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Abstract

Space exploration and UAVs have been undergoing exponential growth in recent
years, and with them the related technologies deployed. More than a hundred space
launches are planned for 2023, and it is expected that UAVs will be increasingly
associated with these types of missions. The process leading to their success is very
complex and expensive, both in terms of economics and schedule, and for this reason,
simulators are often employed within the implementation process. As a result of
these, it is possible to test algorithms without causing damage to the physical hard-
ware, extend safety and operability, and definitely have a less environmental impact.

The work in this thesis aims to create a simulation environment to reproduce a
possible Mars mission performed through the use of two robots: a rover and a UAV.
Specifically, this work will mainly focus on implementing and simulating a precision
landing algorithm of the UAV on the rover, exploiting technologies that could poten-
tially be deployed on the red planet. This has been achieved first is simulation using
the Software In The Loop (SITL) framework, and later, the same configuration
has been implemented and tested on real hardware, to validate the development
precision landing approach in reality. A comparison of current technologies mainly
adopted for this purpose has been made, after which the combination of UWB and
AprilTag was chosen as the solution. The graphical user interface has been created
with Gazebo, while the Robot Operating System (ROS) has been used to develop
the software architecture. Gazebo and ROS are used to simultaneously generate a
simulation environment with a rover (with an AprilTag on it) and drone on the
Martian ground, as well as to estimate the relative position between drone and rover
using a Kalman filter, and the last part responsible for the robot control algorithms.

The precision landing algorithm was tested and analyzed in three different situ-
ations: using the UWB only, using the UWB and the AprilTag as inputs to the
Kalman filter for more precise position estimation, and, finally, using the UWB
and the AprilTag as inputs in the control part.

All the three configurations share the same control strategy consisting of two phases.
First, a Proportional (P) controller is used when the UAV is far from the target.
Then, within a certain distance, a more performing PID (Proportional-Integrative-
Derivative) controller is used to get the drone closer to the rover. In the approach
to the ground touch phase, the drone will no longer use data from the UWB, but
only data from the AprilTag that will be clearly visible from the camera.



In order to perform experimental tests, the drone has been adapted to install the
RaspiCam used for the precision landing. The CAD of a support for the RaspiCam
has been created and, then, 3D printed using an FDM technique so that it would
be as efficient as possible in terms of weight, strength, supports, and interface.
Subsequently, the mono-camera has been calibrated, and it has been tested first
that the AprilTag detection was working properly, and then that the presented
algorithm was efficacious by performing tests on a drone in flight.
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Chapter 1

Introduction

1.1 Thesis Objectives
The objective of this thesis work is to create a simulation environment, using ROS
and Gazebo software, to reproduce a possible Mars mission performed through
the use of a drone and a rover. Specifically, this work will mainly focus on
implementing a precision landing algorithm of the drone on the rover, using ultra-
wideband technology and an AprilTag. This will be achieved first in simulation,
using only the software, and later, the same code will be implemented and tested
on a real drone. So the objectives can be summarized as:

• SITL simulation phase: the creation of the simulation environment where the
algorithms will be tested, using only and exclusively the software.

• Testing phase: implementation of the software tested in simulation on hardware
to validate its effectiveness in reality.

1.2 Thesis organization
The thesis is divided into seven chapters, which can be summarized as follows:

1. ROS Environment/Gazebo:. in this first chapter, the general features
of these two software programs that are necessary for the creation of any
simulation environment are presented.

2. Drone-Rover Simulation: based on the chapter preceding this one, this
section initially presents the various types of simulation (MIL, SITL, HIL)
and then those of the autopilot, finally choosing the configuration that best
adapts to the objective of this thesis.

1
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3. Simulation environment software architecture: this chapter outlines
the software architecture of the starting simulation environment.

4. Precision Landing Algorithm: this section describes in detail the process
followed so that the drone could perform a landing accurately and efficiently.
In addition, the final simulation system is presented with the implementation
of an adaptive PID controller.

5. Hardware architecture: description of the hardware structure of the drone.
Also described is the process of implementing the camera, which is required
for AprilTag detection, and the resulting 3D model of the support connected
to the drone.

6. Test: phase in which the algorithms tested in the simulation were implemented
on physical hardware.

7. Conclusions and future works: final results and possible future implemen-
tations to improve the system as a whole.
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Chapter 2

ROS Environment/Gazebo

2.1 Introduction to ROS
The acronym ROS stands for Robot Operating System and it is an open-source
platform that mediates between an operating system and the software that uses it.
It mainly provides:

• Typical services of an operating system

• Abstraction of hardware

• Multiprocess communication

• Process and packet management

Figure 2.1: ROS overview [1]
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It also provides visualization and simulation tools, libraries, and other useful
conventions for implementing robotic applications [1].
Since its inception at the Standford Artificial Intelligence Laboratory in 2007, it
has been constantly updated and changed until it currently has two versions (ROS1
and ROS2) and is used in a lot of robots, both in academic and corporate settings.
ROS is officially supported by the Linux-based Ubuntu and Debian operating
systems, while for other operating systems such as Windows, Fedora, and Android
there is an experimental version, as visible in the figure 2.1 . Lastly, ROS is not a
programming language, but integrates codes written in Python, C++, and Lisp [2].

2.2 Architecture
The main components of ROS can be divided into:

• ROS Node: a node is a process inside the ROS network that performs a
specific task, carrying out the main functions in the system. Nodes interact
with each other by exchanging messages using topics, services and actions [3].

• ROS Topic: topics are the main communication channels in a network, where
nodes can publish or receive data. The former are called publishers while the
latter subscribers [4].

• ROS Message: topics exchange data that are encoded in messages. These
can be simple (boolean, integer, string type) or they can have a complex
structure (e.g. messages related to navigation or geometry) [5].

• ROS Master: that is a unique node that not only initializes a ROS application
but also manages the communication between all the various nodes that will be
executed. In ROS1 it must always be initialized manually from the terminal,
while in ROS2 this is done automatically [6].

• Service: These are communication channels that allow, in contrast to topics,
synchronous communication. Nodes that publish to the service, in this case,
are called Client, while those that receive are called Server [7].

• Actions: These are complex communication systems used to perform long
tasks.

• ROS Launch: It is a tool to enclose multiple nodes in a single file called
launch file.

4
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Figure 2.2: Communication between nodes and topics [8]

2.3 ROS Tools
As written in the first section of this chapter, ROS offers several very useful tools
for analysis and debugging. These are very important and useful for getting visual
feedback on what is happening within the system. The main ones are:

2.3.1 rqt_graph
This tool allows to graphically display the correlation between, in this case, the
processes (including therefore nodes and topics) that are active at the time of
execution. In this way, in addition to immediately visualizing which nodes are
acting as publishers and which are acting as subscribers, debugging analysis can
be performed to verify that the nodes are correctly executed [9].

Figure 2.3: Example graphical user interface of rqt_graph [1]
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2.3.2 RViz
RVIZ is the best-known and most versatile of the tools, it allows to visualize within
a three-dimensional space any data the software publishes through its topics.

Figure 2.4: Example graphical user interface of RViz [1]

2.3.3 rqt
On the other hand, this tool is useful for showing, using a graph, how a certain
feature varies over time. Based on these plots, it is possible to derive conclusions
about the algorithm’s effectiveness.

Figure 2.5: Example graphic interface of rqt [1]
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2.4 Simulation tools
2.4.1 Overview
Simulators are becoming increasingly essential nowadays, just consider those for
aircraft that have become an integral part of flying qualities for aircraft certification.
Various tools have therefore been created in the world of robotics to enable the most
realistic simulation possible, useful for testing algorithms and designing robots.
The most commonly used ones are:

• Gazebo

• FlightGear

• JSBSim

• jMAVSim

• AirSim

All these simulators have different features, but the most widely used and recom-
mended is Gazebo [10].

2.4.2 Gazebo
Gazebo is a powerful 3D simulation environment that enables to interface with ROS
and reproduces vehicular dynamics leading to the extremely coherent simulation
of the environment. It has many supported vehicles (quadcopter, VTOL, rover,
aircraft, submarines...) and can also be used for multi-vehicle simulation in complex
indoor and outdoor environments. Gazebo offers a very high degree of fidelity, this
is due to the integration of: a wide variety of sensors, a rich model library, robot
environments, and convenient graphical interfaces. These features just outlined
allow extremely accurate testing of robotics algorithms and execution of tests with
realistic scenarios. The main peculiarity of this software is actually that it allows
a system to be developed on a robot without having the physical hardware and,
therefore, without damaging the robot in the case of incorrect algorithms. Once it
has been ensured that the system works properly, it can then be implemented on
the physical robot.

