
POLITECNICO DI TORINO

Master’s Degree
in Aerospace Engineering

Academic Year 2021-2022

Master’s Degree Thesis

Formation flight of multiple UAVs using Artificial
Potential Field Algorithm

Academic supervisors Candidate
Prof. Piero Gili Alessandro Favia
Angelo Lerro Matr. 268918

Company supervisors
(Leonardo - Aircraft Division)
Alberto Chiesa
Umberto Papa

POLITECNICO DI TORINO

Master’s Degree
in Aerospace Engineering

Academic Year 2021-2022

Master’s Degree Thesis

Formation flight of multiple UAVs using Artificial
Potential Field Algorithm

Academic supervisors Candidate
Prof. Piero Gili Alessandro Favia
Angelo Lerro Matr. 268918

Company supervisors
(Leonardo - Aircraft Division)
Alberto Chiesa
Umberto Papa

A Lucia, Michele e
Raffaella.

Declaration

This master thesis has been realized thanks to a mutual collaboration between Politecnico
di Torino and Leonardo Aircraft so every result, Matlab code and Simulink model is of
their own. The Author hereby declare that this thesis represents his own work which has
been done after registration for the degree of the Master’s Degree in Aerospace Engineering
at Politecnico di Torino, and has not been previously included in a thesis or dissertation
submitted to this or any other institution for a degree, diploma or other qualifications.

ii

Abstract

In the near future Unmanned Aerial Vehicles (UAVs) will become increasingly
important, especially for their great advantage of reducing risks regarding human
presence in the field. The main issue with these platforms lies in the fact that their
capabilities to operate outside of a military or segregated environment are quite limited.
The achieved degree of autonomy is also limited and in fact most of them are remotely
controlled or semi-autonomous, without the possibility to identify or handle out of the
ordinary situations. The concept of Manned - Unmanned Teaming (MUM-T), i.e. the
ability of unmanned aircraft to support manned ones during a mission, is particularly
important. This thesis, which is the result of the collaboration between Politecnico di
Torino and Leonardo Company (Aircraft Division) and which has been developed during
an internship in the aforementioned company, fits into this context. Using
Matlab/Simulink a fixed-wing UAV model, that includes main flight control surfaces and
autopilots, has been designed in order to simulate aircraft dynamics. As the
leader-follower architecture has been adopted, a five-aircraft formation control algorithm
based on PID (Proportional - Integral - Derivative) controllers has been implemented.
PID is one of the simplest forms of automatic control that only allows to create
statically controlled formations. Thus, the autonomy of the unmanned platforms is
nullified and the safe feasibility of the controlled formation is not guaranteed. For this
reason it was decided to change the approach, generating a system based on Artificial
Potential Fields (APF). Artificial potentials allow the overlapping of different aspects
which should be considered (to perform a specific manoeuvre, to maintain a safe
distance from the other components of the formation, to avoid an obstacle, the
command authority to be used), all weighted through a cost function. In practice, the
"desired" position of the UAV is commanded, but it is left with the autonomy to
implement the command basing on needs. This is a clear breakthrough both in terms of
the use of self-awareness of the platform and its decision-making capabilities. After
studying the operating principle of the algorithm in its static (not time-variant) version,
a two-dimensional Simulink model (which works only in the horizontal plane) has been
created. This model has been subsequently extended to the vertical plane in order to
obtain a formation control algorithm in three-dimensional space. In both cases the code
is able to perform manoeuvrers and formation geometry variations in real time and it
can be controlled by the user with a joystick. Along with the capability to avoid both
other formation components and obstacles, any follower aircraft can also avoid flying
over no-fly zones. The system can be easily adapted to the selected type of aircraft and

iii

to mission needs by tuning specific parameters. Trajectories, attitude and potentials
visualization is carried out using both real-time and post-production animations.

iv

Sommario

Nel prossimo futuro i velivoli senza pilota (Unmanned Aerial Vehicles - UAVs)
acquisiranno sempre più importanza, soprattutto per il grande vantaggio di ridurre i
rischi inerenti alla presenza umana sul campo. Il problema più grande di queste
piattaforme risiede nel fatto che le loro capacità di operare al di fuori di un ambiente
militare o segregato sono piuttosto limitate. Il grado di autonomia ad oggi raggiunto da
tali velivoli è anch’esso limitato ed infatti la maggior parte di essi sono controllati da
remoto o sono semi-autonomi, senza capacità di riconoscere o gestire situazioni al di
fuori del compito ordinario. Particolare rilevanza assume il concetto di Manned -
Unmanned Teaming (MUM-T)), ovvero la capacità dei velivoli unmanned di affiancare
in missione quelli con equipaggio. Questa tesi, frutto della collaborazione tra Politecnico
di Torino e Leonardo Company (Divisione Velivoli) e sviluppata durante un periodo di
tirocinio curricolare nella suddetta azienda, si inserisce all’interno di questo contesto.
Grazie all’utilizzo del software Matlab/Simulink si è innanzitutto costruito un modello di
UAV ad ala fissa comprendente superfici mobili primarie e autopiloti, utilizzato per
simulare la dinamica del velivolo. Avendo adottato un’architettura leader-follower, è
stato implementato un algoritmo di controllo di formazione a cinque velivoli basato su
controllori PID (Proportional - Integral - Derivative). Il PID è una delle forme più
semplici di controllo automatico che permette unicamente di realizzare formazioni
comandate in maniera statica. Questo azzera l’autonomia delle piattaforme unmanned e
non garantisce la realizzabilità in sicurezza della formazione comandata. Per questa
ragione si è deciso di cambiare approccio, generando un sistema basato su potenziali
artificiali (Artificial Potential Fields - APF). I potenziali artificiali consentono la
sovrapposizione di diversi aspetti da considerare (il dover eseguire una specifica
manovra, il mantenere una distanza sicura dagli altri componenti della formazione,
evitare un ostacolo, l’autorità di comando da usare), tutti ponderati tramite una
funzione di costo. In pratica, la posizione “desiderata” dell’UAV viene comandata, ma
ad esso è lasciata l’autonomia di implementare il comando tenendo conto della
situazione. Si tratta di un netto passo avanti sia in termini di uso della self-awareness
della piattaforma che delle sue capacità di decision making. Dopo aver studiato il
funzionamento dell’algoritmo nella sua versione statica (non tempo-variante), si è
costruito un modello Simulink bidimensionale (i.e. agente unicamente sul piano
orizzontale). Successivamente tale modello è stato esteso anche al piano verticale in
maniera da ottenere un algoritmo di controllo di formazione nello spazio. In entrambi i
casi il sistema è capace di effettuare manovre e variazioni della geometria della

v

formazione in tempo reale ed eventualmente di essere controllato dall’utente attraverso
joystick. Ai vari velivoli follower, che si evitano tra loro e che evitano ostacoli, si può
anche ordinare di non sorvolare no-fly zones. Il sistema è adattabile al tipo di velivolo
utilizzato e alle esigenze di missione mediante taratura di parametri specifici. La
visualizzazione di traiettorie, dell’assetto e dei potenziali è effettuata sia mediante
animazioni real-time che in post-produzione.

vi

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Historical background . 1
1.2 Formation flight organization . 2
1.3 Manned – Unmanned Teaming (MUM-T) 4

2 Formation control and motion planning of multiple UAVs: the state of
the art 6
2.1 Research areas . 6
2.2 Formation control . 8

2.2.1 The leader-follower formation control approach 8
2.2.2 The virtual structure and the behaviour-based formation control

approaches . 9
2.2.3 The formation control approach adopted for the thesis 9

2.3 Cooperative formation path planning . 10
2.3.1 The Artificial Potential Field method (references) 12
2.3.2 The optimal control method . 14
2.3.3 The evolutionary algorithm . 15
2.3.4 Cooperative formation path planning approach adopted for the thesis 15

3 The dynamic model of UAV using MATLAB Simulink 17
3.1 Linearised dynamics: general characteristics 17

3.1.1 Reference systems, kinematic, navigation and dynamics equations . 17
3.1.2 Longitudinal and lateral-directional linearised dynamics 21
3.1.3 State space modelling . 22

3.2 The aircraft: general characteristics and performances 23
3.3 The Simulink model of the aircraft . 25
3.4 Control surfaces . 28

3.4.1 Linear Quadratic Regulator (LQR) fundamentals 28
3.4.2 Elevators and throttle control algorithms 31
3.4.3 Ailerons and rudder control algorithms 33

vii

3.5 Autopilots . 34
3.5.1 Proportional Integral Derivative (PID) fundamentals 37
3.5.2 Altitude/Vertical velocity and Heading autopilots 38

3.6 Manoeuvres logic and visualization . 41

4 Formation control using Proportional Integral Derivative controllers 46
4.1 Relative positions calculation in follower-centred reference system 47
4.2 PID formation control block . 48

4.2.1 PID tuning . 50
4.3 Section formations . 53
4.4 Simulation . 54

5 The Artificial Potential Field Algorithm - theoretical explanation 58
5.1 Generalized coordinates, configuration and operational space 58
5.2 The traditional APF approach . 59
5.3 APF for cooperative formation control . 60
5.4 Gradient descent algorithm and planning techniques 61

6 Formation control using a two-dimensional Artificial Potential Field
Algorithm 64
6.1 Building the algorithm - a static 2D case 64

6.1.1 Potential functions analysis . 64
6.1.2 Code architecture . 65
6.1.3 Static 2D simulation results . 70

6.2 The Simulink model - time varying 2D case 72
6.2.1 Leader UAV - 2D APF block . 72
6.2.2 Follower UAV - 2D APF block . 74
6.2.3 Follower UAV - 2D errors calculation and PID tuning 76
6.2.4 Simulation #1 . 78
6.2.5 Simulation #2 . 87
6.2.6 Simulation #3 . 95

7 Formation control using a three-dimensional Artificial Potential Field
Algorithm 103
7.1 Code adaptations . 103

7.1.1 Leader UAV - 3D APF block . 103
7.1.2 Follower UAV - 3D APF block and errors calculation 106

7.2 3D potential visualization . 107
7.3 Simulation . 108

8 Conclusions and future developments 115

A Simulink model images 117

B Matlab and Simulink code listings 133

viii

List of Tables

1.1 NATO’s STANAG 4586 - Levels of Interoperability 5
2.1 Formation control strategies . 11
2.2 Cooperative multi-vehicle path planning algorithms 16
3.1 UAV trim conditions . 25
3.2 UAV performances and mobile surfaces deflection limits 26
3.3 Simulink solver options . 26
3.4 Altitude/Vertical velocity autopilot saturations 38
3.5 Altitude/Vertical velocity autopilot gains 39
3.6 Heading autopilot gains . 41
4.1 Lateral formation PD (position) block gains 51
4.2 Forward formation PD (position) block gains 51
4.3 Height (dot) formation PD (position) block gains 52
6.1 Constants of the potential functions . 66
6.2 Static simulation - starting and target points 70
6.3 Lateral formation PID (velocity) block gains 77
6.4 Forward formation PI (velocity) block gains 78

ix

List of Figures

1.1 Frecce Tricolori . 2
1.2 Basic formations . 4
2.1 Autonomous formation flight research areas 7
2.2 Steps in the virtual structure control algorithm for moving in formation . . 9
2.3 The path planning problem . 12
2.4 Deterministic and heuristic path planning categorization 13
2.5 Example of potential used for formation path planning 14
3.1 Euler angles example . 19
3.2 Linear state equations . 22
3.3 The MQ-1 Predator UAV . 24
3.4 The Leonardo “Falco Xplorer” UAV at Paris Air Show 2019 25
3.5 The longitudinal state equations block . 27
3.6 The navigation equations . 28
3.7 The plant model overview . 29
3.8 Flight surfaces control and autothrottle block 30
3.9 Elevators LQR step response . 32
3.10 Throttle LQR step response . 33
3.11 Rudder LQR step response . 35
3.12 Ailerons LQR step response . 35
3.13 Joystick implementation for leader control 36
3.14 PID controller . 37
3.15 Altitude/Vertical velocity autopilot . 38
3.16 PD altitude step response . 39
3.17 PID vertical velocity step response . 40
3.18 Heading autopilot block . 40
3.19 Heading autopilot step response . 41
3.20 Visualization examples . 44
3.21 Attitude visualization using MATLAB Aero.Animation 45
4.1 formation patten . 47
4.2 The position error subsystem overview (follower n°1) 49
4.3 PID formation control block . 50
4.4 Lateral formation PD (position) block step response 51
4.5 Forward formation PD (position) block step response 52
4.6 Height (dot) formation PD (position) block step response 52

x

4.7 Formation PID model simulation example 57
5.1 Potential example . 60
5.2 Local minimum example . 61
6.1 Attractive potential function . 65
6.2 Repulsive potential function . 66
6.3 Static two-dimensional APF example . 72
6.4 Fixed-moving obstacle NED positions block 73
6.5 Lateral formation PID (velocity) block step response 77
6.6 Forward formation PI (velocity) block step response 78
6.7 Simulation #1 overview (APF 2D) . 79
6.8 Simulation #1 results - 2D APF . 85
6.9 Simulation #2 overview (APF 2D) . 87
6.10 S2 Joystick commands . 88
6.11 Simulation #2 results - 2D APF . 93
6.12 Simulation #3 sectformfig creation . 95
6.13 S3 Joystick commands . 97
6.14 Simulation #3 results - 2D APF . 102
7.1 Fixed/Moving obstacle NED positions block - 3D version 105
7.2 3D APF potential visualization example 108
7.3 Simulation #1 overview (APF 3D) . 109
7.4 Simulation results - 3D APF . 113
A.1 Elevators LQR block - Simulink model . 118
A.2 Throttle LQR block - Simulink model . 119
A.3 Ailerons LQR block - Simulink model . 120
A.4 Rudder LQR block - Simulink model . 121
A.5 Autopilot block for Formation PID - Simulink model 122
A.6 Autopilot block for Formation APF - Simulink model 123
A.7 PD altitude block . 124
A.8 PID vertical velocity block . 124
A.9 PD roll block . 124
A.10 Lateral formation PD (position) block . 124
A.11 Forward formation PD (position) block . 125
A.12 Height (dot) formation PD (position) block 125
A.13 Two-dimensional APF - leader block overview 126
A.14 Two-dimensional APF - follower block overview 127
A.15 Two-dimensional APF - velocity errors calculation 128
A.16 Lateral formation PID (velocity) block . 129
A.17 Forward formation PI (velocity) block . 129
A.18 Three-dimensional APF - leader block overview 130
A.19 Three-dimensional APF - follower block overview 131
A.20 Three-dimensional APF - errors block overview 132

xi

“One thing I have learned in a long life:
that all our science, measured against

reality, is primitive and childlike – and yet
it is the most precious thing we have.”

[A. Einstein, Letter to Hans Muehsam
(July 1951), Einstein Archives 38-408]

Chapter 1

Introduction

This dissertation is the result of a collaboration between Politecnico di Torino and
Leonardo Aircraft, being the Author’s MSc Thesis in Aerospace Engineering. Starting
from April 2022 the Author had the valuable opportunity to attend a six-months in
person internship at the Leonardo Aircraft headquarters sited in Turin. During this
period large part of the project, which will be here described, has been realized. It would
be highlighted that every result derives from a long trade-off procedure and that not all
the tested versions will be illustrated in this dissertation for the sake of shortness.
Formation control of unmanned vehicles has received a lot of attention in the past
decades, with application to the coordination of various type of plants (aircraft,
spacecraft, robots, underwater vehicles). The main advantage of unmanned vehicles is
the minimization of human mistakes and pilot injury risks, especially in the military
sector. On the other hand benefits of formation control are numerous, such as improved
mission capability, efficiency and energy saving. There could be various degrees of
autonomy: every actor can be remote piloted or completely autonomous. It could be
easily imagined how great interest lies in studying how autonomous unmanned vehicles
(potentially flanked by manned ones) can flight together in formation in order to
successfully accomplish a specific mission. In this chapter an introduction about general
aspects of formation flight is presented. First of all, a brief footnote of history will be
included, explaining why multiple aircraft formation flight has been an important topic
in the past. At a later time, general theoretical aspects will be illustrated as section
formation pattens and the Manned-Unmanned Teaming (MUM-T) concept.

1.1 Historical background
By formation flying we mean the flight of two or more aircraft travelling and manoeuvring
together in a disciplined, synchronized, predetermined manner [1]. The history of this
discipline starts in World War I (1914-1918), when single pilot fighter aircraft escorted
reconnaissance ones. This last type of vehicles, whose primary aim was to visually identify
enemy troops and settlements, could fly at high altitudes (which for that time were about
24000 ft) to avoid interception thanks to their powerful engines. Advantages of flying in

1

Introduction

formation were soon discovered observing how fighting together increased aerial victories
and the German air force provided some of the basic rule of formation flight, some of
whom are still used in the present day. After World War I formation flying remained the
centre of attention also thanks to the development of air shows: aircraft began not to
be perceived as dangerous and first airliners were built. The development of jet engines
and the increase of aircraft velocity and manoeuvrability made formation flying more and
more an elite discipline, forcing pilots to focus on training. In Fig. 1.1 Frecce Tricolori,
the aerobatic demonstration team of the Italian Air Force, are depicted.

Figure 1.1: Frecce Tricolori (from [2])

1.2 Formation flight organization
Before delving into autonomous flight concepts some basic features of piloted (manned)
formation flight will be examined, starting from terminology. First of all, a group of
more than one aircraft is called a flight. The smallest unit of formation is the section,
composed of a leader and a wingman. The leader, that is usually the most experienced
pilot, have the responsibility to safely conduct the flight and plan the mission. Other
pilots, regardless of their number, are called wingman: they should maintain formation
integrity, providing mutual support and follow leader’s commands. Aircraft arrangement
inside the formation can be various, generating a number of formation “shapes”. During
a mission multiple formation shapes can be selected, depending on the scenario. The
basic formation configurations are fingertip, echelon and line astern, while most other
configurations are variations of these [3].
If a line astern (or trail, Fig. 1.2(a)) formation is chosen, every wingman follows the
leader in trail. The distance between aircraft can vary, depending on mission requirements.
During World War I it was one of the most common pattern but it was soon found to be

2

Introduction

inefficient, especially because aircraft could not visually communicate among themselves.
The fingertip formation (Fig 1.2(b)) was created in order to overcome this problem. It
takes its name from the shape of a hand if viewed from above: if the pattern is similar
to the right hand it is called “fingertip strong right” while if the selected one is the left,
“fingertip strong left”. There are three wingman (two sections), each of which should
maintain relative inclination and lateral/vertical spacing from the leader. If the number
of aircraft is odd there will be a section made up of one aircraft (instead of two). In
this case the formation is called vic (Fig. 1.2(c)) and the concept of phantom wingman is
adopted: the leader, in fact, gives command as if an additional plane existed. The echelon
formation (Fig. 1.2(d)) is a configuration where every aircraft is on the right or on the
left of the leader. Usually employed during traffic patterns or surveillance missions, its
main advantage is the high range of vision of every participant. If the inclination between
aircraft is null, the formation is called line abreast (or wall). The box (or diamond, Fig.
1.2(e)) formation is particularly difficult as every aircraft must fly very close to each other.
Being compact and manoeuvrable, it is considered as a building-block to generate bigger
formations. In our thesis an additional shape has been created by the Author, called
arrow formation. Conceived as a hybrid between box and vic, in this case the leader is
surrounded by wingmen and the geometry resembles an arrowhead.

(a) Line astern formation (b) Fingertip formation

(c) Vic formation (d) Echelon formation

3

Introduction

(e) Box formation

Figure 1.2: Basic formations (from [3])

Piloted (manned) formation flight is generally performed using eyesight; key concepts,
in this case, are recognition and anticipation [3]. Taking as an example a section (two
aircraft), the basic idea of recognition is that the wingman has to recognize its motion in
relation to the leader and, if the above-mentioned motion is unwanted, it should make
corrections. Movements are usually perceived using fixed reference on the leader, observing
if they move from the wingman point of view. On the other hand, anticipation means that
pilots should be ready for every change of the formation, thinking about the manoeuvre
in advance. The autonomous (unmanned) formation flight approach, as can be imagined,
directly derives from the piloted one. The main difficulty in this case is that formation
control algorithms should be extremely reliable, having a short response time. Advantages
and characteristics of autonomous formation flight will be explained in depth in Sect. 2.1.

1.3 Manned – Unmanned Teaming (MUM-T)
In the last few years the concept of Manned-Unmanned Teaming (MUM-T) has become
more and more established, as it is clear that it will become a pillar of Future Combat
Air Systems (FCAS). MUM-T has been defined, by the United States Army Aviation
Centre (USAACE), “the synchronized employment of soldier, manned and unmanned air
and ground vehicles, robotics, and sensors to achieve enhanced situational understanding,
greater lethality, and improved survivability” [4]. The basic idea is to create a system
in which manned vehicles can operate jointly with unmanned ones, whose purpose is to
assist them during the mission. Particular attention is paid to Unmanned Aerial Vehicles

4

Introduction

(UAV): according to [5], the value of the UAVs global market will reach ca. fourteen billion
dollars in 2026, with a 300 % increase compared to 2017. UAVs are changing the way in
which civil and military operation are conducted, improving tasks like data and image
acquisition of areas of interest, localization and tracking of specific targets, map building,
communication relays, pipeline surveying, border patrolling, military operations, policing
duties, persistent wide area surveillance, search and rescue, and traffic surveillance [6].
Moreover, in a world where Advanced Air Mobility (AAM) will characterize future cities,
it will be crucial to define the reciprocal relationship between manned and unmanned
vehicles. According to the NATO STANAG 4586, communication complexity can be
summarized using five Levels of Interoperability (LOIs):

Levels of Interoperability

“The ability of robots to operate in synergy to the execution of assigned
missions and the capability of diverse systems and organizations to work

together, sharing data, intelligence and resources”
Level 1 Indirect receipt and/or transmission of sensor product and

associated metadata
Level 2 Direct receipt of sensor product data and associated metadata

from the UAV
Level 3 Control and monitoring of the UAV payload unless specified as

monitor only
Level 4 Control and monitoring of the UAV, unless specified as monitor

only, less launch and recovery
Level 5 Control and monitoring of UAV launch and recovery unless

specified as monitor only

Table 1.1: NATO’s STANAG 4586 - Levels of Interoperability (from [6])

While current technology is able to successfully perform up to Level 4 (e.g. Boeing
AH-64 Apache), within the scope of MUM-T the most challenging goal is to reach the
Level 5 of LOIs, that would allow manned aircraft to control and monitor UAVs with
the possibility to launch and recover it. In this scenario, it can be imagined how one of
the most important technologies on which MUM-T will be based is the development of
AI-based navigation algorithms. This thesis can be included in this context as its main
purpose is to demonstrate how, using Artificial Potential Field (APF) algorithms, manned
and unmanned aircraft can fly together in formation.

5

Chapter 2

Formation control and motion
planning of multiple UAVs:
the state of the art

In this chapter, an introduction about the state of the art of formation control and
motion planning is presented. At the beginning, the research topics and the key
concepts will be illustrated, focusing on differences and similarities between the previous
subjects. Different formation control strategies will be investigated, along with
advantages and disadvantages. Subsequently, specific attention will be paid on path
planning, in particular to its “cooperative” meaning. Practical applications and historical
background have been discussed in the previous chapter, together with the purpose of
the thesis. However, choices made will be illustrated here, opening the door to following
explanations of the project in the next sections.

2.1 Research areas
Autonomous formation flight is, at the moment, a prolific research area in the aerospace
community. The reasons for studying how a number of aircraft could fly closely and
autonomously are numerous. First of all, it has been demonstrated that flying in the
wing-tip vortex of an aircraft exhibit fuel saving [7] [8]. Particularly useful during long
range missions, it can be explained observing the reduction of induced drag of the
trailing wingmen, which need less energy to maintain its speed [9]. This behaviour has
been observed in many species of birds, especially the migratory ones, which travel in
“V” formation during long journeys. Another reason for designing robust formation
flight algorithms lies in using them in the civil sector, with the urgent demand for
aircraft coordination within high density airspace, especially near airports [10].
Autonomous Aerial Refuelling (AEF) is another research area of interest, both in civil
and military sector [11] [12]. From the military point of view, the interaction between
multiple Unmanned Aerial Vehicle (UAV) and (possibly) manned aircraft is a very

6

Formation control and motion planning of multiple UAVs: the state of the art

important issue. As can be seen in [13] the Ghost Bat program of the Royal Australian
Air Force (RAAF), for example, aim to develop a loyal-wingman system together with
Boeing, with its planned entry into service date not so far in time.

Another increasing trend is the development of more sophisticated unmanned vehicles,
which can operate in multiple mission scenarios. The reduction of risks regarding the
human presence on the field is only one of the reasons why these systems are becoming so
common. The degree of autonomy reached today does not allow them to act completely
independently, so they are generally semi-autonomous because the human intervention is
needed to assure a reasonable reliability. In this context, adopting a fleet of UAVs instead
of a single one could be an interesting solution since it can assure an increase in mission
capability as well as augmented redundancy.
There are, in this regard, two main research areas particularly prolific in the aerospace
sector: formation control and cooperative motion planning.

Figure 2.1: Autonomous formation flight research areas (from [14])

In Fig. 2.1 differences and similarities are illustrated. The main aim of formation
control is to drive every single agent to reach a prescribed constraint on his state [15].
Consensus-based controller are one of the most studied solutions for the problem, together
with flexible algorithms which implement collision-avoidance features. Anyway, formation
control does not act on the trajectory of the formation seen as a whole: its aim is to ensure
that every aircraft is in a defined position with respect to a certain reference system.
Control stability, robustness and vehicle dynamics constraints (like aircraft inertia) are
factor to be taken into account, but they are not the only ones. Cooperative motion
planning intervenes to fill the gap: in fact, it deals with formation trajectory optimization,
taking into account the peculiarity of having multiple agents acting together [16]. In this
case the attention is drawn on trajectory smoothness (especially for aircraft, which should
operate inside their flight envelope), computational time, obstacle avoidance and shortest

7

Formation control and motion planning of multiple UAVs: the state of the art

path for fuel saving. Having said that, it can be imagined that formation control and
cooperative motion planning share some important features. Every vehicle, for example,
should be controlled taking care of collision avoidance between its counterparts and if
an obstacle appears the trajectory of every vehicle must be generated so that it can be
efficiently avoided and the formation gradually recovered.

