1 −1 0 +1
0 0 0 −1 −1



1Image Credits to: Como, Fagnani.

188



9.1 – Network Flow Optimization

Figure 9.1: On the left, a graph G = (V , E , s, t) with node set V = {o, a, b, d} and link
set E = {e1, e2, e3, e4, e5}. On the right, the three distinct o − d paths are colored:
γ(1) = (o, a, d) (green); γ(2) = (o, a, b, d) (red); γ(3) = (o, b, d) (blue).

Let us now introduce the notion of network flow. Given a graph G = (V , E , s, t), an
exogenous net flow on G is a vector ν ∈ RV satisfying the constraintØ

i

νi = 0 (9.1)

The positive part [νi]+ = max{0, νi} and the negative part [νi]− = max{0,−νi} of the
net flow in a node i are respectively the exogenous inflow in and the external outflow
from i. The constraint 9.1 is then equivalent to requiring that the total exogenous inflow
matches the total external outflow.
We consider

χ = 1
2

Ø
i

|νi| =
Ø

i

|νi|+ =
Ø

i

|νi|− (9.2)

as the throughput, i.e., the total flow that goes through the network.
Nodes i such that νi > 0 are generally called sources, origins, or generators, while
nodes i such that νi < 0 are called sinks, destinations, or loads.

Definition 7 Given a graph G and a vector of exogenous net flows ν ∈ RV satisfying 9.1,
a network flow is a nonnegative vector f ∈ RE

+ whose entries fe satisfy the flow balance
equations

νi +
Ø

e∈E|κ(e)=i

fe =
Ø

e∈E|θ(e)=i

fe, i ∈ V (9.3)

The term fe represents the flow on the link e ∈ E . Hence, the equation above states
that the total inflow in a node i, resulting from both possible exogenous inflow [νi]+ and
flows fe from incoming links e, equals the total outflow from i, resulting from both possible

189



Network Traffic Flow

external outflow [νi]− and flows fe towards outgoing links e. These flow balance equations
can be rewritten more compactly in terms of the node-link incidence matrix as

Bf = ν (9.4)

The previous definition can then be rewritten as follows.

Definition 8 Given a vector ν in RV of exogenous net flows, a network flow on G is
a vector f ∈ RE that satisfies the nonnegativity and conservation of mass constraints:

f ≥ 0, Bf = ν (9.5)

We define o-d flows the network flows with a single origin o and a single destination
d, i.e., nonnegative vectors f ∈ RE

+ such that

Bf = χ(δ(o) − δ(d)) (9.6)

for some throughput value χ.

In network flow optimization, we generally consider the problem of selecting a network
flow f∗ from the set of vectors satisfying Definition [8] that minimizes a separable convex
cost function.

Let us define the link cost function ψe(fe), e ∈ E , describing the cost ψe(fe) incurred
when a flow fe ≥ 0 passes through link e.
We make the following assumption on such cost functions.

Assumption 1 For every link e in E, the cost function

ψe(fe) : [0,+∞) → [0,+∞]

is such that ψe(0) = 0, non-decreasing, continuously differentiable and convex in the
internal [0, ce) where

ce = sup{x ≥ 0 : ψe(x) < +∞}

is referred to as the flow capacity of link e.

Requiring ψe(0) = 0 means to require no cost for sending no flow. Non-decreasing
ψe(x) means the more the flow the higher the cost incurred. Allowing ψe(fe) to possibly
take value +∞ allows to consider the case of infinite link flow capacity (ce < +∞), or
elevated link flow (x ≥ ce). Convexity of the cost function ψe(x) means that its derivative
ψ′

e(fe) is non-decreasing in x. Since this derivative can be considered as the infinitesimal
change of the cost incurred when an infinitesimal unit of flow is added to the quantity x
already in the link, this is quite a natural assumption. Finally, differentiability is mainly
required to simplify practical scenarios. Consequently:

190



9.1 – Network Flow Optimization

Definition 9 A convex separable network flow optimization problem is defined
as

M(ν) = inf
f∈RE

+ ; Bf=ν

Ø
e∈E

ψe(fe) (9.7)

When M(ν) = +∞, the network flow optimization problem is said to be unfeasible,
while feasible otherwise.

It can be shown that the optimal transport problem is a generalization of the
shortest path problem with:

• linear costs,

• arbitrary net-flow ν in RV ,

where linear costs are as follows. Let each link e in E be assigned a positive weight le
representing its physical length; given the edge flow fe, the linear cost function is

ψe(fe) = lefe. (9.8)

MAPF can be treated as an optimal transport problem, but now the cost
function is not linear. In our MAPF setting, the length le is the time needed to
move from one cell to its neighbor; since we are using time steps, this length is 1. The
flow corresponds to the number of agents 2. With linear cost functions, we are implicitly
considering that the congestion does not affect the length/cost to move from one node to
the next one. Even though the time needed to move from one cell to its neighbor will
always be one time step, with linear costs we are disregarding the fact that when possible
conflicts occur, an agent has to wait for the other to pass. This augments the overall cost
on that edge.

In the next section, we establish a connection between transportation networks’ traffic
assignment and optimal transport problems. We will understand the correct cost function
choice boils down to deciding whether the approach is centralized or decentralized (SO-
TAP vs UO-TAP).

2The flow capacity of link e is not of great concern; it can be set by simply following its definition
or directly to +∞.
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9.2 Optimal Traffic Assignments in Transportation
Networks

Now we focus on the optimal traffic assignment problem in transportation networks. In
general, here links e in E represent portions of roads and nodes represent junctions.
In our setting, the grid structure is trivially translated into graph where nodes corresponds
to cells, and unitary edges connect adjacent cells.

In general, the cost function is defined in terms of a delay function τe(fe) that returns
the delay encountered by any user traversing a link as a function of the flow on that link.
We assume these delay functions satisfy the following assumption.