7
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In addition, it is an open source program that uses advanced 3D graphics by
relying on OGRE (Open-source Graphics Rendering Engines), which enables the
generation of realistic environments using textures, lights and shadows [11]. Some
of his additions are:

• numerous sensors, such as:

– two-dimensional and three-dimensional camera
– depth camera
– contact sensors
– force and torque sensors

• different robot models, such as:

– Turtlebot
– IRobot Create
– Drone Iris
– Rover

• different scenarios, such as:

– empty world
– road
– runway

Figure 2.6: Gazebo custom environment: Iris drone on Martian ground

8
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In addition to these, however, it is possible to develop custom sensors, models,
and scenarios through the use respectively of plugins, files in .SDF format, and
files in .WORLD format. [12]. For example, in figure 2.6, it is possible to see a
custom model where a Martian environment has been implemented and above it
implemented the iris drone. It is very important to properly manage the spawn
dependencies between the two models to prevent them from getting stuck and
causing mismatches.

Simulated sensors and physical data can be transmitted from Gazebo to ROS, so
the robot’s actuator commands can be sent between the two software. As a result,
the robot software can be represented identically on both the real robot and the
simulator. [13].

9



Chapter 3

Drone-rover simulation

3.1 Model Based Design Approach
Generally in the software world, model-based design is the best way to meet cost,
quality, and time requirements. It allows every feature of the software to be tested
during development, and its feasibility can be evaluated precisely due to simulation.
This latter can be mainly of three types:

• MIL simulation: the entire system is modeled (e.g., on Simulink) to simulate
the complete environment and test the control laws. The aim is to obtain
functional validation.

• SITL simulation: by SITL simulation is meant the testing of software,
written for a particular system, that is made operational and simulated in its
behavior in an equivalent software environment with the physical conditions
it will have in flight. This is extremely effective in that it enables debugging
of the software module and evaluation of latencies, delays, and failures. What
most characterizes a simulation of this type is that it can simulate the mission
and evaluate its anomalies without damaging the physical hardware, which is
often very expensive. The aim then is to obtain validation of the generation
of the programming code.

• HIL simulation: in the HIL simulation, the software runs directly on the
flight hardware. So the software does not run on a generic computational
platform (pc or workstation), but it is run by the same hardware that will
be used on board the aircraft. The aim is to obtain validation on HW-SW
integration.

A certain control law is then typically developed and tested on a MIL model. Based
on the results, code is generated through a programming language that is tested

10
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with a SITL model. Finally, this is validated with a HIL simulator to verify that
the performance still meets the requirements. [14]

Figure 3.1: Model-Based design approach [14]

3.2 SITL simulation
SITL simulation is the one used in this thesis work because it is the most useful when
testing a code change in the controller. The latter, more commonly referred to as
an autopilot, can be distinguished from both a hardware and a software perspective.
Concerning the former, several electronic boards can host the controller code, but
the most famous is definitely Pixhawk. On the software side, instead, there are
several possibilities: dRonin, Betaflight, Librepilot, Ardupilot, and PX4. The last
two are the most widely used and have excellent documentation to be able to set
up the simulation environment correctly. Thus, SITL simulation takes advantage
of the fact that the autopilot can be run and built on the PC or workstation
platform, allowing it to not necessarily have the physical autopilot hardware itself.
In addition, it supports a large number of vehicles [15]:

• multi-rotor aircraft (including the four-rotor)

• fixed-wing aircraft

• ground vehicles (such as the rover)

• underwater vehicles

• gimbals for cameras

• a wide range of optional sensors, such as Lidar and optical flow sensors
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These configurations can be chosen directly in the flight controller’s GCS interface,
as seen in the figure 3.2.

Figure 3.2: Autopilot Airframe configuration [16]

The purpose of this SITL simulation is therefore to exclude the control given by
the radio control, which goes through the GCS and uses only the computer to set
parameters and send commands. To do this, it is essential to use the MAVlink
communication protocol and other Mavlink-compatible libraries to control both
the rover and the drone. A widely used tool is MAVROS, often use to enable the
communication between the ROS environment and the Autopilot. Using these
tools, it is possible to create a communication bridge between the computer, the
GCS, and the autopilot [17].

Figure 3.3: MAVLink and MAVROS Architecture[17]
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3.3 Autopilots
As written in the previous section, the most commonly used autopilots from the
software point of view are PX4 and ArduPilot. They are both widely used and
have very good features, and for the purpose of this thesis, both configurations
were developed for the initial phase only.

3.3.1 Ardupilot
The generic architecture referring to the SITL environment of ArduPilot is shown
in Fig. 3.4, where the link to the simulator GUI (in this case FlightGear instead of
Gazebo) is also presented.

Figure 3.4: SITL simulation architecture with ArduPilot [15]

In order to run a SITL simulation with ArduPilot, mainly two steps are required:

• Install ArduPilot plugin: once installed both ROS and Gazebo, it is
necessary to install the plugin via the ArduPilot Github repository [18].
Referring to figure 3.5, it can be seen that in the simulation environment, on
the left, there is a console through which commands can be given:

13
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– GUIDED: command needed when users want to fly the drone without
setting up a specific mission.

– arm throttle: control that allows the motors to be able to turn. It is
necessary to give it before giving the takeoff command.

– takeoff: command that allows the motors to be able to turn at a speed
that the propellers can create lift and the drone can move off the ground.
This command is followed by a number indicating the desired altitude.

Figure 3.5: Drone simulation with ArduPilot console

• Install MAVROS package: this is essential so that it is possible to control
the robot directly from the terminal via ROS. Compared with the previous
point, as visible in Figure 3.6, it is possible to give commands directly from
the terminal and no longer via the console. Thanks to the MAVROS package,
it is possible to make speed and/or position messages simply by publishing a
message on the respective topics.

This configuration is great but compatible only with the first version of ROS; in
fact, there is still a lack of documentation that can interface Ardupilot with ROS2.
For this reason, it was preferred to develop another simulation environment using
this time the latest version of ROS (ROS2) with the PX4 controller.
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Figure 3.6: Drone simulation with MAVROS package

3.3.2 PX4
In this case, the generic architecture referring to the SITL environment of PX4 is
depicted in figure 3.7, where it can be seen that the communication with PX4 is
made using the simulator’s MAVlink API. The latter defines a series of MAVlink
messages, which provide the flight controller with sensor data from the simulated
world and return engine and actuator values from the flight code that will be
applied to the simulated aircraft [19].
This controller, unlike its previous one, is fully compatible with the latest version
of ROS and, thanks to the documentation[20], it is possible to perform SITL
simulation easily. In fact, thanks to the middleware (DDS/RTPS) it is possible
to add an RtPS interface to the PX4 autopilot, allowing the exchange of uORB
messages between the various PX4 internal components and DDS applications in
real-time. This allows the creation of publisher and subscriber nodes that interface
directly with PX4 uORB topics as shown in Figure 3.8.
As this is the best configuration, the simulation environment used in the following
chapters will be presented.
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Figure 3.7: SITL simulation architecture with PX4 [19]

Figure 3.8: Interface between PX4 And ROS2 [20]
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Chapter 4

Software architecture
simulation environment

4.1 Overview
With the assumptions of the previous chapters, and configured the Linux environ-
ment with ROS, Gazebo, and PX4, this chapter presents the software architecture of
the simulation environment that allowed the objective of this thesis to be achieved.
The work presented in this chapter refers partially to the following source [21], which
gave me an excellent starting point for setting up the appropriate environment
and for developing the precision landing algorithm that will be discussed more
specifically in the chapter 5. The software simulation environment can be divided
into three main parts, related to:

Figure 4.1: SITL simulation organization

• Gazebo: generation of the simulation environment using Gazebo. It includes
the spawning of three models:
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– custom drone
– custom rover
– martian ground

• Estimation: it contains the system state estimation algorithms.

• Control: it contains the precision landing and control algorithms.

4.2 Environment configuration on Gazebo
4.2.1 Multiple vehicles with ROS and Gazebo configuration
Using a multi-vehicle approach, the environment must be set up correctly to avoid
inconsistencies. In addition, a launch file 2.2 should be generated to ensure that all
vehicles, within the Gazebo model, are developed with a single command on the
terminal. Therefore, it is necessary that, for each simulated vehicle, is defined [22]:

• Gazebo model: this model, in .urdf or .sdf format, in addition to being
contained in a specific folder in the workspace, must contain an argument
called mavlink_udp_port that defines the UDP port on which Gazebo will
communicate with the PX4 node. The latter must be defined for each vehicle
and placed within the launch file.

• PX4 node: due to the previous step, it is possible to connect the PX4
simulated flight controller by setting the parameter sitl_udp_prt and matching
it to the mavlink_udp_port.

• MAVROS node: to make the connection with ROS, it is necessary that
within the file .urdf or .sdf a MAVLink stream is contained on a unique ports
stream and these ports must match those in the launch file.

