
POLITECNICO DI TORINO

Master Course
in Mathematical Engineering

Master Thesis

Credit Risk Assessment Using Machine Learning
Techniques

Supervisor Candidate
Prof. Patrizia Semeraro Martina Scagliola

Academic Year 2021-2022

Summary

Credit is a must in financial systems. For all financial institutions, whose
role is to allocate credit, it is necessary to fully understand the risk behind
it and to correctly decide who to give credit and who not. To do so, they
make use of credit scoring, which is one of the most successful application
of statistical and operational research modelling in finance.
The aim of this thesis is to combine supervised and unsupervised machine
learning models to predict the probability of default of a set of individuals
who asked a loan to a bank, and to correctly classify them according to
their individual propensity to default.
In Chapter 1 we introduce the concepts of credit risk and credit scoring, and
then we formally describe two mixture models: Bernoulli and Poisson mix-
ture model. Chapter 2 illustrates the fundamental concepts behind machine
learning and contains the theoretical description of some supervised learn-
ing models (logistic regression, support vector machine, K-nearest neigh-
bors, random forest and AdaBoost classifier) and some clustering methods.
In Chapter 3 and Chapter 4 we perform a credit score analysis on a public
data set which simulate the real data set of a bank. In particular, we test the
validity of the integration of unsupervised and supervised machine learn-
ing techniques by comparing individual models and cluster-based models
performances. Chapter 3 contains the preprocessing part of the analysis,
while the following Chapter focuses on the application of the machine learn-
ing models and the evaluation of their performances according to a set of
measures such as AUC, accuracy, F-score and type I and type II errors.

3

In particular, it introduces the concept of expected misclassification cost,
which give us an idea of the economic impact of models results.

4

Contents

List of Tables 8

List of Figures 9

1 Credit Risk 11
1.1 Credit Risk Assessment . 13
1.2 Credit Scoring History . 14
1.3 Credit Risk Modeling . 16
1.4 Mixture Models . 17

1.4.1 Bernoulli mixture model 17
1.4.2 Poisson mixture model 18

2 Machine Learning 19
2.1 PAC Learning Model . 20
2.2 n-Fold-Cross-Validation . 22
2.3 Assessing Model Accuracy 24

2.3.1 Bias-variance trade-off 25
2.3.2 Bias-variance decomposition for LC 27

2.4 Supervised Learning for Binary Classification 28
2.5 Logistic Regression . 29
2.6 Support Vector Machine . 31

2.6.1 Hard-SVM . 31
2.6.2 Support vectors . 34

5

2.6.3 Soft-SVM . 34
2.6.4 Kernels . 35

2.7 K-Nearest Neighbors . 38
2.8 Decision Trees . 40

2.8.1 Recursive binary splitting 42
2.8.2 Grow-then-prune strategy 43

2.9 Weak Learning and Ensemble Methods 43
2.9.1 Bagging . 44
2.9.2 Random forest . 45
2.9.3 Boosting . 45
2.9.4 AdaBoost . 46

2.10 Performance Measures . 48
2.11 Unsupervised Learning . 51
2.12 Clustering . 51

2.12.1 Cost minimization clusterings 53
2.12.2 Elbow and Silhouette methods 54

3 Application on data 57
3.1 Motivation . 57
3.2 Data Set Description . 57
3.3 Data Exploration . 59
3.4 Data Preprocessing . 64

3.4.1 Missing values . 64
3.4.2 Outliers detection . 65
3.4.3 Dataset encoding . 66
3.4.4 Oversampling with SMOTE 66
3.4.5 Features selection . 68

4 Models Settings and Performances 71
4.1 Individual models . 71
4.2 Cluster-based models . 75
4.3 ROC Curve Analysis . 76

6

4.4 Expected Misclassification Cost 77

5 Conclusion 83

Bibliography 85

7

List of Tables

2.1 Confusion matrix. 48
3.1 Dataset description . 59
3.2 Percentage of missing values for each feature. 65
4.1 Individual models performances on entire data set. 74
4.2 Individual models performances on features selected data set. 74
4.3 Cluster-based models performances based on features se-

lected data set. 76
4.4 A 2D misclassification cost matrix (positive bad creditors,

negative good creditors). 78

8

List of Figures

2.1 Left: training error and test error as functions of model com-
plexity. Right: bias-variance decomposition of the test error.
In both figures the vertical line indicates the complexity level
corresponding to the smallest test error. 25

2.2 On the left: a too simple model trained on two distinct data
sets S1 and S2. This model suffer of high bias. On the right:
a too complex model trained on the same two data sets. This
model suffer of high variance. 26

2.3 Maximum-margin hyperplane and margins for an SVM trained
with samples from two classes. 32

2.4 SVM with different kernels. The decision boundary is non-
linear but the underlying problem is for a linear separating
hyperplane. 39

2.5 Left: scheme of a decision tree with numerical questions
based on X1 and X2. Right: Partition of the two-dimensional
space induced by that tree. 41

2.6 ROC curve example for four different models. Model D is
completely uninformative, while model A represent the idel
one. 51

3.1 Count of the two classes default=0 and default=1. 60
3.2 Proportion of default and non default individuals for differ-

ent classes of categorical variables. 61
3.3 Box plots for quantitative variables. 63

9

3.4 Correlation heatmap. 64
3.5 Data set outliers (in red). 66
3.6 Correlation heatmap for encoded data. 67
3.7 Example of SMOTE procedure. 68
4.1 Comparison between performance measures for individual

models (in blue) and for cluster-based models (in orange) on
feature selected data set. 77

4.2 From top to bottom: ROC curves for individual models
based on entire data set, ROC curves for individual mod-
els based on features selected data set and ROC curves for
cluster-based models on features selected data set. 80

4.3 Expected misclassification error both for individual models
(in blue) and for cluster-based models (in orange), applied
on feature selected data set. 81

10

Chapter 1

Credit Risk

Credit is an absolute must in the financial system, affects everyone and
drives the global economy. Credit allows individuals to finance their needs
of acquiring a house, car, furniture etc., assists companies to start or expand
their business, and enables governments to finance public interest projects.
If managed well, it can build an economy, produce an efficient allocation of
capital and wealth and bring prosperity.
The allocation of credit is performed by financial intermediaries such as
commercial and investment banks, saving and loan associations, insurance
companies, mutual funds, pension funds and finance companies. They are
crucial to the healthy functioning of financial markets because of their role
in deciding who gets credit and at which price.
Over the past three decades intermediaries begin to offer increasingly so-
phisticated products and innovative financial contracts. However, if their
risk is not fully understood, they can lead to devastating repercussion on
the financial system.
After the crisis of a German bank (Herstatt Bank), in 1974 the central bank
governors of the Group of Ten countries estabilished the Basel Committee
on Banking Supervision (BCBS). Since the issuance of the first Concordat
of 1975, the Committee, constituted by representatives of central banks and
banking supervisory bodies, dictated international standards which aim is

11

Credit Risk

to ensure banking regulation. The agreements have occurred over time:
Basel I in 1988 and Basel II in 2004. Then, after the financial crisis of
2007, the importance of credit and credit management has increased and
even if financial intermediaries have always been regulated, their regulation
has had to change dramatically. In fact, based on the traumatic experience
of the crisis, in 2010 the Committee published the first text of Basel III.
This accord introduced stronger risk management requirements for banks.
To better understand what credit risk is we can give a definition. Credit
risk is the risk of financial loss due to the borrower’s bond issuer’s or coun-
terparty’s (the obligors) failure to honour their financial obligations. This
can be due to the inability or unwillingness of the counterparty, but this
last case is less common with respect to the first one. This inability is linked
with the concept of default. Default can be defined as a missed or delayed
payment of a contractual obligation or legal receivership of the obligor that
will probably cause one or more missed or delayed future payment(s).
The sources of credit risk can be various (deposits, prepayment of goods
or services, contingent claims, bonds, derivatives etc.), but the focus of our
analysis will be on loans.
A loan is a cash outflow provided from the lender to the borrower with the
promise to repay it back at a later scheduled date. Of course, the loan has a
cost which is defined as the interest rate paied by the borrower to the lender
on the loan principal amount at scheduled interest payment dates. The full
term and conditions of the loan are defines in the loan agreement. Going
into more detail, loans can be of different types: secured or unsecured. As
the name says, a secure loan imply a lower credit risk for the lender than
an unsecured one. This is due to the fact that with a secured loan the
borrower pledges asset as collateral that can be, in case of necessity, repos-
sessed and sold by the lender to recover the sums owed. Classical examples
of secured personal loans are mortgages or car loan, which are respectively
secure on the house or on the car. On the other hand unsecured loans do
not involve any type of collateral. Common examples include credit cards,

12

1.1 – Credit Risk Assessment

personal loans etc..

1.1 Credit Risk Assessment

It is quite clear at this point that commercial banks and financial institu-
tions have to deal with a fundamental decision: whether or not to grant
a loan to a customer. To answer this question they make use of credit
scoring, which is one of the most successful applications of statistical and
operations research modeling in finance.
Credit scoring is the set of decision models and their underlying techniques
that aid lenders in the granting of consumer credit. These techniques decide
who will get credit, how much credit they should get, and what operational
strategies will enhance the profitability of the borrowers to the lenders.
They access, in some way, the risk in lending to a particular consumer.
It is important to note that creditworthiness is not an attribute of indi-
viduals as weight, age or even income. It is an assessment by a lender of
a borrower and reflects the circumstances of both the party’s view of the
likely future economic scenarios. Thus, the same individual can be classi-
fied as creditworthy from some lenders but not from others. However, a
possible danger of credit scoring is that this may cease to be the case and
there will be those who can get credit from all lenders and those who can
not get credit at all.
Each customer i is assigned to certain risk class Yi ∈ {0,1} based on his
individual propensity to default on payments. In particular, Yi = 1 indicate
the default class while Yi = 0 indicate the non-default class. The likelihood
of a default over a specific time horizon [t, t+δt] is called default probability
(DP) and is indicated with pi = P (Yi = 1). The default indicator Yi is thus
a random variable with distribution

Yi ∼ Bernoulli(pi). (1.1)

The probabilities pi can be obtained by data on previous customers, with
their application details and subsequent credit history available. All the

13

Credit Risk

techniques use the sample to identify possible connections between the
charateristics of the costumer and how ’good’ or ’bad’ their subsequent
history is. Note that even if terms as ’uncreditworthy’ or ’bad’ can be
interpreted with a negative connotation, in reality they only want to state
that lending to this customer represent a risk that the lender is not willing
to take.
Let us now suppose to have a portfolio of m loans. Its credit loss is given
by the sum of individual loss

Lm :=
mØ

i=1
ei · li · Yi, (1.2)

where

• li ∈ (0,1] represent the loss rate of i and
mq

i=1
li = 1

• ei > 0 represent the loan amount and, without loss of generality, can
be normalized to 1.

If we assume li = 1/m we get Lm = Sm

m
where

Sm =
mØ

i=1
Yi (1.3)

is the number of insolvencies.
In practice, assuming the same loss rate for every i, in order to analyze the
total loss Lm it is sufficient to study the behaviour of Sm.

1.2 Credit Scoring History

The history of credit scoring is only 70 years old. The first idea of solving
the problem of identifying groups in a population was introduced in statis-
tics by Fisher (1936). Even if the context was quite different, his idea was
very similar to the classification idea at the base of credit scoring. The
first one to recognize that the same approach could be used to discriminate
between good and bad loans was Durand in 1941.

