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Abstract

The introduction of lattice structures, in order to reduce weight and increase structural per-

formances, is becoming more and more requested in fields such as aerospace, automotive and

biomedical. These challenges are satisfied by the advent of innovative additive manufactur-

ing techniques, which have enabled not only the realization of complex structures, but also

the implementation of alloys whose characteristics can be well suited to demanding fields of

application. Within the scope of this thesis, the main characteristics of lattices are explored,

outlining the differences according to topology, arrangement and density of unit cells. The

main aim is the implementation of a structural optimization method by which, based on the

above-mentioned properties, each different configuration shows significant improvements in

energy absorption (EA). A central part of the work is the analysis of how the topology impacts

mechanical and energy performances, whereby lattice samples are tested using FEA (Ansys),

carrying out static simulations. The material, AlSi10Mg, follows a bilinear model and it is cur-

rently one of the most used for additive manufacturing of light-weight lattice structures.

Identified the basic properties, the ultimate goal has been to improve them through structural

optimization, based on the stress field within the specimens, with considerations of manu-

facturability to ensure desired printing quality. The optimization is performed through the

implementation of a Matlab code, that aims to construct two processes of thickness reassign-

ment, based on the homogenization of the stress field. The same code is able to extrapolate

3D databases containing all mechanical and energy characteristics, automatically perform-

ing a static bilinear analysis of the specimens, with reduced computational time. The results

obtained are validated again by means of software and ultimately through the experimental

campaign.

As achievements, the implementation of the two processes leads to an improvement of the

stiffness and, at the same time, to a homogenization of the Von-Mises stress (comparing the

models with the uniform original design), achieving good control on the cracking mechanism

and generating a well-determined failure path. The main final gain concerns energy absorp-

tion, as both in specific (SEA) and volumetric (VEA) terms, significant percentages of incre-

ment are highlighted, satisfying the fundamental requirement for many of the applications of

interest.
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Chapter 1

Introduction

The recent development of Additive Manufacturing techniques, such as FDM (Fused Deposi-

tion Modeling), EBM (Electron Beam Melting), SLS (Selective Laser Sintering) and SLM (Selec-

tive Laser Melting), has led to great opportunities and changes, regarding the introduction of

more efficient structures than traditional ones. The possibility of innovative designs is closely

related to the great advantages that such manufacturing methodologies bring, as the possi-

bility of recreating complex component shapes, difficult to reproduce using other traditional

processes. In addition to increasingly elaborate designs, 3D printing methods have contributed

to reduce the weight-strength relation, broadening the scope of light-weight models like func-

tionally graded materials and lattice structures.

1.1 Cellular materials

The growing demand for highly stiff, strong and light-weight structural component, with en-

ergy absorption capabilities, is an important requirement in many field of application. In

this regard, cellular materials can provide exactly these properties as promising materials

for lightweight, efficient, and innovative design of engineering structures. Their composi-

tion is given by a solid part, constituted by struts or plates connected at their edge, and void

networks. Cellular solids can be classified into two macro-categories, outlined in Figure 1.1,

where stochastic (foam) and lattice structures are defined. The former are distinguished into

open-foam and closed-foam, while lattice models can be either 2D or 3D.
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Figure 1.1: Cellular solids classification, [1].

In order to fully understand the very nature of cellular solids, it is relevant to analyze the

aspects that influence their basic characteristics such as relative density, cell size and thickness

(enclosed within the ‘cell-topology’). Relative density is directly connected to cell topology

geometry, therefore mechanical properties of cellular solids can be expressed in terms of these

parameters. One of the most important documents about this property is [2], in which Gibson

and Ashby idealized the structure of foams (open-cell and closed-cell) in the models shown in

Figure 1.2:

Figure 1.2: The idealization of 3D structure of open and closed cell foams, [2].

The open cell foam is modeled as a cubic array with trusses of size egual to l and square section

of side t, whereby the relative density ρR is defined as:

ρR ∝
(
t

l

)2

(1.1)

A closed-cell foam is modeled similarly and the square struts are replaced by plates of side l

and thickness t:

ρR ∝
(
t

l

)
(1.2)
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As previously mentioned, a further parameter affecting the properties of cellular solids lies in

the type of elementary cell selected. Most topologies (hence the configuration of these elemen-

tary cells) have been inspired by bio-natural objects such as cytoskeleton of living cells [15]

[16], cork, wood, bone and coral [2], generating complex structures with high mechanical and

energetic properties, being able to compete with their full-solid counterparts. Indeed, by mak-

ing a trade-off between performances and weight, they are an excellent option to implement

for various applications.

1.1.1 Lattice structures

Within the scope of this thesis, the behavior of the macro-category of lattice structures is an-

alyzed through a detailed study of the performance variability (in relation to the implemented

topology). However, there is still no unified concept due to the complex composition. Popular

definitions of such cellular solids include the work of Gibson and Ashby [2]. Generally, lattice

structures are defined as the 3D structures composed of connected unit cells. Tao et al. [1]

defined lattice structure as a sort of component formed by spatial periodic unit cells connected

through their edges. Concerning their classification, it is of interest to consider three different

categories, examined by Dong et al. [17]. The first category is random lattice structures or dis-

ordered lattice structures (shown in Figure 1.3(a)), which includes several topological structures

with different diameters distributed in the design space. The second category is periodic lattice

structures, formed by periodic repeated cells with certain shape, topology, and size (as shown

in Figure 1.3(b)). The third kind is pseudo-periodic lattices, in which each unit cell has the same

topology, but with a different size (Figure 1.3(c)).

Figure 1.3: Classification of lattice structures: (a) random lattice structures; (b) periodic lattice

structures; (c) pseudo periodic lattice structures, [3].

Among the categorizations of interest, struct-based and and triply-periodic (TPMS) lattices are
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included, in which the smallest unit is called unit cell, defined as the structural part of a lattice,

generated by its repetition in a particular format. The fundamental step in constructing lattice

structures is the stacking of unit cells in the three directions (x,y,z) [18] because, depending

on its configurations, each one has its own characteristics [19]. Therefore, it is of interest to

outline the main characteristics of these structures from the different elementary cells, divided

mainly into the following categories:

• Body centered cubic (BCC) cell, which is made of 4 struts intersecting at the center of

the cube;

• Body centered cubic with reinforced vertical struts (BCCZ) cell, which has the same

structure of BCC with the addition of vertical struts in the Z direction;

• Face centered cubic (FCC) cell, made of 8 half-struts that intersect, 2 by 2, at the middle

of the lateral face;

• Face centered cubic with reinforced vertical struts (FCCZ) cell, which is the same of FCC

with vertical z-struts;

• Face and Body centered cubic (FBCC) cell, which is a combination of FCC and BCC;

• Face and Body centered cubic with reinforced vertical struts (FBCCZ).

The structures of the previously listed cells are shown in Figure 1.4:

Figure 1.4: (a) BCC, (b) BCCZ, (c) FCC, (d) FCCZ, (e) FBCC, (f) FBCCZ - unit cell topology.

Many other unit cells can be found in literature and are currently under research. Some ex-

amples are the auxetic and the octet-truss analyzed by Beharic A. et al [20], vertex cube (VC)
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and Edge center cube (ECC) described by Xiao Z. et al [21].

Such topologies are characterised by their Maxwell number, M, which is dependent on the

number of struts (s) and nodes (n), as extensively discussed in [22]:

M = 6 + s− 3n (1.3)

The value of this parameter defines an important categorization (shown in the Figure 1.5), in-

vestigated in [23], whereby if M < 0, there are too few struts to equilibrate external forces,

causing a bending-dominated behaviour. Different performance occurs when M > 0, inas-

much as the external loads are equilibrated by axial tension and compression in struts, leading

to a stretch-dominated structure [5]. Due to these phenomena, stretch-dominated cells are

stiff and strong, while bending-dominated ones are compliant and deform more consistently.

Figure 1.5: Examples of (a) bending-dominated and (b) stretch-dominated structures, [4].

1.1.2 Mechanical properties

Thanks to their potential applications, many studies have been conducted to characterize the

static and quasi-static mechanical properties, including their experimental characterization. In

[24], [25] and [26] can be seen that methods for the characterization of conventional materials

are valid for lattices as well. From mechanical characterization, it is clear that lattices tend to

keep the same behavior of the general cellular solids, thus three regions of the stress-strain

diagram are highlighted:

• linear elastic region;

• plateau region;

• densification region.

These trends are clearly underlined in the Figure 1.6, in which it is possible to appreciate the

different behaviour between stretch and bending-dominated lattice structures. During elastic
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deformation, the material response is linear elastic, whose slope of the linear section is exactly

equal to Young modulus. However, for the most accurate representation of the elastic modulus

of metallic cellular structures, Ashby et al. recommend measuring the unloading modulus, as

it better represents the structure’s performance. Once the elastic limit is reached, for bending-

dominated structures, deformation continues with an almost constant stress, referred to the

plateau stress, while the trend of the stress-strain curve shows a sort of oscillations in the case

of stretch-dominated structures. Once cells deform enough, generating a contact of the struts,

the densification strain is reached, with three compressive failure modes:

• sequential cell collapse;

• propagation of cracks through the model;

• diagonal preferencial shear planes.

The failure propagation usually originates from a pre-existing defect, and diagonal shear re-

sults in an initial loss of strength, which is generally followed by a strengthening during densi-

fication. Compressive strength and stiffness are highly dependent on the bending-dominated

or the stretch-dominated behaviour, hence it is clear to understand that the latest present

greater strength.

Figure 1.6: General compressive behaviour of stretch and bending-dominated lattice structures,

[5].

Although dynamic performance is important for many applications of AM lattice structures,

a limited number of studies are presented in the literature to define the dynamic behavior of

metallic cellular structures. Harris et al. [27] investigated the dynamic compressive perfor-

mance of lattice structures manufactured by selective laser melting (SLM) and Tobias M. et
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al. [12] focused their attention on the mechanical response of five different topologies (BCC,

BCCZ, FCC, FCCZ, and FBCCZ). In this work, the samples were tested under quasi-static and

dynamic loads, comparing the results with the numerical models to identify topological and

dynamic effects of the SLM process and the main properties of the samples. Thanks to these

analysis, general results have been extrapolated, which will be confirmed in the following

chapters. The inclusion of z-struts in BCC, FCC and FBCC specimens led to an increase in

strength and stiffness and the FCCZ topology was found to be the most efficient topology,

in terms of specific strength and energy absorption (SEA), thanks to the more homogeneous

distribution of stresses across the structure. Both static and dynamic analysis revealed that

specimens failed by the emergence of diagonal shear planes, the orientation of which was de-

pendent on topology, as demonstrated by the numerical models, showing a concentration of

the stress in struts connecting diagonally in the opposite corners of the structure.

Further studies were conducted to analyze the increase of the energy absorption (EA), due

to the adoption of multi-morphology lattice structures. Among these, José Souza et al. [28]

focused on a closed-form analytical methods based on beam theories to calculate the effective

properties. The increasing of the energy absorption, introducing different lattice cells topolo-

gies, is fully analyzed in [10], where it is pointed out that the FBCCZ topology provided the

highest value of EA. Once again, both static and dynamic analyses identified the FCCZ as

the most efficient topology for EA (due to the high densification strain). Other analyses are

presented by Ryan Alberdi et al. [29], which demonstrated that combining different unit cell

architectures it is possible to improve energy absorption. The topologies considered in this

work combined stretch-dominated FCC and bending-dominated BCC unit cell, highlighting

that the primary collapse mode could be controlled through multi-morphology lattices.

1.1.3 Manufacturing techniques

Nowadays, there are many implemented technologies for the realization of lattice structures,

from traditional methods, such as water-jet cutting and braising, to advanced manufactur-

ing processes. Traditional manufacturing techniques are useful for creating lattice structures,

demonstrating highly accurate of the final model, but taking into account the reticular nature

of such structures, these conventional processes are characterized by considerable complex-

ity. The basis of most additive manufacturing processes involves the deposition of material in

a 2D layer and applying a successive layer on the top, for which they are more adaptable in
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comparison to traditional methods, placing material only where it is required. The two main

additive manufacturing processes utilized in the creation of lattice structures are powder bed

fusion technologies such as SLS and SLM [6], as can be seen in Figure 1.7. The main advantage

of the selective laser melting (SLM) method is in producing metallic fully dense parts. SLM

parts will be produced and tested (Chapter 6) in this work to validate the mechanical behavior

predicted by the computer modeling performed using finite element analysis (FEA). Another

additive manufacturing method very commonly utilized is electron beam melting technology

(EBM), which, instead of utilizing laser, utilizes an electron beam as a heat source to fully melt

each layer.

Figure 1.7: Manufacturing methods for lattice structures, [6].

It is also possible to carry out an evaluation of the manufacturability of lattice structures, as

shown by Yan et al. [30]. They found that structures with 2–8 mm unit cells could be manu-

factured without the need of supports. Leary et al. [31] sought to define the manufacturability

of particular struct-based topologies and characterize the mechanical performance of lattice

structures fabricated in AlSi12Mg, using SLM. Lower limits of manufacturability (in terms of

strut diameter and inclination angle) are identified, and the general behavior of different unit

cell topologies are characterized.
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1.1.4 Applications

The practical applications are increasingly used thanks to the properties of the lattice struc-

tures, which are influenced by the geometry (size and shape of the structure and its structural

elements) and topology. Many studies have been conducted on AM lattice structures, and it

has been found that, by tuning lattice geometry and topology, the lattice structures can be

manufactured to achieve a broad range of properties [32] that cannot be achieved by their

parent bulk material [33], including thermal [34], acoustic [35], and mechanical properties

[36].

Figure 1.8: Anti-icing system of an aircraft wing, [7].

In the aerospace field, applications of interest include parts realised to generate protections,

environmental separations, aerodynamic profiles, embedded hydraulic lines and irregularly

shaped pressure vessels. A recent implementation, for the aerospace structures, can be found

in [7], where lattices have been studied and characterized in order to use them for the design of

an anti-icing system (shown in the Figure 1.8) for the leading edge of an aircraft wing, where

the impact energy absorption and heat regulation capacities are both exploited, while Bici et

al. [37] investigated a novel wing leading edge that serves both as an impact absorber and as

an anti-ice system. Miller et al. [38] patented a new system to protect a flight recorder and

Büşra et al. [39], after topology optimizing a suspension arm, infilled it with lattice obtaining

both strength improvement and weight reduction. An example for the automotive field is well

described in [40], where a rollover component, for F1 vehicles, has been developed employing a

hybrid design. On the other hand, in the biomedical field, the lattice structures are of particular

interest for the production of bone scaffolds [41], [42]. These materials are also preferred for

orthopedic implants to replace a missing joint or to support a damaged bone. Therefore, lattices

can substitute the human bones because the internal pores are able to accommodate and guide
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the proliferation of living cells. An example, reported in [8], shows this type of applications,

in which a bio-medical prototype, produced by EBM, is introduced into the implant design.

The Figure 1.9 shows how the 3D printed sternum and rib cage fit inside the patient’s body:

Figure 1.9: Medical implant using lattice structure, [8].

Another relevant application is the use of such structures as heat exchangers (Figure 1.10,

widely investigated in [9]. The heat transfer characteristics make it well-suited for high-

performance heat exchanging devices as well as more complex devices.

Figure 1.10: Micro-heat exchanger (a) schematic of operation, (b) image of electroplated micro-

lattice with solder at node, [9].

1.2 Main purposes

Additively manufactured lattices offer a unique solution to lightweight components, adding

multi-functionality. The advantages they provide are considerable, ensuring high efficiency

also from the point of view of energy absorption. These properties vary greatly based on the

internal design of the individual cell units and their position in space.

Based on these considerations, several methodologies have been developed to enhance the
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energy properties, based on optimal reconfigurations of the geometries. Design methods are

emerging and include a family of topology optimization to tailor local cell density. Since

the work of Bendsoe and Kikuchi [43], topology optimization has developed into different

branches including Solid Isotropic Material with Penalization (SIMP) [44] and level-set based

methods [45], including optimal designs and improved properties. Guo et al. [46] proposed

a stress-based topology optimization in the level set-based approach to treat local stress con-

straints, while Zhang et al. [47] developed a methodology to handle the stress.

The primary aim of this thesis is to conduct an in-depth study of different lattice specimens

and, on the basis of a stress field analyses, to implement a Matlab code for the homogenization

of the stress distribution, ensuring an increase in energy properties. The energy absorption is

closely related to the mechanical behavior, so it is decided to reconfigure the internal stress

field, firstly by calculating the internal values using the Ansys software, which imported can

be modified as the internal diameters of each specimen strut change. The Matlab code allows

local variation of density, following two different approaches, one of which is based on exist-

ing workflows proposed in [48]. Post-optimization, the same code enables to recalculate the

energy properties, in the form of a 3D database, providing a clear visualization of the internal

stress field and the new thicknesses chosen for the struts. In this work, it is reported stress-

based optimization, analysis (through Ansys and a Matlab automatic code) and mechanical

test validation of the different graded samples. The static compression tests are performed

to demonstrate and confirm the results obtained from the finite element models. The find-

ings validate the optimization approach for the particular use and load case and start to build

confidence in the approach as an accepted method.
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Chapter 2

General models

The fundamental step in constructing lattice structures is the stacking of unit cells in x, y, and

z directions [49], because, depending on its configurations, they show different characteristics

[50]. The cells typologies, analyzed in this chapters, are the six configurations (BCC, BCCZ,

FCC, FCCZ, FBCC and FBCCZ), set out in the introduction. They are chosen both to make a

close comparison with the results previously obtained in [10] and [11], but at the same time

because they are the topologies representative of the macro-behaviour of lattice structures.

On the basis of these configurations, primary analyses are carried out to define the parameters

necessary for the implementation of more complex models and the optimization processes, set

out in the following sections.

2.1 Material

The choice of the material, implemented for the specimens, is made on the basis of the produc-

tion process that will be used for the realization, in order to carry out a further experimental

analysis to validate the numerical results. Within the ambit of additive manufacturing tech-

nologies, there are different materials of a metallic nature to produce components. The main

alloys currently in use, considering production processes like SLM, include:

• Aluminum alloys;

• Titanium alloys;

• Nickel-based alloys;

• Cobalt-Chromium alloys;
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The final choice has fallen upon AlSi10Mg because this alloy is one of the most used among

other aluminum alloys in the field of light-weight structures, as analyzed in [51]. Other alu-

minum alloys are employed for lattices as well, such as Al7075 and Al12Si, but AlSi10Mg has

been selected because it is the most used material at Konstruktiver Leichtbau und Bauweisen

(KLuB, TU Darmstadt), where the final specimens were printed to perform the experimental

tests. The density, the modulus and the Poisson Ratio (and G as a result) used for the linear

model are assumed on the basis of experimental discussions present in [52] and correspond

to:

• ρ = 2.68 g
cm3 ;

• E = 75GPa;

• ν = 0.33;

• G = 28.195GPa.

