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Chapter 1

Introduction

The purpose of this thesis is to investigate different methods of dynamic fluid
modeling for an electro hydrostatic actuator’s servo valve. The modeling
methods will be based on four variables taken as representative of the servo
valve conditions. Four models of the servo-valve will be used in this thesis.
The first, based on a Simulink Model, was more complex and reliable and
was used as a reference. The others are based on three different methods to
replace runtime computation with simpler and faster methods. The analyzed
techniques are: Lookup Table, Genetic Algorithm, Neural Network. Each
method uses the same parameters to detect the presence of a fault. The
physical quantities that were used to identify the degradation of the servo
valve are the overlap and the radial clearance. These quantities were used
to direct addressing the lookup table, to develop the prognostic algorithm
and to train the neural network. The more exact first model was used as a
reference.

The lookup table is based on a data structure that allows the result
to be discovered more quickly than by calculating or searching for it, by
matching one or more criteria. The genetic algorithm minimizes an objective
function that is calculated from these quantities and makes the response
of the simplified model match that of the first. An optimization problem’s
population of potential solutions is created through iterations leading to
improved answers.

Neural Networks are a subfield of machine learning methods. They are
inspired by the structure and biological network that composes animal brains,
and are made up of node layers, each of which has an input layer, one or
more hidden layers, and an output layer. Each node, or artificial neuron, is
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Introduction

linked to another and has its own weight and threshold. If the output of any
particular node exceeds the given threshold value, that node is activated and
begins transferring data to the network’s next tier. Otherwise, no data is
sent to the next network layer.

The purpose of this study will be twofold: having the model of a complete
actuator, obtaining a simplified model of the servo valve that obtains the
outlet pressure in relation to the above parameters, will allow to replace the
simplified model within the complete model of the actuator. This will be
useful in project phase, as it will be possible to test the actuator operation
with servo valve degradation more easily. This functioning mode will be
analyzed with all three methods, as being a function approximation, it can
be performed by all of them.

The second aim of the study is to identify the degradation of the servo valve
based on the flow and pressure values. This is done in order to implement a
strategy aimed at identifying possible degradations that may lead to a system
failure. This is known as Prognostic & Health Management (PHM). This
discipline is important because of the increasing complexity and importance
of aircrafts.

Companies can be more competitive by using components for their entire
useful lives, up to the point that the component ceases to function. This
allows maintenance scheduling to be optimized while not compromising the
reliability and integrity of components. This problem is better performed by
the neural network, as it is a pattern recognition problem, therefore it will
not be analyzed with the other modeling methods.

The research will be conducted based on the servo valve flapper nozzle
type, located upstream of a hydraulic actuator, as this component is more
technologically sophisticated and hence more prone to fail, compromising
the overall efficiency of the servo control.
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Chapter 2

Servo Mechanism for
Flight Control

The purpose of movable command surfaces is to allow the pilot to control
and maneuver the aircraft from the cockpit. They can be used to alter the
external shape of the wing surfaces in order to modify aerodynamic resultant
forces and moments on the airplane. Flight commands can be divided into
two categories: primary and secondary.

Figure 2.1: Primary and secondary flight controls

Examples of primary commands are ailerons, rudder and elevators. They
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are continuously actuated during flight and must possess some basic char-
acteristics. They must be instinctive, meaning that the direction of the
command and the aircraft movement has to be consistent. Moreover, they
must be proportional and reversible so that a control bars movement match
to an accurate mobile surface deflection. They also has to be sensitive in
order for the pilot to feel the resistance and stress on the mobile surfaces, in
relation to their deflection and to the aircraft’s velocity.

Secondary commands include leading edge extensions (slats), trailing edge
extensions (flaps), tail plan and air brakes (spoilers). Their positioning is
discrete and is usually modified by the pilot only during specific flight phases
like the rolling phase, take-off, or landing. They must also be irreversible
and have lower performance in terms of magnitude and actuation precision,
due to their limited use.

Flight control actuation system is used to allow pilot to deflect mobile
surfaces. It is used in large commercial aircrafts and is executed with hy-
draulic actuators due to their reliability, security, and robustness. Computer
controls them by translating the pilot’s analogical signal into a digital one.
These actuators are not without disadvantages. They are heavy and complex,
making it difficult to locate and repair a fault in the system.

It is becoming more difficult to reduce the weight of modern components
because of the need to meet safety requirements. One solution is to use servo
electro-hydrostatic actuators (EHA). These mechanisms allow for a greater
compaction of components by using a hydraulic circuit that has smaller
dimensions in comparison to a centralized one. A fixed displacement pump,
an electric motor, and a servo-valve actuate the hydraulic actuator to convert
electric energy into hydraulic energy. The lack of a hydraulic supply allows
for space and weight savings. Another solution is to use electro-mechanical
actuators (EMA), which are more reliable and stronger than the hydraulic
ones. We will examine the main characteristics of EHA, EMA, and traditional
hydro-mechanical actuators in the next paragraphs.

2.1 Hydro-Mechanical Actuators
The most common type of actuation system in the past was hydro-mechanical
actuators. They consist of the control element, a valve and the actuator. A
cinematic chain transmits the pilot’s input to the valve, which operates by
means of a three-centres lever. One of the levers is attached to the valve’s
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spool and allows it to move. The second lever connects to the control surface
to provide mechanical feedback. Once commanded, the valve supply one
chamber of the actuator and discharge the other. With this scheme, the
valve is commanded with the geometrical difference between its commanded
position and the surface position, in order to attain a stable displacement.

Figure 2.2: Scheme of a hydro-mechanical actuator

2.2 Electro-Mechanical Actuators
This machine converts electric power into mechanical power by using an
electrical motor, a gear box, which reduces the RPMs and increases available
torques, and a cinematic chain which converts rotatory motion into linear
motion. This is usually done by using a ball screw to reduce friction. All-
electric systems such as this are likely to be adopted by any aircraft in the
near future. EMAs are used only as secondary commands due to a major
downside: if a single grip occurs in the ball screw, this eventually prevents
all the system from moving. This is frequently the result of a single grip in
the ball screw.

2.3 Electro-Hydrostatic Actuators
This is the actuator that is considered in this thesis. This actuator uses a
brushless motor to drive the pump. The pump is placed near the actuator.
There are two types of pumps: one is a fixed displacement pump where the
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Figure 2.3: Scheme of a electro-mechanical actuator

speed of motor can be controlled, and the other is a variable displacement
pump where regulation depends on the pump’s plate. The actuator is close
to the pump, which allows for weight savings and avoids heavy hydraulic
lines. The actuator also has the advantage of transmitting pilot commands
via fly-by wire lines. This avoids friction losses and linkage flexibility that
are characteristic of reversible control cables. The feedback signal is received
through either a LVDT (Linear Variable Differential Transformer) or RVDT
(Rotary Variable Differential Transformer), which provide information about
the instantaneous position to the ACE (Actuator Controller Electronics).
The position error is then given to the PDE (Power Electronics), which
regulates the motor’s angular velocity.

Figure 2.4: Scheme of a electro-hydrostatic actuator
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This actuator is the subject of this thesis. It is driven by a brushless motor
and has its pump located close to it. Pumps can be classified as fixed displace-
ment pumps or variable displacement pumps. Fixed displacement pumps
regulate speed by controlling the motor speed, while variable displacement
pumps regulate speed based on the plate size. It is possible to reduce weight
by placing the pump close to the actuator, hence avoiding heavy hydraulic
lines. It also avoids friction losses and flexible links associated with reversible
control lines because the pilot command is transmitted via fly-by-wire lines.
A LVDT or a RVDT provides feedback about the instantaneous position of
the jack to the ACE. By this method, the Power Drive Electronics (PDE)
that controls the motor’s angular velocity is provided with the position error.
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Chapter 3

Servo-Valve for position
command

A servo-valve’s function is to control the flow rate of fluid entering the
actuator This is done to allow the control of the actuator’s position and to
any forces caused by the aerodynamic hinge moment to be equilibrated.

Since the second half of the 20th century, servo-valves have been extensively
used in aviation, both for primary and secondary control.

The servo-valve is activated by an electric input signal from the control
unit, which in this thesis is implemented as a PID controller, and transferred
to its torque motor. The system uses the difference between the commanded
and instantaneous positions of the jack, which is determined by a closed-loop
structure, to cancel out the position error and return to the commanded
position.

The next paragraph will describe the flapper-nozzle valve used in this
thesis.

3.1 Flapper-Nozzle Valve
A flapper-nozzle valve is divided into two stages. The first stage is made of
an electric torque motor, two flappers, and two nozzles. The second stage
comprehends the sleeves, where the spool can be moved to open or close the
four passageways. The valve can be controlled by the spool. Its movement is
dependent on the differential pressure created by the nozzles.

According to the design of its sleeve it opens and closes two passageways:
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one to supply a chamber for the jack, and one to discharge the other. The
feedback-spring represents the feedback between these two stages.

Figure 3.1: Flapper-Nozzle Valve

The stator in the torque-motor is composed of an upper and lower yoke,
with a permanent magnet fixed on each of them. The rotor is composed
of an armour with two coils, where the middle position matches with null
current. Between the four airgaps, the magnetomotive force generated by
the coils and permanent magnets is shared between the coils and the coils.

The flapper’s upper portion is fixed in the middle of the armour, and its
lower part is placed between two equally spaced nozzles. This means that
any rotation of the rotating rotor will result in a rotation by the flapper that
blocks one of the respective nozzles. This rotation is distinguished by the
hinge spring as well as the bending feedback spring. The armature-flapper
assembly, however, is supported by a flexible tube that prevents hydraulic
fluid filters from the torque motor.

