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Alla mia famiglia, a coloro che mi amano 

incondizionatamente, a coloro che mi hanno 

sostenuto in ogni momento della mia vita  

“La famiglia è dove il cuore trova sempre una casa” 

(Stephen Littleword) 

 

 

 

 

 

 

 

“I metalli leggeri sono fruibili a fior di terra, mentre i più 

ricchi, la cui vena si cela in profondità, appagheranno più 

sostanzialmente la tenacia di chi li scava” 
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Abstract 
 

 

          Technological progress changed the satellites’ design over time: the modern 

tendency is to realize miniaturized spacecraft, best known as CubeSats, equipped 

by high-tech instrumentation and capable to perform transportation and objects’ 

manipulation functions, as Unmanned Aerial Vehicles or similar on the Earth. 

          Because of their small size, these systems are subject to changes during all 

phases of the space mission, due to strong interaction with the external 

environment, internal torques and forces/torques generated by thrusters. The 

Attitude Determination and Control System (ADCS) has to be designed for 

reaching the desired state, exploiting information about inertia tensor elements, 

total mass and system’s centre of mass position. 

          The purpose of this thesis is to estimate the mass properties of a rigid system, 

in which a collaborative satellite (chaser) and a non-cooperative one (target) are 

included, using nonlinear observer algorithms, for increasing the accuracy of the 

controller. 

          In particular, after the definition of the system dynamics, a simple orbital 

simulator is designed and two different estimation algorithms are performed. First, 

a Recursive Least Square (RLS) Method is implemented after an appropriate 

manipulation of the equations of motion. Then, an Adaptive Law, based on the same 

rearrangement of the plant, is derived and discussed in detail. 

          Finally, to demonstrate the effectiveness of the estimation processes, 

graphical and numerical results are shown after an appropriate mathematical 

analysis of the two defined models.  

 

Keywords: CubeSats, ADCS, estimation, mass properties, rigid system, nonlinear 

observers, orbital simulator, RLS, adaptive law 
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Introduction 
 

 

          “There is a driving force more powerful than stream, electricity and nuclear 

power: the will” (Albert Einstein). What is science without devotion, constant 

research and sacrifice? Ambition and willpower are at the base of modern science 

and in particular they are foundation of Space Engineering: the great achievements, 

related to space exploration, are the results of the vision and the ability of human 

mind to overcome its limits. 

          Through the technological evolution, scientists and engineers developed 

“eyes” capable to observe the universe above that thin layer that separates us from 

Space. These eyes are artificial machines that not only orbit the Earth, but also 

operate in deep space. 

          Artificial satellites evolved a lot over time, reaching a very high technological 

quality inside a very small size: we are speaking about CubeSats, miniaturized 

satellites, generally composed by COTS components, characterized by dimensions 

not larger than a shoes box. Universities, Governments and scientific R&D centres 

developed CubeSats for different reasons: 

o Costs’ reduction, because of a simplification of satellite’s structure and the 

standardization of satellite-rocket interface; 

o Load unification between rockets and payloads is fundamental in case of a 

satellite’s change; 

o Introduction of a technological challenge for the present and next 

generations. 

          Because of their little size, CubeSats are really influenced by perturbations 

deriving from the external environment and internal disturbances, so It is necessary 

to implement robust and complex control law, with high accuracy levels. 

          According to Mohammed E.A. Cheriet et al ([18]) a precise control for rigid 

satellites is reached after good information about mass properties, such as total 
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system mass, inertia tensor elements and centre of mass position, subject to changes 

over time because of fuel sloshing and consumption, flexible appendages, etc… 

          Because of the recent tendency for developing cheaper and smaller 

spacecraft, an estimation algorithm is required, for obtaining a good control and 

because fault detection and isolation processes are affected by thrust properties and 

mass variations ([19]). Finally, in case of nadir pointing satellites, useful for Earth 

observations or similar missions, as discussed by R.E. Bordany et al ([20]), the 

ADCS subsystem is designed for reaching a good pointing capability, obtained also 

after a good estimation of thrusters’ coefficients (thrust level and thrusters’ 

alignment). 

          The modern tendency to build UAV and similar, useful for objects’ 

transportation on Earth, has found application in recent space manipulators, 

indispensable for capturing non-cooperative targets, for removing debris from 

operational orbits, for repairing broken satellites or for servicing space stations 

([21]). 

          Indeed, in recent years, human activity was responsible for accumulation of 

artificial material, such as pieces of old boosters of space segments or rockets, or, 

trivially, due to loss of instruments during EVA performed by astronauts. 

          The Kessler syndrome1 indicates the consequence of this accumulation as a 

chain reaction of collisions, due to the high debris density around the Earth. In order 

to mitigate the formation of other debris many procedures had been proposed, such 

as the passivation of the spent stages released by rockets during ascent phase, for 

reducing the possible explosions, that can generate other artificial materials, or, for 

example, the use of a cooperative satellite that, after a grasping process and an 

orbital manoeuvre, the non-cooperative debris is positioned on a parking orbit; 

alternatively, if both satellites operate in LEO, after a rendezvous manoeuvre in 

which the chaser reaches the target, using the residual fuel of the first one, the 

connected system, after another manoeuvre, decays in atmosphere. 

 

 

                                                           
1 Donald Kessler is an American scientist (NASA) who started to study the evolution of space debris. 
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          In this context, the objective of this thesis is to implement an estimation 

algorithm for inertial properties identification of a rigid system composed by a 

collaborative satellite (chaser) and a non-cooperative one (target). 

          According to Q. Leboutet et al ([27]) the most used approaches to determine 

the mass properties of a physical system are: 

o The Inverse Dynamic Identification Model with a classical Least-Square 

method or similar such as Recursive Least Square or Weighted Least-

Square. 

o Extended Kalman Filter (EKF) used not only for noise filtering problems, 

but also for dynamic system identification. The main problems connected 

to this estimator are related to its strong dependence to initial conditions and 

tuning parameters, such as the initial covariance, noise measurement and 

noise process matrices. 

o Maximum Likelihood Methods. 

o Closed-Loop Input / Output Error estimators. 

o Neural Networks.   

          Finally, M. Kravis and R. Stolkin ([22]) in their essay explain innovative 

methods for estimating inertial properties of other objects when a robot gets in touch 

with these ones. They classify three different methods: 

o Purely visual, based on different visual sensors, used for representing 

the object as a point cloud, information that will be elaborated for 

determining its maximum size and geometry; finally, through wave 

frequency It is possible to calculate the density of the object. 

o Exploratory methods, based on an interaction between the object and 

the robot: this one applies a contact force on the target and, using 

cameras, It is possible to measure its relative motion; inertia tensor 

elements and mass are determined with an appropriate manipulation of 

the equations of motion. For these methods strong assumptions are 

necessary, in particular related to friction developed during contact. 

o Fixed object methods, characterized by a rigid connection between 

robot and payload; the algorithms implemented are based on the 

classical estimators of dynamics parameters, after a rearrangements of 

the system’s dynamics. 
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          In this thesis project, analytical procedures similar to the proposed fixed-

objects methods, described in [22], are implemented. First, a RLS is designed for 

evaluating the mass properties for both chaser and target. Then, two Adaptive Laws 

are obtained using two different approaches: one is based on a parametrization of 

the system, expressed as function of masses, the other is derived starting from the 

same mathematical manipulation of RLSM. 

          To validate these algorithms, a simple scenario is studied: chaser and target, 

whose dynamics is influenced by a strong interaction with the external 

environment, operate in Low Earth Orbit, at 500 km of altitude.  

          The physical properties of these satellites are taken from [3]. In particular, 

target, a CubeSat weights 3.5 kg is rigidly grasped by another CubeSat, defined as 

service satellite (chaser). All the technical data are in Chapter 1. The Reaction 

Control System (RCS) of this one is chosen exploiting a comparison between the 

physical and geometrical properties of this collaborative satellite and those of other 

CubeSat with the same characteristics.  

          The Attitude Determination and Control System is designed to stabilize the 

total system, so that the actual quaternion is aligned to the ideal (unit) one. 

Exploiting all the information deriving from the kinematics expressed as function 

of quaternions, a simple control law, based on a Quaternion Feedback Controller, 

is implemented. Finally, the control input is generated by an actuation system 

composed by four Reaction Wheels in a pyramidal configuration. For simplicity, in 

this thesis the orbit determination problem is not considered, indeed, in the various 

simulation, the control forces are set to zero.  

          Finally, this work is organized as follow: in Chapter 1 the dynamics and 

kinematics models are discussed; in Chapter 2 a brief description of the most used 

algorithms for inertial parameters identification is analysed and the relative 

implementation, based on a rearrangement of the equations of motion, with the 

obtained graphical and numerical results are shown in Chapter 3. The last section 

shows the conclusions of this thesis project with the open questions that can be 

solved in future works.  
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Chapter 1 

Dynamics and kinematics model 

 

 

The purpose of this first section is to present the main elements for modelling a 

simple orbital simulator necessary for the definition and the implementation of an 

estimation process of the inertial parameters (mass, inertia and centre of mass) for 

a satellite system. In particular, in this chapter the technical data used for the various 

simulations, the mathematical model and the characterization of the space 

environment are discussed, not only for a system composed by two small satellites, 

but also for a single CubeSat, useful to validate the estimation algorithms: the 

unique difference between the two study cases consists in the plant (equations of 

motion), while the other elements of the discussed simulator are not subject to 

changes. 

 

 

1.1.  Spacecraft’s Technical Data 
 

          The general properties of the analysed spacecraft are reported in the 

following tables. In particular, Table 1 shows all the technical requirements of 

a 6U CubeSat, in terms of total mass, maximum size, geometry and Reaction 

Control System, while Table 2 reports some information, such as geometry and 

mass, about two Small Satellites, adopted for running the various simulations. 
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Table 1. Technical data of 6U CubeSats ([2])  

PARAMETER VALUE UNIT OF MEASURE 

Total mass 12 kg 

Size 30x10x20 cm x cm x cm 

REACTION WHEELS 

Number 4 
Pyramidal configuration 

/ 

Max torque 2 mN 

Max angular momentum 30 mNms 

REACTION CONTROL SYSTEM 

Thrust 1 mN 

Max time on 25 s 

Isp 60 s 

 

 

 

Table 2. Technical data of two Small Satellites ([3])  

PARAMETER VALUE UNIT OF MEASURE 

Service Satellite (chaser) 

Mass 10 kg 

Dimensions 0.6 x 0.6 x 0.6 m x m x m 

Target 

Mass 3.5 kg 

Dimensions 0.4 x 0.4 x 0.4 m x m x m 

Tether (connection element) 

Length 2.25 m 

Diameter 5 mm 

Young modulus 4.456*107 Pa 
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1.2.  Dynamics models and main assumptions 

 

1.2.1. Rotation dynamics model for a single CubeSat  
 

          At the base of the spacecraft dynamics model there is the Euler’s equation 

([1] [28]), that describes the satellite motion as a rigid body in terms of rotations.  