While for the bilinear model the following values will be used:

• σY = 250MPa;

• ϵY = 0.00333;

• ET = 2250MPa.

Figure 2.1: Material bilinear behaviour.
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2.2 Selection of specimen configurations

Before performing the analysis of interest within the Ansys environment, it becomes necessary

to set optimal parameters to achieve accurate results. This involves carrying out a sensitivity

analysis on representative models, therefore low-dimensional specimens are modeled to con-

duct this study. The tests are carried out for specimens with four unit cells on each side (in the

x,y,z directions), for the six configurations. The static bilinear tests performed refer to models

created using beam elements, this allowed to reduce the computational costs of the analysis,

reducing calculation times, but at the same time allowing to test and validate the specimens in

terms of global behavior and not in reference to the single RVE. For each of the six specimens,

shown in the Figure 2.2, AlSi10Mg was applied as material, with the same constraint and load

conditions:

• a general displacement imposed along z and applied to the nodes belonging to the upper

face;

• ’fixed’ type constraint, which has been applied to all the nodes belonging to the lower

face.

Figure 2.2: Samples with four unit cells for each side.

2.3 Mesh-sensitivity analysis

Before proceeding with the bilinear static analysis, it is of primary importance to determine

the appropriate ’size element’ and perform the mesh, in order to minimize the computational
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costs of the analyzes and at the same time to have good accuracy on the results. The sensitivity

analysis, treated in this paragraph, concerns a 4x4x4 specimen of FBCC-Z unit cells. The

choice to carry out the sensitivity analysis on this type of specimen was determined by the

fact that the latter is the one consisting of the largest number of struts, in order to highlight

any problems related to both software limitations and accuracy.

2.3.1 Analysis settings

The chosen specimen is represented in Figure 2.3, whose dimensions are equal to 12 mm for

each spatial dimension. The constraint and load conditions are a ’fixed supported’ constraint

on the lower base and a displacement imposed on the upper surface equal to -1 mm in the

z-direction.

Figure 2.3: General BCs and imposed displacement for 4x4x4 (cells) samples.

The convergence study, as the mesh size changed, was carried out on two different outputs:

• Force Reaction [N];

• Deformation Probe [mm].

The choice of the two different outputs to monitor is necessary to confirm the final and global

convergence, whose asymptotic value is not local. In order to make the results of the sensitivity

analysis reliable, the geometric node (exactly in the middle) is chosen as the point for the

deformation probe. This point is a geometric entity and not a node belonging to the mesh to

make the latter stable as the size element varies.

2.3.2 Results

Once the model is implemented within Ansys Workbench and the boundary conditions and

displacements are set, a static bilinear analysis is carried out, assuming AlSi10Mg as the ma-
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terial. The values obtained are collected in Table 2.1 and divided into defined intervals, which

represent the ranges of values examined. The Figures 2.4 graphically display the trends of the

two outputs and outline the value of the element size for which convergence is reached.

Element

size [mm]

Nodes

[N]

Elements

[N]

Force reaction - Z direction

[N]

Deformation probe

[mm]

[2.598 - 2.1] 2852 1864 2325 0.11082

[2 - 1.5] 4105 2344 2342.1 9.8795E-2

[1.4 - 1.2] 4505 2504 2342.1 9.8795E-2

[1.1 - 0.7] 6809 3856 2342.1 9.8729E-2

[0.6 - 0.5] 10537 5720 2342.2 9.8719E-2

[0.49 - 0.4] 15545 8224 2342.2 9.8621E-2

[0.39 - 0.3] 29689 15296 2342.2 9.8555E-2

[0.29 - 0.01] 149977 75440 2342.2 9.8555E-2

Table 2.1: Results of the sensitivity analysis.

Graphically, it is possible to appreciate the convergence of the results through the following

images:

Figure 2.4: Trends of Force Reaction and Deformation Probe output, considering different element

sizes (range values).

Having minimum deviations in terms of constraint reactions and deformations, it is possible

to assume as perfect element size a value included into the range [2 - 1.5]. In order to increase

accuracy, the minimum of the proposed band was chosen, so a value of exactly 1.5 mm, which

will be selected for all future analyses, proposed in the following Chapters. This assumption

allows to minimize the calculation times, reducing the computational costs to an absolute

minimum, but at the same time allowing sufficiently accurate results.
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2.4 Bilinear static simulation of the 1D beam model

Once the sensitivity analysis has been completed, specimens have been tested assuming a 1D

beam model, which provides a faster analysis, but at the same time needs to be compared

with the 3D model, presented in the literature. BCC, BCCZ, FCC, FCCZ, FBCC, and FBCCZ

cells are all modelled through ANSYS’ Design Modeler using cylindrical struts with diameter

of 0.37 and length of 3 mm. The Static Structural module is selected to perform the static

bilinear simulations and the material AlSi10Mg is assigned to the structure. The results of the

simulation are related to the meshing element size established through sensitivity analysis.

Maintaining the constraint and load conditions described in the previous section, the static

bilinear simulations are carried out for each of the six specimens. Having known the geometric

dimensions and the step-by-step values of the force reactions, the two vectors of ’stress’ and

’strain’ are calculated as:

σi =
FRi

A
= [MPa] (2.1)

ϵi =
FRi

L
= [−] (2.2)

where A represents the area of the sample, equal to 144 mm2 and L the length which corre-

sponds to a value of 12 mm.

2.4.1 Results

In the Figure 2.5 it is possible to evaluate the stress-strain curves, plotted in the same graph:

Figure 2.5: Comparison of the sigma-stress curves of the 4x4x4 cell samples.
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The results obtained in terms of energy absorption EA, specific energy absorption SEA and

volumetric energy absorption VEA are shown in the Table 2.2 and are enclosed graphically

in the histograms 2.6 and 2.7. The values are based on the specimen density ρ and obtained

through the integral of stress σ and strain ϵ, measured between 0 and the failure ϵF :

SEA =
1

ρ

∫ εf

0

σdϵ =
EA

m
=

[
mJ

g

]
(2.3)

V EA =

∫ εf

0

σdϵ =
EA

V
=

[
mJ

mm3

]
(2.4)

Cell
Force reaction - Z direction

[N ]

Displacement

[mm]

EA

[mJ ]

SEA

[mJ/g]

VEA

[mJ/mm3]

BCC 427.421 2 854.844 2230.210 0.495

BCCZ 2242.772 2 4485.409 9549.490 2.596

FCC 1346.609 2 2693.242 6884.462 1.558

FCCZ 3091 2 6182 12943.891 3.577

FBCC 1980.358 2 3816.611 4927.821 2.209

FBCCZ 3758.152 2 7516.245 8730.632 4.349

Table 2.2: Results from bilinear static analyses on the 4x4x4 samples.

Figure 2.6: EA and SEA of the 4x4x4 (cells for each dimension) samples.

Figure 2.7: VEA of the 4x4x4 (cells for each dimension) samples.
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In terms of EA and VEA, the optimal values is achieved by the 4x4x4 specimen composed

of FBCCZ cells, while in terms of SEA, the best energy behavior is shown by the specimen

composed of FCCZ cells, while the BCC configuration has the lowest values for the three

required outputs.

2.5 Validation of the 1D beam models

The introduction of a 1D beam model permits to reduce the computational costs of analysis.

This is advantageous testing larger and more complex samples. However, this assumption in-

troduces a lower accuracy, so that it is necessary to validate the models obtained by comparing

them with those obtained in the case of modelling with 3D elements. In the discussion, two

different confrontations will be made in order to validate the models:

• the first one compares the six configurations (BCC, BCCZ, FCC, FCCZ, FBCC, FBCCZ)

considering a single RVE with the results obtained in [10], under the same constraint

and load conditions;

• the second one compares the six configurations (BCC, BCCZ, FCC, FCCZ, FBCC, FBCCZ)

considering a single RVE with the results obtained in [11], under the same constraint

and loading conditions.

The two qualitative confrontations are made between 1D and 3D models, on the elementary

cells (RVE), while for the third case, two 1D beam models are compared. However, this is done

in order to macroscopically compare the analysis results with those reported in the literature

[12].

2.5.1 First comparison

In this sub-section, a validation is made through the correlation of the trends obtained for the

1D and the 3D model ([10]). For each single configuration, the results are related to a single

RVE 3X3X3 mm, as it is not computationally affordable to carry out bilinear analyses with 3D

elements on an entire specimen 30x30x30 mm. BCC, BCCZ, FCC, FCCZ, FBCC, and FBCCZ

cells are all modelled through ANSYS Design Modeler using cylindrical struts with a diameter

of 0.37 mm and a length of 3 mm, as shown in the Figure 2.8:
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Figure 2.8: (a) BCC, (b) BCCZ, (c) FCC, (d) FCCZ, (e) FBCC, (f) FBCCZ, single RVEs chosen for the

confrontations.

The Static Structural module is selected to perform the static bilinear simulations and the

material (AlSi10mg) is assigned to the structure. A displacement of -0.02 mm is imposed on

the upper surface (with normal +Z) of each cells and a fixed support on the opposite side (on

the surfaces with normal -Z) for the both models. From the static bilinear analysis it is possible

to obtain in output the force reaction and the directional deformation, from which the stress-

strain curves are extracted for each models. The main outputs to be compared, as they will

be the focus of this thesis, are the specific and volumetric energy absorption, shown in the

Figures 2.9 and 2.10:

Figure 2.9: Overlaid comparison for SEA for the 1D beam and 3D models ([10]).
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Figure 2.10: Overlaid comparison for VEA for the 1D beam and 3D models ([10]).

In the histograms, the blue columns refer to the 1D model, while the green columns refer to

the 3D model. In the 3D models, the main difference is due to the fact that the FBCC surpasses

the FCCZ in term of EA and VEA. This shows the higher energy absorption capacity of the

FBCC plastic field. A consideration can be done also in the sense of struts orientation: FBCC

presents oriented struts instead of vertical ones, as in FCCZ, and their presence influences in

a good way force reaction and EA (whose trend is the same as that of VEA) for both the 1D e

3D models.

Moving to SEA, FCCZ cell seems to be the most convenient choice when a compromise be-

tween energy absorption and weight has to be done for both the models. Generally, there

are deviations in the trends, but the best configurations remain the same (FCCZ for SEA and

FBCCZ for VEA). The differences are largely explained by design choices made when, in the 3D

case, the end of each struts was constructed considering a slicing process to refine the inter-

connection zones. This was not done in the 1D discretization, where a circular cross-section of

0.37 mm diameter was simply assigned. This implies a different mass contribution and results

that differ for configurations with a high number of constituent struts.

Differences regarding the VEA values can be seen only as regards the FBCC configuration,

which is more suitable than FCC-Z, for the 3D-models. This difference highlights the fact

that the 1D models are less accurate than the 3D model, but since the deviations are minimal

values, it is considered acceptable to take the 1D approach with beam elements in order to

reduce computational costs and times.
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2.5.2 Second comparison

In this section a comparison is made with the results obtained in [11], analyzing again the

behavior of the six single RVEs and assuming the same bilinear material (AlSi10Mg), BCs and

load. BCC, BCCZ, FCC, FCCZ, FBCC, and FBCCZ cells are all modelled through ANSYS Design

Modeler using cylindrical struts with a diameter of 0.37 mm and a length of 3 mm, introducing

1D beam and 3D elements for structural discretizations. A displacement of -1 mm on the upper

surface and a fixed support on the base are imposed for both the models. In this case, from the

static bilinear analysis it is possible to compare in output the stress-strain curves for the two

cases:

(a) (b)

Figure 2.11: Stress strain curves for (a) the 1D and (b) 3D models, [11].

From the plots it is evident how the addition of vertical struts in the Z direction improves the

resistance of the structure under load parallel to Z both for 1D approach and for 3D one. In

order to estimate the deviations between the two models, the trends for SEA, explanatory of

the global behavior, is outlined:
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Figure 2.12: Overlaid comparison for SEA for the 1D beam and 3D models, [11].

The Figure 2.12 shows the same trend for SEA, with deviations only in values, but not in

trends, as the 1D modeling introduces different masses. The SEA’s plots show that FCCZ has

consistently the highest value because the addition of Z struts does not increase the density

substantially while it greatly influences the structure’s behavior under load.

These results generate a strong correlation between the 1D beam model and the 3D one, there-

fore specimens with the former approach will be modelled in the remainder of the thesis. At

the same time, this ensures reliability of the results, but great savings in terms of cost and

computational time, leaving scope for more in-depth and diversified investigations.
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Chapter 3

Bilinear static simulations

3.1 General configurations

The overall behavior that the lattice structures show, downstream of a statically applied load,

is well described by specimens whose dimensions are sufficiently large. This consideration is

reflected in experimental and numerical tests present in [53], [28], [29] since, assuming con-

siderable dimensions, it is ensured that the edge effects do not affect the validity of the analysis

outputs. Based on this consideration, three types of specimens will be tested within this chap-

ter, having an increasing number of layers along z-direction (10,15,20). This is of interest as the

outputs will be compared not only in terms of mechanical and energetic properties, but also in

terms of failure modes and stress fields. This lays the foundation for choosing the best geomet-

ric configuration to be carried forward the structural optimization, trying to find a trade-off

between accuracy of results and acceptable computational cost and time.

Certain key assumptions were made in this chapter. Struts are modeled as beam elements,

which have no physical volume. Within this chapter it is decided to consider the six different

configurations of individual RVEs, described in the previous chapter (BCC, BCCZ, FCC, FCCZ,

FBCC and FBCCZ). This choice, also adopted in the recently published works [12], becomes

necessary to validate the results analyzed in [10]. Since the FEM software employed is An-

sys Workbench, Design Modeler is the tool used for geometries. Every cell considered in this

investigation presents more than three symmetry planes, and that makes the geometry gen-

eration process way easier. Thanks to this property it is possible to make the specimens, for

each of the six configurations, by translating and mirroring elementary units through suitable
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symmetry planes. The specimens, described within the next three paragraphs, show the same

peculiarities, but with different dimensions along the z-axis, so the number of cells along this

direction will be 10 (30 mm), 15 (45 mm) and 20 (60 mm). Therefore, AlSi10Mg is chosen as

the material, as the aim of the discussion will be their realization using AM techniques and

the subsequent experimental tests.

3.2 Samples with (10,10,10) cells along (x,y,z)

Each of the specimens is composed of elementary cells of size 3x3x3 mm and has 10 cells

for each spatial dimension (length, width and height). Based on these assumptions, the total

dimensions for each are 30x30x30 mm, as shown in the Figure 3.1.

Figure 3.1: Sample configurations 30x30x30 mm.

3.2.1 Finite element modelling

To investigate collapse behaviour and deformation mechanisms, a finite element (FE) model

was developed to replicate the behaviour of the candidate lattice structures (Fig. 3.1), using

the Ansys static solvers. The mesh size was set by means of a minimum ’element size’ equal

to 1.5 mm, based on the sensitivity analysis. Lattice struts is represented using 2-node linear

beam elements, with circular cross-sections that matched the experimental specimen’s topo-

logical and geometric parameters (0.37 mm diameter, 3 mm cell size, 10 cells in x, y, and z
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directions). However, there are known limitations of modelling lattice structures using beam

elements, such as the inability to directly model geometric defects (resulted from AM fabrica-

tion methods) and the absence of the ’Von-Mises Stress’ output (in the Ansys environment).

To overcome this problem, the value is extrapolated using appropriate manual commands in

the software setting.

3.2.2 Boundary conditions and loads

For simplicity and homogeneity of treatment, it is decided to impose, for each of the six spec-

imens, the same constraints and load conditions. A ’fixed’ constraint for the bottom surface

has been inserted as boundary conditions, so that all spatial translations and rotations of the

base are blocked. An ’imposed displacement’ of -2 mm along the z direction has been applied

to the upper surface (Figure 3.2).

Figure 3.2: BCs and load for the selected samples.

3.2.3 Results

In order to make the results as valid as possible, the ’large deflection’ option is set as input

for the analysis. It is also chosen to insert a precise number of analysis substeps, to evaluate

the outputs in equally spaced intervals, small enough to consider the accuracy acceptable. The

main output requested to Ansys is force reaction Fz , that is the one registered on displaced

surfaced. Using Fz it is possible to calculate specific energy absorption SEA and volumetric

energy absorption VEA (that presents the same trend as EA, being the RVE volume the same

for every cell and for the whole sample). Using force and RVE section area (900 mm2), as

well as displacement and RVE edge length, it is possible to evaluate physical and mechanical

properties, as shown in the Tables 3.1 and 3.2 below:
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V0 [mm3] V [mm3] ρR Mass [g]

BCC 27000 1987 7.3590E-2 5.9889

BCC-Z 27000 2246 8.3180E-2 7.0349

FCC 27000 1627 6.0260E-2 5.3789

FCC-Z 27000 1872 6.9330E-2 6.4249

FBCC 27000 3414 12.6440E-2 11.368

FBCC-Z 27000 3658 13.55000E-2 12.414

Table 3.1: Physical properties from bilinear static analyses.

In the table, the mass is calculated with the aid of the software, V0 indicates the volume of the

total sample 30x30x30 mm, considering it as a homogeneous cube, while V is the value of the

effective volume, considering the the gaps between the struts. Through the values of V0 and

V it is possible to evaluate the relative density as:

ρR =
V

V0

(3.1)

Figure 3.3: Relative Density and Force reaction along z-axis of the samples

The relative density shows how the contributions, in terms of mass, are greater for specimens

composed of cells in which the z-struts are present, while the specimen with FCC cells, turns

out to be the most convenient alternative in terms of mass reduction.
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BCC BCCZ FCC FCCZ FBCC FBCCZ

Engineering strain - µϵ 66666.667 66666.667 66666.667 66666.667 66666.667 66666.667

Force Reaction Z [N] 1635.6 7447.4 4795.9 10224 7740.8 13351

Engineering stress [MPa] 1.1817 8.2749 5.3288 11.3600 8.6009 14.8344

EA [mJ] 3271 14895 9592 20448 15482 26702

SEA [mJ/g] 546.2 2117.3 1783.2 3182.6 1361.9 2151.0

VEA [mJ/mm3] 0.1212 0.5517 0.3553 0.7573 0.5734 0.9890

Table 3.2: General results from bilinear static analyses for the 30x30x30 mm samples.

Stress–strain curves, for the tested specimens, are presented in the Figure 3.4 and the values,

for each single load sub-step are calculated having known the geometric dimensions and the

step-by-step values of the force reactions:

σi =
FRi

A
= [MPa] (3.2)

ϵi =
FRi

L
= [−] (3.3)

where A represents the area of the sample, equal to 900 mm2 and L the length which corre-

sponds to a value of 30 mm.

