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Abstract

The anthropogenic contribution to the evolution of climate is currently a cen-
tral topic in scienti�c studies. The Intergovernmental Panel on Climate Change
(IPCC) assessment reports are based on the best science at hand, and summarize
the progress in observing, modeling, understanding and predicting the evolution of
the climate system. The climate system is forced, dissipative, nonlinear, chaotic,
and out of thermodynamic equilibrium. Along with the di�culties that these char-
acteristics come with, the climate system presents some particularities such as, the
presence of well-de�ned subsystems, the continuous variation of the forcings, lack
of scale separation, etc., which add more obstacles to the task. In this context,
several theories and models are developed to predict the response of the system to
perturbations. In particular, Valerio Lucarini's approach is reviewed. He makes use
of Ruelle's linear response theory, which was found to be too restricted since it is
limited to linear perturbations applied to Axiom A systems.
The Exact Response Theory proposed here, would overcome these limitations. It
was developed within the �eld of Nonequilibrium Molecular Dynamics, and it is
expected to predict the response of a system with many degrees of freedom even in
the presence of arbitrarily large perturbations and modi�cations of states, allowing
the study of the relaxation of particle systems to equilibrium or non-equilibrium
steady states. The theory introduces the Dissipation Function, Ω, as its basis. The
Dissipation Function determines non-equilibrium properties the same way the ther-
modynamic potentials determine equilibrium state properties.
In order to apply the theory, it was studied the dynamical model describing the
Pleistocene ice ages developed by Saltzman. That approach to the climate system
reproduces the evolution of global ice mass, atmospheric CO2 concentration and
North Atlantic deep water amount. There were found three �xed points and an at-
tractor, the later responsible of the oscillations that the evolution exhibits along the
time. The evolution of an observable when the system is perturbed, was computed
by means of the presented theory.

vii
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Chapter 1

Introduction

This �rst introductory chapter aims to provide the appropriate background for the
matters studied in the present work. Therefore, since the work developed here deals
with applying the exact response theory to the climate system response, an introduc-
tion to the climate system response, the problematic of climate change and the state
of the art of the developed methods to address the problem is presented. Further-
more, given that the new current of concepts and methods that are being applied to
climate response and that are in particular reviewed in the present work, consists in
applying the dynamical systems approach, the key concepts and de�nitions of this
subject are exposed. Finally, there is a section dedicated to chaos, since the climate
system presents chaotic behavior, as it will be showed later.

1.1 Climate

The climate system is forced, dissipative, non-linear, chaotic and out of thermody-
namic equilibrium. The interplay of positive and negative feedbacks, instabilities
and saturation mechanisms are the reason of its complex natural variability. These
processes span a broad range of temporal and spatial scales and combine many
chemical species as well as all of the most common physical phases. The heteroge-
neous phenomenology of the climate system comprises the mycrophysics of clouds,
cloud-radiation interactions, atmospheric and oceanic boundary layers, and several
scales of turbulence. Moreover, it evolves under the action of large-scale agents that
drive and modulate its evolution, mainly di�erential solar heating and the Earth's
rotation and gravitation. In addition to that, the complexity of the physics is mixed
with the chaotic character of the dynamics. Furthermore, the large natural variabil-
ity of the system is greatly a�ected by relatively small changes in the forcing, which
could be anthropogenic or natural.

The climate system's governing equations are presented in subsection 1.1.2. At
a macroscopic level, climate is driven by di�erences in the absorption of solar radia-
tion throughout the depth of the atmosphere, and in a narrow surface layer of both
the ocean and the soil. The large-scale circulation of the atmosphere is to �rst or-

1



2 CHAPTER 1. INTRODUCTION

der originated by horizontal and vertical �uxes resulting from the gradients in solar
radiation absorption. While the ocean circulation is set by surface or near-surface
transfers of mass, momentum and energy with the atmosphere. At steady state, the
convergence of enthalpy transported by both the atmosphere and the ocean com-
pensates for the radiative imbalance at the top of the atmosphere.

In Lorenz (1967), it was developed the classical theory of the general atmo-
sphere's circulation. The mechanisms of energy generation, conversion and dissipa-
tion that produce the circulation are explained in detail. According to Lorenz, the
large-scale �ows are originated by the conversion of available potential energy, re-
sulting of the di�erential heating of the atmosphere, into kinetic energy. The energy
cycle would be completed by energy cascading to smalled scales to eventually be
dissipated.

In general, the climate system transforms radiative heat into mechanical energy.
The conversion happens through fairly three-dimensional baroclinic instabilities,
that are generated by large temperature gradients. They give rise to a negative
feedback, since they tend to decrease these temperature gradients by favoring the
mixing between masses and �uids at di�erent temperatures.

As stated in Ghil and Lucarini (2019), �the closure of the coupled thermodynam-
ical equations governing the general circulation of the atmosphere and ocean would
provide a self-consistent theory of climate. Such a theory should able to connect in-
stabilities and large-scale stabilizing processes on longer spatial and temporal scales,
and to predict its response to a variety of forcings, both natural and anthropogenic.
This goal is being actively pursued but is still out of reach at this time�.

Analyzing the climate system's entropy budget gives one a good global perspec-
tive of the system. The Earth as a whole absorbs shortwave radiation carried by
low-entropy solar photons, and emits to space infrared radiation via high-entropy
thermal photons. Apart from the viscous dissipation of kinetic energy, a lot more
of irreversible processes contribute to the total material entropy production. Some
of these processes are turbulent di�usion of heat and chemical species, irreversible
phase transitions associated with hydrological processes, chemical reactions involved
in the biogeochemistry of the planet. The production of entropy is balanced by a
net outgoing �ux of entropy leaving mainly through the top of the atmosphere.

The phenomenology of the climate system is normally approached by focusing
in di�erent and complementary aspects, being included the following:

� Wavelike features, like Rossby waves or equatorially trapped waves, playing a
fundamental role in the transport of energy, momentum, and water vapor, and
also in the study of oceanic, atmospheric and coupled-system predictability.

� Particlelike features, like hurricanes, extratropical cyclones and oceanic vor-
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tices, that strongly a�ect the local properties of the system.

� Turbulent cascades, which are crucial in the development of large eddies, as
well as in the mixing and dissipation within the planetary boundary layer.

Each of theses perspectives is useful, but also, they overlap and complement each
other. However, none of them is able to provide by itself a comprehensive under-
standing of the properties of the climate system.

In addition to the inherent di�culties to understand and predict the dynamics
of nonlinear, complex systems out of equilibrium, the climate system presents the
following additional obstacles:

� The existence of well-de�ned subsystems (atmosphere, ocean, cryosphere) with
di�erent physical and chemical properties and widely diverse timescales and
space scales. Along with the complex processes coupling these subsystems.

� The continuous alteration of the atmospheric composition, caused by the vary-
ing set of forces resulting from �uctuations in the incoming solar radiation and
in the processes, natural and anthropogenic.

� The lack of scale separation between the di�erent processes.

� The lack of climatic �elds observations that are detailed, homogeneous, with
high-resolution and lasted for a long time.

� The fact that only one realization of the processes that give rise to the climate
evolution is available.

Consequently, it is hard to separate the climate system's response to di�erent
forcings from its natural variability. This di�culty is a considerable handicap to-
wards an uni�ed theory of climate evolution, however some new promising ideas
are emerging to overcome it and they are treated in subsection 1.1.5. As well as in
section 2.2, with the approach of Valerio Lucarini to the problem.

1.1.1 Climate Change

The interest in climate research is not merely scienti�c, in fact, recent interest comes
from the accumulated observational and modeling evidence of the anthropogenic in-
�uence in the climate system. It has became a hot topic since its consequences are
already a�ecting the whole population of the world, even if the degree of the impact
is di�erent depending on the pertinent place in the world and the social class, what
was denoted as climate injustice. However, it is a very polemic topic since miti-
gating climate change and acknowledging its causes, questions the economic system
and the �rst-world lifestyle, and therefore, it is easy to �nd people calling scienti�c
data into question and not taking the predicted and observed consequences seriously,
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politicians and media included. The lack of meaningful actions and progress made
by the governments has led to the growth of young-people-driven movements like
Extinction Rebellion and Fridays For Future.
The United Nations Environment Programme (UNEP) and the World Meteoro-
logical Organization (WMO) established in 1988 the Intergovernmental Panel on
Climate Change (IPCC) in order to review and coordinate the research activities
in this respect. They issue the assessments reports (ARs) every 4-6 years, where
they summarize the scienti�c progress, the open questions, and the bottlenecks re-
garding the capacity to observe, model, understand and predict the evolution of the
climate system. The IPCC Working Group I is the one focused on the physical basis
of climate change, the topic addressed in the present work. The IPCC assessment
reports are based on the best available science, being policy relevant but not policy
prescriptive. They are supposed to guarantee neutrality although they must pass the
check of the IPCC's 195 member countries before going public. Hence, their release
leads to considerable and often adversarial debates involving diverse stakeholders
from science, politics, civil society and business.

1.1.2 Governing Equations of the Climate System

In order to describe the evolution of the climate subdomains, i.e. the atmosphere,
the ocean, the soil, and the ice masses, the continuum approximation can be used.
That way, each subsystem is represented by �eld variables that depend on three
spatial dimensions and time. For each subdomain, the following �eld variables are
considered: the density ρ, the heat capacity at constant volume c, the concentration
of the chemical species (ξk, k = 1, ..., K) contained in the medium and present in
di�erent phases, the three components of the velocity vector (vi, i = 1, 2, 3), the
temperature T , the pressure p, the heating rate J , and the gravitational potential
Φ.
Considering the thin-shell approximation, the gravitational potential at the local
sea level can be assumed to be null, and hence it is approximated as Φ = gz, called
geopotential now, where g is the gravity at the surface and z is the geometric height
above the sea level. Furthermore, as the climate system is embedded in a non-
inertial frame of reference, its angular velocity has to be taken into account, Ω with
components (Ωi, i = 1, 2, 3).
The Partial Di�erential Equations (PDEs) that govern the evolution of the �eld
variables are based on the mass, momentum and energy budgets. If the �uid con-
tains di�erent chemical species, their separate budgets must be accounted for as well.

The mass budget for the contained species is described by the following equation:

∂t(ρξk) = −∂i(ρξkvi) +Dξk + Lξk + Sξk , (1.1)

where ∂t is the partial derivative in time, ∂i is the partial derivative in the xi di-
rection, andDξk , Lξk , and Sξk are respectively the di�usion operator, phase changes,
and local mass budget as a result of other chemical reactions associated to k.
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The ith component of the momentum budget is given by:

∂t(ρvi) = −∂j(ρvjvi)− ∂ip+ ρ∂iΦ− 2ρϵijkΩjvk + Ti + Fi, (1.2)

where ϵijk, the Levi-Civita antisymmetric tensor, is used to write the Coriolis
force, Ti represents direct mechanical forcings, Fi = −∂jτij is the friction (τij is the
stress tensor).

For the atmosphere and the ocean, the two �uid envelopes of Earth, the following
general state equation can be used

ρ = g(T, p, ξ1, ..., ξK). (1.3)

In general, as a �rst approximation, K = 1 may be considered, thus ξ would be
moisture in the atmosphere and salinity in the ocean. Neglecting reactions other
than the phase changes between liquid and gas phases of water, the equation of the
speci�c energy in the atmosphere is

e = cvT +Φ+ vjvj/2 + Lq. (1.4)

Here, cv is the speci�c heat at constant volume for the gaseous mixture, L is the
latent heat of evaporation, and q = ρξ is the speci�c humidity. For the ocean the
obtained equation is

e = cwT +Φ+ vjvj/2, (1.5)

where cw is the speci�c heat at constant volume of the water, neglecting the
e�ects of salinity and pressure. Lastly, for the soil it is used, e = cST +Φ, and for
the ice similarly, e = cIT +Φ.

Finally, the following general equation for the local energy budget is derived:

∂t(ρe) = −∂j(ρεvj)− ∂jQ
SW
j − ∂jQ

LW
j − ∂jJ

SH
j − ∂jJ

LH
j − ∂j(viτij) + viTi, (1.6)

where e is the energy per unit mass and ε = e+p/ρ is the enthalpy per unit mass.
The energy sinks and sources may be written as the sum of the work done by the
mechanical forcing (viTi) and of the respective divergences of the shortwave (solar)
and longwave (terrestrial) components of the Poynting vector QSW

j and QLW
j , of the

turbulent sensible and latent heat �uxes JSH
j and JLH

j , and the scalar product of
the velocity �eld with the stress tensor (viτij).

The presence of non-homogeneous absorption of shortwave radiation given the
geometry of the Sun-Earth system and the physicochemical properties of the climatic
subdomains induces the presence of non-equilibrium conditions for the climate sys-
tem.
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1.1.3 Climate Modeling

A main area of interest in the climate sciences, and also the topic addressed in
the present work, is the developing of numerical methods for simulating the past,
present and future of the climate system. There are huge di�erences between the
climate models in terms of scienti�c scope, computational cost, and �exibility. Thus,
a hierarchy of climate models is to be considered, rather than one model that would
include all subsystems, processes and scales.

Models of distinct levels of complexity and detail are suited for addressing dif-
ferent kinds of inquiries, depending on the main spatial and temporal scales of
interest. At the top of the hierarchy, the global climate models (GCM) are found.
These model's goal is to represent, at the highest computationally attainable resolu-
tion, the biggest number of physical, chemical and biological processes of the Earth
system. The atmosphere and the ocean are at the core of the Earth system models
being developed today. Their modeling relies on the governing equations presented
before in subsection 1.1.2. Later in the section models at the bottom of the hierarchy
are presented.