14

1.2 – Credit Scoring History

During the 1930s, some companies has introduced numerical scoring analy-
sis to overcome the inconsistencies in credit decision across credit analysts.
Then, with the start of the World War II, all the finance houses began
to experience difficulties with credit management. The problem was that
many credit analysts were being drafted into military service, hence the
firms had the analysts write down the rules of thumb they used to decide
to whom to give loans; these rules where then used by nonexperts to help
make credit decisions. They were both numerical scoring systems already
introduced and sets of conditions that needed to be satisfied.
After the war ended, it did not take long for some folks to connect the
automation of credit decision and the classification techniques being de-
veloped in statistics and to see the benefit of using statistically derived
models in lending decisions (Wonderlic 1952). In the late 1960, with the
arrival of credit cards, the banks and many other credit card issuers realize
the usefulness of credit scoring. In fact the number of people applying for
credit cards each day made it impossible to do anything but automate the
lending decisions. Also thanks to the growth in computing power made all
this possible, the default rates dropped by 50% or more.
The only opposition came from those like Capon (1982), Associate Profes-
sor of Business at Columbia University, who believed that "the brute force
empiricism of credit scoring offends against the traditions of our society".
The complete acceptance of credit scoring was due to the passage of the
Equal Credit Opportunity Acts and its amendments in the U.S. in 1975
and 1976. In 1975 the Congress prohibited discrimination in the granting
of credit on the basis of sex and marital status. The following year the Act
was amended to include race, color, religion, national origin and receipt of
income from a public assistance program as proscribed charateristics.
Given the success of credit scoring in credit cards, in the 1980s, the banks
started using scoring for other products like personal loans. In the 1980s,
logistic regression and linear programming were introduced. More recently,

15

Credit Risk

the development of artificial intelligence has led to usage of more sophisti-
cated machine learning models that can replace the logistic regression one.
Some of these methods, such as SVM, KNN, Random Forests etc., will be
better introduced in Chapter 2. However, despite the advances and ap-
plications of machine learning models in credit scoring, it is important to
take into consideration that some of these methods suffer from a major
issue: while linear regression is known for its simplicity and transparency
in predictions, some machine learning models are incapable to explain pre-
dictions.

1.3 Credit Risk Modeling

The development of the market for credit derivatives and the Basel III pro-
cess has generated a lot of interest in quantitative credit risk models, so
credit risk modelling is a very active subfield of quantitative finance and
risk management.
In this section we provide a brief overview of the various model types that
are used in credit risk, focusing on static models. In fact, credit risk man-
agement models are used to determine the loss distribution of a loan (or a
bond) portfolio over a fixed time period (typically at least one year), and
to compute loss-distribution-based risk measures. Hence these models are
typically static, in the sense that they focus on the loss distribution for the
fixed time period rather than a stochastic process describing the evolution
of risk in time.
Credit risk models can be divided into structural or firm-value models on
the one hand and reduced-form models on the other. In firm-value models
default occurs whenever a stochastic variable, representing an asset value,
falls below a threshold representing liabilities. For these reasons static
structural models are often called threshold models.
In reduced-form models, the mechanism leading to default is left unspeci-
fied. The default time is modelled as a non-negative random variable, whose

16

1.4 – Mixture Models

distribution typically depends on economic covariables. In next section we
will focus on mixture models, which can be thought of as static portfolio
version of reduced-form models. More precisely, mixture models assume
conditional independence of defaults given common underlying stochastic
factors.

1.4 Mixture Models

In a mixture model the default risk of an obligor is assumed to depend on
a set of common economic factors, such as macroeconomic variables, which
are also modelled stochastically. As anticipated before, given a realization
of the factors, defaults of individuals are assumed to be independent. De-
pendence between defaults stems from the dependence of individual default
probabilities on the set of common factors.

1.4.1 Bernoulli mixture model

Definition 1. Given some n < m and a n-dimensional random vector X =
(X1, ..., Xn)′, the random vector Y = (Y1, ..., Ym)′ follows a Bernoulli mix-
ture model with factor vector X if there are functions p̂i : Rn → [0,1], 1 ≤
i ≤ m, such that conditional on X the components of Y are independent
Bernoulli random variables satisfying

P (Yi|X = x) = p̂i(x).

Given a vector y = (y1, ..., ym)′ in 0,1m we have that

P (Y = y|X = x) =
mÙ

i=1
p̂i(x)yi(1 − p̂i(x))1−yi . (1.4)

If we integrate 1.4 over the distribution of the factor vector X we get the un-
conditional distribution of the default indicator vector Y. In particular, the
default probability of individual i is given by pi = P (Yi = 1) = E(p̂i(X)).
In fact,

pi = P (Yi = 1) = E(Yi) = E(E(Yi|X) = E(1·P (Yi = 1|X)+0·P (Yi = 0|X))

17

Credit Risk

= E(P (Yi = 1|X)) = E(p̂i(X)).

1.4.2 Poisson mixture model

Since default is a rare event, we can think of substituting Bernoulli random
variables with Poisson random variables.
In this case an individual may potentially default more than once in the
period of interest, even if with a very low probability. We introduce the
random variable Ỹi ∈ {0,1,2, ...} which counts the number of defaults of i.
Similarly to before, we can give the following definition.

Definition 2. Given p and X defined as in section 1.4.1, the random vector
Ỹ = (Ỹ1, ..., Ỹm)′ follows a Poisson mixture model with factors X if there
are functions λ̂i : Rn → (0, ∞), 1 ≤ i ≤ m, such that conditional on X = x
the random vector Ỹ is a vector of independent Poisson distributed random
variables with rate parameter λi(x).

For small Poisson parameters λi, we can approximate the value of the
number of default companies Sm with the random variable

S̃m =
mØ

i=1
Ỹi.

Given the factors, S̃m is the sum of independent Poisson variables and
therefore its distribution satisfies

P (S̃m = s|X = x) = exp

A
−

mØ
i=1

λi(x)
B

(qm
i=1 λi(x))s

s! . (1.5)

Bernoulli and Poisson mixture models are strongly related, in fact if Ỹfollows
a Poisson mixture then Y such that Yi = 1{Ỹi≥1} for all i = 1, .., m, follows
a Bernoulli mixture model. In particular, the mixing variables are related
by

p̂i(·) = 1 − exp(−λi(·)).

18

Chapter 2

Machine Learning

Machine learning (ML) is a branch of artificial intelligence that can be de-
fined as the study of efficient algorithms that automatically extract valuable
information from data. Another way to see machine learning is as a set of
computational methods which use experience to improve performance or to
make accurate predictions. Here, the word ’experience’ refers to past infor-
mation available to the learner: this means data. So the crux of machine
learning is data. In particular data quality and data size are at the core
of machine learning and, since the success of a learning algorithm depends
on the data used, machine learning is strictly related to data analysis and
statistics.
Learning is a very wild domain, consequently it can be ranched into sub-
fields dealing with different types of learning. The most common partition
is the one that distinguish between supervised and unsupervised learning
according to the types of training data available to the learner.

• In Supervised learning the learner has a set of labeled examples
and want to make predictions for all unseen points. This is the most
common scenario when dealing with classification or regression prob-
lems.

• In Unsupervised learning the learner can only count on a set of

19

Machine Learning

unlabeled examples to makes predictions for all unseen points. Clus-
ters and dimensionality reduction problems are examples of this type
of learning problems.

Both supervised and unsupervised machine learning have been deeply ex-
tensively applied in credit risk assessment. In this work we will first focus
on supervised learning techniques for classification task. In our case, as
anticipated in Section 1.1, the classes are two, so we will develop algorithm
for the so-called binary classification.
Secondly, we will introduce some unsupervised learning techniques, such as
clustering, that can be used as complementary tools to supervised ones.

2.1 PAC Learning Model

We will now introduce some terminology and notation that will be used in
the next chapters.

• We denote by X the set of all possible instances of data used for
learning (also called examples). X is also sometimes referred to as the
input space.

• The features are the attributes associated to an example.

• The labels (or target values) are the categories assigned to examples.
The set of all possible labels is denoted by Y. In the context of binary
classification we can assume Y= {0,1}.

• An hypothesis set H is a set of functions h : X → Y mapping feature
to the set Y of labels.

• A concept c : X → Y is a mapping from X to Y . Since Y = {0,1}, we
can identify c with the subset of X over which it takes the value 1.

• A concept class C is a set of concepts we may wish to learn.

20

2.1 – PAC Learning Model

Let us assume to have a set of independently and identically distributed
(i.i.d.) examples, according to a fixed but unknown distribution D. The
learner consider a set of possible concepts H, which may not coincide with
C. He receives a sample S = (x1, ..., xm) and the labels (c(x1), ..., c(xm)),
which are based on the target concept C ∈ C to learn. The objective is, of
course, to find an hypotheses h ∈ H which has a small generalization error
with respect to c, using the labeled sample S. The generalization error of
an hypotheses h ∈ H is

R(h) = P
x∼D

[h(x) /= c(x)] = E
x∼D

[1h(x) /=c(x)]. (2.1)

This error is not directly accessible to the learner, since both D and c are
unknown. The learner can only measure the empirical error

R̂(h) = 1
m

mØ
i=1

1h(xi) /=c(xi) (2.2)

which is the average error of h over the sample S. Note that, for a fixed
h ∈ H, the expectation of the empirical error based on an i.i.d. sample S

is equal to the generalization error: E[R̂(h)] = R(h). This follows directly
from the linearity of the expectation and from the fact that the ample is
drawn i.i.d., in fact

E
S∼Dm

[R̂(h)] = 1
m

mØ
i=1

E
S∼Dm

[1h(xi) /=c(xi)] = 1
m

mØ
i=1

E
S∼Dm

[1h(x) /=c(x)]

for any x in S. Thus,

E
S∼Dm

[R̂(h)] = E
S∼Dm

[1h(x) /=c(x)] = E
x∼D

[1h(x) /=c(x)] = R(h).

We can now introduce the Probably Approximately Correct (PAC) learning
concept.
Let size(c) be the maximal cost of the computational representation of
c ∈ C.

Definition 3. A concept class C is said to be PAC-learnable if there exists
an algorithm A and a polynomial function poly(·, ·, ·, ·) such that for any

21

Machine Learning

ϵ > 0 and δ > 0, for all distributions D on X and for any target concept c ∈
C, the following holds for any sample size m ≥ poly(1/ϵ, 1/δ, n, size(c)):

P
S∼Dm

[R(hS) ≤ ϵ] ≥ 1 − δ.

If A further runs in poly(1/ϵ, 1/δ, n, size(c)), then C is said to be effi-
ciently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C.

In other words, a concept class C is said to be PAC-learnable if the
hypothesis returned by A after observing a number of points polynomial
in 1/ϵ and 1/δ is approximately correct (the error is at most ϵ) with high
probability (i.e. with probability at least 1 − δ).

2.2 n-Fold-Cross-Validation

Before applying any machine learning algorithm, data should be split in
distinct sets: training set, validation set and testing set.

• The training set (or learning set) is the set of examples used to train
a learning algorithm.

• The validation set is the set of examples used to tune the parameters
θ of a learning algorithm when working labeled data (i.e. for model
selection).

• The test set is the set of examples used to evaluate the performances
of a learning algorithm. This set is separate from the training and
validation data and is not made available in the learning stage.

The problem is that, in practice, the amount of labeled data available is
often too small to set aside a validation sample. In fact, that would leave
an insufficient amount of training data. To overcame this problem, a widely
adopted method is n-fold-cross-validation, which is used to exploit the la-
beled data both for selection of the free parameters of the algorithm and

22

2.2 – n-Fold-Cross-Validation

for training.
Given the training sample S = ((x1, y1), (x2, y2), ..., (xm, ym)) of m la-
beled independent examples, the method consists of first fixing a value
of θ, and then randomly partitioning S into n subsamples of approxi-
mately equal size. The ith subsample (or fold) is thus a labeled sample
((xi1, yi1), ..., (ximi

, yimi
)) of size mi.

Then, for any i ∈ [1, n], the algorithm is trained on all but the ith fold in
order to generate a hypothesis hi. Then the performance of hi is tested on
the ith fold. The goodness of the paramenter θ is evaluated according to
the so-called cross-validation error R̂CV (θ), defined as follows

R̂CV (θ) = 1
n

nØ
i=1

1
mi

miØ
j=1

L(hi(xij), yij) (2.3)

where L is the loss function that measures the difference between a
predicted label and a true one.
The most common loss function used in the context of classification is the
misclassification loss defined as

LC(y, h(x)) = 1h(x) /=y. (2.4)

So, in practice, the quantity R̂CV (θ) is the average error of the n hypoth-
esis hi.
A common choice for mi is mi = m/n ∀i ∈ [1, n]. The problem now is the
choice of n. The appropriate choice is subject to the bias-variance trade-
off, a concept that will better explained in Section 2.3.1. For a large n,
each training sample has size close to the size m of the full sample and the
training sample are quite similar. In contrast, for small values of n each
training sample has size significantly less than m and the training samples
are more diverse. In the first case the method tends to have a small bias
but a large variance. On the contrary, in the second one, the method tends
to have a smaller variance but a larger bias.
In machine learning applications, n is typically chosen equal to 5 or 10,
but this is not always the case. A typical example is leave-one-out cross-
validation, in which n = m. In general, the leave-one-out error is very

23

Machine Learning

costly to compute, because it requires training n times on sample of size
m − 1.
Cross-validation is commonly used both for model selection and perfor-
mance evaluation.
In case of model selection, n-fold-cross-validation is applied as follows:

• the full data set is split into a training and a test sample

• the training sample is used to compute R̂CV (θ) for a certain number
of possible value of θ (θ ∈ Θ)

• θ is set to the value θ0 such that

θ0 = arg min
θ∈Θ

R̂CV (θ) (2.5)

• the algorithm is trained over the full training sample of size m with
parameter setting θ0.