Specimens with z-strut topologies (BCCZ, FCCZ and FBCCZ) showed greater stiffness and

strength than those without, with stress–strain curves that suggest a stretch-dominated re-

sponse. The FBCC-Z sample has the greatest yield and ultimate strengths, but, because of

the greater material presence provided by the struts, when mass is accounted for, FCC-Z is the

most efficient topology in terms of strength-to-weight ratio. Taking into account that the BCC

and BCC-Z specimens has greater relative density than the FCC and FCC-Z ones (as shown in

Table 3.1), the superior specific strength of the FCC and FCC-Z specimens demonstrates that

relative density is not the only contributing factor to mechanical performance, and that topol-

ogy significantly affects qualitative and quantitative performance. All these considerations are

well represented by the mechanical behavior revealed by the stress-strain curves, shown in

the Figure 3.4. The highest curve is related to FBCC-Z configuration, whereby high values for

the volumetric energy of absorption are expected.
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Figure 3.4: Stress-strain curves for the six samples of dimension 30x30x30 mm.

Through the table values, the calculation of the absorbed energy (measured in [mJ]) is imme-

diate. Note the force reaction obtained in the output and the imposed displacement of 2 mm

(considered as an absolute value), the results, represented in the histogram 3.5, are obtained.

The energy absorption during testing per unit volume VEA and per unit mass SEA, based on

the specimen density ρ, are calculated using 3.4 and 3.5 respectively. Calculations are based

on stress σ and strain ϵ behaviour, measured between the start of the test and strain at failure

ϵF .

SEA =
1

ρ

∫ εf

0

σdϵ =
EA

m
=

[
mJ

g

]
(3.4)

V EA =

∫ εf

0

σdϵ =
EA

V
=

[
mJ

mm3

]
(3.5)

The trend for EA and Force Reaction are very similar, FBCC-Z and FCC-Z present the best

values for EA, which are much higher than the corresponding specimens composed of the same

cells, but without z-struts (FBCC and FCC). The trend for VEA it is exactly the same recorded

for EA, in which the same configurations are preferred for the specimens. In term of SEA

values, the trend shows the differences between reinforced and non-reinforced cells. FCC-Z

seems again to be the most convenient choice when a compromise between energy absorption

and weight has to be done. In general, considering pure EA, VEA and force reaction, the best

candidate is FBCC-Z, while comparing the results to the densities that the specimens have, it

can be seen that the most convenient choice are the samples with FCC-Z cells.
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Figure 3.5: EA and SEA for the samples of dimensions 30x30x30 mm.

Figure 3.6: VEA for the samples of dimensions 30x30x30 mm.

3.2.4 Stress state analysis of the samples

Three beam stress results are included under the Beam Tool object of Ansys:

• Direct Stress;

• Minimum Combined Stress;

• Maximum Combined Stress.

The direct stress component is due to the axial load encountered in a beam element. From

any bending loads a bending moment, in both the local Y and Z directions, arises so that four

bending components (Y bending stress on top/bottom and Z bending stress on the top/bottom)

can be calculated. The minimum bending stress is the lower one, while the maximum bending
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stress is the higher of the four bending stresses. On the basys of this assumptions, it is possi-

ble to define the minimum combined stress as the linear combination of the direct stress and

the minimum bending stress, while the maximum combined stress of the direct stress and the

maximum bending one.

Von Mises stress, also called equivalent tensile stress, combines all the components into one

value. The values of Von Mises stress is always positive and it can be related to the Maxi-

mum Combined Stress (output of Ansys for beam elements), if the absolute value is introduce.

As proof of this, it is reported an example in the Figure 3.7. In order to parallel the Von-

Mises stress, it is possible to consider a generical truss, with beam element and a circular

cross-section, constrained at one end and subjected to a load along z at the other end. From

the definitions previously analyzed, the Maximum Combined stress results, in absolute value,

analogous to the Von-Mises stress, as can be seen from the plot in Figures 3.7 and 3.8 (in the

case of modelling with 1D beam elements):

Figure 3.7: User define output egual to the absolute value of the maximum combined stress for a

beam.

Figure 3.8: Von-Mises stress ouput in a 3D discretization.

By comparing the results obtained for the truss structure modelled with beam elements and

considering a 3D approach, it is clear that, introducing the manual output equal to the absolute

value of the maximum combined stress, the ’analogous Von-Mises stress’ is obtained. (The

analyses are conducted with the same material, BCs and loads.)
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3.2.5 Stress field

Validated the definition of stress, in the analysis environment of the Ansys software, it is pos-

sible to manipulate the output in an automated way and obtain the desired value by entering

the absolute value in ’User define output’. The results, shown in the Figure 3.9, 3.10 and 3.11

are comparable with the values obtained in [12] and are of interest to, identify the ´paths´ in

which the stress is maximum, by means of different graphic visualizations and schematizations

proposed in the Figure 3.12.

Figure 3.9: Stress field for BCC and BCCZ samples with 10x10x10 configuration.

Figure 3.10: Stress field for FCC and FCCZ samples with 10x10x10 configuration.
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Figure 3.11: Stress field for FBCC and FCBCCZ samples with 10x10x10 configuration.

Figure 3.12: Qualitative schematizations of the stress fields for the six 10x10x10 samples.

The stress contours of the BCC and FCC lattice samples elucidate why shear planes emerge

with different orientations, depending on the topology. The BCC specimens shows that the

struts, connecting the diagonally opposite corners, carry greater stress than the others, and

when diagonal shear planes emerge upon failure, they align with these most loaded struts.

Similarly for the FCC specimens, it can be seen that stress is more concentrated in the struts

connecting opposite corners, though for FCC these most loaded struts span the faces of the lat-

tice structure, rather than across the whole sample. It is also apparent from the stress contours

of the BCC and FCC topologies that stress is greatest in struts furthest from the central z-axis

of the specimens, suggesting that bending moments are induced within the lattice structures

during deformation, and as the moment arm increases in length the further from the centre
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of the lattice, the struts on the outer faces carry the greatest stress. At a certain load, these

induced stresses exceed the strength of the struts, leading to the emergence of diagonal shear

planes. For FBCC-Z sample the ’preferential stress path’ is a combination of the previous ones,

in which diagonal lines appear on the faces, following the most solicited parts of the sample.

In comparison, the BCCZ, FCCZ and FBCCZ configurations show that the z-struts carry the

greatest stress. This is to be expected, as the z-struts are aligned to the load. The stress distri-

butions also help to explain the differences between the different topologies in term of energy

absorption. The BCC sample has the lowest specific energy absorption capabilities, and the

reason for this is demonstrated by the significant variation in the stress states. As few struts

are carrying significant stresses, while most struts are barely stressed at all, this leads to inef-

ficiency of the structure and a reduction of the energy absorption is observed.

3.2.6 Deformation planes

The total deformations, that each specimen exhibits, are presented in the Figure 3.13. When

failure occurred, two diagonal failure planes emerged for FCC, FCC-Z, FBCC and FBCC-Z

samples, demonstrating that the orientation of failure planes is dependent on topology.

Figure 3.13: Total deformations of the six tested samples.

Specimens failed by the emergence of diagonal planes in which there’s a concentration of

stresses and the orientation of which is dependent on topology. The orientation of these planes

is demonstrated by the numerical models that shows a concentration of the stress in struts

connected diagonally (in the opposite corners of the structure).
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Figure 3.14: Deformation planes of the six 10x10x10 samples.

For BCC, BCCZ and FBCCZ specimens present one diagonal failure plane, while FCC, FCCZ

and FBCC show two diagonal planes of failure, which start from the upper central part of each

sample. A general relation is extrapolated through the six different configurations: specimens

failed by the emergence of diagonal shear planes, the orientation of which is dependent on

topology. The reason for the orientation of these shear planes is correlated to the concentra-

tion of the stress, observed at the outer corners of each specimen. The failure paths follow

these peaks, arranged in diagonal preferential planes, as will be confirmed by the experimen-

tal campaign described in Chapter 6. Therefore the interconnection between the modes of

deformation and failure and the stress fields is closely related, in the following sections only

the results in terms of stress have been reported, as elucidating the failure behavior.

3.2.7 Qualitative validation of the results

In this sub-section a comparison with [12] is done. The models (analysed in the thesis) are

not compared with the 3D-element discretized counterpart, but with the same approach with

beam elements. This is only of interest to validate the results against established values in

the literature. The six samples of size 30x30x30 mm with an aspect ratio of 8.1 will be com-

pared with those describe in [12], in which the aspect ratio is 10.6 and the dimensions are

37.5x37.5x37.5 mm. Placing in similar load and boundary conditions and considering the same

material (AlSi10Mg) for the models, it’s possible to do a bilinear static study. The qualitative

comparisons for SEA and VEA, show the same trends:
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Figure 3.15: Characteristics and topologies. assumed in [12]

Figure 3.16: Overlaid comparison for SEA for the two 1D beam models, [11].

Figure 3.17: Overlaid comparison for VEA for the two 1D beam models, [11].

The trends are qualitatively the same and using similar geometries, loading and constraint

conditions, the deviations, even from a numerical point of view, are acceptable.

From the point of view of the stress field, a further comparison can be made with the same

results obtained in [12]. The previous stress analysis finds further correspondences with the

data reported in the article, hence the same results are defined as above and explained in the

Figures 3.18, 3.19 and 3.20, for the five configurations BCC, BCCZ, FCC, FCCZ and FCCZ.
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Figure 3.18: Von Mises Stress for BCC and BCCZ samples, [12].

Figure 3.19: Von Mises Stress for FCC and FCCZ samples, [12].

Figure 3.20: Von Mises Stress for FBCCZ sample, [12].

The study in the article also shows that in the presence of the vertical struts (BCCZ, FCCZ and

FBCCZ), the stress peaks are distributed along z-lines, while for BCC there are diagonal planes

inside. For FCC specimen, the planes with the greatest stress distribution are again diagonal,

but distributed only on the outer faces. Therefore, corresponding trends are obtained for the

specific and volumetric energy absorption values, as well as for the stress distribution, which

turns out to be exactly the same. This allows us to fully validate the results obtained from the

models implemented in the thesis, which will be carried forward for structural optimization

(Chapter 5) and in the experimental campaign (Chapter 6).
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3.3 Samples with (10,10,15) cells along (x,y,z)

Analogous to the previous study, also in these analyses each of the specimens is composed of

elementary cells of size 3x3x3 mm and has 10 cells along X and Y axes and 15 cells along Z

axis. Based on these assumptions, the total dimensions for each topologies are 30x30x45 mm.

Element size is again equal to 1.5 mm and the material used is AlSi10Mg for the same reasons.

3.3.1 Boundary conditions and loads

For each of the six specimens, a ’fixed’ constraint for the bottom surface has been inserted and

an ’imposed displacement’ of -3 mm along the z direction has been applied to the upper surface.

Compared to the previous analysis, only the imposed displacement conditions is changed to

have the same level of deformation. This ensures a more truthful final comparison of the

specimens, which are only found to have different dimensions along the z-axis, under the

same all other conditions.

3.3.2 Results

Based on the equations and data extrapolation methodologies explained for the 30x30x30 mm

specimens, the results shown in the Table 3.3 are obtained.

Eng. strain

µϵ

Eng. stress

[MPa]

Force Reaction Z

[N ]

EA

[mJ ]

SEA

[mJ/g]

VEA

[mJ/mm3]

BCC 66666.667 1.2736 1146.30 3438.90 382.8060 0.0849

BCCZ 66666.667 7.4920 6742.80 20228.40 1917.0204 0.4995

FCC 66666.667 3.3458 3011.30 9033.90 1119.6643 0.2231

FCCZ 66666.667 9.5286 8575.80 25727.40 2669.5651 0.6352

FBCC 66666.667 6.8506 6165.60 18496.80 1084.7290 0.4567

FBCCZ 66666.667 13.0255 11723 35169 1888.6740 0.8684

Table 3.3: General results from bilinear static analyses for the 30x30x45 mm samples.

The stress–strain curves of the six specimens, are shown in the Figure 3.41 and the values, for

each single load sub-step are calculated on the base of the same formula, but considering L

egual to 45 mm:

σi =
FRi

A
= [MPa] (3.6)
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ϵi =
FRi

L
= [−] (3.7)

Figure 3.21: Stress-strain curve for the six samples of dimension 30x30x45 mm.

Figure 3.22: EA and SEA of dimension 30x30x45 mm.

Figure 3.23: VEA for the six samples of dimension 30x30x45 mm.
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3.3.3 Stress field

The extrapolation of the stress field is of primary interest, so the previous approach is fol-

lowed, by entering a manual output via the command ’User define output’ and obtaining the

’equivalent’ Von-Mises stres:

Figure 3.24: Stress field for BCC and BCCZ samples with 10x10x15 configuration.

Figure 3.25: Stress field for FCC and FCCZ samples with 10x10x15 configuration.
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Figure 3.26: Stress field for FBCC and FBCCZ samples with 10x10x15 configuration.

The stress fields are similar, but with a reduction of the edge effects, due to the larger di-

mensions of the structure. This allows to have results whose reliability is greater, as in the

outermost areas such effects occur with reduced intensity.

Figure 3.27: Qualitative schematizations of the stress fields for the six 10x10x15 samples.

3.4 Samples with (10,10,20) cells along (x,y,z)

In this case each of the specimens is composed of elementary cells of size 3x3x3 mm and has

10 cells along X and Y axes (length and width) and 20 cells along Z axis (height). Based on

these assumptions, the total dimensions for each topologies are 30x30x60 mm. The mesh size

is equal to 1.5 mm and the material adopted is the same as that used in the previous sections.
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3.4.1 Boundary conditions and loads

It is selected, for each of the six samples, the same boundary conditions and imposed displace-

ment. For the bottom side, a ’fixed’ constraint is chosen, while an ’imposed displacement’ of -4

mm along the z direction has been applied to the upper surface to ensure the same deformation

as the other two cases with dimensions of 30 mm and 45 mm along the z-axis.

3.4.2 Results

For the sake of brevity, as all calculation procedures and methodologies are the same, the

results are given directly in the Table 3.4. The mechanical behaviour is quite similar to that

of the first two cases and it is summarised by comparing the stress-strain curves. As far as

the energy values are concerned, EA, SEA and VEA are elucidated, with trends confirming the

results provided.

Eng. strain

µϵ

Eng. stress

[MPa]

Force Reaction Z

[N ]

EA

[mJ ]

SEA

[mJ/g]

VEA

[mJ/mm3]

BCC 66666.6 1.2168 1095.1 4380.4 365.7 0.081119

BCCZ 66666.6 7.3259 6593.3 26373 1874.4 0.48839

FCC 66666.6 2.4304 2187.4 8749.6 813.31 0.16203

FCCZ 66666.6 8.7191 7847.2 31389 2442.7 0.58127

FBCC 66666.6 6.4626 5816.3 23265 1023.3 0.43084

FBCCZ 66666.6 12.5689 11312 45248 1822.5 0.83793

Table 3.4: General results from bilinear static analyses for the 30x30x60 mm samples.

Figure 3.28: Stress-strain curve for the six samples of dimensions 30x30x60 mm.
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The calculation of the absorbed energy is related to the force reaction obtained in the output

and the imposed displacement of 4 mm (absolute value). Introducing these input, EA, SEA and

VEA are calculated:

Figure 3.29: EA and SEA for the six samples of dimensions 30x30x60 mm.

Figure 3.30: VEA for the six samples of dimensions 30x30x60 mm.

3.4.3 Stress field

Regarding the ’Von-Mises stress’ plot, reference is made to Figures 3.31 3.32 and 3.33, in which

it is define configurations with diagonal multi-planes, schematized in 3.34.
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Figure 3.31: Stress field for BCC and BCCZ samples with 10x10x20 configuration.

Figure 3.32: Stress field for FCC and FCCZ samples with 10x10x20 configuration.
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Figure 3.33: Stress field for FBCC and FBCCZ samples with 10x10x20 configuration.

Figure 3.34: Qualitative schematizations of the stress fields for the six 10x10x20 samples.

The stress field obtained are similar to those analyzed in the other two cases, for the specimens

having as number of cells a value equal to 10x10x10 and 1010x15. For the 10x10x20 configura-

tion, a reduction of the size effects (due to the larger dimensions of the structure) is clear from

the stress field, leading to an higher level of accuracy.
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3.5 Middle region evaluation

A comparison of the three configurations (for the six specimens) shows that, by introducing

struts along z (BCCZ, FCCZ, FBCCZ), a ’side 3D area’ is delineated. The middle volume indi-

cates a concentration of stresses along the vertical struts. This zone varies in extent according

to the size of the specimens. As expressed in the Table 3.5, this region follows proportionally

the dimensions of the specimens, assuming a length LZ equal to 12 mm, 21 mm and 30 mm for

the dimensions of 10 mm, 15 mm and 20 mm in the case of BCCZ and FBCCZ cell selections,

while, considering FCCZ, the values are 9 mm, 18 mm and 27 mm.

Lx[mm] Ly[mm] Lz[mm] V [mm3]

BCCZ - 10x10x10 24 24 12 6912

FCCZ - 10x10x10 18 18 9 2916

FBCCZ - 10x10x10 24 24 12 6912

BCCZ - 10x10x15 24 24 21 12096

FCCZ - 10x10x15 18 18 18 5832

FBCCZ - 10x10x15 24 24 21 12096

BCCZ - 10x10x20 24 24 30 17280

FCCZ - 10x10x20 18 18 27 8748

FBCCZ - 10x10x20 24 24 30 17280

Table 3.5: Dimension along (x,y,z) of the middle stress band.

With reference to the data in the Table 3.5 and in the Figures 3.12, 3.27 and 3.34, in which there

is a clear pattern of the internal stress field for the specimens with z-struts, it can be seen that

as the dimensions along the vertical axis increase, the zone with the highest concentration of

central stress tends to extend. This is expected as the two parameters are closely related, for

greater height of the specimens the internal area under stress expands, but not proportionally,

as the edge effects, described in the next sections, show a decrease.