2.2 Formation control
The reason multiple aircraft could put in formation is mainly because they can assure
better performances in a certain mission and because of tactical reasons, such as lowering
radar signature. The aforementioned “V shape” (or “Vic formation”), for example, assure
a good view of the neighbouring situation, but could not be so useful in small mission
area as the “line astern” figure. Besides, when the mission scenario changes dynamically
the formation must adapt changing his geometry, taking care of avoiding other vehicles
and deadlock situations (the aircraft must not block the path of the other ones). That
said, the importance of a robust formation control strategy comes to light. According to
[14], there are three types of features that a control strategy could implement:

• Formation generation and maintenance (Type 1): from a random condition (e.g.
random positions and headings), the formation should be formed and maintained

• Formation maintenance during trajectory tracking (Type 2): the formation should
be maintained during a manoeuvre or a predefined trajectory

• Formation shape variation and re-generation (Type 3): if an obstacle appears, it
should be avoided either with a formation trajectory deviation from the nominal one
or a temporary variation of the formation shape, which should be restored at later
time.

The importance of this partition lies in the fact that it can be useful to classify the
three types of control strategies that will be briefly described in the following lines.

2.2.1 The leader-follower formation control approach
The first control strategy is called “leader-follower approach” (LFA). An aircraft is elected
as leader, it has all the information about the trajectory to follow to reach a certain point
in the space and its motion define the one of all the others, called “followers”. Their
purpose is to maintain a certain distance from the leader geometrically calculated from
the desired formation shape. This approach has been extensively studied in literature,
with numerous variations on the theme. In [17], every element (in this case, robots) is
considered as point-mass and the control law aim to nullify distance and angular errors
then the desired values. A similar approach can be noticed, for example, in [18]. In other
cases collision-avoidance features can be implemented, as in [19] and [20]. The leader-
follower approach is frequently adopted because Type 1, Type 2 and Type 3 could be
guaranteed. Moreover, a virtual leader (instead of the physical one) could be implemented.

8

Formation control and motion planning of multiple UAVs: the state of the art

The main problem of this approach is that there must be a good quality communication
between all the aircraft (especially with the leader) in order to transmit position data.
These uncertainties could be partially modelled using, among others, machine-learning
techniques.

2.2.2 The virtual structure and the behaviour-based formation
control approaches

Figure 2.2: Steps in the virtual structure control algorithm for moving in formation (from
[21])

The second control strategy is called “virtual structure” approach [21]. In this case
there is no distinction between aircraft, which are equally important. The aim of every
vehicle is to minimize the position error with respect to a vertex of the virtual structure
(the shape of the formation), treated as a rigid body. The virtual structure is translated
to follow a predetermined trajectory, forcing every aircraft to move to the subsequent
vertex position (Fig. 2.2). As compared to the previous strategy, one of the advantages is
the reliability in relation to the Type 1 strategy, but the major drawback is that collision
avoidance (Type 2) is particularly difficult to implement.

The third control strategy is the “behaviour-based” approach [22]. The formation
control problem is solved using a hybrid vector-weighted control function. In particular,
different control schemes (e.g. move-to-goal, avoid-static-obstacle and
maintain-formation) are developed and the general control scheme for the specific
mission is the result of the weighting of them (using gain values). The main problem of
this approach is that the above-mentioned general control scheme does not depend on
kinematic/dynamic characteristics of the robots, so the study of system stability become
quite complex to pursue. However, all type of formation control strategies could be
implemented, including collision avoidance. In Tab. 2.1 characteristics of the three
formation control approaches are briefly summarised.

2.2.3 The formation control approach adopted for the thesis
During the initial phase of requirement definition, some important must-have features of
the novel algorithm at the centre of the thesis came to light. First, the code has to consider
the presence of a manned aircraft, followed by a number of unmanned aircraft. Every

9

Formation control and motion planning of multiple UAVs: the state of the art

UAV must follow the manned autonomously in order to generate a predefined formation
pattern. Contacts between vehicles must be avoided, and collision avoidance should be
implemented to avoid fixed or mobile obstacles. That said, it has been established that
the most reasonable approach was the leader-follower, especially because the presence of a
manned leader was the most realistic scenario. Relatively simple to design, this approach
has another important advantage, which is the centralized communication architecture. In
fact, all data needed to carry out the separation between aircraft result in a direct link
between the leader and the single follower, with a reduction in the overall quantity of
exchanged data as compared to a decentralized communication architecture. However, the
author would underline that this type of approach does not exclude a configuration in
which the leader is unmanned.

2.3 Cooperative formation path planning
As said in previous sections, cooperative formation path planning (or cooperative motion
planning, as mentioned before) is a field of study which works in parallel with formation
control. In general, path planning consists in finding an optimal or near-optimal path
from the starting state to the target state that avoids obstacles based on one or some
performance indicators [23]. For a 3-D path planning algorithm, for example, the problem
can be schematized as [24]:

Ps(xs, ys, zs, θs, ϕs)
r(t)→ Pf (xf , yf , zf , θf , ϕf) (2.1)

where P is a point, subscripts s and f means start and final, and r(t) is a path (Fig.
2.3).

The path choice, for a single-robot case, depends on various factors such as lowest
working cost, shortest walking route and shortest walking time. Extending the problem
for a formation of N vehicles, a number of N paths have to be calculated taking into
account additional performance costs like:

• Internal collision avoidance: vehicles should avoid others inside the formation

• Formation behaviour : if a formation pattern should be maintained, paths are
influenced

• Cooperation behaviour : there are two different forms of cooperation behaviour,
time cooperative behaviour and time and position cooperative behaviour. The main
difference lies on the fact that the formation could be broken in encountering an
obstacle (first case) or it should be always maintained (second case).

• Total distance: the path optimization should take into consideration not only the
single N-th path length, but also the sum of distances.

There are several ways to categorise path-planning algorithms. For example, they could
be divided according to the know degree of environmental information: global-map based
(global path planning) or local-map based (local path planning) [23]. In the first case it is

10

Formation control and motion planning of multiple UAVs: the state of the art

M
et

ho
ds

A
dv

an
ta

ge
s

D
isa

dv
an

ta
ge

s
Fo

rm
at

io
n

m
ai

nt
en

an
ce

ty
pe

s
Pl

at
fo

rm
s

Le
ad

er
-

fo
llo

we
r

•
Ea

sy
to

be
de

sig
ne

d
an

d
im

pl
em

en
te

d
•

Effi
ci

en
t

co
m

m
un

ic
at

io
n

w
ith

in
th

e
sy

st
em

•
H

ig
hl

y
de

pe
nd

en
t

on
th

e
le

ad
er

ve
hi

cl
e

•
La

ck
of

th
e

fe
ed

ba
ck

fro
m

th
e

fo
llo

we
r

to
th

e
le

ad
er

Ty
pe

1,
Ty

pe
2

an
d

Ty
pe

3
•

W
id

el
y

ad
op

te
d

ac
ro

ss
va

rio
us

pl
at

fo
rm

s

V
irt

ua
l

st
ru

ct
ur

e
•

G
oo

d
pe

rfo
rm

an
ce

in
sh

ap
e

ke
ep

in
g

•
G

oo
d

re
pr

es
en

ta
tio

n
of

th
e

re
la

tio
ns

hi
p

an
d

th
e

co
or

di
na

tio
n

be
tw

ee
n

ea
ch

ve
hi

cl
e

in
th

e
fo

rm
at

io
n

•
N

ot
fle

xi
bl

e
fo

r
sh

ap
e

de
fo

rm
at

io
n

•
N

ot
ea

sy
fo

r
co

lli
sio

n
av

oi
da

nc
e

Ty
pe

1
an

d
Ty

pe
2

•
M

os
ta

pp
lic

at
io

ns
se

en
on

m
ob

ile
ro

bo
ts

•
Le

ss
ap

pl
ic

at
io

n
on

un
m

an
ne

d
ve

hi
cl

es

Be
ha

vi
ou

r-
ba

se
d

•
C

ap
ab

le
of

de
al

in
g

w
ith

m
ul

ti-
ta

sk
m

iss
io

n
•

N
ot

ea
sy

to
m

at
he

m
at

ic
al

ly
ex

pr
es

s
th

e
sy

st
em

be
ha

vi
ou

r
•

D
iffi

cu
lt

to
pr

ov
e

an
d

gu
ar

an
te

et
he

sy
st

em
st

ab
ili

ty

Ty
pe

1,
Ty

pe
2

an
d

Ty
pe

3
•

M
ob

ile
ro

bo
ts

an
d

U
G

Vs
ar

e
tw

o
po

pu
la

r
pl

at
fo

rm
s

Ta
bl

e
2.

1:
Fo

rm
at

io
n

co
nt

ro
ls

tr
at

eg
ie

s
(fr

om
[1

4]
)

11

Formation control and motion planning of multiple UAVs: the state of the art

Figure 2.3: The path planning problem (from [24])

assumed that the environment is completely known, especially the obstacle position and
shape: an environmental model is created (using, for example, a grid decomposition) and
the path is calculated. In the second case the surrounding is sensed only using sensors,
so the path is based on limited perception of the environment and it should be adjusted
in real time.
Another classification refers to the deterministic or heuristic approach (Fig. 2.4). In the
deterministic approach, the solution for the trajectory exists and it is exact (being made
up of a finite number of step): if nothing changes, the output of the simulation remains
the same no matter how many times the same is run. It can be considered complete and
consistent. Conversely, a heuristic approach is used if an exact solution does not exist or
if it is difficult to find. In this case the solution is near-optimal since it is the result of an
approximation and it generally change if the simulation is repeated.

2.3.1 The Artificial Potential Field method (references)
The Artificial Potential Field is a powerful path-planning algorithm that was first proposed
by Oussama Khatib in 1986. Being the selected method for the thesis, it will be extensively
explained in Ch. 5 but there it will be briefly introduced in order to compare it with other
solutions provided in literature. In general, the Artificial Potential Field method generates,
in every point in which the physical space has been discretized, a potential field. There,
an attractive potential is centred in the target point and influences all the surrounding
space while repulsive potentials are centred in the obstacles and act only in certain areas
around them. The steepest descent direction can be calculated doing the gradient of the

12

Formation control and motion planning of multiple UAVs: the state of the art

Figure 2.4: Deterministic and heuristic path planning categorization (from [14])

potential which, in this case, corresponds to a force:

Ftotal = Fatt + Frep = −∇(Uatt + Urep) (2.2)

When used for formation path planning other type of potential should be
implemented, in order to avoid collision between robots and maintain formation shape.
Fig. 2.5 represents an example of a potential used in this thesis for formation control. A
particular version of APF is called “Fast Marching Method based Potential Field” [25].
Being the result of the application of the Voronoi Fast Marching (VFM) method to the
APF, it generates the potential field simulating the propagation of an electromagnetic

13

Formation control and motion planning of multiple UAVs: the state of the art

wave (a viscosity map is extracted from the discretized space grid). In this case the
algorithm is faster, even though more complicated to implement.

Figure 2.5: Example of potential used for formation path planning

2.3.2 The optimal control method
The optimal control method represents another approach to the formation path planning.
In this case, the problem is faced dividing it into several sub-problems (one for each
vehicle), solved using numerical optimization and considering a set of constraints. A
basic formulation is available in [26]. Let denote the initial state of the vehicle with xinit
and the desired (final) state with xf . The planning horizon of the algorithm T (how far
in time the route is calculated) depends on a number of factors, like the distance over
which the space has been discretized. The cost function for the ith time step is
ℓi(xi,ui,xf) where ui is the input vector. The problem can be formulated as follow:

min
xi,ui

JT =
T−1Ø
i=0

ℓi(xi,ui,xf) + f(xT ,xf) (2.3)

subject to: xi+1 = Axi +Bui
x0 = xinit

xi ∈ X
ui ∈ U
(xi, yi) ∈ D
(xi, yi) /∈ O)

14

Formation control and motion planning of multiple UAVs: the state of the art

where (A,B) represent matrices of the linear state space model (longitudinal), (xi, yi)
denotes the position of the vehicle in the plane, the setD represents the discretized physical
space and the set O characterizes the obstacles. Sets X and U represent the dynamic and
kinematic constraints of the vehicle, such as maximum turn rate and minimum speed
restrictions. Using Mixed Integer Linear Programming (MILP), the problem could be
solved. The main disadvantage of this method is the solver high computation complexity,
which make it difficult to use it for on-line applications.

2.3.3 The evolutionary algorithm
The evolutionary algorithm (EA) is a heuristic algorithm inspired to biological evolution
process. In case of path planning, it mimics the natural selection considering every path
as an individual which mutate with time. Using a number of constraints and selection
criteria the best path is chosen for every vehicle. When used for the cooperative path
planning, it generally consists of two processes: a N-th vehicle process calculate the
optimal trajectory for every single vehicle separately while the master process takes into
consideration the cooperative behaviour. In particular, it re-evolves every path
considering collision avoidance and distances inside the formation. The computational
speed for this type of algorithm should be taken into consideration, because it could not
be suitable for on-line planning.

2.3.4 Cooperative formation path planning approach adopted
for the thesis

The approaches as above are summarized in Tab. 2.2. When a single vehicle is involved
in the simulation, grid and map-based algorithms are preferred, like D-star [27] and
rapidly-exploring random trees [28] respectively. For formation path planning, where the
computational time is extremely important (algorithms become more and more
complicated with the increase in the number of the vehicles), APF and Evolutionary
Algorithms are the first choice. In addition to be faster than others, they produce
smooth trajectories which can be easily followed by the UAVs.

For the purpose of this thesis, a “traditional” Artificial Potential Field has been chosen
for its simplicity and effectiveness. It has been extensively used for unmanned aerial
vehicles (in contrast to Fast Marching, which has been experimented only on mobile
robots) and it can be easily updated or adapted. In fact, there are several potential
functions in literature to be used in different situations, like the Morse potential [29] or
the one proposed by Khatib [30].

15

Formation control and motion planning of multiple UAVs: the state of the art

M
et

ho
ds

D
ep

lo
ym

en
t

pl
at

fo
rm

A
lg

or
ith

m
co

m
pl

et
en

es
s

A
lg

or
ith

m
co

ns
ist

en
cy

C
oo

pe
ra

tiv
e

be
ha

vi
ou

r
ty

pe
C

ap
ab

ili
ty

fo
r

m
ul

ti-
op

tim
isa

tio
n

Po
te

nt
ia

lfi
el

d
m

et
ho

d
M

ob
ile

ro
bo

ts
,

A
U

V
,U

AV
In

co
m

pl
et

e
C

on
sis

te
nt

•
T

im
e

an
d

po
sit

io
n

co
op

er
at

iv
e

be
ha

vi
ou

r
•

T
im

e
co

op
er

at
iv

e
be

ha
vi

ou
r

N
o

Fa
st

m
ar

ch
in

g
m

et
ho

d
ba

se
d

po
te

nt
ia

lfi
el

d
M

ob
ile

ro
bo

ts
C

om
pl

et
e

C
on

sis
te

nt
•

T
im

e
an

d
po

sit
io

n
co

op
er

at
iv

e
be

ha
vi

ou
r

•
T

im
e

co
op

er
at

iv
e

be
ha

vi
ou

r

Ye
s

Ev
ol

ut
io

na
ry

al
go

rit
hm

M
ob

ile
ro

bo
ts

,
U

AV
Pr

ob
ab

ili
st

ic
co

m
pl

et
e

In
co

ns
ist

en
t

•
T

im
e

co
op

er
at

iv
e

be
ha

vi
ou

r
Ye

s

O
pt

im
al

co
nt

ro
lm

et
ho

d
M

ob
ile

ro
bo

ts
,

U
AV

,A
U

V
C

om
pl

et
e

C
on

sis
te

nt
•

T
im

e
an

d
po

sit
io

n
co

op
er

at
iv

e
be

ha
vi

ou
r

•
T

im
e

co
op

er
at

iv
e

be
ha

vi
ou

r

Ye
s

Ta
bl

e
2.

2:
C

oo
pe

ra
tiv

e
m

ul
ti-

ve
hi

cl
e

pa
th

pl
an

ni
ng

al
go

rit
hm

s
(fr

om
[1

4]
)

16

Chapter 3

The dynamic model of UAV
using MATLAB Simulink

This chapter represents the introduction of the model of the aircraft used in the thesis.
At first, a summary of theory of longitudinal and lateral-directional linearised dynamics
will be illustrated, focusing on state-space representation. The general characteristics and
performances of the UAV will be described, as trim conditions and saturations. At a later
time there will be a detailed description of the Simulink model with control fundamentals,
controllers tuning and code explanation. Having a solid understanding of the aircraft will
be necessary to test the APF-based algorithm in the following chapters.

3.1 Linearised dynamics: general characteristics

3.1.1 Reference systems, kinematic, navigation and dynamics
equations

The term “flight dynamics” generally refers to the study of how forces acting on an aircraft
determine his velocity and attitude with respect to time. In order to describe briefly the
equations involved, it is necessary to clarify which reference systems are included in this
dissertation. Considering a point P in space, the first reference system is called North-
East-Down (NED): having its origin in P and being a right-handed coordinates, its x, y, z
axes point toward north, east and down respectively. For flight dynamics problems, NED
coordinates are considered inertial neglecting, for example, the effect of the Earth rotation.
The Earth-Centred-Inertial (ECI) has its origin in the centre of the Earth with z pointing
toward north and x toward the Aries constellation. It is fixed with respect to the celestial
sphere but it is generally used only for navigation problems, in which long periods of time
are involved. Finally, the Aircraft-Body-Coordinates (ABC) axes are centred in the centre
of gravity of the aircraft with x, y, z direction which could be arbitrarily chosen. In many
cases the stability axes are used, which correspond to the wind axes (i.e. aircraft-centred
axes with x pointing toward the velocity direction) in equilibrium conditions.

The reference systems defined, it is possible to describe the equations of motion of

17

The dynamic model of UAV using MATLAB Simulink

the aircraft. These twelve equations aim to describe completely how an aircraft moves in
space and are:

• Kinematic equations (3)

• Navigation equations (3)

• Dynamics equations (6)

First, consider a NED and an ABC reference systems. If we want to pass from the
first to the second, we should essentially move the origin of NED in the centre of gravity
of the aircraft and rotate it. The theory suggest that the order of rotation is fundamental:
in fact, rotations are not commutable. For aircraft, is frequently used Z → Y → X
(Tait-Bryan) and the angles are called Euler angles (Fig. 3.1).

The rotation matrix RNED→ABC is, as usual, the product of the ones derived from
every rotation around a single axis:

RNED→ABC = RφRθRψ

=

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.1)

The kinematic equations, whose proof is not included there for the sake of brevity,
describe the relation between angular velocities in body coordinates ωB = [p, q, r]T and
time variation of Euler angles [φ̇, θ̇, ψ̇]T :φ̇θ̇

ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ

pq
r

← Kinematic Equations (3.2)

In case of longitudinal motion (r ≃ 0, φ ≃ 0) the θ̇ = q while for lateral-directional
motion (q ≃ 0, θ ≃ 0), φ̇ = p.

The navigation equations derive directly from the relation between NED and ABC
coordinates. If we define PNED as:

PNED =

xNEDyNED
zNED

 = RTNED→ABC

xABCyABC
zABC

 (3.3)

Deriving Eq. 3.3 we find:

ṖNED =

ẋNEDẏNED
żNED

 = RTNED→ABC

uABCvABC
wABC

= RTNED→ABCV̇B ← Navigation Equations

(3.4)

18

The dynamic model of UAV using MATLAB Simulink

Figure 3.1: Euler angles example (from [31])

Velocities in body frame V̇B should be known using a Pitot tube on the aircraft.
However, it should be noticed that wind has not been considered in this dissertation.

Let now introduce the flight dynamics equation in their general form. It is possible to
define the equations of motion of the aircraft from Newton’s second law:Iq

F = d
dt(mv)q

M = d
dt(H)

(3.5)

The summation of all external forces is equal to the time rate of change of the
momentum of the body, while the summation of all the external moments is equal to the

19

The dynamic model of UAV using MATLAB Simulink

time rate of change of the angular momentum. The system 3.5 consist of two vector
equations, which can be divided into six scalar ones. Expressing all terms involved:

Fx = m(u̇+ qw − rv)
Fy = m(v̇ + ru− pw)
Fz = m(ẇ + pv − qu)
L = ṗJx − ṙJxz − pqJxz + qr(Jz − Jy)−Jyz(q2 − r2)− Jxy(q̇ − 2p)
M = q̇Jy − pr(Jx − Jz)− (r2 − p2)Jxz−Jxy(ṗ+ qr)− Jyz(ṙ − pq)
N = ṙJz − ṗJxz + pq(Jy − Jx) + qrJxz−Jxy(p2 − q2)− Jyz(q̇ + rp)

(3.6)

where the underlined terms exist only if the motion is not inside the aircraft plane
of symmetry (Jxy, Jyz /= 0), Fx, Fy, Fz are the forces acting along xbody, ybody, zbody and
L,M,N the external moments around the same axes. A deeper explanation can be found
in [32]. At this point, let imagine two conditions:

• Initial condition: uniform rectilinear motion (symmetric) → peq, qeq, req, veq = 0

• Generic condition: immediately after a disturbance (e.g. a doublet)

For the generic condition:

u = ueq + ∆u
v = ✟✟veq + ∆v
w = weq + ∆w
p = ✟✟peq + ∆p
q = ✚✚qeq + ∆q
r = ✚✚req + ∆r

(3.7)

Substituting Eq. 3.7 in Eq. 3.6, if the disturbance is small, second-order terms can
be neglected obtaining the linearised small-disturbance equations of motion in body axes
(rigid body):

Fx = m(∆̇u+ qweq)
Fy = m(∆̇v + rueq − pweq)
Fz = m(∆̇w − queq)
L = ṗJx − ṙJxz
M = q̇Jy

N = ṙJz − ṗJxz

(3.8)

Using the Eq. 3.8 it is possible to study the longitudinal and lateral-directional motion
separately: in fact, involved variables are different while all values for the initial condition
(equilibrium) are known.

20

The dynamic model of UAV using MATLAB Simulink

3.1.2 Longitudinal and lateral-directional linearised dynamics

The longitudinal motion of the aircraft is usually studied considering wind axes, because
it is easier to turn aerodynamics coefficients into equations. Lift L and drag D are parallel
to zwind and xwind and trigonometric functions applies only to the thrust T . Variables
are, in this case, [V, α, q] where V is the airspeed and α is the angle of attack.

Fx = mV̇

Fz = −mVeq(q − α̇)
M = q̇Jy

(3.9)

At this point, forces and moment should be written explicitly. Considering the small
perturbations theory:

Fx = ✟✟✟Fx,eq + ∆Fx
Fz = ✟✟✟Fz,eq + ∆Fz
M = ✟✟✟Meq + ∆M

(3.10)

where Fx,eq, Fz,eq and Meq = 0 at equilibrium. ∆Fx,∆Fz and ∆M can be calculated
considering the difference between an initial and generic condition. Adding the
kinematic equation q = θ̇ we obtain the complete set of explicit linearised
longitudinal equations of motion in wind axes (αt → thrust incidence):

mV̇ = ∆T cos (αt) − Teq∆α sin (αt) − ∆D−W (θ− ∆α)
m(−Veqq+ Veqα̇) = −∆T sin (αt) − Teq∆α cos (αt) − ∆L
Jyq̇ = ∂M

∂V
∆V + ∂M

∂α
∆α+ ∂q

∂V
∆q+ ∂M

∂α̇
∆α̇

q = θ̇

(3.11)

Rearranging this equations is possible to write a system in the form ẋ = Alonx, where
Alon is called plant (longitudinal) matrix and x = [V, α, q, θ]T is the state (longitudinal)
vector.

The lateral-directional case can be obtained in a similar way, also if the system is
written with respect to body axes and virtual moments of inertia J ′

x, J
′
z, J

′
xz are included.

The complete set of explicit linearised lateral-directional equations of motion
in body axes is:

v̇ = Yv

m
v+ Yp

m
p+ (Yr

m
− Veq)r+ gφ

ṗ = (Lv

J′
x

+ J ′
zxNv)v+ (Lp

J′
x

+ J ′
zxNp)p+ (Lr

J′
x

+ J ′
zxNr)r

ṙ = (Nv

J′
z

+ J ′
zxLv)v+ (Np

J′
z

+ J ′
zxLp)p+ (Nr

J′
z

+ J ′
zxLr)r

φ̇ = p

ψ̇ = r

(3.12)

21

The dynamic model of UAV using MATLAB Simulink

which can be written, as the longitudinal case, in the form ẋ = Alatdirx, where Alatdir
is called plant (lateral-directional) matrix and x = [v, p, r, φ, ψ]T is the state (lateral-
directional) vector. However, this state vector is not unique: in our thesis, for example, it
will be used the side-slip angle β instead of the velocity along ybody.

