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Abstract

The issue of environmental sustainability is becoming of primary importance also in
aviation field. In this perspective, development of more electric aircraft concept could
represent a valid solution, even if new technologies must be developed in future.

The work presented in the context of this master’s thesis concerns the development of
the control software for an electro-mechanical actuator and its subsequently validation on
a test bench. The purpose of this actuator is to replace hydraulic piston actually mounted
on braking system of general aviation aircraft.

The actuation group is constituted by a linear mechanical actuator driven by Faulhaber’s
brushless DC (BLDC) electric motor. The microprocessor unit is C2000 Delfino, while the
driver is DRV8305, both from Texas Instruments. The software has been developed using
Matlab/Simulink software environment, thanks to an external compiler compatible with
C2000 processor.

Here, all mathematical computation is done with integer arithmetic, allowing to reduce
microprocessor’s workload.

This software must be capable of both low-level management of BLDC motor (controlling
each driver’s MOSFETs) and high-level management. Because there are no brushes in a
BLDC motor, commutation must be reproduced electronically. In order to correctly select
which phase must be turned on, the shaft position is sensed thanks to three different Hall
digital sensors. An internal function generator allows to generate the reference force signal
that feed the controller. Controller includes both an open loop and a closed loop branch.
The open loop term allows to both bypass the need for external sensors in case of failure
and to guarantee a non-zero phase current when the reference signal has been met, while
the closed loop gives a contribution proportional to the error between the reference and
the actual force signal. The force feedback is provided by an external load cell.

Analog-to-Digital Converters are used to measure different physical values, such as
force and phase currents.

The program has been validated on a test bench specifically designed to make up for
temporary lack of real mechanical actuator (still under construction). To safely perform
the tests, different safety measures have been implemented. These measures also apply
to the real brake architecture and include a limitation on the maximum reference force,
a virtual end of stroke and a limitation on the maximum real load. This last limit is
performed without the use of external load cell but directly sensing the shaft position.

All tests variable, such as function generator settings or controller parameters, can be
set by user via serial communication. In the same way, it is possible to log some data
useful to characterize the behaviour of the electro-mechanical actuator, allowing further
analysis.

Results obtained at the end of this work are satisfactory and allow complete control of
a single actuation group. Even if this code can be easily duplicated in order to control
four different groups (the final configuration of the braking system), it can be suggested to
directly write that code using a lower-level language, improving software efficiency.
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Chapter 1

Introduction

1.1 Scope

While looking at aircraft, almost everyone see only wing, fuselage and tail. However, inside
of those big aluminum sheets, it is plenty of other little parts like hydraulic pump, pipes,
servovalve, control unit and so many others: the aircraft systems.

Aircraft System Architecture is a very complex subject: it requires to put together
different technologies (hydraulic, pneumatic, electric . . . ), choosing, for every single task,
which is the best in term of costs, mass, power consumption, maintainability and safety.

In order to reduce aircraft weight (or increase the payload mass) and the systems
complexity, in the past few years a lot of research has been conducted. The future trend
is to develop the so called more electric aircraft, in which there is no other system but
electric one (and some few others). Despite of the problems that, with no doubt, will arise
with this trend, the main advantages are noticeable: weight and complexity reduction, less
different spare parts, easier power transportation across the aircraft, . . .

This work is not a dissertation about the advantages of more electric aircraft compared
to traditional aircraft architecture, but deals with the development of software to control
mechanical actuator driven by a brushless DC motor (BLDC). The electro-mechanical
actuator aim to replace hydraulic brake in general aviation aircraft.

One of the main advantage of this solution is to remove the need of pressurized hydraulic
line from the aircraft body to the main landing gear, reducing hydraulic power needs and,
hopefully, increasing safety.

In chapter 2 there is the general description of the brake architecture and the software
environment. The whole software architecture is described in chapter 3, while chapter 4
and 5 contain the physical validation of this work.

1.2 Research program

This work only cover a little part of the whole design of an electro-mechanical actuator.
Design of the general architecture and the actuator has been conducted under the European
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Introduction

Regional Development Fund (ERDF)1 and PiTeF program of Regione Piemonte 2

In this particular case, three mechanical actuators (see section 2.1.1) has been developed:
one solution comes from Mecaer Aviation Group (MAG, the head of the project), the
second one from Meccanica BPR and the third from Politecnico di Torino.

The next step after the software development is to test each solutions, in order to select
the best one.

1.3 Requirements
General architecture of brake system, described in chapter 2, is complex and must meet a
lot of safety and operational requirements. For now, it is enough to say that there are four
actuator for each brake.

Even because of the limitation of the software environment, deeply described in chap-
ters 3 and 6, the software developed for this master’s thesis is able to control just one
single motor-actuator group. However, this work is complete in itself and can be easily
reproduced for all the four actuators groups.

Hereafter there is a list of high level requirements that has to be met to control the
behaviour of each electro-mechanical actuator:

• The software shall be safe to use in aeronautical environment.

• The software shall guarantee a brake force, even after a failure of the load sensor.

• The control law shall be stable under external disturbances.

• The software shall work properly after brake wear out.

• The software shall be fault tolerant.

• The software shall collect useful data from each mechanical actuator.

1https://ec.europa.eu/info/funding-tenders/find-funding/eu-funding-programmes/
european-regional-development-fund-erdf_en

2https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/
fondo-europeo-sviluppo-regionale-fesr/ricerca-sviluppo-tecnologico-innovazione/
piattaforma-tecnologica-filiera-pitef-0
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Chapter 2

Hardware and software environment

The brake architecture, as proposed by Mecaer Aviation Group, is reported in figure 2.1. It
is possible to see Brake System Control Unit (BSCU, figure 2.1a), which aim is to acquire
the brake force imposed by pilot (through pedals) and equalize this input force among each
actuator, both in left and right wheels. This BSCU must be capable of fault diagnostic, in
order to evaluate when failures occur.

In each Electro-mechanical Brake Assembly (EBA, figure 2.1b) there are one micro-
processor (Texas Instruments C2000™) and four mechanical actuators. Each actuator is
driven by a Brushless DC (BLDC) motor, described in subsection 2.1.2, and a DRV8305
driver, described in subsection 2.1.5.

(a) Brake System Architec-
ture

(b) Electro-mechanical Brake Assembly (EBA)

Figure 2.1: Brake system global architecture.
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Hardware and software environment

2.1 Hardware

2.1.1 Actuators

As mentioned before in section 1.2, three different mechanical actuators has been developed.
None of those solutions will be presented here for different reasons. First of all, actuators
development is not part of this master’s thesis; furthermore, any superficial description
brings no added value.

What is remarkable to write down here (see table 2.1) are the requirements that each
actuator must satisfy, the gear ratio and the correspondence between mechanical actuator
and BLDC motor.

Each actuator is equipped with a load cell in order to measure the real braking force.
This signal will constitute the feedback for the control law (see section 3.6 on page 36).

Requirements Solution A Solution B Solution C
(BPR) (MAG) (PoliTo)

Total force (each actuator) [N] 2645 2645 2645
Bandwidth [Hz] > 10 > 10 > 10
Clearance [µm] 125 125 125
Gear ratio 450 33.75 39.86
Selected motor 4221 3216 3216

Table 2.1: Mechanical actuators characteristics.

2.1.2 Electric motors

Selected motors are Faulhaber Brushless DC 3216W024BXTR and 4221G024BXTR. Both
of these are 7 pole-pairs brushless DC motor with nominal voltage of 24V, equipped with
digital Hall sensors. Other characteristics can be found in table 2.2 and at Faulhaber’s
website1.

Software described in chapter 3 applies to all actuators without modification (actually,
some few variables can be modified, according to which motor will be used, like the ratio
converting force into duty-cycle).

Electric motor is a device capable of converting electrical energy into mechanical energy
(rotational motion) thanks to the interaction of magnetic forces repulsing and attracting
each others. In the simples form, it is composed by two different parts: a rotating part,
called armature or rotor, and a stationary part, the field or stator.

While current flows in a conductor, a magnetic field is created around it. If this
magnetic field form a certain angle with another external magnetic field, a force arises.

If that conductor is not a simple wire piece, but has a particular shape, it is possible to
create a net torque, as shown in figure 2.2. In this figure, current flows from point M to

13216 motor: https://www.faulhaber.com/it/prodotti/serie/3216bxtr/
4221 motor: https://www.faulhaber.com/it/prodotti/serie/4221bxtr/
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2.1 – Hardware

BLDC motor 3216 4221

Rated torque [mNm] 41 134
Rated current [A] (thermal limit) 1.17 1.66
Rated speed [rpm] 4150 4390
Efficiency 0.82 0.88

Table 2.2: Faulhaber BLDC motors.

point N.

Figure 2.2: Motor action of coil rotating in magnetic field. Courtesy of [1].

Of course, this is not enough to create an electric motor: it is possible to demonstrate
that this configuration of forces leads to a stable configuration with a minimum energy.
To obtain a continuous rotational motion, a commutator must be added: the scope of this
device is to change the current flow direction every 180° (or less in complex configuration
with more than one pole pair). Usually, commutator is constituted by a pair of carbon
brushes. Rotor shaft is composed by a certain number of section: brushes allows current
to flow only in one section at time. After a certain angle, brushes touch another section,
so current can flow in a different path (or in the same path, but in reverse direction).

Brushes are critical parts: they require replacement, they wear out, and they impose
severe speed limitations. Moreover, arcing cannot be permitted in certain hazardous
location (like inside fuel tanks).

One possible solution2 is to move the coil from the rotor to the stator part, while
putting the permanent magnet in the rotary part. This solution allows to completely
remove the need of brushes, provided the availability of some electronic switching devices
capable of replace the old commutator: here is a brushless DC motor.

The function of electronic switching devices is to switch the right currents in the right
stator coils at the right time and in the right sequence. In order to do this, some position
sensors, like encoder, resolver or digital Hall sensors, are needed.

2This is not the only one, but it is the one useful here to explain how a BLDC works.
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Hardware and software environment

A real example, the one used for this project, of how this type of circuit works is
reported in subsection 2.1.5.

Although this type of motor can have an almost arbitrary number of phases, the most
common configuration is the one with three phases.

The number of pole-pairs is selected taking in to account both costs (more pole-pair
implies more acquisition cost, because of complexity) and cogging torque. In three-phase
BLDC motor, but this concept applies to all electric motor types, output torque is not
perfectly constant, both because of the time required to perform each commutation and
the geometry of the rotor and the stator. If this could not be a great problem while the
rotor is spinning at high speed, it can cause some problems during start-up or low-speed
operation, because of equilibrium position and internal friction. One possible way to reduce
this ripple is to choose a motor with an higher number of pole-pairs.