          The mathematical formulation, in a body reference frame, is 

 �� � = ����	
�� − 	�� − �� × ���� + ℎ���� 

(1.1) 

 � ∈ ����is the inertia tensor (in this case It is a symmetric matrix), �� ∈ ����is 

the angular velocity vector in a BRF, 	�� ∈ ����is the control vector in BRF, 

generated by the cluster of RWs in a pyramidal configuration, ℎ�� ∈ ����is the 

angular momentum produced by RWs, 	
�� ∈ ����is the external disturbances 

vector. 

 

          In a real space simulator, another torque term2 is responsible for motion 

changing: this vector occurs when, in a complex model, thrusters generate a 

control force, connected to variations for translational motion, whose distance 

from the system’s CoM is not null. In our case, this value is not considered. 

 

 

1.2.2. Translation dynamics for a single CubeSat 
 

          The rotation dynamics, studied in the previous section, is useful for 

estimating all the inertia tensor elements, because of the formulation of 

Euler’s equation, in which the angular rate and the angular acceleration are 

related to this matrix. 

          A correct knowledge of translation dynamics can be considered for 

estimating the satellite’s mass. In particular, for the first step of this thesis 

project, the position dynamics of a S/C is derived starting from the physical 

                                                           

2 	�� = ∑ ��������� !�"�  
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laws for a simple rendezvous manoeuvre, in which the chaser has to 

complete far RVD manoeuvre, realizing a Hohmann transfer ([2]). 

          As proposed in [6], after the definition of the IRF, centred in the 

Earth’s CoM, and obtaining the target and chaser motion laws in base of the 

two body problem, the relative motion is linearized with a Taylor expansion 

and the first order term is obtained using the Jacobian matrix. The final 

equations are indispensable to represent the chaser motion in a Local 

Vertical Local Horizontal (LVLH) reference frame, centred in target CoM. 

The Hill’s equations are formulated only if same assumptions are respected: 

o The chaser and the target orbits are circular. 

o The distance between the two satellites is lower than the orbital 

radius. 

o The reference frame is LVLH. 

           The mathematical description of the Hill’s equations is  

 

�# = 1%& �� + 2�(� 
)# = 1%& �* − �+) 

(# = 1%& �, − 2��� + 3�+( 

(1.2) 

 %& is the chaser’s mass, � = .�� �* �,01
is the force vector that includes not 

only the forces from thrusters, but also the external disturbances, � = 2 345 is 

the orbital rate, where 6 is the Earth gravitational parameter (398600 ;<5=> ), ? is 

the orbit radius. 

          The Hohmann transfer is the most efficient manoeuvre, if It is realized 

between two coplanar orbits, and It is an ellipse tangent to both. For simplicity, 

because of the low accuracy of the first phase of a far RVD, the transfer is 
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treated as an impulsive open-loop manoeuvre (in a real case It is a closed-loop 

one). 

 

 

 

 

 

 

 

 

 

 

 

          With the hypothesis of an ideal case in which It could be possible to use 

the maximum thrusters’ force, the purpose is to evaluate the time on, using the 

distance between the chaser and the target for the impulse determination in 

terms of speed variation. In symbols 

 

ΔA�� = ΔA�+ = �4 Δ( 

��� = ��+ = %& ΔA�ΔC  ↔   ΔC = %& ΔA���  

(1.3) 

 

 

 

1.2.3. Dynamics model for two connected CubeSats 
 

          After a brief description of the mathematical model for a single 

CubeSat, in this sub-section a new model, with its relative assumptions, for 

our study case is discussed.   

          The total system is composed by a cooperative satellite (chaser), 

influenced by external disturbances and forces/torques generated by 

actuation system, and by a non-cooperative satellite (target), whose changes 

in position and attitude depend on external disturbances and forces/torques  

Figure 1. Example of far RVD manoeuvre (image taken from [6]) 
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produced by RCS and RWs of chaser; finally, a massless element, aligned 

along the direction vector of the two CoMs, connects the two rigid bodies. 

          For the derivation of the equations of motion, we consider Figure 2 

(for simplicity, only the components along the x- body direction are shown). 

          For studying the total system, some preliminary steps and definitions 

are necessary. For a given system, composed by N material points, in which 

every point is characterized by a total mass mi and position vector ri , the 

total system’s CoM is a position vector rc, whose components are expressed 

by the following mathematical relations ([4]): 

 

�& = ∑ %� ����"�∑ %���"�  

)& = ∑ %� )���"�∑ %���"�  

(& = ∑ %� (���"�∑ %���"�  
(1.4) 

Figure 2. Chaser – Target system 
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          Every position vector ri is defined only if a preliminary RF is chosen; 

for this reason, as first step, we suppose to fix the origin of this reference 

frame at the chaser’s CoM, the components of ri are computed and then, 

knowing the total system’s CoM, the RF is “transported” in this point. 

Finally, the distances from total CoM to chaser/target ones ρi are 

determined. 

          Since at the beginning of a space project, a mission design is required 

to reach, successfully, the final objective (in this case the capture of the 

target), using the maximum size of the target and chaser, It is possible to 

calculate the inertia tensor of the two rigid bodies, adopting, as first 

assumptions, these relations ([28]): 

   

��,� = 112 %���*,�+ + �,,�+ � 

�*,� = 112 %����,�+ + �,,�+ � 

�,,� = 112 %����,�+ + �*,�+ � 

�� = F��,� 0 00 �*,� 00 0 �,,�G 

(1.5) H = C, I  

 

          Obviously, these only three components define the inertia tensor as a 

diagonal matrix; in general, since a S/C has three symmetry axes, the tensor 

is symmetric and characterized by 6 independent elements, determined with 

a high accuracy after a detailed CAD model, composed by the final 

assembly of payload and subsystems. 

     

          Considering chaser and target as two bodies rigidly connected, the 

translational equation (described only for a full discussion) is defined as: 

 %�J� + %&J& = �
��,� + �
��,& + ��� = �
�� + ��� 

(1.6) 

 



28 
 

%�, %& are the target and chaser mass respectively, J�, J& ∈ ���� are the 

linear accelerations of target and chaser respectively, �
��,�, �
��,& ∈ ���� 

are the external disturbances acting on target and chaser respectively, ��� ∈���� is the thruster’s force acting only on the chaser. 

          With the hypothesis that the total external disturbances vector is 

applied on system’s CoM and that the control forces or torques act on 

chaser’s one, It is possible to define all the quantities respect to the system’s 

CoM: 

 

J� = KKC A� = KKC �A= + �= × L=�� = KKC A= + KKC ��= × L=�� 

                  = A=� + �= × A= + KKC �= × L=� + �= × KKC L=� KKC L=� = L�=�3 + �= × L=� = �= × L=� 

 

 

J& = KKC A& = KKC �A= + �= × L=&� = KKC A= + KKC ��= × L=&� 

                  = A=� + �= × A= + KKC �= × L=& + �= × KKC L=& 

 KKC �= = �=� + �= × �=4 = �� = KKC L=& = L�=& + �= × L=& = �= × L=& 

           

          Uniting all the terms, for the target we have: 

 

%�J� = %�M A�= + �= × A= + �� = × L=� + ωO × �ωO × L=��P           = %�M A�= + �= × A= + �� = × L=� − �= × �L=� × �=�P 

(1.7) 

 

                                                           
3 If the distances from the system’s CoM are constant, or better they aren’t subject to variations in 
time, the derivative is null. 
4 The cross product between two equal vectors is null. 
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          With the same mathematical procedure, for the chaser we have: 

 %&J& = %&M A�= + �= × A= + �� = × L=& − �= × �L=& × �=�P 
(1.8) 

 

          Defining the state vector as the union of the linear and angular 

velocities, the final equation of translational motion in matrix form is 

 

Q RA�=�� =S + T UA=�=V = W���X + W�
��X 

 Q = M�%� + %&� −%�L=�� − %&L=&� P T = M�=��%� + %&� −%��=�L=�� − %&�=�L=&� P 
(1.9) 

 

          The conversion from cross product to a matrix form is possible by 

adopting the properties of the skew matrix (or antisymmetric matrix). For 

example: 

 �= × A= = �=�A= 

�=� = F 0 −�=,, �=,*�=,, 0 −�=,�−�=,* �=,� 0 G 

 

          For the rotation dynamics 

 KKC ℎ�Y�Z[ = KKC �ℎ� + ℎ&� = 	�� + 	
�� 

(1.10) 

 ℎ� = ���= + L=� × %�A�5 = ���= + L=� × %��A= + �= × L=�� 

                                                           
5 According to the physical laws of rigid bodies ([4]), the angular momentum of a system respect to 
a generic fixed pole is equal to the sum of the angular momentum of a material point concentrated 
in the centre of mass with the velocity of the CoM (first term) and the angular momentum respect 
to the CoM (second term)  
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ℎ& = �&�= + L=& × %&A& = �&�= + L=& × %&�A= + �= × L=&� 

 KKC ℎ& = �&�=� + �= × �&�= + KKC �L=& × %&A=� + KKC WL=& × M%&��= × L=&�PX 

     = �&  �� = + �= × �&�= + KKC L=& × %&A= + L=& × KKC �%&A=� + KKC L=&
× �%&�= × L=&� + L=& × KKC �%&�= × L=&� 

            = �& �� = + �= × �&�= + ��= × L=&� × %&A= + L=& × %&�A=� + �= × A=�+ ��= × L=&� × �%&�= × L=&�6 + L=& × M�=� × %&L=& + %&�=× �= × L=&P 
 

          Manipulating the previous equation we have: 

 KKC ℎ& = �&  �� = + �= × �&�= + %&L=& × A�= + %&L=& × ��= × A=�
+ %&��= × L=&� × A=7 − %&L=& × �L=& × �� =� − %&L=&× M�= × �L=& × �=�P               = %&L=& × A�= + �& �� = − %&L=& × �L=& × �� =� + %&L=& × ��= × A=�+ �= × �&�= − %&L=& × M�= × �L=& × �=�P 

(1.11) 

 

          Adopting the same procedure for the target we have: 

 KKC ℎ� = %�L=� × A�= + ��  �� = − %�L=� × �L=� × �� =� + %�L=� × ��= × A=� + �=× ���= − %�L=� × M�= × �L=� × �=�P 
(1.12) 

 

          For analogy, the rotational dynamics can be written in matrix form, 

considering the same state vector and the sum of the various term deriving from 

the derivative of the target and chaser angular momentum. Adopting the 

                                                           

6 This term is null because is in the form J × �^J� = ^�J × J� = 0. 
7 This term is null because ��= × L=&� × A= = A= × A= = 0 
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mathematical formulation proposed in [5], It is possible to use a compact form, 

not only for rotations, but also for the total dynamics (plant). 

          In conclusion: 

 

	 RA�=�=� S + _ UA=�=V = R ���L=&� ��� − 	��S + R �
��	
��S 

	 = ` a %� −%�L=��%�L=�� �� − %�L=�� L=�� b�"�,&  

_ = ` a %��=� −%��=�L=��%�L=�� �=� �=��� − %�L=�� �=�L=�� b�"�,&  

(1.13) 

 

  

 

1.3.  Kinematics model and Quaternion Feedback Controller 
 

          To guarantee the spacecraft active stabilization, for this thesis project a 

Quaternion Feedback Controller is implemented ([1] [20]). In general, the 

attitude of a rigid body is expressed using the Euler’s angles, but in space 

applications a kinematics model, based on the use of quaternions, is preferred 

for: 

o Avoiding geometric singularities. 

o Reducing the computational cost. 

o For increasing the numerical stability and the effectiveness of the 

algorithms. 