The flapper can be moved to the right or left, causing partial occlusion
of the one nozzle. This will cause the fluid coming from one nozzle to be
throttled and the other one to be unconstrained. A partial occlusion will
result in an increase in the pressure reported in the chamber. The spool
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will move in one direction due to differential pressure between the surfaces.
Two passageways will be open to allow the spool to move relative to the null
position. One will supply a chamber for the actuator, the other will connect
to the tank. The hydrostatic force of differential pressure on the spool is not
the only force that acts on it. It is also subject to feedback spring as shown
in Figure 3.1.

The feedback spring acts as a force to cancel out the position error between
the flapper (spool) and the flapper. This is an important contribution to
stability: if the valve is commanded with a step signal input (e.g., a step
signal), the flapper will block one of the nozzles, causing differential pressure
on the chamber. Once the jack has reached the new command position, the
error tends towards zero.

The feedback spring applies a force to report that the spool is in the null
position. This is the unique position that has null error. The feedback spring
would not act on the spool and the jack would oscillate in the equilibrium
position: this would cause a limit cycle.

Fluid contamination is a problem. Small metal parts could cause problems
with the valve’s functioning. These metal parts can get to the nozzles, and
can cause damage due to supersonic velocities. They can also reach the
ball at either end of the feedback spring or the spool, which can reduce the
precision of your valve.

A filter is installed after the return and supply passageways. This valve
is the most popular in commerce due to its high reliability and dynamic
performance in terms reaction velocity.

3.2 Technical characteristics of valves and
non-linearities

As mentioned before, valves and servovalves are used to control the fluid in
the chambers of an actuator. The control is achieved by the position of the
spool which closes or opens the passageways. The actuator’s flow rate and
pressure depend on the external conditions (load, pressures of supply/return).
A useful way to explain all this is through the characteristic curves of a valve.

Figure 5.3 shows the characteristic curves of pressure P12 − XS. Given a
fixed flow rate QJ (in our first example equal to −6 m3/s, −3 m3/s, 0 m3/s,
3 m3/s, 6 m3/s), the correspondence of input XS with output P12 can be
explained.
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(a) (b)

Figure 3.2: Valve characteristic curves

The control pressure is also a function of the valve’s geometric charac-
teristics, supply pressures and return pressures. It is striking to see that
the pressure P12 can be almost equal to the supply tension for large spool
displacements XS. However, it can take pressures greater than the supply
pressure for smaller values of XS. This is typical for rapid closing of the
spool where fluid velocity is maintained while the passageway is shut off,
leading to water hammer.

Figure 5.3.a shows the characteristic curves flowrate QJ − XS. Given a
fixed pressure P12 (equal to 0.6 MPa, 5.6 MPa, 10.6 MPa, 15.6 MPa, 20.6
MPa) correspondence of the input XS to the output QJ can be seen. Two
different horizontal segments are visible in this example: the first shows the
flow rate at P1=0.6 MPa and the second, XS=20.6 MPa. These correspond
to situations where the pressure P1 equals the return pressure in either
the first or second case. This results in a null flow rate since there is no
differential pressure. Some simplifications can be useful: because this study
is focused upon the proximity of the null pool position, it’s possible to apply
superposition effect to XS, taking into account two different contributions to
the pressure and flowrate. These simplifications were made in consideration
of the flow rate gain GQ and the pressure increase GP . The slope of QJ-XS
at pressures P12 is the flow rate gain, and the slope P12-XS is the pressure
gain at flow rates QJ .

Although this can provide a powerful way to analyze the performance of
a valve during its initial phase, it may also be necessary to examine other
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Figure 3.3: Flow rate and pressure gains

aspects of the valve. The main features of the valve are explained in the
following paragraphs.

3.2.1 Lapp condition
A valve can make three different types of constructive choices depending
on the lapp condition. Zero-lapped is a spool with the same dimensions
as the passageway. In this case, there is only one position that closes the
passageway completely. A displacement results in an immediate response
from the valve in terms pressure and flow rate.

The purpose is to avoid non-linearities within the null location neighbour-
hood. In this manner, the pressure and flow rate gains are nearly constant
in this area. An overlapped valve refers to a condition in which the spool is
wider than the passageway. This is used to compensate for static leakage
caused by clearance and creates a dead area where an axial displacement
does not cause any flow rate. Instead, an underlapped valve is one where
the spool is smaller than the passageway. This means that even at null, the
passageway may not be completely closed.

The purpose of this is to prevent water hammer from rapid closing the
valve. The valve will respond to pressure and flow rate even when the position
is null. Below is a diagram showing the responses to inputs of each of the
three conditions.
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Figure 3.4: Lapp conditions and their responses

Figure 3.5: Lapp condition scheme

3.2.2 Threshold

Threshold can be defined as the minimum input current the valve needs
to change the fluid flow rate during directional inversion. It can also be
described as the minimal variation in current that causes a change in valve
response. It is the threshold of how sensitive a valve to changes in input
current.

13
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Figure 3.6: Threshold

3.2.3 Magnetic Hysteresis
Magnetic hysteresis, which is an important source for non-linearities, is
defined as the ability of a system react to both instantaneous input values
and to the time history of states. This is a characteristic of magnetic
materials, and obviously all of their applications (transformers and electric
motors, etc.). The graph below shows the typical response to a system with
hypersteresis.

Initial magnetization of the system follows the first curve. However, when
the current is increased, the magnetization does not increase in proportionally.

The magnetization B will attain saturation when the current I exceeds a
certain level. This is because the Weiss domains in the material slowly align
themselves to the magnetic field. As a result, there will be an increase in
magnetization, until all are oriented in the same way and then the saturation.

If the current is reduced to zero, it is possible to see that the curve is not
the same as the first. In particular, B won’t be equal to 0, but will assume
a positive value. During this phase, some domains of the Weiss will retain
their previous orientation and thus, the residual magnetization of material
will occur.

A current of the opposite sign is required to demagnetize the materials. If
the current is applied for longer periods, the material will become magnetized
in the opposite direction and reach a saturation value that is different from
the first. The curve will close by decreasing the current to zero and increasing
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Figure 3.7: Magnetic hysteresis

it in opposite direction. This is shown in Figure 3.7.
The diagram of Hysteresis can look quite different depending on the

material being analysed. Hard ferromagnetic substances usually have a
higher residual magneticization than the soft and have therefore different
applications.

All ferromagnetic materials may lose their magnetization through natural
demagnetization (ductile iron case), or heat (recovery case of permanent
magnets). The magnetic hysteresis is what affects the torque motor at the
first stage. This happens even though the current is not applied anymore.

The thesis examines magnetic hysteresis in the system. It affects the
torque motor at the first stage. Even though the current is stopped, the
magnetic field continues its attraction to the armature.

3.2.4 Friction
Because friction is an important aspect of system analysis, it has a significant
impact on the entire system. It is a strong nonlinear phenomenon that limits
position accuracy in the aeronautical sector.
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Friction is the force between two surfaces, which opposes their relative
motion. Static friction will only be present if the surfaces have a low relative
velocity. In all other cases dynamic friction will be present.

There are three types of friction. Sliding friction is when two surfaces
slip. Rolling friction is when a body rolls on a surface. Viscous friction is
when a body, or a fluid layer, has a relative velocity to the layer below. The
static and dynamic friction coefficients can be compared using the following
expressions.

Fs = µs ∗ N

Fd = µd ∗ N

Depending on the contact materials and n the normal ground-body reac-
tion, µ1 and µ2 are the respective dimensionless static and dynamic friction
coefficients. The following behaviour will be observed if a body comes in
contact with a non-lubricated surface.

Figure 3.8: Behaviour of the friction force

Figure 3.8 shows that when a force less than friction applies to the body,
it will remain in quiet. However, once the static friction reaches its maximum
value, the body will start moving, and the friction will decrease to a nearly
constant value equal to the dynamic friction.

To have a good friction model in this instance, you must distinguish four
situations: Body that is still in quiet, body that moves, body that is in
motion and body that stops moving.

16
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The Coulomb model is one of the first friction models. It ignores local
dynamic phenomena and provides a good global representation. It can be
described using the following equations:

FF =


Fatt if υ = 0 ∧ |Fatt| ≤ FSJ
FSJ ∗ sign(Fatt) if υ = 0 ∧ |Fatt| > FSJ
FDJ ∗ sign(υ) if υ /= 0

This mathematical description shows every situation that has been identi-
fied before.

Figure 3.9: Coulomb friction model

Conventionally, the friction force (FF ) is positive when it opposes a
positive velocity. This model is not suitable to numerical simulations because
of the discontinuity v = 0.

When the accelerations in these two cases are merged, two different velocity
values of opposite sign are produced. The model cannot recognize when the
speed reaches zero, and therefore, it cannot verify that the body has been
arrested. This is important because, in quiet conditions, the active force
generated by the body can be less than static friction.

These limits lead to the development and refinement of friction models.
The Karnopp model corrects for the discontinuity in friction force due to
null velocity by introducing a deadband at the origin. This dead band allows
you to discern the cinematic differences between dynamic and static friction.

In particular, static friction can equilibrate external forces, keeping the
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null value for acceleration, and thus avoiding the beginning. Below is the
mathematical formula for the model:

FF =


min(max(−FSJ, F ), FSJ) if |υ| ≤ ε

υ = 0 if |υ| ≤ ε

FDJ ∗ sign(υ) if |υ| > ε

F is the driving force, e is the velocity at which the velocity is equal to 0.
It is important to select the right value for e. If it is too high, simulation
results will not be comparable to real data. On the other hand, if e is too
low, the model cannot distinguish between static and dynamic states.