Climate modeling and prediction deal with several kinds of uncertainties, begin-
ning with the uncertainties in predicting the state of the system at a certain lead
time, due to the uncertain knowledge of the present state. Geophysical �ows are
commonly chaotic, as well as other processes in the system. Therefore, the climate
system depends sensitively on its initial data, as acknowledged by Lorenz. Chaotic
dynamical systems are explained in more in detail in subsection 1.2.2.
A second kind of uncertainties a�ects the determination of the system's statistical
properties, that is, its mean state and variability, and its response to forcings of a
di�erent nature. These uncertainties correspond to the uncertainties in model for-
mulation, and the unavoidably restricted knowledge of the external forcings. They
a�ect critically the modeling of abrupt changes in the climate and the processes that
could lead to them.
Finally, from trying to �nd the best metrics for analyzing a model's outputs and
evaluating its skills, comes the third kind of uncertainties. As there is no a priori
valid criterion for choosing a good climatic observable, and so there is no unique
method for testing climate models.

Energy Balance Methods (EBM)

Currently, the best developed hierarchy is for atmospheric models. At the �rst rung
of this hierarchy, one �nds the zero-dimensional (0D) models. Where the number of
dimensions (from 0 to 3), refers to the number of independent space variables that
are used to describe the domain of the model (physical-space dimensions). These
models receive the name of Energy Balance Models (EBM). The 0D models basically
try to follow the evolution of the globally averaged surface air temperature, resulting
from changes in the global radiative balance. That way the following expression are
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considered:

c
dT̄

dt
= Ri −Ro, (1.7)

Ri = µQ0(1− α(T̄ )), (1.8)

Ro = σm(T̄ )(T̄ )4, (1.9)

where Ri is the incoming solar radiation, Ro is the outgoing terrestrial radiation.
The heat capacity c is that of the global atmosphere plus some fraction (or whole)
of the global ocean capacity, depending on the timescale of interest. dT̄

dt
gives the

rate of change of T̄ with time. Q0 is the solar radiation received at the top of the
atmosphere (solar constant), σ is the Stefan-Boltzmann constant, µ is an insolation
parameter, α is the albedo and m is the grayness factor.

For 1D atmospheric methods, there are two kinds, depending on the single spatial
variable which could be the latitude or height. They take Equation 1.7 and generalize
it for a evolution of the temperature like T = T (x, t), thus

c(x)
∂T

∂t
= Ri −Ro +D. (1.10)

Here, the terms Ri and Ro are similar to those presented in Equation 1.8 and
Equation 1.9, but now they can depend on the meridional coordinate x (latitude,
colatitude or sine of latitude), along with time t and temperature T . The horizontal
heat-�ux term D describes the convergence of the heat transport across latitude
belts (typically containing �rst and second partial derivatives of T with respect to
x), whereas c(x) is the system's space-dependent heat capacity. In this model, the
rate of change of local temperature with respect to time also becomes a partial
derivative, ∂T (x,t)

∂t
, since Equation 1.10 corresponds to a nonlinear heat or reaction-

di�usion equation from the physical point of view, and to a nonlinear parabolic PDE
from the mathematical one.

Already using the 0D EBM several stable steady states are found, �nding the
bistability of the system. While the complexity of the models grow, so does its
behavior. Apart from multiple equilibria, complex processes give rise to the system's
internal variability, by successive instabilities setting in, competing and eventually
leading to the chaotic nature of the climate's evolution.

1.1.4 Climate Sensitivity and Equilibrium Climate Sensitiv-
ity (ECS)

The goal of climate sensitivity is to measure the response of the climate system to ex-
ternal perturbations of Earth's radiative balance. This measure is used to obtain the
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changes in mean temperature over the century as a response of increasing concentra-
tions of atmospheric greenhouse gases. In order to exemplify, it is considered the 0D
EBM from subsection 1.1.3, where the net radiation at the top of the atmosphere de-
pends on the average temperature near the Earth's surface as R = R(T ). It considers
longwave and shortwave processes so that cdT

dt
= R(T ). In addition to that, it is

assumed that there are N climatic variables, (αk = αk(T ), k = 1, ..., N) that at �rst
approximation are directly a�ected only by the temperature change and that are able
to a�ect the radiative balance. Thus, it can be written R = R(T, α1(T ), ..., αN(T )).
Moreover, it is assumed that for a certain reference temperature T0, the net radia-
tion is null, R(T0) = 0, corresponding to steady-state conditions. Now, the simplest
framework for climate sensitivity is thinking of the di�erence in global annual mean
surface air temperature∆T between two statistical steady states presenting di�erent
CO2 concentration levels. Then, it is assumed that the change in CO2 concentration
is translated into applying an extra radiative forcing ∆R̃ to the system. And the
corresponding ∆T is searched, so that R(T0 +∆T ) + ∆R̃ = 0.
For small ∆T and smooth R = R(T ), introducing the following notations:

1

λ0(T0)
= −∂R

∂T

∣∣∣
T=T0

, (1.11)

fk(T0) = −λ0(T0)
∂R

∂αk

∂αk

∂T

∣∣∣
T=T0

, (1.12)

and considering the Taylor expansion, it yields for the �reference sensitivity� λ0

and the �feedback factors� fk at the reference state T = T0

∆R̃ =
1−

∑N
k=1 fk(T0)

λ0(T0)
∆T +O((∆T )2) (1.13)

One of the several measures of climate sensitivity is the so-called equilibrium
climate sensitivity (ECS), which denotes the globally and annually averaged surface
air temperature increase that would result from continuously doubling of the CO2

concentration in Earth's atmosphere versus the one of the reference state after the
climate system reaches a new steady-state equilibrium. Resulting,

ECS =
λ0(T0)

1−
∑N

k=1 fk(T0)
∆R̃2×CO2 (1.14)

The climate sensitivity concept can be generalized to describe linear dependence
of the long-term average of any climatic observable with respect to the radiative
forcing resulting from changes in CO2 or other greenhouse gases, along with changes
in solar radiation, aerosol concentration, or any other change in the forcings.
The ECS is universally considered to be the most important indicator, in particular
it is a state-dependent indicator, in understanding the climate response to forcings
both natural and anthropogenic. However, even if it is useful, the ECS concept
�nds some practical di�culties since the de�nition assumes that after the forcing
is applied, the climate reaches a new steady state after all transients have died
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out. And, given the multiscale for both the time and space that the climate system
has, it is far from trivial to de�ne a e�ective cuto� timescale that would include all
transient behavior. Hence, it is needed to associate each ECS estimate to a reference
timescale.

Transient Climate Response (TCR)

Transient climate response (TCR) is de�ned as the change in the globally averaged
surface air temperature recorded at the time at which CO2 has doubled due to an
increase at 1% annual rate, that is approximately after 70 years, having started at
a given reference value T0. It is closer to capture the evolution in time of climate
change, as it addresses the transient rather than the asymptotic response of the sys-
tem. Being that the operational de�nition agrees well with the standard IPCC-like
simulation protocols, the TCR is better to test model outputs against observational
datasets from the industrial era, than ECS.

1.1.5 General Framework for Climate Response

The ECS comes with some limitations, such as addressing only long-term changes, no
spatial information, the impossibility to di�erence between radiative forcings from
distinct physical and chemical processes. Therefore, some new concepts and methods
are recently added to climate science, from the �eld of non-autonomous and random
dynamical systems. As explained in Ghil and Lucarini (2019), �The setting of non-
autonomous and of stochastically forced dynamical systems allows one to examine
the interaction of internal climate variability with the forcing, whether natural or
anthropogenic; it also helps provide a general de�nition of climate response that
takes into account the climate system's non-equilibrium behavior, its time-dependent
forcing, and its spatial patterns.� The concept of Pullback Attractors arises in these
new methods.

Pullback Attractors (PBAs)

Considering a continuous-time dynamical system

ẋ = F (x, t), (1.15)

on a compact manifold Y ⊂ Rd, where x(t) = ϕ(t, t0)x(t0), with x(t = t0) =
xin ∈ Y initial condition and ϕ(t, t0) is de�ned for all t ≥ t0 with ϕ(s, s) = 1. The
interest is in forced and dissipative systems that, with probability 1, initial states in
the distant past are attracted at time t toward A(t). Being A(t) a time-dependent
family of geometrical sets that de�ne the system's pullback attractor. In formal
terms, a family of objects ∪t∈RA(t) in the �nite-dimensional, complete metric phase
space Y is a pullback attractor for the system given by Equation 1.15 if the following
conditions are obeyed:

� ∀t, A(t) is a compact subset of Y which is covariant with the dynamics, i.e.
ϕ(s, t)A(t) = A(s), s ≥ t.
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� ∀t limt0−→−∞ dY (ϕ(t, t0)B,A(t)) = 0 for a.e. measurable set B ⊂ Y .

Where dY (P,Q) is the Hausdor� semi-distance between the P ⊂ Y and Q ⊂ Y .

The PBA may also be constructed when random forcing is present. An example
of numerical application of PBAs was performed in several studies to explain the
wind-driven circulation and thermohaline circulation.
As in the most recent IPCC reports and according to the standard protocols, future
climate projections are virtually always performed taking as initial states the �nal
states of su�ciently long simulations of historical climate conditions, it is acceptable
to assume that the pullback time τ is large enough and the covariance properties of
the associated A(t) sets are therefore well approximated. Being the pullback time
de�ned as the time that a set B initialized at t = t0 − τ , takes to evolve to A(t0).

Fluctuation Dissipation Theorem (FDT)

The �uctuation dissipation theorem was born in the classical theory of many-particle
systems in thermodynamics equilibrium. Basically it states that the return to equi-
librium of the system will be the same both ways if the perturbation that modi�ed
the system's state is due to a small external force or to an internal, random �uc-
tuation. The FDT has been applied by some scientists to the output of climate
models in order to predict the response to a step-like increase of the solar irradi-
ance, increases in atmospheric CO2 concentration and to predict the response of an
atmospheric model to localized heating anomalies. It was also used to reduced the
uncertainty in ECS. An important issue of these studies, is the limitation given by
the fact that they take a Gaussian approximation for the invariant measure, which
implies that the climate would be in thermodynamics equilibrium, which addresses
the applicability of the FDT in a reduced phase space.

1.2 Dynamical Systems and Chaos

Dynamics is the subject that deals with systems which evolve in time. The sub-
ject was born, as explained in Strogatz (2018), �when Newton invented di�erential
equations, discovered his laws of motion and universal gravitation, and combined
them to explain Kepler's laws of planetary motion�, in the mid-17th century. More
in detail, Newton solved the two-body problem (motion of the Earth around the
Sun, for example, given the gravitational attraction law between them). However,
when the three-body was later studied, it was concluded that there was no way of
solving it analytically. It was not until the late 1800s when thanks to Poincaré's
work, there was a step-forward. He changed the point of view to a more qualitative
point of view, questioning for example �Is the solar system stable forever, or will
some planets eventually �y o� to in�nity?�, instead of trying to determine the exact
positions of the planets at all times. Besides, he was the �rst person in having a
brief insight into chaos.
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With the arrival of the high-speed computer in the 1950s, there were big ad-
vances in the subject of dynamics. Now, the equations could be experimented in
a revolutionary way, and some intuition about nonlinear systems was developed.
Such experiments led Lorenz to discover in 1963 the chaotic motion on a strange
attractor. The particularities of chaos will be introduced in subsection 1.2.2.

1.2.1 De�nitions

In the next lines, some basic de�nitions related to dynamics and relevant to the
dynamical system treated in this work, will be presented, as found in Strogatz
(2018). To begin with, in the work developed here, the dynamical systems that
are treated are di�erential equations. Di�erential equations describe the evolution
of systems in continuous time. There exist other type, the iterated maps, used in
problems where time is discrete.

If a general system is considered, i.e. ẋ = f(x), being x = (x1, ..., xN), an
abstract space constructed with these coordinates (x1, ..., xN), is called the phase
space. An arbitrary initial condition x0, which is called phase point, will evolve
following a certain function x(t). This function is called trajectory based at x0

and it reproduces the solution of the di�erential equations beginning from the initial
condition x0. A picture showing all the possible trajectories of the system in a
qualitative way is called a phase portrait.

In dynamics the di�erential equations are interpreted as a vector �eld. Thus, in
a general �rst-order system, i.e. ẋ = f(x), the di�erential equation (vector �eld)
dictates the velocity vector ẋ at each x.

Fixed Points

When the condition ẋ = 0 is ful�lled, the �xed points are found. If the vector �eld
is imagined as a �ow, these points are the stagnation points of the �ow. The �xed
points represent equilibrium solutions in the di�erential equation. There are two
di�erent types of �xed points, the stable ones and the unstable ones. The stable
�xed points are also called attractors or sinks, since the �ow is directed towards
them. Instead, the unstable �xed points are called repellers or sources, as the �ow is
not rejected from them. An important note is that the stability of the �xed points
is de�ned based on small disturbances, which means that the stable �xed points are
locally stable.
If the �xed point is denoted as x∗, the various types of stability are:

� Attracting: A �xed point is attracting if there is a δ > 0 such that limt−→∞ x(t) =
x∗ whenever ||x(0) − x∗|| < δ. Thus, all the trajectories that start within a
distance of δ from x∗, it is guaranteed that will converge to x∗ eventually.

� Liapunov stable: The �xed point x∗ would be Liapunov stable if for each
ϵ > 0, there is a δ > 0 such that ||x(t) − x∗|| < ϵ whenever t ≥ 0 and
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||x(0)−x∗|| < δ. Hence, the trajectories starting within δ of x∗ remain within
ϵ of x∗ for all positive time.

� Asymptotically stable: A �xed point is asymptotically when it is both
attracting and Liapunov stable.

Limit Cycles

A limit cycle is an isolated close trajectory, meaning that near trajectories are not
closed. They can spiral towards the limit cycle or away from it. If all the neighboring
trajectories direct towards the limit cycle, it is said to be stable or attracting. In
the other cases it will be unstable or half-stable. In particular, stable limit cycles
are present in model systems that exhibit self-sustained oscillations. Limit cycles
are nonlinear phenomena, as they cannot appear in linear systems.

1.2.2 Chaos

Lorenz studied a simpli�ed model of convection rolls in the atmosphere, in order to
achieve some insight into the well-known unpredictability of the weather. He found
that the solutions to his equations never settled down to equilibrium or to a periodic
state, instead they continued to oscillate in an irregular, aperiodic shape. Further-
more, if the simulation was initiated from slightly di�erent initial conditions, the
resulting behavior would start to become completely di�erent really quick. Lorenz
also exposed that there was structure in the chaos, he found the fractal were the
solutions fell, in particular it was a butter�y-shaped set of points.