We will better see in the next section how cross-validation can be used for
performance evaluation.

2.3 Assessing Model Accuracy

In order to evaluate the performance of a learning method on a given data
set, we need some way to measure how well predictions match the observed
data. In other words we need to quantify the extent to which the predicted
response value for a given observation is close to the true response value
for that observation.
A general problem of supervised learning is often formulated as an opti-
mization problem in which we wish to minimize the error of hypotheses h

over the training set. However, in general, we are interested in a model that
generalizes well on unseen data rather than a model that perfectly fits the
training samples. Unfortunately, there is a fundamental problem: there is
no guarantee that good results on the training set imply good performances
on the testing set.

24

2.3 – Assessing Model Accuracy

Figure 2.1. Left: training error and test error as functions of model
complexity. Right: bias-variance decomposition of the test error. In
both figures the vertical line indicates the complexity level correspond-
ing to the smallest test error.

The left-hand panel of Figure 2.1 illustrates this phenomenon. The red
curve represents the training error as a function of the model complexity
and declines monotonically as complexity increases. The test error is dis-
played by the black curve. The test error initially declines as the level
of flexibility increases but, at some point, it levels off and then starts to
increase again. This is a fundamental property of statistical learning that
holds regardless of the particular data set and regardless of the method
being used. When a given method yields a small training error but a large
test error, we are said to be overfitting the data.
The optimal model is therefore the one with minimal test error. If no train-
ing set is available, cross-validation can be used to estimate the test error
using only training data.

2.3.1 Bias-variance trade-off

The U-shape of test error curve is due to the fact that test error can be
decomposed into the sum of three fundamental quantities: the residual
error σ (or minimal attainable error), the systematic error (or bias) and
the effect of the variance. The exact decomposition depends on the loss
function L.
We will now better explain these three quantities and then we will find the

25

Machine Learning

exact decomposition for the misclassification loss LC .

• The residual error is the error obtained by the best possible model. It
provides a theoretical lower bound that is independent of the learning
algorithm. It only depends on the problem and on the loss criterion
used.

• Bias refers to the error that is introduced by approximating real-life
problem, which may be extremely complicated, by a much simpler
model.

• Variance refers to the amount by which the model h would change if
we estimated it using different training sets. Ideally the model should
not vary too much between training sets.

Figure 2.2. On the left: a too simple model trained on two distinct
data sets S1 and S2. This model suffer of high bias. On the right: a
too complex model trained on the same two data sets. This model
suffer of high variance.

As a general rule, increasing the flexibility of the method, the variance will
increase and the bias will decrease.

26

2.3 – Assessing Model Accuracy

2.3.2 Bias-variance decomposition for LC

Bias-variance decomposition for misclassification loss is not unique, several
authors proposed their own one. In this section we will see the most natural
one, supported by Domingos(2000). A more complete overview is available
in [11].
Let us suppose to have a sample S = ((x1, y1), ..., (xm, ym)) of m randomly
independent pairs, drawn from a probability distribution D over X × Y .
As said before, the empirical error R̂(h) of an hypothesis h(x) on a sample
S can be computed as the expectation

R̂(h) = Ex,y[L(y, h(x)] (2.6)

where L is a generic loss function. The quantity R̂(h) is itself a random
variable, hence we are interested in studying its expected value over the
sample set S.

ES[R̂(h(x))] = ES[Ey|x[L(y, h(x))]] = PS(y /= h(x)|x). (2.7)

Let us now on the case in which the loss function is the misclassification
loss LC . In this case the best possible model h∗, called Bayes model, is
the classifier that assign each observation to the most likely class, given its
predictor values

h∗(x) = arg max
y∈Y

P (Y = y|X = x). (2.8)

The corresponding residual error, also called Bayes error rate, is

R(h∗(x)) = 1 − P (Y = h∗(x)|X = x). (2.9)

A direct consequence is that the residual error is given by

σc(x) = 1 − P (Y = h∗(x)|X = x). (2.10)

Symmetrically to the Bayes model, we can define the majority vote classifier

hmaj(x) = arg max
y∈Y

PS(h(x) = y) (2.11)

27

Machine Learning

which outputs at each point the class receiving the majority of votes among
the distribution of classifiers induced from the distribution D of learning
sets.
The squared bias is the error of the average model with respect to the best
possible model

biasc(x) = LC(h∗(x), hmaj(x)). (2.12)

So, biased points are those for which the majority vote classifier disagrees
with the Bayes classifier.
Instead, we can define variance as the average error of model h induced
from the random sample S with respect to the majority vote classifier:

varc(x) = ES[LC(h(x), hmaj(x))] = PS(h(x) /= hmaj(x)). (2.13)

Unfortunately, these natural bias end variance terms do not sum up with
the residual error to give the misclassification error

ES[R̂(h(x))] /= σC(x) + biasC(x) + varC(x). (2.14)

A quite unintuitive consequence is that increasing the variance may de-
crease the average classification error in some situations. This is due to
the fact that with misclassification loss, much variance can be beneficial
because i can lead the system closer to the Bayes classification.

2.4 Supervised Learning for Binary Classi-
fication

The supervised machine learning algorithms are used in credit scoring mod-
els to find the relationship between the customer features and credit default
risk and then predict the default classification usually in a binary format.
We will now describe more in detail, with reference to [8] and [4], some
of the most important classification algorithm, such as logistic regression,
support vector machine (SVM), k-nearest neighbors (KNN), decision trees,

28

2.5 – Logistic Regression

random forests and adaptive boosting (AdaBoost).
Let S = ((x1, y1), ..., (xm, ym)) ∈ (X ×Y)m be a labeled sample of i.i.d. ob-
servations drawn according to the distribution D over X ×Y , with xi ∈ Rn

and yi ∈ Y for all i ∈ [1, m]. We will assume S to be the input of each
algorithm.
Note that in our context, that is binary classification, Y is a set containing
only two classes. For simplicity, only for the mathematical description of
SVM and AdaBoost, we will assume Y = {−1, +1}, instead of Y = {0,1}
as before.

2.5 Logistic Regression

Rather than modeling Y directly, logistic regression models the probability
that Y belongs to a certain category.
From now on we define pi := P (Yi = 1|Xi = xi). We can model these
conditional probabilities using linear regression model

pi = βT xi + ϵi. (2.15)

where β ∈ Rn is the coefficients vector and ϵi represent the error.
The problem is that these probabilities must fall between 0 and 1. To avoid
this problem we must model pi using a function that gives outputs between
0 and 1 for all values of xi.
Logistic regression use the logistic function

f(x) = ex

1 + ex
(2.16)

to model pi.
In this way we obtain

pi = eβT xi

1 + eβT xi
. (2.17)

After a bit of manipulation we get

pi

1 − pi

= eβT xi . (2.18)

29

Machine Learning

The quantity pi/(1 − pi) is called odds and can take value between 0 and
∞. Values of the odds close to 0 and ∞ indicate very low and very high
probabilities o default, respectively.
By taking the logarithm of both sides of 2.18 we obtain

log

A
pi

1 − pi

B
= βT xi. (2.19)

The quantity log(pi/(1 − pi)) is called log-odds or logit.
As we can see from 2.19, the logistic regression model has a logit that is
linear in x. This make the model easily interpretable: increasing xij (the
j-th entry of xi) by one unit changes the log-odds by βj, or equivalently
it multiplies the odds by eβj . However the relationship between pi and xi

is not a straight line, so βj does not represent the change in pi associated
with a one-unit increase in xij. A one-unit change in xij will cause a change
in pi which amount depends on the current value of xij. But regardless of
the value of xij, if βj is positive then increasing xij will be associated with
increasing pi and vice versa, if βj is negative then increasing xij will be
associated with decreasing pi.

The problem now is how to estimate the coefficients β. The most com-
mon method to fit a logistic regression model is maximum likelihood. We
know that variables Yi are Bernoulli with parameter pi and density function

P (Yi = yi) = pyi
i (1 − pi)1−yi . (2.20)

Under the assumption that the observations are independent, we can define
the likelihood function as

l(β) =
nÙ

i=1
P (Yi = yi). (2.21)

By substituting 2.19 in 2.20 we get

l(β) =
nÙ

i=1

A
eβT xi

1 + eβT xi

Byi
A

1 − eβT xi

1 + eβT xi

B1−yi

. (2.22)

30

2.6 – Support Vector Machine

For simplicity we can take the logarithm on both sides and we get the so
called log-likelihood function

L(β) = log (l(β)) =
nØ

i=1
yi log

A
eβT xi

1 + eβT xi

B
+

nØ
i=1

(1 − yi)log

A
1 − eβT xi

1 + eβT xi

B

and, after a bit of manipulation, we obtain

L(β) =
nØ

i=1
yiβ

T xi − log(1 + eβT xi). (2.23)

The coefficient β can be easily found by solving the convex maximization
problem

β = arg max
β∈Rn

L(β). (2.24)

2.6 Support Vector Machine

The support vector machine (SVM) is a very useful machine learning tool
for learning linear predictors in high dimensional futures spaces.
SVM objective is to search for a a halfspace that separates the training set
S, according to labels yi ∈ {±1}, with a large margin. This means that
each example must be on the correct side of the separating hyperplane but
also far away from it.

2.6.1 Hard-SVM

Definition 4. We say that S is linearly separable if there exists a halfspace
(w, b) such that

yi = sign(< w, xi > +b), ∀i = 1, ..., m

or equivalently

yi(< w, xi > +b) > 0, ∀i = 1, ..., m.

The margin of a hyperplane with respect to a training set is defined as
the minimal distance between the hyperplane and a point of the training

31

Machine Learning

set. Searching for a hyperplane with a large margin means that, even if
we slightly perturb each instance of S, the hyperplane still separate the
training set.
The distance between a point x and a hyperplane (w, b) with ||w|| = 1 is
given by

d(x, (w, b)) = | < w, x > +b | (2.25)

so the closest point in S to the separating hyperplane is

min
i=1,..,m

| < w, xi > +b|.

Hard-SVM is the learning rule that return a hyperplane that separates the

Figure 2.3. Maximum-margin hyperplane and margins for an SVM
trained with samples from two classes.

training set S with the largest margin possible. We can formalize this rule
as follows

arg max
(w,b):||w||=1

min
i=1,...,m

| < w, xi > +b |

s.t. yi(< w, xi > +b) > 0, ∀i = 1, ..., m.
(2.26)

This problem only admits solution under the assumption that S is linearly
separable. In this case 2.26 can be reformulated as

arg max
(w,b):||w||=1

min
i=1,...,m

yi(< w, xi > +b). (2.27)

32

2.6 – Support Vector Machine

Furthermore, it is possible to give another equivalent formulation of Hard-
SVM rule as a quadratic optimization problem:

• given the training set S, solve

(w0, b0) =arg min
(w,b)

||w||2

s.t.yi(< w, xi > +b) ≥ 1
(2.28)

• output: ŵ = w0
||w0|| and b̂ = b0

||w0|| .

This means that finding the largest margin halfspace is equivalent to finding
w whose norm is minimal. This result is expressed in the following theorem.

Theorem 1. The output (ŵ, b̂) of Hard-SVM rule 2.28 is a solution of
problem 2.27.

Proof. Let (w∗, b∗) be a solution of 2.27 and define the respective margin
to be γ∗ = mini=1,...,m yi(< w∗, xi > +b∗). For all i it holds

yi(< w∗, xi) + b∗) ≥ γ∗

or equivalently

yi

A
<

w∗

γ∗ , xi > + b∗

γ∗

B
≥ 1.