A value of e that is too high can cause calculations to be stuck in a cycle.
Conversely, a value that is too low can lead to numerical instability. a graphic
representation of Karnopp’s friction model is shown in Figure 3.10.

Figure 3.10: Karnopp model

The Simulink model can be derived from the equations that were previously
discussed:

Professor of Politecnico di Torino Borello has developed a new model of
friction. It surpasses the limitations of the Karnopp model. It can correctly
distinguish the static from the adherent condition, and it can also discriminate
the four cinematic scenarios described at the start of this paragraph. The
mathematical and graphic representations of this model are described below:

18
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Figure 3.11: Simulink of Karnopp model

FF =


Fatt if υ = 0 ∧ |Fatt| ≤ FSJ
FSJ ∗ sign(Fatt) if υ = 0 ∧ |Fatt| > FSJ
FDJ ∗ sign(υ) if υ /= 0

This model does not require a dead band. In fact, if there is a change
in velocity in an integration interval, the algorithm will reset the velocity,
arresting it. If an external force is present but the body wouldn’t arrest, at
the next integration step, a decompensation between the forces is created,
allowing the system to move again. These features make the model perform
better than the literature.

Simulink is easy to develop, and you can obtain the next scheme.

3.2.5 Backlash
Backlash refers to the distance between two mechanical components that
allows them to move relative. It is the distance or angle that a mechanical
component can move at a given speed without transmitting any force or
couple to another component.

A time delay in the system can occur due to inversion of the input. This
is one of the key factors that affects the system’s performance. Because every
manufacturing process results in tolerances in dimensions, it is an inevitable
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Figure 3.12: Borello friction model

Figure 3.13: Simulink of Borello friction model

consequence. It is often present to allow coupling of multiple components or
to compensate for the thermal expansion.

20



Servo-Valve for position command

Backlash can also increase over the lifetime of a component due to continu-
ous contact with other parts. This can lead to further degradation of system
performance and a decrease in precision when positioning components.

3.2.6 Offset valve
An offset is usually a measurement of error relative to a reference value. The
servovalve can cause damage to the electric motor even if it is not in use.

Even though the motor is not being deenergized, it can still receive minimal
input current. This current can partially energize a torque motor, and it can
open partially passageways of servovalve. It can also actuate the jack even
though no input is available.
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Chapter 4

Simulink Model

To get an estimate of the performance of each component, aeronautical
projects were traditionally developed independently. Each component’s
interactions were tested on the ground and then flown. This ensured that
any errors in the project phase would be costly in both time and money.

Aeronautical sectors, like the automotive, require instruments to demon-
strate new solutions and improve the applications of existing components.
This is why modern computers that are powerful and reliable can be a
significant support to the design by simulating the system’s interest behavior.
The new design approach is to solve all problems before flying testing. This
can be done through numerical simulations. This allows for the development
of more precise models that can predict system dynamics and interactions.
Models are also very useful in diagnostic and prognostic areas.

For example, it is possible to predict the useful life of a component by
using a model-based approach. This allows you to compare the time response
from sensors with that from models. A fault signal is sent to pilots when
the differences exceed a security threshold. Once landed, the same fault
signal can also be sent to maintenance. This will allow them to identify the
location and entity of faults and eventually replace the damaged component.
This allows components to be used for their full useful life without having to
replace the entire mechanical assembly. It also saves time and money.

A number of steps are required to create a satisfying model. This is the
first phase. It identifies all aspects, unique characteristics, and components
of the system. It could be beneficial to simplify or approximate certain
parts of the model due to their complexity. However, this will not affect its
validity. It is important to find the right balance between usefulness and
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complexity. Formulation of equations. After the mathematical model is
developed, it’s necessary to apply all laws and introduce the material and
geometrical properties of the system. The result will be an independent set
of differential equations that describes the system in all its major aspects
(dynamic, chemical, thermal, and so forth). The equations must be solved.

It is important to choose carefully two aspects: The first is the order in
which the resolution numerical method is used (ODE). A higher order may
result in more precise simulation results, but it requires greater computa-
tional effort. The second is the integration time. This interval must not
exceed the smallest time constant of a system, otherwise it could lead to
numerical instability. A model must be validated by comparing its results
with experimental data. If there is any inconsistency, the model must be
revised.

Models can be used to save time and money but cannot replace experi-
mental tests. Two models of the same EHA can be found in this thesis. The
first model, High-Fidelity, was developed by Ing. It is a very accurate model
and is used to reference the Low-Fidelity model. Although it does use some
approximations it is faster and requires less calculation effort. This is why it
is used in optimization algorithms (explained later). The MATLAB-Simulink
2016b version was used to develop the models.

4.1 High-Fidelity Model
This paragraph will describe the entire High-Fidelity System and its opera-
tion.

Figure 4.1: Model representation in Simulink of the High-Fidelity model

The system can be represented as a closed loop, with the variable XJ
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representing the instantaneous position and the sine wave being feedbacked
to calculate the error signal entered by the PID controller.

The command block is the first block. It is possible to provide different
time domain reference signals to the system.

Five inputs are available: three standard signals (step and ramp), and two
custom signals (chirp, a sinewave with variable frequency and Com signal
consisting of different subsequent steps signals with variable amplitude).

Figure 4.2: Input block sub-system

A PID controller is responsible for determining the error between the
instantaneous jack position and the selected command. Its purpose is to
stabilize the system’s dynamic response. The PID controller consists of three
contributions: integrational gain, proportional gain and derivative gain.

The proportional gain is treated as a non-null value in this instance.
Therefore, the PID controller can only be used as a proportional controller
due to the system’s already granted stability. The error signal then feeds the
hysteresis bloc of the torque motor. This block allows for both an offset on
current input and disturbances due to external factors. The actual current
supplied to the valve is represented by the output of the hysteresis bloc.
The flapper-nozzles dynamic system is represented as a third-order system.
It is made up of two sub-blocks, a second-order dynamic system for stage
one and a first-order dynamic system for stage 2. The second stage also
receives the flow rate QJ to calculate the flapper force. The output XS
represents the spool position. However, it is also used to determine the
differential pressure P12. To calculate the force that supplies the actuator,
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Figure 4.3: PID controller’s scheme

the differential pressure is multiplied with the jack’s area. Then it enters
the last block, which is the second-order mechanical model of actuator. The
second principle of dynamic calculates the position and velocity of the Jack,
taking into account both external and aerodynamic forces as well as friction
and displacement limits.

4.1.1 Hysteresis, offset and interferences in the torque
motor

The block’s purpose is to show disturbances and nonlinearity in the current
entering the model of the torquemotor. It is fed the control signal CoEr from
the controller. This signal is then algebraically added to the values of His
or Ofs. The signal will change according to its value. If it is rising, it will
decrease His. However, if it falls, it will increase His. This is to indicate the
hysteresis.

Instead, the block Ofs (shown in Figure. 4.5) allows you to set an offset
value for the current. However, it is possible to also introduce an external
source to interfere with the motor. This source is represented by a Band-
Limited white noise block. Its contribution is a random signal of constant
power spectral density. The resulting current will be saturated, if required,
to the maximum and minimum values CorM or -CorM. These are the limits
of current that can be fed the servovalve.
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Figure 4.4: Model of torque motor hysteresis

Figure 4.5: Offset current model

4.1.2 Electromechanical model of the servovalve
This block is the third-order electromechanical model for the servovalve. It
is made up of two sub-blocks that describe the dynamic behaviour of each
stage. Figure 4.6 shows that the signal Cor is sent from the block GM to
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calculate the gain of torque motor (in (Nm/mA)/m).

Figure 4.6: Servovalve’s electromechanical model

There are two possible values for GM: The first is the fixed value that has
already been calculated. The second considers the structure, configuration,
and magnetic circuits of a motor. This corresponds to the next picture. The
second branch of the calculation requires two inputs: Cor is the value of
current from the previous block and XF is the position of the flapper that
was feedbacked in the second order dynamical model. First, XF is multiplied
to obtain the gain (La/2)/ls. Here La is the length of an anchor and ls is the
arm of a spool. This calculates the rotation of the arms and multiplies it by
La/2 to get the vertical displacement. These values are used for calculating
the magnet flux in all airgaps.

ϕ1 = Vp

2R0

1 − XF
lg

λ + α ∗ r
+ Cor ∗ n

2R0

ϕ2 = Vp

2R0

1 + XF
lg

λ + α ∗ r
− Cor ∗ n

2R0

Where:

n = winding’s number in the armature

R0 = airgap’s reluctance in the null current condition

Vp = residual magnetic induction

lg = air-gap’s total length
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λ, α, r = correction factors considering edge effects of magnetic flux in arma-
ture’s extremity

Figure 4.7: Gain GM calculation

The formulas above show that there are two components to magnetic flux.
The first is the magnetic flux generated by the permanent magnets in the
yokes with resistance:

R = 2R0

1 ± XF
lg

The second term, with an opposite sign, represents the flux created in
coils.

The formula can be used to calculate the total torque once fluxes through
airgaps have been calculated:

T = (ϕ2
1 − ϕ2

2) ∗ La

2Agµ0

Where:

La = anchor’s length

Ag = airgap’s section

µ0 = vacuum’s magnetic permeability

In order to determine the force applied to the flapper center, the torque is
divided by the anchor length; a constant in time equal to GM is also added
as another gain in order to obtain a stable model.
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For the simulation of the behavior of the system in the presence of
demagnetization of the torque motor, the force is multiplied by the value
1 − KGM , where KGM is between 0 (normal condition of the torque motor)
and 1 (completely demagnetized motor).

A model of the first stage of the servovalve will be analyzed in the next
block.