The following equation ([1]), expressed in matrix form, describes the evolution 

of quaternions, starting from the knowledge of the angular velocities in a BRF 

 

cd�ed��d�+d�fg = d� = 12 h 0 −�� −�+ −���� 0 �� −�+�+ −�� 0 ���� �+ −�� 0 i cded�d+d�
g 

(1.14) 
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de ∈ � is the scalar component of quaternions, while dj = Wd� d+ d�X ∈ ���� 

represent the vector component. In another way, considering these two different 

components 

 

d�e = − 12 �� dj 

 

d�j = 12 �de�� − �� × dj� 

(1.15) 

 

          Since in this chapter the translational dynamics of the single CubeSat is 

described in a Local Orbital Reference Frame and in particular in Local Vertical 

Local Horizontal (LVLH) RF and the attitude dynamics is defined in a BRF, in 

this section is useful to report the implementation of the coordinate 

transformation matrix from BRF to IRF, expressed in function of quaternions 

([1]): 

 k�l = �de+ − dj ∙ dj�n� + 2djdj1 − 2deop 

(1.16) 

 n� ∈ ���� is the identity matrix, op ∈ ����is the skew matrix of dj 

 

op = q 0 −d� d+d� 0 −d�−d+ d� 0 r 

 

After the definition of the satellite kinematics, It is possible to formulate the 

analytical discussion of the chosen controller (QFC).  

          The purpose of a control law is to calculate the necessary torque or force 

for reaching a desired attitude or position, after a series of rotations. In general, 

the reaching of the desired configuration requires a defined fuel consumption, 

so the QFC provides a nearly optimal strategy based on a complex logic control. 

          Using the easy computation of quaternions and all the attitude 

information from on-board sensors, the general law for a closed-loop control is 
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 	� = −std
 − su�� 

(1.17) 

 	� ∈ ���� is the control torque, d
8 is the quaternion error, st and su are 

constant matrix that depend on the final controller formulation. 

          As proposed in [1], there are four different types of controllers, but, since 

the objective of this thesis project is not correlated to a detailed controller 

design, the simplest control law is adopted 

 st = ^n� su = KHJv9�K� K+ K�� 

(1.18) 

 

Finally, because of the ideal quaternion is equal to the desired, It is possible to 

affirm that the quaternion error is about the vector component of current 

quaternion. So the mathematical description for QFC is 

 	� = −wHvx10�du
=,e�stdj − su�� 

(1.19) 

 

 

 

 

                                                           
8 The quaternion error is formulated as  d
 = d − du
= 
 d is the current quaternion, du
= is the desired. 
          The previous equation is not a simple difference, but It is expressed by a quaternion product 
[1]. In matrix form 
 

cd
,ed
,�d
,+d
,�
g = hdu
=,e −du
=,� −du
=,+ −du
=,�du
=,� du
=,e −du
=,� du
=,+du
=,+ du
=,� du
=,e −du
=,�du
=,� −du
=,+ du
=,� du
=,e

i cded�d+d�
g 

 
9 “Diag” stands for the MatLab command used to indicate a diagonal matrix. 
10 The function “sign” is fundamental to accept as possible scalar quaternion component both ±1. 
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1.4.  Actuators model 
 

     Every satellite is equipped by actuators for active position and attitude 

control; they are classified in ([2]): 

o Reaction-type actuators, such as thrusters and magnetic torquers, for 

changing angular momentum. 

o Momentum exchange devices, such as RW and control moment gyro, for 

maintaining constant the overall angular momentum. 

          In a real spacecraft, thrusters and jets generate both force and torque and for 

this reason they can be used not only for position but also for attitude control. In 

this thesis project, and in particular for the analysis of the single CubeSat, the RCS 

is used only for the guidance function. 

          For reaching the desired attitude and to guarantee a three axis control a cluster 

of four RWs in a pyramidal configuration is considered: these devices, that spin 

along a fixed axis, are brushless motors, connected to a flywheel with a high inertia; 

the disadvantages of these actuators are connected to torque and momentum 

saturation, because they cannot provide a torque higher than design value, due to 

electrical and mechanic limits. 

          According to the technical parameters reported in the Table 1, the RWs on-

board of the analysed 6U CubeSat can be modelled considering the saturation 

limits, as shown in the following scheme: 

 

 

 

 

  

  

The equation of the Low Pass Filter is  

 ^yw + 1 

Figure 3. RW model 
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^, y ∈ �. 

          The output of the actuator model is the necessary torque for reaching the 

desired state. Analysing the previous scheme, we can affirm that: 

o The control torque, generated by the QFC, is expressed in BRF. 

o The actuators model produces a torque in own RF. 

o An actuation matrix is necessary to pass from BRF to RW RF for allocating 

the control torque in the RW assembly, and vice versa (from RW RF to 

BRF) for applying the Euler’s equation. 

          Because the four actuators are allocated inside the spacecraft in a pyramidal 

configuration, the actuation matrix is defined as ([2]) 

z =
⎣⎢⎢
⎢⎢⎢
⎡√32 0 − √32 0

0 √32 0 − √3212 12 12 12 ⎦⎥⎥
⎥⎥⎥
⎤

11 

  

          Finally, considering all the above information, the real scheme for the torque 

determination as input of the Euler’s equation is 

 

 

  

                                                           
11 Because the matrix is not a square matrix, its inverse is defined pseudo-inverse and It can be 
calculated with the MATLAB command “pinv”. 
 

Figure 4. Block scheme for RW torque and angular momentum determination 
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1.5.  External disturbances 

 

          In addition to internal torques, that arise from the flexibility of the satellite 

structure or other phenomena such as propellant sloshing and uncertainty in S/C 

CoM, the CubeSat interacts with the external environment: the result is a series 

of torques and forces (cyclical or secular) responsible for variations in position 

and attitude. A classical CubeSat that operates in LEO, due to its small 

dimensions, is influenced by ([2]): 

o Atmospheric drag, because of the presence of residual atmosphere. The 

conventional continuum theory of fluids decays and the interaction 

between the vehicle and the environment, due to very low density, can 

be considered at molecular level. Approximating this force as a constant, 

we have: 

 

�Z�< = 12 LA+�_� 

(1.20) 

 L is the atmospheric density, � is the wet area, A is the S/C orbital 

velocity, _� is the drag coefficient, depending on solar flux and altitude. 

          Defining the correct motion’s direction, the atmospheric drag 

vector is opposite to this one. 

 

o Solar pressure radiation, due to solar activity. It is a sequence of 

photons with momentum, that produces a small pressure on the satellite 

surface, with relevant cumulative effect in a long period. The 

mathematical model of this effect is:  

 

�= = �1 + ^� n=I � 

(1.21) 
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^ is the reflectivity and It can be equal to 0 in eclipse or 1 in case of 

illumination conditions, n= is the solar constant (about 1367 �<>), I is the 

light speed (3 ∗ 10� <= ), � is the frontal area. 

          This force acts on all motion’s directions. 

 

o Gravity gradient aligns the minimum inertia axis to the local vertical. 

Considering the spacecraft with a mass much smaller than the spherical 

principal body (Earth), the gravity gradient torque can be modelled as: 

 	� = 3x+?̂ × �?̂ 

(1.22) 

 

x = 2 3Z5 is the orbital rate, where J is the major semi-axis of the orbit, 

6 is the Earth gravitational parameter (398600 ;<5=> ), � ∈ ���� is the 

inertia tensor, ?̂ = W− sin �, sin � , 1 − sin+ � − sin+ �X1 is the unit 

vector from the planet to the satellite. 

 

o J2 effect, related to the oblateness of the Earth. In a real mathematical 

model, the oblation on the planet’s gravity is described as a 

mathematical series, in which every term �; is defined as zonal 

coefficient; because of the J2 term is higher than others in terms of order 

of magnitude, in this project we consider only this perturbation, 

modelled as the following relation: 

 

��+ = %& 3�+6��+2?f  

(1.23) 

 �+ is a constant (1.08263 ∗ 10��), %& is the S/C mass, �� is the medium 

Earth radius, ? is the orbit radius. 

          This force acts on the opposite reference motion’s directions. 
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o Magnetic torque, because of the interaction with Earth’s magnetic 

field. 

 

               In this thesis project, only the first four disturbances are considered for the 

implementation of a basic orbital simulator, necessary for the estimator design. In 

particular, the atmospheric drag, the J2 effect and the solar pressure are responsible 

for only position changes in translational motion, while the gravity gradient 

modifies only rotational dynamics. Really, this sentence is not true, because the 

external forces are not applied at CoM, but they can be distributed on all satellite 

external surface or on specific points, generating torques too.  

           Because of their small order of magnitude, the previous assumption is valid 

for our study case.  

           In conclusion, the total external force and torque are 

�
�� = �= + �Z�< + ��+ 

	
�� = �1 + 0.15�	� 

(1.24) 

          The surplus equal to 15% on the gravity gradient torque is applied for 

including the other perturbations on the rotational dynamics, that here are not 

modelled and calculated in detail. 
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Chapter 2 

Parameters Estimation  

 

 

In this chapter different algorithms used for inertial parameters estimation are 

discussed; in particular, after a brief analysis of the literature review, the 

mathematical description of the most common estimators and observers is 

explained step after step. 

 

 

2.1.  Literature review 
 

          The inertial parameters identification is fundamental for a good 

control of the spacecraft: different phenomena are responsible for variations 

in terms of mass, such as the fuel consumption after the realization of a 

particular manoeuvre, others are connected to inertia tensor and CoM, such 

as the internal torques (liquid sloshing, movements of the crew members in 

case of manned vehicles, etc…). 

          In literature, there are different studies in which these properties are 

analysed in detail, but are limited to UAVs or automotive. Recently, after 

the development of space manipulators, engineers and researchers applied 

the most used algorithms for inertial parameters identification to spacecraft, 

for increasing the accuracy and the stability of the control block, realizing a 

more automatized vehicle with the benefit of a great reduction of errors. 

          Exploiting all the results in bibliographic research, It is possible to 

affirm that the most used algorithms for mass and inertia estimation are: 

o Recursive Least Square Method or similar; 

o Extended Kalman Filter (used also for noise filtering problems); 
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o Adaptive Laws, derived from a manipulation and a rearrangement of 

the system’s dynamics. 

 

 

2.2. Recursive Least Square Method 
 

          In his thesis work, A. Eriksson ([7]) explained an estimation method 

based on an Adaptive Kalman Filter, known as RLS, for calculating the 

current mass of a heavy duty Scania Vehicle, starting from a manipulation 

of vehicle dynamics and exploiting the Newton’s second law of motion.  