3.1.3 State space modelling
The state-space approach is one of the most used methods in control theory for Linear
Time-Invariant systems (LTI), based on the definition of state variables and state
equations. Generally speaking, the state variables of a system are a minimum set of
variables xn(t) that, when known at time t0 and along with the input, are sufficient to
determine the state of the system at any other time t > t0 [32]. Knowing the aircraft
equation of motion (Eq. 3.11 and 3.12) they can be written, as partially mentioned
before, in the form: I

ẋ = Ax+Bη
y = Cx+Dη

(3.13)

where:

• x is the state vector

• η is the control vector

• y is the output vector

• A is the plant matrix

• B is the input matrix

• C and D are, in our case, an identity and a null matrix respectively

Figure 3.2: Linear state equations (from [31])

A block diagram of 3.13 is represented in Fig. 3.2. If A,B,C,D and η are known and
C = I, we can describe how the aircraft behaves over time. It should be specified that
all the matrices depend on altitude, centre of gravity and velocity, but for the purposes
of this thesis they will remain constant. Moreover, x, η and y are defined as variation

22

The dynamic model of UAV using MATLAB Simulink

with respect to the trim conditions: it means that the state vector consist of increments
∆x1,∆x2...,∆xn (where n is the order of the system).
For the longitudinal motion, vectors are:

xlon =

V
α
q
θ

 = ylon ηlon =
5
iH
δT

6
(3.14)

with iH = elevators deflection and δT = throttle (C = I). In the same way, for the
lateral-directional motion:

xlatdir =

β
p
r
φ
ψ

 = ylatdir ηlatdir =
5
δA
δR

6
(3.15)

where δA = ailerons deflection and δR = rudder deflection. For the purpose of this
thesis all matrices have been provided by Leonardo Aircraft and are considered known.

3.2 The aircraft: general characteristics and
performances

When designing a cooperative formation control algorithm, the first step is to choose an
aircraft model. In general, there could be different types of plant in the same formation
(it is reasonable to suppose that the manned leader and the unmanned wingmen are
different) but in this thesis, for the sake of simplicity, there will be only a single aircraft
model. In particular, Leonardo Aircraft has provided matrices of a plant model that will
be briefly described in the following lines. The aircraft in question is a generic example
of Unmanned Aerial Vehicle of type medium-altitude long-endurance. The main
characteristic of this UAV class is their capacity to fly at an altitude between 10000 ft
and 30000 ft (≃ 3000 − 9000 m) for about 24 − 48 hours. Examples of this type of
aircraft are the MQ-1 Predator produced by General Atomics (Fig. 3.3) and the Falco
Xplorer produced by Leonardo (Fig. 3.4). The geometry has not been provided as the
flight physics modelling was sufficient for the purpose of the thesis. Considering the
state and control vectors in Eq. 3.14 and Eq. 3.15, matrices for the longitudinal and
lateral-directional motions are:

23

The dynamic model of UAV using MATLAB Simulink

Along =

0.0162 0.1250 0 0
−0.0056 −1.8534 0 0

0 0 −1.5413 0
0 0 1 0

Blong =

1.9642 5.6405
−0.3100 0.0003
−23.2807 −0.7499

0 0

Alatdir =

−0.1106 −0.0061 −0.9915 0.1230
−0.8556 −4.5955 1.6498 0
1.2308 −0.2812 −0.2675 −0.0001

0 1.0000 −0.0046 0
0 0 1 0

Blatdir =

0.0015 −0.0298
24.7178 0.5901
−0.3433 −0.8961

0 0
0 0

(3.16)

Figure 3.3: The MQ-1 Predator UAV

All the elements of the matrices are dimensional and units of measurement are the
“International System of Units” ones, with m for length, m

s for velocities, rad for angles
and rad

s for angular velocities. As mentioned before, the plant matrix A and the input
matrix B change with altitude, centre of gravity and velocity and, consequently, the
dynamic behaviour of the vehicle varies in the flight envelope. In this dissertation,
however, this phenomenon has not been considered because it would have complicated
the simulink code and it has not been considered important for the purpose of the study.
What is extremely important to know are the trim conditions (Tab. 3.1) to which

24

The dynamic model of UAV using MATLAB Simulink

Figure 3.4: The Leonardo “Falco Xplorer” UAV at Paris Air Show 2019

matrices refer. In fact, once the state vector (which contains increments) has been
calculated, this conditions should be added in order to obtain absolute values.

Vtrim Htrim αtrim θtrim iH, trim δA, trim δR, trim Ttrim

(ms) (ft) (deg) (deg) (deg) (deg) (deg) (kg)
82.3111 10000 ≃ 3.5 ≃ 3.5 ≃ 0.5 0 0 ≃ 600

Table 3.1: UAV trim conditions

To build the plant model, it was necessary to know some characteristic and performance
of the UAV in order, for example, to limit the maximum deflection of mobile surfaces or to
guarantee the respect of the flight envelope. This values will be used mainly in saturation
blocks inside PIDs or LQRs (Linear-Quadratic Regulator).

3.3 The Simulink model of the aircraft
Once the aircraft has been chosen, the following step consists in trying to simulate its
dynamic behaviour. The cooperative formation control system generates high - level
commands which guarantees the separation between leader, followers and obstacles. As
we will see, the nature of these commands and the type of variable which APF controls
could be different on a case-to-case basis and their choice is made during the design phase.
However, the output that the formation control system generates must be converted in
variables which the state-space system can accept. There the aircraft Simulink model will
be described in order to understand how concepts from the previous sections have been
applied to the code.

First of all, it would be necessary to draw attention on the solver. MATLAB Simulink
basically solves a system of equations implicitly built by the user through a block diagram
interface. During the initial design phase no changes were applied to the default options
(“Variable-step” solver of automatic selected type) but, when including more than two

25

The dynamic model of UAV using MATLAB Simulink

V ∆δA ∆iH ∆δR Hmax ḣ Tmax φmax

(ms) (deg) (deg) (deg) (ft) (ms) (kg) (deg)
[60− 140] ±30 ±20 ±20 25000 ±5.08 ≃ 2000 ±20

Table 3.2: UAV performances and mobile surfaces deflection limits

followers controlled by the Artificial Potential Field (Ch.6 and Ch.7) at the hearth of this
thesis, computational performance became very poor. For this reason it has been decided
to use a discrete solver with option in Tab. 3.3.

Simulation time Solver Selection Solver Details
Type Solver

Depends on scenario Fixed-step Discrete dt = 1
100 sec

Table 3.3: Simulink solver options

In Fig. 3.7 the overview of the plant model is depicted. Inputs of the block are the
components of control vectors ηlon (Eq. 3.14) and ηlatdir (Eq. 3.15) deriving from mobile
surfaces block. They enter in plant_long and plant_latdir subsystems, which include the
state-space equations reproduced as Fig. 3.5.

The initial conditions inside the Discrete Integrator (for both longitudinal and lateral-
directional blocks) are all equal to zero: we want the aircraft trimmed at t = t0. C = I
and D = 0 have not been considered because they do not affect the simulation. In fact,
having chosen a C matrix equal to I, the output corresponds to the entire state vector,
divided in our case in longitudinal ylon = xlon and lateral-directional ylatdir = xlatdir
components. We want to remember that this motion separation is possible thanks to
the small-perturbations hypothesis applied to linearised dynamics equations. The trim
conditions should be added to the output of plant_long and plant_latdir in order to
obtain absolute values. The flight path angle γ has been calculated under the assumption
that the aerodynamics characteristic of the vehicle never changes during the flight (the
angle between the CL = 0 direction and xbody do not vary):

∆γ = ∆α−∆θ (3.17)

Integrating the angular velocity r the yaw angle ψ could be archived. The initial
condition for this discrete integrator depends on the desired initial heading angle. This
comes from the fact that when building the Heading Autopilot in Sect. 3.5, the yaw angle
and the heading angle have been considered coincident.

Thanks to the navigation equations (Fig. 3.6), it is possible to calculate positions and
velocities in NED frame. Being zNED pointed toward the centre of the Earth, changing
its sign the altitude h is obtained. First of all, we need velocities in body frame Vbody =
[u, v, w]T considering that the longitudinal state-space equations originate from force and
moments equilibrium in wind frame. The relations between this coordinate systems (Eq.

26

The dynamic model of UAV using MATLAB Simulink

Figure 3.5: The longitudinal state equations block

3.18) pass through the angle of attack α, the side-slip angle β and the airspeed V , that is
the velocity vector to which xwind is parallel.

u = V cos(α) cos(β)
v = V sin(β)
w = V sin(α) cos(β)

(3.18)

At the same time the rotation matrix between NED and body (ABC) frame is generated
(Eq. 3.1), transposed and multiplied with Vbody, yielding to the velocity vector in NED
frame VNED:

VNED =

VNORDVEAST
VDOWN

 = RABC→NED ×

uv
w

 (3.19)

Integrating the NED velocities it is possible to obtain the position vector in the
inertial frame PNED that will be used for formation control as well as for visualization
purpose. The initial conditions for all the Discrete Integrator involved are extremely
important because they represent the initial position PNED,0 of the aircraft in NED
frame. When considering multiple vehicles, different values must be selected in order to
avoid overlapping.

27

The dynamic model of UAV using MATLAB Simulink

Figure 3.6: The navigation equations

3.4 Control surfaces
The inputs of the plant are essentially the aircraft controls, that are throttle and deflections
of the mobile surfaces of the aircraft expressed in radians. Such deflections result from
a control system that calculates them based on a "desired" that comes, in our case, from
the Autopilots block. It is therefore necessary to design these control laws, building the
block Flight surfaces control and autothrottle. As can be seen from Fig. 3.8, inputs of
the subsystem are essentially two: on the one hand there are the autopilot control and
on the other the plant data, useful for the calculation of incoming errors from the various
control algorithms. As we will see, only for the leader aircraft the autopilot command can
be substituted with the joystick ones, so that the user can directly control its trajectory.

3.4.1 Linear Quadratic Regulator (LQR) fundamentals
Among the various control algorithms present in literature it was decided to use an LQR
(Linear Quadratic Regulator) for mobile surfaces management as it is simple to implement
as well as very effective. The theory of optimal control is concerned with operating a
generic dynamic system minimizing a cost function. The history of optimal problems
starts with Galileo Galilei and his geometrical problems. Studying the motion of a body
under gravity, he was able to calculate the time of descent of an object falling along
an inclined plane. Assuming that the shortest path from a point A to a point B is a
straight line, he asked himself if it was also the one that would have taken the shortest
time. In 1696 Johann Bernoulli resumed the dilemma and challenged “the most acute
mathematicians of the entire world” to solve the Brachistochrone Problem [33]:

“Given two points on a plane at different heights, what is the shape of the wire

28

The dynamic model of UAV using MATLAB Simulink

Figure 3.7: The plant model overview

29

The dynamic model of UAV using MATLAB Simulink

Figure 3.8: Flight surfaces control and autothrottle block

down which a bead will slide (without friction) under the influence of gravity
so as to pass from the upper point to the lower point in the shortest amount of

time?”

The solution is the cycloid: this type of challenge aroused interest in this type of
problems. One of the first aerospace applications was released by A.E. Bryson [34] and
was related to the development of an optimization algorithm which calculate the fastest
ascent trajectory from a start to an end point.

Mathematically speaking, the Linear Quadratic Regulator is based on the calculation
of a performance index J∞ which governs the performance of the closed-loop system:

J∞ =
Ú ∞

0
(xTQx+ ηTRη)dt (3.20)

where x is the state vector and η = the control/input vector. As we can see, the
quadratic terms involve two weighting matrices:

• Q is positive semidefinite and penalizes the states

• R is positive definite and penalizes the input

The user has the possibility to tune the control algorithm changing Q and R, giving more
importance to a vector over the other. To find the solution to the optimal control problem,

30

The dynamic model of UAV using MATLAB Simulink

the input η that minimize J∞ subject to the constraint ẋ = Ax +Bη should be found.
It should be remembered that this control algorithm applies on full-state feedback loops,
for which x is completely measurable and this relation is valid:I

ẋ = Ax+Bη
η = Cx

(3.21)

The optimal control law consists in finding KLQR given by:

KLQR = −R−1BTP (3.22)
where the P matrix is the solution of the Algebraic Riccati Equation:

ATP + PA− PBR−1BTP = −Q (3.23)
For the purpose of our thesis the MATLAB lqr command has been used, giving in

input the matrices Q and R. Images of the Simulink model for all the control blocks
related to mobile surfaces can be found in Appendix A.

3.4.2 Elevators and throttle control algorithms
For the longitudinal part of the code two different LQR have been designed, one for the
elevators and one for the throttle. The separation of the control loops acting on the same
dynamic model is advisable because of the very weak correlation between them, so there
is no real gain in optimizing them by building an overall control law. In order to tune the
various gains inside Q and R matrices a Simulink model has been created in which the
plant is subjected to a Step signal. In so doing, the response of the system over time can
be observed and modified according to the necessity. Saturation blocks are present (see
Sect. 3.2) together with Discrete Integrator and for this reason it was necessary to control
the "windup". Characteristic of systems in which output is limited to a specific interval,
it is due to the presence of the integrator. The control system does not perceive the
Saturation block because it is inserted directly inside the output line and for this reason it
generates a not-limited command, depending on the input error. If this command exceeds
the saturation limits the output becomes a constant signal and the system, which is of
closed-loop type, behaves like an open-loop one. The Discrete Integrator, in this case,
continues to integrate the error and generates an ever-increasing control request making
the system unstable. This phenomenon is mitigated using of an “antiWindUp” block
which excludes the integration line once saturation limits have been reached.

Let’s start to describe the procedure for designing the longitudinal LQRs. First of all,
matrices Along and Blong should be known (Sect. 3.2) so that an elementary plant block
as Fig. 3.5 can be created. The MATLAB lqr command accepts the following syntax:

[KLQR, S, e] = lqr(åA, åB,Q,R)

where KLQR is the matrix we are interested in. åA and æB depend on the system and
Q and R should be chosen by the user. Actually, åA and æB could not be exactly equal to
Along and Blong (or Alatdir and Blatdir) but they could be modified, for example, adding

31

The dynamic model of UAV using MATLAB Simulink

integrals of the values of the state vector xlong (or xlatdir). Experience in control theory
and the degree of knowledge of the aircraft characteristics lead the user to choose the
correct åA and æB for the LQR. In our case, it has been decided to control elevators using
errors of q, θ and

s
θ:

åAiH =

−1.5413 0 0
1 0 0
0 1 0

 æBiH =

−23.2807
0
0

 with: åxiH =

 ∆q
∆θ

∆(
s
θ)

 åηiH = [iH]

(3.24)
Through a trial-and-error procedure, knowing howQlong,iH andRlong,iH penalize states

or inputs, the following matrices have been chosen. In Fig. 3.9 the response of the elevator
LQR is depicted.

Qlong,iH =

0.01 0 0
0 1 0
0 0 0.01

 Rlong,iH =
#
0.06

$
Klong,iH =

−0.6604
−4.1545
−0.4082

 (3.25)

Figure 3.9: Elevators LQR step response

The throttle is controlled by means of a ∆V required by the Autopilot block, which is
transformed into a value between [−0.5; 0.5] (remember that the trim condition is δTh,0 =
0.5, see Tab. 3.1). After a few trials it was found that the better results were obtained
using the velocity error ∆V and its integral

s
∆V inside åATh. In Fig. 3.10 the response

of the throttle LQR is depicted.

åATh =
50.0162 0

1 0

6 æBTh =
55.6405

0

6
with: åxTh =

5 ∆V
∆(

s
V)

6 åηTh = [δTh] (3.26)

32

The dynamic model of UAV using MATLAB Simulink

The Qlong,Th and Rlong,Th matrices, together with Klong,Th, are:

Qlong,Th =
51 0
0 0.01

6
Rlong,Th =

#
0.06

$
Klong,Th =

54.1031
0.4082

6
(3.27)

Figure 3.10: Throttle LQR step response

3.4.3 Ailerons and rudder control algorithms

As far as lateral-directional control is concerned, the following procedure is slightly
different from the previous one. The rudder deflection causes an unwanted roll motion,
which must be corrected. Designing the ailerons and rudder LQRs separately this effect
would have not been considered, making the aircraft unstable. The adopted solution is
to use a control system that synergistically involves both mobile surfaces. The LQR
state vector åxlatdir is composed by all the lateral-directional state variables to which

s
β

and
s
φ have been added. The KLQR,A and KLQR,R matrices have been calculated

using a single lqr function. It should be noted that, for reasons due to the Autopilot
block design (which will be clarified later), the directional motion is controlled through
the sideslip angle β (instead of the yaw angle ψ).

33

The dynamic model of UAV using MATLAB Simulink

åAlatdir =

−0.1106 −0.0061 −0.9915 0.1230 0 0
−0.8556 −4.5955 1.6498 0 0 0
1.2308 −0.2812 −0.2675 −0.0001 0 0

0 1 −0.0046 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

æBlatdir =

0.0015 −0.0298
24.7178 0.5901
−0.3433 −0.8961

0 0
0 0

åxlatdir =

β
p
r
φs
βs
φ

åηlatdir =

5
δA
δR

6

(3.28)

The Qlatdir and Rlatdir matrices, together with Klatdir, are:

Qlatdir =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0.1

Rlatdir =
#
1 1

$
Klatdir =

0.4553 0.9682
0.8809 0.0099
−0.2980 −1.5343
1.3132 −0.1620
0.2538 0.9672
0.3059 −0.0803

 (3.29)

3.5 Autopilots
The input of the “Flight surfaces control and autothrottle” block is a vector composed by
four elements:

APout =
#
∆θAP_out ∆φAP_out ∆βAP_out ∆VAP_out

$
(3.30)

This vector includes the variations of all the quantities that the aircraft needs to
perform a certain manoeuvrer. These quantities are produced by the “Autopilots”
subsystem, which we will briefly describe in this section. There are various autopilots in
literature whose implementation depends, among other things, by the technological level
of the vehicle. In our case we have chosen to implement:

• “Altitude/Vertical velocity autopilot”

• “Heading autopilot”

34

The dynamic model of UAV using MATLAB Simulink

Figure 3.11: Rudder LQR step response

Figure 3.12: Ailerons LQR step response

The outputs of this control blocks are, respectively, ∆θAP_out and ∆φAP_out. The
βAP_out has been set to zero because it has been considered that the aircraft can perform
only right turns. It has not been necessary to implement an additional algorithm for
the velocity because the control logic for the manoeuvres (which will be described later)
produces a ∆V that can be directly used in the throttle LQR controller. In Fig. A.5

35

The dynamic model of UAV using MATLAB Simulink

and Fig. A.6 in Appendix A a overall view of the Simulink subsystem is represented for
formation control using PID and APF.
Rather than using the autopilots, the leader aircraft can be directly controlled by the
user, who can activate a “User-controlled leader mode” changing the value of the variable
joystickflag inside the initialization code (Fig. 3.13a). In this case the output values in Eq.
3.30 do not originate from PIDs but they are generated using a joystick. The Pilot joystick
MATLAB block produce normalized outputs, which should be handled using saturation
values for pitch, roll, beta and velocity (Fig. 3.13b).

(a) Joystick switch in Autopilots subsystem

(b) Joystick subsystem

Figure 3.13: Joystick implementation for leader control

36

The dynamic model of UAV using MATLAB Simulink

3.5.1 Proportional Integral Derivative (PID) fundamentals
For the Autopilot block, Proportional-Integral-Derivative (PID) controllers have been
employed. The science of continuous control has one of its origins in the 17th century
with the “centrifugal governor” invented by Christiaan Huygens. In the following
centuries, a number of distinguished researchers tried to understand how to control and
stabilize a mechanical system: some examples are J.C. Maxwell, J. Watt and E. Routh.
However, only in 1922 a formal definition of a PID algorithm was published by engineer
N. Minorsky [35] and PID controller was used for automatic ship steering. In 1930 this
theory was used in electromechanical actuators while in 1970 PID was at the foundation
of F-16 autopilots.

The PID mathematical theory is based on three “versions” of the error: the error
itself e(t), its derivative ˙e(t) and its integral

s
e(t). In so doing, we are capable to obtain

information about its evolution in the present, in the past and predict how it could
reasonably vary in the future.

Figure 3.14: PID controller (from [36])

u(t) = KP e(t) +KI

Ú t

0
e(t) dt+KD

˙e(t) (3.31)

The action of every gain could be explained in this way [37]:

• The proportional term acts on the rise time but the steady state error is invariant

• The integrative term erases the steady state error but worsen the transitory response

• The derivative term decreases the overshoot improving the transitory term, reducing
anyway stability robustness

Steady state error is a general way to describe an unwanted effect of one perturbation
acting on the system. A good example is crosswind forcing the aircraft to constantly
slide with respect to its longitudinal trajectory. A balance of these three effects is one of
the main fundamentals of control system design. As for the LQR controller, gain values
can be obtained through a trial-and-error procedure, observing the system response and
changing them until it is considered satisfying. In this thesis, however, we had to face
a difficult problem. The plant of “Flight surfaces control and autothrottle” LQRs was

37

The dynamic model of UAV using MATLAB Simulink

the aircraft state space model, so they could be tuned quite easily. The Autopilot PIDs
belong to an outer loop so their “plant” include, besides the aircraft, the mobile surfaces
controllers. For this reason, it has been decided to use the MATLAB PID Tuner App to
tune every autopilot and insert the calculated gains inside the PID subsystems. For each
control loop, it has been selected the most adequate control structure, sometimes avoiding
the use of Integral path if steady state error effects are negligible.

3.5.2 Altitude/Vertical velocity and Heading autopilots

Figure 3.15: Altitude/Vertical velocity autopilot

The Altitude/Vertical velocity autopilot is represented in Fig. 3.15 and is composed of
a “PD altitude” controller and a “PID vertical velocity” controller. The user can select,
using a Switch and a altitude_switch_sign flag, to control the aircraft with a desired
altitude or a desired vertical velocity. Outputs of both controllers are, respectively, ∆ḣdes
and ∆θdes. This values are limited using Saturation blocks (Tab. 3.4).

∆ḣ (ms) ∆θ (deg)
Leader Follower Leader Follower

5.08 5.08 4 5

Table 3.4: Altitude/Vertical velocity autopilot saturations

Gains (calculated using MATLAB PID Tuner App) are included in Tab. 3.5, step
responses in Fig. 3.16 and Fig. 3.17 while an overview of the blocks can be found in
Appendix A.

The Heading autopilot is represented in Fig. 3.18. As previously described for the PD
altitude block, only proportional and derivative gains are present. In this case the input
is the difference between the desired heading angle and the actual yaw angle (heading
and yaw are considered identical) and the output is limited between ±15 deg. Using the

38

The dynamic model of UAV using MATLAB Simulink

PD altitude PID vertical velocity
P_alt = 0.687476326769988 P_clvel = 0.0162847317690211

(−) I_clvel = 0.030029471845295
D_alt = 0.385200077951434 D_clvel = 0.00153832455761427

Table 3.5: Altitude/Vertical velocity autopilot gains

Figure 3.16: PD altitude step response

MATLAB PID Tuner App gains in Tab. 3.6 have been obtained, the step response is
depicted in Fig. 3.18 while an overview of PD roll block is included in Appendix A.

Once the autopilots were designed, it was necessary to build a control logic that would
allow them to be used to the fullest. A MATLAB function has been written and inserted
in Autopilot choice block. The necessary data requested by autopilots are:

• hdes

• ḣdes

• altitude_switch_sign

• headingdes

• βdes

• Vdes

Using a Switch function, nine different “fundamental flight modes” have been
considered:

39

The dynamic model of UAV using MATLAB Simulink

Figure 3.17: PID vertical velocity step response

Figure 3.18: Heading autopilot block

• Reach the desired altitude (ACflag = 1)

• Maintain the desired altitude (ACflag = 1.5)

• Reach the desired vertical velocity (ACflag = 2)

• Reach the desired heading angle with constant altitude (ACflag = 3)

• Reach the desired heading angle with variable altitude (ACflag = 4)

• β changing with constant altitude (ACflag = 5)

• β changing with variable altitude (ACflag = 6)

• Reach the desired velocity with constant altitude (ACflag = 7)

• Reach the desired velocity with variable altitude (ACflag = 8)

Combining this flight modes, the user can create complex manoeuvres. The complete
Autopilot choice code for a follower aircraft is available in Appendix B. A thing should

40

The dynamic model of UAV using MATLAB Simulink

PD roll
P_head = 1.6592310034488
D_head = 1.02787603790321

Table 3.6: Heading autopilot gains

Figure 3.19: Heading autopilot step response

be clarified, that is the meaning of the FormACTIVE flag. As we will see, every follower
in the formation can operate in two ways:

• “Autonomous flight” mode: the follower aircraft execute the manoeuvre
independently. The formation control algorithm (PID or APF-based) is turned off
and collision-avoidance is not guaranteed. (FormACTIV E = 0)

• “Formation flight” mode: the follower aircraft flights in formation. It ignores the
ordered manoeuvre and gets in a defined position around the leader. This position
can be user-selected and different formation shapes can be built. (FormACTIV E =
1)

3.6 Manoeuvres logic and visualization
The Autopilot block needs a specific vector of data to execute one of the fundamental flight
modes. Moreover, if more than one fundamental flight mode should be used during a single
simulation (to produce a complete manoeuvre), different vectors at specific instants should
be sent to the subsystem. In this thesis it has been decided to adopt a programmatic

41

The dynamic model of UAV using MATLAB Simulink

approach using the MATLAB From Workspace block. In the initialization code (thanks
to a Switch) a predefined manoeuvre is selected, producing a manoeuvre vector with the
following syntax:

manoeuvre =

 tstart1 APflag1 altc,1 ḣc,1 yawc,1 betac,1 Vc,1
...

...
...

...
...

...
...

tstartN APflagN altc,N ḣc,N yawc,N betac,N Vc,N

 (3.32)

The following code is an example of how a manoeuvre could be built. The first part
corresponds to a straight flight with constant altitude. In this case APflag = 1 and the
Altitude autopilot is selected. Being alt_c (“altitudine_comandata”, desidered altitude)
equal to H0 (that is H at t = 0 sec) nothing changes. The other values
(h_dot_c, yaw_c...) are useless because they are not read by the model (see Autopilot
switch in Appendix A). The first string c1 is produced. At t2 = 25 sec (line 21) the
second manoeuvre is activated. For the From Workspace block, in fact, the first value of
the string is the time at which the same string is passed to the Simulink model.
Differently then the first one, the second manoeuvre use the “fundamental flight mode”
number four (APflag = 4) and the useful variables are h_dot_c = 2 m

s and
yaw_c = 130 deg. The second string is c2 and, combined with c1, produces the vector
manoeuvre.