Figure 4.8: Torque motor’s magnet circuit

The second order dynamic block contains the force applied to the flapper.
However, this input is not the only one used. Also, the variable XS, which
is the instantaneous position for the spool is feedbacked from second stage
dynamic model.

This feedback has a physical significance because it is the feedback provided
by the feedback spring, which, proportionally to its stiffness, reports a force
to flapper. The bending effect can be simulated by adding the spool position
to that of the flapper. This is done due to the opposing reference systems.
Multiplying this result for elastic constant yields the resultant force from the
feedback spring.

A dead zone dynamic mask is also available to simulate the backlash
between spool, ball. Kgioco, which is expressed in microns, can be used to
simulate the degradation of this backlash. It can also be imitated from the
associated data file. The intermediate closed loop branch is used to calculate
the elastic return of the flapper by multiplying the position for KF , which
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is the stiffness armature bolt.
The inner closed loop branch calculates the viscous reaction fluid has

to flapper displacement. It is proportional to flapper velocity and the
proportionality constant CF (in N/m/s), which is derived from the formula:

CF = 2 ∗ ZF ∗
ñ

MF ∗ (KSF + KF )

Where:

ZF = viscous coefficient (dimensionless)

MF = flapper’s equivalent mass

KSF = feedback spring’s translational stiffness linear term (between first
and second stage of the serovalve)

KF = stiffness armature-bolt

Figure 4.9: Servovalve’s first stage dynamical model

To calculate the net force acting upon the flapper, these three forces are
subtracted from FF . Divide it for the equivalent mass MF of the spool,
and its acceleration is calculated. Two successively integrated calculations
also determine the velocity and position of the spindle. The model is made
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stronger by adding saturation. If the flapper reaches its limit position+XFM
or −XFM , then the displacement integrator switches on to +1 or -1 the
saturation port. This value is then passed successively to an acceleration reset
block to cancel any acceleration or velocity. You can also impose hydraulic
offsets to shift the work point in another equilibrium state. It is a first-order
dynamic model that represent the servovalve’s second stage.

Figure 4.10: Servovalve’s first stage dynamical model

The flapper and nozzle interaction have been simplified assuming that the
valve behaves as a simple valve, in accordance with its own flow rate gains
and pressure.

In terms of the dynamical behavior of the valve, the hydrayulic force
acting on the spool can be expressed as follows:

Fidr = (P1 − P2) ∗ ASV

where ASV is the lateral area impacted by differential pressure.
A second order differential equation can be written considering all the

forces acting on the spool:

MSV ẍS + CSẋS + KSV (xS − xF ) = Fidr − Ffrict − Ffl

If we substitute the hydraulic force and the flow force, and neglect elastic
force, we obtain the equation below:

MSV ẍS + CSẋS = ASV ∗ P12 − Ffrict − Kflow ∗ QJ
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Representing a differential equation of second order characterized by a
time costant too small.

It’s not possible to neglect the inertial effects in relation to the other
effects, so an integration interval smaller than the smallest time constant of
the model must be used, resulting in a longer calculation time.

In order to speed up the algorithm, the mass of the spool is neglected,
resulting in a first order system (P12 is calculated by combining pressure
gain and flow gain expression, and considering QJ = ẋs ∗ ASV

CSẋS = ASV ∗
1
xF − ẋS ∗ ASV

GQF

2
−Ffric − Kflow ∗ QJ

and, if all terms are collected in ẋs:

ẋS ∗
1
Cs + ASV 2 GPF

GQF

2
= ASV ∗ GPF ∗ xF − Ffric − Kflow ∗ QJ

Borello’s friction model uses the theoretical velocity of the spool as input:
in this block friction force is the output, which is feedbacked and subtracked
from theoretical force acting on flapper and actual flapper velocity. The
position of the flapper is then obtained through integration, considering the
limit positions +XSM and −XSM .

In these calculations, degradation of the filter plays an important role,
so a coefficient Kintas has been introduced, ranging from 0 (nominal filter
conditions) to 1 (completely clogged filter conditions).

By using the following relation, intas = 1−Kintas has been used to correct
the pressure gain in comparison to the nominal conditions:

GPFtrue = GPF0 ∗
1
intas ∗ PSR

PSR0

2

Where:

PSR0 = nominal supply-return differential pressure

PSR = actual supply-return differential pressure

GQFtrue = GQF0 ∗
öõõô1

intas ∗ PSR

PSR0

2
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4.1.3 Fluid dynamic model
Ing. Dalla Vedova developed this model during his PhD research.

This paragraph will present the mathematical fluid-dynamic model for
a proportional control servovalve. This model allows you to calculate flow
rates to the actuator using a defined spool location XS.

It takes into account all geometric details and pressure drops through
the cross sections. It only considers the fluid-dynamic portion and is valid
regardless of how the spool moves. This allows it to be used to simulate both
electromechanical and hydromechanical valves.

The fluid-dynamic model can be seen in Figure 4.11. It shows a typical
configuration, with supply (S), return (R), and four ways. The flow through
each section is calculated based on the position and geometry of the valve,
as well as the differential pressure across them.

Figure 4.11: Control valve scheme 4/3-way directional

The differential pressure drop can be expressed in two ways. One is linear
with flow rate and expresses laminar conditions, the other quadratic with
flow rate expresses turbulent conditions. The viscous friction in the fluid is
the cause of pressure loss. It is only present when the passing section of the
fluid is covered by a spool.

In the second case, the discharge of kinematic energies through the passing
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section causes pressure loss. It is always present as it is proportional to the
passing area, which is greater than zero. These terms can be described as:

∆plin = RL Q

∆pquad = R Q |Q|

where RQ is the pressure fall quadratic coefficient and RL is the pressure
loss linear coefficient. You can express RQ and RL as:

RL = 6 ∗ µ ∗ l

π ∗ r ∗ c3 ∗
è
1 + 3

2

1
e
c

22é
RQ = ρ

2 ∗ C2
d ∗ A2

Where:

µ = dynamical viscosity

l = covering’s length

c = radial clearance

e = eccentricity

ρ = fluyid’s density

Cd = efflux coefficient

A = passing section’s area

The circumferential opening w ≃ 2 ∗ π ∗ r, (r ≫ c) can also be introduced.
RL can be used to express as follows, with X0 as the length of the covering
and XS the spool position.

RL = 12 ∗ µ ∗ X0
w ∗ c3 ∗

è
1 + 3

2

1
e
c

22é
This will allow you to calculate the area of the passing sections and the

covering X0.
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When calculating X0, it is important to consider the lapping of valves:
OSSV refers to the lapping on the supply side and ORSV refers to the
lapping on the return side.

This notation also applies to flow rates: Q1S is the flow rate of chamber 1
from the supply, Q1R is the flow from chamber 1 from the return, and so on
for Q2S and Q2R.

Q1L and Q2R represent the net flow rates entering chamber 1 and chamber
2, respectively (these are assumed to always be positive as shown in Figure
4.11).

Each passing section will have the characteristic of an annular orifice with
a length of X0. This is only true if the displacement of the spindle is greater
than the lapping.

The lengths of each section can be expressed in the following:

X01S = OSSV − XS

X01R = ORSV + XS

X02S = OSSV + XS

X02R = ORSV − XS

Where:

X01S = length of the supply to chamber 1 passageway

X01R = length of the chamber 1 to return passageway

X02S = length of the supply to chamber 2 passageway

X02R = length of the chamber 2 to return passageway

Instead, the area of the passing section will assume a minimum value
w ∗ c (annulus), if the corresponding lapping exceeds spool displacement XS.
However, it will grow assuming a truncated conical area’s value, as in Figure
4.12.

It is also possible to express the areas of the following sections as:

A1S = w ∗
ñ

c2 + (XS − OSSV )2

A1R = w ∗
ñ

c2 + (XS + ORSV )2
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Figure 4.12: Zero-lapping valve’s section of passing fluid when XS>0

A2S = w ∗
ñ

c2 + (XS + OSSV )2

A2R = w ∗
ñ

c2 + (XS − ORSV )2

With the restriction to consider these areas equals w*c when the flow rate
of XS exceeds the correspondent lapping.

It is now possible to calculate the pressure drops across each area using
flow rates:

∆p1S = (pS−p1) = ∆p1Slin+∆p1Squadr = RL1S∗Q1S+RQ1S∗Q1S∗|Q1S|

∆p1R = (p1−pR) = ∆p1Rlin+∆p1Rquadr = RL1R∗Q1R+RQ1R∗Q1R∗|Q1R|

∆p2S = (pS−p2) = ∆p2Slin+∆p2Squadr = RL2S∗Q2S+RQ2S∗Q2S∗|Q2S|

∆p2R = (p2−pR) = ∆p2Rlin+∆p2Rquadr = RL2R∗Q2R+RQ2R∗Q2R∗|Q2R|

These equations allow you to calculate flow rates through each area:

Q1S =
−RL1S +

ñ
RL1S2 + 4 ∗ RQ1S ∗ |p2 − p1

2 ∗ RQ1S
∗ SIGN(ps − p1)

Q1R =
−RL1R +

ñ
RL1R2 + 4 ∗ RQ1R ∗ |p1 − pR

2 ∗ RQ1R
∗ SIGN(p1 − pR)
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Q2S =
−RL2S +

ñ
RL2S2 + 4 ∗ RQ2S ∗ |pS − p1

2 ∗ RQ2S
∗ SIGN(ps − p2)

Q2R =
−RL2R +

ñ
RL2R2 + 4 ∗ RQ2R ∗ |p2 − pR

2 ∗ RQ2R
∗ SIGN(p2 − pR)

It is obvious that only the pressure drop across each area has an effect on
the flow rate. This explains why the absolute value exists, but its sign only
influences the verse. This explains the term SIGN(∆p).