De�nition

Although there is no universally accepted de�nition of chaos, there are three con-
stituents generally agreed:

� �Aperiodic long term behavior�: there are trajectories which do not settle down
to �xed points, periodic or quasiperiodic orbits at t −→ ∞.

� �Deterministic system�: the system has no random or noisy inputs or param-
eters. Thus, the irregular behavior comes from the system's nonlinearity.

� �Sensitive dependence on initial conditions�: nearby trajectories separate ex-
ponentially.

Combining all three, the following de�nition given by Strogatz (2018) may be
written, �Chaos is aperiodic long-term behavior in a deterministic system that ex-
hibits sensitive dependence on initial conditions.�
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Attractor

Roughly speaking an attractor is a set to which all nearby trajectories converge.
The previous presented �xed points and limit cycles are examples of attractors. In
a precise way, an attractor may be de�ned, following Strogatz (2018), as a closed
set A with the following properties:

1. A is an invariant set: any trajectory x(t) starting in A stays in A for all time.

2. A attracts an open set of initial conditions: there is an open set U containing
A such that if x(0) ∈ U , then the distance from x(t) to A tends to zero as
t −→ ∞. This means that A attracts all trajectories that start su�ciently close
to it.

3. A is minimal: there is no proper subset of A that satis�es conditions 1 and 2.

A strange attractor is an attractor that exhibits sensitive dependence on initial
conditions. They are called strange attractors since normally they are fractal sets,
however this geometric property does not receive such a relevance now.

Liapunov Exponents

Related to sensitive dependence on initial conditions, arise the Liapunov Exponents.
For a n-dimensional system, considering the evolution of an in�nitesimal sphere of
perturbed initial conditions, it is found that the given sphere becomes distorted into
a in�nitesimal ellipsoid. If δk(t), k = 1, ..., n, denote the length of the kth principal
axis of the ellipsoid, then, one has δk(t) ∼ δk(0)e

λkt, where λk are the Liapunov
exponents. For large t, the diameter of the ellipsoid is controlled by the most
positive λk, which is often called Liapunov exponent. When a system possesses a
positive Liapunov exponent, there is a time horizon beyond which prediction breaks
down, as small uncertainties are ampli�ed really fast.

Lorenz equations

From the aforementioned simpli�ed model of convection rolls in the atmosphere, in
Lorenz (1963) the following three-dimensional system was derived:

ẋ = σ(y − x) (1.16)

ẏ = rx− y − xz (1.17)

ż = xy − bz (1.18)

where the Prandtl number σ, the Rayleigh number r and b are the de�ned pos-
itive parameters of the system. Over a wide range of parameters, the solutions of
the system oscillate irregularly, although they remain in a bounded region of the
phase space, they never repeat the exact trajectory. In particular, the trajectories
settle in a strange attractor, which is a fractal. The fractal is a set of points with
zero volume but in�nite surface area. As it could be seen in Figure 1.1, the Lorenz
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attractor was computed for the typical values of the parameters.

Figure 1.1: Lorenz strange attractor for σ = 10, r = 28, b = 8/3.

The Lorenz system shows nonlinearity as well as, symmetry, since replacing
(x, y) −→ (−x,−y) results in the same solution by the equations. Moreover, the
system is dissipative, as the volumes in phase space shrink.

Logistic Map

In May (1976), Robert May showed how simple nonlinear maps may lead to very
complicated, chaotic dynamics, becoming an archetypal example of it. The logistic
map was developed as a discrete-time demographic model analogous to the logistic
equation (by Pierre François Verhulst). It is written in the following way:

xn+1 = rxn(1− xn), (1.19)

where xn ≥ 0 is a dimensionless measure of the population in the nth generation
and r ≥ 0 is the intrinsic growth rate.

Studying the behavior for di�erent values of r, in particular in a range 0 ≤ r ≤ 4,
di�erent types of behavior are found.
For r < 1, the population always goes extinct, as xn −→ 0 when n −→ ∞. While,
for 1 ≤ r ≤ 3 the population grows, reaching eventually a nonzero steady state.
For values of r higher than 3, the population oscillates. First, with a �period-2
cycle�, as xn repeats every two iterations. Then, as r grows, there are found the
�period-doublings�, that is, the xn begins to repeat every 4 iterations, then every
8, etc. Until r reaches a particular value denoted r∞ ≈ 3.56995 where the period
corresponds to in�nity. For values larger than r∞, the chaotic behavior is found, as
shown in Figure 1.2, where the evolution of xn along the generations was computed
using a value of r bigger than the r∞, in particular r = 3.8.
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Figure 1.2: Evolution of xn with the generations for r = 3.8.
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Chapter 2

Ruelle's Linear Response Theory

In order to account for systems out of equilibrium, like the climate, some generaliza-
tions of the �uctuation-dissipation theorem (FDT) were developed since 1950s. In
Ruelle (1998), the author David Ruelle changed the point of view, considering the
problem in the setting of dynamical-systems theory, instead of statistical mechanics.

Ruelle developed a theory for the linear response of smooth uniformly hyperbolic
dynamical systems (Axiom A systems). It extended the classical idea based on equi-
librium time correlation functions to nonequilibrium steady states. The dissipative
systems are characterized by invariant distributions which are singular with respect
to the Lebesgue measure. Thus, a perturbation could cause a distribution that is
singular with respect to the invariant one. Hence, when dealing with hyperbolic sys-
tems, the response is composed of two contributions, one in behalf of the expanding
directions and the other due to the contracting directions. The expanding directions
correspond to the unstable ones while the contracting directions to the stable ones,
which contribution is responsible for relaxation to the unperturbed state.

While this theory is considered the testbed for all the other response theories,
it faces some di�culties when applied to physics. Since there exist only a limited
number of systems that are uniformly hyperbolic, and in addition to that, normally,
the directions of stable and unstable manifolds cannot be disentangled from each
other.

2.1 Summary of the Theory

A summary of Ruelle's linear response theory is presented in this section as in Ron-
doni and Dematteis (2016). If the theory is applied to systems in which the stable
and unstable manifolds can be precisely identi�ed, the following can be applied.

Since the probability measure is smooth along the unstable direction, and an
impulse along that given direction results in an equally smooth distribution, for the
unstable manifold, the classical Green-Kubo linear response theory can be applied.

17
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The theory may be found in some books like Kubo et al. (1991). The Green-Kubo
linear response theory yields the linear response caused by a perturbation as a time
correlation function of the system at equilibrium.

As one may expect, this needs to be complemented by the contribution in behalf
of the stable direction. However, this contribution is not expressed by a correlation
function. Thus, some susceptibilities are obtained showing two di�erent kinds of
resonances (unstable and stable ones).

In particular, considering a map:

xt+1 = F(xt)

with t ∈ Z, x ∈ M, where M is the phase space and F is smooth but not
necessarily invertible. If the dynamics are chaotic, mixing and associated with an
ergodic Sinai-Ruelle-Bowen (SRB) measure, the time average of an observable:

Ō = lim
T−→∞

1

T

T−1∑
t=0

O(Ft(x)),

equals the ensemble average:

⟨O⟩ =
∫

ρF(dx)O(x) = lim
t−→∞

∫
dxO(Ft(x)).

Now, introducing a time dependent perturbation, the new dynamics are:

x̃t+1 = F̃t(x̃t) + ϵt+1(x̃t),

where ϵt+1 accounts for the perturbation. Since the linear response to generic
perturbations can be expressed as a linear combination of impulse responses at
di�erent times, it is convenient to have in mind the impulse response:

XOϵ(t− τ) = ⟨O⟩t − ⟨O⟩ =
∫

ρF(dx)∇(O ◦ Ft−τ )(F(x)) · ϵ(x).

That way, expressing the time dependent perturbation as a sum of impulses,
ϵt(x) =

∑t
τ=−∞ ϵτ (x), the linear response results:

⟨δO⟩t =
t∑

τ=−∞

XOϵ(t− τ).

The series converges for uniformly hyperbolic systems, as it has been proven
by Ruelle. More in detail, the unstable response converges because of exponential
mixing and is given by a correlation function. Whereas the stable part, converges
due to the phase space contraction.
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2.2 Lucarini's Approach to Climate Change Predic-

tion

In this section it is introduced the use of the Ruelle's linear response theory that
Valerio Lucarini does to predict climate change, as he explains in Ghil and Lucarini
(2019). Where they state that Ruelle's theory is �an e�cient and �exible tool for
calculating climate response to small and moderate natural and anthropogenic forc-
ings�. Lucarini's approach is part of the new methods incorporating the dynamical
systems machinery into the climate science.

As mentioned in this article, it is a common practice to assume that a time-
dependent measure µt(dx) associated with the evolution of the dynamical system
ẋ = F(x, t) exists. Yet, computing the expectation value of measurable observ-
ables with respect to this measure requires normally big e�orts. They propose a
�minor generalization� of the chaotic hypothesis found in (Gallavotti and Cohen
(1995)), assuming that when considering su�ciently high-dimensional, chaotic and
non-autonomous dissipative systems, the corresponding measure µt(dx) is of SRB
type. Ruelle's response theory provides the tools to compute the change in the
measure µ(dx) of an autonomous Axiom A system caused by weak perturbations
of intensity ϵ, in terms of the unperturbed properties of the system. Thanks to the
fact that the invariant measure of that system is di�erentiable with respect to ϵ,
even if supported on a strange attractor. Moving to the non-autonomous version of
Ruelle's theory, it makes it possible to calculate the time-dependent measure µt(dx)
on the PBA by means of the computation of the time-dependent corrections to it
with respect to a reference state. Providing a general formulation for the climate
system's response to perturbations.

Assuming that the following may be written:

ẋ = F(x, t) = F(x) + ϵX(x, t), (2.1)

where ∀t ∈ R and ∀x ∈ Y ⊂ Rd, |ϵX(x, t)| ≪ |F(x)|. That way, F(x) can be
taken as the background dynamics and ϵX(x, t) as the perturbation. They restrict
the analysis to the separable case ẋ = F(x) + ϵX(x)T(t), without losing generality.

Now, in order to evaluate the expectation value of a measurable observable O(x),
i.e. ⟨O⟩ϵ(t), with respect to the measure µt(dx) of the system, it is written:

⟨O⟩ϵ(t) =
∫

O(x)µt(dx) = ⟨O⟩0 +
∞∑
j=1

ϵj⟨O⟩(j)0 (t) (2.2)

where ⟨O⟩0 =
∫
O(x)µ̄(dx) is the expectation value of the observable O with

respect to the SRB invariant measure µ̄(dx) of the autonomous dynamical system
ẋ = F(x). Then, they restrict themselves to the linear correction term, which can
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be written as follows

⟨O⟩(1)0 (t) =

∫ ∫ ∞

0

ΛSτ
0O(x)T(t− τ)dτµ̄(dx) =

∫ ∞

0

G
(1)
O,X(τ)T(t− τ)dτ (2.3)

where the Green's function G
(1)
O,X(τ) is given by

G
(1)
O,X(τ) =

∫
Θ(τ)ΛSτ

0O(x)µ̄(dx) (2.4)

being Λ(•) = X · ∇(•), Sτ
0 (•) = exp(tF · ∇)(•) the semigroup of unperturbed

Koopman operators. (·) denotes the inner product in Y , and the Heaviside distribu-
tion Θ(τ) enforces causality. If the unperturbed invariant measure µ̄(dx) is smooth
with respect to the standard Lebesgue measure, µ̄(dx) = µ̃(x)dx may be written,
with µ̃(x) the density and the Green's function can be rewritten as:

G
(1)
O,X(τ) = Θ(τ)

∫
−∇ · [µ̃(x)X]

µ̃(x)
Sτ
0O(x)µ̃(x)dx = Θ(τ) C(Φ,Sτ

0O) (2.5)

where Φ = −∇·[µ̃(x)X]
µ̃(x)

and C(A,Sτ
0B) is the τ -lagged correlation between the vari-

ables A and B. The average of Φ vanishes. The Equation 2.5 is the appropriate
generalization of the FDT for the non-autonomous and out-of-equilibrium system.

For a given time dependency of the forcing T(t), measuring the linear correction

term ⟨O⟩(1)0 (t) from a set of experiments, the equations from Equation 2.1 to Equa-
tion 2.4 allow to derive the appropriate Green's function.

However, another approach to constructing the climate response to forcings is
focusing on computing it directly from Equation 2.4. That way the problem of re-
lying on the applicability of FDT is avoided (it fails in certain relevant cases). The
di�culty in applying this direct approach comes from the fact that the formula con-
tains contributions from both stable and unstable directions in the tangent space.
And evaluating the contribution of the unstable directions is particularly hard. In
several articles, like Lucarini et al. (2017), they proposed to evaluate the Green's
function using an experimental but rigorous approach suggested by standard op-
tics laboratory practice. The idea behind it is that using a set of selected probe
experiments, normally, steplike increases of the parameter of interest, the Green's
function could be constructed. And after that, using Equation 2.4 in combination to
this obtained operator, the response of the system to a temporal pattern of interest
for the forcing, could be predicted.

If a set of forced climate simulations and a background unperturbed one are given,
this approach allows them to construct the Green's function's response operators
for any desired observable. Hence, this tool kit allows one to treat a continuum of
scenarios of temporal patterns forcings. The application that they present, consist
in taking the set of equations that describe the unperturbed dynamics of climate
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evolution in the form ẋ = F(x), with the vector �eld X(x) as the 3D radiative
forcing associated with the increment of CO2 concentration, and ϵT(t) its time
modulation. Inserting T(t) = ϵΘ(t) into Equation 2.4, for any climatic observable
O, it is obtained:

d

dt
⟨O⟩(1)0 (t) = ϵG

(1)
O,[CO2]

(t) (2.6)

They estimate d
dt
⟨O⟩(1)0 (t) taking the system's average of response over an en-

semble of initial states and use the previous equation to derive their estimate of
G

(1)
O,[CO2]

(t) by means of assuming linearity in the response.