3.6 Effect of variable imposed displacement

In this subsection an analysis on a sample with BCC topologies is carried out. It is composed

of elementary cells of size 3x3x3 mm and has 10 cells along X and Y axes (length and width)

and 20 cells along Z axis (height). Based on these assumptions, the total dimensions for each

topologies are 30x30x60 mm. The mesh size is set to 1.5 mm and AlSi10Mg is chosen as mate-
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rial. The real difference is due to the different load applied, using an ’imposed displacement’

of -2 mm along the z direction (different from the starting value of -4 mm), while a ’fixed’

constraint for the bottom surface has been inserted as boundary conditions. Using force and

sample section area , as well as displacement and edge length, it is possible to evaluate physical

and mechanical properties:

Eng. strain

µϵ

Eng. stress

[MPa]

Force Reaction Z

[N ]

EA

[mJ ]

SEA

[mJ/g]

VEA

[mJ/mm3]

BCC 33333.3 1.0923 983.05 1966.1 164.1426 0.0364

For the stress field point of view, the preferencial distribution is very similar to the configu-

ration BCC 10x10x20 (cells) with an imposed displacement of -4 mm on the upper surface. A

close relationship exists between BCC specimens with dimensions 10x10x10 and 10x10x20 ap-

plying both the same level of displacement and deformation (case with imposed displacement

of -4 mm). It is of interest to correlate the stress fields and values in terms of mechanical and

energy performance. Indicating with:

• CASE 1 for the specimen BCC 10x10x10 and displacement equal to -2 mm;

• CASE 2 for the specimen BCC 10x10x20 and displacement equal to -2 mm;

• CASE 3 for the specimen BCC 10x10x20 and displacement equal to -4 mm.

Figure 3.35: Case 1, Von Mises Stress and corresponding qualitative schematization.
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Figure 3.36: Case 2, Von Mises Stress and corresponding qualitative schematization.

Figure 3.37: Case 3, Von Mises Stress and corresponding qualitative schematization.

From the point of view of mechanical properties, the stress-strain curve has an obvious re-

duction in stress values, moving down compared to the Case 1. For Case 2, considering an

imposed displacement equal to -2 mm, the final strain value is lower than Case 3, as can be

appreciated by the trend depicted in the Figure 3.38:
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Figure 3.38: Comparison of the stress-strain curves for the case 1, 2 and 3.

This decrease is strictly related to the output values obtained for Force Reaction, which are

lower for the BCC 10x10x20 specimens, as it is clear in the Figure 3.38. Instead, from SEA and

VEA point of view, for the correlations with the Force Reaction, the configuration of the Case

2 shows a reduction of 39.9% and 69.9% in comparison with the 10x10x10 cells (with the same

BCs and imposed displacement).

(a) (b)

Figure 3.39: Comparison of (a) Force Reaction and (b) EA, for the Case 1, 2 and 3.
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(a) (b)

Figure 3.40: Comparison of (a) SEA and (b) VEA, for the Case 1, 2 and 3.

3.7 Size effects

When the material properties of lattice structures are tested, small samples may have different

apparent material properties than large ones. This difference is known in the literature as a

size effect [54]. The study confirms that the variability of effect sizes diminish with increas-

ing sample size. The samples exceed more than about 20 cell layers, the edge effect decreases

quickly to be neglected ([55]). The edge effects of the equivalent specific strength also obey

these rules. The reduction of the equivalent specific stiffness and strength is mainly derived

from the mass enhancement of struts. When the dimensions of the samples increase, a sort of

reduction of local concentrations of strain and stress is shown, which is strongly related to the

topology. From the analysis done in the previous chapter, cellular materials can be divided into

bending dominated and stretching dominated topologies. Stretching dominated cellular mate-

rials tend to be stiffer than bending dominated ones and, considering these classifications, it is

possible to examine the size-effects for the six proposed configurations, relating the specimens

of size 10x10x10, 10x10x15 and 10x10x20. As the specimen size increases, a stress variation

will be seen. The distribution is the same but for the BCC, FCC and FBCC configurations, there

is external zones with different stress peaks. For BCC there are present diagonal lines on the

external surface and an area of concentration of stress are elucidated. For FCC the peaks of

stress are concentrated along the four diagonal planes and the effects of the size is not really

relevant. It’s possible to see differences only in the corner zone with a more defined area for

the maximum values for the bigger samples. The same is shown for FBCC, which represents

a mix of all six topologies, presenting at the same time all the different load-paths. Looking
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at this representation it can be seen that the edge effects, in terms of stress distribution, are

reduced as the specimen size increases. A similar argument is proposed for specimens fitted

with z-struts. The latter have stress concentrations at the outer edges (vertices) and along the

vertical struts. As the size of the specimen increases, the concentration along vertical struts is

reduced only for the middle and not along the whole height. A comparison of the mechanical

and energy characteristics shows that, as the size increases, and the same level of deforma-

tion is imposed, the output stress and force reaction are lower. The shape of the stress-strain

curves is similar for the entire range of specimen sizes, although the actual values of stiffness

and strength is varied for the different specimen sizes. By imposing a displacement for the

10x10x10 specimen of 2 mm (compression), for the 10x10x15 of 3 mm and 10x10x20 of 4 mm

and evaluating EA, by the product of constraint reaction and displacement, an increasing trend

with size is obtained, while for SEA and VEA the values are progressively decreasing.

3.8 Sensitivity analysis for accuracy study

On the basis of the bilinear simulations carried out, it can be seen that for each of the six

configurations there are peak stress values at the corners. This tends to skew the results and

influence the accuracy. From the sensitivity analysis, an element size of 1.5 mm is chosen,

implying 2 elements per strut. This provides valid outputs, but this veracity does not include

the stress-field. As a proof of the above, it is possible to conduct a bilinear sensitivcity analysis

again on a BCC specimen of size 10x10x10 and evaluate the outputs and stress field accordingly.

Assuming the same material, boundary conditions and loads, a comparison in terms of stress-

strain curves is shown. The trend is the same, with slight deviations for the plastic section

where it can be seen that, assuming a less dense mesh, the stresses are overestimated (higher

curve):
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Figure 3.41: Stress-strain curve, varying mesh size.

The percentage variations in energy terms are small (0.7%), so the previous results are reliable

even with a rougher mesh.

Figure 3.42: EA and SEA, varying mesh size.

Figure 3.43: VEA, varying mesh size.
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The largest variation affect the stress field. The peaks recorded, in the case where only two

elements have been entered for each strut, show larger areas with σ major. This is solved by

selecting a value of 0.1 mm as element size. This choice triples the computational times, but

solves the problem described above. A direct comparison of such distributions is shown in the

Figure 3.44, in which the stress field obtained, with the two different element sizes selected,

can be appreciated. The configuration of the preferential paths is the same, but it can be seen,

in relation to the image 3.44 (a), that the ’size effects’ are considerably reduced by choosing

smaller sizes, thus increasing accuracy.

(a) (b)

Figure 3.44: BCC stress field for a mesh size of (a) 0.1 mm and (b) 1.5 mm.

Although the accuracy increases and problems with staggered stress concentrations are re-

solved, the results in terms of mechanical and energetic properties tend to coincide. This leads

to a design choice of a less fine mesh (1.5 mm), in order to achieve sustainable calculation

times and fully reliable numerical outputs.

3.9 Computational time for the three sample sizes

The introduction of a beam model has allowed great time-savings in terms of analysis costs.

They are reduced in comparison to their counterparts discretized with 3D elements. In this

section, further comparisons will be made in terms of computational costs, but in this case

based on the dimensions of the specimens, which vary with the first case with (30,30,30) mm

along (x,y,z), the second with (30,30,45) mm and the third with (30,30,60) mm. The computa-

tional costs in time are related to a computer in the department’s offices of the Konstruktiver

Leichtbau und Bauweisen (KLuB - TU Darmstadt), whose technical specifications are given in

the Table 3.6.
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Category Hardware/Software

Operating system (OS) Windows 10 64-Bit system

Central processing unit (CPU) Intel(R) Core(TM) i7 CPU 70 @ 2.93GHz

Random-access memory (RAM) 20,0GB DDR3

Graphics processing unit (GPU) NVIDIA GeForce GT 610

Table 3.6: Computer technical specifications used for the analyses.

10x10x10 cells 10x10x15 cells 10x10x20 cells

BCC 2h 11m 3h 28m 6h 38m

BCCZ 2h 42m 3h 44m 7h 12m

FCC 2h 07m 3h 21m 6h 54m

FCCZ 3h 49m 5h 7m 7h 47m

FBCC 6h 31m 6h 48m 9h 13m

FBCCZ 7h 16m 7h 52m 11h 22m

Table 3.7: Time costs for all the static analyses done.

As expected, increasing the size of the specimens along the z-direction, the number of struts

and consequently the number of beam elements to be inserted during the meshing process

are always greater. In this respect, there are increasing, but still small time ranges, as can be

seen in Table 3.7 . From the analyses conducted and the comparison of computational costs in

time, it is clear that the 10x10x10 configuration of specimens appears to be the best for future

analysis. It has small dimensions, which expand the edge effects, but lends itself well to faster

analyses, so it provides for the possibility of conducting a larger multi-facet studies.
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Chapter 4

Topological optimization of the samples

Each of the six specimens considered in the previous Chapter, on which bilinear analyses are

carried out, present very different characteristics and mechanical performances. The primary

purpose of this section is to recreate a clear database of the performance achieved and attempt

to increase it through an optimization process. On the basis of past works [56], it is clear how

recreating a specimen, by gradually varying the relative density of certain struts, can be a valid

option to lead to homogenization of the stress field and consequently better energy charac-

teristics. Every elementary structure play an important role in mitigating the brittle failure,

promoting progressive damage. This has led to enhanced energy absorption characteristics.

Figure 4.1: Stress-strain curve of graded lattice structures, [13].

In contrast to the uniformly dense lattice structures, those with graded density show novel

deformation behaviour, as can be seen in [57] and [13]. Beginning with the layers of lowest

relative density, the graded lattices tend to collapse in a layer-by-layer sequence (Figure 4.2)
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and the sequential layer collapse can be seen in the trends of the stress-strain curve. The

sequential layer collapse continue up to the densification of the final layer, at which point the

stress rise drastically, as will later be confirmed by the experimental campaign (Chapter 6).

Another way to increase a the level of EA, recreating a sort of ’breaking-path’, is the adoption

of a multi-morphological design. Different types of cells can be used in the same sample to

achieve multi-morphology designs as well: the concept is very similar to graded structures,

but there is the possibility to gather different properties and different behaviours. [58] is an

example, where optimization process has been used as well. In [14], using four kinds of unit

cells (BCC, FCC, BFCC, and BFVC), three sorts of patterns (horizontal, vertical, and circular)

are constructed.

Figure 4.2: Comparison of deformation modes, [14].

The topological arrangement of different unit cells plays a prominent role in determining en-

ergy absorption performance, leading to an improvement in this parameter.

4.1 Data extraction in table format

Based on the literature work previously mentioned, it has been decided to increase the prop-

erties of the smaller specimens (10 cells per side) by systematically varying the thicknesses

of the struts. First of all, in order to manage and increase both the mechanical and energetic

efficiency of the specimens, it is necessary to reconstitute a sort of 3D database of the stress

values, for each single cell. After performing the static bilinear analysis in Ansys Mechanical,
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it is possible to extrapolate the files ’.out’, generated by the software. In these files there is

the identification of each element and the values of the requested outputs. These values have

been imported into Matlab, so it has been possible to recalculate, known the ID of the element

and its precise geometric position (x,y,z), the maximum value of the stress for each cell of the

entire sample 10x10x10. A complete 3D database is created for all six configurations, but only

the most representative zones are extracted as 2D planes, in the form of grids, in order to rep-

resent as clear as possible the stress distribution. Therefore it has been chosen to represent,

according to schemes 4.3, the following 2D layers (planes) of the samples:

• Central plane;

• Upper external plane;

• Lateral external plane;

• Diagonal plane.

The proposed schematizations are shown in the Figures below, indicating the planes selected

for investigation (as representative of global behaviour):

Figure 4.3: Characteristic planes for the representation of mechanical and energetic properties

within samples (extraction of 2D databases from the global 3D one).

Implementing the Matlab code, it is thus possible to have a visual display of the stress field and

introduce an appropriate colour scale to delineate the areas of high concentration, as can be
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seen in the Appendix [A.1]. The specimens have the same struts diameter for each cell, which

generates an inhomogeneous stress field and the failure mechanisms described in the previous

chapter. According to the outputs provided by Ansys Mechanical, the tabular schematizations

representing 2D planes can be used to create the same grids, but whose representations con-

cern dimensional quantities, mechanical and energy properties.

In the following paragraphs, simple formulations are set out to determine the same 3D databases,

from which extract 2D tables, for thicknesses, SEA and VEA.

4.2 Optimization of diameters

Lattice structures consist of a large number of struts arranged in spatial patterns with selected

unit cell design. The cells’ optimal diameter has been the focus of numerous studies. Michell

[59] developed a criterion for a minimum mass for the struts, according to which all structural

members must be strained by the same amount. The required deformation leads to the fact that

members are arranged in a frame that is aligned with principal stress directions. A limitation

of this work is that its implementation is restricted to simple geometries. In the years since,

other computational methods have been developed, including size and topology optimization

approaches. Size optimisation can be used to parametrically control the individual diameters

of each struts in any lattice configuration and under external loads. In contrast, topology op-

timization methods are generally concerned with achieving binary solid-void solutions. With

topology optimisation the less stressed elements are assigned an artificially softer material

through penalty methods. In this way, holes in the structure can be approximated as regions

of low density below a defined threshold, and an optimal material layout can be determined.

Various topology optimisation approaches have been developed over recent years [17], [60],

[61] and [62] including density-based and bio-inspired methods or using a combined method-

ology to identify principal stress directions and to optimize diameters with the established

isostatic stress lines [63].
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4.3 Optimization processes

4.3.1 First process

In the context of this discussion a process is proposed for an optimization of the structural

properties, starting from the internal stress field of each specimen. The main purpose of the

optimization is to uniform the stress field for each of the topologies: this will allow to obtain,

through the increase of the diameters for the cells with higher stress concentration, a conse-

quent improvements of the mechanical properties and energy absorption. The process takes

as input the generated 3D databases of the stress. As primary hypothesis, it is imposed that

the final deformation, so also the output strain levels, is the same:

δ = δ0 ↔ ε = ε0 (4.1)

This imposition arises from the type of constraint and load conditions imposed, since on the

upper surface of each specimen a displacement equal to -2 mm along Z was inserted. From

beam theory, the displacement is defined as:

δ =
C1 · F · l3

12 · Es · I
(4.2)

The force reaction that is obtained, relative to that given imposed displacement, can be rewrit-

ten as a function of stress:

F =
σVM · t2 · π

4
(4.3)

F0 =
σVM0 · t20 · π

4
(4.4)

This definition is central and the input, in the form of a 3D database, can be introduced into

the cycle. The primary unknown quantity to be determined is the thickness t, which will be

the focus of the optimization and redistribution of the stress field. It is necessary to define the

relationship between the forces obtained pre and post-optimization:

F = F0 ·
(

ρR
ρR0

)
(4.5)

This formula needs the introduction of the relative density ratio, strictly dependent on the

inverse of the aspect ratio (AR) and on the topology of the specimen (parameters A and B), as

described in [11] it is defined as:

ρR = A ·
(
t

l

)2

+B ·
(
t

l

)3

(4.6)
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In order to obtain the parameters A and B, the MATLAB’s function ”lsqnonlin” has been used

and the relative values are represented in the table below:

A B

BCC 5.4424 -4.9020

BCCZ 6.2274 -6.1502

FCC 4.4434 -3.9141

FCCZ 5.2295 -5.44177

FBCC 9.8981 -12.8319

FBCCZ 10.6694 -14.3042

Table 4.1: A and B values for relative density based on topology.

Starting with an initial diameter of:

t0 = D0 = 0.37mm (4.7)

With an aspect ratio equivalent to:

AR0 =
L0

t0
=

3mm

0.37mm
= 8.1 (4.8)

Substituting the above equations, the ideal diameter for the struts (in which the voltage peaks

are present) is calculated:

t =

√(
σVM

σVM0

)
· t20 ·

(
ρR
ρR0

)
(4.9)

Since σVM0 will always be smaller than σVM , as it will be purposely chosen as a threshold and

will take on smaller values in order to cancel out stress peaks, and having defined the relative

density via the parameters A and B (listed in the previous paragraphs), it follows that the two

ratios (stress and density) are always multiplicative factors greater than one. This implies that

downstream of the optimization process t (final) will always be greater than t0, so there will

only be thicknesses greater than 0.37 (diameter). Note the section A of the specimens, which

remains the same, by means of the relationship between the forces the vector F is obtained,

on which the stress field depends. Through integration, the definition of the volumetric and

specific energy absorption is given by:

σ =
F

A
(4.10)

V EA =

∫
σdε (4.11)
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SEA =
V EA · V

m
=

V EA

ρ · ρr
(4.12)

Likewise it is possible to calculate the specific energy absorption from the definition of EA:

EA = V EA · V (4.13)

SEA =
EA

m
(4.14)

Note the relation between the forces and substituting the relative density and the expression

in which the Von-Mises stresses appear, the thickness is calculated.

Figure 4.4: Workflow of the process in Matlab.

What is done in Matlab is to implement a cycle ´if´ and a cycle ´for´ consecutively. If the

stress for a given cell exceeds a threshold value the code changes the thickness, from t0 to

t, using the relation found. To determine an optimum thickness, it is necessary to introduce

controls on the critical aspect ratios, which determine the maximum diameters in relation to

the lengths of each strut. For this process no limit has been inserted inside the process, in

order to make the homogenization of the stress field more performing, so this initial approach

is purely theorical. At each cycle the relative density is recalculated so that different values of

VEA and SEA will be recorded and the whole process is well defined in the workflow shown

below:
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Figure 4.5: Workflow of the process in Matlab - implemented formulas.

4.3.2 Second process

Another structural optimisation approach can be performed, taking into account a different

formulation for the determination of the thicknesses, which is widely discussed in [48] and it’s

assumed the load equilibrium that leads to a straightforward relationship between the stress

state and strut thicknesses:

F = F0 (4.15)

t =

√(
σVM

σVM0

)
· t20 (4.16)

In both cases, the implemented Matlab codes generate a new assignment of thicknesses, which

are larger than the starting diameter. The methods could therefore be advantageous to design

graded density distribution of lattices in additive manufacturing, leading to advanced proper-

ties related to structural strength and energy. The collapse of structure always started from

least dense layer to the denser layers, in contrast, samples with uniform density showed abrupt

shear failure with diagonal cracking across the whole structure. Furthermore, density graded

lattices showed a better energy absorption behavior. This consideration will be established in

the next sections and find a perfect correspondence in literature [64].
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4.4 Implementation of optimization processes: results

Once the maximum stress value per cell was obtained, the average within the specimen (con-

sisting of 1000 cells) was calculated and three different cases are examined:

• threshold at 25% above the average;

• threshold at the minimum value;

• threshold at the average.