2.1.3 Texas Instruments’ Piccolo Launchpad™

Figure 2.3: F280049C Piccolo Launchpad™.

C2000™ LAUNCHXL-F280049C (figure 2.33) is a development board for Texas Instru-
ments C2000™ Piccolo F28004x series of microcontrollers. This microcontroller is4 a 32-bit
floating-point type, with 256KiB Flash memory, 100KiB RAM and operates at 100MHz
(maximum value). There are up to 40 General-Purpose Input/Output (GPIO) pins and
21 analog input pins. These analog pins are connected to three 12 bit Analog-to-Digital
Converters (ADCs) modules. In addition, there are also up to 16 ePWM channels and two
Enhanced Quadrature Encoder Pulse (eQEP) modules.

This package provides two independent standard headers, allowing connection of up to
two BoosterPack XL (subsection 2.1.5).

The USB communication area should be optically isolated from the Micro Controller
Unit (MCU) area while using a BoosterPack XL. This can be achieved removing three
jumper (JP1, JP2, JP3), as reported in datasheet.

Piccolo Launchpad™ is compatible with InstaSPIN-FOC™.

3https://www.ti.com/tool/LAUNCHXL-F280049C
4TMS320F28004x Microcontrollers datasheet (Rev. F)
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2.1 – Hardware

2.1.4 Texas Instruments’ Delfino Launchpad™

Figure 2.4: Delfino Launchpad™ F28379D.

C2000™LAUNCHXL-F28379D LaunchPad™ (figure 2.45) is a development board for
Texas Instruments Delfino™ F2837xD microcontrollers. The TMS320F2837xD is a dual
core microcontroller, with 512KiB Flash memory, 172KiB RAM and operates at 200MHz.
It is equipped with a 32 bit single-precision Floating-Point Unit (FPU), a Trigonometric
Math Unit (TMU) and Viterbi/Complex Math Unit (VCU-II). There are up to 169 GPIO
and 4 Analog-to-Digital Converters (ADCs) with 12 bit resolution (that can be increased
up to 16 bit), 24 Pulse Width Modulator (PWM) channels and 3 Enhanced Quadrature
Encoder Pulse (eQEP) modules.

It is important to notice that not all channels are accessible at the same time. Probably
because of space needs, some of them are muxed together, while few others do not have an
external connection on this Launchpad™ (for example, it is possible to find only two of
three eQEP channels on the board).

In the same way as Piccolo Launchpad™ , Delfino Launchpad™ has been designed to
be fully compatible with two BoosterpackXL module. So, even this Launchpad™ can be
powered up from USB port or from Boostpack (to avoid short circuit, it is possible to
optically separate MCU area from USB area).

In figure 2.5 there is the pinout of Delfino Launchpad™. It is possibile to switch from
among different output thanks to an internal multiplexer. More informations can be
found in the TMS320F2837xD Dual-Core Delfino™ Microcontrollers Data Manual at
http://www.ti.com/lit/pdf/SPRS880.

2.1.5 Texas Instruments’ DRV8305 driver

BoostXL DRV8305EVM BoosterPack (figure 2.66) is a complete 3-phase driver stage
allowing evaluation of motor application, thanks to DRV8305 motor gate driver. It support
4,4V to 45V power supply and up to 15A RMS drive current. It is equipped with DC
bus and motor phase voltage sense and each half bridge has a low side current shunt sense.

5https://www.ti.com/tool/LAUNCHXL-F28379D
6https://www.ti.com/tool/BOOSTXL-DRV8305EVM
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Hardware and software environment

Figure 2.5: F28379D Delfino LaunchPad pin out and mux options.

Figure 2.6: BOOSTXL-DRV8305EVM.

Its design is fully compatible with both Launchpad™ Piccolo and Delfino, in order to
create a complete motor control platform.

The DRV8305 is a gate driver IC for three-phase motor driver application. It contain
three half-bridge drivers, charge pumps, three current shunt amplifiers and a variety
of protection circuit (like overcurrent, overtemperature, overvoltage, and undervoltage
protection).

A general scheme for a simple drive control of a BLDC electric motor is reported in
figure 2.7. It is possible to see six MOSFET (named Q1 . . . Q6). The MOSFET Q1, Q2

and Q3 constitute the high side of the bridge, the side directly connected to VDCbus, while
the remaining form the bridge low side. Each half bride (constituted by one high side and
one low side MOSFET) controls the corresponding phase motor (named A, B and C): e.g.

12
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Figure 2.7: Three half bridge circuits for three phase driver.

if Q1 and Q5 are on conduction state and the other MOSFET are on interdiction state,
phase A is connected to VDCbus, while phase B is connected to GND, so current flows from
MOT A to MOT B. Giving the correct switching sequence to GHx and GLx MOSFET
gate allows the motor to spin.

The real half bridge scheme, the one mounted on BoostXL DRV8305EVM BoosterPack,
is reported in figure 2.8. Here, it is possible to see more electronic parts: R4, R5 and
R6 are the shunt resistors for current measure, while R11, R12 and R13 are three 4,99 kΩ
resistors for back-EMF sense. For explanation of how back-EMF and current measures
work, see section 3.3 on page 28.

Because of the high angular speed typical of an electric motor and the need of a punctual
control of the motor, usually the signals that drive the gates are Pulse-Width-Modulation
(PWM) signals.

PWM is a method of reducing the average power delivered by an electrical signal when
there are only two possible states of power: ON and OFF. The output is a square wave
with a certain frequency and a certain duty cycle. The duty cycle is defined as the ratio
between the ON time and the period of the wave. This signal is created comparing a
carrier wave (the blue one in figure 2.9), which give also the frequency of the signal (usually
from above 5 kHz up to 20 kHz for motor control operations), with a certain threshold
(red line), that give the duty cycle (or its complementary).

Varying the duty cycle, it is possible to change the mean value of the PWM signal, that
can range from 0 to the maximum voltage available. Thank to its high frequency (compared
with any mechanical constant), while the MOSFET can follow this fast switching, the
electric motor see only the mean value. This allow to modify almost continuously the
mean phase voltage value, even without a resistive divider, which will cause a lot of energy
dissipation.

The major drawback (but it could also be seen as a strength) of using this technique
is that PWM generation is not based on software, but it rely on electronic components.
For this reason, the number of different PWM signal available in a single board is often
limited to few units.

13
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Figure 2.8: Real half bridge scheme, mounted on BoostXL DRV8305EVM BoosterPack.

Figure 2.9: PWM generation.

The architecture proposed by MAG (figure 2.1) includes a single microcontroller that
control 4 different motor, requiring at least 24 different PWM signals. This is not compatible
with Delfino LaunchPad™ so a new solution has to be found.

DRV8305 can supply to this drawback: it accepts three different input modes, in order
to support various commutation schemes: 6-PWM mode, 3-PWM mode and 1-PWM mode

14
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(figure 2.10). The input mode can be selected writing the correct value inside the SPI
register of the driver, sending:

• 0x3A16 for 6-PWM mode (decimal 14870);

• 0x3A96 for 3-PWM mode (decimal 14998);

• 0x3B16 for 1-PWM mode (decimal 15126).

SPI communication also allows to investigate error causes and set the proper current
shunt amplifiers gain.

(a) 6-PWM mode (b) 3-PWM mode (c) 1-PWM mode

Figure 2.10: Input modes for DRV8305 IC.

The 6-PWM mode (figure 2.10a) is the default settings and allows, for each half bridge,
to be placed in one of three states, either High, Low or Hi-Z, based on the input. This
allow a direct control on each single MOSFET.

The 3-PWM mode (figure 2.10b) allows for each half bridge to be placed in one of
two states: either High or Low. Only the three high-sides input (INHx) are used and the
complementary signal is internally generated. Any activity on low-sides input pin (INLx)
is ignored.

The 1-PWM mode (figure 2.10c), the one used for this project, allow to fully control
three half bridge through a single PWM source and a 6-step internally stored block
commutation table. According to the logical value on pins INLA, INHB and INLB, the
driver redirect the PWM signal, pin INHA input, to the corresponding half bridge. The
INHC can be used to facilitate the insertion of dwell states, or phase current overlap states
between the commutation steps. For the complete switching sequence, including dwell
states too, see the driver datasheet.

The truth tables are reported in table 2.3 if active freewheling is used, and in table 2.4
in case of diode freewheeling. Diode freewheeling is when the current is carried by the
diode mounted anti-parallel to the MOSFET (see figure 2.7) while the MOSFET is reverse
biased. In active freewheeling, when the power MOSFET is reverse biased, that MOSFET
is enable: this allows the system to increase efficiency thanks to the lower impedance of the
MOSFET conduction channel compared to the body diode. Which freewheeling technique
to use can be set through SPI register. Here, active freewheeling is being used.
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State Input code GHA GLA GHB GLB GHC GLC

AB 0110 PWM !PWM LOW HIGH LOW LOW
CB 0100 LOW LOW LOW HIGH PWM !PWM
CA 1100 LOW HIGH LOW LOW PWM !PWM
BA 1000 LOW HIGH PWM !PWM LOW LOW
BC 1010 LOW LOW PWM !PWM LOW HIGH
AC 0010 PWM !PWM LOW LOW LOW HIGH
Align 1110 PWM !PWM LOW HIGH LOW HIGH
Stop 0000 LOW LOW LOW LOW LOW LOW

Table 2.3: Truth table for 1-PWM, active freewheeling.

State Input code GHA GLA GHB GLB GHC GLC

AB 0110 PWM LOW LOW HIGH LOW LOW
CB 0100 LOW LOW LOW HIGH PWM LOW
CA 1100 LOW HIGH LOW LOW PWM LOW
BA 1000 LOW HIGH PWM LOW LOW LOW
BC 1010 LOW LOW PWM LOW LOW HIGH
AC 0010 PWM LOW LOW LOW LOW HIGH
Align 1110 PWM LOW LOW HIGH LOW HIGH
Stop 0000 LOW LOW LOW LOW LOW LOW

Table 2.4: Truth table for 1-PWM, diode freewheeling.

2.2 Software environment

2.2.1 Code Composer Studio™

Figure 2.11: Code Com-
poser Studio.

Code Composer (CC) Studio™ 7 is an Integrated Development
Environment (IDE) that support all Texas Instruments’ micro-
controllers. This is the TI master software because allows the
development of many different code for many different hardware in
one single place, thanks to the integrated plug-ins. In fact, there
is a large number of example that allows to spin a BLDC motor
without almost any effort (except reading the documentation)
with Piccolo LaunchPad™ and DRV8305 BoosterPack.

In figure 2.12 is depicted the framework structure provided by
Texas Instruments. This framework, at least the part related to
motor control, has been modified in 2018.