          Kim et al ([8]) propose an interesting estimation algorithm based on 

the analysis of the longitudinal and the roll dynamics: the results of the two 

different estimation processes are weighted adopting a Multiple Observer 

Synthesis (MOS). 

          Finally, F. Yuan et al ([9]) adopt the same algorithm (RLS) 

implemented not only for mass estimation, but also for the driving 

resistance; the main difference between [8] and [9] is related to a particular 

coefficient, called forgetting factor λ.  

 

          For implementing the RLS method, the first step consists in the 

definition and the minimization of a loss function, that depends on time and 

the estimated variable. Similar to the classical Least Square method, used to 

calculate the best solution of a linear system in the minimum square sense, 

the result of the derivative of the loss function can be written in the 

following form: 

 )�C� = �1�C���C� 

(2.1) 

 )�C� is the measured output, ��C� is the regressor matrix, ��C� is the 

variable to be estimated. Really, for a nonlinear system, the regressor matrix 

is a function of time and ��C�. 
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          So, the second preliminary step is the manipulation of the plant, for 

determining the measured output and the regressor matrix. Now considering 

a generic case, in which the loss function depends also on forgetting factor, 

with the knowledge of all the quantities, It is possible to define the Kalman 

gain 

 s�C� = ��C���C� = ��C − 1���C� ∗ ��n + �1�C���C − 1���C����
 

(2.2) 

 ��C − 1� is the covariance matrix calculated in the previous step (so, if we 

are calculating the Kalman gain at first iteration, we have to use an arbitrary 

value of P, necessary to initialize the filter), � is the forgetting factor, n is 

the identity matrix. 

 

          The final and last steps consist in the calculation of the estimated 

parameter and in the updating of the covariance matrix: 

 

Figure 5. Block diagram of the RLSM 
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��C� = �n − s�C��1�C����C − 1���C� 1� 

���C� = ���C − 1� + s�C� �)�C� − �1�C����C − 1�� 

(2.3) 

 ���C − 1� is the estimated value in the previous step. 

 

          In Figure 5, a simple block diagram of the RLS observer is shown: 

the filter begins the estimation process only if the user defines initial 

covariance and state vector; the calculation of the parameters reported in 

(2.3) is indispensable for initializing the next iteration (red lines of the 

graphic).  

 

 

 

2.3. Extended Kalman Filter 
 

          If the scientific studies about RLS can be elaborated on not only for 

mass estimation, but also for inertia one, A. Bellar and Si Mohammed MA 

([10]) propose an innovative algorithm for all inertia tensor elements 

identification, based on an EKF. 

          Generally, if the equations of motion are described in a linear form, a 

Kalman Filter is implemented for helping the navigation system in presence 

of degradation of on-board sensors, such as the star trackers. If this 

hypothesis is not respected, an Extended Kalman Filter is necessary. As the 

first, the EKF is composed by two different cycles: propagation and 

correction. 

          At the base of this observer there is the definition of the nonlinear 

system in the following form 

 �� �C� = ����C�, C� )�C� = _��C� 

(2.4) 
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 ��C� is the state vector to estimate, ���C� is the derivative of the state vector, � is the nonlinear function that describes the system’s dynamics, expressed 

as a function of time and state vector. 

 

          For the propagation cycle in [10] the Adams integration method is 

applied, but for reducing the computational cost of the algorithm, It is 

possible to substitute a simple Explicit Euler Method to the proposed one. 

In other words, the main steps to be realized are 

 ��;,t = ��;�� + KC ����;��, C;��� 

 �;,t = Φ;���;��Φ;��1 + o; 

 Φ;�� = n + KC ����;��, C;��� 

(2.5) 

 KC is the fixed time step, o is the process noise matrix, ��;�� and �;�� are 

the estimated vector and the covariance matrix calculated in the previous 

Figure 6. Block diagram of the EKF observer 
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iteration, Φ is the transition matrix, n is the identity matrix, � is the Jacobian 

matrix, obtained as 

 

� =
⎣⎢
⎢⎢
⎡ ������� ⋯ �������⋮ ⋱ ⋮���<��� ⋯ ���<��� ⎦⎥

⎥⎥
⎤

12 

(2.6) 

  

          We can observe that only after the definition of this matrix, the 

transition matrix Φ, responsible for passing from the state k to state k+1 (or 

similarly from k-1 to k states) can be computed adopting an approximation 

based on the first order Taylor series expansion (see the set (2.5)). 

 

          If the propagation cycle produces a priori parameters, the correction 

cycle is fundamental to define a posteriori values of the estimated vector 

and the covariance matrix. At the base of this iteration there is the 

calculation of the optimal Kalman gain 

 s; = �;,t�;1 �;�;,t�;1 + �¡ 
 ��; = ��;,t + s; (; − �;��;,t¡ 
 (; = �; 

 �; = Mn − s;�;P�;,t 

(2.7) 

 s; is the Kalman gain, �; is the observation matrix, n is the identity matrix, � is the measurement noise matrix, (; is the measurement vector. Finally, 

                                                           
12 This notation is based on the assumption that the state vector is composed by n variables, while 
the derivative of the state vector, that is equal to the function f, is characterized by m parameters. It 
is fundamental to pay attention to these variables: in general, they can be vector quantities.  
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�; is calculated as �;, so applying Jacobian to )�C�: if _ is a constant 

matrix, �; ≡ _. 

 

          A good system enjoys a particular property, called observability, that 

indicates the ability of the system to determine its own time history with a 

high accuracy; in other words, a dynamic system is observable only if it is 

capable to determine its state with the knowledge of the measured output. 

Mathematically, a dynamic system is observable only if the rank of the 

observability matrix is equal to the state vector’s dimension, for each time 

step. This matrix, according to [10] is defined as: 

 £T = M�;  �;�;  �;�;+  �;�;� … �;�;���P1 

(2.8) 

 

Where n is the state vector dimension. 

 

 

 

2.4. Adaptive Laws 
 

          Generally, the most common used algorithms for inertial parameters 

identification are based on AKF, RLSM and in rare cases EKF. In all these 

studies, the total mass, the CoM allocation and the inertia tensor elements 

are constant during all the evolution of the physical phenomenon: this 

hypothesis is really restrictive, but It continues to remain valid for all the 

processes characterized by a small mass variation. 

          If we consider the equation (1.13), that describes the dynamics of 

target-chaser system in a body RF, It is easy to note an analogy with the 

classical dynamics of a UAV, for aerial manipulation scopes. 

          After a grasping process, the added mass of the unknown payload 

causes a change in dynamics, so the Attitude Determination and Control 

System has to evaluate the new total mass and total inertia for a good control 

of the vehicle. 
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          Always with the hypothesis of constant parameters, H. Lee et al ([11]) 

designed an Augmented-Passivity controller based on an updating of inertial 

parameters. This process consists in a parametrization of the Newton-Euler 

equations in function of the unknown mass and the new allocation of the 

centre of mass. 

          N.A. Chaturvedi et al ([14]) elaborate a parameter identification 

method based on an Adaptive Control Law manipulating the classical rigid 

body dynamics, demonstrating the stability of the algorithm not only in case 

of a tracking problem characterized by a constant reference, but also when 

this one is a periodic signal. 

          J.Ahmed et al ([15]) proposed an alternative solution applied to the 

previous study case, adopting an adaptive feedback control based on the 

knowledge of kinematics expressed in terms of quaternions. 

 

          Exploiting all the results discussed in scientific literature and using 

the dynamics model of a multibody system formulated in the Chapter 1, It 

is possible to implement a mathematical model for defining an Adaptive 

Law for all inertial quantities identification. Since It is necessary a detailed 

analysis of the total system, the relative assumptions and the logical 

procedure to obtain a good estimation are treated in Chapter 3.   
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Chapter 3 

Design and Implementation of 

the Algorithms 

 

 

Using all the analytical results obtained in the previous chapter, It is possible to 

apply the studied algorithms to our study case: the inertial parameters estimation of 

a system composed by two satellites, modelled as two rigid bodies; in particular, 

the reference equation (1.13) represents the starting point for the definition of the 

various algorithms, that are performed with MATLAB interfaced with Simulink 

environment. 

 

 

3.1.  Numerical results 
 

          In this section, some numerical and graphic results are presented, in terms 

of angular velocities, quaternions and command torque, generated by RWs. 

          For simulating the evolution of the system’s dynamics, in addition to the 

technical parameters reported in the Table 1, the simulation parameters are in 

Table 3. In particular, the gains shown in the following table are a trade-off to 

stabilize the total system and for reaching the desired attitude. 
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Table 3. Simulation parameters  

PARAMETER VALUE UNIT OF MEASURE 

Initial linear velocities [0 0 0]T m/s 

Initial angular velocities [0 0 0]T rad/s 

Chaser inertia tensor 0.15 eye(3) kg*m2  

Target inertia tensor 0.0233 eye(3) kg*m2 

System inertia tensor 0.1733 eye(3) kg*m2 

Distance from CoMc [-77/108 0 0]T m 

Distance from CoMt [55/27 0 0]T m 

Proportional gain Kp 5.25 eye(3) / 

Derivative gain Kd diag([150 150 150]) / ¥ 0.01  

  

          Knowing all these quantities, the simulation runs for 600 seconds. 

The following results help us to establish that for this system the numerical values 

of the gain matrices are chosen correctly, because the dynamics quantities evolve 

over time, reaching the desired state after a time lapse of about 200 seconds.  

          Different simulations highlighted that both proportional and derivative gains 

are responsible for determining the accuracy of the controller and its own properties 

in terms of achieving of the desired attitude. In particular, as a classical 

Proportional-Integrative-Derivative (PID) controller, decreasing st the 

stabilization process becomes slower and the steady-state error (the error calculated 

as difference between the desired value and the actual one) increases. The derivative 

term  su doesn’t change a lot the steady-state error. 

          For example, assuming st = 1.25 ∗ ¦)¦�3� and  su = 100 ∗ ¦)¦�3�, the 

Quaternion Feedback Controller, according to actuators authority, evaluates 

necessary torques, reaching the desired attitude after about 500 seconds. 

          In general, the proposed orbital simulator is better designed, because the unit 

quaternion is achieved in the shortest time interval.    
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          In Figure 7 the evolution of angular velocities is represented. The Attitude 

Determination and Control System is designed to reach the desired state. In our 

study case, the controller has to evaluate the necessary torques so that the 

desired angular velocities vector is equal to zero. According to the graphical 

results, this goal is achieved after about 250 seconds. 

          The time history of quaternions is shown in Figure 8. As discussed in 

Chapter 1, the QFC is implemented for evaluating the appropriate control 

vector, so that the system goes to the reference attitude (the ideal quaternion), 

in this case reached after about 200 seconds. 

          Finally, in Figure 9 the command torque in RW reference frame is 

reported. Despite they are the best actuators for controlling the spacecraft 

attitude, RWs suffer saturation limitations ([1]), as shown graphically. This 

depends on the absorption of external disturbances. 

 

 

Figure 7. Angular velocities of the system 
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Figure 8. Quaternions’ evolution 

Figure 9. Command torques in RW reference frame 
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3.2.  Recursive Least Square Method 
 

          The most common observer adopted for mass and inertia estimation is 

RLSM, but, in literature, It is implemented in a classical case in which 

quadrotors or similar systems carry an unknown payload, or when a free-flying 

robot grasps an object.  