Whenever the stress (of an individual cell) exceeds the ’threshold’ value, its thickness is changed

so that the post-optimization stress value (relative to that same cell) will be exactly at the value

selected as the marker. On the basis of this consideration, the three thresholds were chosen

as limit values in the case of the 25% and minimum and an intermediate one in the case of

choosing the mean value. The first two represent extreme cases in that hardly any cell will

exceed 25% of the mean value, so only a few thicknesses will be changed. While for the second

every one will be replaced, as all cells have an internal stress value greater than the minimum,

so there will be a large increase in mass. The third corresponds to a mid-case, in which there

is a trade-off between an increase in weight and an improvement in mechanical and energy

performance. Similarly to the stress distribution, there is a reallocation of the value (both for

SEA and for VEA). For each of the six configurations, the new values (per cell) of SEA and

VEA have been extracted, but in the next sections they will only be reported for certain cases

and configurations.

4.4.1 Threshold equal to 25% above the mean value

Once the process has been carried out, the diameters assigned to each cell can be extracted

for each of the ten specimen planes. In this discussion, a threshold for stress greater than 25%

of the mean value is considered. The analysis is carried out for both optimization processes

(Process 1 and Process 2). The representations refer to a reference system (for the extraction

of the 2D planes) shown in 4.6:

63



Figure 4.6: Planes numbering system.

Similarly to the stress distribution, there is a recalculation of thicknesses, whereby diameters

are only increased for cells with peak stresses. For the assumed threshold, the range of varia-

tion of the diameters is affected by a reduced number of cells and there are different minimum

and maximum peak values for the two processes:

t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.3700 0.9084

BCC - Process 2 0.3700 0.4091

BCCZ - Process 1 0.3700 0.9248

BCCZ- Process 2 0.3700 0.4157

FCC- Process 1 0.3700 0.7184

FCC- Process 2 0.3700 0.3932

FCCZ - Process 1 0.3700 0.8446

FCCZ - Process 2 0.3700 0.4028

FBCC - Process 1 0.3700 0.5873

FBCC - Process 2 0.3700 0.3840

FBCCZ - Process 1 0.3700 0.4138

FBCCZ - Process 2 0.3700 0.3727

Table 4.2: Maximum and minimum thicknesses for a threshold of 25%.

As expected, this variation generates a different stress field, which is more uniform and well

distributed, generating higher levels of VEA and SEA. In the tables 4.3, 4.4 and 4.5, it is possible

to see the variations in terms of mass (indicative of the major diameters), SEA and VEA in the

three different cases:

• 1 indicates the values for uniform specimens (same diameter for each strut);

• 2 indicates the values for the graded samples, for which the first optimization process
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has been implemented;

• 3 indicates the values for the graded samples, for which the second optimization process

has been implemented [48].

m1 [g] m2 [g] m3 [g]

BCC 5.9889 6.3532 6.0138

BCCZ 7.0349 7.5410 7.0738

FCC 5.3789 5.5954 5.3929

FCCZ 6.4249 6.4908 6.4295

FBCC 11.3680 11.4313 11.3720

FBCCZ 12.4140 12.4291 12.4149

Table 4.3: Masses for the uniform, graded by process 1 and 2 samples, with a threshold equal to

the 25%.

SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 123.2936 122.1065

BCCZ 477.0255 521.3782 510.4012

FCC 356.1905 374.0446 381.4079

FCCZ 663.8578 674.0782 717.1365

FBCC 258.3844 259.9165 269.9143

FBCCZ 438.7231 439.1802 442.7915

Table 4.4: SEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

25%.

VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.0290 0.0272

BCCZ 0.1243 0.1456 0.1337

FCC 0.0710 0.0775 0.0762

FCCZ 0.1580 0.1620 0.1723

FBCC 0.1088 0.1100 0.1137

FBCCZ 0.2017 0.2022 0.2036

Table 4.5: VEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

25%.

The percentage gain in terms of energy is higher for the second formulation (index 2 - Process

1), while obtaining values very similar to the optimization implemented with the third case
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(Process 2). This is clear through an analysis of the following Tables, where the percentages

of interest and explanatory of the levels of SEA and VEA obtained:

SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +8.1611% +7.1197% +14.6250% +7.5099%

BCCZ +9.2978% +7.0102% +17.1360% +7.6109%

FCC +5.0125% +7.0798% +9.1549% +7.3239%

FCCZ +1.5395% +8.0490% + 2.5316% +9.1041%

FBCC +0.5929% +4.4623% +1.1029% + 4.5037%

FBCCZ +0.1041% +0.9273% +0.2478% 0.9419%

Table 4.6: Percentages of increments of SEA e VEA, threshold equal to the 25%.

Mass Process 1 Process 2

BCC +6.0829% +0.4157%

BCCZ + 7.1941% +0.5529%

FCC +4.0250% +0.2602%

FCCZ +1.0257% + 0.0715%

FBCC +0.5568% +0.0351%

FBCCZ +0.1216% +0.0072%

Table 4.7: Percentages of increments of the mass, threshold equal to the 25%.

The Process 1 provides the highest percentages of increase for BCCZ topologies, while Process

2 for FCCZ topologies. The reallocation of the thicknesses results closely connected to the

levels of stress recorded, for which it is advantageous in topologies in which the field of stress

presents high peaks or strong inhomogeneities. For the BCCZ configurations there are high

increases in the VEA levels and moderate ones for SEA. The optimization process leads to

remarkable improvements also for the FCC and FCCZ specimens, but only in terms of VEA,

since for SEA, the mass increases due to the larger diameters, generate highter percentages

for Process 1. Both the approach are not convenient for FBCC and FBCCZ topologies, as both

SEA and VEA percentages are very close to 0%. Analysing the results separately, the highest

values are obtained for the BCCZ specimen for Process 1, which shows an increase of 9.29%

for SEA and 17.14% for VEA, with an increase in mass of 6.08%. For Process 2, the best result

refers to the FCCZ specimen, which presents +8.05% for SEA and +9.10% for VEA, showing

an increase in mass of only 0.07% compared to the uniform specimen.
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4.4.2 Threshold equal to the minimum stress value

The threshold selected in the previous paragraph does not make the optimization process of

considerable interest, as it turns out to be too strict a limit and the variations will be marginal.

On the basis of these considerations, the threshold is changed from a too stringent limit to a

minimum one. In this case a threshold value equal to the absolute minimum recorded (for the

stress) is set, so each stress value (for each of the cells) falls within the optimization process.

This is equivalent to optimizing the thickness of each individual cell. The analysis was carried

out for both optimisation processes (Process 1 and Process 2). According to a reference system

(for the extraction of the 2D planes) starting from the surface at the bottom as the previous

one, for each of the six configurations, the diameters are extrapolated in 2D databases, whose

minimum and maximum values are:

t (min) - [mm] t (max) - [mm]

BCC - Process 1 1.0144 2.9928

BCC - Process 2 0.4183 1.0952

BCCZ - Process 1 0.5038 2.2981

BCCZ- Process 2 0.3796 0.7027

FCC- Process 1 1.4051 2.6686

FCC- Process 2 0.4558 0.7509

FCCZ - Process 1 0.3713 1.6115

FCCZ - Process 2 0.3701 0.5202

FBCC - Process 1 1.1296 1.7025

FBCC - Process 2 0.4540 0.6597

FBCCZ - Process 1 0.4872 1.4390

FBCCZ - Process 2 0.3822 0.5658

Table 4.8: Maximum and minimum thicknesses for the lower threshold.

The variation of the diameters of the struts (for each cell) generates a more uniform stress field,

but at the same time gains in mass (indicative of the major diameters). Of considerable interest

is to examine the trends of relative densities, SEA and VEA in the three different cases.
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m1 [g] m2 [g] m3 [g]

BCC 5.9889 43.6817 14.1184

BCCZ 7.0349 34.0324 10.5565

FCC 5.3789 33.2399 9.1180

FCCZ 6.4249 16.9395 7.4089

FBCC 11.3680 45.3133 17.4813

FBCCZ 12.4140 40.2337 16.8180

Table 4.9: Masses for the uniform, graded by process 1 and 2 samples, with theminimum threshold.

SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 152.0814 271.2301

BCCZ 477.0255 1017.6157 723.6071

FCC 356.1905 761.7490 607.7912

FCCZ 663.8578 1329.9017 768.8196

FBCC 258.3844 437.4180 398.4133

FBCCZ 438.7231 772.8880 896.6283

Table 4.10: SEA for the uniform, graded by process 1 and 2 samples, with the minimum threshold.

VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.2460 0.1420

BCCZ 0.1243 1.2826 0.2829

FCC 0.0710 0.9378 0.2053

FCCZ 0.1580 0.8344 0.2110

FBCC 0.1088 1.1517 0.3715

FBCCZ 0.2017 0.7341 0.2572

Table 4.11: VEA for the uniform, graded by process 1 and 2 samples, with the minimum threshold.

Analogous to previous results, the percentage gain in terms of energy is higher for Process

1 (index 2), while obtaining values quite different to the optimization implemented with the

second iterative method (index 3). The percentage deviations between process 1 and process

2 are justified by the fact that for the first one, the ratio of relative densities (actual divided by

initial) appears in the diameter optimization formula, which is a positive multiplicative term,

greater than one, leading to much greater thicknesses. This induces considerable increases in

mass and higher VEA values as the model will have a higher stress resistance (higher force

reaction).
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The percentages are summarized in the Tables below:

SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +33.4109% +137.9445% +872.3353% +461.2638%

BCCZ +113.3232% +51.6935% +931.8607% +127.5973%

FCC +113.8633% +70.6903% +1220.8014% +189.1504%

FCCZ +100.3232% + 15.8098% +428.10558% +33.5483%

FBCC +69.2844% +54.1908% +958.5538% +241.4554%

FBCCZ +76.1600% +104.3787% +263.9604% +27.5110%

Table 4.12: Percentages of increments of SEA and VEA, minimum threshold.

Mass Process 1 Process 2

BCC + 629.3709% +135.7422%

BCCZ + 383.7646% +50.0554%

FCC +517.9633% + 69.5183%

FCCZ +163.6575% +15.3158%

FBCC +298.6037% +53.7732%

FBCCZ +224.0970% +35.4764%

Table 4.13: Percentages of increments of the mass, minimum threshold.

This case is the inverse extreme of the previous one, the mass has increased considerably due to

the strong variations of the diameters. There are high percentages of growth in terms of VEA,

due to the homogenization of the stress field. Analysing the results separately, the highest

values are obtained for the BCCZ and FCC specimens for Process 1, which shows an increase

of 113.32% and 113.86% for SEA, while for VEA the best candidates are FCC and FBCC. Re-

garding Process 2, the best results are obtained for the BCC and FBCCZ specimens, which

presents 137.94% and 104.37% for SEA. The percentages obtained are beyond manufacturing

practicability, as the treatment is purely theoretical. It has been deliberately chosen not to

include a control within the cycle, so unfeasible diameters have been considered in terms of

maximum Aspect Ratio. Looking at the table containing the maximum thicknesses and taking

into account that each struts has a length of 3 mm, the realisation would give in output an

almost homogenised cell (full solid). Producing these samples would imply a homogenised

case, which explains the high percentages of increments.
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4.4.3 Threshold equal to the average

The previously envisaged solution does not take into account limiting and critical values for

the aspect ratio. Given the maximum diameters obtained and shown in the tables above, it can

be seen that the maximum diameter exceeds the critical values. Assuming a length of 3 mm

for each strut, the diameters selected are not feasible. In this section the threshold has been

reset to a value equal to the average. Once the process has been carried out, the diameters

assigned to each cell can be extracted for each of the ten specimen planes. Similarly to the

stress distribution, there is a reallocation of thicknesses, whereby there are only increased for

cells with peak stresses. For each of the six configurations, the diameters are shown in the

tables below.:

t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.3700 1.3929

BCC - Process 2 0.3700 0.4573

BCCZ - Process 1 0.3700 1.3474

BCCZ- Process 2 0.3700 0.4648

FCC- Process 1 0.3700 1.2559

FCC- Process 2 0.3700 0.4397

FCCZ - Process 1 0.3700 1.1869

FCCZ - Process 2 0.3700 0.4504

FBCC - Process 1 0.3700 0.8702

FBCC - Process 2 0.3700 0.4293

FBCCZ - Process 1 0.3700 0.7651

FBCCZ - Process 2 0.3700 0.4167

Table 4.14: Maximum and minimum thicknesses for a threshold equal to the average value of the

stress.

For this discussion, it has been decided not to report the 3D database for the reassigned thick-

nesses, as it will be shown in Chapter 5 (where all checks on maximum thicknesses will be

placed). Downstream of the variation of thicknesses, the stress field obtained was more ho-

mogeneous. The new stress redistribution corresponds for both Process 1 and Process 2, as

the logic behind the optimization codes is the same, what varies is only the calculation of the

thicknesses (which affects the post-optimization energy values). Starting from the same uni-

form structure (same stress field) and imposing the same threshold, the code automatically

replaces the thicknesses and results in a stress equal to the threshold (if within each individual
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strut the stress value is greater). This implies an equality of the stress field, even downstream

of the new distribution of diameters, which although almost comparable, are an obvious ap-

proximation induced by the code in calculating the stress per elementary cell. In terms of

physical, mechanical and energy characteristics, reference is made to the tables below. The

mass, having increased the diameters, will be greater, but the volume of the whole specimen

will remain unchanged.

m1 [g] m2 [g] m3 [g]

BCC 5.9889 10.3848 6.3072

BCCZ 7.0349 10.8773 7.34994

FCC 5.3789 8.6783 5.6071

FCCZ 6.4249 7.976 6.5531

FBCC 11.3680 13.6584 11.6061

FBCCZ 12.4140 15.2681 12.7188

Table 4.15: Masses for the uniform, graded by process 1 and 2 samples, with a threshold equal to

the average value of the stress.

SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 193.0640 126.2600

BCCZ 477.0255 738.8722 537.3131

FCC 356.1905 571.4881 386.1972

FCCZ 663.8578 839.6639 728.5729

FBCC 258.3844 305.2790 272.0931

FBCCZ 438.7231 523.3687 459.6881

Table 4.16: SEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

average value of the stress.
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VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.0743 0.0295

BCCZ 0.1243 0.2977 0.1463

FCC 0.0710 0.1837 0.0802

FCCZ 0.1580 0.2480 0.1768

FBCC 0.1088 0.1544 0.1170

FBCCZ 0.2017 0.2960 0.2165

Table 4.17: VEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

average value of the stress.

In purely energetic terms, there are increases for both processes. Process 1 shows the highest

percentages in both specific and volumetric terms:

SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +69.3681% +10.7634% +193.6863% +16.6016%

BCCZ +54.8927% +12.6380% +139.5017% +17.6993%

FCC +60.4451% +8.4246% +158.7342% +12.9587%

FCCZ +26.4821% +9.74814% + 57.093% +11.9894%

FBCC +18.1490% +5.3050% + 41.9122% +7.536%

FBCCZ +19.2949% +4.7780% +46.7531% +7.3378%

Table 4.18: Percentages of increments of SEA e VEA, threshold equal to the average value of the

stress.

Mass Process 1 Process 2

BCC +73.4014% +5.3148%

BCCZ +54.6192% +4.4782%

FCC +61.3497% +4.2425%

FCCZ +24.1426% +1.9954%

FBCC +20.1484% +2.0945%

FBCCZ +22.9912% +2.4553%

Table 4.19: Percentages of increments of the mass, threshold equal to the average value of the

stress.

The BCC and FCC configurations are the most promising for Process 1. For Optimization Pro-

cess 2, BCCZ sample leads to an excellent energy value, without changing the final weight of
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the structure too much.

This suggests that for future, more in-depth analyses, these four configurations are of interest.

In wishing to carry out an eventual experimental campaign (Chapter 6), however, it is neces-

sary to overcome the assumed approximations, which reside in printability limitations, but at

the same time in constraints regarding the definition of lattice structures themselves. So the

next Chapter proceeds in considering these aspects.

4.5 Energy extraction in table format

The 2D visualization, performed above for the stresses (pre-process) and for the new diameters

assigned to each cell, can also be carried out for the energy values (SEA and VEA), in a similar

way. In this case, known the new stress values (assigned at the end of the process of optimiza-

tion), can be calculated the values of the energy absorption through a different formula (using

in matlab the function ’trapz’). Once the value of the stress for each of the cells is known, the

force can easily be derived (the value of the cross-section A is known):

F = σ · A (4.17)

Once the value of the force, for each cell, has been obtained, introducing the displacement d

equal to 2 mm, it is possible to obtain the value of the energy absorption, from which SEA and

VEA (known mass m and volume V) are derived:

EA = F · d (4.18)

SEA =
EA

m
(4.19)

V EA =
EA

V
(4.20)

It is necessary to use this formula because, at the end of the process, a new stress value is

obtained for each of the cells (the final maximum value to be reassigned) and not a vector

containing the ’load history’ to be integrated.
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Chapter 5

Limit imposed for 3D printing (SLM)

Selective laser melting (SLM) is an AM process that enables the manufacture of space filling

lattice structures with great load bearing efficiency and personalisable stiffness. However, to

commercialise SLM lattice structures it is necessary to define the manufacturability of lattice

samples, beacause the minimum thickness is limited by the parameters and machine settings,

while the dimensional accuracy is controlled by the powder size and scan strategy. In this

specific case, a minimum print thickness of 0.33 mm is recommended. By implementing a

process in which it is only possible to obtain thicknesses greater than the initial diameter of

0.37 mm so the minimum limits are automatically respected. Based on the work of Ashby and

Gibson, a clear definition of lattice structure is given. It is distinguished from a solid (filled

with material) by the presence of struts oriented at different angles, which must comply with

precise dimensions. From the definition, an upper limit is established, which requires that any

internal thickness does not exceed a limit equal to 30% of the density. In accordance with this

imposition, a different upper limit is configured for each of the six topologies:

t (max) - [mm]

BCC 0.8900

BCCZ 1.0100

FCC 1.1400

FCCZ 0.9600

FBCC 0.7700

FBCCZ 0.7500

Table 5.1: Upper limit of diameters of each unit cell - control to insert for the optimization pro-

cesses.

74



By imposing this limit, the Matlab code was modified with a check (’if’ loop) and, for the three

imposed threshold cases, the new results are researched.

5.1 Results for the three cases

5.1.1 Threshold equal to 25% above the mean value

For the first threshold case of 25% of the mean value, maximum diameters were found (Ta-

ble 5.2). Of interest are the new increases for both SEA and VEA, which establish different

optimum configurations.

t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.3700 0.8900

BCC - Process 2 0.3700 0.4091

BCCZ - Process 1 0.3700 0.9248

BCCZ- Process 2 0.3700 0.4158

FCC- Process 1 0.3700 0.7184

FCC- Process 2 0.3700 0.3933

FCCZ - Process 1 0.3700 0.8446

FCCZ - Process 2 0.3700 0.4028

FBCC - Process 1 0.3700 0.5873

FBCC - Process 2 0.3700 0.3840

FBCCZ - Process 1 0.3700 0.4138

FBCCZ - Process 2 0.3700 0.3727

Table 5.2: Maximum and minimum thicknesses for a threshold of 25%, with the upper limit.