After each flow rate has been calculated, the useful flow rates for the
actuator can be obtained as an algebraic sum of all the flow rates through
the relevant passing areas:

Q1L = Q1S − Q1R

Q2L = Q2S − Q2R

the model that was created by this treatment is shown in Figure 4.13.

Figure 4.13: Fluid Dynamic Model’s subsystem

To simulate the degrading conditions in time, another coefficient Khsv
has been added. It is evident in Figure 4.13 that there is another block called
"CRH + abbreviation for each section name".

This subsystem allows you to calculate the nominal efflux factor Cd
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The first (Cd0), which is expressed as an empirical relation and takes
into account the actual fluid density and cinematic viscosity through lookup
tables, represents the nominal efflux rate. The second (C ′) is the correction
of this first coefficient, determined from the variable geometry. The scheme
is shown in Figure 4.14.

Figure 4.14: CRH’s subsystem

Although the mathematical model described above allows you to calculate
the characteristic curves for the flow rate and trend of regulated flows as
functions of the spool position XS and pressures P1 and P2, it is not possible
directly to determine the characteristic curves for pressures at a given flow
rate.

This problem was solved by a calculation routine that simulates fluid
compressibility in circuit after servovalve. It allows you to calculate the
temporal derivatives of the regulated pressures at the two outlets of the
valve.

They can be written as follows:

P1(t + DT ) = P1(t) + [Q1L(t) − QM(t)] ∗ Bet

V ol
∗ DT

P2(t + DT ) = P2(t) + [QM(t) − Q2L(t)] ∗ Bet

V ol
∗ DT

Where:

P1, P2 = outlet valve’s regulated absolute pressures

Q1L, Q2L = actuator’s disposed flow rates
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DT = sample time

Bet = fluid’s compressibility coefficient of the fluid

V ol = hydraulic capacity’s volume

QM = actuator’s total absorbed flow

The last term can be expressed in terms of potential leakage:

QM(t) = AJ ∗ DXJ(t) + Clk ∗ [P1(t) − P2(t)]

These equations were modified to accurately simulate cavitation phenom-
ena within the fluid, which can have a significant impact on the dynamic
behavior of a system:

P1T (t + DT ) = P1T (t) + [Q1L(t) − QM(t)] ∗ Bet

V ol
∗ DT

P1(t + DT ) = MAX[PV ap, P1t(t + DT )

P2T (t + DT ) = P2T (t) + [QM(t) − Q2L(t)] ∗ Bet

V ol
∗ DT

P2(t + DT ) = MAX[PV ap, P1t(t + DT )

P1T , and P2T are auxiliar terms that allow you to think about possible
formation of vapour bubbles. It is possible to have memory for eventual
negative pressure picks (even though these picks may be fictitious), that
highlight the possibility of vapor bubble formation within the fluid.

This routine would cause calculation to lose the memory of oil vapour
volume. It is formed in cavitation. The first must return to liquid to allow
pressure to grow beyond PV ap. This is equivalent to not considering vapor
bubbles in fluid.

The pressure would then grow positively after cavitation. However, these
assumptions reduce the cavitation effect, so that the real pressure grows only
when PV ap is higher than the theoretical pressure.

The dynamical system calculates pressures by dividing the net flow rates of
fluid capacities by the corresponding calculated pressures. This is a first-order
model, so reducing the capacities will reduce the constant time τ .

In particular, if the capacities are too small, the model could be unstable
due to incompatibility between constant time t, and sample time DT .
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Below is the derived model for the pipe capacities Figure 4.15 shows the
fluid dynamic model in its entirety. This model provided the basis for the
characteristic curves that were used to design the Low-Fidelity fluid dynamic
models.

Figure 4.15: Model of pipe capacity

The complete fluid dynamic model is shown in Figure 4.16
The characteristic curves resulting from this model will be discussed in

the next chapter.

4.1.4 Mechanical model of the jack
A mechanical model of the jack is the final block in the analysis. It takes
the differential pressure P12 determined by the fluid-dynamic model and
multiplies it by the equivalent surface of the jack, providing the input for
the jack’s model. It can be seen that the structure is very similar to that of
the first stage of the servovalve model.

After subtracting dissipative forces from the input force, the actual force
is calculated: through a manual switch, the sum of possible external and
aerodynamic forces can be obtained based on the viscous force, given by the
jack’s velocity multiplied by the viscosity coefficent CJ .

Aerodynamic forces are calculated by multiplying the jack’s position by
the aerodynamic coefficient Kaer, which simulates the opposition between
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Figure 4.16: Fluid dynamic model

aerodynamics and displacement of mobile surfaces.

Following this, Borello’s friction model receives the theoretical net force,
the velocity of the jack and the saturation value of the integrator’s saturation
port, giving as output the real friction force as well as the first integrator’s
reset value.

Whenever the jack reaches the upper or lower limit of its displacement, a
saturation block will nullify its velocity. Then the acceleration of the jack
is obtained by dividing the net force by the mass of the jack, and with two
successive integrations its velocity and displacement are calculated.

Additionally, a backlash block follows the second integrator in the closed
loop, which simulates any possible backlash on the kinematic chain joining
jack to mobile surfaces due to usury.

Assumed to be installed on the mobile surface, the sensor is subject to
possible backlash and has been inserted into the closed loop.

The final step is to insert a quantizer block before the output XJ to
consider the discretization issue resulting from digital acquisition.
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Figure 4.17: Mechanical model of the jack

4.2 Low-Fidelity Models
The simulink model of the complete actuator described in the previous
paragraphs will be modified by replacing the fluid dynamic model with the
low fidelity models that will be obtained in the next chapter. In particular,
the dynamic fluid model will be replaced first with a matlab block in which
a genetic algorithm will be represented, while in the second model it will be
replaced with a neural network block. The results of these models will be
described and analyzed in chapter 7.
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Chapter 5

Development of
Computational models

Due to the extensive development in architectural design and technological
solutions, it is becoming increasingly challenging to evaluate new systems
on board the aircraft. Today we need instruments that can prove the
effectiveness of innovative solutions or make an existing component more
efficient, no matter how complex they are. As computers have become
increasingly powerful in recent decades, they have become able to perform
this function by providing modules of calculus that are competitive enough
to support the computing needs of the mathematical model of a system. As
a result, designers are now able to build complex mathematical models using
commonly available computational resources.

In the aerospace sector, as in many others, there has been a lot of effort
put into developing complex systems and now has succeeded in reducing the
great cost of tests by replacing and supporting them. By using prototypes,
it’s now possible to simulate a system’s response in certain specific conditions,
making it unnecessary to prove and verify the system.

Computing models can also be used to estimate a system’s health condition
and predict its deterioration with high degree of accuracy. A consequence of
this is that an element can have a longer useful life, and the costs can be
amortized more efficiently. This makes diagnostics and prognosis easier.

Modern models are useful not only during the flight but also during the
operative period of the aircraft. An operative error can be determined by
comparing a system’s response with the expected one. Once this error has
exceeded a certain threshold, the component is designated as failing, and the
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pilots and maintainers are notified.

5.1 Developing of Database
The first step in developing the servo-valve models was to obtain a large
amount of data from the High-Fidelity model of the servo-valve, in order to
create a number of databases that can be used to train the various modeling
methods.

Each database consists of a certain number of maps representing the
servovalve characteristic.

Each map represent the servovalve characteristic for a certain combination
of values representing the servovalve status. These values are covering and
radial clearance.

Databases consist of 4 variables inserted into a 4-D matrix, defined by:

• Spool position

• Flow

• Covering

• Radial clearance

The definition of these four variables leads to the representation of the
pressure value for these conditions.

The first variable, the spool position, is represented on the x-axis of each
map, while the pressure is represented on the y-axis. Each map represents a
certain number of flow rates and features a different combination of radial
clearance and covering, therefore the choice of the last two variables defines
which map we are analyzing and the total number of maps of each database
is given by the product of these variables.

The high fidelity model provides the pressure values for a single combina-
tion of the four variables involved. The pressure starts from zero and tends
to a constant value after a transition period.

The databases were created by blocking the covering and radial clearance
variables for each single map, and by varying the flow rate and the spool
position to obtain the characteristic curves of that single map.

Each map is therefore composed of a number of simulations given by the
product of the number of spool positions analyzed by the number of flow
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Figure 5.1: Data concentration in databases

rates considered, and each database is given by this number multiplied by the
number of combinations of radial clearance and coverage of that database.

The simulations were performed with a simulation time of 1e-2 and an
integration step of 1e-6.

Each map is composed considering 133 spool positions, with a higher
density around the null position of the spool, to better represent the pressure
gradients around it.

Figure 5.1 shows this distribution of the spool positions in the simulation
of the servovalve map; we can see the lower density of XS in the extremes
where there is a linear behavior of the pressure.

5.1.1 Databases

Several databases have been created to better address the issues related to
each servovalve’s performance modeling method, they are described in the
following table and explained in the following paragraphs.
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Databases
Database Spool po-

sitions
Flow
Rates

Coverings Radial
Clear-
ances

Total
Data

1 133 5 5 5 16625
2 133 15 9 9 161595
3 133 15 9 9 161595
4 133 15 30 30 1795500
5 133 133 1 1 17689

Database 1

The first database was composed of 25 maps of the servo-valve.
Figure 5.2 shows the simulink model to simulate the 5 flow rates, in which

the EHA high fidelity model discussed in chapter 4 is present in each block.
We can see in Figure 5.3 an example of some maps, and how the variation

of the radial clearance and overlap parameters affect them.
This database was used for the development of both the lookup table

and the genetic algorithm, but it proved unsuitable for neural network
development.