          M. Ekal and R. Ventura ([12]) modelled an unknown mass grasped by a 

robot, by using a manipulator. After the definition of the reference frame, the 

equations of motion are written as functions of total mass, inertia tensor related 

to the robot and the offset of the centre of mass, after the connection with the 

payload.  

          In our case, both chaser and target are considered as rigid bodies, so the 

assumptions of the proposed mathematical model decay. However, using the 

same logical procedure, It is possible to formulate the dynamics problem as the 

classical formulation (2.1), also adopted by the authors. 

          We remember that the dynamics of our total system is described as:  

 

	 RA�=�� =S + _ UA=�=V = R �&	&S + R �
��	
��S 

 

	 = a �%& + %�� −%&L=&� − %�L=��%&L=&� + %�L=�� ��& + ��� − %&L=&� L=&� − %�L=�� L=�� b 
 

_ = § �%& + %���=� −%&�=�L=&� − %��=�L=��%&L=&� �=� + %�L=�� �=� �=���& + ���13 − %&L=&� �=�L=&� − %�L=�� �=�L=�� ¨ 

(3.1) 

 A= ∈ ���� is linear velocities vector, �= ∈ ���� is the angular velocities vector, �& , 	& ∈ ���� and  are forces and moments acting on chaser respectively, �
��, 	
�� ∈ ���� are external disturbances (forces and torques) acting on the 

total system, %& , %� are chaser and target mass respectively, �& , �� ∈ ����are 

the inertia tensor of chaser and target respectively, L=& ∈ ����is the distance 

                                                           
13 This mathematical manipulation is possible because of the properties of matrices Q_ + T_ = �Q + T�_ 
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vector of the chaser’s CoM from the total system’s one, L=� ∈ ���� is the 

distance vector of the target’s CoM from the total system’s one. It is 

fundamental to underline that M and C are expressed by �=�, L=&� , L=�� , defined as 

skew matrices of the relative quantities described previously.  

          In general, given a vector characterized by three components, the skew 

matrix associated to this vector is  

 

J� = q 0 −J� J+J� 0 −J�−J+ J� 0 r 

(3.2) 

 

Where J = WJ� J+ J�X1 ∈ ���� 

 

          Because of the purpose is to estimate the inertial properties of the system, 

It is necessary to manipulate the (3.1), for applying (2.1).  

          We define: 

 ��C� = .%� %& %�L=� %&L=&   ���,=  �**,=  �,,,=  ��*,=  ��,,=  �*,,=01 ∈ ��f�� 

 

�1�C� = a Q Q T T 0���L=�� Q L=&� Q L=�� T L=&� T Ω� + �=�Ω14b ∈ ����f 

                                                           
14 Computing separately translation and rotation dynamics and focusing, in particular, on the last 
one, grouping all the terms that contain the total inertia tensor defined as: 
 �= = �� + �& 
 
We have: 
 �= �� =  + �=��=�= 
 
We note that, formally, the previous equation is similar to (1.1). Since our purpose is to estimate all 
inertia tensor elements, It is possible to adopt the same results proposed in [13]. In particular 
 �= �� =  + �=��=�= =  Ω� + �=�Ω¡ J 
 

Ω = F�=,� 0 0 �=,+ �=,� 00 �=,+ 0 �=,� 0 �=,�0 0 �=,� 0 �=,� �=,+G 

 � = . ���,=  �**,=  �,,,=  ��*,=  ��,,=  �*,,=01
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 Q = Q�C� = �A�= + �=�A=� ∈ ���� 

 T = T�C� = ��� =� + �=��=�� ∈ ���� 

 

« = «�C� = R �&	&S ∈ ���� 

(3.3) 

 

          With this manipulation, We can rewrite (3.1) in a useful formulation for 

applying the classical RLSM, better known as Adaptive Kalman Filter, 

considering the equations (2.2) - (2.3). 

 

 

          Finally, initializing the filter with a good estimation of the state vector ���0� and a covariance matrix ��0� = ¬ ∗ I­A����0�� , whose numerical values 

are shown in Table 4, and underlining that in the future, these parameters have 

to be optimized, some numerical results are here reported. 

 

 

Table 4. Simulation parameters for RLSM 

PARAMETER VALUE UNIT OF MEASURE 

®̄�°� [2.455  6.95]T kg ®±²³±�°�´  [4.98  1e-5  1e-5]T kg*m ®µ²³µ�°�´  [-5.01  1e-5  1e-5]T kg*m 

¶��°� 
[0.1205  0.1206  0.1205 

1e-5  1e-5  1e-5]T 
kg*m2 

·�°� 9.875e-4*cov(��(0)) / 

 

 

          As discussed in literature ([27]), the Recursive Least Square algorithm is a 

synthesis between a classical estimator, that determines the best solution in least 

square sense and a common Kalman Filter (indeed It is also known as Adaptive 
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Kalman Filter); really, because the system model is nonlinear, It is more correct to 

compare RLS to Extended Kalman Filter (EKF). 

          As an EKF, the proposed estimation process is strongly influenced not only 

by the initial conditions but also by the initial covariance matrix ([27]), but unlike 

this one, for implementing the Extended Kalman Filter It is necessary to design 

other two variables: the process noise and the measurement noise matrices. 

          Furthermore, this one requires a high computational cost, due to computation 

and evaluation of Jacobian matrix ([10]), that requires calculators with high 

computation power. An alternative is to define the system model in a mathematical 

formulation similar to state-space description and then an opportune approximation 

or linearization is applied ([7]). 

          In conclusion, the great advantage of RLSM consists in the evaluation of the 

state vector without calculating the Jacobian matrix, but the weaknesses of this 

numerical method are related to: 

o The initialization of the filter; in general, the best solution consists in 

choosing an initial state vector next to the desired and then defining the 

covariance matrix as proposed in [7]. In our case, unlike this one, the 

addition of a corrective factor improves the convergence properties of the 

estimator. This correction is permitted because the choice of covariance 

matrix P is arbitrary. 

o The high time lapse to converge to the desired state, as the classical Kalman 

filters. 

           For this reasons, other nonlinear observers are investigated, in order to 

improve the convergence rate. 

          The following graphic results (Figures 10-14) show how the estimation 

process evolves over time, while Table 5 reports the estimated parameters at the 

end of the simulation. In general, though the convergence to the desired state is 

achieved after about 200 seconds, analysing Table 10, that reports the evolution of 

the estimation error at the operating frequency (100 Hz), It is possible to establish 

that, under the previous assumptions, the estimation error is acceptable. 
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Figure 10. Mass estimation using RLSM 

Figure 11. MOI elements estimation using RLSM 
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Figure 12. POI elements estimation using RLSM 

Figure 13. Distances between the system’s CoM and target’s one using RLSM 
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Table 5. Numerical results by using RLSM 

PARAMETER REAL ESTIMATED UNIT 

®± 3.5 3.516 kg ®µ 10 9.953 kg ®±²± [7.12 0 0]T [7.132 1.4e-5 1.4e-5]T kg*m ®µ²µ [-7.12 0 0]T [-7.174 1.4e-5 1.4e-5]T kg*m ¶¸¸,³ 0.1733 0.1726 kg*m2 

¶¹¹,³ 0.1733 0.1727 kg*m2 

¶ºº,³ 0.1733 0.1726 kg*m2 

¶¸¹,³ 0 1.432e-5 kg*m2 ¶¸º,³ 0 1.432e-5 kg*m2 ¶¹º,³ 0 1.432e-5 kg*m2 

 

Figure 14. Distances between the system’s CoM and chaser’s one using RLSM 
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3.3. Adaptive Laws for system identification 
 

          In this section, two different methods are discussed in detail. First, the 

dynamics equations are parametrized as functions of satellites masses and the 

new centres of mass allocation after capture. Then, exploiting the same 

mathematical manipulations obtained with RLS, another observer is designed. 

 

          The aim of the first research is to apply the algorithm proposed in 

[11], exploiting the similarity between the UAV dynamics and our study 

case. First of all, some restrictive assumptions are fundamental: 

o Chaser and target are rigid bodies rigidly connected. 

o The connection element is positioned so that the direction vector of 

this one is aligned with the vector joining the two centres of mass. 

o The system’s CoM is placed on this joining vector, so the distance 

between the chaser’s CoM and the system’s one (or similarly for the 

target) is defined as the following vector L=,� = .L=�,�  0  001
 

o Masses and relative distances are constant over time. 

o Inertia tensor elements are approximated as mass function (1.5). 

 

          We define 

%� = %� 

%+ = %& 

%� = %�L=�,� 

%f = %&L=�,& 

%» = %�L=�,�+  

%� = %&L=�,&+  

(3.4) 

          Considering (1.13) as our reference, the new matrices M and C will 

be: 
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	 = %�	�� + %+	�& + %�	+� + %f	+& + %»	�� + %�	�& 

_ = %�_�� + %+_�& + %�_+� + %f_+& + %»_�� + %�_�& 

(3.5) 

	�� = § ¦)¦15�3� (¦?­w16�3,3�(¦?­w�3,3� KHJv17�MJ ¼ IP�¨ 

	�& = a ¦)¦�3� (¦?­w�3,3�(¦?­w�3,3� KHJv�MK ¦ �P�b 

	+� =
⎣⎢⎢
⎢⎢⎡(¦?­w�3,3� 0 0 00 0 10 −1 00 0 00 0 −10 1 0 (¦?­w�3,3�⎦⎥⎥

⎥⎥⎤ = 	+& 

	�� = h(¦?­w�3,3� (¦?­w�3,3�
(¦?­w�3,3� 0 0 00 1 00 0 1 i = 	�& 

_�� = a �� (¦?­w�3,3�(¦?­w�3,3� ��KHJv�MJ ¼ IP�b 

_�& = a �� (¦?­w�3,3�(¦?­w�3,3� ��KHJv�MK ¦ �P�b 

_+� =
⎣⎢⎢
⎢⎢⎡ (¦?­w�3,3� �� q0 0 00 0 10 −1 0r
q0 0 00 0 −10 1 0 r �� (¦?­w�3,3� ⎦⎥⎥

⎥⎥⎤ = _+& 

_�� = h(¦?­w�3,3� (¦?­w�3,3�
(¦?­w�3,3� 0 0 00 0 −��0 �� 0 i = _�& 

(3.6) 

 

                                                           
15 “eye” is the MATLAB command for the identity matrix definition.  
16 This is a MATLAB notation stands for a square matrix of dimension 3, composed by only 
elements equal to 0.    
17 The MATLAB command “diag” stands for the creation of a diagonal matrix. 
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%� ∈ �, 	�½ , _�½ ∈ ����. 