For both Processes, all percentage increase values are shown in the tables below, which are

representative and summarized for each of the six configurations analyzed.
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m1 [g] m2 [g] m3 [g]

BCC 5.9889 6.3508 6.0138

BCCZ 7.0349 7.5357 7.0738

FCC 5.3789 5.5954 5.3929

FCCZ 6.4249 6.4908 6.4295

FBCC 11.3680 11.4313 11.3720

FBCCZ 12.4140 12.4291 12.4149

Table 5.3: Masses for the uniform, graded by process 1 and 2 samples, with a threshold equal to

the 25% considering the upper limit.

SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 123.2007 122.1065

BCCZ 477.0255 520.7101 510.4012

FCC 356.1905 374.0446 381.4079

FCCZ 663.8578 674.0782 717.1365

FBCC 258.3844 259.9165 269.9143

FBCCZ 438.7231 439.1802 442.7915

Table 5.4: SEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

25% considering the upper limit.

VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.0290 0.0272

BCCZ 0.1243 0.1453 0.1337

FCC 0.0710 0.0775 0.0762

FCCZ 0.1580 0.1620 0.1723

FBCC 0.1088 0.1100 0.1137

FBCCZ 0.2017 0.2022 0.2036

Table 5.5: VEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

25% considering the upper limit.
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SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +8.0796% +7.1197% +14.6250% +7.5099%

BCCZ +9.1577% +7.0102% +16.8950% +7.5623%

FCC +5.0125% +7.0798% +9.1549% +7.3239%

FCCZ +1.5395% +8.0490% +2.5316% +9.0506%

FBCC +0.5929% +4.4623% +1.1029% +4.5030%

FBCCZ +0.1041% +0.9273% +0.2478% +0.9419%

Table 5.6: Percentages of increments of SEA and VEA, threshold equal to the 25% and upper limit

imposed.

Mass Process 1 Process 2

BCC +6.0428% +0.4157%

BCCZ +7.1188% +0.5529%

FCC +4.0250% +0.2602%

FCCZ +1.0257% +0.0715%

FBCC +0.5568% +0.0351%

FBCCZ +0.1216% +0.0072%

Table 5.7: Percentages of increments of the mass, threshold equal to the 25% and upper limit

imposed.

Similarly, such a low threshold does not generate much variation and improvement. The BCCZ

configuration turns out to be the best for Process 1 (for both SEA and VEA), while for Process

2 the FCCZ sample shows an increase of +8.05% for SEA and +9.05% for VEA, being the best

selection, also in terms of mass savings.

5.1.2 Threshold equal to the minimum stress value

After the imposition of the control within the Matlab code, in the case of a minimum threshold

that tends to vary all diameters, generating a uniform stress field, the following maxima and

minima for the diameters are obtained:
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t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.8900 0.8900

BCC - Process 2 0.4183 0.8900

BCCZ - Process 1 0.5038 1.0100

BCCZ- Process 2 0.3796 0.7027

FCC- Process 1 1.1400 1.1400

FCC- Process 2 0.4558 0.7509

FCCZ - Process 1 0.3713 0.9600

FCCZ - Process 2 0.3701 0.5202

FBCC - Process 1 0.7700 0.7700

FBCC - Process 2 0.4740 0.6597

FBCCZ - Process 1 0.4872 0.7500

FBCCZ - Process 2 0.3822 0.5658

Table 5.8: Maximum and minimum thicknesses for the minimum threshold selected, with the

upper limit.

The mass and energy increments are delineated in the tables below (for each of the six con-

figurations). Each cell has a higher stress than the threshold and all diameters have been

increased. This generates a large improvement in mass, which is not reasonable for most

light-weight structure applications. In this case, it can be seen, from the summary tables, that,

for Process 1, the best choice is BCC configuration, while for Process 2, FCC has the highest

increase values in terms of energy.

m1 [g] m2 [g] m3 [g]

BCC 5.9889 17.3380 13.3980

BCCZ 7.0349 16.6610 10.5560

FCC 5.3789 12.8780 9.1180

FCCZ 6.4249 14.7592 7.4089

FBCC 11.3611 27.2173 17.4310

FBCCZ 12.4142 29.2270 16.8110

Table 5.9: Masses for the uniform, graded by process 1 and 2 samples, with theminimum threshold,

considering the upper limit.
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SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 225.6610 257.2903

BCCZ 477.0255 918.1324 723.6136

FCC 356.1905 708.8409 607.7911

FCCZ 663.8578 1238.0025 768.8019

FBCC 258.3844 454.6209 398.4210

FBCCZ 438.7230 755.6420 596.6204

Table 5.10: SEA for the uniform, graded by process 1 and 2 samples, with the minimum threshold,

considering the upper limit.

VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.1198 0.1277

BCCZ 0.1243 0.5666 0.2829

FCC 0.0710 0.3381 0.2053

FCCZ 0.1580 0.6744 0.2116

FBCC 0.1088 0.4583 0.2572

FBCCZ 0.2017 0.8179 0.3715

Table 5.11: VEA for the uniform, graded by process 1 and 2 samples, with the minimum threshold,

considering the upper limit.

SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +97.9656% +125.7209% +373.5205% +404.7419%

BCCZ +92.4692% +51.6923% +355.8356% +127.5933%

FCC +99.0058% +70.6327% +376.2092% +189.152%

FCCZ +86.4743% +15.8018% +326.5852% +33.5443%

FBCC +75.9475% +54.1981% +321.2357% +136.4180%

FBCCZ +72.2363% +35.9917% +305.5611% +84.1840%

Table 5.12: Percentages of increments of SEA and VEA for the minimum threshold and the upper

limit imposed.
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Mass Process 1 Process 2

BCC +189.5018% +123.7203%

BCCZ +136.8446% +50.0593%

FCC +139.5922% +69.5148%

FCCZ +129.7104% +15.3152%

FBCC +139.3735% +53.3374%

FBCCZ +135.4321% +35.4180%

Table 5.13: Percentages of increments of the mass for the minimum threshold and the upper limit

imposed.

5.1.3 Threshold equal to the mean value

For the last case, optimization and analysis were again carried out using the automatic code.

This produced results parallel to those previously seen in the case of an absent upper bound.

t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.3700 0.8900

BCC - Process 2 0.3700 0.4573

BCCZ - Process 1 0.3700 1.0100

BCCZ- Process 2 0.3700 0.4648

FCC- Process 1 0.3700 1.1400

FCC- Process 2 0.3700 0.4397

FCCZ - Process 1 0.3700 0.9600

FCCZ - Process 2 0.3700 0.4504

FBCC - Process 1 0.3700 0.7700

FBCC - Process 2 0.3700 0.4293

FBCCZ - Process 1 0.3700 0.7500

FBCCZ - Process 2 0.3700 0.4167

Table 5.14: Maximum and minimum thicknesses for a threshold equal to the average value of the

stress, with the upper limit.

For this section, it was chosen to show the 3D database for the new thicknesses, as it falls in

the intermediate case of the first threshold (25%) and the second one (minimum value selected

as stress control into the if-loop), but only for two of the configurations (BCC1 and BCCZ1),

which will be discussed in more detail in the following chapters. In the following paragraphs,

the BCC and BCCZ configurations (considering a threshold equal to the mean value) will be
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analyzed in detail, as they are the most performing. They will be validated using software

and experimentally. Therefore, Appendix [B] shows the new redistribution of thicknesses,

based on the limits imposed and considering both Process 1 and 2, for these two configura-

tions. In term of new redistribution of stress, for the same two configurations the results show

variations comparing with the previous one, without the upper limit imposed. The new re-

distribution is highlighted in the Appendix [A], where the 2D grids (extrapolated from the 3D

databases) are proposed.

m1 [g] m2 [g] m3 [g]

BCC 5.9889 14.9407 6.3072

BCCZ 7.0349 14.045 7.3499

FCC 5.3789 8.3916 5.6071

FCCZ 6.4249 7.9350 6.5531

FBCC 11.3680 13.6580 11.606

FBCCZ 12.4141 15.2682 12.7194

Table 5.15: Masses for the uniform, graded by process 1 and 2 samples, with a threshold equal to

the average value of the stress, with the upper limit.

SEA 1 [mJ/g] SEA 2 [mJ/g] SEA 3 [mJ/g]

BCC 113.9907 184.7710 126.2604

BCCZ 477.0255 708.6019 537.3134

FCC 356.1905 549.8301 386.2468

FCCZ 663.8578 833.8903 728.5745

FBCC 258.3844 305.2855 272.0971

FBCCZ 438.7231 523.3746 459.6918

Table 5.16: SEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

average value of the stress, with the upper limit.
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VEA 1 [mJ/mm3] VEA 2 [mJ/mm3] VEA 3 [mJ/mm3]

BCC 0.0253 0.0681 0.0295

BCCZ 0.1243 0.2741 0.1463

FCC 0.0712 0.1709 0.0802

FCCZ 0.1580 0.2451 0.1768

FBCC 0.1088 0.1544 0.1170

FBCCZ 0.2017 0.2960 0.2165

Table 5.17: VEA for the uniform, graded by process 1 and 2 samples, with a threshold equal to the

average value of the stress, with the upper limit.

SEA - Process 1 SEA - Process 2 VEA - Process 1 VEA - Process 2

BCC +62.0911% +10.7631% +168.7713% +16.6012%

BCCZ +48.5460% +12.6380% +120.5102% +17.6990%

FCC +54.3633% +8.4243% +140.7094% +12.9581%

FCCZ +25.6130% +9.7483% +55.1275% +11.8992%

FBCC +18.1493% +5.3055% +41.9122% +7.5368%

FBCCZ +19.2940% +4.7786% +46.7538% +7.3376%

Table 5.18: Percentages of increments of SEA and VEA, threshold equal to the average value of the

stress, with the upper limit.

Mass Process 1 Process 2

BCC +149.4451% +5.3148%

BCCZ +99.6409% +4.4777%

FCC +56.0105% +4.2425%

FCCZ +23.5041% +1.9954%

FBCC +20.1481% +2.0945%

FBCCZ +22.9912% +2.4553%

Table 5.19: Percentages of increments of the mass, threshold equal to the average value of the

stress, with the upper limit.

By imposing a stress threshold exactly equal to the mean value, it falls into the case where good

increases in energy are obtained, but without considerable increases in mass. So it can be seen

as a compromise between the two previously discussed. In this case, the best configurations

are BCC and BCCZ, for Process 1 and 2 respectively. For the BCC topology, there is a value
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of +62.09% for SEA and +168.77% for VEA, leading to a final weight increase of +149.44%.

As for the second process, BCCZ is the best with an increment for VEA of +17.69% with a

minimum mass increase of +4.48%. For the two configurations of interest, the values per cell

of the specific energy absorption is shown for both process 1 (Appendix [C.1]) and 2 (Appendix

[C.2]), while in term of VEA, the results of the 2D databases are related to Appendices [D.1] and

[D.2]. It is only shown for one half of the specimen (five planes), as they are all symmetrical.

5.2 Verification of the Matlab optimization approaches

Through the introduction of an upper limit, the diameters of the struts were modified for

the different topologies in order to guarantee conformity for lattice structures. The results

obtained through optimization and static analysis using the Matlab code require a validation

via Ansys. This is crucial to prove the consistency of the achieved output. In this section, BCC

and BCCZ topologies are validated. The choice is based on the best results obtained in terms

of specific energy absorption, as it also takes into account the additional costs in terms of

increasing the massed specimens. BCC topology was chosen as sample because it presents the

highest values for Process 1, and BCCZ for Process 2. For the sake of completeness, analyses

in Ansys Workbench were carried out for both optimization processes:

• BCC topology optimized through Process 1;

• BCC topology optimized through Process 2;

• BCCZ topology optimized through Process 1;

• BCCZ topology optimized through Process 2.

5.2.1 Validation for BCC sample graded by Process 1

In relation to the data obtained in the previous paragraph, having selected a threshold (for

variation of the thicknesses a stress value) greater than the average, it is of interest to validate

the results and the percentages of increase in terms of energy for the most convenient topology

BCC. The optimization proposes a set of diameters to be reassigned to the numerical model, for

which an analysis performed with Ansys is proposed (for the configuration 10x10x10 cells),

with topology concerning single cells of BCC type. The graded geometry obtained by Ansys

Workbench is shown in the Figure 5.1:
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Figure 5.1: Geometry of the graded sample post optimization - BCC1.

The comparison is made between the uniform BCC test specimen (10X10X10), the results ob-

tained from the operating process via Matlab code and via a bilinear simulation in Ansys. In

the bilinear simulation all the diameters obtained in output from the optimization process have

been inserted, keeping boundary conditions and loads unchanged.

Figure 5.2: Comparison of the masses - BCC1.

The values obtained with the numerical analysis generate a new redistribution of internal

stresses, which will be less inhomogeneous than the starting specimen.
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Figure 5.3: Stress field of the graded sample post optimization - BCC1.

In order to obtain the percentages of increase and to be able to make a comparison with the

values obtained by means of the Matlab code, an overlaid comparison is necessary, in an his-

togram form, is proposed. It highlights the increase in maximum voltages obtained in the case

of the graded configuration, which translates into different values in terms of energy absorp-

tion:

Figure 5.4: Comparison of SEA and VEA - BCC1.

From the proposed histograms, the increase percentages for SEA and VEA are completely

comparable, which validates the process of recalculating the energy absorption performed

automatically using the Matlab code. As can be seen, for BCC1 configuration, the deviation (in

absolute value) among the SEA values calculated via Matlab and Ansys is equal to 0.8%, while

for VEA it’s possible to appreciate a percentage of absolute difference of 4.2%. Considering the

computational costs in time provided by the Matlab code shown in the Section 5.5 (compared

to Ansys) , this results are fully satisfactory, as the deviations are minimal, but completely

acceptable considering the enormous advantage in analysis time.
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5.2.2 Validation for BCC sample graded by Process 2

Whatever is done in the previous section for Process 1 is also performed for Process 2. So the

geometry is recreated in the Ansys environment and the analysis is carried out, obtaining the

stress field and the specific and volumetric energy absorption levels.

Figure 5.5: Geometry of the graded sample post optimization - BCC2.

In this case, a further confrontation is made between the uniform BCC sample (10X10X10),

the results obtained from the operating process via Matlab code and via a bilinear simulation

in Ansys. In the bilinear simulation all the thicknesses have been inserted, keeping the same

boundary conditions and imposed displacement (equal to -2 mm along z-axis).

Figure 5.6: Comparison of the masses - BCC2.

As in the previous analysis, the optimized geometry of the sample leads to a new redistribution

of the stresses, which show a different internal path:
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Figure 5.7: Stress field of the graded sample post optimization - BCC2.

The homogenization of the stress field is attained, whereby peaks are at points in the corners,

which are also justified by marginal edge effects. The plots 5.8 show the improvements in term

of SEA and VEA:

Figure 5.8: Comparison of SEA and VEA - BCC2.

In this case, for specific absorption energy values, the outputs (Matlab - Ansys) differ by 3.6%,

and for volumetric values by 6.7%. These percentages are higher than those recorded in the

case of the comparison of the BCC1 specimens, meaning that, without the inclusion of the

z-struts, the code better predicts the energy properties for the implementation of Process 1

instead of the second one.

5.2.3 Validation for BCCZ sample graded by Process 1

The validations performed for the BCC configuration are repeated in the same way for the

BCCZ. In this case, an analysis is proposed in terms of mechanical behaviour (stress-strain
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curves), stress field and energy performance. Within the software, the new diameters are

noted and the geometry is recreated:

Figure 5.9: Geometry of the graded sample post optimization - BCCZ1.

The comparison is made between the uniform BCCZ configuration (10X10X10), the results

obtained from the operating process 1 via Matlab code and via a bilinear simulation in Ansys,

for which the following percentage changes are recorded:

Figure 5.10: Comparison of the masses - BCCZ1.

The values obtained with the numerical analysis generate a new redistribution of internal

stresses, which sees a concentration only in the vertical struts belonging to the upper surface:
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Figure 5.11: Stress field of the graded sample post optimization - BCCZ1.

This qualitative schematization refers to the extrapolation of stress peaks in the sample, ob-

tained in Ansys showing only the struts with stresses above a threshold, whereby it is clearly

evident that the peaks are only clustered in the central zone.

In term of SEA and VEA, The overlaid columns highlight the improvement in the case of the

graded configuration, which translates into different values:

Figure 5.12: Comparison of SEA and VEA - BCCZ1.

The percentages are scarcely different, again confirming the validity of the results achieved by

the automatic code. Regarding the BCCZ specimens, subjected to optimization Process 1, the

largest deviation is for SEA, suggesting that probable erroneous approximations were made

in the recalculation of the masses involved, as this parameter is defined from the value of the

energy absorption, dividing the latter by the mass.
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5.2.4 Validation for BCCZ sample graded by Process 2

When Process 2 is implemented, only a few diameters are subject to optimization, so the ge-

ometry shows only slight variations, compared to the uniform BCCZ sample. It is shown in

Figure 5.13 and analyzed according to the same standards, BCs and imposed displacement, as

previously applied.

Figure 5.13: Geometry of the graded sample post optimization.

The confrontation is carried out comparing the uniform BCCZ data, the results obtained from

the operating process 2 and through a bilinear simulation in Ansys, so there are only 0.7%

differences in mass.

Figure 5.14: Comparison of the masses - BCCZ2.

There are small percentage deviations due to the connection zones between intersecting struts.

The values obtained with the numerical analysis generate a new redistribution of internal

stresses, which will be less inhomogeneous than the starting specimen, with a concentration

only in the upper external layer of cells, with a better mechanical behaviour 5.15.
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Figure 5.15: Stress field of the graded sample post optimization - BCCZ2.

In terms of SEA and VEA, similar increases are obtained, proving the effectiveness of the

process implemented in Matlab for the BCCZ2 configuration.

Figure 5.16: Comparison of SEA and VEA - BCCZ2.

In term of specific absorption energy values, the outputs (Matlab - Ansys) differ by 3.0%, and

for volumetric values by 2.4%. These percentages are lower than those recorded in the case

of the comparison of the BCCZ1 specimens, so that, with the inclusion of the z-struts, the

code better predicts the energy properties for the implementation of Process 2 instead of the

first one. In relation to the computational costs in time provided by the Matlab code shown

in the Section 5.5 (compared to Ansys) , this results are fully validated, thus ensuring minimal

deviations and great benefits in analysis time.