Assumption 2 For every link e in E, the delay function

τe : R+ → R+ ∪ {+∞}

is a non-decreasing, twice continuously differentiable in the interval [0, ce), and such that
τe(fe) = +∞ for fe > ce and

2τ ′
e(fe) + feτ

′′
e (fe) ≥ 0, 0 ≤ fe < ce. (9.9)

Similarly to the first assumption, [9.1], for the cost function, this last assumption, [9.2],
allows us to treat both the case of finite and infinite link flow capacities. It is quite natu-
ral to assume that the delay is non-decreasing in the flow, since congestion can only slow
down traffic, never speed it up. The assumption of twice continuous differentiability is
used for simplicity. The inequality relation above immediately follows if, e.g., the delay
functions are convex.

9.2.1 System Optimum Traffic Assignment
Definition 10 Let a delay function τe satisfying the assumption [9.2] be assigned to ev-
ery link of a multigraph describing the topology of a transportation network. The System
Optimum Traffic Assignment Problem (SO-TAP) consists in a network flow op-
timization problem with link cost functions

ψe(fe) = fe · τe(fe), fe ≥ 0, e ∈ E . (9.10)

The interpretation of such link cost functions is that if the flow on link e is fe, then the
delay is τe(fe), and the cost represents the product of the delay times the flow, i.e., the
total delay. Furthermore, with this definition of the link cost function, the first assumption
[9.1] holds too.
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In our specific case, we choose a linear delay function. To understand this, let us
consider the conflict situation. A possible collision between two agents is solved by letting
one of them pass. In the case of more agents, we observe the formation of a queue. In
queueing theory, we know the delay of arrivals to a server is proportional to the number
of agents on the buffer. Hence, in the case of n skids, the delay is proportional to n.
Note, the time needed to move from one cell to its neighbor is always one time step. The
amount of time the agent has to wait before moving impacts the cost function ψe.

9.2.2 User Optimum Traffic Assignment
Let us assume each link e in E is equipped with delay functions τe(fe) returning the delay
experienced by any user traversing link e when the total flow through it is fe. Such delay
functions are assumed to be continuous and non-decreasing. Then:

Definition 11 The User Optimum Traffic Assignment Problem (UO-TAP) con-
sists in a network flow optimization problem with link cost functions

ψe(fe) =
Ú fe

0
τe(s)ds, fe ≥ 0, e ∈ E . (9.11)

Monotonicity and convexity of these link cost functions follow from the fact that the
delay functions are nonnegative-values and non-decreasing. The other two conditions for
SO-TAP are not needed in this case.

The idea of UO-TAP is to model flows resulting not from a centralized
optimization, but rather as the outcome of selfish behaviors of drivers.

We assume drivers choose their route so as to minimized the delay they experience along
it. This is formalized by the notion of Wardrop equilibrium.

Wardrop equilibrium

Given a couple origin-destination (o /= d) in V such that d is reachable from o, let Γo,d be
the set of all o − d paths, while the link-path incidence matrix is denoted as A(o,d). Let
us consider a nonnegative vector z in RΓo,d such that 1′z = χ, whose entries zp represent
the aggregate flow along the o − d path p and recall that, by the Flow Decomposition
Theorem 3,

f = A(o,d)z (9.12)

satisfies
f ≥ 0, Bf = BA(o,d)z = χ(δ(o) − δ(d)), (9.13)

3The Flow Decomposition Theorem states that every assignment of flows to both o − d paths
and cycles in the multigraph induces a unique network flow f on the links and that, conversely, for
every network flow f on the links, there exists a generally non-unique assignment of flows to both o−d
paths and cycles in the multigraph that induces f .
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i.e., it is a network flow from o to d of throughput χ.
Then, we can define the Wardrop equilibrium as follows.

Definition 12 For a given throughput χ > 0, a Wardrop equilibrium is a flow vector

f = A(o,d)z

where z in RΓo,d is such that z ≥ 0, 1′z = χ, and for every path p in Γo,d

zp > 0 =⇒
Ø
e∈E

A(o,d)
ep τe(f (0)

e ) ≤
Ø
e∈E

A(o,d)
eq τe(f (0)

e ) ∀q ∈ Γo,d (9.14)

So, it is a network flow vector that is associated with an o− d path distribution z such
that if some drivers choose p as their route from o to d, then the total delay associated
with this path cannot be worse than the total delay corresponding to any other o−d path.
A Wardrop equilibrium should be interpreted as the result of a rational, and
selfish behavior of drivers that want to minimize their own delay: none of
them would choose a suboptimal route if a better one is available.

The potential fall in efficiency from social to selfish equilibria is an example of price of
anarchy 4.

Definition 13 The Price of Anarchy (PoA) associated to a Wardrop equilibrium f (0)

is

PoA(0) =
q

e∈E f
(0)
e τe(f (0)

e )
min

f∈RE
+ ; Bf=χ(δ(o)−δ(d))

q
e∈E feτe(fe)

(9.15)

i.e., it is the ratio between the total cost at the Wardrop equilibrium and the minimum
possible total cost.

9.2.3 Price of Anarchy for Decentralized MAPF Algorithms
The concept of Price of Anarchy is particularly important if we want to compare de-
centralized with centralized methods in terms of their respective objective functions for
the total travel time (sum of individual time steps). Despite this, it is not immediate to
translate the concepts above to the MAPF framework.

Even though we easily define MAPF as an optimal transport problem, we should tackle
properly some difficulties concerning the optimal traffic assignment. In particular, we
should redefine the concept of Wardrop equilibrium. As said above, a Wardrop equilibrium
is a network flow vector that is associated with an o − d path distribution z such that if

4In general, the Price of Anarchy (PoA) is a concept in economics and game theory that measures
how the efficiency of a system degrades due to selfish behavior of its agents (https://en.wikipedia.
org/wiki/Price_of_anarchy).
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9.2 – Optimal Traffic Assignments in Transportation Networks

some drivers choose p as their route from o to d, then the total delay associated with this
path cannot be worse than the total delay corresponding to any other o− d path.

In MAPF, there is not one single origin and destination. The edge flow vector f (0) =
A(o,d)z can be adapted to our scenario of many start and goal positions. The Flow De-
composition Theorem states that flow assignments to paths (and cycles) induce a unique
link flow vector and, conversely, for every link flow vector there exist generally many flow
assignments to o − d paths (and cycles). Intuitively, this still holds in our setting. The
number of rows of matrix A is always equal to the number of edges, while the number
of columns corresponds to the number of paths connecting every couple origin-destination.