1 case ' manovra5 '
2 % St ra i gh t f l i g h t
3 APflag =1;
4 alt_c=H0 ; % [m]
5 h_dot_c=0; % u s e l e s s
6 yaw_c=0; % u s e l e s s
7 beta_c=0; % u s e l e s s
8 V_c=0; % u s e l e s s
9 c1=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;

10 t1 =0; % [s]
11 m1=[t1 c1] ;
12
13 % Turn with h_dot= 2 m/ s
14 APflag =4;
15 alt_c =0; % u s e l e s s
16 h_dot_c=2;
17 yaw_c=deg2rad (130) ;
18 beta_c=0; % u s e l e s s
19 V_c=0; % u s e l e s s
20 c2=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
21 t2 =25; % [s]
22 m2=[t2 c2] ;
23
24 manoeuvre=[m1;m2] ;

42

The dynamic model of UAV using MATLAB Simulink

Once data has been produced, they should be visualized. This is a very important
point because using videos and images it can be verified the accuracy of the simulation.
We visualize data in two ways:

• Generating two-dimensional charts and tables in post-processing

• Generating three-dimensional charts both in real-time and post-processing

The first point is quite simple and it will not be explained. What is is not so simple is
the second point, especially the real-time visualization. In order to generate axes during
the Simulink simulation, the MATLAB S-Function tool should be used. In our case, our
starting point has been the MATLAB 3DScope block by G. Campa [38]. However, the
basic code has been modified to accommodate the needs of the thesis. For example, the
view is centred on the leader aircraft and formations can be clearly observed from more
than one angle simultaneously. Fixed and mobile obstacles are included and they can be
cylindrical (to simulate no-fly zones) or spherical (to simulate missiles or other aircraft).
An example of this can be found in Fig. 3.20. Observing this figure, it can be noticed
that the attitude of the aircraft can not been visualized. Using the MATLAB Aerospace
Blockset, a post-processing animation has been created using the Aero.Animation tool
(Fig. 3.21).
As we will see when dealing with APF, potentials should be visualized. In our thesis
it has been done in a post-processing phase, saving potential data in the workspace.
The two-dimensional APF case is quite easy to represent because the potential can be
modelled as a 3D surface and two axes are physical length. The three-dimensional APF,
in contrast, has been a difficult task to tackle because the three axes all represent length
and the data we have to deal with are four-dimensional. The issue has been solved using
a scatter3 function, modifying the transparency of points in order to observe only zones
with high-potential values (i.e. near aircraft and obstacles).

43

The dynamic model of UAV using MATLAB Simulink

(a) 2D visualization (b) 3D visualization

(c) Potential visualization (APF 2D) (d) Potential visualization (APF 3D)

Figure 3.20: Visualization examples

44

The dynamic model of UAV using MATLAB Simulink

Figure 3.21: Attitude visualization using MATLAB Aero.Animation

45

Chapter 4

Formation control using
Proportional Integral
Derivative controllers

In Chapter 3 we have described the way in which the model of the aircraft and the logic
for the manoeuvrers have been designed. Using the manoeuvre matrix (Sect. 3.6) every
aircraft is completely independent from each other, that is it follows only user commands
without sensing other followers. The next step is to create a simple cooperative formation
control which allows the followers to maintain a relative position with respect to the
leader. In this initial development phase, its simplicity lies in the fact that the collision
avoidance is not considered. After examining the state of the art of formation control
and motion planning (Ch. 2) and before facing the problem of the Artificial Potential
Field, it has been decided to study how a PID-based formation algorithm can be used in
a real application. An algorithm of this type is particularly useful to study because, being
the PID control easy to implement, it allows us to understand the hidden mechanisms
of formation flight adopting a systemic approach. Of particular importance is the YF-
22 example, proposed by M.R. Napolitano et al. [18] [39]. In this case, three physical
small-scale aircraft models were built, with a geometry based on the F-22 Raptor. In
addition to propulsion, landing gear and other fundamental subsystems, every vehicle was
provided with data acquisition and R/C systems in order to acquire data and be manually
driven from the ground. During test flights, a piloted take-off was performed for all three
models. Once the cruise altitude (≃ 150m) was reached a follower operational mode was
activated on two aircraft, testing their formation controller capabilities. For the purpose
of our thesis this work has been fundamental. From the design of the formation control
laws point of view, it allowed us to understand what the correct steps to follow were and
laid the foundations for the APF-based algorithm.

46

Formation control using Proportional Integral Derivative controllers

4.1 Relative positions calculation in follower-centred
reference system

When dealing with formation control, the description of formation patten goes hand in
hand with the calculation of distances between aircraft. In a leader-follower architecture
the formation is built around the leader, which is obviously the most important agent of
all. For this reason it could be useful to represent the formation patten in a leader-centred
coordinate systems. Nevertheless, formation commands should deal with Autopilot blocks
of every follower whose input are in follower-centred reference system. In conclusion, it
is necessary to understand how relative distances should be handled and which reference
system should be used.

Figure 4.1: formation patten (from [18])

As suggested in [39] the formation control can be decomposed in two different problems,
namely calculation of position errors on horizontal and vertical planes. First of all, an
inertial NED reference system should be identified (the “Earth-Fixed Reference” in Fig.
4.1 - see Sect. 3.1.1). In our case and for how the Simulink model was structured, this
system is defined for t = 0 s with the X axis pointing north, the Y axis pointing east
and the Z axis pointing down. As we saw earlier, the initial position of every aircraft can
be defined changing the Initial Conditions of the Discrete Integrators in the navigation
equations. PN0, PE0 e PD0 of leader and followers are all defined with respect to the
NED system so they are absolute distances. Followers must occupy a certain position
relative to the leader, which can vary with the mission. This position, seen as a vector in
a leader-centred reference frame, can be defined using its three components:

• Forward clearance fc
47

Formation control using Proportional Integral Derivative controllers

• Lateral clearance lc

• Height clearance hc

The main purpose of the PID-based formation control is to drive the followers toward
their desired positions. These PIDs needs position errors in a follower-centred system,
errors that we have to calculate. A clarification is a must: in this case we deal with
position errors and for this reason we have to include initial conditions. When we will
debate about APF we will calculate velocity errors and initial conditions will disappear.

Figure 4.2 shows the block for the calculation of the formation errors. PN , PE and
PD derive from the plant block and are in NED frame. The relative altitude ∆hLF can
be easily computed as a difference between hL and hF while for the altitude error the
height clearance hc should be added:

hformation error = ∆hLF + hc + [−1 · (PD0,F − PD0,L)] (4.1)

The term (PD0,F −PD0,L) is introduced because if the initial condition coincides with
the target point the formation error should be zero. Forward and lateral formation errors
are treated differently and heading angles ψL and ψF should be introduced. Being lc and
fc known in a leader reference frame, these distances should be transformed with respect
to the follower:5

fc,F
lc,F

6
=

5
cos(ψF − ψL) sin(ψF − ψL)
−sin(ψF − ψL) cos(ψF − ψL)

6 5
fc
lc

6
−

5
PN0,F
PE0,F

6
(4.2)

The corresponding formation error are:5
fformation error
lformation error

6
=

5
cos(ψF) sin(ψF)
−sin(ψF) cos(ψF)

6 5∆PN + (PN0,F − PN0,L) + fc,F
∆PE + (PE0,F − PE0,L) + lc,F

6
(4.3)

The reason for using heading angles is that the X axis orientation of the follower (or
leader)-centred reference frame could not be parallel to XNED at t = 0 s and it varies
during turns.

4.2 PID formation control block
Once fformation error, lformation error and hformation error have been calculated, they are sent
to the PID formation control block. During the block design, in addition to the creation
of the actual control algorithms, peculiar problems have been addressed. As mentioned
in Sect. 3.5.2 two operational modes are available:

• “Autonomous flight” → formACTIV E = 0 → formation control: OFF

• “Formation flight” → formACTIV E = 1 → formation control: ON

Using a Step block the user can change the formACTIVE value once during the
simulation. Different approaches could have been followed in order to change the flag

48

Formation control using Proportional Integral Derivative controllers

Figure 4.2: The position error subsystem overview (follower n°1)

49

Formation control using Proportional Integral Derivative controllers

Figure 4.3: PID formation control block

more than once (using a From Workspace block similarly to manoeuvres, for example),
but they have not been considered necessary for the purpose of this thesis.

In Fig. 4.3 an overview of the PID formation control block is depicted. In order to be
coherent with autopilots a basic control switch called “Follower mode activation” has
been created. If formACTIV E = 1 every input port is connected to the corresponding
output while if formACTIV E = 0 every output is null. The choice of the operational
mode affects the Autopilots block also (Fig. A.5). On the first hand it controls the
Autopilot choice block, bypassing manoeuvre inputs if formation control is active. On
the second hand it determines the type of vertical autopilot chosen for the simulation.
The Height (dot) formation PD generate a vertical velocity value as output so, when
formACTIV E = 1, the Vertical velocity autopilot must be selected and
altitude_switch_sign = −1.

4.2.1 PID tuning
At this point it is possible to introduce the formation PID controllers and their gains,
starting from the “Lateral formation PD (position)” block (Fig. A.10). It can be guessed
that it is a proportional-derivative control (it was not necessary the use of the integrative
line) which, receiving in input the lformation error generates a ∆ψ. As others control blocks
in this thesis, gains have been obtained through a trial-and-error procedure, imposing a
step-like lateral clearance lc and observing how the error tends to zero. The output has

50

Formation control using Proportional Integral Derivative controllers

been limited to [−35 deg; 35 deg] in order to avoid excessive trajectory deviations. Gains
are shown in Tab. 4.1 while the step response is depicted in Fig. 4.4.

Lateral formation PD (position)
KP_l_fPD_F = 0.06
KD_l_fPD_F = 0.3

Table 4.1: Lateral formation PD (position) block gains

Figure 4.4: Lateral formation PD (position) block step response

The Forward formation PD (position) block (Fig. A.11) is similar to the previous one,
not having the Integrator line. In this case the velocity saturation (between [60; 140] ms
has been inserted in the Throttle LQR (Sect. 3.4.2) in order to limit both manoeuvre and
PD signals. Being the output of the PD a ∆VAP , the initial velocity V0 should be added
in order to obtain an absolute value. Gains are shown in Tab. 4.2 while the step response
is depicted in Fig. 4.5.

Forward formation PD (position)
KP_f_fPD_F = 2
KD_f_fPD_F = 2.5

Table 4.2: Forward formation PD (position) block gains

The Height (dot) formation PD (position) block (Fig. A.12) is basically identical to
the other PDs. In this case the saturation is identical to the PD altitude autopilot one,
avoiding ḣ values not included in ±1000 ft

min (±5.08 m
s). Gains can be found in Tab. 4.3

while the step response in Fig. 4.6.

51

Formation control using Proportional Integral Derivative controllers

Figure 4.5: Forward formation PD (position) block step response

Height (dot) formation PD (position)
KP_h_fPD_F = 0.035
KD_h_fPD_F = 0.2

Table 4.3: Height (dot) formation PD (position) block gains

Figure 4.6: Height (dot) formation PD (position) block step response

52

Formation control using Proportional Integral Derivative controllers

4.3 Section formations
As previously explained, the formation control algorithm receives in input the target
points, that are the relative positions of every follower with respect to the leader (in a
leader-centred frame). In this thesis, seven different basic formation options have been
implemented [40]:

• 'initialpositions'

• 'vic'

• 'echelon'

• 'line_abreast'

• 'line_astern'

• 'box'

• 'arrow'

Every option corresponds to a case of the formation switch implemented in the
initialization code of the model. During a mission it could be useful to change the
pattern of the formation, both varying its shape and dimension. For this reason a
'manoeuvre'-like approach has been adopted, using the block From Workspace.

1 case ' l i n e_as t e rn + eche lon '
2
3 % LINE ASTERN
4 xF1=−35; %[m] to modify
5 xF2=xF1 ∗2 ; xF3=xF1 ∗3 ; xF4=xF1 ∗4 ;
6 yF1=0; yF2=0; yF3=0; yF4=0;
7 hF1=0; hF2=0; hF3=0;hF4=0;
8 targetpo intF1 =[xF1 , yF1 , hF1] ;
9 targetpo intF2 =[xF2 , yF2 , hF2] ;

10 targetpo intF3 =[xF3 , yF3 , hF3] ;
11 targetpo intF4 =[xF4 , yF4 , hF4] ;
12 c1=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
13 t1 =0; % [s]
14 f1 =[t1 c1] ;
15 m i n f i g u r e d i s t 1 =[t1 norm ([xF1 , yF1])] ; % used to l i m i t r e p u l s i v e

rad iu s
16
17 % ECHELON
18 xF1=−35; %[m] to modify
19 ang=45; %[deg] to modify
20 xF2=2∗xF1 ; xF3=3∗xF1 ; xF4=4∗xF1 ;
21 yF1=xF1∗ tand (ang) ; yF2=2∗yF1 ; yF3=3∗yF1 ; yF4=4∗yF1 ;
22 hF1=0; hF2=0; hF3=0;hF4=0;
23 targetpo intF1 =[xF1 , yF1 , hF1] ;
24 targetpo intF2 =[xF2 , yF2 , hF2] ;
25 targetpo intF3 =[xF3 , yF3 , hF3] ;

53

Formation control using Proportional Integral Derivative controllers

26 targetpo intF4 =[xF4 , yF4 , hF4] ;
27 c2=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
28 t2 =50; % [s]
29 f2 =[t2 c2] ;
30 m i n f i g u r e d i s t 2 =[t1 norm ([xF1 , yF1])] ; % used to l i m i t r e p u l s i v e

rad iu s
31
32 sect form =[f1 ; f 2] ;
33 m i n f i g u r e d i s t =[m i n f i g u r e d i s t 1 ; m i n f i g u r e d i s t 2] ;

The listing as above is an example of the string passed to the section formation logic.
Two different section formations have been selected, line-astern and echelon. Every
formation is composed by four points in space, that are the follower positions. Selecting
only a few data (like xF1 and ang for echelon) all the distances are calculated through
geometric relations. Coordinates for every formation shape are included in a vector f
where the first element is the time of activation of the specific string while the sectform
consist of the combination of every f vector. minfiguredist is used for the APF model
and it is composed by the shortest geometrical distance between aircraft in the same
formation.

4.4 Simulation
Manipulating the sectform and manoeuvre vectors, various scenarios can be simulated. In
this section we will illustrate a basic one, whose purpose is to test the code and investigate
on advantages and disadvantages of a PID approach for formation control. Flag values
for this scenario are:

• manoeuvre → 'manovra5'

• sectform → 'in_cond + line_astern + echelon'

In Fig. 4.7 two and three-dimensional representations are depicted. For the first twenty
seconds every aircraft remains in its initial position (line abreast figure) with respect to
the leader, with a straight trajectory without any change in altitude (Fig. 4.7(a)(b)).
Formation errors are equal to zero and PIDs do not intervene. At t = 20 s the manoeuvre
string generates a right turn (ψdes = 180 deg) with altitude increase (ḣdes = 2 m

s), as can
be seen in Fig. 4.7(c)(d). During this turn followers are ordered to change the geometry
of the formation in a line astern type. It can be observed that aircraft initially closer to
the centre of curvature (followers number one and two) have more difficulty reaching their
target point (Fig. 4.7(e)(f)). This is probably due to the fact that they have to turn in the
opposite direction of the manoeuvre and successively compensate for the roll overshoot.
At t = 100 s another formation patten is ordered, that is the echelon: in this case every
aircraft manages to reach its position quite easily (Fig. 4.7(i)(j)). The code used for this
simulation is included in Appendix B.2.
What can be seen is that every aircraft follows the leader accurately and places itself the
formation. From the computational point of view the model is particularly fast because
no space grids have to be handled (unlike the APF case) while the main problem is the

54

Formation control using Proportional Integral Derivative controllers

complete lack of collision avoidance, inasmuch aircraft have no consciousness of their
surrounding (clearances are kept minimizing the distance error only).

(a) 2D view (XY) - t = 0 s (b) 3D view - t = 0 s

(c) 2D view (XY) - t = 30 s (d) 3D view - t = 30 s

55

Formation control using Proportional Integral Derivative controllers

(e) 2D view (XY) - t = 60 s (f) 3D view - t = 60 s

(g) 2D view (XY) - t = 90 s (h) 3D view - t = 90 s

56

Formation control using Proportional Integral Derivative controllers

(i) 2D view (XY) - t = 120 s (j) 3D view - t = 120 s

Figure 4.7: Formation PID model simulation example

57

Chapter 5

The Artificial Potential Field
Algorithm - theoretical
explanation

The main purpose of this thesis is to develop a cooperative formation control algorithm
based on the Artificial Potential Field (APF) method. Also if it has been briefly
illustrated in Sect. 2.3.1, it will be deeply explained in this chapter. At first, theoretical
basis of generalized coordinates, configuration space and operational space, together with
potentials definitions, will be explained. Subsequently it will pass to APF used for
cooperative formation control, defining characteristics of the method and illustrating
examples from the literature. Finally, gradient descent algorithm and planning
techniques will be introduced, laying the foundations for future chapters.

5.1 Generalized coordinates, configuration and
operational space

Motion planning is an active field of study in literature, in a world where robot
autonomy and reliability are becoming increasingly important. In this thesis we could
easily substitute the word “robot” with UAV, but we should remember that the field of
application of motion planning is extremely extended including, for example, robotized
arms or autonomous car driving. According to [41], being B a robot not subjected to
kinematic constraints and W an Euclidean space (2D or 3D), motion planning can be
described through a canonical problem:

“Given an initial and a final posture of B in W, find if exists a path, i.e., a
continuous sequence of postures, that drives the robot between B and the

obstacles O1, ...,Op; report a failure if such a path does not exist.”

More than one robot can exist in the same Euclidean space, complicating the problem.
Moreover, every robot could know the geometry of the environment in advance (off-line

58

The Artificial Potential Field Algorithm - theoretical explanation

planning) or not, and in the latter case it could employ sensors to obtain informations
about its surrounding (on-line planning). That said, it can be imagined how complicated
could be defining a motion planning algorithm.
Important definitions that will be useful in the next pages are the configuration space and
operational space ones. From analytical mechanics we know that a system can be described
using a limited set of parameters, which are the generalized coordinates. If we have a
robotic arm, for example, knowing angles of all the joints we could draw exactly in which
position the robotic arm is. Generalized coordinates tell us everything we need to know
to characterize the movement of the robot in space: if we added a parameter, it would
be completely useless. These coordinates generates a vector space called configuration
space, which represents all the allowed configurations of the robot (including the effect of
obstacles). The main problem is that planning a trajectory in this space is not so simple,
because we do not have a direct representation of the Euclidean space we want to move in.
At this point, the operational space comes to our aid. Being equal to the Euclidean space,
in this case the position and orientation of the robot are intuitive. Creating a control
system that let us specify the trajectory in the operational space and that subsequently
transforms coordinates in configuration space would be extremely convenient.

5.2 The traditional APF approach
The Artificial Potential Field algorithm fits into this context, being an elegant and efficient
solution to the on-line motion planning problem. Basically, the point q that represents
the robot in the operational space moves under the influence of a potential field U , sum
of attractive and repulsive terms. In each point, an artificial force can be calculated
as −∇U(q), whose direction is the steepest descent direction toward qgoal. The first
appearance of this type of algorithm can be observed in 1986 in the paper “Real-Time
Obstacle Avoidance for Manipulators and Mobile Robots” by Oussama Khatib [30] while
different variations on the theme have been published until today.
The total potential Utot(q) has been defined as the sum of attractive and repulsive
components [41]:

Utot(q) = Ua(q) + Ur(q) (5.1)

while the total force Ftot(q), considering a unique qgoal and p obstacles, is:

Ftot(q) = −∇U(q) = Fa(q) +
pØ
i=1

Fr,i(q) (5.2)

The attractive potential (Fig. 5.1(a)) can be both parabolodic and conical. In our
application the first solution has been selected, that is the one illustrated in [30]:

Ua(q) = 1
2Ka∥e(q)∥2 (5.3)

where e(q) = qg − q = xg − x (x = [x, y, z]T). The term Ka > 0 should be tuned in
order to force the robot to reach the target point.

59

The Artificial Potential Field Algorithm - theoretical explanation

The repulsive potential (Fig. 5.1(b)) is added in order to consider obstacles with the
idea of building a potential barrier around them, considering both their physical dimension
(Robs) and a specific tolerance (toll). In this case the function is of piecewise-type because
we want the repulsive potential to act inside an established range of influence η0,i. In
general, Ur(q) should be non-negative, continuous and differentiable, tending to infinity
as we approach the obstacle. Khatib [30] proposed (FIRAS function):

Ur,i(q) =
I1

2Kr,i(1
ηi(q) −

1
η0,i

)2 if ηi(q) ≤ η0,i

0 if ηi(q) > η0,i
(5.4)

where η0,i = Robs + toll, ηi(q) = |x− xobs| and Kr,i > 0 is a repulsive constant.

(a) Attractive potential (b) Repulsive potential

Figure 5.1: Potential example

An important issue of potential function is the existence of local minima, i.e. places
where Ftot = 0. In this case the algorithm could produce an error, because the robot is
trapped there (Fig. 5.2). As specified in [41] if every obstacle is modelled as a sphere (as
in our case) and no zero-curvature obstacles exist, local minima do not appear.

5.3 APF for cooperative formation control
The approach described in the section above has been called “traditional” because it
considers a static environment with a single robot. In our thesis, things are more
complicated. First of all, multiple agents are considered in order to generate a
formation. Every robot must not collide with the others, and it must arrange itself in a
predefined position following the leader. Finally, if obstacles exist, they must be avoided.
As can be imagined, cooperative formation avoidance requires a different approach
instead of the traditional one. The most popular one consists in adding other potential
component to the algorithm. In [20], for example, the potential of every follower i can be
divided in three parts:

60

The Artificial Potential Field Algorithm - theoretical explanation

Figure 5.2: Local minimum example (from [41])

• Inter-vehicle potential U j
i : consists in a sum of attractive and repulsive terms

• obstacles potential Uo
i : used for obstacle avoidance

• leader potential U l
i : used to force followers to follow the leader

For every follower a Ui,tot with a global a minimum exists. In this case the user does not
have a direct control on the target point because the minimum is automatically generated.
For the purpose of the thesis, it has been decided to adopt a different approach. In our
case the potential of every follower is similar to [20], but the attractive part of U j

i does
not exists. As it will explained later, potentials will be built in a leader-centred frame and
their components will be:

• Inter-vehicle potential U j
i : repulsive potentials only, to avoid collisions between

aircraft

• obstacles potential Uo
i : used for obstacle avoidance

• target point potential U l
i : used to force the follower to arrange in the specific position

inside the formation.

The APF used in this dissertation is defined “pairwise” because the potential for each
agent is defined on the base of its state compared to that of one or some of the others
[42].

5.4 Gradient descent algorithm and planning
techniques

Once the potential has been created, it should be solved. Actually, the way this problem
should be “solved” critically depends on its nature. In a static well-known environment
(off-line motion planning problem), the trajectory could be computed once and then

61

The Artificial Potential Field Algorithm - theoretical explanation

followed by the robot. It could be the case of a robotic arm which operate in a isolated
chamber, without and other moving object. If the environment changes with time,
computing the entire trajectory could be useless because after a while an obstacle could
interfere with the same trajectory. In both situations, however, the most used approach
is the gradient descent algorithm. The basic idea is quite simple: starting at the initial
configuration, the gradient is computed and a step in its the opposite direction is taken.
The process is repeated until we reach the target point, which is where U = 0. In
practice, this condition is often replaced with ∥∇U(q(i))∥ < ϵ where ϵ is a sufficiently
small tolerance. According to [43], the algorithm can be summarized as follows:

Algorithm 1 Gradient Descent
Input: A means to compute the gradient ∇U(q(i)) at a point q (e.g. APF)
Output: A sequence of points {q(0), ..., q(i)} → route

1: q(0) = qstart
2: i = 0
3: while ∇U(q(i)) /= 0 do
4: q(i+ 1) = q(i) + α(i)∇U(q(i))
5: i = i+ 1
6: end while

The notation q(i) is used to denote the value of q at i-th iteration while the path
consists in the sum of segments generated by {q(0), ..., q(i)}. The term α(i) is the step
size and determines the length of every segment. It can be both constant and variable
value, depending upon mission requirements. In this thesis, as we will analyse in the
next chapter, α(i) will vary with the force Ftot(q). The function we use to calculate the
gradient in Algorithm 1 could considers all points of the grid. The computational effort, in
this case, is a critical factor. When dealing with a lot of points, in fact, the variable-time
simulation (Sect. 6.2) could be very slow. For this reason the question has been raised
whether a way to optimize the algorithm exists. The gradient descent method, as can be
seen from the literature, can basically be of three types:

• Batch gradient descent (BGD)

• Stochastic gradient descent (SGD)

• Mini Batch gradient descent (MBGD)

The batch gradient descent computes gradient considering all point of the grid.
Conversely, the stochastic gradient descent essentially computes gradient using a single
point of the grid. This method is computationally less expensive then BGD but
introduces randomness, that is not the best. The mini batch gradient descent uses a
sub-grid to compute the gradient, removing useless points. The main problem in
cooperative formation control, however, is the choice of the physical limits of the
mini-batch. In fact, if they are too small obstacle could not be recognised in time to be

62

The Artificial Potential Field Algorithm - theoretical explanation

avoided. In our thesis all methods have been investigated but for the sake of simplicity
the BGD method has been implemented.