4.2.2 SITL simulation environment
Once all these steps have been performed, the three models mentioned above can
be generated simultaneously through gazebo_sitl_multiple_run.sh. However, these
models will still not be controllable until the nodes discussed in 4.3 and 4.4 are
executed.
Both the rover and the drone are not default Gazebo models, but custom models
created ad-hoc so that the simulation would be as similar as possible to the situation
recreated in the tests, which can be seen in the chapter 7.
The drone has been customized based on Gazebo’s default "Iris drone" model,
on which it has been mounted the Holybro X500 quadcopter black landing gear.
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Furthermore, the overall structure contains one white ultra-wideband tag module
and a RasPi Cam single camera.
The rover, on the other hand, is schematized as a grey cube supported on three dark
blue wheels, and above it, there are four white ultra-wideband anchor modules.
The Martian terrain is characterized by bumpy and uneven ground. This is to
validate the effectiveness of the algorithm even under adverse conditions.

Figure 4.2: Gazebo environment for the SITL simulation

4.3 System state estimation
This part is fundamental for the drone to be able to orient itself and, subsequently,
locate the position of the rover to approach the precision landing phase. In fact,
without this part, the drone could only implement a simple land and take off and
the rover only move, but without orienting themselves in space. As a result, it is
important to employ several sensors to estimate the location and relative speed of
the drone with respect to the rover. This estimation may then be made using a
particular type of filter.

4.3.1 Filters overview
For statistics and control theory, it is necessary to deploy an algorithm that uses a
series of measurements and produces an estimate of unknown variables, which tend
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to be more accurate than those based on a single one. The measurements include
statistical noise and other inaccuracies, while the estimation is done using a joint
probability distribution over the variables for each time interval [23]. These best
estimate algorithms are called filters and, according to their characteristics, they
have different names. The main ones are presented in the table 4.3.1.

Kalman Filter theory

Linear dynamical systems discretized in the time domain are the basis of the
Kalman Filter and are modeled on the basis of linear operators that, after each
time increment, are responsible for generating a new state state of the system
perturbed by errors (including Gaussian noise). This can be visualized in figure 4.3,
where it can be seen the discretized disposition in time in the steps k−1, k, k+1. In
addition, the state hidden can be visualized, which refers to the target measurement
to be obtained, which is precisely hidden since it cannot be measured directly.
When the data is supplied by user an additional linear operator will be used which is
mixed with other noise in order to generate measurable outputs defined as observed
[23].

Figure 4.3: Kalman Filter Model [23]

According to this theory, the state system evolves from time k − 1 to time k
following this equation:

xk = Fk · xk−1 + Bk · uk + wk (4.1)

where:

• Fk: the state transition model is what is used to apply the current state to
the prior state xk−1

• uk: it is the control vector and represents the input to the input-control model
Bk.
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• wk: it is the process noise assumed with a normal distribution N with zero
mean and covariance Qk: wk ∼ N(0, Qk). This means that with many
measurements, the noise in the readings will take values with most of them
located close to the zero mean and less far from it, generating a Gaussian
distribution.

Furthermore, at the time k the output observed zk of the state hidden xk is made
according to

zk = Hk · xk + vk (4.2)
where:

• Hk: it is the observation model which charts the hidden state space into the
observed one

• vk: it is the measurement noise that is added and it is assumed to be a
Gaussian white noise with zero mean and covariance Rk: vk ∼ N(0, Rk)

In addition, it is necessary to build a model of the reference robot so that the KF
can combine the measurements and predictions in order to find the final optimal
estimation. The cycle that characterizes the Kalman filter involves an initial phase
of prediction of a current state, based on the estimation of the previous state, a
phase in which the state measurements are obtained and, finally, a phase of update
of the prediction using the observation noise [24].

State estimator Model Gaussian
distribution

Computational
cost

Kalman Filter (KF) Linear Yes Low
Extended Kalman Filter (EKF) Locally linear Yes Medium
Unscented Kalman Filter (UKF) Non-linear Yes Medium
Particle filter (PF) Non-linear No Hight

Table 4.1: State estimator comparation [25]

The Kalman filter model is great for linear systems, but nonlinear modeling is often
necessary to accurately describe a certain type of situation. If the state transition
and measurement functions are linear, then the distribution maintains its Gaussian
property, but if it were to be non-linear then the state distribution may also no
longer be Gaussian and thus the Kalman filter algorithm may not converge. So in
this case an Extended Kalman Filter is used that linearizes to a non-linear function
around the mean of the current state estimate. However, it has drawbacks because
it has a higher computational cost and it doesn’t provide a good approximation for
highly non-linear systems. To solve these problems it would be possible to switch
to either a UKF or a PF, the latter is the only one that works for any arbitrary
distribution, but this obviously incurs an even greater computational cost.
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4.3.2 Estimation with Kalman filter in the simulation
Based on what was written in the previous subsection, the KF was the best as the
first iteration in this application because of its simplicity compared to the others.
Figure 4.4 represents a scheme of how the KF operates, through the algorithm
drone_rover_kf.py written in Python, within the simulation presented in this thesis.
When the input command "land_on_target" is given (which means that the drone
should land on the rover), it will be managed by the part of the control algorithms
that will later go on to communicate with the simulated PX4. The latter will
then proceed to provide the drone’s sensor parameters, which, together with the
data provided by the UWB and the rover’s compass, provide the state estimation
algorithm with the necessary inputs to be able to calculate the drone’s position
and velocity relative to the rover.

Figure 4.4: Software architecture operation scheme

Specifically, the algorithm drone_rover_kf.py, based on the considerations made
in 4.3.1, implements a prediction model that allows the drone and the rover to be
modeled via differential equations. The assumptions made in order to accomplish
this are:

• the drone model is described by a constant acceleration model

• the rover is described by a constant velocity model

These measurements are published asynchronously on several ROS2 topics. Conse-
quently, modeling many observation models is required. Every timestep dt is used
to run the prediction phase, and whenever the corresponding data are available,
the update phase runs [21]. The data from the drone’s sensors (such as range
sensor and IMU), those from the UWB, and those from the rover’s compass then
represent the observation models, which will allow the following outputs:

• drone position, velocity, and acceleration
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• rover yaw angle, position, and velocity

This data will be provided to the control algorithms part, managed by the code
drone_controller_sim.py, so that the drone and rover can communicate with each
other in order to be able to control a precision landing phase.

4.4 Control Algorithms
In this chapter, the control part, already mentioned in reference to the figure 4.4, is
explained in more detail. After the environment has been opened on Gazebo, it is
necessary to launch algorithms that are responsible for controlling the two robots
and, until this part is executed, it will not be possible in any way to operate on
them. In the functional flowchart 4.5, it is possible to visualize the correct flow of
actions that will allow the achievement of a precision landing of the drone on the
rover. The algorithm drone_controller_sim.py will then consist of two main parts:

• the drone control system (marked in light pink color)

• takeoff and landing phases (marked in light yellow color)

4.4.1 Takeoff and landing phases

In the flowchart, it is possible to see the effect of two input commands: takeoff
and land_on_target. The former is responsible for arming the drone and allowing
it to reach a predefined hover altitude. This will be maintained until the latter
input command is given. When this is given, the drone will go on to perform a
series of actions fully automatically. The drone will begin the precision landing
phase which starts with the chase of the rover. Thanks to the algorithms of system
state 4.3 that remain active at all times, both the relative position and velocity
between the drone and the rover are calculated. When both of these two values
are below a certain threshold, the touch phase is then possible. This phase consists
of a condition in which the drone will have a very low descent speed and, upon
reaching a certain height, it will automatically turn off its motors so that it can
land on the platform while also avoiding the ground effect. It is necessary that
even one of the two values (p or v) does not meet the requisites that the drone
returns to the chase phase. Setting limit parameters is important so that there is
confidence that the drone will land smoothly and safely. To explain the control
part, it is first necessary to introduce the generic operation of a PID controller so
that the use of such choices can be properly justified.
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Figure 4.5: Control Algorithm flowchart
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4.4.2 PID controller
The PID is a controller used for many applications in several different fields. This
is because of its simplicity and effectiveness of use. Starting from the schematic
4.6 on the left, there is the desired signal r(t), which is subtracted from the actual
output signal y(t) thus generating an error e(t). The latter is then continuously
computed and a term-based correction is applied:

• Proportional: this action is obtained by multiplying the error signal e(t) by
a constant Kp. This constant must always be present in a controller of this
type, and in some simple cases, this may be all that is needed. Depending on
how this parameter is varied will result in a control output proportional to it.

• Integral: by adding a control effect based on the historical cumulative value
of the error, this term keeps the previous values of the error signal in memory
and integrates them over time in order to remove any residual error. It is
multiplied by an integrating constant Ki.

• Derivative: The derivative term is involved in quickly compensating for
changes in the error signal. In the case where e(t) is increasing too much, the
derivative action tries to compensate for this deviation by reason of its rate of
change, without waiting for the error to become significant. It is possible to
act on this parameter thanks to the constant Kd.

The combined action of these three terms then produces a u(t) given by the sum
of the three terms given above.