Once we adapted the definition of network flow f on the links, we have to check if
the conditions in the Wardrop equilibrium definition are satisfied. Again, intuitively, we
expect the conditions to hold if we extend matrix A. Formal proof may require more
attention.

Moreover, when defining a Wardrop equilibrium, we are implicitly making 3 assump-
tions:

• users are subject to the same costs;

• users have access to the delay functions;

• stationarity setting.

The third condition is the most problematic. The number of agents is finite, so traffic
delays are not fixed. Even with an elevated number of agents, practically it is difficult for
skids to move along the same paths as flows on traffic networks do: the number of mobile
robots changes during the day inside a warehouse, and also the task.
Sometimes, though, it is not so unrealistic as a situation. There may be warehouses where
mobile agents tend to navigate to specific areas, doing specific jobs, continuously. In this
case, stationarity is reasonable too. Let us assume:

• full knowledge of the grid’s congestion, with consequent knowledge of flow times and
delay functions;

• stationarity, so that delay functions do not change over time.

Once we deal with these observations, we can refer to MAPF as a UO-TAP.
On the other hand, without loss of generality, MAPF has connections also to the SO-

TAP when we assume the centralized optimizer knows the grid’s structure and the agents’
characteristics.
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At this point, the price of anarchy is equivalent to the ratio between the objective
function value obtained with a decentralized method and the objective function value for
a centralized algorithm.
We could use it to measure how the efficiency of a system reduces due to the selfish be-
havior of its agents. The higher the price of anarchy, the more inefficient the considered
decentralized method.
The efficiency is maximal when PoA = 1. To reach this value, either we modify the grid’s
structure, removing some nodes and edges, or we impose appropriate costs on specific
agents. Moreover, by looking at the objective functions’ definitions, we observe that UO-
TAP and SO-TAP coincide when the delay function is constant.

To conclude, by using the concept of the price of anarchy, it is possible to
quantify how much a decoupled algorithm’s solution is suboptimal, compared
to a centralized one.
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Chapter 10

Game Theory

We have seen in the previous chapter that MAPF can be interpreted as a network flow
problem. Such models, precisely network traffic flow models, are examples of congestion
games. Hence, we can study MAPF in the context of game theory. In particular, we will
consider the concepts of Best Response and Nash Equilibria to understand which are the
best actions to be applied by the agents to avoid conflicts and how to be pushed in less
congested areas while navigating.

First, we present the fundamental elements of classical game theory. Then, we link to
MAPF problems. We study the Nash equilibria in MAPF both statically to decide how to
best escape possible collisions and dynamically, inspired by the concept of Best Response
Dynamics, to push the agents in uncongested areas.

10.1 Game Theory: Overview
We consider games in strategic form 1. There is a finite set of players V and a set of
actions A. The assignment of an action to each player is described by a vector x ∈ AV

that is called an action configuration (or action profile). We denote by

X = AV

the configuration space. Each player i ∈ V is equipped with a utility function, or
reward, or payoff function

ui : χ → R
that associates with every action configuration x in X the utility ui(x) that player i gets
when each player j is playing action xj ∈ A. We indicate with

x−i = x|V\{i}

1The strategic form is the most used form, in game theory; it is generally more convenient for
mathematical analysis and is usable for both discrete and continuous strategy sets. In the literature,
games are typically presented in a more general setting, allowing for the possibility that players have
different actions sets Ai for i ∈ V(Lasaulce and Tembine [2011]).
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the vector obtained from the action profile x by removing its i-th entry. The utility can
then be rewritten in the form

ui(xi, x−i) = ui(x)

to stress that player i chooses to play action xi, and the rest of the players choose to play
x−i. We refer to the triple (V ,A, {ui}i∈V) as a (strategic form) game.

10.1.1 Best response & Nash equilibrium
Every player i is to be interpreted as a rational agent choosing its action xi from the
action set A so as to maximize its own utility ui(xi, x−i). This utility depends not only
on player i’s action, but also on the actions of the other players, x−i, so it is natural to
introduce the best response (BR) function:

Definition 14 The Best Response (BR) function for agent i when all the other agents’
actions are x−i is defined as

Bi(x−i) = argmaxxi∈Aui(xi, x−i). (10.1)

Assuming that player i knows what the rest of the players’ actions are and that these
are not changing, choosing an action in Bi(x−i) is its rational choice as it makes its utility
as large as possible. In other words, it is the best action to respond to other agents.

Definition 15 A (pure strategy) Nash equilibrium (NE) for the game (V ,A, {ui}i∈V)
is an action configuration x∗ ∈ χ such that

x∗
i ∈ Bi(x∗

−i), i ∈ V . (10.2)

The interpretation of a Nash equilibrium is the following. It is an action configuration
such that no player has any incentive to unilaterally deviate from its current action, as
its utility with the current action is the best possible given the current actions chosen by
the other players. In other words, a Nash equilibrium is an action configuration in which
each agent is playing its best response. We denote by N the set of NE of a game.

Example 2 (Prisoner’s dilemma)
"Two members of a criminal gang are arrested and imprisoned. Each prisoner is in soli-
tary confinement with no means of speaking to or exchanging messages with the other.
The prosecutors do not have enough evidence to sentence them on the principal charge,
but have evidence to convict them to −b years on prison on a lesser charge. Simultane-
ously, the prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity
either to confess the other by testifying that he committed the main crime (action −1), or
to remain silent (action +1). If one prisoner betrays the other and the other stays silent,
the betrayer is freed of both the minor and major charges (corresponding to a payoff d) and
the one who remain silent get sentenced to −c years in prison. If both prisoners betray
each other, they both get sentenced to −a years in prison each."
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The prisoner’s dilemma is a symmetric 2 × 2-game 2 with payoff matrix as in Figure
10.1 whose entries satisfy

c < a < b < d

(e.g., a = 15, b = −5, c = −30, d = 0).