When the solution to the problem has been found, we need to transform it in something
that can be interpreted by the plant. In fact, what we get from gradient descent can not
be directly employed to control the aircraft. According to [41], using the force Ftot(q),
three planning techniques exist:

1. The force Ftot(q) can be considered as a vector of generalized forces τ , inducing a
motion which depends on the plant dynamics:

τ = Ftot(q) (5.5)

2. The force Ftot(q) can be considered as a vector of generalized accelerations q̈:

q̈ = Ftot(q) (5.6)

The effect of the robot, seen as a point mass, is independent on its dynamics.

3. The force Ftot(q) can be considered as a vector of generalized velocities q̇:

q̇ = Ftot(q) (5.7)

Technically, all these methods can be used both for on-line and off-line motion
planning. Using Eq. 5.5 we directly obtain control inputs for the robot: generated paths
are smoother thanks to the “filtering” effect of the robot dynamics. If we would use Eq.
5.6 we should solve an inverse dynamic problem, substituting q̈ in the robot dynamic
order in order to get forces. Eq. 5.7 could provide reference inputs to low-level
controllers. In absence of local minima only Eq. 5.7 guarantees asymptotic stability of
qgoal being, among other things, the fastest method. That said, in this thesis the third
option has been chosen. If position formation PIDs in Sect. 4.2 are modified in order to
accept velocities as inputs and the APF algorithm generates velocities as outputs, the
follower aircraft can be controlled.

63

Chapter 6

Formation control using a
two-dimensional Artificial
Potential Field Algorithm

This chapter (together with Ch. 7) is probably one of the most important of all this
dissertation: there the two-dimensional APF-based formation control algorithm will be
explained in depth. First of all, a basic 2D cooperative formation control algorithm
will be off-line prototyped using Matlab, understanding its operating principle. This code
generates a static simulation, because the potential does not vary with time. Subsequently
the same functions will be modified in order to be implemented in Simulink, working in
a time-varying environment: both leader and followers APF blocks will be illustrated.
Finally, simulations will be shown to highlight the code functioning.

6.1 Building the algorithm - a static 2D case

6.1.1 Potential functions analysis
Multiple potential functions are available in literature whose choice depends on the nature
of the problem. We basically know that the attractive potential must be a concave function
with a minimum in xgoal while the repulsive potential must be a nonnegative, continuous
and differentiable function whose value should tend to infinity as we approach the obstacle.
In this dissertation:

• The attractive potential is the one proposed by Khatib [30]:

Ua(q) = 1
2Ka∥eg(x)∥2 (6.1)

• The repulsive potential is the one proposed by Dang [20]:

Ur(q) = 1
2Kr1

3
r0 +Kr2

∥dobs∥+Kr2
− 1

42
(6.2)

64

Formation control using a two-dimensional Artificial Potential Field Algorithm

The attractive potential depends on a constant Ka and on the distance between the
point in the grid x where we want to calculate its value and the position of the target
point xgoal:

eg(x) = xgoal − x (6.3)
As can be observed in Fig. 6.1, Ka determines the steepness of the curve. In our case, a
value of Ka = 0.6 has been chosen (Tab. 6.1).

Figure 6.1: Attractive potential function

The repulsive potential is more complicated. In this case there are two different
constants, Kr1 and Kr2. r0 = (Robs + toll) is the repulsive radius and dobs is the
difference between the point of the grid x and xobs:

dobs = x− xobs (6.4)
The effect of repulsive constants is different, as can be noticed in Fig. 6.2. If they

are both equal to one, the function tends to a finite value for dobs = 0m. If we reduce
Kr2 = 0.01, the function tends to infinity but the curve is quite close to the obstacle so
it can not be employed in a APF algorithm. Raising Kr1 = 10000 the function starts to
be usable because it tends to infinity away from the obstacle. In this thesis it has been
decided to combine these effects, with a high value of Kr1 and a low value of Kr2 (Tab.
6.1). For the leader, the Kr1 constant is greater than the follower one in order to highlight
the importance of avoiding the manned aircraft in the formation.

6.1.2 Code architecture
Once the potential functions have been analysed, the cooperative formation algorithm
should be created. Before implementing it in Simulink it has been decided to study the

65

Formation control using a two-dimensional Artificial Potential Field Algorithm

Figure 6.2: Repulsive potential function

Target point Leader Follower

Ka 0.6 - -
Kr1 - 10000 8000
Kr2 - 0.01 0.01

Table 6.1: Constants of the potential functions

operating principle of APF using Matlab. Our algorithm will be essentially made up of
four functions:

• Grid Generator → Initialization code

• Objects (relative) position calculator → ObjectPosCalc_AF

• Potential Generator → PotentialGenerator2D_AF (or 3D)

• Potential Solver → PotentialSolver_AF

The potential, by nature, can be calculated in a specific point in space. Dealing with
continuous quantities using algorithms is not practical while discrete quantities can be
easily handled using lines of code. The space should be discretized transforming it in
a two- or three-dimensional tensor, so the Grid Generator inside the initialization code
fulfils this task. The listing below represents the code used for the three-dimensional
case (the 2D code can be easily obtained removing all the terms which refers to the Z

66

Formation control using a two-dimensional Artificial Potential Field Algorithm

axis). After choosing the half width of every side (half_grid_ext_X, half_grid_ext_Y
, half_grid_ext_Z) and the distance between every point (gridpointdist), using the
ngrid function the tensor is calculated.

Listing 6.1: Grid Generator (3D)
1 half_grid_ext_X =150; %[m]
2 half_grid_ext_Y =150; %[m]
3 half_grid_ext_Z =70; %[m]
4
5 g r i d p o i n t d i s t =3; %[m]
6 n_grid_X=c e i l ((2∗ half_grid_ext_X) / g r i d p o i n t d i s t) ;
7 n_grid_Y=c e i l ((2∗ half_grid_ext_Y) / g r i d p o i n t d i s t) ;
8 n_grid_Z=c e i l ((2∗ half_grid_ext_Z) / g r i d p o i n t d i s t) ;
9

10 X_ext_N=l i n s p a c e (−half_grid_ext_X , half_grid_ext_X , n_grid_X) ;
11 Y_ext_E=l i n s p a c e (−half_grid_ext_Y , half_grid_ext_Y , n_grid_Y) ;
12 Z_ext_H=l i n s p a c e (−half_grid_ext_Z , half_grid_ext_Z , n_grid_Z) ;
13 [x_grid_N , y_grid_E , z_grid_H]= ndgrid (X_ext_N, Y_ext_E , Z_ext_H) ;

As can be seen in Sect. 6.1.1, we need relative distances between a point in the grid x,
the target point xgoal and obstacles xobs. What should be defined is the reference frame
in which these values should be calculated. As will be described later, every potential in
our code is computed in a leader-centred reference frame. The reason is that we consider
the leader as the most advanced aircraft in the formation, having the best calculating
capacity of all. The function “ObjectPosCalc_AF” is responsible to obtains these values,
subtracting the XL,NED and YL,NED positions of the leader to the follower ones and
rotating the results using ψL.

Listing 6.2: Objects position calculator (extract)
1 diff_X_F1=x_F1−x_leader ;
2 diff_Y_F1=y_F1−y_leader ;
3
4 R=[cos (ps i_ leader) s i n (ps i_ leader) ;− s i n (ps i_ leader) cos (

ps i_ leader)] ;
5 dif f_rot_F1=(R∗ [diff_X_F1 ; diff_Y_F1]) ;
6
7 F1forw_d=diff_rot_F1 (1) ;
8 F1lat_d=diff_rot_F1 (2) ;

The next step is to calculate the total potential in every point of the grid. This is
done using the “PotentialGenerator2D_AF” function. After defining all the constants
Ka, Kr1 and Kr2 for leader and follower, the repulsive radius r0 and after preallocating
matrices, potential values are computed using two (or three in the 3D case) for loops.
Moreover, when dealing with repulsive terms, using a if structure only points inside r0
are selected. The attractive potential for the target point is calculated in a similar manner
and the total potential for every follower is obtained adding all the terms. For the static
simulation r0 is considered constant whereas in Simulink it is a function of the aircraft
velocity V . The leader position in the grid, which is [xL,grid, yL,grid] = [0; 0] by default,
can be changed modifying Lforw_p (= xL,g) and Llat_p (= yL,g). Two extra features,
not used during simulations, have been included:

67

Formation control using a two-dimensional Artificial Potential Field Algorithm

• The possibility to generate a potential without target point and with the coexistence
of both attractive and repulsive parts centred in every follower. This operating
principle is the first one explained in Sect. 5.3

• If the previous operating principle is selected, attractive and repulsive potential could
use different radius r0 in order to generate a sectionalized domain. This solution,
according to [44], stabilizes the algorithm.

The following listing is an extract of the “PotentialGenerator2D_AF” function. Using
a switch structure, the exact number of followers (between one and four) can be included.

Listing 6.3: Potential Generator (extract)
1 Ua_F1 = z e r o s (n_grid_X , n_grid_Y) ;
2 Ur_F1 = z e r o s (n_grid_X , n_grid_Y) ;
3 Ut_F1 = z e r o s (n_grid_X , n_grid_Y) ;
4
5 f o r i i = 1 : n_grid_X
6 f o r j j = 1 : n_grid_Y
7 i f rho_obs_follo_2D (F1forw_d , F1lat_d , x_ext_N(i i) ,y_ext_E(

j j)) > Resterno_F1
8
9 Ua_F1(i i , j j) = 0 .5∗Ka_F1∗ rho_obs_follo_2D (F1forw_d ,

F1lat_d , x_ext_N(i i) ,y_ext_E(j j)) .^2 −0.5∗Ka_F1∗(
Resterno_F1) . ^ 2 ;

10 e l s e
11 Ua_F1(i i , j j) = 0 ;
12 end
13 i f rho_obs_follo_2D (F1forw_d , F1lat_d , x_ext_N(i i) ,y_ext_E(

j j)) <=Rinterno_F1
14
15 Ur_F1(i i , j j) =0.5∗Kr1_F1∗ ((r0_F1+Kr2_F1) . / (

rho_obs_follo_2D (F1forw_d , F1lat_d , x_ext_N(i i) ,
y_ext_E(j j))+Kr2_F1) −1) . ^ 2 ;

16 e l s e
17 Ur_F1(i i , j j) = 0 ;
18 end
19 end
20 end
21
22 f o r i i = 1 : n_grid_X % Target po int
23 f o r j j = 1 : n_grid_Y
24 Ut_F1(i i , j j) = 0 .5∗Ka_T∗ rho_obs_follo_2D (targetpo intF1 (1)

, ta rgetpo intF1 (2) ,x_ext_N(i i) ,y_ext_E(j j)) . ^ 2 ;
25 end
26 end
27
28 potent ia l_F1=Ui_L+Ut_F1 ;

At this point, the potential can finally be solved using a gradient descent method.
There, an important difference exists between the static Matlab code and the time-varying
Simulink one. The former is basically equal to the Algorithm 1 in Sect. 5.4, computing
the entire route from the start to the target point. At the contrary, the latter does not

68

Formation control using a two-dimensional Artificial Potential Field Algorithm

solve the entire potential because it would not be efficient, as we will see in the following
sections. The listing below represents the code used for the static simulation. After
initializing some parameters (i, todo, max_iter and maxForce), the index of the starting
point is calculated using the min function. The gradient is then computed, generating the
force vector F and the step size is obtained proportionally to the absolute value of F. The
point q and its indexes can be employed to obtain the route through interpolation.

Listing 6.4: Potential Solver (static Matlab 2D simulation)
1 func t i on [l_c lear , f_c lear , route_clear , index_clear , i] =

PotentialSolver_AF (x_grid_N , y_grid_E , p o t e n t i a l , Fforw_d , Flat_d ,
gamma_step)

2
3 %%% PARAMETERS INITIALIZATION
4 i =0; % # of i t e r a t i o n s
5 todo =1; % f o r " whi l e " loop
6 max_iter =500;
7 maxForce=10^−4;
8
9 % Find index o f f o l l o in l eader −cente red r e f system

10 [~ , inx_N]=min (abs (x_grid_N (1 , :)−Fforw_d)) ; % I n i t i a l index o f X f o l l o w e r
pos

11 [~ , iny_E]=min (abs (y_grid_E (: , 1)−Flat_d)) ; % I n i t i a l index o f Y f o l l o w e r
pos

12 route_c lear =[Fforw_d Flat_d] ;
13 index_clear =[inx_N iny_E] ;
14
15 %%% FIND THE MINIMUM! %%%
16 % Gradient c a l c u l a t i o n
17 [Fx , Fy]= grad i en t (− p o t e n t i a l) ;
18
19 whi le todo==1
20
21 %%% Force in cur rent po int (use " i n t e rp2 ")
22 F=[in t e rp2 (Fx , inx_N , iny_E , ' l i n e a r ') , i n t e rp2 (Fy , inx_N , iny_E , ' l i n e a r ')

] ;
23 modF = max(10^ −6 , s q r t (F(1) .^2+F(2) . ^ 2)) ;
24
25 %%% Compute step alpha
26 alpha=gamma_step∗ s q r t (F(1)^2+F(2) ^2) ;
27
28 %%% Compute increment q
29 q=alpha ∗(F. /modF) ;
30
31 %%% Compute new indexes
32 inx_N = inx_N + q (1) ;
33 iny_E = iny_E + q (2) ;
34
35 i f modF<maxForce
36 todo =0;
37 e l s e
38 i=i +1;
39

69

Formation control using a two-dimensional Artificial Potential Field Algorithm

40 i f i==max_iter
41 todo =0;
42 f p r i n t f ('Too many i t e r a t i o n s ! ! ') ;
43 end
44 end
45
46 l _ c l e a r= in t e rp2 (y_grid_E , inx_N , iny_E , ' l i n e a r ') ;
47 f_c l ea r= in t e rp2 (x_grid_N , inx_N , iny_E , ' l i n e a r ') ;
48 route_c lear =[route_c lear ; [f_c l e a r l _ c l e a r]] ;
49 index_clear =[index_clear ; [inx_N iny_E]] ;
50 end
51 end

6.1.3 Static 2D simulation results
The main purpose of the static simulation is to understand how the Artificial Potential
Field algorithm works and how it could be optimized for a time-varying environment.
The initial conditions have been chosen to be different to the PID model ones (Sect. 4.4).
Considering an inertial reference system (NED) corresponding to the initial position of
the leader, starting points and target points of the aircraft are:

Starting point [x, y]st Target point [x, y]tg
Follower 1 [50,50] [0,-70]
Follower 2 [50,−50] [0,-90]
Follower 3 [−50,−50] [80,-80]
Follower 4 [−50,50] [30,-30]

Table 6.2: Static simulation - starting and target points

In Fig. 6.3 the results of the static simulation are depicted. As can be observed, the
gradient descent algorithm follows the steepest descent direction, avoiding obstacles (as
the leader aircraft in [x, y]L = [0,0]). The step size depends on the absolute value of
the force (that is the slope of the potential), for this reason it decreases as we approach
the target point. Observing the fourth follower, we can notice that it does not reach its
target point but it remains trapped in the vicinity of the leader. This is a saddle point,
and it is a typical disadvantage of the APF algorithm. Like the local minima, there the
force F is exactly equal to zero so numerically no descent directions exist. In a static
simulation this problem could be solved introducing white noise in the route in order to
escape saddle points. A time-varying simulation is typically noisier than the static one,
for this reason saddle points could be automatically escaped. This phenomenon, however,
should be further studied.

70

Formation control using a two-dimensional Artificial Potential Field Algorithm

(a) 3D view (XY) - F1 (b) 2D view (XY) - F1

(c) 3D view (XY) - F2 (d) 2D view (XY) - F2

(e) 3D view (XY) - F3 (f) 2D view (XY) - F3

71

Formation control using a two-dimensional Artificial Potential Field Algorithm

(g) 3D view (XY) - F4 (h) 2D view (XY) - F4

Figure 6.3: Static two-dimensional APF example

6.2 The Simulink model - time varying 2D case
After studying the static algorithm, Matlab functions in Sect. 6.1.2 have been modified
in order to work in a two-dimensional time-varying environment. The aircraft model is
the same used for the PID formation control model (Sect. 4), with all its mobile surfaces
and autopilot blocks. In this case, however:

• Relative distances and potentials in leader-centred reference frame are calculated by
the leader. The APF leader block has been added.

• Potential tensors are transmitted to every follower and solved using the gradient
descent algorithm. Only one step is executed and results are conveniently handled
to be used by formation PIDs

Supposing a limited computational power, every APF block works at a frequency
f = 1Hz. This hypothesis, as we will see, will affect our simulations (especially during
turns) since it will introduce delayed commands.

6.2.1 Leader UAV - 2D APF block
In Fig. A.13 an overview of the APF leader block is depicted. First of all, NED
positions and velocities are received in input together with the heading angle ψL. Using
these data relative positions in leader-centred frame are calculated thanks to the
“ObjectPosCalc_AF” function (Sect. 6.1.2). The same function can be employed to
include moving obstacles in the simulation, provided that xOBS,NED and yOBS,NED are
known. A “Fixed-moving obstacle NED positions” block (Fig. 6.4) has been created:
assuming constant velocities and altitude, using a Digital Clock we obtain xOBS,NED
and yOBS,NED that can subsequently transformed.

72

Formation control using a two-dimensional Artificial Potential Field Algorithm

Figure 6.4: Fixed-moving obstacle NED positions block

Input values in Fig. 6.4, i.e. initial (t = 0 s) positions and velocities of the obstacle
should be initialized. Using switch multiple scenarios have been created, like the no-fly
zone in the listing below. The obs_on flag is needed to activate the potential calculation
in the PotentialGenerator2D_AF_sim function. R_obs1 is the physical obstacle radius
while R_pot1 is the repulsive potential radius that is proportional to R_obs1, including a
tolerance toll (in this case it is equal to R_obs1).

Listing 6.5: No-fly zone obstacle initialization example
1 case ' no−f l y z o n e '
2 obs_on=1;
3 X_NED_NORD_obs1=4000;
4 Y_NED_EAST_obs1=−2000;
5 Z_NED_H_obs1=4000;
6 X_NED_vel_obs1=0;
7 Y_NED_vel_obs1=0;
8 Z_NED_vel_obs1=0;
9 R_obs1=1400;

10 R_pot1=R_obs1 ∗2 ; %=R_obs1+t o l l

Once all positions in leader-centred frame have been calculated, the potential is
computed using “PotentialGenerator2D_AF_sim”. This function is similar to its static
version, but some modifications have been introduced. Every aircraft, during the
simulation, can change its velocity acting on the throttle. If an obstacle must be avoided
at higher velocities then V0, a faster platform response time is needed. In our model the
inertia of the aircraft has been implicitly taken into consideration during all PID tuning
and it mainly depends on plant matrices, which are constant. In order to facilitate
obstacle avoidance, the potential generator function has been modified acting on the
repulsive radius. Supposing a velocity interval of [60 − 140] ms (Tab. 3.2), the repulsive
radius of every aircraft is calculated by a exponential function:

73

Formation control using a two-dimensional Artificial Potential Field Algorithm

Rrep = Robs + toll = Rmax

3
Rmin
Rmax

4 V −140
60−140

(6.5)

Rmax and Rmin should be chosen accurately in order not to interfere with the formation
shape logic (Sect. 4.3). If we chose a wrong value of Rmax, for example, followers could
have difficulty reaching their target points. In our code it has been decided to compute
Rmax depending on the minimum aircraft distance in the formation patten, that is equal
to the value of minfiguredist. As can be seen in the following listing, Rmin,L = 25m
and Rmin,F = 20m are constant values while Rmax varies:

Rmax,L = max (25,min (50,minfiguredist))
Rmax,F = max (20,min (40,minfiguredist))

(6.6)

This means that if V > V0 the repulsive radius increases and every follower “perceives”
obstacles earlier, having more time to avoid them. Once potentials and distances have
been calculated, they are sent to follower blocks where, thanks to Bus selectors they are
extracted and manipulated.

Listing 6.6: Potential Generator (Simulink version - extract)
1
2 Rvarfun= @(Rmax, Rmin ,V) Rmax∗(Rmin/Rmax) ^((V−140)/(60 −140)) ;
3
4 Rmin_L=35; %[m]
5 Rmax_L=max(Rmin_L, min (50 , m i n f i g u r e d i s t)) ; %[m]
6
7 Rmin_F=30; %[m]
8 Rmax_F=max(Rmin_F, min (40 , m i n f i g u r e d i s t)) ; %[m]
9

10 % Repuls ive pot d i s t a n c e o f the l e a d e r (VARIABLE!)
11 Rinterno_L=Rvarfun (Rmax_L, Rmin_L,VL) ; % [m]
12 Resterno_L=Rinterno_L+0; % [m]
13
14 % Repuls ive pot d i s t a n c e o f every f o l l o w e r (VARIABLE!)
15 Rinterno_F1 = Rvarfun (Rmax_F,Rmin_F,VF1) ; % [m]
16 Resterno_F1 = Rinterno_F1+0; % [m]
17 Rinterno_F2 = Rvarfun (Rmax_F,Rmin_F,VF2) ; % [m]
18 Resterno_F2 = Rinterno_F2+0; % [m]
19 Rinterno_F3 = Rvarfun (Rmax_F,Rmin_F,VF3) ; % [m]
20 Resterno_F3 = Rinterno_F3+0; % [m]
21 Rinterno_F4 = Rvarfun (Rmax_F,Rmin_F,VF4) ; % [m]
22 Resterno_F4 = Rinterno_F4+0; % [m]

6.2.2 Follower UAV - 2D APF block
In Fig. A.14 an overview of the APF follower block is depicted. Inputs of this block are
potentials and distances (from the leader) together with ψL, ψF and XY grids produced
using ngrid. The PotentialSolver_AF_sim function derives from its static version, but

74

Formation control using a two-dimensional Artificial Potential Field Algorithm

there is an important difference that should be highlighted. In the static (not time-variant)
version we calculated the entire route, stopping iterations when a specific condition was
satisfied; in a time-variant environment this is completely useless. Suppose that, for every
simulation step of the APF (i.e. being f = 1Hz, every second), we obtain the entire route.
In order to calculate errors for formation PIDs, we should select a point from which we
could extract two- or three-dimensional values (one for each direction). These values can
be:

• position of one point P of the route

• force F of one point P of the route

Formation PIDs have to be created depending on the type of value we have chosen.
In our case both solutions have been investigated but it has been decided to extract the
force F so as to be coherent with Siciliano [41]. That said, we wonder how many points
P of the route we need to calculate every time step (assumed that a force F can be
associated to every P) so that the solution can be efficiently employed in the Simulink
model. If we choose a random point of the route, obstacles will not be avoided because
the aircraft would be forced to reach that point following a straight trajectory. For this
reason we have decided to stop before the first iteration, calculating the force in the point
where the follower is.
That said, the PotentialSolver_AF_sim function (in the listing below) will be now
described. Parameters like i, todo, maxiter and maxForce are not initialized because
they are not necessary for the model. Using min we can obtain the index of the actual
position of the follower INXF = [inx_N, inx_E]T in leader-centred frame, finding the
point of the grid where the difference between xgrid (ygrid) and Fforw_d (Flat_d) is
smaller. The gradient is calculated using gradient (the output is [Fy,Fx] to be
coherent with ngrid) and the force F in INXF is extracted. The absolute value of F is
calculated (it is limited to 10−6 in order to avoid NaN errors) and the descent direction
dL is obtained. As we described in Sect. 5.4, the output of the APF depends on F and
consequently on dL. The main problem is that formation PIDs need vectors in
follower-centred frame, so the descent direction should be rotated obtaining d:

d =
5
Fx
Fy

6
FOLLO

= RLF · dL =
5 cos (ψF − ψL) sin (ψF − ψL)
− sin (ψF − ψL) cos (ψF − ψL)

6 5
Fx
Fy

6
LEAD

(6.7)

At this point we should choose the type of command to send to the follower, which will
characterize the input of formation PIDs. In the model explained in Sect. 4 commands
are target points in follower-centred frame, so we dealt with positions; for the Artificial
Potential Field, we extract a force F . In Sect. 5.4 we have described three planning
techniques and we said that the best option for our case was Eq. 5.7:

q̇ = F (q)
We need to calculate velocities from the force F . These velocities (along X and Y)

lead the follower to flight along a specific direction which is the one calculated by APF in
order to avoid obstacles and reach safely the target point:

75

Formation control using a two-dimensional Artificial Potential Field Algorithm

f_Vclear=min(5,0.15*abs(F(1)))*d(1)
l_Vclear=min(6,0.20*abs(F(2)))*d(2)

(6.8)

As can be observed from Eq. 6.8, f_Vclear and l_Vclear are obtained multiplying d
by a term which depends on the corresponding F component. Using min we can insert a
superior limit, avoiding excessive high speed.