Before that year, inside of Code Composer Studio™ there
was some different libraries and drivers like ControlSuite and

7https://www.ti.com/tool/CCSTUDIO
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Figure 2.12: CC Studio™ software framework, before and after 2018. Thanks to Ing. Baldo.

MotorWare. Together with this solutions, there was InstaSpin FOC™ and InstaSPIN-
MOTION™.

InstaSPIN-FOC™ is a complete sensorless FOC (Field-Oriented Control) solution
provided by TI, allow efficient motor control without the use of any mechanical rotor
sensors.

InstaSPIN-MOTION™ is a comprehensive sensorless or sensored FOC solution for
motor-, motion-, speed- and position-control.

Actually, ControlSuite and MotorWare have been replaced by C2000ware8, a cohesive
set of software and documentation that includes device-specific drivers, libraries, periph-
eral examples, hardware design schematics and documentations. Inside of C2000ware
environment, it is possible to install different Software Development Kit (SDK). One of
this SDK is MotorControl, including InstaSpin FOC software.

The new version of Piccolo LaunchPad™ is compatible with the newest software (i.e.
C2000ware), while the oldest version (not described here), supported the pre-2018 software.

Unfortunately, there are no ready-to-use examples compatible with Delfino LaunchPad™.

2.2.2 Simulink

Figure 2.13:
Simulink.

Simulink9 is a block diagram software environment created by Mathworks.
It is a useful tool to model, simulate and analyze different type of systems,
providing an user-friendly interface.

With its large amount of packages supported, it can be helpful to
numerically solve differential equations (both stiff and non stiff problems),

8https://www.ti.com/tool/C2000WARE
9https://www.mathworks.com/products/simulink.html
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simulate control loop and autonomous systems, wireless communications
and even develop Artificial Intelligence solutions.

Simulink is also capable of generating C/C++ code to be deployed in mi-
crocontroller. Thanks to Embedded Coder Support Package for Texas
Instruments C2000 Processor and to SoC Blockset Support Package
for Texas Instruments C2000 Processors, it is possible to convert a Simulink block
diagram into C code, build and deploy it on C2000 Processors (in any case, Code Composer
Studio™ must be previously installed).

These packages include also two different running modes:

Monitor&Tune This mode allows to run the software and to monitor and modify in real
time some variables through serial communication. This mode is quite similar to
standard simulation in Simulink. It is also called external mode.

Build, Deploy & Start This mode generate the C code and build it to the target,
generating a stand-alone program. This mode replicates the behavior of Code
Composer Studio™.

Both running modes have their advantages and drawbacks. Monitor&Tune allows to
easy modify the code10 without regenerating the whole code (this is an awesome fact,
considering that the code generation process and the deployment on the board can last
for up to 4min, with both Monitor&Tune and Build, Deploy & Start). On the contrary,
this mode impose a severe slow down of code execution, because of the large amount of
data transmitted through serial port, causing difficulties on real time software monitoring.
In addition, only for Matlab version previous than R2021, the length of each data must
be greater than 8 bit. This means that if you want to reduce memory usage by using a
boolean value to set to High a digital output pin, you will get an error saying that it is not
possible to start the external mode. This bug has been resolved in Matlab R2021 release.

On the other side, Build, Deploy and Start makes the code run faster, but data logging
is not possible (unless a serial communication is set, see section 3.4 on page 31).

For the development of the software described in chapter 3 both run mode has been
used. However, in that chapter only the version compatible with Build, Deploy & Start
is deeply described because that is the most complete version and the one with better
performances.

The Matlab version used here is R2020b.

2.3 Trade off
Because of stringent time requirement imposed by MAG and the lack of examples, directly
development of C language code for Delfino LaunchPad™ and BoosterPack DRV8305 was
not a viable solution (the presumed development time was more than 6 months, while the
available time was less than 2 months). For this reason, a number of alternative solutions,
summarized in table 2.5 has been proposed to start the software development and meet the

10Only minor changes are allowed, like modification of constant values. No change in block diagram
are permitted.
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time requirement. Given that the global hardware architecture cannot be change, pursuing
a solution similar to the definitive one is probably the best choice to reduce development
time.

Solution A Solution B Solution C

LaunchPad™ Piccolo F280049C N/A Delfino F28379D
Driver DRV8320 Fahulaber’s driver DRV8305
InstaSPIN™ enabled Yes N/A No
Available examples Yes Yes No
Presumed time required to:
- spin one motor 1 month 2 weeks > 6 months
- control one motor +1/+2 months +1/+1.5 month +1/+2 months

Table 2.5: Different solutions proposed.

One possible solution is to migrate to Piccolo LaunchPad™ F280049C and BoosterPack
DRV8320. This is a slight different architecture with little less performance, but with a lot
of community support and working examples, with a presumed development time of less
than one month to make a motor to spin.

Some tests have been made with this architecture and, following the available examples
for InstaSPIN™ , in about one month it has been achieved:

• Motor parameter identification;

• Speed control loop;

• Torque control loop.

Even if these results do not totally meet the target software requirements, they are
encouraging.

Another solution is to use Faulhaber proprietary driver: even if this is the quickest
solution, it is the most expensive one. Furthermore, this way is totally different from what
has to be done at the end.

In conclusion, MAG decides that even minor architecture changes are not possible at
this point of the project. In order to reduce development time, they suggested to use
Simulink instead of Code Composer to write code.
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Chapter 3

Software development

This chapter describes the development and the global structure of the last version of the
software needed to control one single electro-mechanical actuator.

The target hardware is Delfino F28379D Launchpad™ (subsection 2.1.4), with BoostXL
DRV8305EVM BoosterPack (subsection 2.1.5). This software works with both type of
motor, after changing few parameters in the init.m file.

Three files are needed to run the software: init.m, the Matlab code that contain some
variables definition, Host_Log_Dati.slx, a Simulink mode that can be used to control the
motor and log some useful data via serial communication, and Target200.slx, the core of
the software.

The init.m file allow to apply the correct settings to the serial communication (only
host side, see section 3.4), like baud rate and communication timing, to set frequency and
other time specification on target device and to select the motor that will be used.

Some of this variables, for example, baud at line 7, are not used, but are here just
as a reminder. This is because some blocks of Embedded Coder Support Package for
Texas Instruments C2000 Processor and SoC Blockset Support Package for Texas
Instruments C2000 Processors and the Hardware Implementation section of the Con-
figuration Parameters menu in Simulink do not allow the use of variable inside numerical
fields (in opposition to classical Simulink behaviour). Not knowing this particular annoying
aspect is a loss of time because no errors rise while compiling. Simply, after deploy, the
software works only partially, apparently without any logical reason.

For this and other reasons that will be described later in this chapter, Simulink is not
the best environment to develop this type of code. So, here only the software to control
just one single motor has been developed. Further details can be found in chapter 6.

During this work, a number of different versions has been developed: some of them
are only for test purpose, while other implemented some different features, like a slider to
directly control the duty cycle, without the need of serial communication,s or a simplified
model to make the first test on real actuator. These versions are not described here because
there are only minimal differences among them.

21



Software development

Figure 3.1: Target200.slx main view

3.1 Target file
The Target200.slx file is shown in figure 3.1.

The main parts, whose description is the main topic of this chapter, are listed below:

Data Store A place to put all Data Store Memory block.

Timing Manually computation of elapsed time (section 3.5).

Reset Recovery procedure after emergency stop (subsection 3.8.2).

Analog read Analog data acquisition (section 3.3).

Motor control The core of the software; includes

• Phase commutation (section 3.2)

• Controller and function generator (section 3.6 and section 3.7)

• Safety measures (section 3.8)

• Initial reset routine, or starting sequence (section 3.9)

• Position counter (subsection 3.2.1)

SPI communication BoostXL DRV8305’s settings are sent via SPI communication
(section 2.1.5 and subsection 3.2.2).

SCI A - Serial communication It contain all what is needed to perform serial com-
munication with an host computer (section 3.10 for the host file and section 3.4 for
target file).

Even if the Delfino LaunchPad™ is equipped with floating point unit (FPU), it has
been decided to use only int data type. If using of real data type simplify the code
(e.g. see sinus wave computation in section 3.7), the required time for computation

22



3.2 – Switching sequence

is not deterministic and will increase the microprocessor workload. The workload is a
fundamental aspect because Hall sensors must be read synchronously with the program
execution. Usually, when an electronic board should drive a BLDC motor, the Hall sensors
are read using Interrupt Service Routine (ISR). ISR allows to stop the sequential execution
of the program and do something only when a change is detected (i.e. change in hall state
causes phase current to switch from one phase to another). This guarantees a correct
execution of some critical time-related tasks. Because of Delfino can natively support up
to two different motors but MAG architecture require four of them, there are not enough
interrupt available. This lack of interrupt connection can be override by polling reading.
For further details, see section 3.2.

In this software, there are many different blocks, some of them defined as Atomic
blocks. An Atomic block is a code portion which execution time is different from that of
the main code. Examples of these type of blocks are the Controller and the block sending
and receiving data via serial communication (SCI A – Serial communication, RX and TX
blocks).

To handle different sample time, usually Simulink’s Rate Transition block work well,
but some problems arises while using this type of block with Delfino LaunchPad™. For this
reason and also because of coding needs (e.g. creating a counter), Memory Data Store block
are used instead. These blocks act just like a declaration and initialization of a variable in
C language: they allocate some memory slots for a variable with a certain name and a
certain initial value. It is possible to read from this memory location or to overwrite what
was in memory using two other different blocks. Thanks to its asynchronously execution
(they can be read or written at any point of the code), they are not affected by sample
time problems.

3.2 Switching sequence
In figure 3.5 on page 26 there are different zoom level of the blocks required to perform a
low level control of a BLDC motor.

Looking at figure 3.5a, it is possible to see that the duty cycle value is split in its
absolute value and its sign. This allow to control not only the magnitude of the duty cycle,
but also the spin direction.

Figure 3.5b shows the PWM setting and the Phase Commutation block. In order to
set a proper duty cycle value, the Simulink block for PWM’s duty cycle settings requires
its complement to 100. Obviously, the duty cycle value must be positive and limited in
range from 0 to 100. The PWM signal selected inside this block is ePWM1A; the output
is GPIO 0, on pin 3, the one corresponding to DRV8305’s INHA pin.

The phase commutation block (figure 3.5c) is in charge to continuously decide in which
phase current must flow, depending on motor alignment. The input of this block is duty
cycle’s sign. In order to make the motor to spin in a good way, an offset of three position
in the switching sequence is required. The blocks shown in figure 3.2 allow to correctly
handle a sign input (i.e. ±1) and transform in it to +3 and 0, respectively for forward and
reverse spin direction. Forward means that mechanical actuator connected to the motor
press brake disks.