Hence, the couple
1

w∗

γ∗ , b∗

γ∗

2
satisfies the constraints of problem 2.28. There-

fore, ||w0|| ≤ ||w∗

γ∗ || = 1
γ∗ . As a consequence,

yi(< ŵ, xi > +b̂) = 1
||w0||

yi(< w0, xi > +b0) ≥ 1
||w0||

≥ γ∗

for all i. So, since ||ŵ|| = 1, we have that (ŵ, b̂) is an optimal solution for
2.27.

33

Machine Learning

2.6.2 Support vectors

The name ’Support Vector Machine’ stems for the fact that the solution w0

of Hard-SVM is in the linear span of the examples whose distance from the
separating hyperplane is exactly 1/||w0||. These vectors are called support
vectors.
This concept is expressed in the so called Fritz Jhon optimality conditions:

Theorem 2. Let w0 be the solution of Hard-SVM and let

I = {i : | < w0, xi > | = 1}.

Then, there exist coefficients α1, ..., αm such that

w0 =
Ø
i∈I

αixi. (2.29)

The vectors xi such that i ∈ I are the support vectors.

2.6.3 Soft-SVM

Strong-SVM assumes that the training set S is linearly separable, but this
is almost never true. A possible solution is to apply Soft-SVM, which is a
relaxation of Hard-SVM that can be applied also to non linearly separable
training sets. In particular, if S is not linearly separable, constraints in
problem 2.28 are never satisfied. Soft-SVM allows the constraints to be
violated by introducing nonnegative slack variables ξ1, ..., ξm. In this way
the new constraints become

yi(< w, xi > +b) ≥ 1 − ξi ∀i = 1, ..., m (2.30)

Of course, we want the violations of the constraints ξi to be as small as
possible, so Soft-SVM jointly minimizes the norm of w and the average of
ξi. This leads to the following optimization problem:

34

2.6 – Support Vector Machine

• given the training set S, solve

min
w,b,ξ

A
λ||w||2 + 1

m

mØ
i=1

ξi

B

s.t. yi(< w, xi > +b) ≥ 1 − ξi ∀i = 1, ..., m

ξi ≥ 0 ∀i = 1, ..., m

(2.31)

• output: w and b

where λ > 0 is the parameter that controls the trade-off between the two
terms we want to minimize. As before, we can rewrite problem 2.31 in a
simpler form. To do this it is necessary to introduce the definition of the
hinge loss:

Lhinge((w, b), (x, y)) = max{0, 1 − y(< w, x > +b)}. (2.32)

Now it is possible to rewrite 2.31 as a regularized loss minimization problem,
as follows:

min
w,b

A
λ||w||2 + 1

m

mØ
i=1

Lhinge((w, b), (xi, yi))
B

. (2.33)

Theorem 3. Problem 2.31 and 2.33 are equvalent.

Proof. Let us fix some (w, b) and consider the minimization in 2.31 over ξ.
For all i, the best assignment for ξi would be

ξi =

0 if yi(< w, xi > +b) ≥ 1

1 − yi(< w, xi > +b) otherwise
(2.34)

or equivalently, ξi = Lhinge((w, b), (xi, yi)).

2.6.4 Kernels

The power of halfspaces is quite restricted, in the sense that most of the
training sets are not separable by a halfspaces. To overcome this problem we

35

Machine Learning

can first map the original training set into another space (usually of higher
dimension) and then learn an halfspace in that space. More formally, we
can proceed as follows:

• We choose a mapping ϕ : X → F , where F is the feature spaces. F
can be any Hilbert space but in general it is taken equal to Rn for
some n.

• We generate from the old training set S a new training set Ŝ =
((ϕ(x1), y1), ..., (ϕ(xm), ym)).

• We train a linear predictor h over Ŝ.

• We predict the label of each test point x as h(ϕ(x)).

Obviously the success of this learning method will depends on the choice of
ϕ: a good ϕ is a function that makes Ŝ linearly separable in F . The problem
behind this procedure is that computing linear separators over very high
dimensional data may be computationally expensive. The solution to this
concern is kernel based learning.

Definition 5. Given an embedding ϕ : X → F , we define the kernel
function as

K(x, x′) =< ϕ(x), ϕ(x′) > . (2.35)

We can think of K as a similarity between instances and of the embed-
ding ϕ as mapping X into a space where these similarities are realized as
inner products.
Of course not all functions of the form K : X ×X → R are kernel function.
In fact, k must represent an inner product between phi(x) and ϕ(x′) for
some ϕ. A necessary and sufficient condition for k to be a valid kernel
function is given by the Mercer Theorem.

Theorem 4. A symmetric function K : X × X → R implements an in-
ner product in some Hilbert space if and only if it is positive semidefinite;
namely for all x1, ..., xm, the matrix Gi,j := K(xi, xj), is a positive semidef-
inite matrix.

36

2.6 – Support Vector Machine

The matrix G ∈ Rm×m is called Gram matrix. This is useful because
we can implement linear separators just on the basis of the values of the
kernel function over pairs of points in X, without express ϕ explicitly. Now
we will see how.
It is possible to show that each version of SVM optimization problem can
be rewritten as

min
w

(f(< w, ϕ(xi) >, ..., < w, ϕ(xm) >)) + R(||w||) (2.36)

where f : Rm → R is an arbitrary function and R : R+ → R is a monoton-
ically nondecreasing function. The following theorem (Representer The-
orem), shows that an optimal solution of 2.36 is a linear combination of
ϕ(x1), ..., ϕ(xm).

Theorem 5. Assume that ϕ is a mapping from X to a Hilbert space. Then,
there exists a vector α ∈ Rm such that w =

mq
i=1

αiϕ(xi) is an optimal solution
of 2.36.

According to this theorem, we can rewrite < w, ϕ(xi) > as

< w, ϕ(xi) >=
eØ

j

αjϕ(xj), ϕ(xi)
f

=
mØ

j=1
αj < w(xj), ϕ(xi) > (2.37)

and ||w||2 as

||w||2 =
eØ

j

αjϕ(xj),
Ø

j

αjϕ(xj)
f

=
mØ

i,j=1
αiαj < ϕ(xi), ϕ(xj) > . (2.38)

Therefore problem 2.36 can be rewritten as

min
α∈Rm

f

A
mØ

j=1
αjK(xj, x1), ...,

mØ
j=1

αjK(xj, xm)
B

+ R

Aöõõô mØ
i,j=1

αiαjK(xj, xi)
B

.

(2.39)
In this equivalent form the mapping ϕ does not appear. The only thing we
need to know is the value of the Gram matrix G .
Problems in form 2.39 can be solved efficiently and, once we learn α, we
can calculate the predictions on a new instance x as

< w, ϕ(x) >=
mØ

j=1
αj < ϕ(xj), ϕ(x) >=

mØ
j=1

αjK(xj, x).

37

Machine Learning

The advantage of working with kernels is that in some situations the di-
mension of the feature space is extremely large, while working with kernel
function is very simple.
Two of the most commonly used kernels are Gaussian kernel and polyno-
mial kernel.

• The Gaussian kernel, also called RBF (radial basis functions) kernel,
is defined as

K(x, x′) = e− ||x−x′||2
2σ ∀x, x′ ∈ Rn. (2.40)

This kernel sets the inner products between x and x′ in F to be close
to zero if the instances are far away from each other in X and close to
1 if they are close. The parameter σ > 0 controls the scale determining
what we mean by ’close’.

• The polynomial kernel of degree k is defined as

K(x, x′) = (1+ < x, x′ >)k. (2.41)

Learning halfspace with a k degree polynomial kernel enables us to
learn polynomial predictors of degree k over X.

2.7 K-Nearest Neighbors

In theory we would always like to predict qualitative responses using the
Bayer classifier already defined in 2.8. The problem is that, in reality, we
do not know the conditional distribution of Y given X and this makes it
impossible to apply the Bayes classifier. One very simple approach which
can often produce classifiers that are extremely close to the optimal Bayes
classifier is the K-nearest neighbors (KNN) classifier.
Let us assume that our input space X is endowed with a metric function
ρ : X ×X → R. This metrics return the distance between any two elements
of X.
Some of the most common choices for ρ are:

38

2.7 – K-Nearest Neighbors

Figure 2.4. SVM with different kernels. The decision boundary is non-
linear but the underlying problem is for a linear separating hyperplane.

• the Euclidean distance

ρ(x, x′) = ||x − x′||2 =
öõõô nØ

i=1
(xi − x′

i)2 (2.42)

• the Manhattan distance

ρ(x, x′) = ||x − x′||1 =
öõõô nØ

i=1
|xi − x′

i| (2.43)

• the Chebyshev distance

ρ(x, x′) = ||x − x′||∞ = max
i=1,...,n

|xi − x′
i| (2.44)

• the Minkowski distance

ρ(x, x′) = ||x − x′||p =
A

nØ
i=1

(xi − x′
i)p

B1/p

(2.45)

39

Machine Learning

Given the set S of training samples, for each x ∈ X, let π1(x), ..., πm(x)
be a reordering of {1, ..., m} according to their distance ρ(x, xi) to x. This
means that, for all i < m, this inequality holds:

ρ(x, xπi(x) ≤ ρ(x, xπi+1(x))). (2.46)

Given a positive integer K, for all x ∈ X the KNN classifier first identifies
the K points in S that are closest to x. It then approximate the conditional
probability P (Y = y|X = x) as

P (Y = y|X = x) = 1
K

Ø
i≤K

1yπi(x)=y. (2.47)

Finally, the classifier applies Bayes rule and assign each observation x to
the class with the largest probability.
The choice of parameter K has a drastic effect on the classifier. When
K = 1 the decision boundary is overly flexible and the classifier has a
low bias but very high variance. As K increases, the method becomes less
flexible and produces a decision boundary closer to linear. This corresponds
to a low-variance but high-bias classifier.
It can be proved that the expected error of the KNN rule converges to
(1 +

ñ
8/K) times the error of the Bayes classifier. This is formalized in

the following theorem.

Theorem 6. Let X = [0,1]n, Y = {0,1} and D be a distribution over X ×Y

for which the conditional probability function is a c-Lipschitz function. Let
hS denote the result of applying the KNN rule to a sample S ∼ Dm, where
K ≥ 10. Let h∗ be the Bayes optimal hypothesis. Then,

ES[R(hS)] ≤
A

1 +
ó

8
K

B
R(h∗) + (6c

√
n + K)m−1/(n+1).

2.8 Decision Trees

Decision trees are simple, typically fast and very easy to interpret, however
they also present some issues. First, their interpretation should be carried

40

2.8 – Decision Trees

out with care since they suffer from high variance. This means that they
are unstable and a small change in the training set could lead to very dif-
ferent trees. Second,they usually are not competitive with other supervised
learning methods in terms of prediction accuracy. For this reason, we will
later introduce some methods, based on the combination of a large number
of trees. We will see that combining trees together leads to a dramatic
improvements in prediction accuracy, but costs in terms of loss in interpre-
tation.
A binary decision tree is a tree representation of a partition of the feature

Figure 2.5. Left: scheme of a decision tree with numerical questions
based on X1 and X2. Right: Partition of the two-dimensional space
induced by that tree.

space X. Each interior node of a decision tree corresponds to a question
related to features. In case of numerical features, a question will look like
Xi ≤ a, for a certain threshold a ∈ R. If the variable is categorical, the
question will be Xi ∈ a1, a2, a3, where a1, a2 and a3 are possible realization
of random variable Xi. Each leaf of the tree is labeled with a label l ∈ Y .
From now on we will focus on classification trees.
To predict the label of any point x ∈ X we start from the root of the tree
and go down the tree until a leaf is reached, by moving to the left or to
the right according to the response at the question at each node. Once we
reached a leaf, we associate the corresponding label to observation x. In
other words we partition X in non-overlapping regions. For all point falling

41

Machine Learning

in a certain region we make the same prediction. In classification trees the
label of a region is determined using the training sample: the class ŷ with
the majority representation among the training points falling in the leaf
defines the label of that leaf region.
In theory we can partition X in regions of any shape. However, we choose
to divide it into high-dimensional rectangles r1, ..., rJ , where J is not fixed
a priori. The goal is find r1, ..., rJ that solve

arg min
r1,...,rJ

JØ
j=1

Ø
i∈rj

LC(yi, ŷ) (2.48)

Unfortunately 2.48 is an NP-hard problem, so it is computationally infea-
sible.
Instead of solving 2.48, we can learn the tree using two different approach:
a top-down greedy technique called recursive binary splitting or a grow-
then-prune strategy.