Listing 6.7: Potential Solver (Simulink version)
1 func t i on [l_Vclear , f_Vclear , dL] = PotentialSolver_AF_sim (x_grid_N ,

y_grid_E , p o t e n t i a l , Fforw_d , Flat_d , psiL , psiF)
2 %%% PARAMETERS INITIALIZATION %%%
3 % Find index o f f o l l o w e r in l eader −cente red r e f system
4 [~ , inx_N]=min (abs (x_grid_N (: , 1)−Fforw_d)) ; % Index o f X f o l l o w e r pos
5 [~ , iny_E]=min (abs (y_grid_E (1 , :)−Flat_d)) ; % Index o f Y f o l l o w e r pos
6
7 %%% SOLVE! %%%
8 % Gradient c a l c u l a t i o n
9 [Fy , Fx]= grad i en t (− p o t e n t i a l) ;

10
11 %%% Force in cur rent po int
12 F=[Fx(inx_N , iny_E) ,Fy(inx_N , iny_E)] ;
13 modF = max(10^ −6 , s q r t (F(1) .^2+F(2) . ^ 2)) ;
14
15 dL=(F. /modF) ; % Descent d i r e c t i o n in leader −cente red system
16 d i f f a n g l e=psiF−psiL ;
17 R_LF=[cos (d i f f a n g l e) s i n (d i f f a n g l e) ; −s i n (d i f f a n g l e) cos (d i f f a n g l e)] ;
18 d=R_LF∗dL ' ;
19
20 % APF commands
21 l_Vclear=min (6 , 0 . 20∗ abs (F(2))) ∗d (2) ;
22 f_Vclear=min (5 , 0 . 15∗ abs (F(1))) ∗d (1) ;
23
24 end

6.2.3 Follower UAV - 2D errors calculation and PID tuning
f_Vclear and l_Vclear, that are velocities in follower-centred reference frame, can be
used to calculate errors needed by formation PIDs. An overview of the error calculation
block is depicted in Fig. A.15. Leader and followers NED velocities, obtained from their
Plant blocks, are subtracted and rotated using the heading angle ψF :

5∆VN,followerframe
∆VE,followerframe

6
= RLF ·∆VNED =

=
5
cos(ψF) sin(ψF)
−sin(ψF) cos(ψF)

6 5
VN,F − VN,L
VE,F − VE,L

6 (6.9)

Altitude error does not need to be rotated:

76

Formation control using a two-dimensional Artificial Potential Field Algorithm

∆h = hF − hL (6.10)

Formation errors are subsequently calculated:
ḟformationerror = ḟAPF −∆VN,followerframe
l̇formationerror = l̇APF −∆VE,followerframe
hformationerror = hAPF −∆h

(6.11)

where hAPF = 0m so that every follower can flight at the same altitude of the leader.
This velocity errors obtained, they can be used in formation PIDs. The Lateral velocity
formation PID (Fig. A.16) consist of a proportional, a derivative and an integral line. The
output, ∆φ, is limited between [−30 deg, 30 deg] and it is added to the Heading Autopilot
one (Fig. A.6). Thanks to a trial-and-error procedure, PID gains (Tab. 6.3) and step
response (Fig. 6.5) can be obtained:

Lateral formation PID (velocity)
KP_ldot_fPD = 0.15
KI_ldot_fPD = 0.03
KD_ldot_fPD = 0.05
Kpost_ldot_fPD = 2

Table 6.3: Lateral formation PID (velocity) block gains

Figure 6.5: Lateral formation PID (velocity) block step response

77

Formation control using a two-dimensional Artificial Potential Field Algorithm

The Forward velocity formation PI (Fig. A.17) does not include a derivative line
inasmuch it has been observed that it causes signal disturbances. A Saturation has been
inserted in the Throttle LQR (Fig. A.2) in order to limit the output between [60 m

s , 140 m
s]

and the output is directly sent to the previous LQR. PID gains (Tab. 6.4) and step
response (Fig. 6.6) are:

Forward formation PI (velocity)
KP_fdot_fPD = 1
KI_fdot_fPD = 1

Table 6.4: Forward formation PI (velocity) block gains

Figure 6.6: Forward formation PI (velocity) block step response

6.2.4 Simulation #1
The first simulation, similarly to Sect. 4.4, has been created using the manoeuvre string.
In this case the cooperative 2D APF-based formation control algorithm is activated and
drives each follower which follows the leader avoiding obstacles. The code used is included
in Appendix B.3 while flag values for this scenario are:

• manoeuvre → 'manovra sim1 APF 2D'

• sectform → 'sect sim1 APF 2D'

• obstacleflag → 'no-flyzone sim1 APF 2D'

78

Formation control using a two-dimensional Artificial Potential Field Algorithm

Figure 6.7: Simulation #1 overview (APF 2D)

In Fig. 6.7 an overview of the scenario at t = 0 s is depicted. The leader aircraft
position in NED reference frame is [0,0, H0] (where H0 = 3048m) while followers are in
wall formation. A no-fly zone, considered as a cylinder with infinite height and radius
Rnfz = 1400m has been centred in Cnfz = [xnfz, ynfz] = [4000,−2000]m. The repulsive
radius of the no-fly zone has been calculated doubling Rnfz. The manoeuvre vector
consists of three parts. First of all, every aircraft flights straight without any change in
velocity. At t = 40 s a first turn is performed toward ψ = −90 deg avoiding the no-fly
zone and at t = 120 s a second turn is performed toward ψ = −180 deg. At the same
time the formation patten changes using the the sectform vector. Starting from the wall
formation, at t = 5 s a vic geometry is ordered while at t = 120 s the selected shape is
box.

79

Formation control using a two-dimensional Artificial Potential Field Algorithm

(a) S1 XY view - t = 0 s (b) S1 Potential visualization - t = 0 s

(c) S1 XY view - t = 20 s (d) S1 Potential visualization - t = 20 s

80

Formation control using a two-dimensional Artificial Potential Field Algorithm

(e) S1 XY view - t = 40 s (f) S1 Potential visualization - t = 40 s

(g) S1 XY view - t = 60 s (h) S1 Potential visualization - t = 60 s

81

Formation control using a two-dimensional Artificial Potential Field Algorithm

(i) S1 XY view - t = 80 s (j) S1 Potential visualization - t = 80 s

(k) S1 XY view - t = 100 s (l) S1 Potential visualization - t = 100 s

82

Formation control using a two-dimensional Artificial Potential Field Algorithm

(m) S1 XY view - t = 120 s (n) S1 Potential visualization - t = 120 s

(o) S1 XY view - t = 140 s (p) S1 Potential visualization - t = 140 s

83

Formation control using a two-dimensional Artificial Potential Field Algorithm

(q) S1 XY view - t = 160 s (r) S1 Potential visualization - t = 160 s

(s) S1 XY view - t = 180 s (t) S1 Potential visualization - t = 180 s

84

Formation control using a two-dimensional Artificial Potential Field Algorithm

(u) S1 XY view - t = 200 s (v) S1 Potential visualization - t = 200 s

Figure 6.8: Simulation #1 results - 2D APF

85

Formation control using a two-dimensional Artificial Potential Field Algorithm

In Fig. 6.8 results of the simulation can be observed. In particular, on the right
side a contour plot represents the potential handled by the first follower in leader-centred
reference frame and the leader repulsive circumference has been drawn. Around the
other aircraft the repulsive part is recognisable by an increase in colour. For the sake of
simplicity, we will refer to followers using abbreviations F1, F2, F3, F4 (e.g. F1 is the
first follower). If the wall formation at t = 0 s can be easily identified in (a)(b) (F1 is
already in its target point), the formation subsequently receives the order to generate the
vic pattern. In (c)(d) we can see that F2 has successfully reached its position while F1,
F3 and F4 repel themselves. The closest distance between F1 and F3 obtained during the
manoeuvre strongly depends on attractive/repulsive constants, APF gains and aircraft
inertia and could be reduced modifying these values. The vic pattern at t = 40 s (e)(f)
is not complete yet but the leader begins its left turn. The no-fly zone influences the
formation, as can be seen in (g)(h): the target point, which would be the same of (f) if
no obstacles existed, moves right and push F1 away from the no-fly zone. In (i)(l) the
first follower is on the right side of the leader while it should be on the left according to
the vic formation. When the obstacle has been avoided and the heading direction is the
desired one (ψ = −90 deg for the first turn), the correct vic shape is recovered (m)(n).
At this point a second turn and a box shape are ordered and in the last images it can be
seen how aircraft succeed in it, despite the short distance between them. This simulation
demonstrates how this algorithm works in a complex scenario. Every follower tends to
stay close to the leader and avoid obstacles with the possibility to change the formation
shape in every moment. Varying few constants, the algorithm could be easily adapted to
every type of aircraft because it does not depend directly to the plant geometry.

86

Formation control using a two-dimensional Artificial Potential Field Algorithm

6.2.5 Simulation #2
In the second simulation, differently from the other ones, the manoeuvre vector has not
been used. In this case the leader is controlled using a Thrustmaster TCA Sidestick
Airbus edition joystick, whose Simulink block can be easily observed in Fig. 3.13. Being a
2D APF algorithm working on XY plane, only roll_joystick and velocity_joystick
commands have been activated while pitch_joystick and beta_joystick ones have

been set to zero. The joystickflag value has been set to 2 (as needed by the Multiport
Switch). Using a combination of To Workspace and From Workspace blocks active outputs
of the joystick have been saved in order to execute the same simulation multiple times.
The code is included in Appendix B.4 while flag values are:

• manoeuvre → useless

• sectform → 'sect sim2 APF 2D'

• obstacleflag → 'no-flyzone sim2 APF 2D'

Figure 6.9: Simulation #2 overview (APF 2D)

In Fig. 6.9 an overview of the scenario at t = 0 s is depicted. As for the previous
simulation, the leader aircraft position in NED reference frame is [0,0, H0] while followers
are in wall formation. Using sectform the formation pattern autonomously changes two
times: at t = 50 s the selected geometry is box while at t = 100 s it is echelon. The

87

Formation control using a two-dimensional Artificial Potential Field Algorithm

Figure 6.10: S2 Joystick commands

no-fly zone is always centred in Cnfz = [xnfz, ynfz] = [4000,−2000]m also if its radius
has been doubled. Joystick commands are shown in Fig. 6.10 where can be noticed that
the roll angles has been limited to ±15 deg and velocities between [60−100] ms . The initial
velocity, being controlled with the joystick slider, has been set to V0 = 82.6566 m

s .

(a) S2 XY view - t = 0 s (b) S2 Potential visualization - t = 0 s

88

Formation control using a two-dimensional Artificial Potential Field Algorithm

(c) S2 XY view - t = 20 s (d) S2 Potential visualization - t = 20 s

(e) S2 XY view - t = 40 s (f) S2 Potential visualization - t = 40 s

89

Formation control using a two-dimensional Artificial Potential Field Algorithm

(g) S2 XY view - t = 60 s (h) S2 Potential visualization - t = 60 s

(i) S2 XY view - t = 80 s (j) S2 Potential visualization - t = 80 s

90

Formation control using a two-dimensional Artificial Potential Field Algorithm

(k) S2 XY view - t = 100 s (l) S2 Potential visualization - t = 100 s

(m) S2 XY view - t = 120 s (n) S2 Potential visualization - t = 120 s

91

Formation control using a two-dimensional Artificial Potential Field Algorithm

(o) S2 XY view - t = 140 s (p) S2 Potential visualization - t = 140 s

(q) S2 XY view - t = 160 s (r) S2 Potential visualization - t = 160 s

92

Formation control using a two-dimensional Artificial Potential Field Algorithm

(s) S2 XY view - t = 180 s (t) S2 Potential visualization - t = 180 s

(u) S2 XY view - t = 200 s (v) S2 Potential visualization - t = 200 s

Figure 6.11: Simulation #2 results - 2D APF

93

Formation control using a two-dimensional Artificial Potential Field Algorithm

The scenario will be now described. Differently from Simulation #1, the potential
will be depicted using surfaces instead of contour lines. Joystick roll commands (Fig.
6.9(b)) are affected by joystick sensitivity and they may seem confusing, but thanks to
aircraft inertia only held commands affect leader trajectory significantly. At t = 0 s, as it
has previously mentioned, the formation pattern is a wall type (Fig. 6.11(a)). Joystick
commands correspond to initial conditions of the leader, so nothing change. At t ≃ 5 s
a short left turn is executed and a velocity of 60 m

s is ordered, followed by a right turn
basically held for ≃ 10 s. Observing Fig. 6.11(c)(d), the wall formation begins to warp
due to the no-fly zone whose repulsive radius Rpot is equal to 5600m (it has been obtained
doubling the actual physical radius Robs = 2800m). The leader is piloted so that the no-
fly zone can be avoided and its repulsive action become stronger as we approach Cnfz.
At t = 40 s (Fig. 6.11(e)(f)) a left turn is executed in order to flank the obstacle and
velocity is gradually increased to V ≃ 90 m

s . Comparing Fig 6.11(b) and Fig. 6.11(f) it
can be noticed how potential values are generally higher in the second case due to the
no-fly zone. While F1 and F2 succeed in maintaining a quite undisturbed trajectory, F3
and F4 are conditioned by the presence of the leader and they are forced to fly very close
to each other. As the distance from Cnfz increases the formation recovers its wall pattern
until, at t = 50 s, the box one is ordered: followers target points (i.e. relative positions in
a leader-centred reference frame) change. Comparing Fig. 6.11(f) and Fig. 6.11(h) it can
be observed how, for F1, the initial TPF1,wall = [0; 50]m becomes TPF1,box = [75; 0]m.
Once the obstacle has been overtaken, the box pattern can be easily recognized (Fig.
6.11(i)(j)) and it is preserved despite alternate left and right turns. At t ≃ 100 s (Fig.
6.11(k)(l)) a velocity of V = 100 m

s is selected and aircraft start generating the echelon
geometry while the leader executes various turns (Fig. 6.11(m)(n)(o)(p)). At t ≃ 150 s
the leader velocity is first reduced to V = 60 m

s then increased to V ≃ 80 m
s (t ≃ 170 s)

and it can be noticed how followers succeed in keeping the formation in every situation
(Fig. 6.11(q)(r)(s)(t)(u)(v)). Thanks to this simulation the reliability of the algorithm has
been demonstrated: every aircraft can maintain or change the formation shape during fast
manoeuvres, avoiding obstacles. It should be specified that results could vary if different
type of aircraft in the same formation are implemented. In this case, in fact, the algorithm
should consider differences of flight envelopes and act accordingly.

94

Formation control using a two-dimensional Artificial Potential Field Algorithm

6.2.6 Simulation #3
The main purpose of the third simulation is to demonstrate a particular feature of the
algorithm, i.e. the possibility to split the formation so that a follower can fly over a
specific point on the map. As for Simulation #2, the Thrustmaster TCA Sidestick Airbus
edition joystick has been used to control roll angle and velocity of the leader (Fig. 3.13)
and all the considerations made at the beginning of Sect. 6.2.5 are valid. Some differences
with the previous model, however, should be highlighted. No obstacles are included in
the scenario so every follower must avoid the other aircraft only. Flag values are:

• manoeuvre → useless

• sectform → included in the Simulink model

• obstacleflag → useless

The first important difference is that the sectformfig vector, which consist of the
target points of every follower, is not created using the initialization code. Target points are
generally defined, in the section formation switch structure, in a leader-centred reference
frame. If we want a follower to reach a specific point on the map, it will reasonably provide
in a NED reference frame so a rototranslation will be necessary. Thus, sectformfig
depends on variables (xL, yL, ψL) which vary over time and it has to be recalculated
every time step. This is done using the block in Fig. 6.12.

Figure 6.12: Simulation #3 sectformfig creation

The sim3tesi2D function code, included in Appendix B.6, is now described. The
leader aircraft position in NED reference frame at t = 0 s is [0,0, H0] while followers are
in vic formation, which is maintained for five seconds. At t > t2 = 5 s the target point of
the first follower changes, since its purpose is to reach the point (NED coordinates):

TPF1,NED = [xTP,F1,NED ; yTP,F1,NED] = [8000 ; 1250]m

This point is translated in the leader-centred reference frame. The elseif condition
is characterized by:

(orologio>t2)&& ((8000-x_leader)>100 && (1250-y_leader)>100)

95

Formation control using a two-dimensional Artificial Potential Field Algorithm

Thanks to this line of code, the first follower if forced to reach TPF1,NED until its
forward and lateral distance from the same point is bigger than 100m. If this condition is
not met, the aircraft has successfully flew over TPF1,NED. At this point a echelon figure
is requested to all the followers.
The grid, in this case, should be larger than the other ones used in Simulation #1 and
#2. For this reason the half_grid_ext_X and half_grid_ext_Y values are equal to
1500m with gridpointdist equal to 6m (to avoid long computational times). The
PotentialSolver_AF_sim (originally depicted in Listing 6.7) has been modified too, as
can be seen in Listing 6.8. In order to force the follower to reach rapidly the point on
the map TPF1,NED, APF outputs depends on the absolute value of the distance between
the target point and the current position of the follower. In so doing if the aircraft is
far from its target point it tries to approach it in the shortest possible time while, if it is
close enough, the APF formation control algorithm generates small commands in order
to avoid overshoots. Joystick commands are shown in Fig. 6.13 where the initial velocity,
controlled using a slider, has been set to 82.5003 m

s . As for Simulation #2, roll angle and
velocity are limited between [−15; 15] deg and [60; 100] ms respectively.

Listing 6.8: Potential Solver (Simulink version used in Simulation #3)
1 func t i on [l_Vclear , f_Vclear , dL] = PotentialSolver_AF_sim (x_grid_N ,

y_grid_E , p o t e n t i a l , Fforw_d , Flat_d , psiL , psiF)
2 %%% PARAMETERS INITIALIZATION %%%
3 % Find index o f f o l l o w e r in l eader −cente red r e f system
4 [~ , inx_N]=min (abs (x_grid_N (: , 1)−Fforw_d)) ; % Index o f X f o l l o w e r pos
5 [~ , iny_E]=min (abs (y_grid_E (1 , :)−Flat_d)) ; % Index o f Y f o l l o w e r pos
6
7 %%% SOLVE! %%%
8 % Gradient c a l c u l a t i o n
9 [Fy , Fx]= grad i en t (− p o t e n t i a l) ;

10
11 %%% Force in cur rent po int
12 F=[Fx(inx_N , iny_E) ,Fy(inx_N , iny_E)] ;
13 modF = max(10^ −6 , s q r t (F(1) .^2+F(2) . ^ 2)) ;
14
15 dL=(F. /modF) ; % Descent d i r e c t i o n in leader −cente red system
16 d i f f a n g l e=psiF−psiL ;
17 R_LF=[cos (d i f f a n g l e) s i n (d i f f a n g l e) ; −s i n (d i f f a n g l e) cos (d i f f a n g l e)] ;
18 d=R_LF∗dL ' ;
19
20 % APF commands (modi f i ed f o r S imulat ion 3)
21 i f abs (t a r g e t p o i n t (2)−Flat_d)<50
22 l_Vclear=min (6 , 0 . 1 5∗ abs (F(2))) ∗d (2) ;
23 e l s e
24 l_Vclear=min (24 ,15∗ abs (F(2))) ∗ s i gn (d (2)) ;
25 end
26 i f abs (t a r g e t p o i n t (1)−Fforw_d)<50
27 f_Vclear=min (5 , 0 . 2 ∗ abs (F(1))) ∗d (1) ;
28 e l s e
29 f_Vclear=min (21 ,10∗ abs (F(1))) ∗ s i gn (d (1)) ;
30 end
31 end

96

Formation control using a two-dimensional Artificial Potential Field Algorithm

Figure 6.13: S3 Joystick commands

The simulation is now described observing Fig. 6.14, where both XY plot and potential
of the first follower are depicted. For the sake of brevity, we will refer to followers using
abbreviations (F1, F2, F3, F4). At t = 0 s (Fig. 6.14(a)(b)) the formation is a vic type,
with larger distances then other scenarios in order to improve visualization. The leader
aircraft performs right and left turns in sequence during all the simulation with a speed
variation from 82.5003 m

s to 100 m
s at t ≃ 10 s (Fig. 6.13). At t > t2 = 5 s the target

point of F1 changes and F1 starts to move away from the formation: in Fig. 6.14(d)(f)(h)
isolines are centred in TPF1,NED and the force direction points towards it. Its trajectory,
as can be observed from Fig. 6.14(c)(e)(g), is not straight: this is probably caused by
the high value of gridpointdist which cause a lower accuracy in gradient calculation.
At t ≃ 70 s, F1 flies nearby TPF1,NED (the purple area in Fig. 6.14(i) is centred in
TPF1,NED and its radius is equal to 50m). When the elseif condition of sim3tesi2D
function (Appendix B.6) is met, a echelon formation is commanded to all the followers
(Fig. 6.14(k)(l)). Using the joystick a right turn has been performed in order to hinder the
formation control algorithm of F1 (Fig. 6.14(m)(n)) but, despite that, it has succeeded
in reaching the correct position (Fig. 6.14(o)(p)(q)(r)). This simulation demonstrates
how the algorithm that has been created in this thesis can be useful to control a follower
aircraft which is not in close proximity of the leader. In future studies it will be necessary
to understand how APF commands f_Vclear and l_Vclear can be further optimized,
reducing the time needed to reach the target with a smooth trajectory.

97

Formation control using a two-dimensional Artificial Potential Field Algorithm

(a) S3 XY view - t = 0 s (b) S3 Potential visualization - t = 0 s

(c) S3 XY view - t = 20 s (d) S3 Potential visualization - t = 20 s

98

Formation control using a two-dimensional Artificial Potential Field Algorithm

(e) S3 XY view - t = 40 s (f) S3 Potential visualization - t = 40 s

(g) S3 XY view - t = 60 s (h) S3 Potential visualization - t = 60 s

99

Formation control using a two-dimensional Artificial Potential Field Algorithm

(i) S3 XY view - t = 80 s (j) S3 Potential visualization - t = 80 s

(k) S3 XY view - t = 100 s (l) S3 Potential visualization - t = 100 s

100

Formation control using a two-dimensional Artificial Potential Field Algorithm

(m) S3 XY view - t = 120 s (n) S3 Potential visualization - t = 120 s

(o) S3 XY view - t = 140 s (p) S3 Potential visualization - t = 140 s

101

Formation control using a two-dimensional Artificial Potential Field Algorithm

(q) S3 XY view - t = 160 s (r) S3 Potential visualization - t = 160 s

Figure 6.14: Simulation #3 results - 2D APF

102

Chapter 7

Formation control using a
three-dimensional Artificial
Potential Field Algorithm

In this chapter the three-dimensional APF-based formation control algorithm will be
described. This model is similar to the one used in Sect. 6.2 with some adjustments in
order to operate in three dimensions, as will be explained in the first section. One of the
main problems in this case is the potential representation, a tensor of third order: the
solution found will be described in the second section. Finally, thanks to a simulation,
some code features be illustrated.

7.1 Code adaptations
Having verified the operating principle of the two-dimensional APF-based cooperative
formation control algorithm it has been decided to extend its functioning to a
three-dimensional case. The plant model of the aircraft (described in Ch. 3) does not
change in contrast to all the APF blocks. Before describing how the Simulink model has
been adapted, we will briefly focus on the grid generation (Sect. 6.1.2). If in the
previous model the space was modelled as a square, in this case we deal with a
parallelepiped filled with equidistant points and its spacing depends on the
gridpointdist value. The number of points is higher than the 2D model (with equal
XY dimensions) so the simulation could be quite slow, not allowing real-time scenarios.
For this reason, 3D grids will be smaller and sparser than two-dimensional ones.

7.1.1 Leader UAV - 3D APF block
In Fig. A.18 an overview of the leader 3D APF block is depicted. First of all, relative
positions in three-dimensional space should be calculated using the ObjectPosCalc_AF_3D
function (listing 7.1). As we discussed in previous chapters, the grid is generated in order

103

Formation control using a three-dimensional Artificial Potential Field Algorithm

to be leader-centred and it should be rotated so that it can be always aligned with leader
body axes (to be more precise, we do not rotate the grid itself but rather relative distances
of followers and obstacles). In the 2D case, dealing with a two-dimensional grid, the
heading angle ψL was used. In the 3D case we need to consider other angles, as pitch
θL and roll φL. For the sake of simplicity and to avoid long computational times we
have added the pitch angle only, although the possibility to add φL rotation has been
implemented.

Listing 7.1: Objects position calculator - 3D case (extract)
1 diff_X_F1=x_F1−x_leader ;
2 diff_Y_F1=y_F1−y_leader ;
3 diff_H_F1=h_F1−h_leader ;
4
5 R_psi=[cos (ps i_ leader) s i n (ps i_ leader) 0 ;− s i n (ps i_ leader) cos (

ps i_ leader) 0 ; 0 0 1] ;
6 R_theta=[cos (theta_leader) 0 −s i n (theta_leader) ; 0 1 0 ; s i n (

theta_leader) 0 cos (theta_leader)] ;
7 R_phi=1; %[1 0 0 ; 0 cos (phi_leader) s i n (phi_leader) ; 0 −s i n (

phi_leader) cos (phi_leader)] ;
8 R=R_psi∗R_theta∗R_phi ;
9 dif f_rot_F1=(R∗ [diff_X_F1 ; diff_Y_F1 ; diff_H_F1]) ;

10
11 F1forw_d=diff_rot_F1 (1) ;
12 F1lat_d=diff_rot_F1 (2) ;
13 F1height_d=diff_rot_F1 (3) ;

In the two-dimensional APF Simulink model altitude h was considered constant and
obstacles were defined using initial positions and velocities in north-east plane; quite the
opposite, in this case obstacles are defined using h0,obs and ḣ0,obs also. The
“Fixed/Moving obstacle NED positions” block has been modified, as can be observed in
Fig. 7.1, considering a constant vertical velocity. The potential should be calculated
taking altitude into consideration. A for loop (line 7 of the following listing) has been
added to the PotentialGenerator3D_AF function in order to select points along ZL.
Attractive and repulsive functions are essentially the same of Sect. 6.1.1 with the only
difference that vectors are made up of three components.