In the work presented in Lucarini et al. (2017), they show the results of applying
the previous explained theory to an increase of CO2 concentration, �nding good
agreement between the ensemble average of 200 simulations using the model PlaSim
and the prediction using the Green's function. Also, they show the results for a
more localized prediction, with the outcome of predicting the change in the zonal
averages of the surface temperature. Being it a good reproduction of the spatial
patters of temperature change as well.

2.3 Limitations of the Theory

Even if the application of Ruelle's linear response theory to climate change can pro-
vide an improvement upon the standard methods of forward integration of model
ensembles with perturbed parameters and initial states, and applying also to sys-
tems out of thermodynamic equilibrium, it comes with some limitations.

The �rst limitation that they explain as well in Ghil and Lucarini (2019), given
the inherent linearity of Ruelle's linear response theory, it is indeed limited to small
perturbations in parameters. This limitation is overcome by the Exact Response
Theory that will be studied later in the present work, as it is not restricted to linear
cases.

As a second limitation of the theory, it was found in this work that the assump-
tion of the climate system being an Axiom A system is not completely rigorous. As
introduced before, Ruelle's linear response theory is developed for Axiom A systems.
Being the de�nition of Axiom A dynamical systems:

Let M be a smooth manifold with a di�eomorphism f : M −→ M . Then f is an
axiom A di�eomorphism if the following two conditions hold:

1. The nonwandering set of f , Ω(f), is a hyperbolic set and compact.

2. The set of periodic points of f is dense in Ω(f).

Thus, the hypothesis to consider the system Axiom A are too stringent. Since
typically systems of physical interest are not ergodic, being Axiom A way out of
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reach. It is true that analogy may be considered, if it proves some useful tool to use.

Lastly, as aforementioned, constructing directly the response operator using the
Ruelle formula, Equation 2.3, is an arduous process given the di�culties associated
to the contribution coming from both the unstable and stable directions. Therefore,
they are forced to proceed with an experimental approach, deriving the Green func-
tion from a set of experiments, with the handicaps associated to that procedure, as
avoiding the noise could be.



Chapter 3

Exact Response theory

3.1 Introduction

The Exact Response Theory that is going to be explained through this chapter was
developed within the �eld of Nonequilibrium Molecular Dynamics. The theory intro-
duces the Dissipation Function, Ω, as its basis. A parallel could be drawn between
this quantity and the thermodynamic potentials, as these potentials determine equi-
librium state properties while the Dissipation Function determines nonequilibrium
properties. The Dissipation Function can be used to determine the exact response of
particle systems obeying classical mechanical laws, in the presence of perturbations
of arbitrary size and modi�cations of states. It may also be used to express the re-
sponse of a single system. As it will be explained later, the Dissipation Function can
be associated with the entropy production rate. However, when studying general dy-
namical systems, like the case of the study conducted here, the function can still be
de�ned leading to formal, thermodynamic-like relations. In that case, such relations
may lack physical meaning, but they may establish interesting characterizations of
the dynamics.

The Dissipation Function was �rst explicitly introduced in Evans and Searles
(2002). After that, it was developed as the observable of interest in Fluctuation
Relations in Evans et al. (2005) and Searles et al. (2007).

The Nonequilibrium Molecular Dynamics, NEMD, is a computational method
born as a variation of Equilibrium Molecular Dynamics (when no dissipative forces
are involved), MD. The nonequilibrium case was developed to model the nonequi-
librium steady state that can be reached when the system is driven away from
equilibrium by external forces that constantly feed energy in it, and, at the same
time, it is in contact with some environment that removes energy from it. To do
that, there were introduced the "synthetic forces", that is, forces that do not exist in
nature, but that provide the way to transform a di�cult boundary condition prob-
lem into a much simpler mechanical one. What they do in practice is constraining
the dynamics of the particle systems in di�erent ways.

They realized that the phase space contraction rate, −Λ, which is proportional
to the thermostatting term, could as well be proportional to the entropy production

23
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when thermodynamics apply. In Searles and Evans (1999), the authors applied a
representation of SRB measures to the �uctuations of Λ in a Gaussian isoenergetic
shearing system, in that case the quantity Λ equals the entrophy production, when
local thermodynamic equilibrium holds. They derived and tested the Fluctuation
Relation, which for a time reversal invariant model of shearing �uids, states that
positive values of the energy dissipation, are exponentially more probable than the
opposite. The later was interpreted as an explanation of the second law of ther-
modynamics and motivated a huge amount of activity. However, even if the phase
space volumes variation rate, Λ, is easy to handle in dynamical systems theory, it
was revealed that only in a limit set of cases it is justi�ed the identi�cation with
the entropy production. In addition to that, in time dependent settings and when
�uctuations are involved, the relation of Λ and the physically measurable properties
results rather loose.

It was at that point when the Dissipation Function, Ω, was presented as the
physically relevant quantity for those cases where NEMD is applied. The Dissi-
pation Function preserves the meaning of energy dissipation rate even when local
thermodynamic equilibrium does not hold, and thermodynamic quantities such as
the entropy production do not exist. Only in small amount of cases Ω equals −Λ,
even though steady states averages of both magnitudes may be simply related to
each other. The Dissipation Function, as it will be shown later, can be used to
solve in terms of physically relevant quantities the Liouville equation, and so, to
investigate the exact average response of the observables of ensembles of systems.
Moreover, Ω may be used to provide conditions for the evolution of single systems.
These results are expressed in terms of a physically measurable quantity, instead of
being expressed in terms of an abstract phase space quantity.

3.2 Mathematical Framework

Considering the system of interest to be described by a dynamical system, whose
equation of motion is

ẋ = V(x); x ∈ M ⊂ Rn

with M the phase space. The solution at time t ∈ R with initial condition x, is
given by Stx. So that, St is a �ow on M, St : M −→ M.

Being µ0 the probability measure absolutely continuous w.r.t. the Lebesgue
measure dx, such that dµ0(x) = f0(x)dx, f0(x) corresponds to the density function,
positive and continuously di�erentiable. In the event that µ0 is not invariant, it
evolves under the dynamics, so that at time t it is expressed by µt(E) = µ0(S−tE),
for each measurable set E ⊂ M.

The evolution of the density function f0 under the dynamics is described by the
generalised Liouville equation:

∂ft
∂t

(x) = −∇ · (ft(x)V(x)) = −V(x) · ∇ft(x)− ft(x)∇ ·V(x)
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Thus, the total derivative of ft(x) can be expressed as

dft
dt

(x) =
∂ft
∂t

(x) +V(x) · ∇ft(x) = −ft(x)∇ ·V(x)

in the Lagrangian form.
Introducing the phase-space expansion rate Λ, that denotes the phase space

variation rate arising from the dynamics

Λ(x) =
d

dx
· ẋ = ∇ ·V(x),

whose negative is called the phase space contraction rate. Now, the partial and total
derivatives of ft with respect to time can be expressed in terms of this quantity

dft
dt

(x) = −ft(x)Λ(x) (3.1)

∂ft
∂t

= −ft(x)Λ(x)−V(x) · ∇ft(x) = −ft(x)[Λ(x) +V(x) · ∇lnft(x)] (3.2)

The so-called dissipation function corresponds to

Ωft(x) := −[Λ(x) +V(x) · ∇lnft(x)] (3.3)

The origin of the name dissipation function comes from the fact that this quantity
corresponds, for a non-equilibrium molecular dynamics, to generalized entropy pro-
duction, as aforementioned. In the �eld of dissipative dynamical systems, generally
associated with the concept of diminishing volume of the occupied phase space over
time, that corresponds to a negative phase-average of Λ. The notion of dissipation
arises from considering the second law of thermodynamics applied to collections of
macrostates. However, the dissipation function Ωf arises in a space of microstates,
each of which a�ords the complete description of a macroscopic object at a given
time.

The superscript ft is used to explicitly denote the dependence on the density
function ft. That way it is obtained

∂ft
∂t

= −ft(x)Ω
ft(x), (3.4)

the evolution of ft sitting at the point x, i.e. the Eulerian form. Here it is clear that
the condition for the initial distribution to remain invariant under the �ow is given
by Ωft . If Ωft ≡ 0, the distribution at a point remains unchanged over time, which
is a necessary and su�cient condition for the invariance of the probability density
at x, when f0(x) > 0.

While Equation 3.1 describes the evolution of ft along the �ow, exposing that
the distribution does not change along the trajectory, if and only if Λ(Stx) = 0.
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Given any observableO : M −→ R, its ensemble average according to the measure
dµt(x) = ft(x)dx is de�ned as

⟨O⟩t =
∫
M

O(x)ft(x)dx. (3.5)

In order to determine the evolution of the ensemble average of any observable, it
is useful the evolution of ft in terms of f0. Thus, directly integrating Equation 3.1

fs+t(Stx) = exp{−Λ0,t(x)}fs(x) (3.6)

where the following notation is used

Or,s(x) =

∫ s

r

O(Sτx)dτ.

Nonetheless, Equation 3.6 does not provide ft(x) in terms of f0(x), but provides
ft(Stx) in terms of f0(x). Thus, rather than that one, the equation used is Equa-
tion 3.4. To get to the �nal useful expression, the following relation is taken into
account:

Ωft
0,s(x) =

∫ s

0

Ωft(Sux)du =

∫ s

0

[Λ(Sux) +V(Sux) · ∇ ln ft(Sux)]du

= −Λ0,s(x)−
∫ s

0

d

du
ln ft(Sux)du

= −Λ0,s(x)−
ln ft(Ssx)

ft(x)

= ln
ft(x)

ft(Ssx)
− Λ0,s(x)

where it has been used the equality V(Sux) · ∇A(Sux) = d
du
A(Sux), valid when

A has no explicit dependence on u, as in the case of ln ft(Sux).
Now, adding the exponential and fs(Ss+tx) to the last expression

exp{Ωfs
s,s+t(x)}fs(Ss+tx) =

(
fs(Ssx)

fs(Ss+tx)
exp{−Λs,s+t(x)}

)
fs(Ss+tx)

= exp{−Λs,s+t(x)}fs(Ssx) = fs+t(Ss+tx)

It leads to the searched expression, relating ft(x) in terms of f0(x),

fs+t(x) = exp{Ωfs
−t,0(x)}fs(x) (3.7)

Where it is implicitly assumed that the dynamics is invertible (existence of the
unique projection of the dynamics backwards in time), given that the distribution
function at future times, Ωfs , is integrated forward in time over trajectories that
begin in the past.



3.2. MATHEMATICAL FRAMEWORK 27

Therefore, an expression for ⟨O⟩ft could be written in terms of Ωf0 and ft. In
order to obtain the expression, the following two identities are used

O0,s(x) =

∫ s

0

O(Sux)du =

∫ s+τ

τ

O(Su−τx)du

=

∫ s+τ

τ

O(S−τSux)du = Oτ,s+τ (S−τx) ;

⟨O⟩t+s =

∫
O(x)ft+s(x)dx =

∫
O(Ss(S−sx))ft+s(Ss(S−sx))

∣∣∣ ∂x

∂S−sx

∣∣∣d(S−sx)

=

∫
O(Ss(S−sx))ft+s(Ss(S−sx)) exp{Λ−s,0(x)}d(S−sx)

=

∫
O(Ss(S−sx))ft+s(Ss(S−sx)) exp{Λ0,s(S−sx)}d(S−sx)

=

∫
O(Ssx)ft+s(Ssx) exp{Λ0,s(x)}d(x)

=

∫
O(Ssx)ft(x)d(x) = ⟨O ◦ Ss⟩t.

That way, the last expression provides:

⟨O⟩t+s =

∫
O(Ssx)ft(x)d(x) = ⟨O ◦ Ss⟩t. (3.8)

Moreover, for any arbitrary observable, it is observed,

d

ds
⟨O⟩fs = lim

h−→0

1

h
[⟨O⟩fs+h

− ⟨O⟩fs ]

= lim
h−→0

1

h

∫
[O(x)fs+h(x)−O(x)fs(x)]dx

= lim
h−→0

1

h

∫
O(x)[fr(x) exp{Ωfr

r−s−h,0(x)} − fr(x) exp{Ωfr
r−s,0(x)}]dx

= lim
h−→0

1

h

∫
O(x)fr(x) exp{Ωfr

r−s,0(x)}[exp{Ω
fr
r−s−h,r−s(x)} − 1]dx

where the Equation 3.7 is used.

Now, studying the part of the integral that depends on h,
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lim
h−→0

1

h
[exp{Ωfr

r−s−h,r−s(x)} − 1] = lim
h−→0

1

h
[exp{

∫ r−s

r−s−h

Ωfr(Sux)du} − 1]

=
d

dh
exp{

∫ r−s

r−s−h

Ωfr(Sux)du}|h=0

= Ωfr(Sr−s−hx) exp{
∫ r−s

r−s−h

Ωfr(Shx)}|h=0

= Ωfr(Sr−sx)

Hence, one may write

d

ds
⟨O⟩fs =

∫
O(x)fr(x) exp{Ωfr

r−s,0(x)}Ωfr(Sr−sx)dx

=

∫
O(x)fs(x)Ω

fr(Sr−sx)dx = ⟨O · (Ωfr ◦ Sr−s)⟩fs .

using again Equation 3.7. One last useful equality is:

d

ds
⟨O⟩fs = ⟨O · (Ωfr ◦ Sr−s)⟩fs , (3.9)

which in the case r = 0 would be, using Equation 3.8,

d

ds
⟨O⟩fs = ⟨O · (Ωf0 ◦ S−s)⟩fs = ⟨(O ◦ Ss) · Ωf0⟩f0 (3.10)

While if r = s,
d

ds
⟨O⟩fs = ⟨O · Ωfs⟩fs (3.11)

Thus, the evolution of ⟨O⟩fs in terms of averages with respect to the initial
distribution f0 is described by

⟨O⟩ft = ⟨O⟩f0 +
∫ t

0

⟨(O ◦ Ss) · Ωf0⟩f0ds (3.12)

The Equation 3.12 is the one that allows one to compute the response of the
system to a perturbation, and so, it will be computed later in the work.