Figure 5.2: Simulink model to create the characteristic curves
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Figure 5.3: Characteristic curves with parameter variations

47



Development of Computational models

Database 2

Two problems were encountered in applying the first database to the neural
network: the first is related to the size of the database, as the efficiency of
applying a neural network to a non-linear problem is directly proportional
to the size of the database.

The second problem is related to the way in which the database was
developed, precisely to the differentiation between the four variables. We
will see this problem more precisely in the paragraph on the neural network.

To improve the performance of the neural network, the combinations of
the variables flow rate, radial clearance and coverage were therefore increased,
and consequently the total number of data. The number of maps in this
database is 81.

Database 3

In using the neural network as a tool for simulating the performance of the
servovalve, by modeling the outlet pressure relative to the other parameters,
it was noted that it was more difficult to correctly model the flow rate values
close to zero flow, as opposed to those at greater range with large water
hammers that the net is able to model with good accuracy.

To try to improve the performance of the network also for flow rates close
to zero flow, a database was created with the same number of data but with
flow rates limited to a lower range.

Database 4

The use of the neural network as a method of diagnosing the conditions of
the servovalve made it necessary to create a database with a high number of
combinations of games and coverings, i.e. a high number of maps, in order
to allow the network to recognize the differences between these variables.

Database 5

To solve the problems encountered in the application of the neural network in
the simulink model of the complete actuator, which will be discussed in the
last chapter, the network has been simplified by removing the two variables
of radial clearance and covering, and making the training matrix a square
matrix with an equal number of spool positions XS and flow rate.
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By plotting the results on a grid, we can visualize the surface representing
the pressure values for any combination of XS and Q, which in the case of
this database lays on a grid with a square base.

Figure 5.4: 3D surface characteristic curves

5.2 Lookup table
A Lookup Table is a set of data sorted in an array or in a matrix which,
thanks to their structure, allow to associate an output data configuration to
each admissible combination of input data.

In this way it is possible to replace runtime calculation operations with a
simpler consultation operation.

The first computational method that was tried in order to replace the
high-fidelity model, is the use of a lookup table. Using an array of data, a
lookup table block approximates a mathematical function. Look-up tables
with K inputs are digital memories that can implement any Boolean function
over K variables.

Given a set of input values, a lookup operation retrieves the corresponding
output values from the table. A lookup table represents an array of data
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that maps inputs to outputs, hence representing an approximation of a
mathematical function.

Simulink can estimate an output value when the look up table does net
explicity define the input values, through the following methods: interpola-
tion, extrapolation, rounding. Using lookup table blocks may allow for speed
gains when simulating a model, since table lookups and simple estimations
could be faster than mathematical function evaluations.

This method will be only used to obtain the pressure for different clearance
and coverage values than those used in the database, with which the board
will be trained. a 4-dimensional lookup table was implemented through the
specific simulink block shown in Figure 5.5.

Figure 5.5: Look-up Table Simulink Model

To use the lookup table, the Table Data (in this case the pressure values)
and four breakpoints (the arrays containing the four variables in play) will
be set.

After having designed the table, we proceeded to test it with a different set
of radial clearance and coverage from the database’s set, through a matlab
code that also calculated the percentage error. Results are shown in Figure
5.6.

The error range of this method is 5 − 10%, but since the time needed to
simulate a single map is around 60 seconds, it is too slow to be used in the
Simulink model of the complete actuator.
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Figure 5.6: Look-up Table results

5.3 Genetic Algorithm

The second method analyzed is a genetic algorithm. This method should be
faster but it needs a correct definition of the objective function and of some
parameters in order to function correctly.

A genetic algorithm is a process inspired by Darwin’s principles of natural
selection and genetics to solve optimization problems. Based on a set of
solutions evolved in intervals of time, called generations, the evolution is
guided by determining the optimal solution based on the “goodness” of the
individual or generation; it is possible to determine the best individuals using
the objective function, and use them to create successive generations. Each
individual is unique in terms of characteristics and properties: these are the
phenotypes. Those traits are determined by an invisible genetic setup, called
genotypes, which are the basic building blocks of chromosomes.

Genetic algorithms have a cyclic base structure, so each cycle represents
a generation, and each step represents a new generation. The first step is
to create an initial population, and the following steps are repeated each
time a new generation is born. Fitness function values guide selection of the
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most suitable individuals, while crossover operations and mutations lead to
creating new generations, which combine or modify the characteristics of the
individuals.

Figure 5.7 shows the characteristic scheme of a genetic algorithm

Figure 5.7: Genetic algorithm scheme

First, it is necessary to define the fitness function, which is the objective
function that the algorithm should minimize and indicates how far an individ-
ual is from the optimal solution. For biological individuals, it is the external
environment in which they can thrive or die. The objective function can
have local and global minimums, so if the initial population is concentrated
in the local minimum, the algorithm will reach this point. Therefore, it is
essential to have a large enough number of individuals covering most of the
domain, in order to explore all the possible solutions, but this number should
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not be too high to make the algorithm very time consuming.
MATLAB provides several ways to obtain an initial population: the default

option generates a random population that satisfies the bounds, if present,
and is well-distributed within the domain. In addition, the initial population
can be specified totally or partially, so that it has interesting individuals
from the beginning. In case only a part of the initial population is defined, a
function called CreationFcn will fill the remaining individuals.

Following the definition of the initial population, each individual is scored
according to his fitness value, and a sub-population is chosen to generate new
solutions. Different criteria are used for selection: the default option is the
rank scaling function. It is a process of sorting and scaling each individual’s
raw score based on their position in each category. This is a conservative
method, since also less fit individuals can be selected for reproduction, thereby
making it easier to use genetic portions, but this method is slower to convert.

Besides these methods, there is also proportionalselection that choose
the best individuals according to their fitness function values: first the
population’s fitness function value is determined:

Fmax =
nØ

i=1
f(xi)

Fmin =
nØ

i=1

1
f(xi)

Where x represents the ith individual. The first value is used in the
research of maximum fitness functions and the second for minimum fitness
functions. With this value, we can determine the likelihood of selecting each
individual according to fitness function.

pi = f(xi)
Fmax

pi = 1
Fmax

1
f(xi)

As shown here, the results are represented by a wheel divided into segments,
with each segment representing a probability associated with a particular
individual.

To select the individuals for reproduction, the wheel is spun k times. The
new generation P(n+1) is obtained from the previous one P(n) through the
following steps:
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1. The best individuals are selected for reproduction, and the best ones
are introduced into an intermediate population P1 and afterward into
the mating pool

2. By applying the crossover operator to individuals in the mating pool, a
new population P2 is generated

3. Using the mutation operator, the individuals P2 will generate a second
population P3

4. As a result of replacement and survival selection, the new generation
P(n+1) will consist mainly of individuals in P3 but may also include
those in P(t) that have not been chosen for reproduction or the best
ones

New chromosomes are created by the parents, thus the new solutions
have a genetic bond with the parents, otherwise convergence would not be
guaranteed. As a result of these recombination process, crossover is also
said to reflect the exchange of homologue material between two or more
chromosomes.

The following options are available for crossover: scattered, single point,
two point, arithmetic, intermediate, heuristic

By using the scattered function, a random binary vector is created, in
which a bit from the first parent is equal to 1 and a bit from the second one
is equal to 0.

For example:

P1 = [12345678]

P2 = [abcdefgh]

Single point functions divide the genetic information from the parent genes
into two parts by selecting an integer number I between 1 and n-1 bits, the
first part being composed of the genes with an index less than i, and the
second part being composed of the genes with an index greater than i. In
the resultant child, the first part will come from the first parent and the
second part will come from the second parent.

Reproduction = [10101010]
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Child = [1b3d5f7h]
Two points crossover works similarly, but the two integer numbers are

chosen in order to obtain three genetic portions. The offspring will, for
example, contain the middle portion of the genetic code from one parent
and the complementary part from another. In the examples so far, binary
codification is used, while real numbers are used in the remaining options.

Using the arithmetic crossover approach, the children are computed as
the weighted arithmetic mean of the two parents. Using the intermediate
crossover approach, the children are calculated as the weighted average of
the parents; we have the option to specify the parameter ratio.

Heuristic crossover produces a child which lies on the line containing the
two parents, a short distance from the parent with a better fitness value, and
a long distance from the parent with a worse fitness value.

For the intermediate crossover of the formula, it is possible to specify the
same parameter ratio.

Mutation operator introduces minor changes in the genetic material to
create new chromosome. An individual’s chromosomes are modified by this
operator in order to explore new areas of the domain of possible solutions that
have not yet been explored: this is done in order to avoid the convergence
into a local minimum. In contrast, excessive use of mutation results in an
algorithm that is unable to converge. As a result, it is applied with a very
small probability, oscillating between [0.001,0.01].

Several options are available: gaussian, uniform and adaptive feasible
functions. In gaussian mutations, each entry of the parent vector receives a
random number from a gaussian distribution with mean 0. The process of
uniform mutation involves two step: in the first step, the algorithm selects a
fraction of an individual’s vector entries for mutation, with each entry having
an individual mutation probability. The second one involves replacing each
selected entry with a random number drawn uniformly from a specified range.
In adaptive feasible functions, directions are randomly generated that are
adaptive, taking into account whether the previous generation was successful
or unsuccessful, while satisfying bounds and linear constrains.

5.3.1 Development of the object function
The objective function must be written in such a way as to be able to
represent the graph of the pressure with respect to the position of the
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spool, for different flow rates. It must therefore be an algorithm with some
coefficients and some parameters that will be exponents of the spool position
and flow rate.

The designed algorithm is composed of three terms: the first is a function
only of the spool position, which is inserted in a hyperbolic tangent. In this
way it is possible to represent the pressure function at zero flow rate. In this
term there are two coefficients.