2.8.1 Recursive binary splitting

In this case we start from a single (root) node, which label is the class
that has majority over the train sample. Next, at each round, we split
node nt based on some question qt. The pair (nt, qt) is chosen so that the
node impurity is maximally decreased according to the measure of impurity
F . Let us denote with F (n) the impurity of node n, and with pl(n) the
proportion of training observations at n that belong to class l. The most
commonly used measures F are:

• misclassification: F (n) = 1 − maxl∈Y pl(n)

• cross-entropy: F (n) = − q
l∈Y

pl(n)log2(pl(n))

• Gini index : F (n) = q
l∈Y

pl(n)(1 − pl(n))

Let us denote by with n+(n, q) and n−(n, q) respectively the right and the
left child of n after the split, and with η(n, q) the fraction of points in the

42

2.9 – Weak Learning and Ensemble Methods

region defined by node n that are moved to n−(n, q). At each step, we have
to maximize the decrease in impurity by solving

max
(n,q)

F (n) − [η(n, q)F (n−(n, q)) + (1 − η(n, q))F (n+(n, q))]. (2.49)

Gini index and entropy are strictly convex and differentiable, so they are
typically the preferred measures to substitute in 2.49. This greedy approach
faces some issues. First, a seemingly bad split may leads to subsequent
useful splits and so to trees with less impurity overall. Second, to achieve
the desired level of impurity, very large trees may be needed and this lead
to overfitting.

2.8.2 Grow-then-prune strategy

A better strategy is the so called grow-then-prune strategy. The idea be-
hind this method is to grow a very large tree T0, and then to prune it
back to obtain a subtree T ∗ ⊂ T0. This subtree is chosen in order to mini-
mize an objective function defined as the sum of the empirical error and a
complexity term that depends on the number of leaves |T |of tree T :

T ∗ = arg min
n∈T

|n|F (n) + α|T |. (2.50)

The parameter λ ≥ 0 is a regularization parameter determining the trade-
off between impurity and tree complexity. It is possible to show that the
solution T ∗ to this problem is unique.
In practice, we find T ∗ by generating a sequence of trees T0, T1, ..., Tn start-
ing from the initial tree T0. For any i ∈ [0, n − 1] we define Ti+1 from Ti by
collapsing one internal node of Ti. This node is chosen so that collapsing
it causes the smallest per node increase in the total empirical error of Ti.

2.9 Weak Learning and Ensemble Methods

As we know, it is simpler to find a simple predictor which performs slightly
better than random, instead of finding an accurate one which satisfies PAC-
learning requirement (see Definition ??). To better understand what a base

43

Machine Learning

classifier is let us introduce the definition of weak learning reported by [8].

Definition 6. A concept class C is said to be weakly γ−learnable if there
exists an algorithm A, γ > 0, and a polynomial function poly(·, ·, ·, ·)
such that for any ϵ > 0 and δ > 0, for all distribution D on X and
for any target concept c ∈ C, the following holds for any sample size
m ≥ poly(1/ϵ,1/δ, n, size(c)):

P
S∼Dm

[R(hS) ≤ 1/2 − γ] ≥ 1 − δ. (2.51)

If such algorithm A exists, it is called a weak learner algorithm for
C or simply weak learner. The hypotheses returned by a weak learner
are called base classifiers. Ensemble methods are methods that combine
together several base classifiers to create a more accurate one. All these
approach are general ones that can be applied to many learning methods
both for regression and classification. In this section we will present some
of them, focusing on their application on decision trees.

2.9.1 Bagging

Bagging is an ensemble method introduced by Breiman (1996).
As we anticipated before, trees suffer from high variance. However we
know that, give a set of n independent observations Z1, ..., Zn, each with
variance σ2, the variance of the mean Z̄ of the observations is given by
σ2/n. Hence,variance can be reduced averaging a set of observation. This
is exactly the idea behind bagging.
We can increase prediction accuracy taking many training sets, building
a separate prediction model using each of them and then, for a given test
observation, we record the class predicted by the majority of B predictors.
In practice, we usually do not have access to multiple training set, so we
can bootstrap, by taking repeated samples from one single training set.

44

2.9 – Weak Learning and Ensemble Methods

2.9.2 Random forest

The method of random forest was introduced by Breiman (2001). Random
forests improve bagged trees by decorrelate them. As in bagging, we build
distinct decision trees on bootstrapped training samples. The difference is
that at each split of a tree a random sample of p predictors is chosen as split
candidates from the full set of n predictors. As a consequence, the split
is allowed to use only one of those p predictors. The number p is usually
taken as p =

√
n.

This technique can appear strange but it is very effective. Let us suppose
to have one very strong predictor in our data set. Then, almost all trees
will use this predictor in the first split. Consequently all the trees will look
quite similar to each other and will be strongly correlated. If we force each
split to consider only p predictors, the probability that the splits will not
consider the strong predictor is (n − p)/n. Of course, if we choose p to be
very similar to n, the performance of the method will be almost identical
to bagging. The choice of a very small p is instead very helpful when
predictors are strongly correlated. aggiungere parametri importanti

2.9.3 Boosting

Boosting is an ensemble method which consist of iteratively learning weak
classifiers with respect to a distribution and adding them to a final strong
classifier. So, exactly as bagging, boosting use a huge number of trees
combined together to obtain a more accurate predictor. Therefore, while
in bagging each tree is built on a bootstrapped data set and is independent
from all the others, in bootstrap each tree is built on a modified version of
the original training set.
The idea behind the method is to improve decision trees prediction by
learning slowly, instead of fitting a unique large decision tree, which may
lead to overfitting. At each iteration N , a new weak learner hi(x) is added
to the ensemble output ĥ(x) according to a specific weight wi based on the

45

Machine Learning

weak learners accuracy:

ĥ(x) =
NØ

i=1
wihi(x). (2.52)

Then, the data weights are readjusted: misclassified input data gain a
higher weight and examples that are classified correctly lose weight. In this
way, future weak learners will focus more on the examples that previous
weak learners misclassified.
The choice of the number B of used trees is fundamental: if B is too
large boosting can overfit, even if overfitting tends to occur slowly if at
all. Another important parameter is the number d of splits in each tree.
We often choose d = 1 to reduce tree complexity. In this case, we obtain
stumps, trees consisting of a single split.

2.9.4 AdaBoost

One of the most successful boosting algorithms is Adaboost (Adaptive boost).
AdaBoost uses a set H of base classifiers, which are functions h : X → Y .
The family of base classifiers typically used with AdaBoost is that of deci-
sion trees. More precisely, stumps which are threshold functions associated
to a single feature. In other words, stump correspond to single axis-aligned
partitions of the space Rn. As the previous algorithms, AdaBoost take in
input the training set S and maintains a distribution Dt over the indices
1, ..., m. Let us see more in details how it works.

• We set the initial distribution to be uniform

D1(i) = 1/m (2.53)

for all i = 1, ..., m.

• At each round of boosting, that is each iteration t ∈ [1, T],

– We choose a new base classifier ht ∈ H by minimizing the error ϵt

46

2.9 – Weak Learning and Ensemble Methods

on the training sample weighted by the distribution Dt:

ht ∈ arg min
h∈H

P
Dt

[ht(xi) /= yi] = argminh∈H

mØ
i=1

Dt(i)1h(xi) /=yi

(2.54)

– We define the coefficient αt as αt = 1/2log 1−ϵt

ϵt
, which is greater

than zero if and only if the error ϵt is less than 1/2

– We calculate the normalization factor Zt = 2[ϵt(1 − ϵt)]1/2, to
ensure that the weights Dt+1(i) sum to one.

– For i = 1, ..., m we update the distribution

Dt+1(i) = Dt(i)exp(−αtyiht(xi))
Zt

. (2.55)

In this way, the new distribution Dt+1 is defined from the previous
one by increasing the weight on i if xi is incorrectly classified and
decreasing it if xi is correctly classified.

• After T iterations, the classifier h returned is based on the sign of g,
which is a linear combination of the base classifiers ht

g =
TØ

t=1
αtht, h = sgn(g). (2.56)

The weight αt assigned to ht in the linear combination is a logarithmic
function of the ratio of the accuracy 1 − ϵt and error ϵt of ht. Conse-
quently, more accurate base classifiers are assigned a larger weight in
that sum.

It is possible to prove that the empirical error of AdaBoost decreases ex-
ponentially fast as a function of T . More precisely:

Theorem 7. The empirical error of AdaBoost classifier satisfies

R̂(h) ≤ exp
î

− 2
TØ

t=1

11
2 − ϵt

22ï
. (2.57)

Furthermore, if γ ≤ (1/2 − ϵt) for all t ∈ [1, T], then

R̂(h) ≤ exp(−2γ2T). (2.58)

47

Machine Learning

Note that the name adaptive boosting is due to the fact that the algo-
rithm does not need to know the value of γ and the accuracy of the base
classifiers, but it adapts to their accuracy and defines a solution based on
their values.

2.10 Performance Measures

In the case of binary classification, the most common way to evaluate ma-
chine learning algorithms performances is by the so called confusion matrix.
Its structure is represented in Table 2.1: on the columns we have the pre-

Predicted
Negative

Predicted
Positive

Actual Negative TN FP

Actual Positive FN TP

Table 2.1. Confusion matrix.

dicted classes, while the actual classes stay on the rows. The entries of the
matrix are four:

• TN (true negatives) is the number of negative examples correctly clas-
sified,

• FP (false positives) is the number of negative examples incorrectly
classified as positive,

• FN (false negatives) is the number of positive examples incorrectly
classified as negative,

• TP (true positives) is the number of positive examples correctly clas-
sified.

48

2.10 – Performance Measures

The performance measure generically associated to machine learning algo-
rithms is accuracy

Accuracy = TP + TN

TP + FP + TN + FN
. (2.59)

However, in case of unbalanced data set, this is not the best performance
metric to use. In fact, in real data sets, it is likely to have a very small
number of data point in the positive class (Y = 1) compared to that of
the negative class (Y = 0). In this case an high accuracy do not imply a
satisfactory prediction for the minority class, which is the most ’interesting’
to predict. Since accuracy is not a good metric for skewed data sets, it is
better to evaluate classifiers performances using recall (or sensitivity) and
precision (or positive predictive value):

recall = TP

TP + FN
, precision = TP

TP + FP
. (2.60)

These two measures can be combined together to obtain the f measure (or
F-score):

F = 2 × precision × recall

precision + recall
= 2 · TP

2 · TP + FP + FN
. (2.61)

The highest possible value of an F-score is 1.0, indicating perfect precision
and recall, and the lowest possible value is 0, if either the precision or the
recall is zero.
Another way to evaluate the performance of a statistical model that divide
subjects into two classes is ROC curve analysis. In order to define the
ROC curve, we need to introduce two more quantities which are specificity
and false positive rate. The specificity, or true negative rate (TNR), is the
conditional probability of correctly classifying the negative examples

specificity = TN

TN + FP
. (2.62)

The false positive rate is the probability of type I error

FPR = FP

FP + TN
= 1 − specificity. (2.63)

49

Machine Learning

Many classification methods give, as output, a quantitative result T (for
instance, in our context, the probability of default). In this case it is
necessary to define a threshold value c to distinguish the two classes: if
T ≥ c this example will belong to default class, if T < c this example
will be classified as non-default individual. Of course, different values of c

lead to different confusion matrix. In particular, as c decreases, sensitivity
increases but specificity decreases and viceversa when c increases. The ROC
curve illustrates the performance of a binary classification algorithm as its
discrimination threshold is varied. The ROC curve can be constructed as
a plot of sensitivity versus False Positive Rate, by considering all possible
values of c. In particular, two alternative definitions for TPR and FPR can
be introduced, making explicit their dependence on c:

TPR(c) = P (T ≥ c | Y = 1), FPR(c) = P (T ≥ c | Y = 0)

. The ROC curve is

ROC(·) = {FPR(c), TPR(c), c ∈ (−∞, +∞)} (2.64)

or, equivalently,

ROC(·) = {(t, ROC(t)), t ∈ (0,1)} (2.65)

where the ROC function maps t to TPR(c), and c is the threshold corre-
sponding to FPR(c) = t.
An uninformative method is one such that TPR(c) = FPR(c) for every
threshold C and this is represented by a line with unit slope (a ROc curve
ROC(t) = t). An ideal classification algorithm completely separates de-
faults from non-defaults cases, i.e. TPR(c) = 1 and FPR(c) = 1 for some
C. This means that the ROC curve is along the left and upper borders of
the positive unit quadrant.