3.2.1 Conditions on the Dynamics and Probability Density
Function

As explained above, the dissipation function can be obtained from Equation 3.2,
resulting in Equation 3.4. This operation can be performed under the following
standard conditions:

1. The vector �eld V(x) should be everywhere di�erentiable in the phase space
M for Λ to exist.
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2. The initial probability density function f0 should be everywhere positive in M
for its logarithm to exist.

3. The initial probability density function f0 should be everywhere di�erentiable
in M for its gradient to exist.

These conditions also guarantee the continuity of the dissipation function Ω,
which is used to obtain Equation 3.12 from Equation 3.5, via Equation 3.7.

3.3 Current Applications of Exact Response Theory

Previous works where the exact response theory is applied can be found. In partic-
ular, the work developed in Amadori et al. (2022) was considered useful to expose
in a clear way the application of the theory. Thus, a summary of it is provided this
section.

3.3.1 Dynamics of Kuramoto Oscillators

In Amadori et al. (2022) the response theory is applied to the dynamics of the
Kuramoto oscillators. The Kuramoto model is contemplated as a prototype of many
particle systems exhibiting synchronization. It is a dissipative system with many
degrees of freedom undergoing nonequilibrium phase transitions.

As Kuramoto dynamics undergo synchronization transitions, the linear response
theory could not apply. Indeed, it is showed through a comparison between the
application of the exact response theory and the linear response theory, that the
later one fails while the exact one is capable of handling small perturbations which
may result in large modi�cation of the state.

In the work it is obtained the synchronization within the formalism of the Dissi-
pation Function, thus showing how such a behavior is captured by the exact response
theory, being not evidenced by the linear theory. Synchronization corresponds in-
deed to the maximum value of the Dissipation Function, which they prove to be
attained in time.

Properties of Kuramoto System

As introduced in Amadori et al. (2022), the following set of coupled �rst order ODEs,
de�ne the Kuramoto dynamics:

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)), i = 1, ..., N. (3.13)

It is de�ned on the N-dimensional torus, T N = (R/(2πZ))N , where N ≥ 1 is the
number of oscillators, K > 0 is a constant, and the natural frequencies ωi ∈ R are
drawn for some given distribution g(ω).
The oscillators can be represented by points rotating on the unit circle centered at
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the origin of the complex plane, so mathematically eiθj with j = 1, ..., N . Now,
introducing the polar coordinates of the barycenter,

ReiΦ =
1

N

N∑
j=1

eiθj , (3.14)

with R ∈ [0, 1] and Φ ∈ R (de�ned if R > 0), the Equation 3.13 can be rewritten to:

θ̇i(t) = ωi +KR sin(Φ− θi), i = 1, ..., N. (3.15)

R = R(θ(t)) is the order parameter and Φ = Φ(θ(t)) is the collective phase, with
the phase θ = (θ1, ..., θN) ∈ M = T N , where M denotes the phase space.

As they point out in Amadori et al. (2022), �a complete frequency synchroniza-
tion occurs when the di�erences θi(t)− θj(t) tend to a constant for all i and j, and
R(θ(t)) tends to a given R∞ ∈ (0, 1], as t −→ +∞. In case R∞ = 1, all the N terms
of the sum in Equation 3.14 coincide, hence the Kuramoto system undergoes phase
synchronization".

From identities that Equation 3.14 provides, they �nd the following relation,

R2 =
1

N2

N∑
i,j=1

cos(θj − θi). (3.16)

Further rewritting of Equation 3.15 leads to

θ̇ = W + V (θ) = VK(θ) (3.17)

where W = (ω1, ..., ωN) is interpreted as �an equilibrium vector �eld of N natural
frequencies", whereas V represents �a non equilibrium perturbation", composed of:

Vi(θ) =
K

N

N∑
j=1

sin(θj − θi) = KR sin(Φ− θi), i = 1, ..., N. (3.18)

The phase space volumes variation rate is then given by the equation:

Λ = K(1−NR2) (3.19)

Applying Response Theory

Focusing on identical oscillators, that is, where for all the natural frequencies ωi = ω.
The following dynamics are proposed:

θ̇ =

{
W t < 0
W + V (θ) t > 0

(3.20)

where V0(θ) = W = (ω, ..., ω) represents the unperturbed dynamics, which cor-
responds to K = 0. This dynamics are conservative, given that divθV0 = 0, thus, the
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corresponding steady state could be considered an equilibrium state. However, at
time t = 0, the perturbation V (θ) is switched on, leading to the Kuramoto dynamics
(non-conservative) described above.

As initial probability density, they take f0(θ) = 2π−N , which is invariant under
the unperturbed dynamics. Leading to Ωf0

0 ≡ 0 (for the unperturbed dynamics),
while using the perturbed system the Dissipation function has the form:

Ωf0
V = K(NR2 − 1) =

K

N

N∑
i,j=1

cos(θj − θi)−K (3.21)

Now, if the Equation 3.12 is applied taking as observable the Dissipation Func-
tion, so O = Ωf0

V , the response is computed as follows:

⟨Ωf0
V ⟩ft = ⟨Ωf0

V ⟩f0 +
∫ t

0

⟨(Ωf0
V ◦ Ss) · Ωf0

V ⟩f0ds. (3.22)

Knowing that, ⟨R2⟩0 = 1/N , the phase space average ⟨Ωf0
V ⟩f0 vanishes. Hence,

only the second integral must be computed. Substituting Equation 3.21 into Equa-
tion 3.22, it is obtained:

⟨Ωf0
V ⟩ft = K2N2

∫ t

0

⟨R2[R2 ◦ Ss]⟩f0ds−K2N

∫ t

0

⟨R2 ◦ Ss.⟩f0ds (3.23)

If the general case is reduced to two oscillators, i.e. N = 2, explicit calculations
can be carried out. In particular they get to the following relations:

⟨R2 ◦ Ss⟩f0 =
1

(2π)2

∫
M

1

tan2( θ1−θ2
2

)e−2Ks + 1
dθ =

1

e−Ks + 1
,

⟨R2(R2 ◦ Ss)⟩f0 =
1

8π2

∫
M

1 + cos(θ1 − θ2)

tan2( θ1−θ2
2

)e−2Ks + 1
dθ =

2e−Ks + 1

2(e−Ks + 1)2
.

Therefore, integrating both of them through time the following expressions are
found ∫ t

0

⟨R2 ◦ Ss⟩f0ds = t+
ln(e−Kt + 1)

K
− ln 2

K
,

∫ t

0

⟨R2(R2 ◦ Ss)⟩f0 =
t

2
+

1

2K

[
3

2
+ ln

(
e−Kt + 1

2

)
− 2

eKt + 1
− 1

e−Kt + 1

]
.

Then, �nally, the following explicit expressions are obtained

⟨Ωf0
V ⟩ft = K tanh

(
Kt

2

)
, (3.24)

⟨(Ωf0
V ◦ Ss) · Ωf0

V ⟩f0 =
K2

1 + cosh(Kt)
. (3.25)
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Apart from this analytical results, in the article they compute the evolution of
Ω numerically.

This numerical computation is replicated here, as part of the learning phase of
the theory, following the procedure explained in chapter 6. The results are showed
in Figure 3.1.

Figure 3.1: Evolution of ⟨Ωf0
V ⟩ft and ⟨(Ωf0

V ◦ Ss)Ωf0
V ⟩f0 with the time when N = 2,

K = 1 and ω = 0. The averages were taken over a set of 5041 trajectories with
initial data sampled from the uniform distribution [0, 2π).

It was proven that the average of Ω tends to the value K when t −→ ∞. As well
as the showed case when N = 2, in Amadori et al. (2022) the numerical computation
of the evolution of averaged Ω is performed for the general case. When the number
of oscillators N is large, the maximum value was found to be proportional to K, in
particular Ω tends to (N − 1)K.

Comparison with Linear Response Theory

Later in the work, they compare the results given by the exact response theory
with those of the linear response theory using a generalized Green-Kubo formula,
as follows. Considering a perturbed vector �eld, de�ned as:

Vε(θ) = V0(θ) + εVp(θ), (3.26)

where the parameter ε represents the strength of the perturbations. Applying it
to the before developed application to identical oscillators, ε is identi�ed as K, and
it is de�ned:

V0(θ) = ω,

Vp,j(θ) = R sin(Φ− θj), j = 1, ..., N.

They denote St
ε and St

0 the perturbed and unperturbed �ows, respectively. It is
obtained,

Ωf0
ε = Ωf0

0 + εΩf0
p = εΩf0

p ,
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where Ωf0
0 and Ωf0

p correspond to the Dissipation Function evaluated in terms of
the vector �elds V0 and Vp, respectively. Then, the exact response is written as:

⟨O⟩t,ε = ⟨O⟩0 + ε

∫ t

0

⟨(O ◦ Sτ
ε )Ω

f0
p ⟩0dτ. (3.27)

Since the formula is exact, ε does not need to be small, also it appears both as
a factor multiplying the integral and in the perturbed �ow St

ε.

Whereas the linear response result is written as follows:

¯⟨O⟩t,ε =
∫
M

O(θ)f̄t(θ; ε)dθ = ⟨O⟩0 + ε

∫ t

0

⟨(O ◦ Sτ
0 )Ω

f0
p ⟩0dτ. (3.28)

Comparing them it is obtained:

⟨O⟩t,ε − ¯⟨O⟩t,ε = ε

∫ t

0

⟨[(O ◦ Sτ
ε )− (O ◦ Sτ

0 )]Ω
f0
p ⟩0dτ, (3.29)

which shows that indeed, the two formulae tend to be the same, when small ε
limit.

Now taking the observable as O = Ωf0
ε = εΩf0

p , they �nd for N = 2:

⟨Ωf0
ε ⟩t,ε = ε tanh(

εt

2
),

¯⟨Ωf0
ε ⟩t,ε =

ε2t

2
,

which makes the di�erence:

⟨Ωf0
ε ⟩t,ε = ¯⟨Ωf0

ε ⟩t,ε + o(ε2)t,

showing that for small times the di�erence between both responses is small, but
diverges linearly as time grows.
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Chapter 4

Dynamics of the System

4.1 De�nition of the System

The chosen dynamical system to apply the exact response theory, is the model
proposed in Saltzman and Maasch (1988), which describes the Pleistocene ice ages.
The model considers three "slow response prognostic" variables, believed to be of
prime relevance:

� Global Ice Mass, I

� Atmospheric Carbon Dioxide, µ

� A measure of the strength of the oceanic "CO2 pump" (believed to be related
to the magnitude of North Atlantic Deep Water, N)

There are two additional diagnostic variables, which are determined by the men-
tioned "prognostic" variables.

� Mean Oceanic Surface Temperature, τ

� Permanent Sea Ice Extent, η

At that time, there was an understanding that the control of the natural atmo-
spheric CO2 variations resided in the state of the upper layer of the world ocean, as
in�uenced by the circulation and mass exchanges with the deeper levels. When con-
sidering it at a basic level, thus, neglecting inputs due to volcanism, anthropogenic
sources and the exchange with the continental biosphere (apparently minor), the
atmosphere CO2 increases if the �ux of CO2 from oceanic sources (in particular
from warm low-latitude waters) exceeds the oceanic uptake (mainly in cold high-
latitude waters). The balance described, is, said by Saltzman in Saltzman and
Maasch (1988), �highly vulnerable to changes in ocean circulation and mixing ans
associated changes in the chemical-biological-thermal state of the upper layer waters
with which the atmosphere tends to (but probably never does) equilibrate".

35
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Based on some studies of that period, they assume that the primary controls
of this delicate balance are the following, corresponding to or related to the above
variables:

� Sea surface temperature. Colder water presents, even if small when con-
sidered alone, an e�ect of higher solubility and uptake of CO2.

� Permanent ice coverage as measured by summer sea ice extent.

� Large ice extent enhances the e�ciency of high-latitude bioproductivity,
by moving phytoplankton to lower latitudes. This e�ect is considered to
be small.

� Enhanced surface seasonal meltwater volume coming from sea ice �elds
provides a more stable cap on high-latitude waters. The most relevant
e�ects is that it tends to inhibit deep convective mixing in high latitudes
that can cause high CO2 levels in polar waters.

� Large ice extent towards the equator increases the atmospheric and oceanic
baroclinicity leading to: large horizontal surface water exchange between
low and high latitudes, decreasing atmospheric CO2; increase precipi-
tation over high-latitude water amplifying the e�ect of the meltwater
described above, as it reduces the salinity; increase in shallow mechanical
mixing in high-latitude surfaces which results in higher �ux of CO2 from
the atmosphere to the ocean.

� The strength of the main thermohaline circulation, in particular the
production of North Atlantic Deep Water (NADW).

� First order e�ects of a large mass of NADW in the ocean would be a
decrease of CO2 in the atmosphere due to: stabilization of the ocean
by �lling the deeper levels with dense saline water, which prevents the
convective overturnings that would bring up water carbon-rich water and
increase the CO2 in the atmosphere; strong downwelling of CO2 in the
NADW production zone and horizontal replacement with carbon-poor
waters coming from lower latitudes, which translates in a higher solubility.
Also, the transportation of nutrients throughout the world ocean by the
NADW, might increase global productivity and CO2 downdraw.

� However, a strong intrusion of relatively warmer water under cold An-
tartic surface waters, destabilise deep convection, lowering the �rst order
e�ects above mentioned. Hence, small increases of NADW from an equi-
librium state tend to lower CO2, but bigger ones could start increasing
surface-deep vertical mixing, increasing CO2. The authors in the paper
adopted this hypothesis as one that could account for the asymmetry of
the climatic response including the rapid changes of CO2, NADW and ice
mass during deglaciation. Nonetheless, from another, more generic, point
of view, knowing that the �uxes due to deep convection overturnings are
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a �highly nonlinear function of the density strati�cation, bifurcating to
a relatively high value when a critical point of instability is approached
or exceeded", it could be expected that a negative anomaly of NADW
produces a larger �ux increase than the decrease in �ux that a positive
anomaly of the same magnitude generates.

� Sea level change associated with global ice mass changes.

� Rising sea level comes with coral reef growth releasing excess CO2 to the
surface waters and hence, to the atmosphere according to the correspond-
ing reaction which reverse is operative during falling sea level.