Figure 4.6: PID controller scheme [26]

u(t) = Kp · e(t) + Ki ·
Ú t

0
e(τ) dτ + Kd · de(t)

dt
(4.3)
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The constants Kp, Ki, Kd require tuning that will be different for each application.
This is because they depend on several factors including the behavior of the
measurement sensor and any delays in the control signal [26].

4.4.3 Drone control sysyem
This section explains the part located to the left in the flowchart 4.5, related to
the control system of the drone (the one outlined by the light pink box). It can
be observed that if the relative position between the drone and the rover is below
a certain value, there will be a different control that can be either a PID or just
a P. Based on the references in the previous section 4.4.2, it is useless to use an
integrative and derivative control when the UAV is far away from the target. In
fact, if it is not at a close enough distance from the rover, it will start again with
the chase phase. On the other hand, as soon as it reaches a close enough position,
the controller will become a PID, thus allowing the integrative and derivative
action to come into effect and therefore be able to reach the landing pad much
more accurately. In this case, the proportional provides the drone with a greater
response, the integrative on the other hand is responsible for causing the error that
is generated between the drone’s desired position and the actual position to tend
to zero, while finally, the derivative term is responsible for damping the drone’s
oscillations in reaching the target.
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Chapter 5

Precision landing algorithm

5.1 Methods to perform precision landing with
a drone

This thesis aims to improve precision landing as much as possible from what has
already been outlined in the 4.4 chapter. To do this, it is useful to understand
what technologies are currently being used.

Landing
accuracy Necessary HW Price Implementation

in simulation
IR ± 15cm Rangefinder ∼400€ Medium
Marker ± 10cm Raspi-cam ∼20€ Easy
GPS RTK ± 20cm None ∼350€ Difficult
UWB ± 10cm 1 target and 4 anchors ∼25€ per module Easy

Table 5.1: Precision landing methods comparison

5.1.1 IR Sensor/Beacon

Figure 5.1: IR Sensor/Beacon

This infrared device allows communication be-
tween an IR-LOCK sensor, mounted
on the drone, and an IR beacon as a target,
mounted on the rover. This solution, in addition
to allowing a very accurate landing in the range
of 10-15 cm, has other advantages including
being plug and play and being able to see even
in the dark or in fog. However, the price is very
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high due to the use of two devices, and it is a solution that is poorly suited to very
bright light. In a possible real implementation, it needs a rangefinder (e.g., a lidar),
while a possible mockup realization would be of medium difficulty since plugins
have already been developed to interface this device with Gazebo, but they need
to be configured [27].

5.1.2 Marker
The marker is definitely the most widely used method of precision landing as it
is really very functional and cost-effective. In fact, all that is needed is a simple
Raspberry Pi cam, costing a few tens of euros, and a 2D marker easily printable.
The function of the camera is to visualize the marker, which is typically square
in shape to allow for more accurate calibration and detection, however, it will be
necessary to develop a script that can recognize it and extrapolate the required
data to be able to make a precision landing. Fortunately, a number of solutions
have already been developed in this regard, and thanks to the use of OpenCV, it is
undemanding possible to implement such a marker in a simulation environment.
This solution, nevertheless, has several critical issues including:

• limited visualization of the marker based on the size with which it is printed

• a bright light may not make the marker visualization correctly

• if the landing pad is moving, the marker visualization might be distorted

• the drone must be exactly over the marker in order to be able to have it
properly displayed

Figure 5.2: Markers example [28]
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This option is excellent because it can be used for indoor applications, where there
are fewer light reflections and ambient conditions that won’t interfere with accurate
detection and identification.
There are several markers used for this purpose, including Aruco, ARTag, CALTag
and AprilTag. In each case, they all involve two stages of detection: determination
of unique features and identification. The first stage scans the image because of
its square-shaped feature, while the second validates the interior of the image to
determine whether it is a marker or another object. Depending on the situation,
it may be useful to use one marker rather than another, this is because each one
has different detection and recognition algorithms that determine its strengths and
weaknesses. Dealing more specifically with the marker AprilTag, its detection
process involves several steps:

• scan for linear segments used to form a square

• detection of squares

• calculating orientation and position of the tag

• decoding the barcode

For the internal image identification part, Apriltag uses the lexicode system, which
allows increasing accuracy and reducing the number of false positives [28].

5.1.3 GPS RTK
GPS RTK (Real Time Kinematics) is a measurement method that achieves
centimeter-level positioning accuracy. This remarkable difference in accuracy
from a normal GPS can be achieved because, it is not enough to simply use GPS
satellites and a receiver on earth, but this is a different positioning method that
uses:

• Satellites: these still remain essential, but in this case information is acquired
from both the drone receiver and the base station, thus achieving greater
position accuracy.

• Base station: this station is the additional component that characterizes
an RTK system. This remains fixed at a defined point on the ground and
continuously communicates the GPS position with the drone.

• RTK receiver: this device, also called a rover, is mobile in that it is part of
the drone’s hardware equipment.
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The innovation consists in using two receivers that communicate data to each other
using a GSM phone signal or radio transmission. Thus knowing the position of
the base, which is always fixed, the onboard SW will apply corrections to the RTK
receiver determining a more accurate position [29].
In the figure 5.3 it is possible to see the base station in the middle and two different

Figure 5.3: GPS RTK base sta-
tion and on-board receiver[30]

types of RTK receiver that will be implemented
on the drone. The one on the left is better
performing, but bulkier and heavier (about 58g
more than the one on the right).
This solution is great in that this way with one
device it can perform both navigations (due to
the fact that it is possible to travel high ranges)
and precision landing, however, it remains very
limited to applications where there is no noise
or interference (so open fields for example) in
order to avoid signal loss.
Implementation in simulation is challenging as it
is difficult to find open source plugins and in any
case, the simulation would be limited to open
scenarios, as it would be difficult to simulate the
interference from an urban environment that
could generate noise on the drone.

5.1.4 UWB
Ultra-wideband is a transmission technology developed to send and receive signals
by the use of radio frequency energy pulses of extremely short time duration and
therefore with very wide spectral occupancy [31].
Each UWB module can be set by software as either anchor or as tag, the former
being fixed devices that emit a precise position (e.g., they can be mounted on the
vertices of a rover-mounted landing platform), while the latter are mobile devices
(e.g., it can be mounted on the drone). Both of these devices exchange information
to determine the distance between them, so the more anchors there are, the more
the tag can communicate with them to increase the accuracy of the estimate. With
specific reference to precision landing, this method is definitely the most innovative
and promising and the advantages of using such a solution are many:

• due to the low spectral power, it allows to resist the phenomena of multipath
and jamming, which well affect a GPS-based solution instead

• the UWB modules are cost-effective, small and low power consumption, thus
easily configurable in an existing HW
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• it allows location applications because of its strong time domain resolution.

Figure 5.4: UWB Model Decawave EVB1000

This solution achieves an accuracy of about 10 centimeters and has already been
developed in simulation, however, it should be kept in mind that an appropriate
algorithm must be used to estimate the position between tags and anchors, and
the range of use is limited to about 60 meters.

5.2 Implementation of Apriltag in the simulation
According to the references in the previous section 5.1, it can be seen that all these
methods may be more or less effective depending on the specific application. In

Figure 5.5: SITL simulation organization with AprilTag implementation

a Martian environment, the use of GPS would be impossible since there is still
no satellite network like the Earth’s, while better adapted is the use of UWB.
Instead, both IR 5.1.1 and Marker 5.1.2 can be used as add-ons to improve the
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accuracy of precision landing even more. In this case, the choice was made to
use an AprilTag associated with the UWB; in this way, higher efficiency, lower
weight, and lower computational and economic cost can be achieved. Therefore,
this chapter will present the solution of the AprilTag embedded in the architecture
outlined in chapter 4.

Figure 5.6: AprilTag implementation on Gazebo environment

From the scheme 5.5, compared to the one already presented in 4.1, it can be
seen that the script "apriltag_estimator.py" has appeared, which will take care of
performing the AprilTag detection thanks to the implementation of the OpenCV
library directly in the Python script. Indeed, it will be possible to display a
tab dedicated to the detection of the AprilTag, as visible in the figure 5.6 and,
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thanks to this script, it will then be possible to have an estimate of the position
x, y, z and orientation w of the drone with respect to the Marker. In addition, the
implementation of the AprilTag within the simulation environment is done due to
the file gazebo_sitl_multiple_run.sh, in which the files .sdf of the drone and rover.
The latter was modified by adding a piece of HTML code to insert the AprilTag
above it. Data from this execution can be implemented within the simulation with
two different methodologies:

• Apriltag implementation in the control algorithm: in the section 5.3
data from AprilTag detection are implemented directly in the control part of
the simulator.

• Apriltag implementation in the Kalman filter: in the section 5.4 data
from AprilTag detection are filtered by the Kalman Filter so as to provide a
more accurate calculation of relative position between drone and rover.