Shaft position is acquired inside Hall position block (figure 3.3). The values read from
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Figure 3.2: Direction management.

Figure 3.3: Hall sensor reading.

GPIO 54, GPIO 55 and GPIO 57 can be codified into three bit signal. This allow to
obtain a numerical sequence that can be directly related to the shaft position. Because
the selected motors are of 7 pole-pairs type, this sequence (figure 3.4) will repeat 7 times
per revolution.

The output sequence that appear in figure 3.4, after binary-to-decimal conversion, is

6 4 5 1 3 2

and it is store in the red Hall sequence block on the left of figure 3.5c
This sequence is directly related with wire connection of the Hall sensors on the Delfino

Launchpad:

• Hall A, green cable, on GPIO 54;

• Hall B, blu cable, on GPIO 55;

• Hall C, grey cable, on GPIO 57.

It is possible to change which GPIO to use by simply modifying it inside of the blue block
of figure 3.3.
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Figure 3.4: Hall sensors signals.

The Hall sequence pass through a look-up table, which allows to generate a sequence
from 1 to 6 or from 6 to 1, depending on the spin direction. This is also the output of
BLDC MOTOR block. The use of a look-up table allows to change the motor connection
(for example, connecting another BLDC motor from another manufacturer) without modify
the code inside command block.

Command block accept a sequence from 1 to 6, the spin direction phasing and, eventually,
a manual phasing and output a number related to which phase has to be activate. The
subsequent look-up table converts this number in the code that has to be sent to DRV8305,
according to table 2.3 on page 16.

If the three input are hall_state for Hall state (a number from 1 to 6), dir for the
spin direction (0 or +3) and ph for manual phasing (an integer value defined in the init.m
file and, for now, set to 0), the formula implemented in this block is

output = (hallstate − 1 + dir + ph+ 6) mod 6 + 1 (3.1)

After the last look-up table (which output is a decimal number), there are four Bitwise
AND block that split this number in order to obtain four single bit line. These values are
then written on GPIO 1, GPIO 2, GPIO 3 and GPIO 4.

3.2.1 Position counter

On figure 3.5a, it is possible to notice that the BLDC MOTOR block output is one of the
input of the Position Counter block. The other input are the starting sequence counter
(see section 3.9 and the zero value. This block computes the number of changes occurring
in the hall signal. From this, it is possible to compute the angular position of the shaft
multiplying it by 360°/(7 ∗ 6), where 7 is the number of pole-pair and 6 are the possible
different Hall state (the total step per revolution are 42). The output of this block is the
number of step and not the corresponding angular position because an angular value (both
degrees or radian) will not be an integer, requiring the use of floating-point unit.
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(a) Motor control blocks

(b) BLDC Motor block

(c) Phase commutation block

Figure 3.5: BLDC control blocks.
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Figure 3.6: Position counter block.

The Matlab function inside of this block add +1, 0 or −1 to the previous step number
depending on the spin direction (if spin occurs). Flow chart in figure 3.7 explains this
process. The counter is needed to properly set the zero value (set to half revolution, i.e.
21 points).

Figure 3.7: Flow chart for position counter block.

3.2.2 SPI communication

The SPI communication is required to properly set the DRV8305 motor driver. The block
SPI Master Transfer, included in Simulink plug-in for Delfino Launchpad™, accept an
uint16 input and output the value read or write to the corresponding register. This very
simple working mode hides a major drawback: probably because of Simulink nature, this
block runs during all simulation time. It means for each time step, an SPI reading/writing
operation is performed. This cause an overload of the LaunchPad™ and it is one of the
cause of the timing problems explained in section 3.5.

To fit this problem, a more complex structure must be implemented (figure 3.8). At the
start of program execution, this block diagram allows to write up to three different values
on SPI bus (but it is easy to increase that number), thanks to a counter that increases its
value each second. This counter feeds two switch blocks: when counter is less than 4, the
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Figure 3.8: SPI communication management.

SPI block is activate and the correct value is written. In all other cases, when counter
becomes equal or greater than 4, SPI block is deactivated and the global output is set to
11.

One of the code that must be writte on SPI register is 0x3B16, the value that set
1-PWM mode on DRV8305.

The output of this block is in AND combination with the EN signal (enable signal, sent
from Host via USB communication). This stops the driver until the correct way of work
has been set.

Because of the logical simplicity of the task that must be accomplished, not justifying
the use of a Data Store Memory block, here and only here a Rate Transition block has
been used.

3.3 Analog read
One of the main characteristics of an analog signal is that it can vary continuously in time.
It is opposed to discrete signal, which can have just two different value, high and low. One
of the most common way to interface a microprocessor (a digital device) with the real
world is via analog sensors. This type of sensors exploit the modification of some electrical
characteristics (like resistance), caused by external agent, to generate an electric signal
(voltage level). Analog-to-Digital Converters (ADCs) are devices that convert an analog
input into a digital signal. Their resolution is expressed in bit. Here, the acquisition has
been linked to a PWM signal (ePWM5) with a frequency of 10 kHz.

Delfino LaunchPad™ is equipped with 12 bit ADCs, so an analog signal is codified as a
numerical value between 0 and 212 − 1.

1This value should be a boolean one, but because of Monitor&Tune bug it has been set to be an int16
type.
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The maximum voltage supported by ADCs is 3V. Unfortunately, Delfino LaunchPad
provide only 3,3V or 5V. For this reason, when a sensor is powered by the LaunchPad,
some precautions has to be taken: one possible solution is to increase the sensor range, so
that the real maximum value fall below 3V; another one is to connect a resistor in series
with the sensor (as in case of using a potentiometer), obtaining the proper voltage drop.

Figure 3.9: Blocks performing a generic analog acquisition.

In figure 3.9 is shown a general process for the acquisition of an analog signal. The
output of the ADC block (int32) pass through a complementary filter.

Figure 3.10: Complementary filter’s block diagram.

Complementary filter (which block diagram is shown in figure 3.10) allows to filter raw
data coming from ADCs. If u is the mean value and xi the actual value read by ADC, it
can be defined as

ui = (1− n)ui−1 + nxi, with 0 < n < 1 (3.2)

It compute a weighted average between the previous mean value and the actual read value.
In order to implement this filter on Delfino LaunchPad™, its formulation must be

rearranged. Introducing the variable k = 1/n and an accumulator defined as

Acc =
u

n
= k u (3.3)

it is possible to write

ui =
1

k

(︃
xi +Acci−1 −

1

k
Acci−1

)︃
(3.4)

that is the formulation reported on figure 3.10.
Even if the ADC resolution is only 12 bit2, ADC output is an int32. This is because

accumulator can reach very high value, causing overflow if int16 data type is used. After

2This is a good resolution, the low adjective refers to data length.
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complementary filter, the mean value is reduced to int16 data type because all other parts
work with this type.

In the next block, the mean value (the filter’s output, an integer number from 0 to
212 − 1) is converted into a physical value. Because of integer numbers, the commutative
property of sum and multiplication is not yet valid, so the two formulas

Vout =

(︃
ADCin

212 − 1

)︃
p Vsupply1000 = 0 (3.5)

Vout =

(︃
ADCin p Vsupply1000

)︃
1

212 − 1
/= 0 (3.6)

are not the same (i.e. the first always return 0). The p factor allows to pass from ADC
point to a physical value (expressed in N, A or V) while the 1000 factor add milli- prefix,
so the truncating error is not exaggerate.

In order to let the system works in a correct manner, the only fundamental sensor is a
load cell to measure the brake force, that is the feedback for the controller. However, for
diagnostic and prognostic purpose, other sensors can be implemented. The Boosterpack
DRV8305 BoostXL natively include a voltage supply sensor, three phase voltage sensors
and three phase current shunt sensors. Here, even if the voltage supply and phase current
are measured, their values are used only for data analysis purpose.

3.3.1 Voltage supply measurement

Voltage supply, like phase voltage, are sensed thanks to an high-value resistor (whose
order of magnitude is units of [kΩ]) connected in parallel to the voltage drop that must be
measured: for the Ohm’s law, an higher resistor value require less current to produce the
same voltage drop. As an example, the phase voltage sense’s resistors are R11, R12 and
R13 of figure 2.8 on page 14. Capacitors work as low-pass filter.

3.3.2 Phase current measurement

Current measure is more complex: it require a low-value resistor because this resistor must
be connected in series with the load: the low value (here is 7mΩ) will not affect too much
load’s impedance, even with very high current. However, an high efficiency measure will
produce a virtually null voltage drop, so it requires an operational amplifier to amplify
this signal and send it to the ADC. These shunt resistor are R4, R5 and R6 in figure 2.8,
each one of this is RSENSE in figure 3.11

The amplifier scheme is reported in figure 3.11, as reported in BoosterPack DRV8305EVM
datasheet. Through SPI communication, it is possible to change OpAmp gain, modifying
the value of resistor Rx and Ry. The shunt resistor is connected on the low side of the
MOSFET.

In order to compare and verify values read by the shunt resistors, some external current
sensors has been connected in series with each phase. That sensors use Hall effect to
generate a potential difference that can be detected by the ADCs.
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Figure 3.11: Low side current shunt sense.

3.3.3 Force measurement

The load cell used for the test bench is a general purpose one, with DY510 amplifier.
Range is from 0 kg to 2 kg. Both load cell and amplifier are shown in figure 4.1 on page 50.

The amplifier allows to set the zero value of the load cell and can output both voltage
or current signal. In order to use ADC without the need of shunt resistor and operational
amplifier, voltage output has been selected. The amplifier is powered by an external 5V
source.

This sensor is not the one that will be mounted on the real electro-mechanical actuator,
both because of the range and resolution. However, the working principle and the output
are of the same type, so it will be pretty easy to switch between the two load cells types.

3.4 Serial communication
While mounted on airplane, the main board will receive pilot input from the main computer
through ARINC 429 data bus. At this moment, one solution to replace the pilot input is
to use an external potentiometer connected to an analog input of Delfino microcontroller.
Potentiometer can directly control the duty cycle applied to each phase or a force reference.
In spite of its simplicity, this solution does not give enough precision to conduct the
required validation tests described in chapter 5. Moreover, during controller tuning, it
could be useful to make real-time change to controller parameter, without waiting some
minutes for any code rebuild3.

For these reasons, it has been decided to implement a serial communication between an
host software (a Simulink program that run on a computer) and the Delfino microcontroller,
the target. Host file is described in section 3.10. A serial communication, together with
safety measures described in section 3.8, allows external control over microcontroller: for

3Rebuild and deployment of Simulink code can require up to 3min.
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example, human intervention is mandatory to enable the driver or to complete recovery
mode.