� During falling sea levels, nutrients stored in organic detritus which were
deposited in the continental shelves during the preceding sea level rise,
are now eroded back into the ocean, enhancing productivity and carbon
burial in deeper ocean.

� A small e�ect arises due to generation of vegetation sinks of CO2 when
land masses in tropical areas are exposed after the fall in sea level.

� Negative feedbacks. Like in all natural systems, strong departures from
equilibrium are opposed by dissipative e�ects. Some examples could be the
increase in continental vegetation or augmented dissolution in surface water
when higher levels of atmospheric CO2 are reached. Hence, they speculate
that when the entire climatic system is far from equilibrium, this damping of
CO2 extremes is maximized.

Therefore, after examining the implications of the above phenomena, the rate
of change of atmospheric CO2 concentration, µ, can be formulated in the following
way:

dµ

dt
= µ̇ = r1τ

′ − r2η
′ − (r3− b3N

′)N ′ − r5İ
′ − (r4 + b4N

′2)µ′ + Fµ, (4.1)

where, ( )′ means departure of the variable from equilibrium. τ is global temper-
ature of the water surface. η is global mean extent of permanent sea ice. I is global
ice mass. N is the amount and extent of NADW. The parameters r1, r2, r3, r4, r5,
b3 and b4 are assumed to be positive rate constants and Fµ denotes external forcing
due to direct inputs of CO2 (for example, volcanic e�ects unbalanced by weathering).

Now, the expressions of the rest of the variables are:

İ ′ = −s1τ
′ − s2µ

′ + s3η
′ − s4I

′ + FI , (4.2)

Ṅ ′ = −c0I
′ − c2N

′ + FN , (4.3)

where s1, s2, s3, s4, c0, and c2 are assumed to be positive rate constants and FI ,
FN denote external forcing.
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It is further assumed that the fast response variables τ and η can be expressed
in terms of prescribed slow response variables I, µ and N :

τ ′ = −αI ′ + βµ′ + Fτ , (4.4)

η′ = −eII
′ + eµµ

′ + Fη, (4.5)

where α, β, eI and eµ are the equilibrium sensitivity coe�cients assumed to be
positive. While Fτ and Fη represent the e�ects of external forcing, like Earth orbital
could be. The possible dependence of τ and η on N is uncertain, but neglected here.

Therefore, substituting Equation 4.4 and Equation 4.5 in Equation 4.1, Equa-
tion 4.2 and Equation 4.3 they obtain the following system governing the slow re-
sponse variables:

İ ′ = −a0I
′ − a1µ

′ + FI (4.6)

µ̇′ = −b0I
′ + b1µ

′ − (r3− b3N
′)N ′ − b4N

′2µ′ + Fµ (4.7)

Ṅ ′ = −c0I
′ − c2N

′ + FN (4.8)

where a0 = (s4 − s1α − s3eI), a1 = (s1β + s3eµ + s2), b0 = (r1α + r2eI − r5a0),
b1 = (r1β+r2eµ+r5a1−r4), FI = (FI−s1Fτ+s3Fη), Fµ = (Fµ+r1Fτ−r2Fη−r5FI),
and FN = FN .

The appropriate value of the rate constants in these equations is not known,
however, after some assumptions and simpli�cations combined with the search of
obtaining the behavior of the Vostok ice core measurements seen in Barnola et al.
(1987) (giving atmospheric CO2) and recent δ

13C measurements in Curry and Crow-
ley (1987) (providing global ice mass), the values of this parameters are obtained.

In particular, if the above equations are rescaled with the transformations: t =
[a−1

0 ]t∗, I ′ = [c2c
−1
0 (a0/b4)

1/2]X, µ′ = [c2(a1c0)
−1(a30/b4)

1/2]Y , andN ′ = [(a0/b4)
1/2]Z,

it is obtained

Ẋ = −X − Y

Ẏ = −pZ + rY + sZ2 − Z2Y

Ż = −q(X + Z)

where (˙) = d( )
dt∗

, p = a1c0b2/a
2
0c2, q = c2/a0, r = b1/a0 and s = a1b3c0(b4/a0)

1/2/a0b4c2.
And, in particular, they took, p = 0.9, q = 1.2, r = 0.8 and s = 0.8, obtaining the
oscillatory response of ∼ 115 kyr, showed in Figure 4.1. In Saltzman and Maasch
(1988) the �gure is described as �Time-dependent periodic solution for departures
from equilibrium, in nondimensional units scaled to a range of unity, for an arbi-
trary 500-kyr period. Upper panel: global ice mass (solid) compared with SPECMAP
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δ18O curve (dashed) over past 200 kyr. Middle panel: atmospheric carbon dioxide
(solid), compared with Vostok CO2 curve (dashed) over past 160 kyr. Lower panel:
North Atlantic deep water. The vertical line is assumed to correspond to conditions
at the present interglacial time�.

Figure 4.1: Solution of the system as showed in Saltzman and Maasch (1988).

4.2 Dynamics of the Resulting System

The expression for V0(x) that is going to be used in this study is the scalated one
provided in Saltzman and Maasch (1988) and presented in section 4.1:

Ẋ = −X − Y (4.9)

Ẏ = −pZ + rY + sZ2 − Z2Y (4.10)

Ż = −q(X + Z) (4.11)

As a �rst approach, the evolution of an initial point can be simulated. In the
Figure 4.2, such evolution through time is depicted for the three variables. Obtaining
a similar �gure as Figure 4.1 from Saltzman and Maasch (1988).
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Figure 4.2: Evolution through time for the three variables.

4.3 Fixed Points

Then, the �xed points are searched. Those points are given when all the equations
are cancelled,

Ẋ = −X − Y = 0

Ẏ = −pZ + rY + sZ2 − Z2Y = 0

Ż = −q(X + Z) = 0

Solving the previous system, the following points are found:

xI = {0, 0, 0},

xII,III = {1
2
(−s±

√
s2 − 4(p− r)),−X,−X}.

Thus, for the given parameter values:

xI = {0, 0, 0},

xII = {−0.15505, 0.15505, 0.15505},
xIII = {−0.64495, 0.64495, 0.64495}.

As a following step, the stability of the �xed points is studied using the Jacobian,
which for the given system is:

J =

−1 −1 0
0 r − Z2 −p+ 2Z(s− Y )
−q 0 −q
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For the �rst �xed point, xI , the following eigenvalues are found:

λ1 = −1.7575, λ2,3 = 0.1787± 0.1906i.

While for the second �xed point, xII , it is found:

λ1 = −1.6919, λ2 = −0.1340, λ3 = 0.4019.

Finally for the third �xed point, xIII :

λ1 = −1.7372, λ2,3 = −0.0394± 0.4655i.

Therefore, the �rst and the second �xed points result to be unstable. Since for
the �rst point, the real part of the complex conjugate eigenvalues is positive. While
for the second point, three real eigenvalues are found, being one of them positive.
However, for the third point, both the real eigenvalue and the real part of the com-
plex conjugate eigenvalues are negative, presenting then a stable behavior.

The fact that the �rst and the second �xed points are unstable, means that any
trajectory passing close to this points will not approach them, but will continue
other trajectory. In particular, what happens is that those trajectories close enough
to the �rst and second �xed points, will be attracted by the third �xed point, as this
one is stable, or they will be dragged to the attractor. This behavior is explained in
detail for each point.

4.3.1 Fixed Point xI

As the �rst �xed point is unstable, determining the trajectory of the points around it
is an important task. To do so, a sphere of points around xI is evolved through time.
The points were created equispacing the two angles of the spherical coordinates,
that is, equispacing the polar angle between 0 and π radians, θ = [0, π], and the
azimuth angle between 0 and 2π radians, φ = [0, 2π]. Due to the particularities of
the spherical coordinates, if N values of the polar angle equispaced in the previous
described range are combined with N values of the azimuth angle equispaced in
the correspondent range, instead of getting N2 unique points, they are obtained M
unique points following the relation M = N(N − 1) − 2(N − 2). The �rst obvious
reason is that 0 and 2π radians are the same angle, that is what causes N(N − 1)
instead of N · N . The second reason is that when the polar angle equals 0 or π
radians, the azimuth angle is arbitrary, since x = sin θ cosφ and y = sin θ sinφ,
thus, the coordinates x and y will be 0 for all the di�erent values of the azimuth
angle. Therefore, for N − 1 points that are generated when θ = 0, only one unique
point is generated, same for θ = π, which only generates other unique point. So,
taking into account these particularities, M points are generated for di�erent values
of the radius. In particular, two di�erent values of the radius were considered enough
to show the behavior of the several �xed points. To exemplify, in Figure 4.3 a set
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Figure 4.3: Set of initial points around �rst �xed point xI .

of M initial points at radius 0.1 along with other M initial points at radius 0.05 are
depicted around the �rst �xed point. The number M = 44 comes from the previous
relation when N = 8 is used.

In Figure 4.4, a set of 28 points contained in a sphere of radius 0.1 are evolved till
t = 80, and as it is showed, their trajectories are split in two di�erent destinations.
In particular, these two destinations happen to be the attractor and the stable �xed
point xIII , as it could be appreciated. In Figure 4.4, 14 points at a distance of 0.1
from xI and 14 points at a distance of 0.05 are evolved. However, even if this �gure
provides the big picture of the behavior, it does not show in detail which trajectories
are dragged to the attractor and which ones are lead to the stable �xed point.

Figure 4.4: Trajectories of points around the unstable �xed point xI .

Thus, in Figure 4.5 two �gures were obtained focusing �rst in the unstable �xed
point xI , Figure 4.5a, and second in the stable �xed point xIII , Figure 4.5b.

In the �gure around xI , Figure 4.5a, it can be seen how the trajectories are split
in two, in opposite directions. One will reach the attractor, while the other one will
be drawn to the stable �xed point, xIII . In the �gure, 44 points at 0.05 distance
along with 44 points at radius 0.025 were evolved. The radius to obtain the �gure
were decreased in order to show a clear picture of the behaviour.
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(a) Zoom in xI . (b) Zoom in xIII .

Figure 4.5: Zoom of trajectories around unstable �xed point xI .

In the �gure around xIII , Figure 4.5b, it can be seen that the trajectories are con-
tained in a plane with the point xIII belonging to it. The trajectories "orbit" the
point while they are getting closer, forming a spiral. In this case, the trajectories
are evolved till t = 150, since reaching the �xed point takes more time than arriving
to the attractor.

4.3.2 Fixed Point xII

The same steps are followed to study the behaviour around the second �xed point, as
this one is unstable as the �rst one. Therefore, in Figure 4.6, the picture is showed,
where again, some points are dragged to the attractor while others arrive to the
stable �xed point, xIII . In this case, 44 points were created at 0.1 distance from the
unstable �xed point xII and other 44 points at a radius of 0.05. The trajectories
were evolved during t = 80 to obtain the �gure. Comparing to the �rst �xed point,
the trajectories here follow a more synchronized and faster path to the attractor.
While the path to the stable �xed point remains very similar.

Figure 4.6: Trajectories of points around the unstable �xed point xII .
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Thus, focusing again in the unstable �xed point treated in this section and the
stable �xed point, the Figure 4.7 is obtained. In Figure 4.7a, an amount of 44 points
were placed at 0.05 distance form the �xed point and 44 points were placed at 0.025.
In this case, again, the distance from the �xed point is reduced to get to capture
a clearer �gure. Same set is used in Figure 4.7b, but in this case the trajectories
showed were evolved till t = 150, as it is the time they needed to reach the �nal
destination, i.e. the stable �xed point xIII .

(a) Zoom in xII . (b) Zoom in xIII .

Figure 4.7: Zoom of trajectories around unstable �xed point xII .

4.3.3 Fixed Point xIII

As aforementioned, the �xed point xIII is stable, meaning that trajectories beginning
in its surroundings will be attracted to the point itself. A study of its sensitivity
has been conducted, concluding that points contained in a sphere of radius ⩽ 0.12
will always be attracted to the �xed point. For bigger radius the trajectories start
to escape the attraction to the point and instead they go to the attractor.

In the Figure 4.8, the explained behaviour is illustrated. In Figure 4.8a, 44
points at a distance of 0.12 from xIII and 44 points at a distance of 0.06 are evolved
through time. Alternatively, in Figure 4.8b, less points were evolved with the pur-
pose of presenting a clearer �gure where it could be appreciated the trajectory of
the points. In particular, an amount of 28 points were evolved. In a similar way
as the previous simulation (Figure 4.8a), half the points (14) started at a radius of
0.12 and the other half started at a distance of 0.06 from the point.
Same behaviour is found in both �gures, all the points are lead to a particular plane
in which they continue their trajectory "orbiting" the point. Diminishing the dis-
tance from the point little by little, that is, following a spiral.
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(a) Trajectories of 88 points contained in a

sphere or radius = 1.2.

(b) Trajectories of 28 points contained in a

sphere or radius = 1.2.

Figure 4.8: Trajectories of points around the stable �xed point xIII .

4.4 Attractor

Another property of the dynamical system, along with the �xed points, which can
tell a valuable information about the dynamics of the system is the attractor. For
the case studied here, there is one attractor that attracts almost all the possible
trajectories inside the phase space, except for some trajectories that pass close the
three �xed points, which end in the stable one. Once the trajectory is captured
by the attractor, the particle will follow a periodic trajectory along the attractor,
thus, it could be also called limit cycle. This particularity explains the oscillatory
behavior that Saltzman was searching for.
In Figure 4.9, seven random initial points are evolved and their trajectories depicted.
Thus, the shape of the attractor is easily captured computing the trajectory of a
random initial point. It is showed in Figure 4.10.

Figure 4.9: Example of trajectories being dragged to the attractor.

Since, the issue of the domain will be treated later, the knowledge of the limits
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of the attractor is important, in particular they are:
X ∈ (−2.06, 0.943)
Y ∈ (−1.17, 2.77)
Z ∈ (−0.801, 1.68)

(4.12)

Figure 4.10: Attractor found for the dynamical system presented by Saltzman and
Maasch.