5.3 Apriltag implementation in the control algo-
rithm

This section explains the operation of the 5.7 diagram in which, compared to
the diagram 4.4 presented in the previous chapter, it is illustrated how the script
apriltag_estimator.py acts within the simulation. The received data can obviously
be used only when the Marker is visible from the mono camera, and in this case, it
is used directly in the controller part. In this way, the relative position between
rover and drone is calculated exactly as presented in chapter 4, but in the final
part of the landing on the platform, it will use additional data that will allow
the system to be more precise. In order to do this, it is necessary to create a
publisher and a subscriber with respect to a topic (2.2) so that the information
can be communicated correctly.

Figure 5.7: Software architecture with AprilTag implementation

33



Precision landing algorithm

5.3.1 Publisher and Subscriber implementation
Within apriltag_estimator.py, a publisher node has been created that will release
data (of position x, y, z and orientation w of the drone with respect to the Marker) on
a topic called /AprilTag_estimator. Instead, as part of the drone_controller_sim.py
code, a subscriber node was created to subscribe to that topic and take that data
so that it can be used directly in the control system. Each time a subscriber is
introduced, it is necessary to introduce, again within the same code, a callback
function that will take care of creating a vector containing the data of interest.

Figure 5.8: rqt_graph using AprilTag directly in the control part

Due to rqt_graph, a tool provided by ROS, it is possible to graphically visualize, in
the figure in 5.8, what has been explained above. As previously detailed, the UWB
modules, the rover’s compass, and the sensor data from the PX4 flight controller are
filtered through the KF, resulting in an estimate given by /KF_pos_estimator_0.
The latter and the topic related to the AprilTag, will both be in communication with
the general node that is concerned with the control part /drone/DroneController.
The /drone/DistanceSensor and /drone/VehicleLocalPosition are given directly
from the PX4 flight controller.

5.3.2 Pseudo-code for AprilTag implementation
From the pseudo-code 1 it is possible to see that with this implementation, the
drone will always use the data coming from the Kalman Filter, but if the AprilTag
provides a clearly visible output then that data will be used which will be more
accurate. In case the drone is farther than the PID switch position then it will
use only proportional control without obviously using the data coming from the
Marker.
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Algorithm 1 Precision landing algorithm with AprilTag implementation
Data: Relative position between UAV and rover = X

PID switch position = 2m
Result: UAV will use AprilTag information directly in the PID controller if that

is visible, otherwise it will use the data coming from the Kalman Filter
Estimation

if X is less than PID switch position then
if The AprilTag can be seen by the camera then

position data with respect to relative x and y provided by the Marker
detection are employed

end
PID controller application taking as input the Kalman Filter Estimation or
AprilTag position data

else
P controller application that will use only data that comes from the Kalman
Filter Estimation

end

5.3.3 Achievements with rqt demonstrating the benefits of
this implementation

This section analyzes the comparison between a solution with only UWB and with
the AprilTag implementation. The tool rqt is used for analyzing the response over
time of the two topics:

• /KF_pos_estimator_0 referred to the pose/pose/position message in x,y,z.
It is useful to display the relative distance between the drone and the rover.
This topic will start (and can therefore publish information) at the same time
as the estimation algorithms are executed. In the following representations, a
start time equal to that at which the AprilTag is detected has been considered.
It is possible to visualize its progress over time in the graphs 5.9 and 5.10.

• /AprilTag_estimator/estimated_pose referred to the x,y,z pose/position mes-
sage. It is useful to display the relative distance between the AprilTag and the
drone. This topic will only start (and can therefore post information) when
the AprilTag is visible from the camera. It is possible to visualize its progress
over time in the graphs 5.11 and 5.12.

In either situation, the first command of "takeoff" is issued and, after a few seconds,
that of "land_on_target" and an equal-parameter situation was analyzed.
In this case a value of proportional equal to Kp = 0.6, integrative equal to Ki = 0.1
and derivative equal to Kd = 0.05 was used. In the graphs depicted, it is possible
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(a) rqt with only UWB

(b) rqt with AprilTag implementation

Figure 5.9: rqt of "KF_pos_estimator" topic during precision landing phase
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(a) rqt with only UWB

(b) rqt with AprilTag implementation

Figure 5.10: rqt of "KF_pos_estimator" topic during touch phase
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(a) rqt with only UWB

(b) rqt with AprilTag implementation

Figure 5.11: rqt of "AprilTag_estimator" topic during precision landing phase
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(a) rqt with only UWB

(b) rqt with AprilTag implementation

Figure 5.12: rqt of "AprilTag_estimator" topic during touch phase
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to visualize the improvement achieved by implementing the AprilTag within the
simulation system by graphed on the x-axis the position in meters (m) and on
the y-axis the time in seconds (s). In particular, figures 5.9 and 5.11 refer to the
entire landing phase, while figures 5.10 and 5.12 focus on the final touch phase. It
can be seen that compared to using only UWB, the time to perform the landing
increased from 13s to 16s. This is due to the fact that the simulation will take
longer to process the data, yet provide a more accurate output. The light blue
line in the graphs represents the position of the drone relative to the ground,
and it is clearly visible as it descends over time to a position of about 0.45m
(the height of the rover plus the distance between the camera and the landing
platform). As for the position along the x-axis (the blue line) and y-axis (the red
line), a very low tolerance of about 5cm is achieved in both cases at steady state,
but with the implementation of the AprilTag a much cleaner and more accurate
trend is achieved. The most distinguishing characteristic of the two solutions are
the oscillations generated to reach the target which, in the case of using only
UWB, will be definitely more evident due to the non-receipt of the AprilTag data
definitely useful to improve the overall stability. To improve the data obtained
with UWB one would have to increase the value of the derivative Kd quite a bit,
which would damp the oscillations. However, this choice might be inconvenient
in a real application because the derivative action is very sensitive to external
disturbances, affecting its use. It is for this reason that low-pass filters are often
applied, but these tend to work opposite to the Kd action. Otherwise, for the
purpose of this project, it was chosen to keep a very low derivative value to avoid
an overly complex controller design or unpleasant drawbacks. The integral action
given by the Ki is particularly important as it ensures that the error tends to zero
at steady state, which is why a higher value was chosen. However, the tuning must
be done properly since the calibration is related to the overshoots that can be
initiated and such sudden changes in load could lead the system towards instability.
In addition, an anti-wind-up filter has been included that blocks the action of the
integrator in case the velocity increases too much, this is to avoid the triggering of
nonlinear phenomena that were not modeled in the simulation and could generate
errors. In the figure 5.11 it can be seen that the graph referring to the AprilTag
implementation has much fewer oscillations with the same PID parameters, and this
is certainly another important advantage. The same can be seen in the figure 5.12,
where a significantly more stable position is maintained throughout the descent.
The most important value is definitely that of Kp since it must always be present
in a controller. This value the more is increased, the more the drone will be ready
to respond, however, it is recommended to avoid increasing it too much otherwise
the controllability of the drone could be compromised. A very limiting factor up to
this point is the use of the same value of proportional both at the beginning of the
command land_on_target and at the beginning of the touch phase, and for this
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reason, an adaptive controller explained in 5.5 was used next.
Introducing the Martian environment results in a response that is slightly higher
due to the particular ground. Despite this, the final accuracy remained the same
and therefore, validating the effectiveness of the algorithm.

5.4 Apriltag implementation in the Kalman filter

Figure 5.13: Apriltag implementation in the Kalman filter algorithm

In the diagram 5.13 is shown the addition of the code apriltag_estimator.py. It can
be seen that this will act directly within the KF algorithm so that an extra input
data item is used. This implies that, with reference to the Kalman filter theory
presented in 4.3.1, the vector xk must increase in size and, as a result, the sizes
of the matrices Fk and Qk will change (Bk is null). In addition, since additional
input data has been added, there will be four different observation models, one
for each sensor. It is consequently necessary to construct the vector zk referring
to the AprilTag with the resulting matrices Rk and Hk. Due to the use of rqt, it
is possible to plot, as a function of time, the data that are posted on the topics
related to the AprilTag pose and the relative position between rover and UAV.
An improvement over a solution with only UWB can be visualized here as well,
however this solution, in addition to being more difficult to implement, finds it
more difficult to be applied on Martian ground. Both graphs depicted in 5.14
were obtained using a completely flat terrain, but if this were to have varying
inclinations, as the Martian terrain can be, the camera might struggle more to
detect the Marker. These disturbances could then be amplified by the Kalman
filter, which could generate a less accurate relative position signal than the original.
By using this data directly in the control part and only when this is visible, the
relative position will still always be calculated by not considering it, and only when
it is clearly visible, it will start generating control signals to better direct the drone
to the landing pad.
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Figure 5.14: rqt of "AprilTag position estimator" topic

5.5 Adaptive PID controller

In the previous sections, only the precision landing phase in which the AprilTag is
detected was discussed. However, it is also important to analyze the behavior of
the drone from the first moment when the command land_on_target is given and
in detail only the situation of the AprilTag directly acting in the control part will
be analyzed 5.7.