91



5.3 Comparison of the computational costs

The results obtained through the implementation of the Matlab code led not only to the search

for the optimum thicknesses to increase the specific and volumetric energy absorption levels,

but also allowed for the automatic recalculation of the internal stresses and energy perfor-

mances for each individual RVE that makes up the specimen with dimensions of 30 mm per

side. This was validated by creating the geometries in Ansys Workbench and performing the

analyses. The results are fully comparable, making the code reliable for both optimization and

static analysis. Among the benefits of the latter is certainly the saving in terms of computa-

tional time, which can be appreciated by viewing the Table 5.21. Analysis times range from

three to seven hours, down to orders of magnitude of a minute for analysis by code.

Category Hardware/Software

Operating system (OS) Windows 10 64-Bit system

Central processing unit (CPU) Intel(R) Core(TM) i7 CPU 70 @ 2.93GHz

Random-access memory (RAM) 20,0GB DDR3

Graphics processing unit (GPU) NVIDIA GeForce GT 610

Table 5.20: Computer technical specifications used for the analyses.

The computational times refer again to a computer in the department’s offices of the Kon-

struktiver Leichtbau und Bauweisen (KLuB - TU Darmstadt), whose technical specifications

are given in the Table 5.20.

10x10x10 Ansys computational cost Matlab computational cost

BCCZ 3h 11m 0h 3m

FCC 3h 23m 0h 3m

FCCZ 3h 07m 0h 3m

FBCC 6h 38m 0h 3m

FBCCZ 7h 54m 0h 4m

Table 5.21: Computational cost in time for the Ansys and Matlab code static analyses.

This is of particular interest, since as shown in Section 5.4, the deviations in output are minimal,

but the computational cost is considerable. This leaves room for future analyses, even on other

configurations, which can be carried out relatively in a rapid manner.
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Chapter 6

Experimental tests

Based on the results obtained in the previous chapters, it has been decided to validate the better

performers models analyzed using Ansys and automatically via Matlab code, experimentally

as well. The BCC and BCCZ specimens, graduated through Process 1 and 2, showed strong

adaptability to the optimization methods, generating substantial increases as far as SEA is

concerned. In order to validate these results, a campaign of static compression tests was carried

out to obtain the stress-strain curves of each specimen as output and, once the mechanical

properties are known, to calculate the energetic ones. By comparing the values of the energy

absorption (main output of interest), the model and the results obtained will be validated. The

phases carried out during the experimental activity were:

• realization of the ’CAD’ and ’.stl’ files;

• production of the specimens in AlSi10Mg through SLM technique;

• detachment, marking and grinding;

• cleaning by immersion in ultrasonic water;

• drying in oven at 80° for 16h;

• density measurement;

• heat treatment at 350° for 2h;

• execution of axial compression test.

The six specimens tested, in order to make a comparison with the numerical results, are

schematized in the table 6.1:
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BASE CELL UNIT CONFIGURATION DIMENSION [mm]

BCC UNIFORM (same diameter) 30x30x30

BCC GRADED BY PROCESS 1 30x30x30

BCC GRADED BY PROCESS 2 30x30x30

BCCZ UNIFORM (same diameter) 30x30x30

BCCZ GRADED BY PROCESS 1 30x30x30

BCCZ GRADED BY PROCESS 2 30x30x30

Table 6.1: Sample typologies selected for the experimental tests.

As regards the geometric configuration of the specimens, this is clearly represented in Chapter

5, whereby a diameter of 0.37 mm (the same for each struts) is given for the uniform specimens

BCC and BCCZ, while for the configurations BCC1, BCC2, BCCZ1 and BCCZ2, the ’.stl’ files

were produced on the basis of the 3D databases in Appendix [B], whereby the maximum and

minimum diameters are specified again in the Table 6.2:

t (min) - [mm] t (max) - [mm]

BCC - Process 1 0.3700 0.8900

BCC - Process 2 0.3700 0.4573

BCCZ - Process 1 0.3700 1.0100

BCCZ- Process 2 0.3700 0.4648

FCC- Process 1 0.3700 1.1400

FCC- Process 2 0.3700 0.4397

FCCZ - Process 1 0.3700 0.9600

FCCZ - Process 2 0.3700 0.4504

FBCC - Process 1 0.3700 0.7700

FBCC - Process 2 0.3700 0.4293

FBCCZ - Process 1 0.3700 0.7500

FBCCZ - Process 2 0.3700 0.4167

Table 6.2: Maximum and minimum thicknesses for a threshold equal to the mean value (Case 3

with the upper limit), implemented to realise ’.stl’ files.

As required by current regulation [65] for each of the configurations, a minimum of five spec-

imens were printed using EOS M290 (Selective Laser Melting printer), provided in the work-

shops of the Konstruktiver Leichtbau und Bauweisen (KLuB - TU Darmstadt) and shown in

the Figure 6.3 (b). The uniform BCC and BCCZ configurations have an additional sixth speci-

men printed for the two platforms, as shown in the Figure 6.1, which includes the numbering
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chosen to ensure their recognition during the experimental campaign.

Figure 6.1: Numbering of test specimens on the platforms.

After the marking phase, they were separated from the printing platform and manually grinded,

until a final height of 30 mm was obtained.

6.1 Experimental Setup

Different preparation steps were carried out to make the density measurement and experi-

mental results as reliable as possible. After the initial phases described, to remove the powder

residue, each sample was immersed in distilled water in a special machinery that removed the

print residue using ultrasound 6.2 (b). The specimens were then dried by a short annealing in

an oven at a temperature of 80o for 16 hours. Air bubbles entrapped in the water surrounding

the specimens had to be removed as they would make the result inaccurate, whereby all 32

specimens were incorporated into a vacuum desiccator 6.2 (a) for a time of about ten minutes.

For the weight-in-air measurement, the machine shown in Figure 6.3 was used, therefore the

weight was obtained by placing each specimen inside the chamber and closing the outer glass

walls. For the purpose of estimate the mass of the specimens in water (data required to imple-

ment Archimedes’ density formula), a wire with a hook was used to immerse the test articles

into the tank filled with water (Figure 6.3).
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(a) (b)

Figure 6.2: (a) Vacuum Desiccator with tube and stopcock. (b) Ultrasonic Cleaner.

(a) (b)

Figure 6.3: (a) Experimental apparatus for density measurement and (b) SLM Printer EOS M 290.

Before each measurement of the mass, the temperature of the water was recorded, as the den-

sity is temperature-dependent. After all the measurements, the specimens were taken out of

the containers and put into the oven to dry out as a preparation for the pre-processing phase.

In order to obtain experimental results as comparable as possible to the numerical model im-

plemented via Ansys, it was decided to carry out heat treatment according to a temperature

cycle defined by the 6.4, realizing an annealing in oven at 350o for 2h , as extensively described

in [66].
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Figure 6.4: Temperature cycle for the heat treatment.

After this heat treatment, it was possible to perform static tests on the 32 specimens made,

through the compression testing machine shown in 6.6. It is a universal testing machine con-

figured to determine material’s strength and deformation behavior under compressive load. It

consists of a load cell, compression test tools, electronics, and a drive system. It is controlled

by testing software used to define machine and safety settings and store test parameters speci-

fied by standards such as ASTM and ISO. Measuring the force until a specified load or distance

has been reached, or until the specimen cracks or breaks, permit to predict how the samples

will perform when implemented for its intended purpose.

6.1.1 Density measurement

Archimedes’ principle states that an object floating or fully immersed in a fluid is buoyed up

by a force equal to the weight of the fluid displaced by the object. The buoyant force on an

object immersed in a liquid can also be determined by weighting an object in air and then

in water. The apparent loss of weight of the object is equal to the buoyant force of the water.

Constructing the free body diagram and imposing balance, it is possible to obtain the equations

containing the unknown density, which include force F, mass m and volume V:

FA = ρ · V · g (6.1)

FW = ρW · V · g (6.2)

In which subscripts ’A’ and ’W’ indicate the measurement condition in air and in distilled

water. The following formula was then implemented to obtain the density measurement:

ρ =
mA · ρW
mA −mW

(6.3)
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All the data collected and measured have been summarised in the Table 6.3, which shows the

value of the mass in air, in water and the final density, obtained according to the formula given

and the standards [67].

Ma [g] Mw [g] ρ [g/cm3]

BCC - UNIFORM (same thickness for each strut) 5.9492 3.7054 2.6455

BCC - GRADED BY PROCESS 1 15.0691 9.3862 2.6458

BCC - GRADED BY PROCESS 2 6.4577 4.0210 2.6443

BCCZ - UNIFORM (same thickness for each strut) 6.6740 4.1508 2.6391

BCCZ - GRADED BY PROCESS 1 14.5613 9.0773 2.6493

BCCZ - GRADED BY PROCESS 2 7.0814 4.4243 2.6592

Table 6.3: Mass in air, mass in water and density.

The material is AlSi10Mg, widely used for applications in the additive manufacturing field.

To assess the goodness and accuracy of the measurements, it is worthwhile to compare the

density values obtained for each individual test specimen. The standard deviation, represented

by means of a large zoom in the Figure 6.5, shows that the discrepancies are minimal, so the

data are acquired and validated.

Figure 6.5: Density values of the samples.

As can be seen from the Figure, the densities of the specimens are completely comparable,

with negligible deviations, which validates and enhances the success of the scanning strategy,

which led to an optimal realization of the final product.
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6.1.2 Static compression testing

The cubic lattice structure specimens were subjected to compression tests in order to investi-

gate the absorbing capabilities of the investigated cell geometries. A ZwickRoell Z100 com-

pression testing machines 6.6 was utilized to compress the test specimens, executed on the

basis of the current DIN 50134 standard [65]. Based on the standard, a minimum of five spec-

imens per configuration were printed and tested in a temperature environment of approxi-

mately 23o. Lattices were compressed between two parallel aluminum plates and an hydraulic

heads were operated by a controlled displacement value and logged output data for concurrent

force and displacement.

Figure 6.6: ZwickRoell compression testing machines.

On this machine, the top plate moves upward to compress the specimen against the fixed bot-

tom base. The compression rate was selected manually corresponding to a total displacement

of 2 mm. This rate was selected to provide a quasi-static load relatively free of inertial effects

and to ensure a perfect correspondence with the analyses done via Ansys. All lattice specimens

were compressed in the build direction (z), normal to each build layer of the part.

6.2 Data processing

Through the static compression tests carried out in the laboratory through the apparatus

shown in Figure 6.6, fundamental data were extrapolated to interpret the performance and

behaviour of the different configurations of interest. In this section, the samples subject to op-

timization of the struts’ diameters are indicated with the letter ’G’. An additional number ’1’
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or ’2’ indicates the optimization process chosen. In the absence of such indications, reference

will be made to the configuration with the same thickness for each strut. Among the param-

eters and graphs to be extrapolated, it is first necessary to derive the stress-strain curves. In

this case, the choice was made to obtain graphs for each of the specimens and for an averaged

value for each category. Once the curves were obtained, it was possible to calculate:

• Young modulus;

• Yield stress and strain;

• Plateau stress and strain;

• Densification stress and strain;

• Energy absorption;

• Specific energy absorption;

• Volumetric energy absorption.

6.3 Stress-strain curves

From the experimental tests performed in the laboratory, it was possible to extract the stress-

strain curves. From the Force (Newton) and displacement (mm) values, acquired via the sensor

system, were obtained:

σ =
F

A
(6.4)

ϵ =
d

l
(6.5)

By implementing these equations, it was possible to acquire a data set for each of the six tested

configurations. Using a Matlab code, these were combined to obtain the stress-strain curves.

A total of 32 curves were extrapolated (one for each test specimen), sub-divided into 6 macro

groups:

• BCC, which indicates the group of uniform BCC specimens numbered 1 to 5 (plus the

specimen 16);

• BCC G1, which indicates the group of graded (by Process 1) BCC specimens numbered

6 to 10;
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• BCC G2, which indicates the group of graded (by Process 2) BCC specimens numbered

11 to 15;

• BCCZ, which indicates the group of uniform BCCZ specimens numbered 17 to 21 (plus

the specimen 32);

• BCCZ G1, which indicates the group of graded (by Process 1) BCCZ specimens num-

bered 22 to 26;

• BCCZ G2, which indicates the group of graded (by Process 2) BCCZ specimens num-

bered 27 to 31.

For each of the configurations, it was also decided to use both the full range of deformations

and a reduced range up to an ϵ of 0.067, in order to be able to make a comparison with the

numerical analyses carried out in the previous chapters. The representation of all curves,

for each specimen, up to a value of ϵ of 0.5 is shown in the Figures 6.8 and 6.10, while the

illustrations up to an ϵ of 0.067 is referred to the Figures 6.7 and 6.9. For the purpose of to

visualize more distinctly the trends assumed by each individual configuration, representations

of all the curves (32) have also been shown, grouped by typology.

Figure 6.7: Stress-strain curves of all BCC samples until a strain equal to numerical analysis.
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Figure 6.8: Stress-strain curves of all BCC samples until a strain equal to 0.5.

Figure 6.9: Stress-strain curves of all BCCZ samples until a strain equal to numerical analysis.
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Figure 6.10: Stress-strain curves of all BCCZ samples until a strain equal to 0.5.

6.3.1 Average representation of stress-strain curves

A further Matlab code was implemented to more clearly depict the behaviour of each config-

uration. For all six cases, an averaged value was calculated for the stress and strain vectors to

identify a single representative curve.

(a) (b)

Figure 6.11: Average representation of stress-strain curves of all (a) BCC samples and (b) BCCZ

samples.
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Figure 6.12: Average representation of stress-strain curves of all the samples.

The curves are similar to those of common porous or cellular materials, which exhibit three

ideal regimes under uniaxial compression:

• a pre-collapse regime (including the linear elastic stage);

• a plateau regime with approximately constant stress;

• a final densification regime with steeply increasing stress.

The linear elastic regime is characterized by elastic modulus, the plateau regime by plateau

stress and the densification regime starts from a densification strain, where the individual

cell strut comes into contact with each other, and exhibits dramatically increasing strength.

With the purpose of identifying each zone, the corresponding values in terms of stress and

strain will be calculated in the following sections. Visual observation during compression

test indicated that the shear failure for uniform strut samples corresponded to the first stress

peak in the stress-strain curves. The stress-strain curves of all graded samples started with

smaller stress peaks, and the subsequence peaks were increasingly higher, indicating an im-

provement in the load resistance to further crush the cells with larger strut diameters. The

maximum peak was the last stress peak before densification, which started later for graded

samples compared to uniform strut samples. The stress values of BCCZ1 and BCCZ2 models

were significantly higher than BCC1 and BCC2 configurations, thanks to the vertical struts,

reinforced the strength of the structure. The progressive deformation from least to most dense

layer (sequential failure examined within the paragraph 6.8.1) can be observed in the stress-

strain curves with the multi-peak trends for the graded configuration.
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6.4 Young modulus

By extracting all the stress-strain curves following the indications of the DIN50134 standard,

it was possible to derive the Young’s modulus, an index of the stiffness of the specimens. It

is identified as the slope of the linear line defined between two different values of the stress,

equal to 20% and 70% of the Plateau stress.

Figure 6.13: Young modulus averaged for the six tested configurations.

In terms of stiffness, the best configuration is BCCZ in general, with the highest values for

the configuration subject to optimization by process 1. Also for BCC specimens, there is an

increase in Young’s modulus and thus mechanical performance by adopting the geometric

variations for the diameters (G1 and G2).

6.5 Yield point

The yield strength or yield stress corresponds to the point at which the material begins to

deform plastically. The yield strength is often used to determine the maximum allowable load

in a mechanical component, since it represents the upper limit to forces that can be applied

without producing permanent deformation. In some materials, such as aluminium, there is a

gradual onset of non-linear behavior, making the precise yield point difficult to determine. In

such a case, the offset yield point (or proof stress) is taken as the stress at which 0.2% plastic

deformation occurs. Yielding is a gradual failure mode which is normally not catastrophic,

unlike ultimate failure. In the context of lattice structures, the standard does not establish a

way to univocally calculate the yield point, as it is not a fundamental parameter in determining

the behaviour of such structures. In order to derive a theoretical yield point, the convention
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adopted for metals is followed, resulting in the values represented into the hystograms below:

Figure 6.14: Yield stress and strain.

As is visible from the stress-strain curves, the highest values of ϵy occur for BCC configura-

tions, while the highest σy occur for BCC1 and BCCZ1.

6.6 Plateau region

The plateau regime is characterized by an approximately constant stress and influence EA

levels for each sample. The plateau stress σPL is calculated as the arithmetical mean of the

stress at a strain interval between 20% and 40%:

σpl =
1

ϵ2 − ϵ1

∫ ϵ2

ϵ1

σdϵ (6.6)

where ϵ1 and ϵ2 equal 0.2 and 0.4, respectively. For each of the six configurations, initial plateau

stress and strain values were calculated. A clear comparison is outlined by the histograms

below, in which it is also possible to appreciate the standard deviation that each configuration

exhibits:
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Figure 6.15: Initial plateau stress and strain.

6.7 Densification region

The densification strain ϵD is identified by using the energy absorption efficiency (η) method:

η =
1

σpk

∫ ϵ

0

σdϵ (6.7)

dη

dϵ
= 0 (6.8)

Peak stress σpk is the maximum stress registered up to the strain when the integral is estimated.

Using η it is possible to determine the densification strain as the point where the Energy

Absorption Parameter reaches its maximum. In order to determine the densification point

uniquely, the efficiency curves for each configuration have been depicted in the Figures 6.16,

6.17 and 6.18.

Figure 6.16: The energy absorption efficiency for BCC and BCC1 samples.
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Figure 6.17: The energy absorption efficiency for BCC2 and BCCZ samples.

Figure 6.18: The energy absorption efficiency for BCCZ1 and BCCZ2 samples.

A single peak is recorded for the BCC, BCC2, BCCZ and BCCZ2 configurations. Substantial

variations in the diameters of each RVE were included within BCC1 and BCCZ1, in which

sequential layer-by-layer collapses generate a multi-peak trends. For the latter two cases, the

absolute maximum of the curves was assumed, for which the corresponding stress and strain

values were calculated, uniquely identifying densification:
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Figure 6.19: Densification stress and strain.

Following the data processing presented in [68], the densification region (ϵD) is determined as

the value where the energy absorption efficiency η reaches the maximum (at the last peak).