          Grouping the similar terms, the final equation can be written as: 

 

%��	�� d�  + _��d� + %+�	�& d�  + _�&d� + %��	+� d�  + _+�d� + 

+%f�	+& d�  + _+&d� + %»�	�� d�  + _��d� + %��	�& d�  + _�&d� = y 

(3.7) 

 

          Finally, the on-line parameter estimator, whose a simple block diagram is 

shown in Figure 15, is formulated as: 

 

_∗d�� + s∗d� + %̄��	�� d�  + _��d� + %̄+�	�& d�  + _�&d� + %̄��	+� d�  + _+�d� + 

+%̄f�	+& d�  + _+&d� + %̄»�	�� d�  + _��d� + %̄��	�& d�  + _�&d� = 

= y + _∗d� + s∗d18 

(3.8) 

                                                           

18 For a simple visualization of the equation, the notation d�C�, d��C�, d� �C�, d�� �C� is omitted. 

Figure 15. Block diagram of the adaptive estimator based on the system parametrization   
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%̄� � = ¾�¦1�C��	�� d�  + _��d� 

%̄� + = ¾+¦1�C��	�& d�  + _�&d� 

%̄� � = ¾�¦1�C��	+� d�  + _+�d� 

%̄� f = ¾f¦1�C��	+& d�  + _+&d� 

%̄� » = ¾»¦1�C��	�� d�  + _��d� 

%̄� � = ¾�¦1�C��	�& d�  + _�&d� 

(3.9) 

 

¦�C� = d��C� − d�C� 

 

_∗, s∗ ∈ ���� are defined positive diagonal gain matrices, ¾� ∈ � are user 

positive rates, d��C� ∈ ����is the estimated of the state vector d�C�. 

The parameters adopted to run the simulation are reported in Table 6. 

 

Table 6. Simulation parameters for Adaptive Estimator with the parametrization of the 
system 

PARAMETER VALUE UNIT OF MEASURE 

¿∗ 50*eye(6) / À∗ 50*eye(6) / 

Á̄� �°� [10 10 10 10 10 10]T 
m/s2 (for the first 3), 

rad/s2 (for the last 3) 

Â 
1e3*[1.5 1.6 0.45 1.1 

0.68 0.75]T 
/ 

®̄�°� 

[4.52 11.6 6.75 -8.05 

17.65 8.85] 

kg (for the first 2) 

kg*m2 (for the last 3) 

kg*m (for the others) 
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          The Adaptive Law obtained considering this parametrization of the 

system, like the reference paper [11], shows good estimation properties: using the 

gain matrices described in Table 6, masses, relative distances between chaser and 

target centre of mass and the total system’s one and inertia tensor elements converge 

to the desired values in a maximum time lapse of 10 seconds, as shown in Figures 

16-18. 

Though the simulation runs for 600 seconds, to understand how the rigid 

system evolves over time in terms of attitude, for greater visual clarity, the graphical 

results are presented in a short period (0-20 seconds). 

          However, the unique limitation of this algorithm is related to the strong 

assumptions at the base of the physical model. Since all these ones have to be 

respected for evaluating the described inertial parameters, the proposed estimator 

cannot be considered as an observer that could be applied in a general case. 

          Figure 16 shows the estimated masses of chaser and target satellites. Using 

the classical relation to calculate the percent estimation error (dividing the absolute 

value of the difference between the estimated and the actual values by the actual 

and then multiplying by 100), we note that at the end of the transitory, the estimation 

error for target mass is about 1.51%, while for chaser It is equal to 0.3 %. 

          Despite the proposed algorithm is designed for estimating the spacecraft 

masses (%�, %&) and the product between chaser or target mass and the relative 

distances from the centre of mass of the total system (%�L=�,�, %&L=&,�), the results 

of Figure 17 are obtained dividing, for each sample time, the correlated estimated 

quantities (for example %�L=�,� and %�). 

          Finally, because a typical space mission, connected to grasping processes of 

a debris or similar objects such as non-cooperative spacecraft, is designed knowing 

the maximum size of this one, exploiting the defined parametrization and the 

estimated masses, both inertia tensor elements of the two bodies can be evaluated, 

in case of symmetry, exploiting as first assumption the equations (1.5). Then, the 

total inertia tensor is calculated adding chaser and target inertia tensors. Figure 18 

shows these inertial properties.   
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Figure 16. Mass estimation using an Adaptive Law based on a 
parametrization of the system 

Figure 17. Estimation of the relative distances from the system’s 
CoM using an Adaptive Law based on a parametrization of the 
system 
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Table 7. Numerical results using an Adaptive Law applied to a parametrization of the 
dynamic system 

PARAMETER REAL ESTIMATED UNIT 

®± 3.5 3.553 kg ®µ 10 10.03 kg ®±²±,¸ 7.12  7.131  kg*m ®µ²µ,¸ -7.12  -7.119 kg*m ®±²±,¸Ã  14.523 14.21 kg*m2 

®µ²µ,¸Ã  5.0832 5.056 kg*m2 

 

 

In the Appendix A, It is possible to consult the mathematical proof 

according to which the estimation error goes to zero when time goes to infinity. 

 

Figure 18. MOI elements estimation using an Adaptive Law based 
on a parametrization of the system 
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          Since the previous proposed algorithm imposes really restrictive 

assumptions, a system model’s variation is required. The general idea, 

illustrated in Figure 19, is to apply the previous adaptive law to the dynamics 

system, formulated according to RLSM. 

 

 

          Using the same mathematical procedure explained in [16], the robot 

dynamics model can be expressed in the following nonlinear19 form: 

 	�d�d� + _�d�d = y 

 y = ��d, d� , ��� 

(3.10) 

  

          Exploiting (3.10), the final Adaptive Law will be: 

                                                           
19 In the robot dynamics formulation described by professor A. De Luca ([16]), the regressor matrix, 
linearly dependent on d#  and quadratically dependent on q, is a function of the state vector and of its 
derivative. In our case, because of dynamics formulation, It is not possible to reach a linear form of 
the system: the regressor matrix is a function of the estimate vector, too. 
      

Figure 19. Block diagram of the Adaptive Law based on RLS dynamics model 
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 _∗d� �C� + s∗�C�d�C� +  y = 	Ä�d�d� �C� + _Å�d�d�C� + _∗d���C� + s∗d��C� 

 _∗d� �C� + s∗�C�d�C� +  y = ��d� , d, ����� + _∗d���C� + s∗d��C� 

 ��� = o�1�d� , d, ����d� − d� 

(3.11) 

 _∗, s∗ ∈ ���� and o ∈ ��f��f are user-defined positive gain matrices, 	Ä�d�, _Å�d� ∈ ���� are the same matrices formulated in (3.1), y ∈ ���� is 

the control vector, ���C� ∈ ��f�� is the estimated vector expressed in the 

same form of (3.3). 

 

          The parameters adopted for running the simulation are reported in 

Table 8. 

 

Table 8. Simulation parameters for Adaptive Estimator based on dynamics model 
formulated for RLS 

PARAMETER VALUE UNIT OF MEASURE 

¿∗ 50*eye(6) / À∗ 50*eye(6) / 

Á̄� �°� [7.5 7.5 7.5 7.5 7.5 7.5]T 
m/s2 (for the first 3), 

rad/s2 (for the last 3) 

Æ 

diag([600 670 1000 0.005 0.005 

630 0.005 0.005 100.6 162 985 

0.005 0.005 0.005]) 

/ 

ÇÄ�°� 

[3.68 10.2 8.75 1e-5 1e-5 -8.1 1e-5 

1e-5 3.025 0.337 0.325 1e-5 1e-5 

1e-5] 

kg (for the first 2) 

kg*m2 (for the last 6) 

kg*m (for the others) 

 

In the Appendix A, It is possible to consult the mathematical proof 

according to which the estimation error goes to zero when time goes to infinity. 
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          Rearranging the equations of motion, expressed in matrix form, and 

applying the same mathematical procedure described in [11], the second 

Adaptive Law shows a mixture of the numerical properties common to 

RLSM and the first Adaptive Law, based on the parametrization of the 

system. 

          In particular, unlike the RLSM, the convergence time is reduced: this 

property is closely related to the effectiveness of the studied “On-Line 

Parameter Estimator” ([11]), assumed as reference. 

          As reported in Table 8, the simulation parameters are similar to those 

in Table 6. In detail: 

o _∗ and  s∗ are the same. 

o ¾� gains are here replaced with the diagonal positive defined matrix o. 

o d���C� is changed for improve the convergence rate. 

o An initial estimation of the inertial properties is required. 

 

          In conclusion, similar to Recursive Least Square Method, the second 

Adaptive Law depends on both the chosen initial conditions and the gain 

matrices, but, unlike the first (RLS), this nonlinear observer shows a better 

convergence rate. 

          Figure 20 describes the evolution of the estimated masses: the 

identified values converge to the actual ones after about 10 seconds (like the 

first Adaptive Law). 

          Unfortunately, this property decays when %�L=�,, and %&L=&,, are 

estimated (see Figures 21-22): despite the desired state is reached after about 

100 seconds (less than RLSM), the estimation error at 25 s, reported in Table 

13, is acceptable (the maximum error is equal to 8.77% and decreases up to 

100 s). 

          Similarly, the same behaviour occurs for �,,,= (Figure 23). 

          To improve the estimation process of these parameters, It is necessary 

to investigate in more detail about _∗ and s∗ matrices. 
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Figure 20. Mass estimation using Adaptive Law based on RLS dynamics 
formulation 

Figure 21. Estimation of the relative distances between the target’s CoM and the 
system’s one using the Adaptive Law based on RLS dynamics formulation 
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Figure 22. Estimation of the relative distances between the chaser’s CoM and the 
system’s one using the Adaptive Law based on RLS dynamics formulation 

Figure 23. MOI elements estimation using the Adaptive Law based on RLS 
dynamics formulation 
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          Finally, a summary of the numerical results obtained by the last 

estimation process, are reported in Table 9. 

 

Table 9. Numerical results using the Adaptive Law based on RLS dynamics formulation 

PARAMETER REAL ESTIMATED UNIT 

®± 3.5 3.501 kg ®µ 10 10.02 kg ®±²± [7.12 0 0]T [7.125 0.00019 0.00047]T kg*m ®µ²µ [-7.12 0 0]T [-7.144 -0.00024 3.724e-5]T kg*m ¶¸¸,³ 0.1733 0.1747 kg*m2 

¶¹¹,³ 0.1733 0.1756 kg*m2 

¶ºº,³ 0.1733 0.1759 kg*m2 

¶¸¹,³ 0 -0.000137 kg*m2 ¶¸º,³ 0 -0.0001329 kg*m2 ¶¹º,³ 0 4.007e-6 kg*m2 

 

Figure 22. POI elements estimation using the Adaptive Law based on RLS 
dynamics formulation 
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3.4. Analysis of Results 
 

          For better understanding how the RSLM and the second Adaptive Law 

work over time, in this subsection a detailed analysis related to the behaviour of 

the two estimators is discussed, in case of variable frequency. 

          In particular, for each observer, gains and initial conditions don’t change, 

because We want to study the evolution of the estimation process, in the event 

that a signal delay occurs. This hypotesis is realistic, because in a real simulator: 

o GNC software runs at the specified frequency (in our case, the proposed 

observers are included in Navigation Toolbox). 

o It is possible that a delay in the communication of information from the 

on-board sensors occurs. 