Once imparted, the drone will perform a target tracking phase; however, it is

42



Precision landing algorithm

Figure 5.15: rqt using only UWB in the whole mission

necessary to vary the values of Kp gradually, so that the drone does not start from
the very beginning with a too sudden oscillation that could lead to instability. As
seen in the previous section, a value of Kp = 0.6 is optimal for performing the
touch phase, but this same value would be too high for a tracking phase. For
this reason, an adaptive controller was developed that changes the value of the
proportional according to the distance from which it is located relative to the target.
The principle of operation is based on the relative distance between the drone and
the rover, if this is greater than 3 meters then it will use a value of Kp = 0.1 and
as soon as it reaches this distance every 0.5 meters the value will increase by 0.1,
until it reaches the value of Kp = 0.6 in the final landing phase. In this way, as
visible in the simulation depicted in 5.19, the drone will have a much smoother and
more precise behavior. In addition, from the graphs depicted in figure 5.16, it is
possible to observe a significantly smoother oscillation in reaching the target, both
in an empty environment and in the Martian environment. Focusing more on the
position x and y, in the mission using only UWB, the oscillations reach even more
than a meter in amplitude, compared to almost zero amplitude oscillation in the
adaptive controller.
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(a) rqt with AprilTag implementation

(b) rqt with AprilTag on Martian Ground

Figure 5.16: rqt of "KF_pos_estimator" topic during the whole mission
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5.5.1 Pseudo-code for adaptive PID controller

Algorithm 2 Adaptive PID controller algorithm
Data: The relative position between UAV and rover = X
Result: UAV will use a PID controller with different values depending on X
if X is more than 3 m then

Use P controller with Kp = 0.1
else

if X is more than 2.5m and X is less than 3m then
Use P controller with Kp = 0.2

else
if X is more than 2m and X is less than 2.5m then

Use P controller with Kp = 0.3
else

if X is more than 1.5m and X is less than 2m then
Use P controller with Kp = 0.4

else
if X is more than 1m and X is less than 1.5m then

Use P controller with Kp = 0.5
else

if The AprilTag can be seen by the camera then
position data with respect to relative x and y provided by the
Marker detection are employed

end
PID controller application taking as input the Kalman Filter
Estimation or AprilTag position data

end
end

end
end

end
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5.6 Pictures of the full simulation

(a) beginning of the simulation

(b) takeoff phase

46



Precision landing algorithm

Figure 5.17: Landing phase start with Kp = 0.1

Figure 5.18: Landing phase with Kp = 0.4
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Figure 5.19: Landing phase with Kp = 0.6

Figure 5.20: UAV close enough to use PID Controller
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Figure 5.21: Touch phase using the AprilTag detection data

Figure 5.22: End of the landing phase with shutdown of the motors
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Chapter 6

Hardware architecture

The drone represented in simulation is slightly different from the real drone rep-
resented in this chapter. This is because in simulation it is not as important to
faithfully reproduce the entire structure of the drone as it is to correctly implement
all the various useful sensors in order to correctly simulate the behavior according
to a software point of view.

6.1 Existing HW description of the drone
The drone, which was also used for testing in the chapter 7, uses an X500 frame
kit from Holybro, which already includes several components as a base, which can
be seen in the figure 6.1.
It includes:

• Pixhawk 4 autopilot (where PX4 software is implemented)

• All the frame kit: main board, backing board, carbon fiber tubes, landing gear

• Brushless motors 2216 (22mm stator diameter and 16mm stator thickness)
with 880KV (RPM as a function of the supply volts)

• Propellers 1045 (characteristics given by the type of engine to maximize
efficiency)

• Eletronic Speed Controller which connect the flight controller with the motors
by allowing the speed regulation of the motors.

• PM 07, a power distribution board that delivers information to the autopilot
regarding the battery’s voltage and current delivered to the flight controller
and the motors in addition to giving Pixhawk 4 and the ESCs controlled
power.
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Figure 6.1: X500 Kit Holybro

• Battery strap (in order to keep the battery fixed)

• Power and Radio Cables in order to connect the remote control

• Telemetry radio for Ground Control Station connection

• Pixhawk 4 GPS (not used in this thesis work)

This kit as presented thus allows for control of the drone only in manual mode. In
order, therefore, to be able to use the algorithms presented in the previous chapters
to ensure autonomous flight, it was necessary to introduce another key electronic
component: the 8 GB Raspberry pi 4, shown in the figure 6.2.
On it was installed the ubuntu server operating system on which ROS was deployed.
Within the raspberry, the entire workspace used in simulation was then downloaded
and implemented except for Gazebo, which will obviously no longer be needed.
In addition, in the specific case of this thesis work, it was necessary to introduce
a UWB module configured as a tag (same type depicted in the figure 5.4) and a
Raspberry Pi Camera.
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Figure 6.2: Raspberry pi 4 with 8 GB of RAM

6.2 Camera implementation
The mono-camera is essential to be able to correctly execute the algorithms related
to AprilTag introduction. In fact, it is responsible for the AprilTag detection and
without that, it would be impossible to use the system presented in the chapter
5.2. However, research had to be done on the type of camera that best matched
the existing hardware.

6.2.1 Camera confrontation

Camera Infrared FOV Focal
Length (MM) Suit for

RPi V2 No 62.2 3.04 Raspberry Pi, Jetson
RPi NoIR V2 Yes 62.2 3.04 Raspberry Pi, Jetson
IMX219-77 No 77 2.96 Jetson Nano
IMX219-77IR Yes 77 2.96 Jetson Nano
IMX219-120 No 120 1.88 Jetson Nano
IMX219-160 No 160 3.15 Jetson Nano
IMX219-160IR Yes 160 3.15 Jetson Nano
IMX219-170 No 170 0.87 Jetson Nano
IMX219-200 No 200 3.15 Jetson Nano
IMX219-D160 No 160 3.15 Raspberry Pi, Jetson

Table 6.1: Camera comparison [32]

The table 6.1 shows an overview of raspberry Pi cams, all of which are 8 Mega
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Pixels and mount an IMX219 sensor. The main difference is that not all of them
are suitable for the Raspberry Pi 8 Gb. In fact, most are only compatible with
the Jeston (Nano or later models) which is another electronic board that is often
used in order to implement the above autonomous driving algorithms. The choice,
therefore, fell on the Raspberry Pi Cam V2 with a 62.2 FOV, this is because too
high a value (such as 160) would lead to too high a distortion, thus making the
implementation more complicated. Of the two left, the infrared version may also
be very useful in a hypothetical Mars mission, however for the purpose of testing
on Earth the two are similar.

6.2.2 3D Camera support
In order to implement the camera on the drone, it was necessary to build a 3D
support that could interface with the drone. To create it, it was necessary to
reproduce the CAD 6.3 of the entire frame so that the overall dimensions and joints
could be well evaluated. The main CAD components were online available and,
after making the assembly, it was added a battery (schematized with a rectangle)
and the support for the mono-camera implementation (the one in green color).

Figure 6.3: CAD of the drone in Fusion 360
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Figure 6.4: Implementation of the support of the camera on the UAV

Figure 6.5: RasPi Camera 3D support

There are several reasons for the choice of such a support design including:

• ease of printing without waste of material (no inclinations below 45°)

• low weight (creation of internal buttonholes to lighten the weight)

• high compatibility with the existing X500 kit through a simple joint
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• modularity and maintainability

• small space requirement

• ease of operation on the flat cable connecting the camera and the Raspberry

6.2.3 Choice of material for 3D printing
It is very important that the component be functional, but also that it be robust.
To figure out which material would best suit this application, the GRANTA EDU
Pack software was used. Thanks to this there is a very large library available,
and by going and entering appropriate limits, it is possible to choose the one
that best fits that application. For these applications, fast prototyping is always
necessary, which is well associated with the use of 3D printing by FDM (Fused
Deposition Modeling) technique. Once then the library was reduced to only those
plastics that can be used by this technology, a graph was plotted to compare a
mechanical characteristic, tensile strength (MPa), positioned on the x-axis and, a
physical characteristic, density kg/m3. The reason for this choice is that thus it
can immediately perceived which material can resist the most while maintaining a
low weight. The lower is the value of the latter, the more several advantages will
be gained including increased flight range and a smaller overall space requirement.
Lastly, there is a constraint on the minimum temperature of 80° that they can
resist, since these are to be items mounted on a drone that will have to fly outdoors.
Proceeding by steps, the following graphs were then generated 6.6, where the colors
in the first graph refer to:

• Yellow: Ceramics and glasses

• Black: Fibers and particulates

• Green: Hybrids (composites, honeycombs, etc.)