The module used on Delfino LaunchPad™ is SCI A (Serial Communication Interface™
module A). The baud rate of serial communication has been set to 230 400 bps. Even if
this value is stored inside baud variable in init.m file, it must be numerically written in
General Settings/Hardware Implementation/Hardware Details/SCI A/Baud Rate field of
Simulink target file.

All data sent via serial communication are int16 type. This will reduce the need for
data type conversion blocks, since this data type is widely used inside the software. In
early version of this program, it has been found that the presence of these blocks, even
if unnecessary, will contribute to the general slow down of the execution time, causing
the timing problem described in section 3.5. For the same reason, data sending and data
receiving on target have now tow different architectures:

• Receiving block follows an index-value structure;

• Transmitting block simply muxs all data in a single vector.

Initially, both of them perform just mux and demux operations: the RX block read the
serial port, waiting for a very long vector composed by int16 data values, while the TX
block packs all the int16 data in a single vector and send it to the host. It has been
noticed that sometimes target will not reply properly to host input and other time the
reply is given with a very high delay (up to 30 s or 1min). This behavior was caused by
two different aspects:

• target read serial buffer continuously; after any reading the buffer was cleared; this
happen even if the host did not complete data sending, causing loss of data;

• demux operations, as will be explained in section 3.5 require high workload, causing a
slowing down of the execution. Because of this time stretching, both host and target
sent 230 400 bps, but with two different definition of time unit.

At this moment, both problems have been resolved: the first with a local solution, while
the latter with a major intervention.

3.4.1 Data receive

RX is an Atomic Block with sample time of 0,002 s, a frequency 50-times greater than the
host’s transmit sample time (see section 3.10).

As mentioned before, the RX follow index-value architecture: the host send an index
and its corresponding value. In this way, if data loss occurs, only one single value is not
updated, not affecting the others. Thanks to memory block, a not written value implies
that the previous value remain active, avoiding problems caused by not valid input.

For graphical reason, figure 3.12a only shows the central portion of this block. A
complete list of index-value pair can be found in table 3.5 on page 48.
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(a) RX block (b) TX block

Figure 3.12: SCI A Target communication.

3.4.2 Data transmit

Even TX is an Atomic Block with a sample time of 0,001 s. Unlike RX, it simply gathers
all data in a single vector and send it to the host. This is because implementing the
same architecture of the RX block (index-value pair) leads to the same time management
problems that arose with the old RX structure.

A list of all variables sent from target to host can be found in table 3.4 on page 46,
even with a different order. The only difference is micros variable: because it is 32 bit, it
must be split and sent through two different int16 channels: the first sends the integer
result of micros/215, while the last give the remainder of the division. In this way, it is
possible to recreate the original value in the host file.

Figure 3.12b shows the TX block. Inside of this block, it is possible to find the speed
computation block too. Even if these are two very different tasks, they are put together in
order to exploit the same atomic block.

3.4.3 Speed computation

By definition, angular speed is the time derivative of angular position. In Simulink there is a
block who numerically computes derivative, using system time. Furthermore, only discrete
block can be used here, because microcontroller compiler does not support continuous
function.

Speed computation is performed inside an Atomic block and not in the main program.
This allows to increase the counted step, with an overall reduction of relative errors caused
by both machine numerical precision and timing.

Because of timing problem and the use of integer type, it has been decided to manually
recreate the derivative computation using a simple backward incremental ratio

du
dt i

≃ ui − ui−1

ti − ti−1
(3.7)
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The number of occurred steps are computed in Position Counter block (subsection 3.2.1).
Elapsed time is store in micros variable; it is measured in [µs]. In order to avoid overflow,
micros is 32 bit length, thus allowing to compute up to 231−1 = 2 147 483 647 µs ≈ 35min,
just like position counter.

Even if TX block is of atomic type, i.e. its execution frequency should be fully
deterministic, in order to reduce approximation errors, elapsed time is manually computed
at each execution.

Because of micros is a signed variable, when overflow occurs, it is interpreted as a
negative value, so the time difference will be greater than the maximum allowable value
or less than zero (depending at which instant overflow occurs). Handling this behavior
requires an IF block: when anomaly is detected, the time difference is automatically set to
theoretical value of 10 µs, TX block’s sample time. Even if this will cause a momentary
loss of precision, it is better than output a completely wrong value.

After this, elapsed time is multiplied by 0.001, in order to obtain ms, so a lower
numerical value is obtained, reducing errors caused by integer math operations. The
incremental ratio is then converted to a rpm int16 value.

For a detailed description of time computation, see section 3.5.

3.5 Timing management
A critical aspect of this software is the timing management. While performing some tests,
many different problems arose:

• speed computation return a set of random values;

• speed computation return a plausible value k-times greater than the correct one,
where k is a constant value that change if code is modified;

• serial connection is not stable, even if settings are correct;

• when serial communication works, sometimes there is a huge delay between sent and
reply;

• function generator fails to reproduce correctly signal’s frequency;

• when generating any sequence, time between two different values is greater respect
to the nominal value;

All that problems occurs at different time and with different software version. Because
of their nature, it was difficult to understand that there was a single common cause: time.
Unfortunately, this is not the start of a theoretical physical discovery about the nature of
time. It is just the understanding that Simulink compiler for Delfino microcontroller is not
capable of time computation management.

It has been possible to find the common cause behind those problems during a whole
day of debug session. In the morning, it has been noticed that angular speed followed the
correct behaviour, but the read value were constantly 2.57 times greater than the correct
one (measured with an external stroboscope). On the same day, while implementing the
very first function generator (a simple square wave, with a period of 10 s), a delay was
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found. Measuring it, the wave period result between 2 and 3 times greater than nominal
one.

Investigating how this offset changes after software modification, it has been found
that some major causes of this problem are demux operation in serial communication RX
block, SPI communication and Data Type Conversion block. These operations increase
drammatically microcontroller workload because of Simulink’s compiler inefficiency. In
order to understand why this happen, a better analysis of this compiler is required.
Probably, at each execution step, demux block allocates and frees new memory slots, the
SPI block writes out its input (even if it is not changed).

One possible way to solve this problem is to increase software efficiency:

• for serial communication, index-value architecture has been adopted (see section 3.4),
when demux block has been replaced by a switch case;

• a new procedure has been developed to manage SPI communication, with SPI Master
Transfer block confined in a Switch Action block (see section 3.2.2);

• by default, Matlab and Simulink work with double data type; to reduce the amount
of data type conversions needed, all blocks have been properly set to directly output
the desired data type. Generally, all source blocks (constants, ADC blocks, data
store memory blocks . . . ) have a defined data type (i.e. int16 or, in some case,
int32), while all other blocks (gain, math operation, switch output, . . . ) have been
set to output the same type of input (otherwise, if a data type is specified, the block
automatically perform cast operation, even if it is not necessary).

Figure 3.13: Timing management.

However, software efficiency improvement is not a robust solution: any little code
modification could lead to this problem again. In order to constantly control how Delfino
LaunchPad™ compute elapsed time, 1 kHz square wave is generated on GPIO 131, pin
58. This pin is directly connected to an oscilloscope: comparing the real frequency on the
oscilloscope’s screen with theoretical value allows to find when problems occur.
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In order to obtain a reliable time measure (figure 3.13), a PWM signal with 200 kHz
and eQEP module are used. PWM signal is externally routed to eQEP A module, pin I;
then, with the proper block, it is possible to automatically computed the number of pulse.
Knowing the absolute number of pulse and the PWM frequency, it is possible to evaluate
the real elapsed time (expressed in [µs]). and to save it in micros variable.

3.6 Controller
At this point, the software is capable to spin a BLDC motor by setting duty cycle value.
This is a very simple open loop control, where the controlled variable is the total power,
the product of torque and angular speed (and the efficiency).

Given the value of duty cycle, the motor automatically sets its torque and speed
depending on external load, according to what is depicted in the proper torque-speed
diagram (see figure 3.14).

Usually, this is not an acceptable behaviour because this system will be susceptible to
any external disturbance, that can cause the motor to stall or to accelerate, overcoming the
safe working area. Furthermore, even if boundaries are not exceeded, the final equilibrium
point could not be the desired one.

For these and other reasons, it is necessary to implement a controller, which aim is to
guarantee desired braking force on each actuator.

(a) BLDC 3216 motor operation areas @24V (b) BLDC 4221 motor operation areas @24V

Figure 3.14: Recommended operation areas for Faulhaber’s 3216 and 4221 BLDC motors.

3.6.1 Controller architecture

Figure 3.15: Controller architecture.
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In figure 3.15, it is possible to see the controller architecture. On the left side there is
the function generator, described in section 3.7, that creates the reference signal, while on
the right side there is the controller.

The force feedback is provided by a load cell mounted on the electro-mechanical
actuator.

Here, the controlled variable is the force, expressed in [mN]. It has been decided to
directly monitor the output force and not other variables (such as current) because in
MAG’s brake system architecture, only one shunt resistor (collecting all phase current)
will be used. This became necessary because of the limited amount of analog input on
Delfino LaunchPad™. Moreover, the load cell output a force value (dimensionally [mN]),
not the desired phase current.

A simple PID closed loop scheme is not suitable here because, when the target force has
been met, the error will be zero, so will the controller output. On the other way, feedback
is mandatory in order to control the real braking force.

Here, both open and closed loop architecture has been used here. Figure 3.16 shows
the controller output (the duty cycle) for open loop only response (3.16a) and the closed
loop response, without feedforward (3.16b) to a force step of 2000mN.

On the left of both graphs, it is possible to see the initial reset routine (section 3.9).
The duty cycle of the feedforward branch (figure 3.16a) is just a constant value, not

affected by load cell output. On the other way, the duty cycle of feedback controller
(figure 3.16b) reaches the very high value of 50% because of the initial error. This last
control architecture does not allow to face any load cell failure.

(a) Open loop step response (b) Closed loop step response

Figure 3.16: Differences in step response between feedforward open loop only response and pro-
portional feedback only closed loop response.

The closed loop is a simple proportional controller. Proportional constant can be set
via serial communication, This allows real time tuning of the controller.

Integrative and derivative terms are not implemented here for two different reasons:
the first is that, using the test bench described in chapter 4, time response is satisfactory
and do not require any other term; the latter is that these terms require a reliable time
computation (see section 3.5). Those two contributions will be developed in future only if
they will indispensable using real mechanical actuators.
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The output of feedforward branch and the one of proportional branch are then added
together and multiplied by a constant value. This value has been derived empirically and
represents the converting factor between the required force [mN] and the corresponding
PWM duty cycle.

3.6.2 Current limitations

In electric motor, the output torque can be directly related to the current phase, thanks
to the so-called torque constant Km. Theoretically, a current loop or a torque/force loop4

are equally (i.e. they control the same variable).
However, implementig a current loop or a force loop requires different sensors, different

architecture and, in fact, each loop controls different characteristics.
Phase current is related not only to the output torque, but also to winding temperature

and bearing temperature. In the same way, torque is directly related to the maximum
allowable load on mechanical actuator.