The other two terms are fractions in which in the numerator there is the
flow pressure raised to a certain odd power (to a unitary power for the first
term and to a third power for the second), while the denominator occurs in
both cases the sum of the position of the spool raised to two equal powers
(to the second and to the fourth power).

These three terms have their own coefficient in both fractions, therefore
by adding the two coefficients of the hyperbolic tangent there is a total of 8
coefficients, which will be the variables of the genetic algorithm.

The following is the algorithm of the objective function, which will allow
the genetic algorithm to be trained through the error between the value of
this function with the coefficients limited to varying within certain values,
and the results of the high fidelity simulation.

c1 ∗ tanh(c2 ∗ wxs) + c3 ∗ wq

(1 + c4 ∗ w2
xs + c5 ∗ w4

xs)
+

c6 ∗ w3
q

(1 + c7 ∗ w2
xs + c8 ∗ w4

xs)

5.3.2 Genetic Algorithm development
The first step to be able to train the genetic algorithm was to normalize the
data. The values of spool displacement, flow rate and pressure have been
multiplied by coefficients in order to have all values in the order of the unit.
Normalization will also be used for the neural network’s data.

A matlab code was therefore written that would call the objective function
described in the previous paragraph to use it within the matlab ga function.
Within the same code, the options of the ga function have been set.

To allow a complete analysis and reduction of the error by the genetic
algorithm, the following maximum values concerning the generations have
been set:

Max Generations = 100000

Max Stall Generations = 50000
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At this point the algorithm is able to reach convergence and to represent
the general pressure trend, but without being equipped with an initial set
of coefficients from which to start and also from upper and lower limits it
cannot reach an acceptable value efficiency and error.

Initial coefficients

Through a trial & error process, a set of initial coefficients was selected
that could already represent the characteristic map of the servovalve fairly
faithfully, so that the genetic algorithm could start from it in the selection
of the best coefficients. The set of coefficients that has been selected is the
following:

initial coefficients = [2e7 2e2 -1.5e7 800 10000 -8e5 5000 10000];

Figure 5.8: Genetic algorithm results

Upper and Lower Bonds

The following limit values have been selected, through a trial & error process,
within which the coefficients can vary during the training of the genetic
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algorithm:

lower bonds = [2e7 1e2 -1e9 -1e7 -1e7 -1e9 -1e7 -1e7];

upper bonds = [2e7 1e3 1e9 1e7 1e7 1e9 1e7 1e7];

5.3.3 Results
By operating the genetic algorithm with these parameters, it was possible to
obtain the results shown in Figure 6.9.

The total error of pressure in Euclidean norm is 13%, which could be
improved through a better choice of initial coefficients, upper and lower
limits, and genetic algorithm options.

5.4 Neural network
In complex problems, artificial neural networks (ANNs) are becoming more
common since they offer a greater degree of versatility than the traditional
regression algorithms.

Even when it’s not clear which is the best regression equation for the data
or if the data are correlated at all, ANNs are capable of finding correlations
between their inputs and outputs. In this study, shallow artificial neural
networks in a feed-forward configuration were used.

A shallow ANN only contains one hidden layer. As the name implies, in
a feed-forward network information is only passed from one input node to
the next, and the processing of that information is determined only by the
current input, unlike in a recurrent neural network.

Generally, this type of architecture is found in regression problems, and
the accuracy can be improved by adding more input nodes or hidden nodes
or by adding more hidden layers. In the figure, we see a simple shallow
feed-forward ANN with inputs, neurons hidden in layers, and outputs.

The network is fully connected, since each layer’s nodes are connected
to the layer below. An optimum regression coefficient (often described as a
desired mean square error) will be found after an adequate number of cycles,
or until the networks fail too many validation tests.

During the validation phase, data that is not used for training is employed
to ensure the network’s performance (usually measured by the Mean Squared
Error) on random data is still satisfactory after every training cycle.
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An excessive number of validation checks failed consecutively (e.g. MSE
of predictions on ono-training data drops), likely means that the network
has overfitted on the training data and that additional training would be
ineffective.

Training an ANN typically involves a large number of sets of known inputs
and a set of known targets.

As MATLAB and his Deep Learning Toolbox provide a variety of features
and options at a reasonable performance level, we selected the software for
programming and training the ANN.

In this thesis the neural network was used with a double purpose: the
first was to obtain the pressure relative to the four variables of the database,
in the same way as was done for the look-up table and the genetic algorithm.

The second use was of the diagnostic type, allowing the network to
recognize which radial clearance and overlap values (representing, as already
mentioned, the wear of the servovalve) were related to a certain series of
spool position values, flow of flow rate and outlet pressure. In this way we
tried to obtain a diagnostic tool capable of recognizing the state of health of
the servovalve based on data that can be obtained in flight.

It must be taken into account that the characteristic maps obtained in the
previous paragraph consist of a high number of spool positions and flow rates
(hence a high number of pressures). On the contrary, the number of radial
gaps and coverings, from which the number of these maps derives as we have
said, is not very high due to the fact that increasing it means increasing
the number of maps and therefore significantly increasing the number of
simulations to be carried out.

This has led to the need to change the way in which the database was
conceived, passing from a conception by points to a conception by function,
allowing the network to associate a single pressure trend with the relative
clearance and coverage values. In addition to this, the number of games and
overlays in database 4 has been increased, as explained above.

In this way it was possible to use the network in both ways, with databases
conceived by points in the modeling activity of the output pressure from the
servovalve, with databases for pressure functions in the diagnostics activity
of the servovalve conditions.

Both methods will be analyzed in the following paragraphs.
The following images show the results of the neural network in terms of

error, performance and regression.
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Figure 5.9: Neural Network performances

Figure 5.10: Neural Network error histogram

5.4.1 Training algorithm

First we need to select a training algorithm. It is not known initially which
will be the best training function, as their effectiveness depends on several
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Figure 5.11: Neural Network regression

factors including the complexity of the problem analyzed, the size of the
database, the error goal, the type of problem analyzed.

The types of problems that can be analyzed by the neural network are di-
vided into pattern recognition (discriminant analysis) or function approxima-
tion (regression). About our cases, the analysis of the servovalve diagnostics
can be considered a pattern recognition problem, while the modeling of the
servovalve performance and pressure is a function approximation problem.

When it comes to function approximation problems, the Levenberg-
Marquardt algorithm will have the fastest convergence rate when networks
contain up to a few hundred weights. When precise training is required, this
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advantage becomes particularly apparent. The mean square errors of trainlm
are usually lower than those of any other algorithm tested. Trainlm’s advan-
tage decreases as the number of weights in the network increases. Trainlm’s
pattern recognition performance is also poor. It requires more storage space
compared to the other algorithms.

Another training function that applies the Levenberg Marquardt optimiza-
tion principle to weight and bias values is the trainbr function. It minimizes
an error combination of squared errors and weights, determining the best
combination for producing a generalized network.

Pattern recognition problems are best solved using the trainrp function. On
the other hand, it fails to solve function approximation problems well. With
a smaller error goal, its performance also declines. In comparison with other
algorithms, the memory requirements for this algorithm are relatively low.
For networks with a large number of weights conjugate gradient algorithm,
such as trainscg, appear to do well. On function approximation problems,
the SCG algorithm is almost as fast as the LM algorithm (even faster for
large networks), and on pattern recognition problems is almost as fast as
trainrp.

Conjugate gradient algorithms have relatively modest memory require-
ments, and their performance does not degrade as quickly as trainrp’s does
when the error is reduced. In terms of performance, trainbfg is comparable to
trainlm. It requires less storage, but as the nodes increases the computation
required does not increase geometrically, since each iteration must compute
a matrix inversion.

While traingdx has a much slower learning rate, it contains the same
amount of data as trainrp, so for particular problems it can still be useful.
Using a fast algorithm can result in inconsistent output data in certain
situations, for example when an early stopping is used. It is possible to
overshoot the point of minimal error on the validation set.

After several tests with the various functions, it was decided to use the
trainlm function both for the simulation of the performance of the servovalve
and for the diagnostics of its conditions.

5.4.2 Modelization
In this paragraph we will study the use of the neural network as a method of
modeling the performance of the servovalve, simulating the outlet pressure
as a function of the other parameters of the databases.
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For the application of the databases to the neural network, it was necessary
to apply some changes to them and set them in appropriate matrices.

First of all the data have been normalized in the interval [-1, 1]. Subse-
quently they were divided into two matrices, called data and labels. The
first contains the variables linked to the related results in the labels matrix.
In both matrices, the data of a single variable are all represented on a single
row, with the number of rows given by the number of variables in the matrix.
In the case of the servovalve performance modeling we are dealing with, the
data matrix has four variables (spool position, flow rate, radial clearance,
covering) and the labels matrix has only the output pressure.

We will see how to use the neural network as a servovalve diagnostic
method it will be necessary to set the matrix in a different way.

Before proceeding with the simulations it is necessary to select the ar-
chitecture of the neural network, i.e. the composition and the number of
hidden layers from which the network will be composed. The hidden layers
are composed of a certain number of neurons and are included between the
input and output layers given by the number of variables of the two matrices
labels and data.

For the use of the neural network as a modeling method of the servovalve,
the following architecture composed of three hidden layers has been selected
through trial & error: [21 15 3]. the scheme of the chosen architecture is
shown in figure 5.12.

Figure 5.12: Neural Network structure
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Training with database 1

Training with database 1 leads to an error of 7-8 %.
As we can see from Figure 5.13, the error is mainly in the calculation of

the water hammer peaks and in the modeling of the function for zero flow.