4.5 Phase Space

Mathematically, the phase space of the system goes from −∞ to ∞ for every di-
mension, i.e. X ∈ (−∞,∞), Y ∈ (−∞,∞), Z ∈ (−∞,∞). Yet, if the physics
of the system are considered, points far from (0, 0, 0) would not be included, as
they lack the physical meaning. In fact, as pointed out in Saltzman and Maasch
(1988), �When the system is very far from this unstable equilibrium large stabiliz-
ing restorative forces come into play, constraining the system to execute oscillatory
variation about the unstable equilibrium.� Where �unstable equilibrium� refers to the
�xed point at the origin of coordinates. So, in practice, the phase space could be
reduced to the surroundings of the attractor described before, which corresponds to
the �oscillatory variation� mentioned in the article.

In Figure 4.11, the phase portrait of the dynamical system is presented. The
same �gure is presented with two di�erent orientations, so that the particular paths
that the trajectories follow could be appreciated. To create the picture, a mesh of
initial equispaced points forming the surfaces of a cube which length of the edges is
6 and that is centered in the origin, are evolved until they reach the attractor. In
Figure 4.11, the trajectories of these points are depicted in dark blue. In addition
to that, trajectories with initial points around the three �xed points and in general,
inside the attractor, are evolved. However, what happens inside the attractor is not
well appreciated in the �gure.

In order to clearly present the phase portrait inside the attractor, the trajectories
coming from this cube centered in the origin, are depicted from a time t > 0, which
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(a) Orientation a. (b) Orientation b.

Figure 4.11: Phase Portrait.

(a) Cube trajectories from t1 > 0. (b) Cube trajectories from t2 > t1 > 0.

Figure 4.12: Phase Portrait.

deletes the �rst part of their paths making it possible to present a more clear picture.
The result is showed in Figure 4.12.

Lastly, a phase portrait where only trajectories coming from the inside of the
attractor is showed in Figure 4.13. Here, it can be appreciated more in detail the
behavior around the �xed points mentioned before. In green, trajectories coming
from the unstable �xed points xI and xII and reaching the stable �xed point xIII

are depicted. As showed in the correspondent sections before, not all the points
around the unstable �xed points are attracted to the stable one, but a part of them
are dragged to the attractor. Those cases are depicted in cyan when coming from
xII or in purple when coming from xI .
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Figure 4.13: Phase Portrait inside the attractor.



Chapter 5

Probability Density Function

As aforementioned, the goal is to compute the Equation 3.12. To compute the
ensemble averages that are present in the equation, the initial probability density
function, f0, is needed. This can be given by knowledge of the problem at hand,
and the initial state of the system of interest, or it could in any case be determined
by convenience. Like in any time evolution, the initial condition must be known. If
it is not suggested by the problem itself, like in the case of particle systems, where
it is usually an equilibrium distribution, the simplest compatible with the theory is
the best choice.

In the case of particle systems, as in Caruso et al. (2020), one may take the Gibb's

canonical distribution, that is, f0(x) =
e−βH(x)

Zβ
, as the initial distribution like men-

tioned before. Nevertheless, for generic dynamical systems, the case treated here,
since the Dissipation Function Ω, does not lead to thermodynamic-like relations with
physical meaning, the initial distribution taken does not need that physical meaning.

The most trivial case would be if the system preserves the volume. In fact, the
initial distribution can be chosen uniform, a constant value for the whole phase
space, f0 =

1
V
, being V the volume of the phase space. Which can be easily deduced

knowing that it must be normalized in the phase space.
However, the dynamical system discussed here does not preserve its volume,

but shrinks. Thus, several strategies to obtain a suitable initial probability density
function are explained through this chapter.

5.1 Uniform Distribution

Just like it can be safely done with systems that preserve the volume, a constant
value could be chosen as the initial probability density function (pdf). Therefore the
initial pdf would be f0 =

1
V
in the chosen domain, where V is the correspondent vol-

ume of the given domain, and f0 = 0 out of that domain. This can be done, thanks
to the fact that it is known that a volume around the origin contains trajectories
that never leave the volume. As they are all attracted to the attractor or the stable

49



50 CHAPTER 5. PROBABILITY DENSITY FUNCTION

�xed point. The issue faced here is that unlike the case of dynamics preserving the
volume, it cannot be said that no trajectory is going to enter the chosen the volume
if it is chosen arbitrarily. Which translates in obtaining an improper initial pdf, as
it will not be normalized.

In order to solve the issue, two options are presented. The �rst one would be
�nding a volume where in addition to assuring that the trajectories do not leave it,
there are no trajectories entering it. Thus, the volume of that particular domain is
preserved and no more special treatment to this domain has to be considered. While
the second option considers an arbitrary volume, only centered in the origin and
containing the attractor and stable �xed point so that the trajectories do not escape.
But, unlike the �rst option, the domain requires some more special treatment. Both
options are explained hereafter.

5.1.1 Domain Preserving its Volume

The condition which assures that trajectories are not entering nor escaping a given
volume is that the derivatives along its boundaries are equal to zero. Hence, using
the equations of the dynamics of the system and searching the surfaces where they
are null, these boundaries of the searched volume, V ∗, could be obtained. Once the
domain is found, the initial pdf would be simply:

f0(x) =

{
1
V ∗ x ∈ V ∗

0 x ̸∈ V ∗ (5.1)

In the case treated here, the �rst bound for that searched volume would be, using
Equation 6.6:

Ẋ = −X − Y = 0 −→ X = −Y

However, if a trajectory comes towards this �rst boundary with a component in
the Y direction, this plane where the velocity along the X direction equals 0, could
be crossed. Hence, it would not keep the trajectories out of the volume delimited
by itself and the other boundaries.

The second simple boundary, is obtained from the Equation 6.8:

Ż = −q(X + Z) = 0 −→ Z = −X

Finding the same result, a trajectory with Z component in the velocity would
be able to enter the volume through this boundary.

Finally the third one, obtained using Equation 6.7 is as follows:

Ẏ = −pZ + rY + (s− Y )Z2 = 0 −→ Z =
p±

√
p2 − 4(s− Y )rY

2(s− Y )

The third and last condition, provides a more complex surface, which was not
studied, since, analyzing the results obtained, it is clear that the searched volume
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where the trajectories do not enter nor escape, does not exist for the given dynam-
ics. And therefore, other strategies will be chosen for the de�nition of the initial
probability density function.

5.1.2 Pseudo-arbitrary Domain

For this apparently simpler strategy of obtaining the initial probability density func-
tion, the domain is chosen in a more arbitrary way, i.e. only assuring that the con-
tained trajectories will not leave it. That condition, as aforementioned, is easy to
ful�ll taking into account that all the trajectories are dragged to the attractor or
attracted to the stable �xed point. That way, there exist in�nite number of volumes
that could be chosen, with the only condition that they contain both the attractor
and the stable �xed point. Hence, the simplest volume that came to mind was a
cube centered in the origin whose length of the edges is big enough to contain the
attractor, bigger than the domain which contains the attractor, presented before
Equation 4.12.

As unknown trajectories will enter the domain while the time grows, there is
the risk that the probability density function is not normalized anymore. Thus, to
solve the problem what it is actually done is evolving the domain backwards in order
to obtain the initial volume which originates the chosen cube. And so, the chosen
cube, Vt, is the domain of the probability density function at a future time, while
the domain of f0, V0, is the obtained domain evolving the cube backwards in time.
Similar to Equation 5.1, the expression of the initial probability density in this case
would be:

f0(x) =

{
1
V0

x ∈ V0

0 x ̸∈ V0
(5.2)

This particular treatment of the f0 domain, is conducted in the following exam-
ple that can be found in Caruso et al. (2020), presented here in order to exemplify
it in a more clear way.

The dynamical system considered is the following

ẋ = −x; x ∈ R

so the initial density is

f0(x) =

{
1/2 if x ∈ [−1, 1]
0 else

Then, knowing that the initial condition x evolves like Stx = e−tx, ft is given by

ft(x) =
1

2
etχ[−e−t,e−t](x), with χ[−e−t,e−t](x) =

{
1 if x ∈ [−e−t, e−t]
0 if x ̸∈ [−e−t, e−t]

Therefore in the example, V0 = [−1, 1] and Vt = [−e−t, e−t]. Obviously in the
case studied here, the dynamics are much more complex and the search for the
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resulting volume is not trivial. In fact, the big problem that appears is that evolving
the dynamics backwards begins to be unstable when it reaches a certain value of
t. Because of this particularity, the option presented here does not seem to be the
optimal one and so, it was discarded for the computing of the solution.

5.2 3D Gaussian Distribution

Finally, the last strategy, and the chosen one, is using a 3 dimensions Gaussian
distribution as initial probability density function. That way, the domain of the
function goes from −∞ to ∞ in every dimension, so the mathematical phase space
of the system treated here, and there is no need to worry about the change in the
volume. Choosing a Gaussian with standard deviation equal to 3.5 would be enough
to properly contain the attractor and the stable �xed point, as it could be deduced
from Equation 4.12.

Following the Equation 3.7:

fs+t(x) = exp{Ωfs
−t,0(x)}fs(x)

the function ft could be obtain.

Even though the problem of computing the evolution of the probability distribu-
tion could be solved, as discussed here, it remains that probabilities are immaterial,
although very useful. What matters is the evolution of observable quantities, i.e.
Equation 3.12. The theory allows one to bypass the explicit calculation of the
probability density at a given time t > 0, and to directly compute the behavior of
measurable quantities. The mentioned computation is explained in the following
chapter, chapter 6.



Chapter 6

Numerical Computation of the Exact

Response Theory

6.1 Perturbed Vector Field

As aforementioned, the Exact Response Theory presented here allows one to com-
pute the averaged evolution of a measurable observable after a perturbation in the
system. Moreover, the theory is able to deal with perturbations which are not nec-
essarily small, contrary to other theories. Thus, given the unperturbed dynamical
system which follows the equation

ẋ = V0(x) (6.1)

the perturbed dynamics can be written as the following

ẋ = V0(x) + ϵVp(x) (6.2)

being ϵ the intensity of the perturbation, which is not restricted to small numbers.

For the application of the theory to the system provided by Saltzman and Maasch
(1988) conducted in this work, it was decided to perturb the parameters of the
system. In particular, the parameter r that appears in the second equation of the
system, that way, the perturbed dynamics are

Ẋ = −X − Y (6.3)

Ẏ = −pZ + rY + (ϵY ) + sZ2 − Z2Y (6.4)

Ż = −q(X + Z) (6.5)

or written in a compact way

Ẋ = −X − Y (6.6)

Ẏ = −pZ + r̃Y ++sZ2 − Z2Y (6.7)

Ż = −q(X + Z) (6.8)
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where r̃ = r + ϵ. The value for the intensity of the perturbation was de�ned as
ϵ = 0.1. Being the value of r = 0.8, the intensity of the perturbation represents a
12.5% of the unperturbed value of the parameter r. Hence, the perturbation is not
considered a small perturbation.

For the physics of the system, the perturbation of the parameter that multiplies
the variable Y , i.e. atmospheric CO2 concentration, would represent a possible
change in the way the amount of CO2 concentration a�ects directly its increase
or decrease. However, since r = b1/a0 = (r1β + r2eµ + r5a1 − r4)/(s4 − s1α −
s3eI), checking in Equation 4.1, r1, r2, r4, r5 multiply the mean oceanic surface
temperature, the permanent sea ice extent, the CO2 itself and the global ice mass,
respectively. Hence, it could also represent a change in the way these former variables
relate to the CO2 concentration. For example, a change in the solubility of CO2 in
the ocean, as the oceanic temperature a�ects the atmospheric CO2 by increasing
the solubility and uptake when colder waters.

6.2 Computing the Evolution of the Observable X

As stated before, the goal is to compute the averaged evolution of a measurable ob-
servable, therefore, Equation 3.12 must be computed. In the present work, looking
for simplicity, one of the variables of the dynamical system is chosen as the studied
observable. In particular, the variable X, i.e. the global ice mass (I before the
normalization), is chosen.

Therefore, the �rst summing term of the Equation 3.12 becomes:

⟨O⟩f0 =
∫
M

O(x)f0(x)dx =

∫
M

Xf0(x)dx

where M is the found domain of f0, which is taken as the phase space of the
dynamical system (which extends to in�nity), since the chosen initial probability
density function is a 3D gaussian distribution, as explained previously in chapter 5.

While the second summing term of the equation can be written as:

∫ t

0

[

∫
M
{(O ◦ Ss) · Ωf0}f0(x)dx]ds =

∫ t

0

[

∫
M
{(O(x(s))) · Ωf0(x))}f0(x)dx]ds.

Thus, in order to compute the integral, the expression of the Dissipation Func-
tion, Ωf0 , must be considered. Using the following relation

Ωf0(x) := −[Λ(x) +V(x) · ∇ ln f0(x)], (6.9)

where, Λ(x) = ∇ ·V(x), being V(x) the perturbed system.
The expression of Λ for the perturbed �eld is

Λ(x) =
∂VX

∂X
+

∂VY

∂Y
+

∂VZ

∂Z
= (−1) + (r̃ − Z2) + (−q)
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6.2.1 Code Implementation

Putting the theory into practice, the equations Equation 6.9 and section 6.2 and the
functions presented before were implemented in Julia Programming Language. The
developed code may be consulted in Appendix A.
In order to compute the integrals in the phase space, an ensemble of random points
was created. In particular, the points were created following an uniform random
distribution along (−3, 3) for every dimension. The initial probability density func-
tion f0 was chosen a 3D Gaussian distribution, as explained in chapter 5, with mean
µ = (0, 0, 0) and standard deviation σ = 3.5 for every dimension.
Then, through a loop, the Equation 6.9 is computed for every point in the created
set, and thus the integral value is obtained.

While for the second integral, section 6.2, it is needed a loop over the time, as
well as the loop over the phase space. Since a simple numerical integration was
conducted. In particular, the chosen step of the time integral was ∆t = 0.1. And
the solution was computed with �nal time tf = 4. This second integration is more
complex, as the observable needed to be evolved with every step, while Ωf0 and f0
were evaluated in the initial points.