Maximum load for the selected mechanical actuator can be easily set inside the Satura-
tion block of figure 3.15 on the reference signal line.

Thermal limits are more complex to evaluate. According to Faulhaber’s analysis,
thermal limits for 3216 and 4221 motor are resumed in table 3.1. Given the absence
of a temperature sensor inside motor case, phase current mean value must be used to
mathematically derive winding temperature. At this moment, no thermal and current
limitations have been implemented yet.

Winding temperature Bearing temperature

3216 115 °C 90 °C
4221 110 °C 85 °C
Table 3.1: Thermal limits for Faulhaber’s BLDC motors.

3.7 Waveform generator
Reference Force (figure 3.17), the yellow rectangle of figure 3.15, is a block which aim is to
output different waveforms. Signal selector variable (defined in Host_Log_Dati.slx file,
section 3.10) allows the user to select which waveform to use, according to table 3.2.

Each signal is characterized by its amplitude (A, [mN]), its frequency (f , [mHz]) and
its minimum value (x0, [mN]). All these values can be set via serial communication.

Time signal t comes from micros variable (see section 3.5).
As an example, the mathematical formulation for the sawtooth function is reported below

(equation 3.8). It has been tried to reproduce the correct execution order of mathematical

4Electric motor’s output is torque, but mechanical actuator convert this torque in linear force.
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Figure 3.17: Function generator.

Signal selector value Signal description

0 Constant 0mN value
1 Sawtooth wave
2 Triangular wave
3 Square wave
4 Sinusoidal wave

≥ 5 Output the corresponding value
Table 3.2: Signal selector possible values.

operation. For the correct math operation execution order and other waveforms, please
refers to Simulink model Target200.slx.

T =
109

1000f

t∗ =
t

1000

F = x0 +

[︃
(t∗ mod T )A

1

T

]︃[︃
t∗
T

mod 2

]︃ (3.8)
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3.8 Safety
Safety is an important matter in all engineering subjects and must be taken in account
during all design phases.

Furthermore, the aim of this software is to perform different tests with different
actuators, so it is important to implement some safety measures.

The software developed during this master’s thesis work is not conceived to undergo
the certification process, but the logical structure behind it will constitute the starting
point for a future certifiable code.

Figure 3.18 shows the block Max Position Safety Measure (red block), capable of
evaluating and handling emergency. If the second output of this block is true, the
BLDC motor control is switched from Starting Sequence block to this safety block. This
remain true until recovery procedure is performed, so the electro-mechanical actuators is
disabled. This drastic solution is useful during test phase because it give enough time to
think about what caused the emergency.

Figure 3.18: Maximum Position Safety Measure and Starting sequence blocks.

3.8.1 Safety measures

Safety measures implemented in this work are:

• Maximum force limitation;

• Maximum run limitation;

• Reverse spin protection.

Maximum force limitation

The limitation over the maximum applicable force is the simplest one. It consists of a
saturation block on the output line of Function Generator block. This saturation will not
rise the emergency flag, but will just limited the reference force to a certain value, based
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Figure 3.19: Safety measures.

on the maximum load each actuator can support. So, in this case, no recovery procedure
is needed.

This limit is required because the user can directly set a reference force value through
serial communication. If this value is greater than the maximum allowable load, actuator
can be damaged.

Maximum run limitation

Maximum run limitation performance is similar in scope to force limitation, but with
different implementation. When the motor spins in the right direction, the actuator will
move forward, causing the brake disks to press each others. Erroneous input or wrong
computation (caused by run-time errors) could eventually cause an uncontrolled and/or
undesired spin. Thanks to position counter block (subsection 3.2.1), when position exceeds
a certain threshold, an emergency occurs (red square on figure 3.19). In the same time, duty
cycle control automatically switch from controller block to the violet square of figure 3.19,
where duty cycle is set to 5% until a minimum position, close to the initial unloaded one,
is reach and then duty cycle is set to null value.

This portion takes into account elastic response that occurs in test bench (where the
main load is a rubber band). The need of this last portion will be empirically reviewed
taking into account the real stiffness of the system, when this software will be validated
with real actuators.

Implementing this safety measure, different possible versions have been studied.
An easier version of this safety measure will simply read load cell measurement and

directly implement an almost real time (compared to theoretical limit described above)
force limitation. However, this solution’s major drawback is the load cell itself. If a failure
on the load cell occurs, measured force can be a random value, so the actuator behaviour
will be unpredictable (e.g. it can enter in emergency mode even if it is not necessary).
Here, position is measured thanks to Hall effect sensors: they are more reliable because
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of their simple package not directly subjected to the brake force. Moreover, Hall sensors’
failure will cause an almost complete loss of control of BLDC motor.

Although the limitation over the maximum run comes from mechanical considerations,
mostly related to test bench design, it can be useful to prevent electronic damage.

Indeed, if the duty cycle is instantaneously set to 0 when emergency occurs, the stretched
rubber band will cause the motor to forcibly spin with a maximum speed proportional to
elastic band’s elongation. This behaviour will cause MOSFETs to be reverse biased and
high reverse current flowing on the body diode of MOSFETs.

Reverse spin protection

Because of test bench design (chapter 4), it cannot transmit compression stress, but only
tensile stress. This is one of the major different respect to the real system.

If the load cell output a real force greater than the reference value, the controller cause
the motor to spin in the opposite direction. This is a normal behaviour if force has a
positive value; however, it can happens that reverse spin causes the rope to roll up in
reverse around the spool. According to controller scheme, a reverse spin will cause a force
decreasing and negative values are allowed. In the test bench, negative force values are
not allowed and the real force follows a trend similar to the absolute value function.

For this reason, a minimum run limit must be set. The actual implementation can be
seen on the red square of figure 3.21. Here, the minimum value has been set to 0: when
the position counter falls below this limit, any duty cycle sent to motor will be a positive
value, interdict reverse rotation.

This will not causing the rise of emergency flag, so recovery procedure is not needed
here.

Even if this protection is directly related to the test bench developed here, it is not
excluded that it will be implemented on the real system too: changing the minimum
position value, it is possible to reproduce via software a physical end of stroke.

3.8.2 Recovery procedure

Figure 3.20: Recovery procedure.

Recovery procedure is needed only when the emergency flag becomes true, i.e. when
the maximum run limit is reached. Figure 3.20 shows the logical scheme required to reset
the software. F_ref and Ripristino variables can be set through serial communication.
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First of all, the reference force must be set to 0; then Ripristino variable should be
set equal to 1. It is recommended to set to LOW value also EN variable: this will prevent,
at the end of the reset, an abrupt start of the motor.

If these conditions are met, the DRV8305’s enable pin is forcibly set down, thus resetting
all fault indicators saved on driver’s register. On the same time, the emergency flag is
set to zero, so the led on Host_Log_Dati.slx (section 3.10) can turn green again and the
motor control switch from safety blocks to Starting sequence block.

Subsequently, the enable pin is automatically set to the value sent from host file, so it
is possible to enable the driver and restart as usual.

As stated before, emergency mode will take complete control of the motor, ignoring
any user input (except for those required to restart the software). This behaviour will not
be considered safety compliant in a real aircraft architecture, because it will preclude to
pilot the possibility to take corrective action upon system failure. Here, on the contrary,
this forced stop and the articulated process needed to restart the motor impose to perform
a detailed analysis of what caused the emergency mode to activate.

3.9 Initial reset routine

Figure 3.21: Initial reset routine.

A BLDC motor not equipped with high resolution position sensors (like an encoder)
should not be used where high precision servo performances are required. Depending on
the reduction ratio, the resolution of only 8,57° (subsection 3.2.1) could be not enough to
guarantee an accurate position control.

Brake pads are subjected to wear out: if this is not properly taken into account during
software development, it will cause a performance degradation of the global system. Wear
out will cause a progressive increase in time required to obtain a certain brake force and
this is not acceptable.

For this reason, a starting sequence has been developed: when performed, this procedure
allows to modify the zero point reference taking into account pads wear.

Moreover, if an external reference is given, with this starting sequence it is possible to
quantitatively monitor and measure brake wear out, allowing the development of a more
efficient and cost effectiveness maintenance plan without adding external sensors.
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Figure 3.21 shows the block implementation of the initial reset routine.

This process is constituted by different steps (the switch block on the right), governed
by a counter.

At this moment, the counter (that is Seq variable) is manually set via serial communi-
cation, but the software has been developed taking into account the automation of this
procedure (that is why some Seq values seems to be unnecessary, to let pass enough time
between two different instruction).

In order to perform the starting sequence, Seq variable must be sequentially set to a
value from 6 to 1, according to table 3.3.

Seq value Description

6 Duty cycle is set to 0%
5 Duty cycle is set to m.DC_azzeramento value, equal to 3%
4 Wait the forces to reach equilibrium point
3 Set actual position to zero value (21 points, half turn, see subsection 3.2.1)
2 Duty cycle is set to −5%
1 Duty cycle value is decided by controller block

Table 3.3: Initial reset routine sequence.

During the last two phases, the reverse spin protection safety measure (section 3.8.1)
applies, so the motor cannot reach position below than the zero value set during this
procedure.

Figure 3.22 shows the shaft position (expressed as hall steps) during initial reset routine.

Figure 3.22: Position during initial reset routine.
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3.10 Host file
The Host_Log_Dati.slx file (figure 3.23) is the one used to send command to the Delfino
LaunchPad™ and to log data.

Figure 3.23: Host_Log_Dati.slx, main view.

It is a very simple program:

• the blue part contain all Data Store Memory Block;

• the violet part sends command;

• the red area reads data from Delfino LaunchPad™;

• the yellow area allows to visualize some data in almost real time;

• the green part saves all data received in a .mat file as a Structure With Time format.

The data saved in the .mat file are listed in table 3.4, with a brief description. Some
channels are intentionally left void, allowing to save more data without large modification
of block diagram.

This program runs with a time step of 0,001 s in real time mode. To allows real time
mode to be on, it is important to not overload this program with a lot of scope or other
way to graphically represents data.

3.10.1 Data sending via USB

In figure 3.24 is depicted the block diagram inside the violet area of figure 3.23. Here, the
main structure of this communication is highlighted.
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Number Signal Description

1 TX counter Transmission counter
2 Hall Pos ABS Total Hall steps
3 Vel Hall Angular speed [rpm]
4 PWM Duty cycle, controller output
5 PWM Effettivo Actual duty cycle (safety measures, see section 3.8)
6 F_ref Force, controller output [mN]
7 Force Force read by load cell [mN]
8 Vdc_bus Power supply voltage [mV]
9 I_A Phase A current [mA]
10 I_B Phase B current [mA]
11 I_C Phase C current [mA]
12 micros Elapsed time [µs] (see section 3.5)
13 Controller_Time Elapsed time between two controller call [µs]
14 Emergency flag Flag, true if emergency occurred (see section 3.8)
15 - Void
16 - Void
17 - Void
18 - Void
19 - Void

Table 3.4: Data to be saved.