Figure 10.1: Payoff matrix of a symmetrix two-player game with action set A = {−1,+1}.

By looking at Figure 10.1, we find the prisoner’s dilemma admits a unique (pure strat-
egy) Nash equilibrium (−1,−1), i.e., where the prisoners betray each other. Observe that,
on the other hand, if the prisoners could coordinate and remain silent (so that
the action profile is (+1,+1)) then they would both get a better payoff b > a than the one
they get at the Nash equilibrium (−1,−1).

22 × 2-games refer to two-player games with binary action space, i.e., |A| = 2. A two-player game
with two utility functions ui(r, s), for i = 1,2, with r the action played by player i and s the action
played by his opponent, is symmetric if u1(r, s) = u2(r, s) = φ(r, s), r, s ∈ A.
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Congestion games

Congestion games are an important family of games, with many applications, included
network traffic flow models [9]. In congestion games, the number of players is finite but
arbitrary. The actions chosen by the players are to be interpreted as (subsets of) shared
resources, and the utility associated with the action only depends on the total number of
players using the same resource(s). In most applications, by choosing a resource, every
player decreases the utility (equivalently, increases the cost) of all players choosing the
same action.

The following example adapts well to the case when resources are edges in a graph,
and the action is a path between two nodes.

Example 3 Consider a set of players V, a finite set of resources E (e.g., links in a
transportation network G = (V , E)) and congestion costs de : R+ → R+, where de(fe) is
the congestion cost associated with resource e when fe players use it. Every action a ∈ A
is a (non-empty) subset of E (e.g., a given o−d path in G). The link-path incidence matrix
[9.1] takes the name of resource-strategy incidence matrix A ∈ RE×A has entries Aea = 1
if resource e is used by action a and Aea = 0 otherwise. Given any configuration x ∈ X
and any resource a ∈ A, we define

na(x) = |{i ∈ V : xi = a}|

as the number of players choosing resource a in configuration x. The vector f = An(x)
has dimension equal to the number of resources E and entries fe =

q
a∈A Aeana(x) cor-

responding to the number of players using the different resources. Finally, the utility of
every player i ∈ I is

ui(xi, x−i) = −
Ø
e∈E

Aexide(fe) = −
Ø
e∈E

Aexide((An(x))e).

Network games

An important class of games is the one of the so-called network games. These are games
where the players are represented as nodes of a graph V = (V , E) and their utilities depend
only on their own and their out-neighbors actions 3.

Definition 16 A network game over a graph G (G-game) is any triple (V ,A, {ui}i∈V)
whose utilities functions satisfy the following property: for any player i ∈ V and configu-
rations x, y ∈ AV such that xj = yj foe every j ∈ Ni ∪ {i} it holds

ui(x) = ui(y)

Note that every game is a network game with respect to the complete graph.

3Given a graph G = (V, E , W), the out-neighborhood and the in-neighborhood of a node i ∈ V
are, respectively, the sets N +

i = {j ∈ V|(i, j) ∈ E}, N −
i = {j ∈ V|j ∈ V|(j, i) ∈ E}. Their nodes are

respectively referred to as out-neighbors and in-neighbors
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Pairwise graphical game

Let us consider an indirected graph G = (V , E ,W ) with no self-loops and assume that,
for every two neighboring nodes i, j, it is defined a two-player game. The corresponding
utilities of i and j are, respectively, denoted by φ(i,j) : A×A → R and φ(j,i) : A×A → R
and are called interaction utilities. According to the usual terminology used in two-
player games φ(i,j)(a, b) is the utility obtained by i when it plays action a and its opponent
j plays the action b. The utility, of every player i ∈ V is then simply set to the weighted
sum of the utilities of the various two-player games that i is playing with its neighbors:

ui(x) =
Ø

j

Wijφ
(i,j)(xi, xj)

The choice of having the graph undirected is solely for the sake of interpreting the inter-
action as a two-player game. The definition above adapts to any directed graph as long
as we have the interaction utility φ(i,j) defined on each edge (i, j) ∈ E .

In other words, a pairwise graphical game is a network game where every agent is
playing a two-player game with its neighbors.

10.1.2 Best response dynamics
The best response dynamics is an example of game-theoretic learning process. We focus
on the asynchronous best response dynamics, where players in a strategic form game get
randomly activated one at a time and switch to a best response action.

Best response dynamics

Definition 17 Consider a strategic-form game (V ,A, {ui}i∈V). The continuous-time
asynchronous best response dynamics is a Markov chain X(t) with state space
X = AV , where every player i ∈ V is equipped with an independent rate-1 Poisson clock.
When its clock ticks at time t, player i updates its action to some yi chosen from the action
set A with conditional probability distribution that is uniform over the best response set

Bi(X−i(t)) = argmaxxi∈A{ui(xi, X−i(t))}.

Hence, the continuous-time asynchronous best response dynamics is a continuous-time
Markov chain 4 X(t) with state space coinciding with the configuration space χ of the
game and transition rate matrix Λ as follows: Λxy = 0 for every two configurations x, y ∈ χ
that differ in more than one entry, and

Λxy =
I

|Bi(x−i)|−1 if yi ∈ Bi(x−i)
0 if yi /∈ Bi(x−i)

4A Markov chain is a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event (https://en.
wikipedia.org/wiki/Markov_chain).
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for every two configurations x, y ∈ X differing in entry i only, i.e., such that xi /= yi and
x−i = y−i.

Regarding the convergence of BR-dynamics, a theoretical results states that for every
distribution of the initial configuration X(0) on X , there exists a random time T ≥ 0,
finite with probability 1, such that X(t) ∈ N for every t ≥ T , where N ⊆ X is the set of
Nash equilibria.

10.2 Best Response for Decentralized MAPF Algo-
rithms

In the case of shared knowledge of the world or a portion, when an agent chooses the path
to follow, its choice depends on other agents’ actions. This is somehow connected to the
concept of best response introduced in [10.1.1].

More in detail, the best response could be used either for the action to avoid conflicts
or for the path choice in general.