The most important numerical index used to describe the behavior of
the ROC curve is the area under the ROC curve (AUC), defines as follows:

AUC =
Ú 1

0
ROC(t)dt (2.66)

50

2.11 – Unsupervised Learning

Figure 2.6. ROC curve example for four different models. Model D is
completely uninformative, while model A represent the idel one.

A hypothetical ideal model would have AUC = 1. As the test accuracy
decreases, the ROC curve moves toward the diagonal line corresponding to
uninformative model with AUC = 0.5.

2.11 Unsupervised Learning

As anticipated before, the fundamental difference between supervised and
unsupervised learning is whether the examples given to the learning algo-
rithm are labeled or not. Unsupervised machine learning algorithms are
applied to unlabeled examples, and in most cases, particularly referring to
clustering algorithms, are used as a data mining technique to cluster ex-
amples into groups of similar objects instead of giving predictions directly.
Unsupervised algorithm are extensively applied in credit risk assessment as
complementary tools to supervised ones.

2.12 Clustering

This section is developed with reference to [4] and [14].
Clustering refers to a set of techniques for finding subgroups, or clusters, in

51

Machine Learning

a data set. More precisely, clustering is the task of partitioning a data set
in such a way that the observations within each group are quite similar to
each other, while observations in different groups are quite different from
each other.
However, there are several sources for this difficulties. The first one is that
the two objective mentioned in the earlier statement may contradict each
other. From a mathematical point of view, similarity (or proximity) is not
a transitive relation, while cluster sharing is an equivalence relation and,
in particular, a transitive one. To better understand this concept, a simple
example can be introduced. Let us suppose to have a long sequence of
objects x1, ..., xm such that each xi is very similar to its two neighbors xi−1

and xi+1, but x1 and xm are very dissimilar. If we wish to assure that
whenever two elements are similar they share the same cluster, then we
must put all the elements of the sequence in the same cluster. However, in
this case, we end up with a cluster that also contains dissimilar elements
such as x1 and xm. Thus we are violating the second requirement.
The second problem is the lack of "ground truth", which is a common
problem in unsupervised learning. In fact, while a supervised learner can
estimate the success of its hypotheses using the labeled training data by
computing the empirical loss, in supervised learning there are no labels that
we try to predict, we only wish to organize the data in some meaningful way.
As a result, there is no clear success evaluation procedure for unsupervised
algorithm. The main consequence of these two problems is that a given
data set can be clustered in various different meaningful ways. As a result,
there is a wide variety of clustering algorithms that, if applied on the same
input data, will output very different clusterings.
Clustering algorithms can vary in terms of both the type of input and
the type of outcome they are expected to compute. In general, a cluster
algorithm receives in input a set X of elements and a distance function ρ

over it. The function ρ : X × X → R+ is symmetric and satisfies both
ρ(x, x) = 0 for all x ∈ X and the triangle inequality. The most popular

52

2.12 – Clustering

distance metrics are Euclidean distance, Manhattan distance, Minkowski
distance and Chebyshev distance, defined in 2.42-2.45.
An alternative to ρ could be a similarity function s : X × X → [0,1] that
is symmetric and satisfies s(x, x) = 0 for all x ∈ X. Moreover, some
clustering algorithms require as input also a parameter k, which represent
the number of required clusters.
The output of a cluster algorithm usually is a partition C = (C1, ..., Ck) of
the domain set X. It means that ∪k

i=1Ci = X and for all i /= j, Ci ∩Cj = ∅.
Another possible output is a clustering dendrogram, which is a hierarchical
tree of domain subset, having the singleton sets in its leaves, and the full
domain as its root.
In the following section we will focus on cost minimization clusterings and,
in particular, on k−means clustering.

2.12.1 Cost minimization clusterings

One possible approach to clustering could be defining a cost function over
a set of possible clusterings and the goal of clustering algorithm is to find
the minimal cost partitioning. In such a way the clustering task can be
seen as an optimization problem. Its objective function, denoted by G, is a
function from pairs of an input, (X, ρ), and a proposed clustering solution
C = (C1, ..., Ck), to positive real numbers. The goal of the algorithm is to
find a clustering C such that G((X, ρ), C) is minimized. However, most of
the resulting optimization problems are NP-hard, so when we talk about
k-means clustering, for example, we refer to some particular approximation
algorithm rather than the cost function or the corresponding exact solution
of the minimization problem.
Many common objective function requires the number k of clusters as a
parameter. The choice of k is left to the user; we will see in next section
which are the most common method to make this choice.
One of the most popular objectives is k-means objective function. Let us
assume that the input space X is embedded in a larger metric space (X ′, ρ),

53

Machine Learning

so that X ⊆ X ′. In k-means each Ci is represented by a centroid µi ∈ X ′

defined as follows:

µi(Ci) = arg min
µ∈X′

Ø
x∈Ci

ρ(x, µ)2. (2.67)

The k-means objective function measures the squared distance between
each point in X and the centroid of its cluster:

Gk−means((X, ρ), (C1, ..., Ck)) =
kØ

i=1

Ø
x∈Ci

ρ(x, µi(Ci))2 (2.68)

or, equivalently,

Gk−means((X, ρ), (C1, ..., Ck)) = min
µ1,...,µk∈X′

kØ
i=1

Ø
x∈C−i

ρ(x, µi)2. (2.69)

There exist some common variations of this objective function. For exam-
ple, one can require the cluster centroids to be members of the input set.
In such way we obtain the so called k-medoids objective function, which is
defined as follows:

Gk−medoid((X, ρ), (C1, ..., Ck)) = min
µ1,...,µk∈X

kØ
i=1

Ø
x∈Ci

ρ(x, µi)2. (2.70)

Alternatively, one can measure the "distortion" between a data point and
the centroid of its cluster by distance rather than by the square of the
distance. In this case we get the so called k-median objective function

Gk−median((X, ρ), (C1, ..., Ck)) = min
µ1,...,µk∈X

kØ
i=1

Ø
x∈Ci

ρ(x, µi). (2.71)

2.12.2 Elbow and Silhouette methods

Elbow and Silhouette methods are the two state-of-the-art methods used
to identify the correct cluster number k in a data set. They both base
their functioning on two internal measures, cluster cohesion and cluster
separation, which determine how good a clustering is without external in-
formation.

54

2.12 – Clustering

The idea behind the Elbow method is to chose the correct number of clus-
ters K according to a cohesion measure such as the within cluster sum of
square (WSS)

WSS =
kØ

i=1

Ø
x∈Ci

(x − µi)2. (2.72)

The method consist in evaluate the WSS for different values of k, starting
from k = 1, up to a maximal specified k. Each value of WSS is listened in
a graph where the y-axes label is the value of the WSS and the x-axis label
is the number of clusters. Elbow method suggests that the best value of K

corresponds to the point in which the graph has a significant bend. There
is, however, a problem with the Elbow method: the elbow point cannot be
unambiguously distinguished when the plotted curve is fairly smooth. The
Silhouette method is another well-known method with decent performance
to estimate the potential optimal cluster number, which uses the average
distance between one data point and others in the same cluster and the
average distance among different clusters to score the clustering result.
The metric of scoring of this method is named the silhouette coefficient S,
and defined as

S = max
xi∈X

S(xi) (2.73)

where, for each data point xi in cluster CI ,

S(xi) =

b(xi)−a(xi)

max{a(xi),b(xi)} se k > 1

0 se k = 1
(2.74)

where
a(xi) = 1

|CI | − 1
Ø

xj∈CI ,i /=j

ρ(xi, xj) (2.75)

and
b(xi) = min

J /=I

1
|CJ |

Ø
xj∈CJ

ρ(xi, xj). (2.76)

In other words, a and b represent the mean intra-cluster distance and the
mean nearest-cluster distance, respectively.
It is quite clear, from the above definition, that S ∈ [−1,1]. A value of S

55

Machine Learning

closer to 1 indicates that a sample is better clustered, while a value of S

closer to −1, indicates that the sample should be categorized into another
cluster.
Silhouette method is preferable for estimating the potential optimal cluster
number.

56

Chapter 3

Application on data

3.1 Motivation

This work focuses on integrating unsupervised machine learning techniques
with supervised machine learning classifiers to improve performances of
credit scoring models. This approach refers to [15].
To test the validity of the integration of unsupervised and supervised ma-
chine learning techniques, we compare individual models and cluster-based
models. In terms of individual models, we will adopt the set of ML al-
gorithms presented in Chapter 2 (logistic regression (LR), support vector
machine (SVM), k-nearest neighborhood (KNN), random forest (RF) and
AdaBoost (AB)).
The rest of this chapter is organized as follows: Section 3.2 provides an
introduction to the data set, while Section 3.4 presents data cleaning and
oversampling and features selection methods.

3.2 Data Set Description

A significant problem for credit scoring models which must be pointed out
is the unavailability of real-world credit data. The reason is that customer’s
credit data is confidential in most of the financial institutions. For these

57

Application on data

reasons we will use a public data set from Kaggle.
Kaggle is an online community of data scientists and machine learning
pratictioners that offers machine learning competitions and a public data
platform.
The data set contains information on clients who have taken out a loan with
an unspecified financial institution. The aims of the analysis is to search for
statistical relationships that could give us some insights about the the risk
of credit and to develop some algorithms to predict credit default. Given
that the context of the data set is not fully explained, we are not going to
take into account external macroeconomic events, which could completely
change the results of the analysis. For instance, different countries could
have different loan’s requirement, or different phases of the economic cycle
could end up in a very different scenario.
Another important fact to which one must draw attention is that we will
assume the data set to be not distorted by a credit score system. This
means that no systematic screening of the costumers’ credit standing had
been implemented until the date of data retrieval.
The data set contains 12 attributes and 32581 observations, and its struc-
ture is resumed in Table 3.1.

The potential covariates describe both customers and loans characteris-
tics. As we can see there are both numerical and categorical variables. Let
us see a little more in details which are the levels of the categorical ones.

• person_home_hownership has four levels: Mortage, Own, Rent and
Others

• loan_intent has six different levels: Debt consolidation, Education,
Home improvement, Medical, Personal, Venture

• loan_grade has seven levels: A, B, C, D, E, F, G. Th grade takes
into account a combination of several indicators of credit risk from the
credit report and loan application. These factors may include the level
of guarantor support, repayment history, cash flow, projected yearly

58

3.3 – Data Exploration

VARIABLE DESCRIPTION TYPE

person_age Customers age (in years) numerical
person_income Annual income (in dollars) numerical

person_home_ownership Home ownership categorical
person_emp_length Employment length (in years) numerical

loan_intent Loan intent categorical
loan_grade Loan grade categorical
loan_amnt Loan amount (in dollars) numerical

loan_int_rate Loan interest rate numerical
loan_status Loan status categorical

loan_percent_income Loan percentage income numerical
cb_person_default_on_file Historical default (Y or N) categorical

cb_person_cred_hist_length Credit history length (in years) numerical

Table 3.1. Dataset description

expenses, etc.

• cb_person_default_on_file has only two level: Y if the client has
already had a default, N otherwise

• loan_status is the response variable and has two levels: 0 represent
non default, 1 represent default.