Listing 7.2: Potential Generator (extract) - 3D case
1 Ua_F1 = z e r o s (n_grid_X , n_grid_Y , n_grid_Z) ;
2 Ur_F1 = z e r o s (n_grid_X , n_grid_Y , n_grid_Z) ;
3 Ut_F1 = z e r o s (n_grid_X , n_grid_Y , n_grid_Z) ;
4
5 f o r i i = 1 : n_grid_X
6 f o r j j = 1 : n_grid_Y
7 f o r kk=1:n_grid_Z
8 i f rho_obs_follo_3D (F1forw_d , F1lat_d , F1height_d ,

x_ext_N(i i) ,y_ext_E(j j) , z_ext_H(kk)) > Resterno_F1
9

104

Formation control using a three-dimensional Artificial Potential Field Algorithm

10 Ua_F1(i i , j j , kk) = 0 .5∗Ka_F1∗ rho_obs_follo_3D (
F1forw_d , F1lat_d , F1height_d , x_ext_N(i i) ,
y_ext_E(j j) , z_ext_H(kk)) .^2 −0.5∗Ka_F1∗(
Resterno_F1) . ^ 2 ;

11 e l s e
12 Ua_F1(i i , j j , kk) = 0 ;
13 end
14 i f rho_obs_follo_3D (F1forw_d , F1lat_d , F1height_d ,

x_ext_N(i i) ,y_ext_E(j j) , z_ext_H(kk)) <=Rinterno_F1
15
16 Ur_F1(i i , j j , kk) =0.5∗Kr1_F1∗ ((r0_F1+Kr2_F1) . / (

rho_obs_follo_3D (F1forw_d , F1lat_d , F1height_d ,
x_ext_N(i i) ,y_ext_E(j j) , z_ext_H(kk))+Kr2_F1)
−1) . ^ 2 ;

17
18 e l s e
19 Ur_F1(i i , j j , kk) = 0 ;
20 end
21 end
22 end
23 end
24
25 f o r i i = 1 : n_grid_X
26 f o r j j = 1 : n_grid_Y
27 f o r kk=1:n_grid_Z
28 Ut_F1(i i , j j , kk) = 0 .5∗Ka_T∗ rho_obs_follo_3D (

targetpo intF1 (1) , ta rgetpo intF1 (2) , ta rgetpo intF1 (3)
,x_ext_N(i i) ,y_ext_E(j j) , z_ext_H(kk)) . ^ 2 ;

29 end
30 end
31 end
32
33 potent ia l_F1=Ui_L+Ut_F1 ;

Figure 7.1: Fixed/Moving obstacle NED positions block - 3D version

105

Formation control using a three-dimensional Artificial Potential Field Algorithm

7.1.2 Follower UAV - 3D APF block and errors calculation
In Fig. A.19 an overview of the follower 3D APF block is depicted. Comparing the
model with its 2D version (Fig. A.14) it can be observed that some inputs have been
added to the PotentialSolver_AF_3D function (Listing 7.3). Relative distance along ZL
is needed to find the current (approximate) position of the aircraft in the grid in the form
of matrix index. Provided that for a 3D space ngrid generates three different tensors of
third order, min has been used to select the point where the difference between space grid
values and relative distances is minimum. Forces have been computed and the steepest
descent direction dL has been rotated using ∆ψ and ∆θ in order to obtain its components
in a follower-centred frame d. Finally, commands l_Vclear, f_Vclear and h_Vclear are
obtained.

Listing 7.3: Potential Solver - 3D case
1 func t i on [l_Vclear , f_Vclear , h_Vclear , dL] = PotentialSolver_AF_3D (

x_grid_N , y_grid_E , z_grid_H , p o t e n t i a l , Fforw_d , Flat_d , Fheight_d , d i f f _ p s i
, d i f f_theta , d i f f_ph i)

2
3 %%% PARAMETERS INITIALIZATION %%%
4 % Find index o f f o l l o w e r in l eader −centred r e f system
5 [~ , inx_N]=min (abs (x_grid_N (: , 1 , 1)−Fforw_d)) ; % Index o f X f o l l o w e r pos
6 [~ , iny_E]=min (abs (y_grid_E (1 , : , 1)−Flat_d)) ; % Index o f Y f o l l o w e r pos
7 [~ , iny_H]=min (abs (z_grid_H (1 , 1 , :)−Fheight_d)) ; % Index o f Z f o l l o w e r pos
8
9 %%% SOLVE! %%%

10 [Fy , Fx , Fz]= grad i en t (− p o t e n t i a l) ;
11
12 %%% Force in cur rent po int
13 F=[Fx(inx_N , iny_E , iny_H) ,Fy(inx_N , iny_E , iny_H) , Fz (inx_N , iny_E , iny_H)] ;
14 modF = max(10^ −6 , s q r t (F(1) .^2+F(2) .^2+F(3) . ^ 2)) ;
15 dL=(F. /modF) ; % Descent d i r e c t i o n in leader −centred system
16
17 R_psi=[cos (d i f f _ p s i) s i n (d i f f _ p s i) 0 ;− s i n (d i f f _ p s i) cos (d i f f _ p s i) 0 ; 0 0

1] ;
18 R_theta=[cos (d i f f _ t h e t a) 0 −s i n (d i f f _ t h e t a) ; 0 1 0 ; s i n (d i f f _ t h e t a) 0 cos

(d i f f _ t h e t a)] ;
19 R_phi=1;%[1 0 0 ; 0 cos (d i f f_ph i) s i n (d i f f_ph i) ; 0 −s i n (d i f f_ph i) cos (

d i f f_ph i)] ' ;
20 R_LF=R_psi∗R_theta∗R_phi ;
21 d=R_LF∗dL ' ;
22
23 % APF commands
24 l_Vclear=min (6 , 0 . 15∗ abs (F(2))) ∗d (2) ;
25 f_Vclear=min (5 , 0 . 2 ∗ abs (F(1))) ∗d (1) ;
26 h_Vclear=min (5 , 0 . 15∗ abs (F(3))) ∗d (3) ;
27
28 end

At this point, commands should be used to control the follower aircraft taking into
consideration that they are computed in a follower-centred reference frame. As we have
done in the previous two-dimensional APF Simulink model, we have to calculate velocity

106

Formation control using a three-dimensional Artificial Potential Field Algorithm

errors in this reference frame assumed that plant output velocities are in NED axes. A new
function has been created, namely NEDtofollower3D (in the following listing). Similarly
to Listing 7.1, rotation matrices (R_psi, R_theta, R_phi) are created and the difference
between follower and leader NED velocities (dV_N, dV_E, dh_dot) are transformed in the
corresponding values in follower-centred reference frame obtaining dV_N_rot, dV_E_rot,
dh_dot_rot. This done differences between actual velocities and APF commands are
computed and sent to the “PD formation command (VELOCITY)” block, previously
described in Sect. 6.2.3. An overview of the error calculation block is depicted in Appendix
(Fig. A.20).

Listing 7.4: NEDtofollower3D function
1 func t i on [dV_N_rot , dV_E_rot , dh_dot_rot] = NEDtofollower3D (dV_N,dV_E,

dh_dot , psi_f , theta_f , phi_f)
2
3 R_psi=[cos (ps i_f) s i n (ps i_f) 0 ;− s i n (ps i_f) cos (ps i_f) 0 ; 0 0 1] ;
4 R_theta=[cos (theta_f) 0 −s i n (theta_f) ; 0 1 0 ; s i n (theta_f) 0 cos (theta_f)

] ;
5 R_phi=1;%[1 0 0 ; 0 cos (phi_f) s i n (phi_f) ; 0 −s i n (phi_f) cos (phi_f)] ;
6 R=R_psi∗R_theta∗R_phi ;
7
8 dV_rot=(R∗ [dV_N;dV_E; dh_dot]) ;
9

10 dV_N_rot=dV_rot (1) ;
11 dV_E_rot=dV_rot (2) ;
12 dh_dot_rot=dV_rot (3) ;
13
14 end

7.2 3D potential visualization
When dealing with three-dimensional potentials, a fundamental problem to be faced is the
way we represent them. Observing simulations in Sect. 6.2.4 and Sect. 6.2.5 we can notice
that, for a two-dimensional APF, contour lines or mesh surfaces can be employed. In our
case, however, the third dimension represents altitude so it can not be used to visualize
potential values. After some research into MATLAB documentation, the “Visualizing
Four-Dimensional Data” [45] example has been found and in particular an approach
similar to the one described in the “Visualize Function of Three Variables” section has
been chosen. The scatter3 function generates a 3D scatter plot, i.e. a plot composed
of a set of spheres in space whose diameter can be selected by the user. In our 3D APF
model physical space has been discretized, as a matter of fact, as a tensor of third order
and potential is itself a tensor of this type. Using scatter3 every point of the grid
is plotted and coloured depending on its value of potential. Grids, previously generated
with ngrid, are modified using the pagetranspose function. The potential structure array
out.potentialF1 is transformed using squeeze, which removes dimensions of length one.
These changes are made in order to obtain variables that can be handled by scatter3
. Point transparency (or “alpha”, as called in the MATLAB jargon) must be modified

107

Formation control using a three-dimensional Artificial Potential Field Algorithm

somehow in order to visualize only high values of potentials (close to leader and follower).
Using axes properties as 'AlphaDataMapping', 'AlphaDataMode', 'ALimMode' and 'ALim
', points transparency has been changed in order to be proportional to potential values.
The main problem of a scatter3-based plot of this type is that the attractive potential, in
particular the target point, can not be observed. In this point, in fact, potential value is
the minimum so it has been made transparent for visualization purposes. Results strongly
depend on gridpointdist which, as we have described in Sect. 6.1.2, define the number
of points of the grid. Denser grids, in fact, generates better representations but critically
lengthen computational time. A visualization example is depicted in Fig. 7.2, where
gridpointdist= 3m has been used.

Figure 7.2: 3D APF potential visualization example

7.3 Simulation
In order to demonstrate how the model works, a three-dimensional simulation has been
performed. The grid, as previously outlined, is generally sparser than the two-dimensional
version: in this case a gridpointdist value of 4m has been selected. The flag values
employed in this scenario, whose code is included in Appendix B.5, are:

• manoeuvre → 'manovra sim1 APF 3D'

108

Formation control using a three-dimensional Artificial Potential Field Algorithm

• sectform → 'sect sim1 APF 3D'

• obstacleflag → 'sim1 APF 3D'

Figure 7.3: Simulation #1 overview (APF 3D)

In Fig. 7.3 an overview of the scenario is depicted. A moving obstacle with physical
radius Robs = 30m (and repulsive radius Rpot = 60m) has been inserted in
Cmo = [xmo, ymo] = [−200; 70]m, having a velocity V = VNORD = 92.3111 m

s . The initial
formation is of wall type and it is kept until t = 25 s, when an arrow is ordered; finally,
at t = 70 s, a line astern formation is executed. As far as manoeuvres are concerned,
every aircraft initially flights straight, without changing its altitude. At t = 20 s the
leader starts a right turn with altitude change (ḣ = 2 m

s), obtaining an heading angle
ψL = 60 deg. At a later time (t = 90 s) a flare is performed. hdotdes is created using
linspace obtaining an equally spaced vector of vertical velocities between −10 m

s and
10 m

s . Similarly, trich is an equally spaced vector of time values between 90 s and 140 s.
Using a for loop and the above-mentioned variables, a number of altitude variation
commands have been piled in order to produce a continuous flare manoeuvre.

109

Formation control using a three-dimensional Artificial Potential Field Algorithm

(a) S1 XYZ view - t = 0 s (b) S1 Potential visualization - t = 0 s

(c) S1 XYZ view - t = 20 s (d) S1 Potential visualization - t = 20 s

110

Formation control using a three-dimensional Artificial Potential Field Algorithm

(e) S1 XYZ view - t = 40 s (f) S1 Potential visualization - t = 40 s

(g) S1 XYZ view - t = 60 s (h) S1 Potential visualization - t = 60 s

111

Formation control using a three-dimensional Artificial Potential Field Algorithm

(i) S1 XYZ view - t = 80 s (j) S1 Potential visualization - t = 80 s

(k) S1 XYZ view - t = 100 s (l) S1 Potential visualization - t = 100 s

112

Formation control using a three-dimensional Artificial Potential Field Algorithm

(m) S1 XYZ view - t = 120 s (n) S1 Potential visualization - t = 120 s

(o) S1 XYZ view - t = 140 s (p) S1 Potential visualization - t = 140 s

Figure 7.4: Simulation results - 3D APF

113

Formation control using a three-dimensional Artificial Potential Field Algorithm

The scenario has been simulated and it can be observed in Fig. 7.4. While all aircraft
are in wall formation (Fig. 7.4(a)(b)) the moving obstacle, whose velocity is greater
than the aircraft one, reaches them from behind. F3 and F4 do not perceive the object
while F1 and F2, as can be seen in Fig. 7.4(c), avoid it. It can be noticed from Fig.
7.4(d) how potential values of the object are particularly obvious. The potential sphere of
influence of the leader is also depicted in red. After avoiding the obstacle, the right turn
is ordered together with the arrow formation. In Fig. 7.4(e)(f) it can be seen how every
aircraft is reaching its target point during the turn. The increase in altitude does not affect
the formation shape, which is almost completed in Fig. 7.4(g)(h). At t = 70 s the arrow
patter is broken and gradually changed to a line astern type. Fig. 7.4(i)(j) are particularly
important because the effect of the APF along Z can be observed. The position of the first
follower (in leader-centred reference frame) in the arrow is TPF1,arrow = [75; 0; 0]m while
the subsequent line astern target point is TPF1,line astern = [−30; 0;−20]m. The situation
is quite similar to the static one (of F4, in that case) explained in Sect. 6.1.3. The Y
coordinate is exactly the same, and if the APF was two-dimensional the aircraft could have
difficulty in reaching its position. A saddle point would appear: the first follower, sure
enough, would have reached a point nearby the leader reducing its speed only (without
turning). Using a three-dimensional APF altitude can be changed: F1 avoids the leader
reducing it (Fig. 7.4(i)(j)). At t = 90 s the flare manoeuvre is activated, and its effect is
depicted in Fig. 7.4(k)(l). In this case the line astern formation is successfully completed
(Fig. 7.4(m)(n)) and kept (Fig. 7.4(o)(p)) during the manoeuvre.

114

Chapter 8

Conclusions and future
developments

This work deals with the design and modelling of a formation control algorithm of
multiple UAVs based on the Artificial Potential Fields (APF) method. After a brief
introduction on history, in Chapter 1 formation flight organization has been presented
along with the Manned-Unmanned Teaming (MUM-T) concept. The state of the art of
formation control and motion planning has been summarized in Chapter 2, focusing on
various type of methods and choosing the best solution for the case. The basic aircraft,
a medium-altitude long-endurance fixed-wing unmanned aerial vehicle (UAV), has been
selected and simulated in Chapter 3: starting from the linearised dynamics, main control
surfaces and autopilots have been modelled together with manoeuvre logic and
visualization blocks. A first PID-based formation algorithm has been simulated in
Chapter 4, observing how in this case collision avoidance can not be guaranteed. At this
point the Artificial Potential Field method has been introduced (Chapter 5), starting
from the traditional single-robot approach to the multiple-robot one through the
description of the gradient descent algorithm and of different planning techniques. The
aforementioned multiple-robot two-dimensional algorithm has been modified (Chapter 6)
in order to be coherent with the purpose of the thesis and has been tested in a static
environment. The same code has been later adapted to the Simulink time-varying
environment and three simulations have been performed so that its operation has been
verified. Finally, in Chapter 7 the three-dimensional version has been created in order to
control the aircraft along all axes.
This work is particularly suitable for future developments. Specifically:

• the plant dynamics could be improved considering non-linear equations, observing
how the algorithm reacts to an altitude/velocity-variable behaviour of the aircraft

• multiple type of aircraft could be selected, like a fighter for the leader and a UAV
for every follower: in this case differences in performance must be taken into
account. Moreover, there may be a need to change the behaviour of the control
system automatically adjusting APF gain values by complex control laws. In this

115

Conclusions and future developments

thesis, for example, the repulsive radius of every follower changes with their
velocity.

• other types of attractive and repulsive potential functions could be examined in depth
in order to understand if they could improve general performance of the code. Saddle
points and local minima should be further investigated so that it could be excluded
that they may constitute a problem.

116

Appendix A

Simulink model images

117

Simulink model images

Figure A.1: Elevators LQR block - Simulink model

118

Simulink model images

Figure A.2: Throttle LQR block - Simulink model

119

Simulink model images

Figure A.3: Ailerons LQR block - Simulink model

120

Simulink model images

Figure A.4: Rudder LQR block - Simulink model

121

Simulink model images

Figure A.5: Autopilot block for Formation PID - Simulink model

122

Simulink model images

Figure A.6: Autopilot block for Formation APF - Simulink model

123

Simulink model images

Figure A.7: PD altitude block

Figure A.8: PID vertical velocity block

Figure A.9: PD roll block

Figure A.10: Lateral formation PD (position) block

124

Simulink model images

Figure A.11: Forward formation PD (position) block

Figure A.12: Height (dot) formation PD (position) block

125

Simulink model images

Figure A.13: Two-dimensional APF - leader block overview

126

Simulink model images

Figure A.14: Two-dimensional APF - follower block overview

127

Simulink model images

Figure A.15: Two-dimensional APF - velocity errors calculation

128

Simulink model images

Figure A.16: Lateral formation PID (velocity) block

Figure A.17: Forward formation PI (velocity) block

129

Simulink model images

Figure A.18: Three-dimensional APF - leader block overview

130

Simulink model images

Figure A.19: Three-dimensional APF - follower block overview

131

Simulink model images

Figure A.20: Three-dimensional APF - errors block overview

132

Appendix B

Matlab and Simulink code
listings

Listing B.1: “Autopilot choice” follower code
1 func t i on [a l t i tude_des , h_dot_des , a l t i tude_switch_sign , heading_des ,

beta_des , V_des] =autopilotswitchFOLLOWER (FormACTIVE, APflag , alt_c ,
h_dot_c , yaw_c , beta_c ,V_c, alt_act , h_dot_act , yaw_act , beta_act , V_act ,
V_0_F1)

2
3 % AUTOPILOT SWITCH − Alessandro Favia
4 a l t i tude_des =0;
5 h_dot_des=0;
6 a l t i tude_switch_s ign =0;
7 heading_des =0;
8 beta_des =0;
9 V_des=0;

10
11 i f FormACTIVE==0 % i . e . format ion c o n t r o l not enabled
12
13 switch APflag
14 case 1 % Alt i tude a u t o p i l o t
15 a l t i tude_des=alt_c ;
16 h_dot_des=h_dot_act ; % u s e l e s s
17 a l t i tude_switch_s ign =1;
18 heading_des=yaw_act ;
19 beta_des=beta_act ;
20 V_des=V_act ;
21 case 15 % Alt i tude HOLD a u t o p i l o t
22 a l t i tude_des=alt_act ;
23 h_dot_des=0;
24 a l t i tude_switch_s ign=−1;
25 heading_des=yaw_act ;
26 beta_des=beta_act ;
27 V_des=V_act ;
28 case 2 % V e r t i c a l v e l o c i t y a u t o p i l o t
29 a l t i tude_des =0; % u s e l e s s

133

Matlab and Simulink code listings

30 h_dot_des= h_dot_c ;
31 a l t i tude_switch_s ign=−1;
32 heading_des=yaw_act ;
33 beta_des=beta_act ;
34 V_des=V_act ;
35 case 3 % Heading Autop i lot (same H − with " Al t i tude Hold

a u t o p i l o t ")
36 a l t i tude_des=alt_act ;
37 h_dot_des=h_dot_act ; % u s e l e s s
38 a l t i tude_switch_s ign =1;
39 heading_des=yaw_c ;
40 beta_des=beta_act ;
41 V_des=V_act ;
42 case 4 % Heading Autop i lot (with cl imb / descent through " V e r t i c a l

v e l o c i t y a u t o p i l o t ")
43 a l t i tude_des= alt_act ; % u s e l e s s
44 h_dot_des=h_dot_c ;
45 a l t i tude_switch_s ign=−1;
46 heading_des=yaw_c ;
47 beta_des=beta_act ;
48 V_des=V_act ;
49 case 5 % Beta change (same H − with " Al t i tude Hold a u t o p i l o t ")
50 a l t i tude_des=alt_act ;
51 h_dot_des=h_dot_act ; % u s e l e s s
52 a l t i tude_switch_s ign =1;
53 heading_des=yaw_act ;
54 beta_des=beta_c ;
55 V_des=V_act ;
56 case 6 % Beta change (with cl imb / descent through " V e r t i c a l

v e l o c i t y a u t o p i l o t ")
57 a l t i tude_des=alt_act ; % u s e l e s s
58 h_dot_des=h_dot_c ;
59 a l t i tude_switch_s ign=−1;
60 heading_des=yaw_act ;
61 beta_des=beta_c ;
62 V_des=V_act ;
63 case 7 % Ve loc i ty change (same H − with " Al t i tude Hold a u t o p i l o t

")
64 a l t i tude_des=alt_act ;
65 h_dot_des=h_dot_act ; % u s e l e s s
66 a l t i tude_switch_s ign =1;
67 heading_des=yaw_act ;
68 beta_des=beta_act ;
69 V_des=V_c;
70 case 8 % Ve loc i ty change (with cl imb / descent through " V e r t i c a l

v e l o c i t y a u t o p i l o t ")
71 a l t i tude_des=alt_act ; % u s e l e s s
72 h_dot_des=h_dot_c ;
73 a l t i tude_switch_s ign=−1;
74 heading_des=yaw_act ;
75 beta_des=beta_act ;
76 V_des=V_c;
77 end

134

Matlab and Simulink code listings

78 e l s e
79 a l t i tude_des=alt_act ;
80 h_dot_des=h_dot_act ;
81 a l t i tude_switch_s ign=−1;
82 heading_des=yaw_act ;
83 beta_des=beta_act ;
84 V_des=V_0_F1;
85
86 end
87 end

Listing B.2: PID formation control - simulation code
1 % MANOEUVRE vecto r
2 case ' manovra5 '
3
4 % S t r a i g h t f l i g h t
5 APflag =1;
6 alt_c=H0 ; % [m]
7 h_dot_c=0; % u s e l e s s
8 yaw_c=0; % u s e l e s s
9 beta_c=0; % u s e l e s s

10 V_c=0; % u s e l e s s
11 c1=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
12 t1 =0; % [s]
13 m1=[t1 c1] ;
14
15 % Turn with a l t i t u d e i n c r e a s e
16 APflag =4;
17 alt_c =0; % u s e l e s s
18 h_dot_c=2;
19 yaw_c=deg2rad (180) ;
20 beta_c=0; % u s e l e s s
21 V_c=0; % u s e l e s s
22 c2=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
23 t2 =20; % [s]
24 m2=[t2 c2] ;
25
26 manoeuvre=[m1;m2] ;
27
28
29 % SECTFORM vector
30 case ' in_cond + l ine_as t e rn + eche lon '
31
32 xF1=PN_integr_in_cond_F1 ; xF2=PN_integr_in_cond_F2 ;
33 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
34 yF1=PE_integr_in_cond_F1 ; yF2=PE_integr_in_cond_F2 ;
35 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
36 hF1=0; hF2=0; hF3=0;hF4=0;
37 c1=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
38 t1 =0; % [s]

135

Matlab and Simulink code listings

39 f1 =[t1 c1] ;
40 sect form=f1 ;
41 m i n f i g u r e d i s t 1 =[t1 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
42
43 % LINE ASTERN
44 xF1=−35; %[m] to modify
45 xF2=xF1 ∗2 ; xF3=xF1 ∗3 ; xF4=xF1 ∗4 ;
46 yF1=0; yF2=0; yF3=0; yF4=0;
47 hF1=0; hF2=0; hF3=0;hF4=0;
48 c2=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
49 t2 =50; % [s]
50 f2 =[t2 c2] ;
51 m i n f i g u r e d i s t 2 =[t1 norm ([xF1 , yF1])] ;
52
53 % ECHELON
54 xF1=−35; %[m] to modify
55 ang=45; %[deg] to modify
56 xF2=2∗xF1 ; xF3=3∗xF1 ; xF4=4∗xF1 ;
57 yF1=xF1∗ tand (ang) ; yF2=2∗yF1 ; yF3=3∗yF1 ; yF4=4∗yF1 ;
58 hF1=−10; hF2=−20; hF3=−30;hF4=−40;
59 c3=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
60 t3 =100; % [s]
61 f3 =[t3 c3] ;
62 m i n f i g u r e d i s t 3 =[t3 norm ([xF1 , yF1])] ;
63
64 sect form =[f1 ; f 2 ; f 3] ;
65 m i n f i g u r e d i s t =[m i n f i g u r e d i s t 1 ; m i n f i g u r e d i s t 2 ; m i n f i g u r e d i s t 3] ;

Listing B.3: APF 2D formation control - simulation #1 code
1 % SECTFORM vector
2 case ' s e c t sim1 APF 2D '
3
4 xF1=PN_integr_in_cond_F1 ; xF2=PN_integr_in_cond_F2 ;
5 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
6 yF1=PE_integr_in_cond_F1 ; yF2=PE_integr_in_cond_F2 ;
7 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
8 hF1=0; hF2=0; hF3=0;hF4=0;
9 targetpo intF1 =[xF1 , yF1 , hF1] ;

10 targetpo intF2 =[xF2 , yF2 , hF2] ;
11 targetpo intF3 =[xF3 , yF3 , hF3] ;
12 targetpo intF4 =[xF4 , yF4 , hF4] ;
13 c1=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
14 t1 =0; % [s]
15 f1 =[t1 c1] ;
16 m i n f i g u r e d i s t 1 =[t1 norm ([xF1 , yF1])] ;
17
18 % VIC
19 xF1=−60; %[m] to modify
20 ang=60; %[deg] to modify