• Best response action [10.2.1]. When possible collisions occur (especially for self-
ish agents), the involved agents act somehow to solve the conflict. To choose the
individual best action, given the others’, we need the concept of Nash equilibria.

• Best response path [10.2.2]. When the agents know the others’ characteristics, specif-
ically their position or their planned path, choosing the best path may depend on the
plans of the others. The higher the knowledge, the more informed is the algorithm
when selecting the best path. We must also consider that if we use this knowledge to
constrain an agent’s possible actions, we might threaten the solver, up to not finding
any solution.

10.2.1 Best response action
Here, we consider the use of the best response and Nash equilibria [10.1.1] to avoid con-
flicts between agents. In our situation, a Nash equilibrium corresponds to the action
configuration where each entry is the best choice an agent has to make to get closer to its
target while avoiding conflicts.

Before starting, we make the following observation. The possible actions are 5: move
up, move right, move down, move left, wait. Recalling the definition of Nash equilibria,
every skid tries to move toward its goal. When not possible, it is forced to wait and this
becomes the best response. By not moving, the agent is substantially a fixed obstacle and
doesn’t influence the other agent’s choice.
So when no move actions are possible or when there are no Nash equilibria where agents
move toward their goals, there are surely Nash equilibria in which one, many, or even all
the agents wait. This means our system doesn’t improve on that step, and we get stuck
on local minima [8.2.1]. We will remark this problem next.
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Now, we intend to apply Game Theory to understand the actions that neighbor agents
have to make to avoid imminent collisions. By "neighbors" we mean those agents inside
a local grid area. In the following analysis, the neighborhood is the 3 × 3 squared area
whose center is the agent of interest (Figure 10.2). Since this square is centered in the
agent’s position, it moves accordingly.

Figure 10.2: Time evolution of the agent’s position (blue circle) inside the grid. the
neighborhood area is a light blue 3 × 3 square. The planned path is shown in red color.

Following the approach described below, inductively, starting from some examples and
thanks to the definition of an appropriate utility function, we find that at least one Nash
equilibrium always exists.

For simplicity, we will consider an empty domain. The procedure easily extends to the
case of a generic grid. In this setting, an action could either move or wait and costs 1.
Considering the choice of the path as action might correspond to infinitely many possible
actions for every agent. To solve imminent conflicts, instead, the number of actions not
only is finite but restricted to the 5 above mentioned, summarized in Figure 10.3. This
favors the choice of a small competition area.
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Figure 10.3: Set of actions: up movement, right movement, down movement, left move-
ment, wait.

The considered utility function is the following:

u(xi, x−i) =
I
u(xi) if xi and x−i don

′t bring collisions with i

−∞ otherwise.
(10.3)

where u(xi) = - (cell movement cost + shortest path length from the new position). Since
the movement costs are all set to 1, changing path requires at least an additive cost of
2, except when the new position is still on a shortest path whose length is equal to the
previous one 5.

In the following, we consider some scenarios occurring with 2 agents. Then we analyze
an extension to 3 agents. Finally, we obtain generalized observations on this technique.

Case: 2 agents

Example 1. The first example is shown in Figure 10.4.
The table with agents’ utilities is shown in Figure 10.5. By applying the definitions of

best response and Nash equilibria, we conclude the Nash equilibria are the green-colored
configurations (3). These three equilibria correspond to the situations where each agent
navigates toward its goal without colliding with any other. Of course, if possible, players
play actions that bring them closer to the final position without colliding.

Example 2. In Figure 10.6 we have the second example.
Comparing A and B utilities (Figure 10.7), we find there are two Nash equilibria. One

corresponds to the unique configuration where each agent moves toward its goal; the other
corresponds to B moving along its path and A waiting.

Oppositely to Example 1, there may be equilibria where some agents wait.

Example 3. Here (Figure 10.8), although agents could proceed on a single direction to
reach their goals as fast as possible, but they would replan immediately or they would
collide, since the directions are orthogonal. Similarly to the second NE of Example 2, the

5The utility function defined above doesn’t coincide with a pairwise graphical game utility function.
The game we are considering is with two or more players, depending on how many agents are inside
the 3 × 3 grid, but we don’t consider pairwise games.
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Figure 10.4: Example 1. Path planned by the agents in the competition area.

Figure 10.5: Example 1. Utility values table. Each cell is divided into agent A utility
and agent B utility, depending on the chosen action. Green-colored cells refer to Nash
equilibria.

optimal strategy is to let one of the players proceed and, while the other waits (Figure
10.9). There are two Nash equilibria. If it is not possible to wait, intuition suggests that
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Figure 10.6: Example 2. Path planned by the agents in the competition area.

Figure 10.7: Example 2. Utility values table. Each cell is divided in agent A utility
and agent B utility, depending on the chosen action. Green-colored cells refer to Nash
equilibria.

one of the two agents departs from its shortest path, freeing the position for the other
skid.
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Figure 10.8: Example 3. Path planned by the agents in the competition area.

Figure 10.9: Example 3. Utility values table. Each cell is divided in agent A utility
and agent B utility, depending on the chosen action. Green-colored cells refer to Nash
equilibria.

Example 4. The two agents should move straight on the same direction, but with
opposite verse. Figure 10.10 represents the situation. As observed before, in case of
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Figure 10.10: Example 4. Path planned by the agents in the competition area.

impossibility to improve the current position, either the skid waits, or it chooses a longer
path. From the utility values table (Figure 10.11), unless they both wait, one agent
proceeds on the way, while the other frees the tile, and viceversa.

Example 5. Before moving to the case of 3 agents in the competition area, we analyze
a simple case with obstacles, to show the procedure is identical. We refer to Figure 10.12
for this. Once the utility values are computed (Figure 10.13), we find 3 Nash equilibria,
all with both agents getting closer to the their destination.

Case: 2 agents. Conclusion

Starting from these specific examples, we conclude there exists always at least one Nash
equilibrium. 4 scenarios of possible collision could happen:

• Scenario 1. Non-adjacent agents. To reach their goal they need to occupy tiles that
are shifted with respect to the agents’ actual position, both in terms of x-axis and
y-axis (Examples 1, 5). Easily, we verify the two agents can move toward their goals
without colliding. Nash equilibria correspond to those configurations where agents
follow their shortest path (or an alternative) and don’t collide.