For each estimator, a series of graphical and numerical results are reported; 

in particular, the estimation processes studied in the previous sections are 

compared to others, obtained using two different sample times (0.02 s and 

0.04 s), or, in another way, adopting two different frequencies (50 Hz and 

25 Hz respectively). 
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3.4.1. RLSM Analysis 
 

 

Table 10. Numerical results for RLS algorithm, considering different time points @ 
dt=0.01 s (f=100 Hz)  

 ± = Ê° ³ ± = Ë°° ³ ± = ËÊ° ³ 

®± 3.3686 3.75% 3.5125 0.36% 3.5156 0.45% ®µ 9.5364 4.64% 9.9437 0.56% 9.9526 0.47% ®±²³±,¸ 6.8333 4.03% 7.1251 0.07% 7.1315 0.16% ®±²³±,¹ 0 0% 0 0% 0 0% ®±²³±,º 0 0% 0 0% 0 0% ®µ²³µ,¸ -6.8745 3.45% -7.1680 0.67% -7.1745 0.77% ®µ²³µ,¹ 0 0% 0 0% 0 0% ®µ²³µ,º 0 0% 0 0% 0 0% ¶¸¸,³ 0.1653 4.62% 0.1724 0.52% 0.1726 0.4% ¶¹¹,³ 0.1655 4.5% 0.1725 0.46% 0.1727 0.35% ¶ºº,³ 0.1653 4.62% 0.1724 0.52% 0.1726 0.4% ¶¸¹,³ 0 0% 0 0% 0 0% ¶¸º,³ 0 0% 0 0% 0 0% ¶¹º,³ 0 0% 0 0% 0 0% 

 

 

 

          Table 10 describes the evolution of the estimation error when the 

operating frequency is set to 100 Hz. It is possible to note that the percent 

error calculated as:  

¦??­? = ¦wCH%JC¦K − JIC«J�JIC«J� ∗ 10020 

 

                                                           
20 This formulation is applied in all the following tables. 
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Starts to go to zero after about 150 s. This is related not only to the 

appropriate choice of the initial conditions but also to covariance matrix. 

          This is not true if a variation of frequency occurs. Tables 11-12 are the 

mathematical proof that changing the sample time and fixing all the other quantities, 

the convergence property of the algorithm degradates: RLSM continues to converge 

to another actual value as calculated numerically.   

 

Table 11. Numerical results for RLS algorithm, considering different time points @ 
dt=0.02 s (f=50 Hz)   

 ± = Ê° ³ ± = Ë°° ³ ± = ËÊ° ³ 

®± 2.9119 16.81% 2.9839 14.75% 2.9855 14.7% ®µ 8.2434 17.57% 8.4473 15.53% 8.4518 15.48% ®±²³±,¸ 5.9068 17.04% 6.0529 14.98% 6.0561 19.94% ®±²³±,¹ 0 0% 0 0% 0 0% ®±²³±,º 0 0% 0 0% 0 0% ®µ²³µ,¸ -5.9423 16.54% -6.0894 14.47% -6.0926 14.43% ®µ²³µ,¹ 0 0% 0 0% 0 0% ®µ²³µ,º 0 0% 0 0% 0 0% ¶¸¸,³ 0.1429 17.54% 0.1465 15.46% 0.1465 15.46% ¶¹¹,³ 0.1430 17.48% 0.1466 15.41% 0.1467 15.35% ¶ºº,³ 0.1429 17.54% 0.1465 15.46% 0.1465 15.46% ¶¸¹,³ 0 0% 0 0% 0 0% ¶¸º,³ 0 0% 0 0% 0 0% ¶¹º,³ 0 0% 0 0% 0 0% 
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Table 12. Numerical results for RLS algorithm, considering different time points @ 
dt=0.04 s (f=25 Hz)   

 ± = Ê° ³ ± = Ë°° ³ ± = ËÊ° ³ 

®± 2.6834 23.33% 2.7195 22.3% 2.7202 22.28% ®µ 7.5966 24.03% 7.6987 23.01% 7.7009 22.99% ®±²³±,¸ 5.4433 23.55% 5.5164 22.52% 5.5191 22.48% ®±²³±,¹ 0 0% 0 0% 0 0% ®±²³±,º 0 0% 0 0% 0 0% ®µ²³µ,¸ -5.4761 23.09% -5.5497 22.05% -5.5191 22.48% ®µ²³µ,¹ 0 0% 0 0% 0 0% ®µ²³µ,º 0 0% 0 0% 0 0% ¶¸¸,³ 0.1317 24% 0.1335 22.97% 0.1335 22.97% ¶¹¹,³ 0.1318 23.95% 0.1336 22.91% 0.1336 22.91% ¶ºº,³ 0.1317 24% 0.1335 22.97% 0.1335 22.97% ¶¸¹,³ 0 0% 0 0% 0 0% ¶¸º,³ 0 0% 0 0% 0 0% ¶¹º,³ 0 0% 0 0% 0 0% 

 

          After a brief study about the general properties of this estimator, It is possible 

to affirm that fixing initial conditions and initial covariance matrix and increasing 

the sample time (or alternatively decreasing the reference frequency), the RLS 

algorithm doesn’t converge to the reference state. 

          Really, as you can see in all the following graphical results, under the 

previous assumptions, the proposed nonlinear observer converges to a different 

desired state, that decreases if the operating frequency decreases, when time goes 

to infinity. 

          If the main purpose is to design a Navigation Toolbox, that runs at smaller 

frequency, the convergence property is satisfied only increasing all the elements of 

the initial covariance matrix, exploiting the corrective factor ¬.  
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Figure 23. Mass estimation at different frequencies using RLSM 

Figure 24. Estimation of relative distances between system’s CoM and 
target’s one at different frequencies using RLSM 
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Figure 25. Estimation of relative distances between system’s CoM and 
chaser’s one at different frequencies using RLSM 

Figure 26. MOI elements estimation at different frequencies using RLSM 
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Figure 27. POI elements estimation at different frequencies using RLSM 
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3.4.2. Detailed analysis about the second Adaptive Law 
 

 

 

Table 13. Numerical results related to the second Adaptive Law, considering different 
time points @ dt=0.01 s (f=100 Hz)   

 ± = ÃÊ ³ ± = Ê° ³ ± = Ë°° ³ 

®± 3.5132 0.38% 3.5082 0.23% 3.5007 0.02% ®µ 10.0110 0.11% 10.0130 0.13% 10.0160 0.16% ®±²³±,¸ 6.4957 8.77% 6.8844 3.31% 7.1148 0.07% ®±²³±,¹ 0.0002 0% 0.0002 0% 0.0002 0% ®±²³±,º 0.0005 0% 0.0005 0% 0.0005 0% ®µ²³µ,¸ -7.0004 1.68% -7.0909 0.41% -7.1425 0.32% ®µ²³µ,¹ -0.0002 0% -0.0002 0% -0.0002 0% ®µ²³µ,º 0 0% 0 0% 0 0.% ¶¸¸,³ 0.1719 0.81% 0.1744 0.63% 0.1747 0.081% ¶¹¹,³ 0.1647 4.96% 0.1734 0.06% 0.1753 1.15% ¶ºº,³ -0.0019 101.09% 0.0924 46.68% 0.1757 1.38% ¶¸¹,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¸º,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¹º,³ 0 0% 0 0% 0 0% 

 

 

          Comparing the time history of the estimation error calculated in Table 

13, for the second Adaptive Law, and in Table 10, for RLSM, It is clear that 

the first method, apart from �,,,=, is more efficient in terms of parameters 

identification. 

          Tables 14-15 highlight that, unlike Recursive Least Square algorithm, 

the proposed nonlinear observer continues to estimate inertial properties 

with an acceptable accuracy. This fundamental condition decays if the 

update of the input information of the estimator is elaborated every 1s.    
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Table 14. Numerical results related to the second Adaptive Law, considering different 
time points @ dt=0.02 s (f=50 Hz)   

 ± = ÃÊ ³ ± = Ê° ³ ± = Ë°° ³ 

®± 3.5132 0.38% 3.5082 0.23% 3.5006 0.017% ®µ 10.0110 0.11% 10.0130 0.13% 10.0160 0.16% ®±²³±,¸ 6.5316 8.26% 6.9229 2.77% 7.1547 0.49% ®±²³±,¹ 0.0002 0% 0.0002 0% 0.0002 0% ®±²³±,º 0.0005 0% 0.0005 0% 0.0005 0% ®µ²³µ,¸ -7.0164 1.46% -7.1072 0.18% -7.1589 0.55% ®µ²³µ,¹ -0.0002 0% -0.0002 0% -0.0002 0% ®µ²³µ,º 0 0% 0 0% 0 0% ¶¸¸,³ 0.2176 25.56% 0.2201 27% 0.2204 27.18% ¶¹¹,³ 0.1678 3.17% 0.1765 1.85% 0.1784 2.94% ¶ºº,³ 0.0123 92% 0.1069 38.32% 0.1901 9.69% ¶¸¹,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¸º,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¹º,³ 0 0% 0 0% 0 0% 
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Table 15. Numerical results related to the second Adaptive Law, considering different 
time points @ dt=0.04 s (f=25 Hz)   

 ± = ÃÊ ³ ± = Ê° ³ ± = Ë°° ³ 

®± 3.5132 0.38% 3.5082 0.23% 3.5006 0.017% ®µ 10.0110 0.11% 10.0130 0.13% 10.0160 0.16% ®±²³±,¸ 6.5668 7.76% 6.9608 2.24% 7.1940 1.04% ®±²³±,¹ 0.0002 0% 0.0002 0% 0.0002 0% ®±²³±,º 0.0005 0% 0.0004 0% 0.0004 0% ®µ²³µ,¸ -7.0366 1.17% -7.1278 0.11% -7.1797 0.84% ®µ²³µ,¹ -0.0002 0% -0.0002 0% -0.0002 0% ®µ²³µ,º 0 0% 0 0% 0 0% ¶¸¸,³ 0.3084 77.96% 0.3109 79.39% 0.3112 79.57% ¶¹¹,³ 0.1715 1.04% 0.1802 3.98% 0.1822 5.14% ¶ºº,³ 0.0246 85.81% 0.1193 31.16% 0.2026 16.91% ¶¸¹,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¸º,³ -0.0001 0% -0.0001 0% -0.0001 0% ¶¹º,³ 0 0% 0 0% 0 0% 

 

 

 

 

          Exploiting all these results, some important conclusions can be extrapolated: 

o Apart from some inertial parameters, such as �,,,= element, who converges 

to the desired value after 100 seconds, in general, the Adaptive Law shows 

good estimation properties. 

o An optimization of the gain matrices (o, s∗, _∗) can improve the 

convergence rate. 

o Increasing the sample time, so increasing the signal delay, both algorithms 

are subject to changes during all the estimation process. 
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o As shown in the previous numerical and graphical results, running the 

simulations at these two different frequencies, unlike RLSM, the estimation 

error calculated adopting the Adaptive Law is acceptable. 

o Using a sample time equal to 1 second (or alternatively a reference 

frequency for the observer equal to 1 Hz), the convergence properties of the 

adaptive Law decay, as shown in Appendix B. 

o Finally, as demonstrated in Appendix A, both algorithms, under the 

appropriate assumptions, converge to the desired state, but, because of the 

similarity to a common Kalman Filter, RLS converges more slowly, if 

compared to the analysed Adaptive Law. Really, considering this one, some 

inertial properties converge to the desired after 100 seconds (smaller than 

RLSM convergence time), due to system nonlinearity. 
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Figure 28. Mass estimation at different frequencies, considering the second 
Adaptive Law 

Figure 29. Estimation of relative distances between system’s CoM and target’s 
one at different frequencies considering the second Adaptive Law 
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Figure 30. Estimation of relative distances between system’s CoM and 
chaser’s one at different frequencies considering the second Adaptive Law 

Figure 31. MOI elements estimation at different frequencies, considering the 
second Adaptive Law  
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Figure 32. POI elements estimation at different frequencies, considering the 
second Adaptive Law 
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Conclusions and Future Works 
 

 

          In this work a mathematical model of a system composed by two rigid bodies, 

rigidly connected, is derived and compared to others discussed in scientific 

literature. Exploiting the results obtained from a preliminary study on a single 

satellite, three different nonlinear estimation algorithms are proposed and applied 

on the two CubeSat system. 