136

Matlab and Simulink code listings

21 xF2=xF1 ; xF3=2∗xF1 ; xF4=xF3 ;
22 yF1=xF1∗ tand (ang) ; yF4=2∗yF1 ; yF2=−xF2∗ tand (ang) ; yF3=2∗yF2 ;
23 hF1=−20; hF2=−20; hF3=−40;hF4=−40;
24 targetpo intF1 =[xF1 , yF1 , hF1] ;
25 targetpo intF2 =[xF2 , yF2 , hF2] ;
26 targetpo intF3 =[xF3 , yF3 , hF3] ;
27 targetpo intF4 =[xF4 , yF4 , hF4] ;
28 c2=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
29 t2 =5; % [s]
30 f2 =[t2 c2] ;
31 m i n f i g u r e d i s t 2 =[t2 norm ([xF1 , yF1])] ;
32
33 % BOX
34 xF1=50; %[m] to modify
35 xF2=0; xF4=0; xF3=−xF1 ;
36 yF1=0; yF3=0; yF2=xF1 ; yF4=−yF2 ;
37 hF1=0; hF2=0; hF3=0;hF4=0;
38 targetpo intF1 =[xF1 , yF1 , hF1] ;
39 targetpo intF2 =[xF2 , yF2 , hF2] ;
40 targetpo intF3 =[xF3 , yF3 , hF3] ;
41 targetpo intF4 =[xF4 , yF4 , hF4] ;
42 c3=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
43 t3 =120; % [s]
44 f3 =[t3 c3] ;
45 m i n f i g u r e d i s t 3 =[t3 norm ([xF1 , yF1])] ;
46
47 sect form =[f1 ; f 2 ; f 3] ;
48 m i n f i g u r e d i s t =[m i n f i g u r e d i s t 1 ; m i n f i g u r e d i s t 2 ; m i n f i g u r e d i s t 3] ;
49
50 % MANOEUVRE vecto r
51 case ' manovra sim1 APF 2D '
52 % S t r a i g h t f l i g h t
53 APflag =1;
54 alt_c=H0 ; % [m]
55 h_dot_c=0; % u s e l e s s
56 yaw_c=0; % u s e l e s s
57 beta_c=0; % u s e l e s s
58 V_c=0; % u s e l e s s
59 c1=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
60 t1 =0; % [s]
61 m1=[t1 c1] ;
62
63 % F i r s t turn with constant a l t i t u d e
64 APflag =3;
65 alt_c =0; % u s e l e s s
66 h_dot_c=0; % u s e l e s s
67 yaw_c=deg2rad (−90) ;
68 beta_c=0; % u s e l e s s
69 V_c=0; % u s e l e s s
70 c2=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
71 t2 =40; % [s]
72 m2=[t2 c2] ;
73

137

Matlab and Simulink code listings

74 % Second turn with constant a l t i t u d e
75 APflag =3;
76 alt_c =0; % u s e l e s s
77 h_dot_c=0; % u s e l e s s
78 yaw_c=deg2rad (−180) ;
79 beta_c=0; % u s e l e s s
80 V_c=0; % u s e l e s s
81 c3=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
82 t3 =120; % [s]
83 m3=[t3 c3] ;
84
85 manoeuvre=[m1;m2;m3] ;
86
87 % OBSTACLE c r e a t i o n
88 case ' no−f l y z o n e sim1 APF 2D '
89 obs_on=1;
90 X_NED_NORD_obs1=4000;
91 Y_NED_EAST_obs1=−2000;
92 Z_NED_H_obs1=4000;
93 X_NED_vel_obs1=0;
94 Y_NED_vel_obs1=0;
95 Z_NED_vel_obs1=0;
96 R_obs1=2800/2;
97 R_pot1=R_obs1 ∗2 ; %=R_obs1+t o l l

Listing B.4: APF 2D formation control - simulation #2 code
1 % SECTFORM vector
2 case ' s e c t sim2 APF 2D '
3
4 xF1=PN_integr_in_cond_F1 ; xF2=PN_integr_in_cond_F2 ;
5 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
6 yF1=PE_integr_in_cond_F1 ; yF2=PE_integr_in_cond_F2 ;
7 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
8 hF1=0; hF2=0; hF3=0;hF4=0;
9 targetpo intF1 =[xF1 , yF1 , hF1] ;

10 targetpo intF2 =[xF2 , yF2 , hF2] ;
11 targetpo intF3 =[xF3 , yF3 , hF3] ;
12 targetpo intF4 =[xF4 , yF4 , hF4] ;
13 c1=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
14 t1 =0; % [s]
15 f1 =[t1 c1] ;
16 sect form=f1 ;
17 m i n f i g u r e d i s t 1 =[t1 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
18 m i n f i g u r e d i s t=m i n f i g u r e d i s t 1 ;
19
20 % BOX
21 xF1=75; %[m] to modify
22 xF2=0; xF4=0; xF3=−xF1 ;
23 yF1=0; yF3=0; yF2=xF1 ; yF4=−yF2 ;
24 hF1=0; hF2=0; hF3=0;hF4=0;
25 targetpo intF1 =[xF1 , yF1 , hF1] ;
26 targetpo intF2 =[xF2 , yF2 , hF2] ;

138

Matlab and Simulink code listings

27 targetpo intF3 =[xF3 , yF3 , hF3] ;
28 targetpo intF4 =[xF4 , yF4 , hF4] ;
29 c2=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
30 t2 =50; % [s]
31 f2 =[t2 c2] ;
32 m i n f i g u r e d i s t 2 =[t2 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
33
34 % ECHELON
35 xF1=−35; %[m] to modify
36 ang=45; %[deg] to modify
37 xF2=2∗xF1 ; xF3=3∗xF1 ; xF4=4∗xF1 ;
38 yF1=xF1∗ tand (ang) ; yF2=2∗yF1 ; yF3=3∗yF1 ; yF4=4∗yF1 ;
39 hF1=−10; hF2=−20; hF3=−30;hF4=−40;
40 targetpo intF1 =[xF1 , yF1 , hF1] ;
41 targetpo intF2 =[xF2 , yF2 , hF2] ;
42 targetpo intF3 =[xF3 , yF3 , hF3] ;
43 targetpo intF4 =[xF4 , yF4 , hF4] ;
44 c3=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
45 t3 =100; % [s]
46 f3 =[t3 c3] ;
47 m i n f i g u r e d i s t 3 =[t3 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
48
49 sect form =[f1 ; f 2 ; f 3] ;
50 m i n f i g u r e d i s t =[m i n f i g u r e d i s t 1 ; m i n f i g u r e d i s t 2 ; m i n f i g u r e d i s t 3] ;
51
52 % OBSTACLE c r e a t i o n
53 case ' no−f l y z o n e sim2 APF 2D '
54 obs_on=1;
55 X_NED_NORD_obs1=4000;
56 Y_NED_EAST_obs1=−2000;
57 Z_NED_H_obs1=4000;
58 X_NED_vel_obs1=0;
59 Y_NED_vel_obs1=0;
60 Z_NED_vel_obs1=0;
61 R_obs1=2800;
62 R_pot1=R_obs1 ∗2 ; %=R_obs1+t o l l

Listing B.5: APF 3D formation control - simulation #1 code
1 % SECTFORM vector
2 case ' s e c t sim1 APF 3D '
3
4 xF1=PN_integr_in_cond_F1 ; xF2=PN_integr_in_cond_F2 ;
5 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
6 yF1=PE_integr_in_cond_F1 ; yF2=PE_integr_in_cond_F2 ;
7 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
8 hF1=0; hF2=0; hF3=0;hF4=0;
9 targetpo intF1 =[xF1 , yF1 , hF1] ;

10 targetpo intF2 =[xF2 , yF2 , hF2] ;

139

Matlab and Simulink code listings

11 targetpo intF3 =[xF3 , yF3 , hF3] ;
12 targetpo intF4 =[xF4 , yF4 , hF4] ;
13 c1=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
14 t1 =0; % [s]
15 f1 =[t1 c1] ;
16 sect form=f1 ;
17 m i n f i g u r e d i s t 1 =[t1 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
18
19 % ARROW
20 xF1=75; %[m] to modify
21 xF2=−xF1 ; xF3=−xF1 ; xF4=−xF1 ;
22 yF1=0; yF2=0; yF3=−xF1 ; yF4=xF1 ;
23 hF1=0; hF2=0; hF3=0;hF4=0;
24 targetpo intF1 =[xF1 , yF1 , hF1] ;
25 targetpo intF2 =[xF2 , yF2 , hF2] ;
26 targetpo intF3 =[xF3 , yF3 , hF3] ;
27 targetpo intF4 =[xF4 , yF4 , hF4] ;
28 c2=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
29 t2 =25; % [s]
30 f2 =[t2 c2] ;
31 m i n f i g u r e d i s t 2 =[t2 norm ([xF1 , yF1])] ;
32
33 % LINE ASTERN
34 xF1=−30; %[m] to modify
35 xF2=xF1 ∗2 ; xF3=xF1 ∗3 ; xF4=xF1 ∗4 ;
36 yF1=0; yF2=0; yF3=0; yF4=0;
37 hF1=−20; hF2=−40; hF3=−60;hF4=−80;
38 targetpo intF1 =[xF1 , yF1 , hF1] ;
39 targetpo intF2 =[xF2 , yF2 , hF2] ;
40 targetpo intF3 =[xF3 , yF3 , hF3] ;
41 targetpo intF4 =[xF4 , yF4 , hF4] ;
42 c3=[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
43 t3 =70; % [s]
44 f3 =[t3 c3] ;
45 m i n f i g u r e d i s t 3 =[t3 norm ([xF1 , yF1])] ; % Max d i s t in form used to

l i m i t r e p u l s i v e rad iu s
46
47 sect form =[f1 ; f 2 ; f 3] ;
48 m i n f i g u r e d i s t =[m i n f i g u r e d i s t 1 ; m i n f i g u r e d i s t 2 ; m i n f i g u r e d i s t 3] ;
49
50 % MANOEUVRE vecto r
51 case ' manovra sim1 APF 3D '
52 % Volo r e t t i l i n e o
53 APflag =1;
54 alt_c=H0 ; % [m]
55 h_dot_c=0; % u s e l e s s
56 yaw_c=0; % u s e l e s s
57 beta_c=0; % u s e l e s s
58 V_c=0; % u s e l e s s
59 c1=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
60 t1 =0; % [s]
61 m1=[t1 c1] ;

140

Matlab and Simulink code listings

62
63 % Virata con aumento d i quota
64 APflag =4;
65 alt_c =0; % u s e l e s s
66 h_dot_c=2;
67 yaw_c=deg2rad (60) ;
68 beta_c=0; % u s e l e s s
69 V_c=0; % u s e l e s s
70 c2=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
71 t2 =20; % [s]
72 m2=[t2 c2] ;
73
74 % Richiamata
75 m3=z e r o s (1 , 7) ;
76 n_rich =100;
77 hdotdes=l i n s p a c e (−10 ,10 , n_rich) ;
78 t r i c h=l i n s p a c e (90 ,140 , n_rich) ;
79
80
81 f o r i =1: n_rich
82 APflag =2;
83 alt_c =0;% u s e l e s s
84 h_dot_c=hdotdes (1 , i) ; % [m/ s]
85 yaw_c=0; % u s e l e s s
86 beta_c=0; % u s e l e s s
87 V_c=0; % u s e l e s s
88 c=[APflag alt_c h_dot_c yaw_c beta_c V_c] ;
89 t=t r i c h (1 , i) ; % [s]
90 m3(i , :) =[t c] ;
91 end
92
93 manoeuvre=[m1;m2;m3] ;
94
95 % OBSTACLE c r e a t i o n
96 case ' sim1 APF 3D '
97 obs_on=1;
98 X_NED_NORD_obs1=−200;
99 Y_NED_EAST_obs1=70;

100 Z_NED_H_obs1=H0 ;
101 X_NED_vel_obs1=V_0+10;
102 Y_NED_vel_obs1=0;
103 Z_NED_vel_obs1=0;
104 R_obs1=30;
105 R_pot1=R_obs1 ∗2 ; %=R_obs1+t o l l

Listing B.6: sim3tesi2D function - simulation #3
1 func t i on [s e c t f o r m f i g , m i n f i g u r e d i s t] = sim3tes i2D (o ro l og i o , ps i_leader ,

x_leader , y_leader)
2
3 t2 =5;

141

Matlab and Simulink code listings

4
5 % FOLLOWER 1
6 PN_integr_in_cond_F1=−400; % [m]
7 PE_integr_in_cond_F1 =280.083; % [m]
8
9 % FOLLOWER 2

10 PN_integr_in_cond_F2=−400;% [m]
11 PE_integr_in_cond_F2= −280.083; % [m]
12
13 % FOLLOWER 3
14 PN_integr_in_cond_F3=−800; % [m]
15 PE_integr_in_cond_F3 =560.166; % [m]
16
17 % FOLLOWER 4
18 PN_integr_in_cond_F4=−800; % [m]
19 PE_integr_in_cond_F4= −560.166; % [m]
20
21
22 i f o ro l og i o <t2
23 % INITIAL POSITIONS
24 xF1=PN_integr_in_cond_F1 ; xF2=PN_integr_in_cond_F2 ;
25 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
26 yF1=PE_integr_in_cond_F1 ; yF2=PE_integr_in_cond_F2 ;
27 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
28 hF1=0; hF2=0; hF3=0;hF4=0;
29 targetpo intF1 =[xF1 , yF1 , hF1] ;
30 targetpo intF2 =[xF2 , yF2 , hF2] ;
31 targetpo intF3 =[xF3 , yF3 , hF3] ;
32 targetpo intF4 =[xF4 , yF4 , hF4] ;
33 s e c t f o r m f i g =[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
34 m i n f i g u r e d i s t=norm ([xF1 , yF1]) ;
35
36 e l s e i f (o ro l og i o >t2) && ((8000 − x_leader) >100 && (1250− y_leader) >100)
37
38 xF2=PN_integr_in_cond_F2 ;
39 xF3=PN_integr_in_cond_F3 ; xF4=PN_integr_in_cond_F4 ;
40 yF2=PE_integr_in_cond_F2 ;
41 yF3=PE_integr_in_cond_F3 ; yF4=PE_integr_in_cond_F4 ;
42 hF1=0; hF2=0; hF3=0;hF4=0;
43
44 %%
45 xF11=8000−x_leader ; yF11=1150−y_leader ;
46 %%
47
48 R=[cos (ps i_ leader) s i n (ps i_ leader) ;− s i n (ps i_ leader) cos (ps i_ leader)] ;
49 dpos_rot=(R∗ [xF11 ; yF11]) ;
50 xF1=dpos_rot (1) ;
51 yF1=dpos_rot (2) ;
52
53 targetpo intF1 =[xF1 , yF1 , hF1] ;
54 targetpo intF2 =[xF2 , yF2 , hF2] ;
55 targetpo intF3 =[xF3 , yF3 , hF3] ;
56 targetpo intF4 =[xF4 , yF4 , hF4] ;

142

Matlab and Simulink code listings

57 s e c t f o r m f i g =[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
58 m i n f i g u r e d i s t=norm ([xF2 , yF2]) ;
59
60 e l s e
61 % ECHELON
62 xF1=−250; %[m] to modify
63 ang=−40; %[deg] to modify
64 xF2=2∗xF1 ; xF3=3∗xF1 ; xF4=4∗xF1 ;
65 yF1=xF1∗ tand (ang) ; yF2=2∗yF1 ; yF3=3∗yF1 ; yF4=4∗yF1 ;
66 hF1=0; hF2=0; hF3=0;hF4=0;
67 targetpo intF1 =[xF1 , yF1 , hF1] ;
68 targetpo intF2 =[xF2 , yF2 , hF2] ;
69 targetpo intF3 =[xF3 , yF3 , hF3] ;
70 targetpo intF4 =[xF4 , yF4 , hF4] ;
71 s e c t f o r m f i g =[xF1 , yF1 , hF1 , xF2 , yF2 , hF2 , xF3 , yF3 , hF3 , xF4 , yF4 , hF4] ;
72 m i n f i g u r e d i s t=norm ([xF1 , yF1]) ;
73 end
74 end

143

Bibliography

[1] Encyclopaedia Britannica. Formation flying. https://www.britannica.com/
technology/formation-flying.

[2] professionalaviation.it. Le frecce tricolori: la storia della pattuglia
acrobatica nazionale. https://www.professionalaviation.it/
le-frecce-tricolori-la-storia-della-pattuglia-acrobatica-nazionale/.

[3] Formation and Safety Team (FAST). The formation pilots’ knowledge guide - version
2.0. http://flyfast.org/sites/all/docs/FAST_FKG_2.0.pdf.

[4] Lieutenant Colonel L. Rossetti. Manned-unmanned teaming: A great opportunity or
mission overload? The Journal of the JAPCC, 29, 2020.

[5] Leonardo Company. A hero for our times. https://www.leonardo.com/en/
news-and-stories-detail/-/detail/a-hero-for-our-times.

[6] Mário Monteiro Marques. Stanag 4586 - standard interfaces of uav control system
(ucs) for nato uav interoperability.

[7] NASA. Past projects: Autonomous formation flight (aff). https://www.nasa.gov/
centers/dryden/history/pastprojects/AFF/index.html.

[8] W. B. Blake et al. Surfing aircraft vortices for energy. Journal of Defence Modeling
and Simulation: Applications, Methodology, Technology, 12:31–39, 2015.

[9] G. S. Schkolnik and B. Cobleigh. Autonomous formation flight: a primary goal is
to reduce fuel consumption during cruise by 10 percent. NASA Tech Briefs, pages
20–21, 2004.

[10] D. Rhodes L. Jenkinson, R. Caves. Automatic formation flight - a preliminary
investigation into the application to civil operations. AIAA, 2012.

[11] NASA. Aard - autonomous airborne refueling demonstration. https://ntrs.nasa.
gov/api/citations/20070025036/downloads/20070025036.pdf.

[12] A. Tsukerman et al. Optimal rendezvous guidance laws with application to civil
autonomous aerial refueling. Journal of Guidance,Control and Dynamics, 41, 2018.

[13] Bradley Perret. Moving fast. AviationWeek.com, April-May 2022.

144

https://www.britannica.com/technology/formation-flying
https://www.britannica.com/technology/formation-flying
https://www.professionalaviation.it/le-frecce-tricolori-la-storia-della-pattuglia-acrobatica-nazionale/
https://www.professionalaviation.it/le-frecce-tricolori-la-storia-della-pattuglia-acrobatica-nazionale/
http://flyfast.org/sites/all/docs/FAST_FKG_2.0.pdf
https://www.leonardo.com/en/news-and-stories-detail/-/detail/a-hero-for-our-times
https://www.leonardo.com/en/news-and-stories-detail/-/detail/a-hero-for-our-times
https://www.nasa.gov/centers/dryden/history/pastprojects/AFF/index.html
https://www.nasa.gov/centers/dryden/history/pastprojects/AFF/index.html
https://ntrs.nasa.gov/api/citations/20070025036/downloads/20070025036.pdf
https://ntrs.nasa.gov/api/citations/20070025036/downloads/20070025036.pdf

BIBLIOGRAPHY

[14] R. Bucknall Y. Liu. A survey of formation control and motion planning of multiple
unmanned vehicles. Robotica, 36:1019 –1047, 2018.

[15] Kwang-Kyo Oha et al. A survey of multi-agent formation control. Automatica,
53:424–440, 2015.

[16] M. Tillerson et al. J.S. Bellingham. Cooperative path planning for multiple uavs in
dynamic and uncertain environments. Proceedings of the 41st IEEE Conference on
Decision and Control, 2002.

[17] P. K. C. Wang. Navigation strategies for multiple autonomous mobile robots moving
in formation. Journal of Robotic Systems, 8, 1991.

[18] R.Napolitano et al. Y. Gu, G.Campa. Design and flight-testing evaluation of
formation control laws. IEEE Transactions on Control Systems Technology, 14, 2006.

[19] J.P.Desai et al. Controlling formations of multiple mobile robots. IEEE International
Conference on Robotics and Automation, 1998.

[20] J. Horn A. Dang. Formation control of leader-following uavs to track a moving target
in a dynamic environment. Journal of Automation and Control Engineering, 3, 2014.

[21] K. Tan M.A. Lewis. High precision formation control of mobile robots using virtual
structures. Autonomous Robots, 4:387–403, 1997.

[22] R. C. Arkin T. Balch. Behavior-based formation control for multirobot teams. IEEE
Transactions on Robotics and Automation, 55:926–939, 1998.

[23] Hui Liu. Robot Systems for Rail Transit Applications. Elsevier, 2020.

[24] M. Shanmugavel et al. Co-operative path planning of multiple uavs using dubins
paths with clothoid arcs. Control Engineering Practice, 18:1084–1092, 2010.

[25] P. U. Lima S. Garrido, L. Moreno. Robot formation motion planning using fast
marching. Robotics and Autonomous Systems, 59:675–683, 2011.

[26] E. Feron T. Schouwenaars, J. How. Receding horizon path planning with implicit
safety guarantees. Proceedings of the American Control Conference, 6:5576–5581,
2004.

[27] I. Petrović M. Dakulović. Two-way d star algorithm for path planning and replanning.
Robotics and Autonomous Systems, 59:329–342, 2011.

[28] Y. Ayaz A. H. Qureshi. Intelligent bidirectional rapidly-exploring random trees
for optimal motion planning in complex cluttered environments. Robotics and
Autonomous Systems, 68:1–11, 2015.

[29] P. M. Morse. Diatomic molecules according to the wave mechanics. Physical Review,
34:57–64, 1929.

145

BIBLIOGRAPHY

[30] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 5:396–404, 1986.

[31] Motion Imagery Standard Board. Misb st 0601.8. Standard - UAS Datalink Local
Set.

[32] R.Nelson. Flight stability and automatic control - second edition. McGraw-Hill, 1998.

[33] Matematical Association of America (MAA). Historical activities for calculus -
module 3: Optimization – galileo and the brachistochrone problem.

[34] W.F. Denham A.E. Bryson. A steepest -ascent method for solving optimum
programming problems. Journal of Applied Mechanics, 1962.

[35] N. Minorsky. Directional stability of automatically steered bodies. Journal of the
American Society for Naval Engineers, 34:280–309, 1922.

[36] the Free Encyclopedia Arturo Urquizo Wikipedia. Pid controller. https://en.
wikipedia.org/wiki/PID_controller (accessed on 17 July 2022).

[37] F. Dabbene. L2 - control specifications and pid control, 2021. Lessons for the
Dynamics and control of space vehicles course.

[38] G. Campa. “3dscope” block - matlab file exchange. it.mathworks.com/
matlabcentral/fileexchange/4915-3dscope (accessed on 17 July 2022).

[39] R.Napolitano et al. G.Campa. Development of formation flight control algorithms
using 3 yf-22 flying models. 2007.

[40] ECSM Wing Air Training Corps. Aircraft handling manual. http://www.967atc.co.
uk/wordpress/wp-content/uploads/2011/09/AircraftHandlingManualECSM.
pdf (accessed on 20 July 2022).

[41] L. Sciavicco et al. B. Siciliano. Robotics - Modelling, planning and control. Springer,
2009.

[42] G.Punzo. Verifiable swarm engineering with limited communication. 2013.

[43] et al. H. Choset. Principles of Robot Motion - Theory, Algorithms and
Implementation. MIT Press, 2005.

[44] X. Zhu et al. A flexible collision avoidance strategy for the formation of multiple
unmanned aerial vehicles. 2019.

[45] MATLAB Documentation. Visualizing four-dimensional
data. https://it.mathworks.com/help/matlab/visualize/
visualizing-four-dimensional-data.html.

146

https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller
it.mathworks.com/matlabcentral/fileexchange/4915-3dscope
it.mathworks.com/matlabcentral/fileexchange/4915-3dscope
http://www.967atc.co.uk/wordpress/wp-content/uploads/2011/09/AircraftHandlingManualECSM.pdf
http://www.967atc.co.uk/wordpress/wp-content/uploads/2011/09/AircraftHandlingManualECSM.pdf
http://www.967atc.co.uk/wordpress/wp-content/uploads/2011/09/AircraftHandlingManualECSM.pdf
https://it.mathworks.com/help/matlab/visualize/visualizing-four-dimensional-data.html
https://it.mathworks.com/help/matlab/visualize/visualizing-four-dimensional-data.html

	List of Tables
	List of Figures
	Introduction
	Historical background
	Formation flight organization
	Manned – Unmanned Teaming (MUM-T)

	Formation control and motion planning of multiple UAVs: the state of the art
	Research areas
	Formation control
	The leader-follower formation control approach
	The virtual structure and the behaviour-based formation control approaches
	The formation control approach adopted for the thesis

	Cooperative formation path planning
	The Artificial Potential Field method (references)
	The optimal control method
	The evolutionary algorithm
	Cooperative formation path planning approach adopted for the thesis

	The dynamic model of UAV using MATLAB Simulink
	Linearised dynamics: general characteristics
	Reference systems, kinematic, navigation and dynamics equations
	Longitudinal and lateral-directional linearised dynamics
	State space modelling

	The aircraft: general characteristics and performances
	The Simulink model of the aircraft
	Control surfaces
	Linear Quadratic Regulator (LQR) fundamentals
	Elevators and throttle control algorithms
	Ailerons and rudder control algorithms

	Autopilots
	Proportional Integral Derivative (PID) fundamentals
	Altitude/Vertical velocity and Heading autopilots

	Manoeuvres logic and visualization

	Formation control using Proportional Integral Derivative controllers
	Relative positions calculation in follower-centred reference system
	PID formation control block
	PID tuning

	Section formations
	Simulation

	The Artificial Potential Field Algorithm - theoretical explanation
	Generalized coordinates, configuration and operational space
	The traditional APF approach
	APF for cooperative formation control
	Gradient descent algorithm and planning techniques

	Formation control using a two-dimensional Artificial Potential Field Algorithm
	Building the algorithm - a static 2D case
	Potential functions analysis
	Code architecture
	Static 2D simulation results

	The Simulink model - time varying 2D case
	Leader UAV - 2D APF block
	Follower UAV - 2D APF block
	Follower UAV - 2D errors calculation and PID tuning
	Simulation #1
	Simulation #2
	Simulation #3

	Formation control using a three-dimensional Artificial Potential Field Algorithm
	Code adaptations
	Leader UAV - 3D APF block
	Follower UAV - 3D APF block and errors calculation

	3D potential visualization
	Simulation

	Conclusions and future developments
	Simulink model images
	Matlab and Simulink code listings