3.3 Data Exploration

In this section we will use data visualization to have a general view on
the data set and to get an idea of what are the most relevant features for
detecting a default.
First of all, we report in Figure 3.1 the frequency graph of the two classes
(default and non-default) we are analyzing. It is quite clear that the data

59

Application on data

Figure 3.1. Count of the two classes default=0 and default=1.

set is deeply unbalanced, in fact only the 21,8% of the customer belong to
the class 1. This problem will be solved lately, in Section 3.4.4.
In figure 3.2 we can see some plots which represent the proportion of default
and non default customers for each class of data set categorical variables.
The proportion of default customers, not surprisingly, increases as the the
loan grade decreases.
Similarly, the proportion of default customer is higher (almost 40%) for
the ones that have already registered one or more defaults in their history,
while it is smaller (less than 20%) for those who have never had a default.
regarding home ownership, the proportion of defaults is higher for people
who are renting a house, while it is slightly higher than 10% for those who
are paying a mortgage. The class of person_home_ownership with the
smallest proportion of defaults is the one of those who live in their own
house.
The proportion of defaults is almost the same for loan intents such as ed-
ucational, venture and personal. It is slightly higher for medical and home
improvement intent and even higher for debt consolidation.
Figure 3.3 shows box plots for the quantitative variable of the data set.
These allow us to start getting an idea of what the outliers are (we will
better analyze them in section 3.4.1), and allow us to detect some impor-
tant differences between numerical attribute distribution for class 0 and for

60

3.3 – Data Exploration

Figure 3.2. Proportion of default and non default individuals for different
classes of categorical variables.

class 1.
The first one, the box plot regarding customer age, do not shows any signif-
icant difference in customer age between the two classes, but it highlights
the presence of outliers in the data set. In fact, there are several point

61

Application on data

indicating customer which are more than 120 years old.
The box plot regarding customers income shows, once again, the presence
of outliers in the data. Furthermore, it shows that the average income of
non default people is higher than the mean income of default customers
(more precisely 70804 dollars versus 49125).
Employment length mean is slightly smaller for people classified as default
customer (approximately 4.14 years), with respect to the ones classified as
non default customers (approximately 4.97 years).
Loan amount is basically higher for default customers (10850 dollars versus
9237 dollars for non default customer).
The biggest differences between the two classes are given by their mean
loan interest rate and by the mean loan percentage income. Average loan
interest rate is approximately 10.43 for non default customers and 13.06
for the default customers. Mean loan percentage income is, again, smaller
for class 0 (approximately 0.1488) and higher for class 1 (approximately
0.2468).
The last box plot, the one about credit history length, is not particularly
significant, since the two distributions are almost identical. Figure 3.4
shows a correlation heatmap involving all numerical features of the data
set, plus the response variable. We observe that the highest correlation is
the one between person_age and cb_person_cred_hist_length. These two
variables are positive correlated with correlation 0.86. This is quite reason-
able, since older people will probably have a longer credit history. Another,
even if less strongly, correlated couple of features is the one composed by
loan_amnt and loan_percent_income. Their correlation is 0.57. All other
numerical potential predictors have a correlation, in absolute value, smaller
than 0.27. For all these reason we will only consider as redundant the two
couples of predictors mentioned above. This means that in the phase of
feature selection (see Section 3.4.5), we will make sure that two features
from the same couple will not be selected at the same time.

62

3.3 – Data Exploration

Figure 3.3. Box plots for quantitative variables.

63

Application on data

Figure 3.4. Correlation heatmap.

3.4 Data Preprocessing

3.4.1 Missing values

The data set contains some missing values in two variables: person_emp_length
and loan_int_rate. Missing values can be replaced in many different ways.
In case of a numerical variable it is common to replace them by a standard
value, the mean or the median. However, the most used one is the median,
since the mean suffers from the presence of outliers. In case of categorical
variables, the missing values are usually replaced by mode or by adding
a new category which indicate the missing value. In our case, we decide
to replace loan_int_rate with the median and person_emp_length with
the mode. This decision is due to the fact that person_emp_length is a
quantitative attribute which only assume integer values, for this reason it
can be, possibly, considered as a qualitative one with a very large number
of labels.

64

3.4 – Data Preprocessing

VARIABLE % MISSING VALUES

person_age 0%
person_income 0%

person_home_ownership 0%
person_emp_length 2.75%

loan_intent 0%
loan_grade 0%
loan_amnt 0%

loan_int_rate 9.56%
loan_status 0%

loan_percent_income 0%
cb_person_default_on_file 0%

cb_person_cred_hist_length 0%

Table 3.2. Percentage of missing values for each feature.

3.4.2 Outliers detection

As anticipated in Section 3.3, the data set contains a certain number of
outliers. Figure 3.5, although not exhaustively, give an idea of how we
detect them. In particular, we decide to eliminate from the data set all the
observations that present one or more of the following characteristic:

• customer age greater than 110 years,

• employment length greater than 100 years,

• employment length greater than customer age,

• annual income greater than 5 · 106 dollars.

65

Application on data

Figure 3.5. Data set outliers (in red).

3.4.3 Dataset encoding

Before proceeding, we transform categorical variables using get_dummies
method. In this way we obtain a dummy variable for each level of a cate-
gorical one. Dummy variables are binary variables which take value 1 if a
certain categorical variable take on a specific value, 0 otherwise.
After this passage, the data set contains 27 variables (including the response
one).

3.4.4 Oversampling with SMOTE

Real world data sets are often composed of ’normal’ examples and, only
in small percentage, of ’abnormal’ examples which are usually the ones
interesting for the analysis. In fact, the cost of misclassifying an ’abnormal’
example is often much higher than the cost of the reverse error.
This is exactly the case of our data set. Figure 3.1 shows that the data set
is deeply unbalanced: 25473 observations belong to class 0 and only 7108
people belong to class 1. The imbalance in the data set causes problems
when training machine learning algorithms since one of the categories is
almost absent, hence poor predictions of new observations of the minority
class are expected. Therefore, it is necessary to apply a sampling technique.
In this case, after splitting the data set into train and test sets (respectively
70% and 30% of the initial data set), we choose to oversample the test set

66

3.4 – Data Preprocessing

Figure 3.6. Correlation heatmap for encoded data.

using SMOTE (synthetic minority oversampling technique). This approach
consists in creating extra training data in the minority class by taking each
minority class sample and introducing synthetic examples along the line
joining any of the k minority class nearest neighbors. Neighbors form the
k nearest neighbors are randomly chosen depending on the amount of over-
sampling we want to perform. Synthetic samples are generated by taking
the difference between the feature sample and its neighbor. Once we get
this difference, we multiply it for a random number in [0,1] and we add the
result to the feature vector we started from. In other words, we select a
point on the line segment which connect two specific examples (as shown

67

Application on data

Figure 3.7. Example of SMOTE procedure.

in Figure 3.7). The synthetic examples cause the ML classifiers learn for
the minority class sample instead of being subsumed by the majority class
samples around them. This results in algorithms that generalize better.
By applying this technique to the train set, we get a perfectly balanced
train set consisting of 35542 observation, half of which belong to class 0
and the remaining half to class 1.

3.4.5 Features selection

For our analysis we will use both the complete data set and a new one
composed only by a reduced number of features obtained using RFECV
(recursive feature elimination with cross validation). This is a recursive
feature elimination with automatic tuning of the number of features se-
lected with cross-validation. The goal of recursive feature elimination is
to select significant features by recursively considering smaller and smaller
sets of features.First, an external estimator is trained on the initial set of
features and the importance of each feature is calculated. Secondly, the
least important feature is pruned. This procedure is repeated iteratively

68

3.4 – Data Preprocessing

until we reached the optimal number of features.
By applying this algorithm to the encoded data set we get that the optimal
number of features is 15.

69

70

Chapter 4

Models Settings and
Performances

In this chapter we will analyze in details all methods settings and perfor-
mances. We will first introduce individual models hyperparameters tuning
and results, then we will proceed with cluster-based models ones. At the
end, in Section 4.4, we will comment performances also from an economic
point of view.
All the supervised and unsupervised models used in this work are completed
using Scikitlearn library.

4.1 Individual models

Let us start from individual models. Firstly, we apply all individual models
to the entire data set and then to the data set containing only the features
selected using RFECV. In both cases, except for logistic regression, we have
to optimize the hyper-parameters of each algorithm. For SVM and KNN
we use a simple grid search, while for RF and AB we use a randomized
search within 5-cross-validation followed by a grid search where the grid is
based on the results of randomized search.

71

Models Settings and Performances

Since grid search uses an exhaustive search of pre-defined hyper-parameter
space, we now provide the search space for SVM and KNN algorithms.
For SVM model we try to adopt both a linear and a RBF kernel. The
two parameters to tune are C and γ: C trades off correct classification
of training examples against maximization of the decision function’s mar-
gin, γ is the inverse of the radius of influence of samples selected by
the model as support vectors. In particular, we choose C is in range of
(1, 10, 100, 1000) and, in the case of RBF kernel (see 2.40), we choose γ in
the range of (0.0001, 0.001). For both complete and feature selected data
set, we get that the best hyper-parameters combination is a RBF kernel
with C = 1000, γ = 0.001. For KNN model the number of neighbors K is
searched in the range of 5 to 50. For complete data set the optimal K is 5,
for feature selected data set it is 9.
Regarding RF, the randomized search is based on the following grid: the
maximum depth of the tree is in the range of (10, 33, 56, 80, None) (where
’None’ include the possibility of not having a predefined maximum depth),
the number of features considered at each split is in range of (′auto′,′ sqrt′),
the minimum number of observations at each split is in the range of (2, 5, 10)
and the number of estimators is in the range of (200, 650, 1100, 1550, 2000).
The best combination of parameters is different for the two data sets. For
the complete one is: number of estimators equal to 200, minimum num-
ber of samples at each split and minimum number of samples at each leaf
both equal to 2, number of observations considered at each split ′sqrt′ and
maximum depth of each tree equal to 33. For the feature selected data
set we get respectively, 1550, 10, 4, ′sqrt′ and 80. The two grids of the
grid search steps are therefore different, in fact each grid is centered on the
optimal combination found with the randomized search. For example, in
the first case (complete data set) the grid for the second step is defined as
follows: the maximum depth of the tree is in the range of (25, 30, 33, 35) ,
the number of features considered at each split is ′sqrt′, the minimum num-
ber of observations at each split is in the range of (2, 5) and the number

72

4.1 – Individual models

of estimators is 200. At the end we get that the optimal results found at
the first step is still optimal after the second one (both for complete and
incomplete data set).
For AB classifier, we have to tune two parameters: the number of estima-
tors and the learning rate. The randomized search i based on the following
grid: the learning rate is in the range of (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), while
the number of estimators is in the range of (0, 20, 40, ..., 1000). In the case
of complete data set we get that the best combination for this first step
is the one with learning rate 0.9 and number of estimators 897, so the
grid for the grid search step is defined as follows: the number of estima-
tors is in the range of (850, 897, 900, 950) and the learning rate is in the
range of (0.85, 0.88, 0.9, 0.92, 0.95). At the end we get that the best hyper-
parameters combination is: number of estimators equal to 950 and learning
rate equal to 0.92. Proceeding in a similar way we find out that the best
hyper-parameters combination in the case of feature selected data set is:
number of estimators equal to 102 and learning rate 0.4.
The performance of individual models are resumed in Table 4.1 and 4.2
and are evaluated according to the measures defined in Section 2.10. All
the measures are calculated according to a test set which consists of 30%
of the initial data set.

Since each evaluation parameter describes a different aspect of model
performances, and there is no one single classifier that is preferable to
others on all parameters, we can use F-score in order to compare different
methods. This choice is due to the fact that F-score considers the confusion
matrix more comprehensively than the other parameters and it is more
efficient to reflect the model performance of unbalanced data set. We will
then focus on AUC, type I and type II errors in Section 4.3.
In the case of complete data set, the best model in terms of F1-score is
random forest, with 0.817. This model also reaches the best performances
in terms of AUC, accuracy and precision. If we consider the results of
individual models applied on the feature selected data set, we note that

73

Models Settings and Performances

Individual models (26 features)
LR SVM KNN RF AB

AUC 0.783 0.892 0.858 0.925 0.904
Accuracy 0.692 0.908 0.892 0.932 0.890
Recall 0.732 0.648 0.616 0.713 0.674
Precision 0.382 0.888 0.833 0.957 0.778
F-score 0.502 0.749 0.708 0.817 0.722
Type I error 0.319 0.022 0.033 0.009 0.052
Type II error 0.268 0.352 0.384 0.287 0.326

Table 4.1. Individual models performances on entire data set.