This is an atomic block with a sample time of 0,1 s, defined inside variable h.step_time.
Because of what has already explained in section 3.4, for each input, two data are sent:

the first one is an index, the latter is the real value. Index is computed using a repeating
sequence block (count from 0 to 15), adding 1 (because switch block require input starting
from 1) and is converted to int16 type. The sample time is inherited, so it is the one
defined in h.step_time.

The data sent are reported in table 3.5. The detailed meaning of all of this variables
was explained in previous sections.

Because of it has been decide to do not use Delfino’s floating point unit and to reduce
the need of Data Type Conversion blocks, all data here are of int16 type. The length is
set inside each constant block. In order to allow a better understanding of data meanings,
units of measure are written. Decimal data can be sent multiplying the numerical, decimal
value by a proper power of ten. For example, the waveform generator’s parameter input
([N] and [Hz]) are multiplied by 103, obtaining [mN] and [mHz].

The green circle is a virtual led. Its color is green while the motor is working normally
and turns to red if a problem occurs. After the completion of recovery procedure (see
subsection 3.8.2), it turns green again.
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Figure 3.24: Block diagram to send data to Delfino Launchpad™.
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Index Signal Description

1 Enable Driver Enable
2 Test - Blue led Blue led to perform communication test
3 K_FeedForward Controller’s Feed Forward constant (see section 3.6)
4 Kp Controller’s proportional constant (see section 3.6)
5 Ki Controller’s integral constant (see section 3.6)
6 Kd Controller’s derivative constant (see section 3.6)
7 Reg_write Value to be read from/written on driver’s SPI register
8 Recovery Recovery variable (see subsection 3.8.2)
9 Starting counter Counter for the initial reset routine
10 Bias Waveform generator’s bias [N] (see section 3.7)
11 Amplitude Waveform generator’s amplitude [N] (see section 3.7)
12 Frequency Waveform generator’s frequency [Hz] (see section 3.7)
13 Signal selector Waveform generator’s signal selector (see section 3.7)
14 - Void
15 - Void
16 - Void

Table 3.5: Data to be sent from Host to Target devices.
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Chapter 4

Test bench

This chapter describes the design of the test bench used to validate the software described
in chapter 3.

All tests described in chapter 5 have been conducted on this bench.
This is a simplified version of the bigger test bench that will be used to test real

actuators. Here, a rope connected to a rubber band replace the actuator. The reasons
behind this choice are different: at this moment, actuators have not been built yet;
moreover the pressing force required for each actuator is a very large value, thus requiring
some structural analysis in order to avoid damages on test bench structure. As final
consideration, a new software requires huge validation before tests can be safely conducted
on real hardware.

4.1 Needs and requirements
This test bench has been designed to support different type of tests:

• System time response

• Tuning of controller parameter

• Starting sequence performance

• Safety measures effectiveness and recovery procedure management

• Data logging

At this moment, what is important is to test software behaviour in different scenarios.
Because no real actuator is used here, the test bench have to reproduce in a satisfactory
way the real behaviour of the system. Particular attention was paid to the torque seen by
the BLDC motor and to the number of step required to reach the nominal torque.

To virtually reproduce the compression free run (250µm downstream the actuator) and
system’s elasticity, a rubber band has been used. The other variable that must be met is
the maximum braking force (2645N).

Serial communication allows to set the desired parameters’ values (such as reference
force, or starting sequence counter) and to log data. Both these functions must work
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seamless. For safety reason, an almost real time data sending is required, while data
logging latency can have a greater value. Since some time passes between sending and
receiving data on host file, the function generator block (section 3.7) has been implemented
on Delfino LaunchPad™: sending back both reference signal and actual signal allows to
analyze time response without an undesired offset.

The load cell (figure 4.1) output is similar to the output of the sensor that will be
mounted on the real electro-mechanical actuator.

Figure 4.1: Load cell and amplifier used in test bench.

In this test bench, both shunt resistors (subsection 3.3.2) and hall effect external current
sensors have been used to measure phase currents and IDCbus current. Even if hall effect
sensors will not be implemented on the real system, they are here for calibration and
validation purpose only.

4.2 Test bench design
The design process is related to the mechanical actuator developed by MAG and PoliTo
(section 2.1.1 on page 8). In order to reproduce the behaviour of the third actuator, a
different load cell (with an increased range) and a different rubber band are required.
However, mathematical description and software are exactly the same.

Figure 4.2: BLDC motor and actuator scheme.
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First of all, it must be noted that all design parameters mentioned in the previous
section are defined after the mechanical actuator. According to the simplified scheme of
figure 4.2, if the gear ratio is

τ =
θ̇1

θ̇2
=

θ1
θ2

=
T2

T1
(4.1)

and p is the pitch of the ball screw (where applicable), the torque seen by the motor can
be computed from

T1 =
p

2π τ

Fbrake

η
(4.2)

where Fbrake = 2645N is the required braking force and η the mechanical efficiency of the
system.

The motor shaft diameter is 6mm. The BLDC motor can mount an external joint on
its shaft, so the final diameter is increased up to 19mm. This leads to a force transmitted
to the load cell of

Fload cell =
T1

r
, where r = 9,5mm (4.3)

If the efficiency is η = 0.8, a conservative value, the maximum torque and force seen by
the motor are resumed on table 4.1.

Solution Torque Force

Sol. B (MAG) 31,2mNm 3,28N
Sol. C (PoliTo) 26,4mNm 2,78N

Table 4.1: Force and torque seen by the electric motor.

The other parameter that must be met is the free run before the total compression of
the disks. This clearance has been designed to be 250 µm. Because of the actuator, the
required turn of the motor to obtain the translation ∆x is

∆θ1 =
τ

p
∆x (4.4)

This lead to a value of about 2.5 turns for both actuators (with an error less than half turn).
Here, what is important is not to exactly reproduce the effective run, but to reproduce its
order of magnitude (1, 10, 100 . . . turns).

At this point, it is possible to compute the length of the rope that will wind around
the joint mounted on motor shaft

∆l = π d∆θ1 = 150mm (4.5)

Figure 4.3 shows the test bench. It is possible to see the load cell and the amplifier,
the rubber band, the BLDC motor and Delfino LaunchPad™.

The motor holder (figure 4.4) has been made with Fusion Deposition Modeling (FDM)
method of additive manufacturing. The material used here is polylactic acid (PLA).
Despite the poor thermal and mechanical characteristics of this material, it is cheap and
easy to manufacture with a commercial 3D printer. Moreover the mechanical stress is very
low in this test bench, justifying the use of PLA instead of other materials.
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Figure 4.3: Test bench.

Figure 4.4: Motor holder.

4.3 Field of use

Although actuator’s behaviour cannot be exactly reproduced (the design process described
in the previous section constitute a good starting point, but it is nothing more than this),
this test bench was found to be very useful. Indeed, the main purpose here is to debug and
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test all different software aspects, such as the phase commutation scheme, the controller
architecture or data logging feature. The test bench allowed to perform different software
improvement and to highlight some latent problems (like the time management problem
describe in section 3.5).

One of the major difference between this bench and the real system is the load
transmission: here, a rubber band and a rope are used. Leaving aside the stiffness given
by the rubber band, these links are capable of tensile load transmission only. This aspect
will cause some troubles while introducing external disturbances when force feedback is
enabled. That is why the need of implementing a reverse spin protection (see section 3.8
on page 40).

One aspect that must be taken into account while designing the real system is the
capability of the driver to be enabled. To make the driver become operative, a certain pin
must be put on high state. This is not a problem itself, on the contrary it allows a powerful
control on the electric motor: in case of emergency, setting the enable pin to low value
disconnect the driver’s charge pumps, so MOSFETs work has open circuit on high power
line. What must be noted is that values sensed by analog sensors are different if the driver
is enabled or if it is not. This aspect affect not only the sensors directly mounted on the
driver (like phase current and voltage sense shunt resistors), but also external sensor, such
as the load cell. Knowing this before testing the real mechanical actuator make possible
to avoid some potential troubles on both sensor’s tuning and global software management.
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Chapter 5

Experimental analysis

This chapter concerns about the analysis of different validation tests performed thanks to
the test bench described in the previous chapter. For each reference signal (step response,
triangular wave, sinusoidal wave, . . . ), different controller’s proportional constant have
been tested.

Not all logged data are reported here, but only the most significant ones to prove
software capabilities.

Before any test, starting sequence has always been performed, even if it is not depicted
in some figures for graphical reasons.

On the left and on the right sides of some of the graphs reported here, it is possible to
notice some peaks (especially in phase current and duty cycle graphs). The reason behind
those peaks is the driver’s enable pin: when the driver is disabled (i.e. at the start and
at the end of acquisition), all analog sensors behaviour changes in an unpredictable way.
Therefore, those data can be deleted.

5.1 Free run

Figure 5.1: Free run test of Faulhaber 3216 BLDC motor.
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The aim of this test is to measure the maximum angular speed achievable by the
Faulhaber 3216 motor. Therefore, the motor was not connected to the load cell and no
load has been applied. Input is directly the duty cycle value (from 0% to 100% and back,
with 5% steps), bypassing the controller block.

As shown in figure 5.1, the maximum, achievable speed is 6100 rpm, a value really close
to the nominal one declared on the motor datasheet (6200 rpm).

5.2 Step response

Figure 5.2: Step response, position.

On this test, different constant force values has been set thanks to serial communication.
The controller’s proportional constant is equal to 5.

The reference signal is a constant value from 0mN up to 4000mN, with 500mN step.

(a) Force and phase current (b) Duty cycle

Figure 5.3: Step response.
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5.3 – Square wave

On figure 5.2 it is possible to see the number of steps, while in figure 5.3 there are the
force signal (both reference and actual), the mean phase current and the duty cycle.

Figure 5.4: Step response, duty cycle, zoom on the final phase.

This test allows to understand how the maximum run safety measure works. When the
reference force is set to 4000mN, the number of step exceeds the declared limit, so the
emergency flag is raised and the motor is smoothly deloaded, without negative overshoot,
nor a rubber band sling effect. This behaviour can be clearly seen on figure 5.4, showing a
zoom of the final portion of figure 5.3b.

5.3 Square wave
Figure 5.5 shows the force behaviour when a square wave with a frequency of 0,5Hz.
Minimum and maximum force values are 500mN and 1500mN.