          A Recursive Least Square Method (RLSM) is implemented after an 

appropriate manipulation of the system dynamics. The initial conditions and the 

initial covariance matrix are determined tuning the simulation for better reaching 

the desired state. 

          A first Adaptive Law, based on a parametrization of the system, is derived 

exploiting the mathematical procedure analysed in [11]. In particular, unlike this 

one, under the appropriate assumptions, the plant is modelled for evaluating the 

mass properties not only of the grasped target, but also of the collaborative chaser. 

As shown in graphical and numerical results, unlike RLSM this observer converges 

rapidly to the desired state vector, but not all inertial properties can be evaluated, 

because of the strong assumptions of the physical model of reference. 

          A second Adaptive Law is implemented combining the system model 

formulated according to RLSM and the adaptive observer expressed in the previous 

analysis.  

          As shown in Chapter 3, a detailed study helps us to establish that: 

o Unlike Recursive Least Square, similar to a common Kalman Filter, both 

Adaptive Laws converge to the desired solution in a short time lapse; 

o A variation of the operating frequency of the nonlinear observer, due to a 

possible signal delay, is responsible of a great variation of the estimation 

error for RLSM, while the second Adaptive Law is subject to small changes 

of the same quantity. For the last algorithm, a significant loss of 

convergence properties is reached only if the operating frequency is equal 
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to 1 Hz; in this case It will be necessary to find other optimal tuning 

parameters. 

          In this context, further studies and other detailed analysis have to be 

conducted. 

          First, the connection element between chaser and target shall be modelled as 

a robotic arm, so that the proposed algorithms shall be applied on a generic space 

manipulator, or alternatively, the condition of rigid body can be replaced with a 

more complex mathematical model, considering the connection as a flexible 

appendage, characterized by elastic and dissipative terms, similar to tethered 

CubeSat case.  

          Finally, because the objective of this thesis is focusing only on the design of 

the inertial parameters estimator, in the next steps It will be necessary to design a 

more accurate controller, based on data received from the proposed nonlinear 

estimator. 
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Appendix A 
 

 

A.1. Stability ([17]) 

 

          According to Lyapunov’s definition, an equilibrium point is stable only if 

∀Í, ∃Ï�Í�: |�e − �
Ò| < Ï → Õ��C� − �
ÒÕ < Í, ∀C > 0 

          An equilibrium point is asymptotically only if It is stable and  

∃Ï: Õ�e − �
ÒÕ < Ï → lim�→ÙÕ��C� − �
ÒÕ = 0 

 

A.2. Lyapunov Criterion ([17]) 

 

          For understanding the logic behind the mathematical discussion about 

stability of nonlinear systems, G.Oriolo ([17]) affirms that if we consider a 

mechanics system, in which the total energy is dissipated continuously, It goes to 

an equilibrium point. For this reason It is possible to define a scalar function, called 

Lyapunov function, for determining stability or instability of the examined system: 

It is an energy like function, analysed over the time. 

 

          Considering the following nonlinear system: 

  �� = ���, C�          � ∈ �� 

 

          With an equilibrium point given by 
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���
Ò , C� = 0 

 

          A general scalar function Ú��� ∈ _� can be: 

o Defined positive only if Ú��
Ò� = 0 Ú��� > 0, ∀� ∈ ���
Ò , ?�, � ≠ �_¦d 

 

o Semi-defined positive only if Ú��
Ò� = 0 Ú��� ≥ 0, ∀� ∈ ���
Ò , ?�, � ≠ �_¦d 

 

o Defined negative only if −Ú��� is defined positive 

o Semi-defined negative only if −Ú��� is semi-defined positive 

 ���
Ò , ?� is a spherical around of �
Ò characterized by a radius r. 

 

Theorem 1. 

An equilibrium point �
Ò of a nonlinear system  �� = ���, C� is stable if  

 

∃Ú��� ∈ _�: Ú��� is defined positive in ���
Ò , ?� 

∃Ú��� ∈ _�: Ú� ��� is semi-defined negative in the same ���
Ò , ?�   
 

Theorem 2. 

An equilibrium point �
Ò of a nonlinear system  �� = ���, C� is asymptotically stable 

if  

 

∃Ú��� ∈ _�: Ú��� is defined positive in ���
Ò , ?� 
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∃Ú��� ∈ _�: Ú� ��� is defined negative in the same ���
Ò , ?�   
 

The mathematical proofs of theorems 1 and 2 are reported in [17]. 

 

 

 

A.3. Proof: Convergence of the estimation error calculated with the 

first Adaptive Law’s implementation  

 

          The aim of this section is to demonstrate the convergence of the estimation 

error obtained applying the first Adaptive Law on the parametrized dynamic 

system, according to all mathematical results described in A.1-A.2. 

          Introducing the mass and the state estimation errors as 

 

%ç = %̄ − % 

%ç� = %̄� 21 

¦�C� = d��C� − d�C� 

¦��C� = d�� �C� − d� �C� 

(A.1) 

 

          Replacing (A.1) in the equation (3.8), we have: 

 

_∗¦��C� + s∗¦�C� + %ç��	��d� + _��d� + %ç+�	�& d�  + _�&d� 

                                                           
21 This hypothesis is valid only if the real masses are constant over the time. 
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+%ç��	+� d�  + _+�d� + %çf�	+& d�  + _+&d� + %ç»�	�� d�  + _��d�+ %ç��	�& d�  + _�&d� = 0 

(A.2) 

 

 

          Exploiting the same mathematical procedure discussed in [11], We define the 

candidate Lyapunov function: 

 

Ú = 12 ¦1�C�_∗¦�C� + 12¾� %ç�+ + 12¾+ %ç++ + 12¾� %ç�+ + 12¾f %çf+ + 12¾» %ç»+ + 12¾� %ç�+ 

(A.3) 

Ú� = ¦1�C�_∗¦��C� + 1¾� %ç�%ç� � + 1¾+ %ç+%ç� + + 1¾� %ç�%ç� � + 1¾f %çf%ç� f + 1¾» %ç»%ç� »
+ 1¾� %ç�%ç� � = 

= ¦1�C�_∗¦��C� + ¦1�C� a 1¾� %ç�¾��	��d� + _��d� + 1¾+ %ç+¾+�	�&d� + _�&d�
+ 1¾� %ç�¾��	+�d� + _+�d� + 1¾f %çf¾f�	+&d� + _+&d�
+ 1¾» %ç»¾»�	��d� + _��d� + 1¾� %ç�¾��	�&d� + _�&d�b 

= ¦è�C�_∗¦� �C� + ¦è�C�M−_∗¦� �C� − s∗¦�C�P                                                          
= −¦1�C�s∗¦�C� ≤ −�<���s∗�Õ|¦�C�|Õ

+
≤ 0                                              

(A.4) 

 

Ú# = −2¦1�C�s∗¦��C� ≤ 0 

(A.5) 

 

          This result is true, because ¦��C� is bounded, so d�C� is bounded: according to 

the Barbalat’s lemma, this guarantees that the estimation error goes to 0, when time 

goes to infinity. 
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          The graphical results, shown in the chapter 3, demonstrate the validity of the 

mathematical proof analysed previously.  

 

A.4. Proof: Convergence of the estimation error calculated with the 

second Adaptive Law’s implementation  

  

          The aim of this section is to demonstrate the convergence of the estimation 

error, exploiting the Lyapunov Criterion. We define 

 

¦�C� = d��C� − d 

¦��C� = d�� �C� − d� �C� 

�ê�C� = �� − � 

�ê� = ���  
(A.6) 

 

          The candidate Lyapunov function is: 

 

Ú = 12 ¦1�C�_∗¦�C� + 12 �ê�C�o���ê�C� 

(A.7) 

 

Ú� = ¦1�C�_∗¦�C� + �ê� 1�C�o���ê�C�= ¦1�C� −s∗¦�C� − ��ê¡ + �o�1¦�C��1o���ê�C�= ¦1�C� −s∗¦�C� − ��ê¡ + ¦1�C��o1o���ê�C� 

(A.8) 

 

If Q is a diagonal defined-positive matrix, o1 = o 
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For diagonal matrices: o1o�� = oo�� = o��o = n 

 

Ú� = ¦1�C� −s∗¦�C� − ��ê¡ + ¦1�C��o1o���ê�C�= ¦1�C� −s∗¦�C� − ��ê¡ + ¦1�C���ê�C�= −¦1�C�s∗¦�C� − ¦1�C���ê + ¦1�C���ê�C� = −¦1�C�s∗¦�C� 

          Using the same results of the appendix A.3, It is possible to affirm that: 

 

Ú� = −¦1�C�s∗¦�C� ≤ −�<���s∗�Õ|¦�C�|Õ
+

≤ 0 

Ú# = −2¦1�C�s∗¦��C� ≤ 0 

(A.9) 

 

          This result is true, because ¦��C� is bounded, so d�C� is bounded: according to 

the Barbalat’s lemma, this guarantees that the estimation error goes to 0, when time 

goes to infinity. 

          The graphical results, shown in the chapter 3, demonstrate the validity of the 

mathematical proof analysed previously. 
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Appendix B 
 

 

          In this appendix, the convergence properties of the second Adaptive Law are 

reported, fixing: 

o The observer’s reference frequency at 1 Hz; 

o Initial conditions and gain matrices. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 33. Mass estimation using the Adaptive Law @ 1 Hz 
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Figure 34. Estimation of the relative distances between the system’s CoM 
and the target’s one using the Adaptive Law @ 1 Hz 

Figure 35. Estimation of the relative distances between the system’s CoM 
and the chaser’s one using the Adaptive Law @ 1 Hz 
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Figure 36. MOI elements estimation using the Adaptive Law @ 1 Hz 

Figure 37. POI elements estimation using the Adaptive Law @ 1 Hz 
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