Individual models (15 features)
LR SVM KNN RF AB

AUC 0.849 0.850 0.850 0.867 0.858
Accuracy 0.866 0.894 0.892 0.894 0.880
Recall 0.573 0.623 0.618 0.618 0.673
Precision 0.737 0.837 0.833 0.843 0.740
F-score 0.645 0.714 0.710 0.713 0.705
Type I error 0.055 0.033 0.033 0.031 0.064
Type II error 0.427 0.377 0.382 0.382 0.327

Table 4.2. Individual models performances on features selected data set.

SVM is the one with higher F-score (0.714), immediately followed by RF
(with 0.713).
In general, it is difficult to establish whether the usage of entire data set is
better than the feature selected one. The improvement or deterioration of
the results depends on the considered method and measure. However we
will give priority to the interpretability of the method and we will proceed

74

4.2 – Cluster-based models

with cluster-based methods only on feature selected data set.

4.2 Cluster-based models

We now adopt the same five base learners to build models based on subsets
clustered by k-means, in order to explore whether the use of unsupervised
clustering on a data set can help improve predictive performance on credit
scoring models.
First of all we use both elbow and silhouette methods to determine the
most suitable k. In particular, using Python KneeLocator, we find out
that the k corresponding to the point in which WSS (defined in 2.72) has
a significant bend is k = 4. We then check that the second method also
agrees with the choice of k. Actually, the point k = 4 is a local maximum
for silhouette coefficient.
Secondly, we split the feature selected data set into 4 subsets according to
k-means algorithm and we split each cluster into train and test set (again,
we use a train set which dimension is 30% of the original cluster).
Then, we apply all the five methods to each one of the cluster, repeating
every time the procedure used for the individual models to find the optimal
combination of hyper-parameters.
The results of cluster-based models performances can be seen in Table
4.3, while the comparison with the performances of individual models is
presented graphically in Figure 4.1.

According to F-score values, five cluster-based models (cluster-based LR,
cluster-based SVM, cluster-based KNN, cluster-based RF, cluster-based
AB) outperform their counterparts built with base learners to different
degrees. The clustering method improves the LR by the greatest degree,
with the F-score of 0.645 improved to 0.692. Followed by the clustering re-
sults based on the AB model, with the F-score of 0.705 improved to 0.734.
The F-score values of the other three models (SVM, KNN, RF) are also
slightly improved. Among all the cluster-based models, the cluster-based

75

Models Settings and Performances

Cluster-based models (4 clusters on selected features)
LR SVM KNN RF AB

AUC 0.869 0.862 0.848 0.874 0.841
Accuracy 0.874 0.889 0.891 0.896 0.891
Recall 0.643 0.657 0.629 0.646 0.688
Precision 0.748 0.800 0.832 0.843 0.787
F-score 0.692 0.721 0.716 0.731 0.734
Type I error 0.061 0.043 0.036 0.034 0.052
Type II error 0.357 0.343 0.370 0.354 0.312

Table 4.3. Cluster-based models performances based on fea-
tures selected data set.

AB has the best performance with the F-score of 0.734, which is better
than the best F-score for individual models (0.714).
From the results above, we can conclude that the clustering method im-
plemented on this data set helps improve the performances of individual
models.

4.3 ROC Curve Analysis

ROC curve and AUC comparison between different classifiers is represented
in Figure 4.2. The usage of the feature selected data set strongly improves
logistic regression AUC and makes slightly decrease all others AUC.
Let us now focus on the comparison between ROC curves of individual
models and cluster-based models (both on feature selected data set). It can
be observed that RF model achieves the highest AUC among the individual
models and cluster-based models (AUC values are respectively 0.867 and
0.870). The fact that RF performs quite well in terms of AUC means that
RF models exhibit a good level of capability on ranking the default against
non-defaults and on achieving balance between the type I and type II error.

76

4.4 – Expected Misclassification Cost

Figure 4.1. Comparison between performance measures for individ-
ual models (in blue) and for cluster-based models (in orange) on
feature selected data set.

In most cases (LR, SVM, RF), performances of the cluster-based models are
better than those of individual models, which is consistent with the previous
conclusion drawn from other measuring parameters (such as F1-score) that
data set clustering can help to improve the predictive performance.

4.4 Expected Misclassification Cost

Note that AUC is not the only parameter to evaluate ROC curves. It is
possible to observe that there are some intersects among curves of different
models. This means that model performance varies according to the cut-off

77

Models Settings and Performances

thresholds, which is related to the ratio between type I and type II error.
ROC curve is, in fact, a good indicator of the balance between type I
and type II error which are two key parameters with a great effect on the
profitability of financial institutions. In fact, as written in [9], the real
world financial failure prediction problem is deeply characterized by cost
sensitivity as a focus of recent study. Cost-sensitivity indicates that the
misclassification costs are non-uniform: the cost due to classifying a bad
credit as a good one is usually greater than the one due to classifying a good
credit as a bad one. As a consequence, the performance of a classifier on
the distressed class is more important than the overall performance. One
possible solution to this problem is to train a cost-sensitive classifier with
the misclassification cost of the ’bad’ creditors greater than that of good
ones. According to Turney (2000), there are several different categories of
misclassification cost: constant error cost of class, conditional error cost
dependent on individual instance, time cost, feature cost and test cost.
Nowadays, the most used one is the first one, which, in the case of financial
failure, can be simply represented in a 2D matrix (see Table 4.4). The

Real class Predicted class
Positive Negative

Positive 0 Cp

Negative Cn 0

Table 4.4. A 2D misclassification cost matrix (positive bad creditors,
negative good creditors).

diagonal entries of the matrix are 0, while the off-diagonals ones are Cp

and Cn, which respectively denotes the misclassification cost associated
with positive class and with negative class. Normally the condition Cp >

Cn holds. At this point we can introduce a new measure, the expected
misclassified cost (EMC), which can be used as for comparison between
classification performance. Expected misclassified cost is strictly related to

78

4.4 – Expected Misclassification Cost

type I and type II error (or, equivalently, FPR and FNR) by the following
relation:

EMC = Cp · FNR + Cn · FPR. (4.1)

The most commonly used method to determine Cp and Cn is by calibration
based on previous studies. For examples, Dr. Hofmann, when dealing
with credit data sets, suggests to use as relative costs of misclassification
respectively 5 and 1. Figure 4.3 illustrates EMC for all five methods, both
for simple and cluster-based ones. The method with lowest EMC value
is AdaBoost classifier, immediately followed by support vectors machine
classifier and random forest. Furthermore, we can note once again that
the usage of unsupervised clustering before applying supervised methods
is profitable, in fact it causes a reduction of the expected misclassification
cost for all five algorithms.

79

Models Settings and Performances

Figure 4.2. From top to bottom: ROC curves for individual models
based on entire data set, ROC curves for individual models based on
features selected data set and ROC curves for cluster-based models on
features selected data set.

80

4.4 – Expected Misclassification Cost

Figure 4.3. Expected misclassification error both for individual
models (in blue) and for cluster-based models (in orange), applied
on feature selected data set.

81

82

Chapter 5

Conclusion

The objective of this work was to develop and compare different machine
learning models in order to classify clients as default or non-default ones,
and then to incorporate unsupervised learning techniques at clustering
stage to try to improve the previous performances.
According to the results reported in the previous chapter, we can say that
there is no one best individual model between the five tested. The good-
ness of each method, in fact, depends on the performance measure we want
to optimize and on the number of features used to predict the response.
However, we can conclude that the usage of unsupervised learning deeply
contribute to the improvement of models results. This improvements can
be observed not only from the point of view of the seven different perfor-
mance measures considered but also from an economical point of view (i.e.
expected misclassification cost).
It is important to observe that in our work we only used feature selection to
select fewer feautures. It might be interesting to try using dimensionality
reduction methods (such as PCA) instead. Of course we will lose in terms
of interpretability but performance improvements could be observed.
Furthermore, potential future works could include the study of a consensus
model and the application of unsupervised learning techniques also in the

83

Conclusion

consensus stage. For example, if would be interesting to develop a consen-
sus classification decision based on predictive outcomes of individual ML
models. Several consensus techniques could be considered, one of the most
commonly used and most simple is the majority vote (MV). At this point
it would be possible to add a new unsupervised learner such as Kohonen’s
self-organizing map (SOM), which is an unsupervised neural network in-
troduced by Kohonen. Its idea is to project a nonlinear data vector from
an high-dimensional space to a bi-dimensional one.
Another improvement can be made in terms of maximizing or minimizing
some measure of performance such as EMC. In fact, to compare differ-
ent models, in order to switch from the probability of default to a binary
output, we decided to set a discriminating threshold equal to 0.5 for all
methods. However, if we consider a single model, this is not the best we
can do. Once selected a good model,it would be nice to modify his threshold
such as the EMC or any other measure of our interest would be optimized.
If, for example, we would like to minimize the economic impact (in terms
of EMC) of our model, it is possible to construct a neural network that,
once we fixed Cp and Cn, selects the best threshold possible.

84

Bibliography

[1] Alexander J. McNeil, Rudiger Frey, Paul Embrechts, Quantitative RIsk
Management: Concept, Techiniques and Tools, Princeton University
Press, 2005

[2] Camilla Calì, Maria Longobardi, Some mathematical properties of the
ROC curve and their applications, Springer, 2015.

[3] Capon, Noel, Credit Scoring Systems: A Critical Analysis, Journal of
Marketing, Spring, 1982.

[4] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An
Introduction to Statistical Learning, Springer, 2013.

[5] Lyn C. Thomas, David B. Edelman, Jonathan N. Crook, Readings in
Credit Scoring - Foundations, developments, and aims, Oxford Uni-
versity Press, 2004.

[6] Lyn C. Thomas, David B. Edelman, Jonathan N. Crook, Credit Scor-
ing and Its Applications, SIAM, 2002.

[7] Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics
for Machine Learning, Cambridge University Press, 2020.

[8] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations
of Machine Learning, MIT Press, 2012.

BIBLIOGRAPHY

[9] Ning Chen, Bernardete Ribeiro, An Chen, Financial credit risk assess-
ment: a recent review, Springer Science+Business Media Dordrecht,
2015.

[10] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip
Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique,
Journal of Artificial Intelligence Research, 2002.

[11] Oded Maimon, Lior Rokach, Data Mining and Knowledge Discovery
Handbook, Springer, 2010.

[12] Oesterreichische Nationalbank (OeNB), Rating Models and Validation
- Guidelines on Credit Risk Management, 2004.

[13] Panayiota Koulafetis, Modern Credit Risk Management - Theory and
Practice, Palgrave Macmillan, 2017.

[14] Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learn-
ing: From Theory to Algorithms, Cambridge University Press, 2014.

[15] Wang Bao, Ning Lianju, Kong Yue, Integration of unsupervised and su-
pervised machine learning algorithms for credit risk assessment, 2019,
Expert Systems With Applications, 128(2019), 301-315.

86

	List of Tables
	List of Figures
	Credit Risk
	Credit Risk Assessment
	Credit Scoring History
	Credit Risk Modeling
	Mixture Models
	Bernoulli mixture model
	Poisson mixture model

	Machine Learning
	PAC Learning Model
	n-Fold-Cross-Validation
	Assessing Model Accuracy
	Bias-variance trade-off
	Bias-variance decomposition for LC

	Supervised Learning for Binary Classification
	Logistic Regression
	Support Vector Machine
	Hard-SVM
	Support vectors
	Soft-SVM
	Kernels

	K-Nearest Neighbors
	Decision Trees
	Recursive binary splitting
	Grow-then-prune strategy

	Weak Learning and Ensemble Methods
	Bagging
	Random forest
	Boosting
	AdaBoost

	Performance Measures
	Unsupervised Learning
	Clustering
	Cost minimization clusterings
	Elbow and Silhouette methods

	Application on data
	Motivation
	Data Set Description
	Data Exploration
	Data Preprocessing
	Missing values
	Outliers detection
	Dataset encoding
	Oversampling with SMOTE
	Features selection

	Models Settings and Performances
	Individual models
	Cluster-based models
	ROC Curve Analysis
	Expected Misclassification Cost

	Conclusion
	Bibliography