• White: Liquids and gases

• Grey: Magnetic Materials

• Red: Metals and alloys

• Purple: Polymers (Elastomers and plastics)

– Red: Thermoplastic elastomers (TPE)
– light blue: Thermoset elastomers (rubber)
– blue: Thermoplastics
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(a) Material Universe

(b) Polymer FDM extrusion selection

(c) Best Materials for camera holder

Figure 6.6: Granta EDUPack Database for the choice of material
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As it is possible to see in the last graph in reference to 6.6, the most suitable
materials are TPU (Thermoplastic polyurethane) and PA (Polyamide Nylon). The
former is less strong and heavier (48 Mpa tensile strength and 1200 kg/m3 density),
but it can dampen vibrations much better. The latter, on the other hand, is much
stronger and less heavy (52 MPA tensile strength and 1000 kg/m3 density). Also
considering an economic factor, PA is definitely more expensive and is more difficult
to print since it is necessary to use a steel nozzle (and replace the classic brass ones)
while maintaining an extrusion temperature of about 280°, a support plate heated
to about 100°, and using an enclosure box). TPU is, therefore, better in such an
application, since the component is not of extreme structural importance and the
aspect of vibration resistance plays a more important role especially when signals
have to be sent and received from a small camera. The characteristics mentioned
above may then vary slightly depending on the brand of the material, however, to
perform initial printing trials, it is convenient to use an additional type of material
which is PLA (polylactic acid) and it is even easier to print than TPU and it is
significantly cheaper (so perfect for prototyping).

6.2.4 Slicing software and printer settings

Once the 3D model has been created, a mesh of the model can be generated and
exported in .stl format, still using the Fusion 360 software. It will be legible by
the slicing software, which will generate a GCode that can be read by the 3D
printer via a microSD/USB. In this case, "Prusaslicer" software was used and the
component was printed with a Prusa mk3s+ printer, using a 0.6mm nozzle and a
layers height of 0.4mm. This choice is due to the fact that this component has a
mechanical and not an aesthetic functionality, consequently decreasing the total
number of layers that compose the part will increase the strength and decrease the
printing time, at the expense of less definition. From the figure 6.7 it is possible
to view some printing characteristics, such as total printing time and grams used.
The latter two characteristics range from 30 minutes (for PLA and PA) to 2 hours
(for TPU) of printing time and a weight ranging from 14 to 17 grams and these
properties are highly dependent on the internal infill, which was set at a value of
30 percent and with a honeycomb pattern (as visible in the figure 6.8). Finally,
positioning the component in this printing direction has several advantages as there
are no cantilevered components that require support with additional material and
the fibers are arranged in the same direction as the load, thus increasing their
resistance. The only disadvantage of this positioning is the fact that the holes
for fixing the camera will be slightly oval, but in this case it does not represent a
problem as the holes have been specially designed larger in order to easily insert
the screw that can be locked with a self-locking nut.
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Figure 6.7: Slicing of the 3D model

Figure 6.8: Honeycomb internal
fill

Figure 6.9: 3D printer during
the extrusion of material
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Chapter 7

Test

7.1 Implementation of 3D printed support on the
UAV

Before proceeding to tests where it is possible to replicate exactly what was seen in
the previous chapters in simulation, the hardware environment must be configured
correctly. In fact, now it will no longer be necessary to use Gazebo and therefore
all the plugins that were simulated are now real. In the context of this thesis work,
the substantial change was related to the introduction of the camera. Based on
the considerations made in Chapter 6 the support for the camera was printed in
PLA as the first iteration and visible in the figure 7.1 and it was integrated on the
real drone 7.3. After testing the right tolerances and space requirements, a TPU
version, which is the best for this type of application, was upgraded 7.2.

(a) (b)

Figure 7.1: 3D printed camera support in PLA
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(a) black clamp to show the
flexibility

(b)

Figure 7.2: 3D printed camera support in TPU

Figure 7.3: Camera implementation on the real UAV
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7.2 Camera implementation test for AprilTag
detection

The next step was to connect the Raspberry pi 4 8 GB (with ROS inside) to the
personal computer via SSH protocol and verify the operation of the camera 7.4. It
was possible, thanks to an open-source package, to implement a node that would
be responsible for publishing the camera data to a topic called image_raw. It was
then necessary to modify the python script apriltag_estimator.py in a way that
this node could subscribe to this new topic. Before launching the node related to
detection, it was also necessary to download the Open CV libraries (so that the
on-screen of detection could be opened just as in simulation) and to consider that
the camera’s raw image does not represent the true view from the ideal camera so
it needed to be changed according to two main parameters:

• Intrinsic parameters: the one represented in table 6.1 which remain constant
for a given camera.

• Distortion parameters: these depend on the fact that light rays create
image distortion especially at the corners of a curved lens. These therefore
need to be corrected by a calibration action for each camera that is to be
implemented.

Figure 7.4: Testing general operation of the camera

In order to perform the camera calibration, it was necessary to simply install a
tool directly on the Raspberry and print in 2D a 6x8 checkerboard (only the inner
vertices need to be counted) with the squares 0.035 meters wide.
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Figure 7.5: Running the ROS command to open calculate distortion parameters

Once the dedicated command 7.5 is given, the GUI opens automatically and will
begin to do a detection of the squares using the colors of the rainbow as can be
seen in figure 7.6.

Figure 7.6: Graphical tool interface to calibrate the camera

The camera will have to be kept in a fixed position, while the checkerboard will be
placed in more than twenty different positions so that all the various parameters can
be calculated correctly. On the right side a feedback on the progress of this operation
can be displayed, and only when the values of ”X”, ”Y ”, ”Size”and”Skew” are all
in green color can the calibration button be clicked 7.7 and after some minutes, it
is possible to click to the "save" button to be able to store all the parameters.
In the specific case of the camera that was used (Raspberry pi cam V2), the
following distortion parameters were obtained:

camera_params = [504.579158, 506.433694, 328.458887, 241.522065] (7.1)
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Figure 7.7: Calibration phase completion

These were included in the script apriltag_estimator.py and finally was able to
proceed with the execution of the relevant node, giving in output what is visible in
the figure 7.8.

Figure 7.8: AprilTag detection on a real UAV

With the algorithm’s operation established, in order to test the entire landing
system, it was necessary to re-launch the same commands as in the simulation, but
applying the same corrections on the plugins that were made on the camera. The
landing platform was implemented on a Husky UGV (Unmanned Ground Vehicle)
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and four UWB modules set as "anchors" were inserted at the corners. On the drone
side, the same module was implemented, but set as a "tag". In the figure 7.9 it is
possible to see a preparatory phase to test all the various algorithms that allow the
completion of the whole mission. However, since the real system is very complex,
several more variables have to be considered compared to the simulated version
that require longer time in order to be implemented.

Figure 7.9: Preparatory phase for testing the precision landing algorithm at the
flying field

64



Chapter 8

Conclusions and future
works

The work in this thesis has demonstrated the effectiveness of a precision landing
algorithm by exploiting a technology based on UWB and AprilTag by implementing
an adaptive PID controller that allows achieving an accuracy of about 5cm (in
SITL simulation) and a very smooth and precise landing trajectory using low values
of Kp, Ki, Kd that in real world could lead to anomalous behaviors. This solution
can be useful in many different environments, especially where there is a lack of
GPS signal. The latter feature penalizes this system greatly from a range point of
view, but it gains in accuracy and flexibility. However, in the near future, in case a
network of satellites can be established on Mars as well, it might also be possible
to consider exploiting the data from them for navigation. In addition, an EKF or
UKF could be developed to have an even more precise estimation, thus also taking
into account nonlinear phenomena.

This thesis thus presents another starting point for developing even more robust
and effective systems that could be even better expendable in an eventual Mars-like
environment. The beginning of testing has brought the onset of numerous problems
that were not apparent in simulation. Once these algorithms are well tested in the
terrestrial environment, it can be considered modifying the drone’s characteristics
to make them more similar to a flight in the Martian atmosphere, as it has been
done, for example, for the Mars Helicopter Scout (best known as Ingenuity). The
latter is in fact extremely light and has much wider rotors than the usual UAVs
since, given the more rarefied atmosphere, they have to rotate much faster to get
the same thrust (even though Mars’ gravity is smaller than Earth’s).
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As for The Controller, the adaptive PID presented in this thesis proved to be defi-
nitely efficient, however, it could be thought of using a polynomial function to follow
the trajectory and make tracking or precision landing even more effective, avoiding
the algorithm presented in 2 that might be less effective in real flight. In addition,
the implementation of an artificial neural network in simulation could be useful
so that the drone could learn on its own, after performing a reinforcement learn-
ing phase, which type of flight controller best optimize that particular mission phase.

Figure 8.1: CAD of Raspberry HQ Camera

On the hardware side, it could be considered either to implement a more powerful
electronic board, such as a Jetson Xavier, or to implement a different camera
through more expensive solutions (such as the Intel® RealSense™ Tracking Camera
T265). The latter camera could be used not only for Marker detection, but the
sensors implemented on it could also provide data that might be used as input
into a more sophisticated filtering system to provide even more accurate output
than the ones outlined in this thesis. A more imminent solution may instead be to
use the new Raspberry Pi Cam HQ, which has a higher definition and thus could
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further improve the AprilTag detection phase. In addition, a support to be 3D
printed that allows two-axis motion has been made in Fusion 360 and depicted
in figure 8.1. It is already prepared to interface with the X500 drone presented
in the chapter 6 again through a simple interlocking and thus without having to
assemble or disassemble components from the existing drone. The future idea
would be to connect two servomotors to the raspberry, which through algorithms
can autonomously control the movement of the 3D printed plastic parts (and so
the HQ camera) and be able to use it both to improve the detection phase of the
AprilTag and for other purposes.