• Scenario 2. Non-adjacent agents. One agent’s goal corresponds to those in scenario
1, while the remaining player just needs to move in a unique direction (Example
2). One possible Nash equilibrium is made by the agent constrained to the unique
direction to proceed along its path, while the other changes direction, either following
its shortest path or an alternative one (still shortest).

208



10.2 – Best Response for Decentralized MAPF Algorithms

Figure 10.11: Example 4. Utility values table. Each cell is divided in agent A utility
and agent B utility, depending on the chosen action. Green-colored cells refer to Nash
equilibria.

Figure 10.12: Example 5. Path planned by the agents in the competition area.

• Scenario 3. Non-adjacent agents. To reach their destination, they must navigate in
one direction. If the direction is the same, the Nash equilibrium corresponds to both
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Figure 10.13: Example 5. Utility values table. Each cell is divided in agent A’s utility
and agent B’s utility, depending on the chosen action. Green-colored cells refer to Nash
equilibria.

the agents moving in that direction. In the case of orthogonal directions (Example
3), one agent waits, and the other passes. This is reasonable. When one agent passes
near the other, the second one could move in some direction or wait; by waiting, a
single cost unit is added to its overall path cost; if it moves to another cell, then at
least two cost units are added.

• Scenario 4. Adjacent agents (Example 4). If directions are orthogonal, or equal with
opposite verse, the NE with all players follow their respective shortest paths exists.
If this is not the case, it is possible for one agent to shift to let the other pass.

In conclusion, there is always at least one Nash equilibrium, connected to the shortest
path from the current position to the corresponding goal.

Case: 3 agents

So far, our attention was for 2 agents. We want to understand if NE always exist even for
3 agents, and to characterize them.

Example 1. Consider the example in Figure 10.14.
To avoid a heavy use of complex figures of the utility functions, we directly present the

results.
In this case, there are 3 Nash equilibria:

• agents A and C wait and B moves along its minimal length path;

210



10.2 – Best Response for Decentralized MAPF Algorithms

Figure 10.14: Example 6. Path planned by the agents in the competition area.

• agents A and B wait and C moves;

• agents B and C wait and A moves.

This confirms what we noticed for the 2-agents case: when it is not possible to "improve"
the current position for all the skids contemporarily, the goal is to do so for as many agents
as possible, and the remaining agents wait. Instead, if there is no possible improvement
for any skid, some take longer paths.

Example 2. We make similar considerations for the example in Figure 10.15.
Here, all the agents move toward their target without colliding. When this is not possible,

A and B keep moving, while C waits, being already close to its goal.
So, in this example the NE are:

• A moves right, B moves up, C waits;

• A and B move right, C waits;

• A moves up, B and C move down.

Note that the configuration (A moves up, B moves down, C waits) is not a Nash equilib-
rium, since C could improve its utility by going down.
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Figure 10.15: Example 7. Path planned by the agents in the competition area.

Example 3. Consider Figure 10.16. In this case there are many NE. Nevertheless, they

Figure 10.16: Example 8. Path planned by the agents in the competition area.

all reflect our previous observations. There are cases where everyone improves, or someone
improves and others wait, or even cases where some agents choose longer paths.
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More in detail:

• A and B move up, C moves left;

• A moves up, B moves down, C moves left;

• A moves up, B and C move left;

• A and C move up, B waits;

• A moves up, B waits, C moves right;

• A and B move right, C moves down;

• A and C move down, B moves right;

• A moves left, B moves right, C moves down;

• A waits, B and C move right;

• A waits, B moves right, C moves up;

• A, B, and C wait,

Note the drawback of this approach: the set of NE contains the configuration in which
all agents wait. This solves conflicts for this time step but brings the same scenario to the
next step.

Case: 3 agents. Conclusion

As noticed, such as in the case of two agents, these are the possible situations: when it is
not possible to "improve" the current position for all the skids contemporarily, the goal is
to do so for as many agents as possible and the remaining agents wait. If there isn’t an
improvement possibility for any skid, some take longer paths.

General cases and extension

We can easily extend the previous results on the case of a generic number of agents (at
most 9, since the competition grid is the 3 × 3 square).

Let us consider the case of highly crowded areas. Suppose all the competition area’s
cells are occupied by skids or fixed obstacles, e.g., a narrow passage. As seen above, a
trivial Nash equilibrium has all the agents waiting. To solve this limiting situation, we
need some cooperation between robots, not this selfish approach. Only in this way we can
escape such bottlenecks.
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Conclusion

By introducing a competition area, we built a utility function with 5 possible players’
actions. Irrespective of the various scenarios, the presence of fixed obstacles, and the
number of agents, it is always possible to find the best actions to bring skids closer to
their goals, without colliding. This is done using the concept of Nash equilibrium.

Despite this, by considering this approach to bottlenecks, we confirm again that our
random-style collision avoidance technique is not perfect and should be improved.
The reason is that specifying one single procedure for every possible collision is restrictive,
there are many scenarios where the best action is different. No algorithm could tackle
all these possible scenarios. It would be excessive even from the implementation point of
view.
Applying Game theory and Nash equilibria for collision avoidance helps to
understand that locally solving conflicts is not the best choice to reduce the
sum of time steps. Indeed, not only the agents don’t choose the best action, but they
may choose actions that bring to possible collisions the next time step. In conclusion,
cooperation is the key to improving the performance of our algorithms (and
our experimental analysis showed this too).

In this section, we are analyzing Nash equilibria considering no communication between
agents. But it is exactly communication and cooperation that helps to improve results
from the system point of view, as we know both from game theory and network traffic
flow concepts.

10.2.2 Best response path
We have seen that congestion awareness helps to improve the performance of a basic
self-interested approach. In our code’s implementation, we exploit the idea of modeling
congestion with macro grids, to let agents know the others (in particular, others’ paths
and positions). By combining this idea with the optimized path computation, we built our
final optimized MAPF solver [8.1.1], whose solution is better than all previous methods
[8.2.1].