6.8 Energy absorption

Once the stress-strain diagram is obtained, the Volumetric Energy Absorption can be simply

defined as:

V EA =

∫ ϵ

0

σ(ϵ)dϵ (6.9)

In which the upper limit of integration corresponds to a ϵ equal to 0.067 in order to perform

a subsequent comparison again with the values obtained both from the numerical analysis

using Ansys and the results obtained from the automatic Matlab code. After extracting VEA,

the energy absorption (EA) and the specific one (SEA) are automatically determined, in the

first case by multiplying the value obtained by the volume V and in the second by further

dividing by the mass m of each specimen.

EA = V EA · V (6.10)

SEA =
V EA · V

m
(6.11)

Analysing these histograms shows that in terms of SEA, the best performing configuration is

the BCCZ graded by process 1, followed by the BCCZ subject to process 2, with excellent values

also for the BCC1 type. In terms of VEA, the highest values are recorded for the specimens

(both BCC and BCCZ) made by process 1.
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Figure 6.20: Energy absorption and specific energy absorption.

Figure 6.21: Volumetric energy absorption.

The trends are modified as the upper integration extreme changes. Indeed, by setting a ϵ equal

to the densification point as the value, the specimens showing the highest values, both in terms

of SEA and VEA, are the BCCZs optimised by process 2:

Figure 6.22: Energy absorption and specific energy absorption until the densification point.
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Figure 6.23: Volumetric energy absorption until the densification point.

6.8.1 Macro areas of characterization

Once all characteristic points have been calculated and the stress-strain curves of each type

of specimen have been extracted, it is possible to partition the graph area into three macro

regions, representative of typical behavior of lattice structures. The typical behavior can be

summed up in three phases: a linear segment with an initial stress peak, a plateau where most

of the energy absorption characteristic lies and finally a rise that represent the densification.

On the basis of this classification, stress-strain curves were represented in combination with

efficiency. This makes it possible to relate the two parameters and unambiguously identify the

regions of interest, clearly delineating the point of densification. Within the Figures 6.24, 6.25

and 6.26, , the notation shown in the Table 6.4 was chosen:

LINEAR REGION Y Yield point

PLATEAU REGION P Initial Plateau point

DENSIFICATION REGION D Densification point

Table 6.4: Notations to identify the classification regions.
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Figure 6.24: Stress-strain curve schematization - BCC and BCC1.

Figure 6.25: Stress-strain curve schematization - BCC2 and BCCZ.

Figure 6.26: Stress-strain curve schematization - BCCZ1 and BCCZ2.
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6.8.2 Identification of the macro-behavior

Each specimen tested has different failure modes. Regarding uniform configurations, the ex-

perimental campaign confirmed the results obtained in the literature in [12]. Selected images

of lattice specimens during quasi-static testing are presented in the Table 6.5. For BCC and

BCCZ specimens, the failure plane was diagonal on two of the parallel vertical planes.

FAILURE MODE

BCC - UNIFORM COLLAPSE ALONG A DIAGONAL PLANE

BCC - GRADED BY PROCESS 1 SEQUENTIAL COLLAPSE LAYER BY LAYER

(primary failure along two diagonal centerline semi-planes)

BCC - GRADED BY PROCESS 2 COLLAPSE ALONG A DIAGONAL PLANE

BCCZ - UNIFORM COLLAPSE ALONG TWO DIAGONAL PLANES

BCCZ - GRADED BY PROCESS 1 SEQUENTIAL COLLAPSE LAYER BY LAYER

BCCZ - GRADED BY PROCESS 2 COLLAPSE ALONG TWO DIAGONAL PLANES

For BCC samples, collapse occurs progressively along a single diagonal plane, while for BCCZs

it occurs on the two main diagonal planes. A general observation is extrapolated through

the subsidence of different configurations: specimens failed by the emergence of diagonal

shear planes, the orientation of which is dependent on topology, but increasing strain rate

did not alter this failure mechanism. The reason for the orientation of these shear planes

was demonstrated by the numerical models that showed that stress is concentrated in struts

connecting diagonally opposite corners of the structure, and when shear planes emerge, they

are aligned to these most loaded struts. By implementing the second optimization process,

only a few diameters are increased, so the geometries are similar to the uniform case. This

implies small increases in mass, but still higher values of energy absorption. In terms of failure

modes, however, these show analogues behavior. On the other hand, when the experimental

compression tests are performed on the BCC1 and BCCZ1 specimens they change enormously.
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ϵ ≃ 0% ϵ ≃ 50% ϵ ≃ 70%

BCC - UNIFORM

BCC - GRADED BY PROCESS 1

BCC - GRADED BY PROCESS 2

BCCZ - UNIFORM

BCCZ - GRADED BY PROCESS 1

BCCZ - GRADED BY PROCESS 2

Table 6.5: Failure mode of specimens during static compression tests.

As shown in Table 6.5 for the BCC specimens optimized through Process 1, four diagonal cen-

terline planes are outlined during initial loading. After about the 50% of the loading, sequential

layer-by-layer collapse begins. This implies multi-peak stress-strain curves and a less exten-

sive plateau region. The stress values are found to be higher, so the increase in the energy

absorption is justified. For BCCZ1 specimens, no preferential diagonal planes of failure are

delineated, but collapse occurs directly layer by layer, generating larger increases in stiffness,

stress and energy. BCC specimens failed at greater strains than their z-strut counterparts, and

behaved in a bending-dominated manner, consistent with previous studies [32] and [31]. This

suggests that the inclusion of z-struts increases strength and stiffness. The macro-behavior

of the optimized specimens (graded BCC1, BCC2, BCCZ1 and BCCZ2 samples) therefore ex-

hibits failure modes discussed in detail in the introduction to Chapter 4, which is in line with

the analyses found in the literature ([57], [13]). This has led to enhanced energy absorption

characteristics. In contrast to the uniformly dense lattice structures, those with graded den-

sity collapse in a layer-by-layer sequence, which is evident from the trends of the stress-strain

curve.
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6.9 Overall comparative analysis of the results

The ultimate aim of the experimental campaign was to confirm the data obtained through

thickness optimization using the Matlab code, which significantly reduced the computational

costs of analysis. A further objective was to verify the correctness and true correspondence

of the analysis carried out using Ansys software, in which a series of approximations were

made from the bilinear model assumed for the material (AlSi10Mg), geometric and numerical,

producing a one-dimensional mesh with beam elements that was sufficiently coarse to reduce

calculation times. The recreated structures have numerous advantages, including a signifi-

cant increase in energy absorption values. This introduced an increment in mass, but also

established excellent results considering the variations in failure modes. They changed from

single-plane or diagonal multi-plane failures to a layer-by-layer collapse. These gains, pro-

vided by the models subjected to optimization of the diameters for each component cell of the

specimen, were also revealed through the experimental static compression tests. They have

been highlighted through the extrapolation of all relevant data in the previous paragraphs,

but it is of interest to emphasize and directly compare masses and energy absorption with

the values and trends obtained numerically. For the values of the masses of each specimen, it

is necessary to refer to the Table 6.6. These values are fully comparable, possible variations

in experimental data are justifiable by the approximations assumed in the material model in

numerical analyses, by errors made during the 3D printing production process and during the

post-processing phase. As an example, in the grinding phase, the size of 30 mm was reached

by manually sanding the excess printed layers to ensure dimensional correctness and excellent

surface finish. These design and construction choices largely explain the minimal deviations

shown in Table 6.6 and 6.7, in which the value of the specific energy absorption is obtained by

dividing the EA value by the mass.
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MASS [g]

Ansys analysis Matlab code Experimental tests

BCC 5.9889 5.9889 5.9492

BCC1 15.1392 14.9407 15.0691

BCC2 6.7487 6.3072 6.4577

BCCZ 7.0349 7.0349 6.6740

BCCZ1 14.8125 14.045 14.5613

BCCZ2 7.1041 7.3499 7.0814

Table 6.6: Values of specimen mass obtained using Ansys, Matlab code and experimental tests.

SEA [mJ/g]

Ansys analysis Matlab code Experimental tests

BCC 113.9907 113.9907 227.4227

BCC1 183.8830 184.7700 410.9877

BCC2 121.9846 126.2632 257.9249

BCCZ 477.0255 477.0348 562.7412

BCCZ1 672.4704 708.6015 794.7331

BCCZ2 523.0257 537.3127 646.4311

Table 6.7: SEA obtained using Ansys, Matlab code and experimental tests.

VEA [mJ/mm3]

Ansys analysis Matlab code Experimental tests

BCC 0.0253 0.0253 0.0501

BCC1 0.0691 0.068 0.2294

BCC2 0.0281 0.0295 0.0617

BCCZ 0.1243 0.1243 0.1391

BCCZ1 0.2694 0.2741 0.2679

BCCZ2 0.1433 0.1463 0.1695

Table 6.8: VEA obtained using Ansys, Matlab code and experimental tests.

As can be deduced from the Tables 6.6, 6.7 and 6.8, there is an almost perfect match for mass,

but larger deviations for volumetric and specific energy absorption values. This is justified, as

seen above, by the approximations assumed. It should be noted that the orders of magnitude

remain comparable, so the validation of the results obtained in the previous chapters is carried
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out. It is further necessary to examine that the trends remain the same for the three cases of

analysis conducted. This can be appreciated with reference to the proposed histograms:

Figure 6.27: Mass values for all the configurations.

Figure 6.28: Mass values for all the configurations.

The highest increases in mass are recorded for specimens subjected to the optimization with

process 1, for both BCC and BCCZ configurations. Process 2 leads to small increments, but

still with better energy absorption values. This is evidenced by the trends of SEA and VEA, ex-

actly the same for each analysis conducted. They highlight that the configuration with z-struts

(BCCZ) is the best performing in general. This structures exhibit stretch-dominated behaviour

and are stronger and stiffer, requiring greater loads to cause yielding and deformation. The

deformation of Z-struts lattice samples progresses by buckling of vertical struts progressively

along the vertical direction, together with development of plastic hinges near the interconnec-

tion regions between struts and nodes. The introduction of vertical stuts lead to higher elastic

modulus, 0.2% yield strength, steeper stress-strain slope and higher compressive strengths in
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plastic deformation regime, with more efficient values of specific energy absorption, as re-

vealed in [69]. Just in terms of SEA trends, the best candidate remains BCCZ1 (optimized by

code 1), with excellent values also for process 2, which allows minimal mass increase. There

are lower amounts for BCCs, but they follow the same tendencies as BCCZs.

Figure 6.29: SEA values for all the configurations.

Figure 6.30: SEA values for all the configurations.

Figure 6.31: VEA values for all the configurations.
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Figure 6.32: VEA values for all the configurations.

The values of volumetric energy absorption VEA, show higher levels for BCC1, obtained from

the experimental campaign, with a greater deviation from the other measured data. Not con-

sidering the masses involved, BCC1 predicts excellent performance. This underlines how much

geometric diversification and optimization affect the performance of lattice structures.

A further macro consideration on the results and comparisons is of a general nature: experi-

mental tests provide a broader correspondence with the values recorded by software for spec-

imens with z-struts (BCCZ). This could be explained by a higher-performance printing pro-

cess when introducing such additional structural parts, or by the nature and characteristics

they exhibit. Showing greater stiffness, they will tend to yield for higher load levels, avoiding

drastic deformations as in the case of BCC samples. Therefore, the effects neglected within

the analyses via Ansys and through the Matlab code, will not be affected by approximations

related to overlooking edge deformation effects, that are not considered for the other con-

figurations. Although there are not exactly matching values, by referring to the trends and

percentage shown within the histograms, a perfect correspondence can be appreciated. This

amply validates the results obtained in Chapter 5, making it possible to highlight not only

how acceptable all the simplified assumptions, adopted for analysis via Ansys, are, but also

how the code implemented in Matlab allows to obtain realistic outputs even experimentally,

with minimal costs and computational time.
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Chapter 7

Conclusions

The analyses performed in this thesis demonstrated successfully the potential of structural

optimization techniques to accomplish innovative lightweight designs with improved perfor-

mance. The opening chapters of the thesis highlighted the basic aspects of different specimens,

outlining the main differences obtained from the application of a variety of elementary cells

and different dimensions. These initial analyses made it possible to recognize the fundamental

characteristics, laying the basis for implementing two different optimization processes (seen

in Chapters 4 and 5). Lattice structures are destined to appear increasingly frequently in fu-

ture designs due to the growing field of additive manufacturing (AM) and the constant desire

to reduce weight. The successful implementation of lattice structures requires an adequate

interpretation of the behaviour of cellular structures, which was done in this first part of the

thesis. The analyses and optimization processes presented in the Chapter 5 can be an help-

ful accessory to quickly designing, analyzing, and improve lattices for compressively loaded

components. The results identified new dimensional assignments to increase the energy ab-

sorption levels of the configurations of interest. It was validated by the experimental campaign

(Chapter 6), which confirmed that the BCC and BCCZ configurations produce strong improve-

ments as the thicknesses of the individual struts changed. With reference to the experimental

data, it can be seen that the optimization carried out led to increases of up to 80% and 40% in

terms of specific and volumetric absorption energy, for the BCC1 configuration. This requires

a significant increase in weight, but lays the foundations for a promising methodology, which,

although it involves improvements, generates enormous energy benefits. Of the two processes

examined, for the former, the increase in energy absorption was highlighted, at the expense

of the addition in weight, while for the latter, the preference was for maintaining the mass
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within a reduced range, resulting in lower percentages with regard to energy performance.

Consequently, the choice of the best specimen depends on a trade-off between mechanical

characteristics, energy and mass increments. This is determined against the specific applica-

tion, so each candidate examined is the optimum, based on the desired applied context. An

advantageous example of possible future application finds in Process 1 the best choice for

implementations as sacrificially energy-absorbing layers in protection systems against pro-

jectiles or fragments, high energy events (crash or a blast), micrometeoroid and orbital debris

(MMODs) for the space field. Regarding the results obtained from the implementation of Pro-

cess 2, it can be stated that such architectures are most cost-effective where the lightweight

aspect is prioritized, thus falling into applications such as bio-medical or aerospace detailing.

In comparison to the uniform lattice structure, the optimized lattice samples exhibit superior

energetic performance, as calculated by Matlab code, Ansys and finally confirmed by static

compression tests. A further goal achieved was not only the search for effective optimization

methods, but at the same time an additional benefit lies in the code itself. This, as shown in

the Section 5.5, allowed to obtain the outputs (Von-Mises stress, EA, SEA and VEA) in times

of the order of a minute, significantly shorter than those of the Ansys software (in the order

of hours). This is a great advantage since these properties can be predicted saving on time and

computational costs, providing minimal deviations (see Section 5.4).

Future research could be focused on the possibility to introduce a smaller low limit of the

struts’ thickness, in order to further improve the performance and reduce the weight. An ad-

ditional limitation to be overcome lies in the handling of the Matlab code, which required input

’.out’ files from Ansys Workbench, containing the identifications of the geometric entities and

stress values. These files were imported into the Matlab environment, but post-optimization,

once the diameters had changed, it was not possible to input these directly into Ansys, which

had to be modelled manually. This process required very large process times to perform the

validations, which could be reduced by allowing the code to communicate more directly with

the software, making the process more automated. Furthermore, only two different topologies

were implemented within the optimization processes, so the future aim could be the validation

of the results obtained for the FCC, FCCZ, FBCC and FBCCZ configurations.
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Appendix A

Stress extraction in table format

A.1 Initial uniform configuration

Figure A.1: Central plane (x,y) and upper plane (x,y) for BCC samples.

Figure A.2: Lateral external plane (y,z) and diagonal plane for BCC samples.
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Figure A.3: Central plane (x,y) and upper plane (x,y) for BCCZ samples.

Figure A.4: Lateral external plane (y,z) and diagonal plane for BCCZ samples.

Figure A.5: Central plane (x,y) and upper plane (x,y) for FCC samples.
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Figure A.6: Lateral external plane (y,z) and diagonal plane for FCC samples.

Figure A.7: Central plane (x,y) and upper plane (x,y) for FCCZ samples.

Figure A.8: Lateral external plane (y,z) and diagonal plane for FCCZ samples.
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Figure A.9: Central plane (x,y) and upper plane (x,y) for FBCC samples.

Figure A.10: Lateral external plane (y,z) and diagonal plane for FBCC samples.

Figure A.11: Central plane (x,y) and upper plane (x,y) for FBCCZ samples.
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Figure A.12: Lateral external plane (y,z) and diagonal plane for FBCCZ samples.

A.2 Optimized samples

A.2.1 Threshold equal to the mean value - Process 1 and 2

Figure A.13: Central plane (x,y) and upper plane (x,y) - BCC optimized sample.
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Figure A.14: Lateral external plane (y,z) and diagonal plane - BCC optimized sample.

Figure A.15: Central plane (x,y) and upper plane (x,y) - BCCZ optimized sample.

Figure A.16: Lateral external plane (y,z) and diagonal plane - BCCZ optimized sample.
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Figure A.17: Central plane (x,y) and upper plane (x,y) - FCC optimized sample.

Figure A.18: Lateral external plane (y,z) and diagonal plane - FCC optimized sample.

Figure A.19: Central plane (x,y) and upper plane (x,y) - FCCZ optimized sample.
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Figure A.20: Lateral external plane (y,z) and diagonal plane - FCCZ optimized sample.

Figure A.21: Central plane (x,y) and upper plane (x,y) - FBCC optimized sample.

Figure A.22: Lateral external plane (y,z) and diagonal plane - FBCC optimized sample.
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Figure A.23: Central plane (x,y) and upper plane (x,y) - FBCCZ optimized sample.

Figure A.24: Lateral external plane (y,z) and diagonal plane - FBCCZ optimized sample.
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Appendix B

Optimized samples: new thicknesses

extraction in table format

B.1 Threshold equal to the mean value - Process 1

Figure B.1: Diameter of struts per cell - BCC1.
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Figure B.2: Diameter of struts per cell - BCCZ1.
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B.2 Threshold equal to the mean value - Process 2

Figure B.3: Diameter of struts per cell - BCC2.
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Figure B.4: Diameter of struts per cell - BCCZ2.
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Appendix C

Optimized samples: SEA extraction in

table format

C.1 Threshold equal to the mean value - Process 1

Figure C.1: SEA per cell - BCC1.
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Figure C.2: SEA per cell - BCCZ1.
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C.2 Threshold equal to the mean value - Process 2

Figure C.3: SEA per cell - BCC2.

145



Figure C.4: SEA per cell - BCCZ2.
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Appendix D

Optimized samples: VEA extraction in

table format

D.1 Threshold equal to the mean value - Process 1

Figure D.1: VEA per cell - BCC1.
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Figure D.2: VEA per cell - BCCZ1.
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D.2 Threshold equal to the mean value - Process 2

Figure D.3: VEA per cell - BCC2.
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Figure D.4: VEA per cell - BCCZ2.
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