Figure 8.2: Movement of the two axis of the camera support

67



Bibliography

[1] Stefano Primatesta. «ROS Introduction and basic concepts». In: () (cit. on
pp. 3–6).

[2] Lorenzo Croccolino. La piattaforma ROS per lo sviluppo di applicazioni per
la robotica: panoramica e caso di studio. url: https://amslaurea.unibo.
it/19755/1/Tesi_ROS_CT.pdf (cit. on p. 4).

[3] url: https://wiki.ros.org/Nodes (cit. on p. 4).
[4] url: https://wiki.ros.org/Topics (cit. on p. 4).
[5] url: https://wiki.ros.org/Messages (cit. on p. 4).
[6] url: https://wiki.ros.org/Master (cit. on p. 4).
[7] url: https://wiki.ros.org/Services (cit. on p. 4).
[8] url: https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html (cit. on
p. 5).

[9] url: https://wiki.ros.org/rqt_graph (cit. on p. 5).
[10] url: https://docs.px4.io/main/en/simulation/ (cit. on p. 7).
[11] url: https://roboticsknowledgebase.com/wiki/tools/gazebo-simula

tion/ (cit. on p. 8).
[12] url: https://www.linuxadictos.com/it/robot-simulatore-di-gazebo.

html (cit. on p. 9).
[13] Lorenzo Galtarossa. «Obstacle Avoidance Algorithms for Autonomous Naviga-

tion system in Unstructured Indoor areas». Master’s degree thesis. Politecnico
di Torino, 2018 (cit. on p. 9).

[14] url: https://www.acsysteme.com/en/customised- service/model-
based-design/l (cit. on p. 11).

[15] url: https://ardupilot.org/dev/docs/sitl-simulator-software-in-
the-loop.html (cit. on pp. 11, 13).

68

https://amslaurea.unibo.it/19755/1/Tesi_ROS_CT.pdf
https://amslaurea.unibo.it/19755/1/Tesi_ROS_CT.pdf
https://wiki.ros.org/Nodes
https://wiki.ros.org/Topics
https://wiki.ros.org/Messages
https://wiki.ros.org/Master
https://wiki.ros.org/Services
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://wiki.ros.org/rqt_graph
https://docs.px4.io/main/en/simulation/
https://roboticsknowledgebase.com/wiki/tools/gazebo-simulation/
https://roboticsknowledgebase.com/wiki/tools/gazebo-simulation/
https://www.linuxadictos.com/it/robot-simulatore-di-gazebo.html
https://www.linuxadictos.com/it/robot-simulatore-di-gazebo.html
https://www.acsysteme.com/en/customised-service/model-based-design/l
https://www.acsysteme.com/en/customised-service/model-based-design/l
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html


BIBLIOGRAPHY

[16] url: https://docs.px4.io/main/en/config/airframe.html (cit. on
p. 12).

[17] Simone Rapisarda. «ROS-Based Data Structure for Service Robotics Applica-
tions». Master’s degree thesis. Politecnico di Torino, 2019 (cit. on p. 12).

[18] url: https://ardupilot.org/dev/docs/using-gazebo-simulator-with-
sitl.html#using-gazebo-simulator-with-sitl (cit. on p. 13).

[19] url: https://docs.px4.io/main/en/simulation/ (cit. on pp. 15, 16).
[20] url: https://docs.px4.io/main/en/ros/ros2_comm.html (cit. on pp. 15,

16).
[21] Gennaro Scarati. «UAV precise ATOL techniques using UWB technology».

Master’s degree thesis. Politecnico di Torino, 2021 (cit. on pp. 17, 22).
[22] url: https : / / docs . px4 . io / main / en / simulation / multi _ vehicle _

simulation_gazebo.html (cit. on p. 18).
[23] url: https://en.wikipedia.org/wiki/Kalman_filter (cit. on p. 20).
[24] url: https://tjosh.medium.com/kalman- filter- predict- measure-

update-repeat-20a5e618be66 (cit. on p. 21).
[25] url: https://it.mathworks.com/matlabcentral/fileexchange/105525-

kalman-filter-virtual-lab (cit. on p. 21).
[26] url: https://en.wikipedia.org/wiki/PID_controller (cit. on pp. 25,

26).
[27] url: https://docs.px4.io/main/en/advanced_features/precland.

html (cit. on p. 28).
[28] Ksenia Shabalina, Artur Sagitov, Leysan Sabirova, Hongbing Li, and Evgeni

Magid. «ARTag, AprilTag and CALTag Fiducial Systems Comparison in
a Presence of Partial Rotation: Manual and Automated Approaches». In:
Jan. 2020, pp. 536–558. isbn: 978-3-030-11291-2. doi: 10.1007/978-3-030-
11292-9_27 (cit. on pp. 28, 29).

[29] url: https://www.droneblog.news/rtk-un-sistema-di-posizionament
o-utile-per-i-droni/ (cit. on p. 30).

[30] url: https://shop.holybro.com/h-rtk-f9p-gnss-series_p1226.html
(cit. on p. 30).

[31] url: https://en.wikipedia.org/wiki/Ultra-wideband (cit. on p. 30).
[32] url: https://www.waveshare.com/wiki/IMX219- 77_Camera (cit. on

p. 52).

69

https://docs.px4.io/main/en/config/airframe.html
https://ardupilot.org/dev/docs/using-gazebo-simulator-with-sitl.html#using-gazebo-simulator-with-sitl
https://ardupilot.org/dev/docs/using-gazebo-simulator-with-sitl.html#using-gazebo-simulator-with-sitl
https://docs.px4.io/main/en/simulation/
https://docs.px4.io/main/en/ros/ros2_comm.html
https://docs.px4.io/main/en/simulation/multi_vehicle_simulation_gazebo.html
https://docs.px4.io/main/en/simulation/multi_vehicle_simulation_gazebo.html
https://en.wikipedia.org/wiki/Kalman_filter
https://tjosh.medium.com/kalman-filter-predict-measure-update-repeat-20a5e618be66
https://tjosh.medium.com/kalman-filter-predict-measure-update-repeat-20a5e618be66
https://it.mathworks.com/matlabcentral/fileexchange/105525-kalman-filter-virtual-lab
https://it.mathworks.com/matlabcentral/fileexchange/105525-kalman-filter-virtual-lab
https://en.wikipedia.org/wiki/PID_controller
https://docs.px4.io/main/en/advanced_features/precland.html
https://docs.px4.io/main/en/advanced_features/precland.html
https://doi.org/10.1007/978-3-030-11292-9_27
https://doi.org/10.1007/978-3-030-11292-9_27
https://www.droneblog.news/rtk-un-sistema-di-posizionamento-utile-per-i-droni/
https://www.droneblog.news/rtk-un-sistema-di-posizionamento-utile-per-i-droni/
https://shop.holybro.com/h-rtk-f9p-gnss-series_p1226.html
https://en.wikipedia.org/wiki/Ultra-wideband
https://www.waveshare.com/wiki/IMX219-77_Camera

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Thesis Objectives
	Thesis organization

	ROS Environment/Gazebo
	Introduction to ROS
	Architecture
	ROS Tools
	rqt_graph
	RViz
	rqt

	Simulation tools
	Overview
	Gazebo


	Drone-rover simulation 
	Model Based Design Approach
	SITL simulation
	Autopilots
	Ardupilot
	PX4


	Software architecture simulation environment
	Overview
	Environment configuration on Gazebo
	Multiple vehicles with ROS and Gazebo configuration
	SITL simulation environment

	System state estimation
	Filters overview
	Estimation with Kalman filter in the simulation

	Control Algorithms
	Takeoff and landing phases
	PID controller
	Drone control sysyem


	Precision landing algorithm
	Methods to perform precision landing with a drone
	IR Sensor/Beacon
	Marker
	GPS RTK
	UWB

	Implementation of Apriltag in the simulation
	Apriltag implementation in the control algorithm
	Publisher and Subscriber implementation
	Pseudo-code for AprilTag implementation
	Achievements with rqt demonstrating the benefits of this implementation

	Apriltag implementation in the Kalman filter
	Adaptive PID controller
	Pseudo-code for adaptive PID controller

	Pictures of the full simulation

	Hardware architecture
	Existing HW description of the drone
	Camera implementation
	Camera confrontation
	3D Camera support
	Choice of material for 3D printing
	Slicing software and printer settings


	Test
	Implementation of 3D printed support on the UAV
	Camera implementation test for AprilTag detection

	Conclusions and future works