6.2.2 Results

Given the computational costs of performing simulations with large sets of points,
the result was obtained computing the mean of several simulations with di�erent
number of initial points. More in detail, 10 simulations of 1000000 initial points, 7
simulations with 15625000 points, 3 with 64000000 initial points and 1 simulation
of 125000000 initial points, was the combination. In Figure 6.1, the mean and the
standard deviation of the ensemble of simulations is presented.

Figure 6.1: Evolution of the ensemble average of the observable X after the pertur-
bation in the parameter r.

However, even if important, no data were available to confront the results and
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validate the simulations. Therefore, the results obtained here are not presented
as prove of the performance of the method, but as a �rst approximation to the
procedure. And consequently, it is emphasized that future studies should search for
a way to validate the results.



Chapter 7

Conclusions

The climate system is forced, dissipative, nonlinear, chaotic, and out of thermo-
dynamic equilibrium. Along with the inherent di�culties that this type of systems
faces to model and predict the response to perturbations, the climate system presents
some particularities such as, the presence of well-de�ned subsystems, the continu-
ous variation of the forcings changing the atmospheric composition, the lack of scale
separation, the lack of complete and useful observations, the fact that only one re-
alization of the processes involved in climate evolution is available, which add more
obstacles to the task. Principally, it is hard to separate the climate system's re-
sponse to di�erent forcings from its natural variability. Therefore, the approaches
to the problem need to take special care to these features.

The interest in the matter is not purely scienti�c, in fact, the anthropogenic
contribution to the climate evolution is currently a central topic, as the severity of
its consequences is driving a considerable amount of e�orts trying to mitigate this
climate change. The Intergovernmental Panel on Climate Change (IPCC) releases
its assessment reports based on the best science at hand, where they summarize the
progress in observing, modeling, understanding and predicting the evolution of the
climate system. The methods used in the analysis of climate response were reviewed,
�nding that the new perspectives in the area of dynamical systems could provide
powerful and useful tools.

Even if it arises as a new method which would reduce considerably the computa-
tional cost of simulating climate response to perturbations, the approach developed
by Lucarini (Lucarini et al. (2017)) in this context of dynamical systems, faces some
limitations that were critically reviewed here. In particular, it is based on Ruelle's
response theory (Ruelle (1998)), which is a linear response theory, thus, restricts
the study to small perturbations. A second limitation comes from the assumption
of the climate system being an Axiom A system, since Ruelle's theory is developed
for that kind of systems. Finally, they are forced to obtain the operator they need
through a set of experiments since putting Ruelle's theory into practice for complex
models like climate system is far from trivial.
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The Exact Response Theory incorporates the Dissipation Function, Ω, as its ba-
sis. It is expected to predict the response of a system with many degrees of freedom,
even if arbitrarily large perturbations and modi�cation of states are present. In
the context of particle systems, the Dissipation Function is associated with the en-
tropy production rate. Also, the Dissipation Function is able to capture meaningful
behaviors of the system, something that the classical linear response theory could
never achieve.

Recently, the Exact Response Theory has been successfully applied to systems
such as the Kuramoto Oscillators reviewed here, and applying it to the problem of
obtaining the climate system response to perturbations could add one more method
to the new tendency of incorporating dynamical systems machinery. Providing the
advantages of being applicable, without making non rigorous assumptions and ob-
taining a response to non necessarily small perturbations. The climate model pro-
posed in Saltzman and Maasch (1988), describing the evolution of climate during
the Pleistocene ice ages, was studied and used as the system to put into practice
the theory. The oscillation in the variables was found to be caused by the presence
of an attractor.

The simulations performed here, obtaining the ensemble average of the observ-
able accounting for the global ice mass after a perturbation, however, were not
confronted since no appropriate data was available to do so. Hence, the result of the
simulations is presented as a �rst approach to the application of the exact response
theory to the complex climate response problem, and it is vital to �nd a way to
validate the outputs in the future studies.

Moreover, a more realistic climate model could be proposed to be used for the
validation of the suitability of the theory. For example, even a model like PlaSim,
the one used by Lucarini, which does not include as many degrees of freedom as
the models currently used in the IPCC reports, but that includes a considerable
number, seems to be interesting to consider.



Appendix A

Julia code

##-------------------Main functions-------------------##

# Dynamical system
function carbon(du,vec,p,t)

p,q,r,s = 0.9, 1.2, 0.8, 0.8
x,y,z = vec
du[1] = -x -y
du[2] = -p*z + r*y + s*z^2 - z^2*y
du[3] = -q*(x+z)

end

# V
function V(x_vec)

x,y,z = x_vec
p,q,r,s = 0.9, 1.2, 0.8, 0.8
dx = -x -y
dy = -p*z + r*y + s*z^2 - z^2*y
dz = -q*(x+z)
dxyz = [dx,dy,dz]
return dxyz::Vector{Float64}

end

# Lambda of carbon cycle
function Lambda_carbon(x_vec::Vector{Float64})

X,Y,Z = x_vec
p,q,r,s = 0.9, 1.2, 0.8, 0.8
Lambda = -1 + (r-Z^2) - q
return Lambda

end
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# Grad_lnf
function Grad_lnf(f::Function, x_vec::Vector{Float64})

x,y,z = x_vec
h = 0.005
if f(x,y,z) == 0.0

Grad_lnf_val = [0.0,0.0,0.0]
else

df_dx = 1/(2*h)*(f(x+h,y,z)-f(x-h,y,z))
df_dy = 1/(2*h)*(f(x,y+h,z)-f(x,y-h,z))
df_dz = 1/(2*h)*(f(x,y,z+h)-f(x,y,z-h))
Grad_lnf_val = 1/(f(x,y,z))*[df_dx, df_dy, df_dz]

end
return Grad_lnf_val::Vector{Float64}

end

# Initial pdf
function f_0(x,y,z)

IsoNormal = MvNormal([0.0,0.0,0.0], 3.5*Matrix(I,3,3) )
return pdf(IsoNormal,[x,y,z])

end

# Computing of Omega^f_0 generic
function Omega(x_vec::Vector{Float64}, Lambda::Function, V::Function,

Grad_lnf::Function, f::Function)
V_vec = V(x_vec)
Grad_lnf_vec = Grad_lnf(f,x_vec)
prod = 0.0
for i in 1:3

prod += V_vec[i]*Grad_lnf_vec[i]
end
Omega = - (Lambda(x_vec) + prod)
return Omega

end

# Observable function
function Obs(x_vec::Vector{Float64})

return x_vec[1]
end
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## Perturbed system functions

epsilon = 0.1
# Perturbed vector field
function carbon_per(du,vec,p,t)

p,q,r,s = 0.9, 1.2, 0.8, 0.8
x,y,z = vec
du[1] = -x -y
du[2] = -p*z + r*y + s*z^2 - z^2*y + epsilon*y
du[3] = -q*(x+z)

end

# Perturbed V
function V_per(x_vec)

x,y,z = x_vec
p,q,r,s = 0.9, 1.2, 0.8, 0.8
dx = -x -y
dy = -p*z + r*y + s*z^2 - z^2*y + epsilon*y
dz = -q*(x+z)
dxyz = [dx,dy,dz]
return dxyz::Vector{Float64}

end

# Perturbed Lambda
function Lambda_per(x_vec::Vector{Float64})

X,Y,Z = x_vec
p,q,r,s = 0.9, 1.2, 0.8, 0.8
Lambda = -1 + (r-Z^2 + epsilon) - q
return Lambda

end

##------ Compute O_f0 (first integral of the equation) ------##
# Creating initial domain
a = -3.0
b = 3.0
n_points = 250
uni_dis = Uniform(a,b)
x_0 = rand(uni_dis, n_points)
y_0 = rand(uni_dis, n_points)
z_0 = rand(uni_dis, n_points)

O_f0 = 0.0
O_f01 = 0.0
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Delta_x = ((b-a)/n_points)^3
for i in 1:length(x_0)

for j in 1:length(y_0)
for k in 1:length(z_0)

global O_f0 += f_0(x_0[i], y_0[j], z_0[k])*
Obs([x_0[i], y_0[j], z_0[k]])*Delta_x

end
end

end

##------- Compute second integral of the equation -------##

ind_t = 40
Second_int = zeros(ind_t)
Second_int_int = zeros(ind_t)
Second_int_int_0 = 0.0
t = zeros(ind_t)

# Auxiliarity vector to store x values
x_last_t = zeros((n_points)^3,3)
p = 1
for i in 1:n_points

for j in 1:n_points
for k in 1:n_points

x_last_t[p,:] = [x_0[i], y_0[j], z_0[k]]
global p += 1

end
end

end

# Auxiliarity function for 2nd integral
function fun(x_vec_0::Vector{Float64}, x_S::Vector{Float64},t)

#Initial
x_init = x_vec_0[1]
y_init = x_vec_0[2]
z_init = x_vec_0[3]
fun = Obs(x_S)*Omega(x_vec_0, Lambda_per, V_per, Grad_lnf, f_0)

*f_0(x_init,y_init, z_init)
return fun

end

t0 = 0.0
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Delta_t = 0.1
for tau in 1:ind_t

q = 1
t[tau] = (tau)*Delta_t
for i in 1:length(x_0)

for j in 1:length(y_0)
for k in 1:length(z_0)

t_span = (t0, t[tau])
vec_init = [x_last_t[q,1], x_last_t[q,2],

x_last_t[q,3]]
prob = ODEProblem(carbon_per, vec_init, t_span)
sol = solve(prob, Tsit5(), reltol = 1e-8,

abstol=1e-8)
x = sol[1,end]
y = sol[2,end]
z = sol[3,end]

Second_int[tau] += fun([x_0[i], y_0[j], z_0[k]],
[x,y,z],t[tau])*Delta_x

x_last_t[q,:] = [x,y,z]
q += 1

end
end

end

Second_int_int[tau] = Second_int_int_0 +
Second_int[tau]*Delta_t

global Second_int_int_0 = Second_int_int[tau]
global t0 = t[tau]

end

O_t = O_f0 + Second_int_int[end]
O_t_evol = O_f0*ones(ind_t) + Second_int_int



64 APPENDIX A. JULIA CODE



Bibliography

Amadori, D., Colangeli, M., Correa, A., and Rondoni, L. (2022). Exact response
theory and kuramoto dynamics. Physica D: Nonlinear Phenomena, 429:133076.

Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice
core provides 160,000-year record of atmospheric co2. Nature, 329:408�414.

Caruso, S., Giberti, C., and Rondoni, L. (2020). Dissipation function: Nonequilib-
rium physics and dynamical systems. Entropy 2020, Vol. 22, Page 835, 22:835.

Curry, W. B. and Crowley, T. J. (1987). The δ13c of equatorial atlantic surface
waters: Implications for ice age pco2 levels. Paleoceanography, 2:489�517.

Evans, D. J. and Searles, D. J. (2002). The �uctuation theorem. unde�ned, 51:1529�
1585.

Evans, D. J., Searles, D. J., and Rondoni, L. (2005). Application of the gallavotti-
cohen �uctuation relation to thermostated steady states near equilibrium. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 71.

Gallavotti, G. and Cohen, E. G. (1995). Dynamical ensembles in stationary states.
Journal of Statistical Physics, 80:931�970.

Ghil, M. and Lucarini, V. (2019). The physics of climate variability and climate
change. Reviews of Modern Physics, 92.

Kubo, R., Toda, M., and Hashitsume, N. (1991). Statistical mechanics of linear
response. pages 146�202.

Lorenz, E. (1963). Deterministic nonperiodic �ow. Journal of Atmospheric Sciences,
20:130�141.

Lorenz, E. (1967). The nature and theory of the general circulation of the atmo-
sphere. unde�ned.

Lucarini, V., Ragone, F., and Lunkeit, F. (2017). Predicting climate change using
response theory: Global averages and spatial patterns. Journal of Statistical
Physics, 166:1036�1064.

65



66 BIBLIOGRAPHY

May, R. M. (1976). Simple mathematical models with very complicated dynamics.
Nature, 261:459�467.

Rondoni, L. and Dematteis, G. (2016). Physical ergodicity and exact response
relations for low-dimensional maps. Computational Methods in Science and Tech-
nology, 22:71�85.

Ruelle, D. (1998). General linear response formula in statistical mechanics, and the
�uctuation-dissipation theorem far from equilibrium. Physics Letters, Section A:
General, Atomic and Solid State Physics, 245:220�224.

Saltzman, B. and Maasch, K. A. (1988). Carbon cycle instability as a cause of the
late pleistocene ice age oscillations - modeling the asymmetric response. Global
Biogeochemical Cycles; (USA), 2:177�185.

Searles, D. J. and Evans, D. J. (1999). Fluctuation theorem for stochastic systems.
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisci-
plinary Topics, 60:159�164.

Searles, D. J., Rondoni, L., and Evans, D. J. (2007). The steady state �uctuation
relation for the dissipation function. Journal of Statistical Physics, 128:1337�1363.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos : With applications to physics,
biology, chemistry, and engineering. Nonlinear Dynamics and Chaos.


	Abstract
	Introduction
	Climate
	Climate Change
	Governing Equations of the Climate System
	Climate Modeling
	Climate Sensitivity and Equilibrium Climate Sensitivity (ECS)
	General Framework for Climate Response

	Dynamical Systems and Chaos
	Definitions
	Chaos


	Ruelle's Linear Response Theory
	Summary of the Theory
	Lucarini's Approach to Climate Change Prediction
	Limitations of the Theory

	Exact Response theory
	Introduction
	Mathematical Framework
	Conditions on the Dynamics and Probability Density Function

	Current Applications of Exact Response Theory
	Dynamics of Kuramoto Oscillators


	Dynamics of the System
	Definition of the System
	Dynamics of the Resulting System
	Fixed Points
	Fixed Point xI
	Fixed Point xII
	Fixed Point xIII

	Attractor
	Phase Space

	Probability Density Function
	Uniform Distribution
	Domain Preserving its Volume
	Pseudo-arbitrary Domain

	3D Gaussian Distribution

	Numerical Computation of the Exact Response Theory
	Perturbed Vector Field
	Computing the Evolution of the Observable X
	Code Implementation
	Results


	Conclusions
	Julia code