Here, different proportional constants have been tested.
It is possible to notice that deleting the proportional feedback (figure 5.5a) does not

give a satisfactory time response, especially because of the offset. However, some braking
force is always possible, even if with degraded performance.

A proportional value equal to 5 (figure 5.5b) leads to an acceptable tuning. The
overshoot is 30% of the maximum value, the time to peak is about 20ms and the steady
state error is 7%.

If Kp is equal to 10 (figure 5.5c), the closed loop response is still stable, but highly
underdamped and become marginally stable if a value of 15 is set (figure 5.5d).

Figures 5.6a and 5.6c on page 59 shows the phase current for two different Kp values, 0
and 5. Here, driver’s shunt resistors has been used to sense the phase current.

Those graphs shown the effect of the presence of a force feedback on the phase current.
While on figure 5.6a current grows almost linearly, adding a proportional feedback cause
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(a) Kp = 0 (b) Kp = 5

(c) Kp = 10 (d) Kp = 15

Figure 5.5: Square wave, force.

an increased peak value and a reduction of the steady state mean value. This behaviour is
coherent with what is depicted on figure 5.5.

5.4 Triangular wave
Figure 5.7 report the force and mean phase current behaviour when the reference signal is
a triangular wave, at first from 500mN to 1500mN and then from 500mN to 2000mN.

Here, the Kp has a value of 5 (set at about 65 s).
On the left side of both figures it is possible to see the effect of the driver’s enable and

then the starting sequence.
The undershoot peak when the force is set to the minimum value at the end of the

triangular wave is caused by the rubber band sling effect. In those points, the force is
instantly set to a value lower than the previous, causing the rubber band return force to
accelerate the motor instead of braking it (that is what happen when the required force is
increased). This is also the cause of the very high current peaks of figure 5.7b.

One possible solution to reduce those peaks is decreasing the rate of change of the
reference signal, according to handling qualities, including a low pass filter. However,
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5.4 – Triangular wave

(a) Kp = 0 (b) Kp = 0, zoom on initial phase

(c) Kp = 5

Figure 5.6: Square wave, phase current.

(a) Force (b) Mean phase current

Figure 5.7: Triangular wave.
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this feature must be evaluated once the real mechanical actuator can be tested and in
accordance with acceptable time and frequency response for braking system.

5.5 Sinus wave

5.5.1 Time response

(a) Frequency 0,5Hz (b) Frequency 5Hz

(c) Frequency 8Hz (d) Frequency 10Hz

Figure 5.8: Time response, sinus wave.

Figure 5.8 shown the force behaviour after a sinusoidal reference signal with various
frequency, from 0,5Hz (figure 5.8a) up to 10Hz (figure 5.8d). For all those tests, the sinus
amplitude is 1,5N, the offset is 1,25N and the proportional feedback constant Kp is 5.

Increasing the frequency from 0,5Hz up to 8Hz will cause an increase in both amplitude
and phase offset. When the frequency reaches 10Hz, it is possible to notice a little decrease
in amplitude, while the phase is almost −180°. This behaviour hallows to locate the
natural frequency of the system between 8Hz and 10Hz.

The last graph (figure 5.8d) is of great importance here because the antiskid will work
exactly at 10Hz frequency. Here it has been proved that this software can generate at
least a 10Hz sinus wave and log it without particular effort.
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5.5 – Sinus wave

5.5.2 Frequency response

Figure 5.9: Bode diagram.

Figure 5.9 shows the Bode diagram of the system. The red line on phase graph highlight
the −180° limit.

These data covered a frequency from 0,5Hz up to 18Hz. The maximum amplitude is
reached at a frequency of 8Hz, or 50,27 rad/s.

Reducing the frequency step it became possible to characterize the real mechanical
actuator in both time and frequency domain.

It must be declared that these data cannot be directly related to previous test’s data
because here a different rubber band has been used. The replacement has become necessary
because of wear out.
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Chapter 6

Conclusions and future development

The main goal of this master’s thesis is the development of control system for an electro-
mechanical actuator that will replace classical hydraulic actuator on brake system of a
general aviation aircraft.

This software covers all different aspect of a BLDC motor control, from the MOSFETs
activation up to high level safety measures.

The core of the software is the MOSFETs management, that has been performed
thanks to a 6-step commutation scheme, based on the shaft position derived from three
different Hall effect sensors mounted inside of the motor. Despite its easy implementation,
if compared with other advanced control logic, this technique guarantees to minimize
commutation losses and to obtain the maximum torque ([2]).

After the completion of phase commutation management, the controller has been
implemented. The aim of this part of the software is to ensure that the desired reference
braking force is achieved. This must be true even in case of load cell failure: for this
reason, feedforward and proportional feedback are used together here.

The software has been validated on a dedicated test bench. In order to increase safety
during those tests, different safety measures have been implemented.

The test campaign demonstrates that the software is capable of controlling a BLDC mo-
tor in a satisfying way, producing the required braking force. The data logging feature
allows to gather useful data to characterize the real mechanical actuators. All safety mea-
sures developed for those tests remain valid also when the the actuator will be integrated
in the test bench.

The BLDC motor’s control software has been developed using Simulink environment.
During this work, that choice shows all its advantages and disadvantages. There is no
doubt that Simulink allows to noticeably decrease the development time thanks to its
user-friendly approach and to its dedicated libraries. Unfortunately, this is true only for
simple projects. Three are the main reasons behind this statement.

First of all, Simulink was originally developed to simplify the process of finding a
solution to numerical problems; this has been done hiding all low level settings (such as the
numerical scheme, the step size or the checks needed to find out when divergence occurs)
and the result is pretty good. Those settings are still accessible by the user, but the Auto
feature of Simulink allows to obtain a satisfying solution for simple problems even without
almost any deep knowledge of numerical methods. Automatic management of low level
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setting is what allows to develop a simple code for Delfino LaunchPad™ reducing the
needed time. However, when the software becomes a little more complex, this feature shows
all its limitations. Moreover, the library documentation cannot be considered exhaustive.
Therefore, simple actions (such as time computation or set a working serial communication),
something not so difficult to implement in almost all procedural languages, here are very
struggling aspect, requiring a lot of time to be developed.

The other aspect that put some limitations on code development is the use of blocks
instead of lines of code. This is not a bad feature at all, but it is good only for high
level software development. As an example, the implementation of safety measures logic
on Simulink block scheme has not been difficult at all. The most difficult part of it has
been creating a flag variable and maintain its state until recovery procedure completion.
Another blocks scheme’s drawback is that blocks’ execution order cannot be controlled.
This is because, virtually, all blocks perform their action together, without a predefined
order. If it is not a problem while trying to numerically solve a differential equation, this
aspect become of great importance when a microcontroller must be programmed.

The last reason why Simulink is not suitable for developing complex code is the lack of
advanced logic control blocks. As an example, while all bitwise operations can be natively
performed, the if block does not allow an else-if condition. This is, the reason why the
position counter block described in subsection 3.2.1 has been included in a Matlab function
block instead of writing it using basic Simulink blocks. This aspect is not as serious as the
previous ones, it just causes a general slow down of software development.

At this moment, the next step will be to test the software developed in this work using
the real mechanical actuator (when at least one of them will be available). This step will
allow to properly tune the parameter related to the controller and safety measures, to
justify control architecture and safety measures and eventually to highlight the need of
software modification.

With the software produced here, it is possible to control a single BLDC motor. However,
the brake system architecture requires to contemporary manage four different electro-
mechanical actuators with a single microcontroller. Because of the problems encountered
during the software development, this is a task that cannot be performed using Simulink
environment. Delfino LaunchPad™ was natively designed
to support up to two different BLDC motors. Trying to connect four of them require
the use of almost all GPIOs and ADCs, even those which are not directly available on
Delfino LaunchPad™ (a dedicated board will be developed). This will lead to an increased
workload that cannot be managed by Simulink dedicated compiler.

Now that there is a software capable of control a BLDC motor and to test the real
mechanical actuator, it is possible to allocate some time to develop the same software using
a lower level language, such as C language. While doing this, some improvement should
be made. The first change will be related to time management, an aspect that must be
supervised from the beginning of software development. In order to control four different
electric motor, a general routine should be introduced. This routine must not only control
the motors, but must be capable of failures and data management. This requires that all
analog sensors (first of all, the load cells) output are consistent among them. This aspect
could require a modification of starting sequence, including an additional phase in order
to align each sensor’s initial offset.

Finally, this work has been developed during a period of global crisis of the entire

64



Conclusions and future development

electronic supply chain. The lack of microcontrollers and integrated circuit make any
actual project susceptible of modification.

65





Bibliography

[1] Sokira, Thomas J. and Wolfgang Jaffe (1990), Brushless DC motors: electronic com-
mutation and controls, TAB BOOKS.

[2] Matt Hein (2020), Demystifying BLDC motor commutation: Trap, Sine, & FOC, Texas
Instruments.

[3] Carolus Andrews, Manny Soltero, Mekre Mesganaw (2019) Brushless DC Motor Com-
mutation Using Hall-Effect Sensors, Texas Instruments.

[4] https://www.faulhaber.com
[5] https://www.ti.com/tool/LAUNCHXL-F28379D
[6] https://www.ti.com/tool/BOOSTXL-DRV8305EVM
[7] https://www.ti.com/tool/CCSTUDIO
[8] https://www.ti.com/tool/C2000WARE
[9] https://www.mathworks.com/products/simulink.html

67

https://www.faulhaber.com
https://www.ti.com/tool/LAUNCHXL-F28379D
https://www.ti.com/tool/BOOSTXL-DRV8305EVM
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/C2000WARE
https://www.mathworks.com/products/simulink.html

	Introduction
	Scope
	Research program
	Requirements

	Hardware and software environment
	Hardware
	Actuators
	Electric motors
	Texas Instruments' Piccolo Launchpad™
	Texas Instruments' Delfino Launchpad™
	Texas Instruments' DRV8305 driver

	Software environment
	Code Composer Studio™
	Simulink

	Trade off

	Software development
	Target file
	Switching sequence
	Position counter
	SPI communication

	Analog read
	Voltage supply measurement
	Phase current measurement
	Force measurement

	Serial communication
	Data receive
	Data transmit
	Speed computation

	Timing management
	Controller
	Controller architecture
	Current limitations

	Waveform generator
	Safety
	Safety measures
	Recovery procedure

	Initial reset routine
	Host file
	Data sending via USB


	Test bench
	Needs and requirements
	Test bench design
	Field of use

	Experimental analysis
	Free run
	Step response
	Square wave
	Triangular wave
	Sinus wave
	Time response
	Frequency response


	Conclusions and future development
	Bibliography