We could improve this optimized variant. Indeed, considering the possible congested
areas, each agent is substantially making its choice in response to the other agents’ actions.
This is very similar to the idea behind the game-theoretic learning process, specifically
the Best Response Dynamics [10.1.2].
In the best response dynamics agents make choices based on their neighborhood, while in
our final variant the skids choose a path depending on all the other agents. For this reason,
we may consider all the agents to be neighbors, by modeling the "interaction graph" as a
complete graph. This corresponds to saying that here the resource is the grid itself, and
since all agents share this domain, they have an (abstract) link connecting them.

In other words, even the optimized variant of the basic search is connected
to the idea of the best response dynamics, selecting at every step each agent’s best
response (i.e., an action/path), to respond to the others.
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Clearly, we must notice that, in a game theoretic setting, it is usually our intention to
comprehend the properties of best response dynamics convergence. When applying game-
theoretic learning processes to MAPF, it is difficult to talk about convergence, mainly for
two reasons:

• Agents reach their goals at different time steps. Once arrived to their destination,
every agent disappears. This is similar to say that the interaction graph of the agents
loses some nodes during the process. We may solve this by considering agent to stay
at target and applying the same wait action. In this way, the neighborhood (i.e., all
agents, the interaction graph is complete) doesn’t change.

• Even though agents stay at target, at some point every one reaches the corresponding
goal. We should consider this moment as the "convergence" of the algorithm, or
simply an "early stopping criterion"?

As for the discussion on Wardrop equilibrium [9.2.3], also for game theory we understand
it is not easy to model agents’ pathfinding as a learning process.

We still take inspiration from the notion of best response dynamics, trying to establish
a way to push agents toward their goal in the best possible way.

We thought about three possible methods to improve our algorithm with a game-
theoretic learning process.

• Starting from the final optimized search method, suppose at each step agents can
choose between the shortest path without any congestion information (but adding a
penalty every time a possible collision occurs) and the shortest path with congestion
awareness.

• Similarly to the best response dynamics, agents could define a path taking into
account the closest agents up to a certain distance, after which the grid is considered
empty. In other words, the agent considers neighbors’ actions to choose the best
response.

• The two previous ideas are put together: an agent can choose between the short-
est path without considering any information about congestion, and the shortest
path with congestion awareness, where congestion awareness is restricted to a local
window.

One of our future objectives is to implement and compare these algorithms (11). Before
seeing more in detail each of these possible methods, we remind the reader that in the
literature there are already some results on games theory applied to MAPF, but often
leaving some not answered questions. Only during the last years, it seems the researcher
community got full comprehension of the main aspects (Jordán et al. [2019]). Interestingly,
one possible idea to apply best response dynamics to MAPF is to extract one basic solution
and then apply, out of the MAPF framework, this theory.
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Game-theoretic learning process for MAPF: version 1

Starting from the final optimized search method, we give more freedom to the agent when
choosing its path.

Suppose agents can regularly choose between the shortest path without considering
any information on congestion (but adding a penalty every time a possible collision oc-
curs) and the shortest path with congestion awareness. If the agent follows the shortest
path, then it is not taking into account the macro grid weights since they bring too long
conflict-free paths. Instead, if the best path is the shortest path with congestion awareness
(weighted-shortest path), the unweighted shortest path would pass through a too highly
crowded region. Consequently, the agent would have to solve locally too many collisions,
bringing an elevated cost.

To compare the shortest and weighted-shortest paths, we consider their costs as follows.

• Shortest path with a local repair. We compute the shortest path on the unweighted
grid and add a penalty every time this computed path intersects another agent’s
one.

• Weighted-shortest path. As already noticed before, we simply compute the shortest
path with cell weights taken from the computed macro grid.

Note that in both cases we need to know the positions and paths of all the grid agents,
as in the original optimized version.

We could decide if replanning each time a collision occurs or at regular time intervals.

Concerning the final optimized variant, we expect better results for the following rea-
son. Sometimes it might be better to proceed through crowded areas and solve possible
conflicts than choose too long conflict-free paths.

Game-theoretic learning process for MAPF: version 2

We said the final optimized version of our MAPF solver has similar ideas to the best re-
sponse dynamics. Specifically, given a neighborhood, that in this case is the full grid, the
agent chooses the best path, once he knows those of all the other agents.
We try to give the agent more freedom. Differently from the original optimized version,
now the agent’s choice doesn’t depend on all the grid’s agents, but just on those in a
specific local window. Note that by reducing the window in which considering the paths
of neighbors, the agent has more freedom [8.3].

The idea is always similar to the one presented for the optimized version, but now we
are not considering a complete "interaction graph". In particular, agents could define a
path taking into account the closest agents up to a certain distance, after which the grid
is considered empty. In other words, the agent considers neighbors’ actions to choose the
best response.
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Let us justify the correctness of the windowed knowledge. From the application point
of view, it is not important to solve collisions that might happen far in the future. It
requires higher communication between mobile agents and more constrained movements,
two non-negligible problems. On the other hand, we mean to solve those conflicts close
to the agent from a space-time perspective. It finds justification also in ordinary life.

Despite the similarity with the optimized version [8.1.1] in choosing the shortest path
on a weighted grid, now we consider congestion differently. Instead of assigning weight
to nodes based on the paths passing through them, each cell (or macro cell) of the local
window has a cost proportional to the number of agents in its neighborhood. As for con-
gestion awareness, the cost to pass from one node to its neighbor is the maximal cell cost.
When building its path, an agent chooses the one with the smallest cost, i.e., the one that
is both shortest and that avoids as much as possible those skids in the neighborhood.

By windowing the world’s knowledge, we expect better results. Indeed, in the original
optimized version, macro cells have an associate cell cost equal to the number of paths
passing through them, irrespective of when this passage will happen. A generic skid tries
to avoid potentially crowded areas thanks to the information summarized in the macro
grid but while the agent’s motion is time-dependent, this information is time-independent.
Consequently, an agent might avoid some areas now, even though they will be crowded
in the future. By modifying the definition of the macro grid and considering it locally,
we solve this problem. One further aspect to take care of is if and when to replan. It is
necessary to replan the path the world’s knowledge is restricted to a local window. Once
this window is passed, some further knowledge is needed. Otherwise, the process would go
on as in the basic search. So after a specific number of steps, e.g., the time steps needed
to leave the window, or a portion, the agent must replan with the same technique.