Figure 5.13: Neural Network with database 1

Training with database 2

To improve the results of the neural network, it was decided to increase the
number of ranges with database 2.

Repeating the training the error dropped to 2-3%, but as we can see in
Figure 5.14 the network still has difficulty in modeling the pressure relative
to the zero flow, while the water hammer modeling is correct.

Training with database 3

At this point it was decided to decrease the flow range in order to allow the
network to train and better understand the pressure behavior for low flow
rates, and this was done with database 3.
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Figure 5.14: Neural Network with database 2

The error has always remained around 2-3 %, while as we can see from
Figure 5.15 the ability to model the flow rates close to zero has increased to
the detriment of the water hammer modeling.

We can better visualize the results by plotting the individual curves. In
Figure 5.16 we can see the curve for a single flow rate, while in Figure 5.17
the curve for the zero flow rate.

We can see how the network is able to correctly model the output pressure
from the serovalve, given the inputs considered, and will therefore be used in
the next chapter within the simulink model of complete actuator.

5.4.3 Diagnostic
We will now analyze the second use of the neural network addressed in this
thesis, that is the diagnostics of the servovalve.

Initially we will provide in input to the neural network the positions of
the spool, the flow rates and the pressures of a single map, in order to obtain
covering and radial clearance related to it.

The databases used up to now, however, have been categorized point
by point, which is not suitable for the purpose we are going to address in
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Figure 5.15: Neural Network with database 3

this paragraph. Trying to use the databases used for pressure modeling,
modifying the labels and data matrices in order to obtain the inputs and
outputs discussed above, unacceptable results are obtained with all the
databases used so far, with errors from 30 % upward.

For the diagnostic use of the neural network we will therefore build the
given input matrix in a different way, providing the individual pressure curves
and the relative flow rate, removing the variable relating to the position of
the spool as it is always the same.

To further improve the results of the network, database 4 with 900 combi-
nations of games and coverings will be used, in order to allow the network
to train better on their recognition.

The new data matrix will therefore have a size of 134x13500, with the
rows given by the 133 pressures of a single curve plus the relative flow rate
value, and the columns given by the 900 maps multiplied by the 15 flows of
which each is composed.

Given the complexity of the input and output matrices, the training was
carried out with a single hidden layer made up of 10 neurons. The scheme of
the network is shown in Figure 5.18.
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Figure 5.16: NN single Q

The results of the training with the new configuration of the given input
matrix are contained in the range of 1% and therefore perfectly acceptable.

The simulations of the neural network for 10 radial clearance and coverage
values are listed and compared with the original values below. In each row
the radial clearance and then the overlap are shown.
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Figure 5.17: NN single Q=0
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Figure 5.18: Neural Network scheme
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Data Prediction
-1.0000
0.5000

-0.9844
0.4832

-0.7931
0.4741

-0.7827
0.4689

-0.5862
0.4483

-0.5841
0.4491

-0.3793
0.4138

-0.3787
0.4224

-0.1724
0.3879

-0.1740
0.3904

0.0345
0.3621

0.0335
0.3596

0.2414
0.3276

0.2421
0.3186

0.4483
0.3017

0.4449
0.2974

0.6552
0.2759

0.6534
0.2767

0.9310
0.5000

0.9282
0.4832

Table 5.1: Covering and Radial Clearance prediction
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EHA testing

6.1 EHA genetic algorithm
In this paragraph we will insert the genetic algorithm obtained together with
its coefficients inside a Simulink block in the form of a matlab code block,
and we will replace it in the model of the complete actuator.

Figure 6.1: EHA model with genetic algorithm

6.2 EHA neural network
Having obtained good results in simulating the output of the pressure of
the servovalve given the flow rate, the position of the spool and the wear
values of the servovalve radial clearance and overlap, we want to see what can
happen if we insert this modeling through neural network in the SIMULINK
model of the complete actuator. To do this, the MATLAB suite allows us to
create a Simulink block simply with the gensim(net) command, as shown in

71



EHA testing

Figure 6.2. This block inserted in the complete actuator’s model is shown in
Figure 6.3.

Figure 6.2: Result of gensim command

Figure 6.3: EHA model with neural network

6.3 EHA commands
In this section we will test the EHA models described so far (the high fidelity
model, the genetic algorithm model and the neural network model) with
different types of commands.

The commands, that are listed below, will be given to the three models
(High-Fidelity, Genetic Algorithm, Neural Network), and their results will
be compared through graphs of the output pressure over time.

Commands:

Step [mm ] = 0.1 , 0.01

Ramp [mm ] = 0.1 , 0.01
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Sin [mm, Hz ] = 0.1 @5pi , 0.1 @10pi , 0.01 @5pi , 0.01 @10pi

Figure 6.4: Step 0.1

As we can see from the graphs, the servomechanism model with the genetic
algorithm is able to simulate the behavior of the High-Fidelity model in
broad terms, even if with a certain degree of error both in the peak values
and in the response times.

The neural network model, on the other hand, is not able to simulate
the behavior of the actuator. Its trend mirrors that of an on/off, reaching
the peak value of the command and keeping it. When there is a command
inversion, the neural network model responds with a constant value change
with a delay time compared to the High-Fidelity model

6.3.1 Simplified neural network
Being the insertion of the neural network into the complete actuator model
and its simulation a more complex process than the modeling of the single
maps of the servovalve, the ability of the neural network block simulink to
address the problem was initially tested.
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Figure 6.5: Sin 0.1 @ 10π

Figure 6.6: Sin 0.01 @ 10π
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To do this, the block generated with the gensim function has been inserted
in a simplified simulink model in which the values of XS and Q have been
passed as inputs, instead of being taken in feedback as in the complete
actuator model.

This was done to test the neural network’s ability to perform what it was
designed for even in the presence of a simultaneous variation of XS and Q.
In the construction of the servovalve maps, in fact, only the value of XS was
made to vary, maintaining a fixed flow rate each time.

As suspected, the neural network used so far is not able to simulate a
simultaneous variation of XS and Q, and as shown in Figure 6.7 it does not
give any output pressure results.

Figure 6.7: Simplified Neural Network Simulink Model with 4 input vari-
ables

To try to improve the performance of the neural network within the
complete actuator model, it was decided to simplify it by removing the two
variables of radial play and coverage, making the network more efficient. The
database 5 is in fact composed only of the variables XS and Q, and the
removal of the other two variables allowed to extend the range to 133 spool
positions and 133 flow rates.

As we can see in Figure 6.8, with this new configuration the neural network
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is able to simulate, albeit with a certain error, a simultaneous variation of
XS and Q.

This new neural network block was then replaced in the complete actuator,
with the results shown in the next paragraph.

Figure 6.8: Simplified Neural Network Simulink Model with 2 input vari-
ables

6.3.2 Neural network model improvement
As we can see from the following images, by modifying the neural network
we have obtained acceptable results for many of the input commands.

We can distinguish some types of behavior:
In some cases both the neural network and the genetic algorithm simulate

the implementation with good consistency with the High-Fidelity model; this
is the case of Step 0.1 shown in Figure 6.10, and Sin with amplitude 0.1 and
frequency 2π shown in Figure 6.14. This usually happens when there is a
positive pressure spike.

On the other hand, when the pressure of the High-Fidelity model peaks
downwards, as in Figure 1, Figure 2 and Figure 3, an error of the neural
network and of the genetic algorithm is noted both in the peak value and in
the time of the impulse.
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Figure 6.9: Simplified Neural Network Simulink Model with 2 input vari-
ables, 3D plot

We can also note that in some cases, as in Figure 6.12, the genetic algorithm
has a damped oscillatory behavior typical of a second order system.

In general, however, we can say that the replacement of the High-Fidelity
model of the servovalve has given consistent results that can certainly be
improved in the future.
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Figure 6.10: Step 0.1

Figure 6.11: Step 0.01
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Figure 6.12: Ramp 0.1

Figure 6.13: Ramp 0.01
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Figure 6.14: Sin 0.01 @ 2π

Figure 6.15: Sin 0.1 @ 10π
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Figure 6.16: Sin 0.01 @ 10π
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Chapter 7

Conclusions and future
developments

The main objective of this thesis was to model the performance of an elec-
trohydraulic servovalve. To do this, three different methods were compared,
each with its own particularities.

The lookup table has proved to be an effective method but with too long
calculation times to be used within the complete actuator model.

The genetic algorithm was based on the design of the objective function.
Although the choice made in this thesis proved to be effective in simulating
the characteristic maps of the servovalve, the implementation in the model
of the complete actuator showed some difficulty in following the pressure
trend. Its performance can certainly be improved through a different design
of the objective function, particularly by introducing high coefficients with
odd powers to the denominator of the function.

The neural network was used both as a method of modeling the perfor-
mance of the servovalve, showing good results and being implemented within
the model of the complete actuator, and also as a method of diagnostics of
the servovalve, obtaining a method capable of recognizing the internal state
of the servovalve by analyzing its pressure and flow rate.

The diagnostic results turned out to be effective, with 1% error rate. As
a future development, this method could be tested with experimental data
to test its operational capacity.

In the implementation of the genetic algorithm and neural network meth-
ods in the complete actuator model, there have been some issues regarding
the method in which the neural network was conceived. Despite overcoming
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these problems, the results of the actuator outlet pressure modeling still have
errors both in simulating pressure peaks and their timing.

However, the applicability of these methods inside the complete actuator
has been demonstrated, managing to simulate the pressure trend. Subsequent
studies may focus on improving the simulation performance of the complete
actuator.

The following table collects the results of the three methods of modeling
the performance of the servovalve, represented by the error in Euclidean
norm.

Lookup Table Genetic Algorithm Neural Network
Error 5-10% 10-15% 1-5%
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