The main drawback with this version is to compute these local weights many times
during the search.

Interestingly, the idea of windowing the shared knowledge of the agents is similar to
that introduced by Silver when developing Cooperative Pathfinding algorithms [4.2]. For
this reason, it would be interesting to apply the ideas of best response dynamics even for
WHCA*. More in general, sharing knowledge with a portion of the system is the idea
behind Hybrid Pathfinding (also known as Agent-Centered Search) [1.1.4].

Game-theoretic learning process for MAPF: version 3

The two previous ideas don’t exclude each other. They can be combined to hopefully
outperform them singularly.

An agent may choose between the shortest path without considering any informa-
tion about congestion and the shortest path with congestion awareness, where congestion
awareness is restricted to a local window and interpreted as in the second version above
(each cell (or macro cell) of the local window has a cost proportional to the number of
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agents in its neighborhood).

As in the first version, there would be two possible path choices.

• Shortest path with a local repair. We compute the shortest path on the unweighted
grid and we add a penalty every time this computed path intersects another agent’s
one.

• Weighted-shortest path (with local window). We choose the weighted shortest path
where nodes are weighted in the local window and have unitary costs outside.

Again, after a specific number of steps, the agent must replan, with the same technique.

We expect the same advantages as previous versions. Conflicts, and consequently the
number of A* search calls, are highly reduced in the local window. At the same time,
we don’t have to mistakenly take into account too far agents’ movements. Every agent
has more freedom when choosing the best action but still uses cooperation to improve its
performance. Finally, the drawback of version 2 repeats.
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Chapter 11

Conclusion and Future Work

Multi-Agent Pathfinding (MAPF) started being studied during the last decades of the
20th century with practical solutions after 2000. Today’s developed algorithms are mainly
based on those ideas of cooperation presented during the first years of the 21st century.

Thanks to technological progress, MAPF started being applied widely over the last
decade. One of the most interesting applications regards warehouse automation in Indus-
try 4.0.

Research is still proceeding on the enhancement of these ideas. It seems to flourish
the connection between path planning and AI data-driven models such as Machine Learn-
ing, Deep Learning, or Reinforcement Learning. Moreover, new variants of the problem
need proper attention, such as Online Multi-Agent Pathfinding or Task Assignment and
Pathfinding (TAPF).

In this work, we focused on decentralized grid-based solvers. Precisely, we divided the
document into three parts:

• Introduction;

• Developed Algorithms;

• Links to Congestion Games and Network Traffic Flow.

The objective of the introduction is to let the reader get comfortable with the concepts
of Multi-Agent Pathfinding, starting from a historical introduction, with an overview of
the main ideas and algorithms, then going deeper into the formalization of our specific
MAPF problem.
Our work is integrated with Python codes for system simulation and performance anal-
ysis. Data from simulations are visualized and analyzed with MATLAB, R software, and
PowerPoint. To simulate multi-agent systems we used both custom and benchmark grids.
For benchmark grids and scenarios, we referred to three real/synthetic domains from the
community website.
To conclude this part, we made a complete review of the single-agent search methods on
graphs, as they are the basis for planning in multi-agent systems.
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The second part relates to the development, implementation, and comparison of decen-
tralized algorithms. They have the same basic idea of selfish agents planning individually
their path without taking care of anyone else until a possible collision occurs.
Different versions focus on different aspects of multi-agent systems, taking inspiration
from the approaches available in the literature or exploiting new ideas: computational
optimization, intelligent movements, and congestion awareness.

During the experimental phase, we compare our developed versions in terms of the
number of avoided conflicts and search method function calls, the sum of time steps, max-
imal path length, and time consumption. These variables are highly correlated with each
other and guarantee the full comprehension of the algorithm behaviors while augmenting
the number of agents in the system.

Those methods with the best results are combined into a final optimized version that
outperforms all previous algorithms.

We made interesting observations about the use of randomness in our algorithm.
Specifically, oppositely to constraining the domain and/or the agents’ motion, the random-
style collision avoidance technique corresponds to assigning agents a higher level of freedom
when moving into the system. The advantage is that the agents find a suboptimal path in
the majority of the cases. On the other hand, its drawback is that when possible collisions
occur, guaranteeing one agent to pass doesn’t imply it gets closer to its goal. This could
bring inefficient behaviors.

One of the possible future works is to modify the chosen approach to deal with collisions
more efficiently while still maintaining selfish behavior.

Furthermore, experimental analysis was useful to observe that cooperation between
agents improves the final performance by replacing the selfish behavior with some form
of global or local cooperation. We compared our final optimized version with some of the
best-known literature algorithms. Even though the major drawback of such cooperative
methods is the lack of completeness, in general, they bring better results, dramatically
reducing the number of replanning phases and search method calls and avoiding unintel-
ligent behaviors.

In the third part, our goal is to establish connections between MAPF and the concepts
of Network Traffic Flow and Game Theory. Only in the last years has some advanced
comprehension been obtained in the literature. We intend to use these concepts in the near
future, to understand, describe, and implement smart solutions to the MAPF problem.

Concerning Network Traffic Flow, it would be our future intention to formally adopt
the definition of Wardrop equilibrium to MAPF, to use the linked idea of Price of Anarchy
to quantify the performance of decentralized algorithms over centralized ones.

From the Game Theory point of view, we first translated our problem into a congestion
game. Then, we used the static idea of Nash equilibria to prove the inefficiency of a selfish
approach, due to the elevated number of different occurring scenarios for choosing the
best conflict avoidance. Dynamically, we introduced the connection between MAPF and
the Best Response Dynamics. As for the Wardrop equilibrium, we aim at formalizing this.
Inspired by the concepts behind best response dynamics, we finally present three possible
improvements to our final optimized solver. We intend to implement and compare them.
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