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Summary

Self-organization of living systems is a fascinating process, interesting not only
to biologists, but also to mathematicians and physicists [1, 2]. For instance, the
sorting of a mixture of two types of biological cells, has been modelled by a
modified version of the large-Q Potts model [3, 4]—an energy-based biophysical
paradigm [5, 6] that, however, had progressed beyond being a mere proof of the
concept. As dynamical aspects of this approach still lack a physical justification
[7, 8], there is a growing interest in more advanced methods of modeling relevant
biophysical processes. Recent developments in the theory of non-equilibrium
statistical physics [9] encompass such methods [10]. The present work lays out
physical foundations for a reformulated Cellular Potts Model, which relies on the
modern framework of stochastic kinetics and thermodynamics. Our framework has
multiple improvements over the traditional approaches. Among others it provides
an immediate physical interpretation of the model parameters for the cell sorting
phenomena, in both continuous- and discrete-time paradigms, and enables analysis
of the energetics of the involved processes, including the frenetic and entropic
thermodynamic properties. To test our approach we first compare its performance
with the traditional Monte-Carlo sampling algorithm, using the paradigmatic
example of the Ising chain. In this context, the framework offers a finer control
over the frenetic properties of the system [9]. Finally, the approach is applied to
construct a Cellular Potts Model for the spatial segregation between the primitive
endoderm (PrE) and the epiblast (EPI) cells [11] in mouse embryogenesis.
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Chapter 1

Cellular Potts Models and
application in biology

1.1 Mechanical-stimuli in biology
Revealing biochemical and physical mechanisms underlying cell shapes and func-
tions is a fascinating and long-standing problem in biology [12]. Limitations of
molecular-biology methods have led researchers to look for additional tools[13]. The
information carried by the genome is not sufficient to fully characterize the final
cellular organization of tissues or to explain how cells specialize. However, it has
been useful in identifying the connection between the cell organization level and the
molecular scale. Besides biochemical signals, cells are also sensitive to mechanical
stresses, arising from the interactions with neighboring cells and the extracellular
matrix (ECM). Cells convert mechanical stimuli into an internal molecular signal, a
mechanism known as mechanotransduction (Figure 1.1), which manifest itself into
different processes [14–18]. As well as biochemical cues, mechanical forces affect
cytoskeleton organization, which in turn influences cells and tissue functions by
acting on a molecular level. Thereby a complex scenario emerges, in which inputs
of both chemical and mechanical nature act independently to determine cell shapes
and functions: same biochemical components have different effects on cells when
the mechanical aspects of their environment are altered.

Exploring the principles governing multi-cellular organization helps to under-
stand better such biological processes as cell development and collective migration
[19–21], tumor growths [22, 23]. Mechanical aspects on cellular organization brings
the attention to mechanical and material properties of cells, e.g. adhesion, cortical
tension, stiffness and viscosity. Experimental measurements of these properties
for non-isolated cells in a complex environment of a tissue are quite challenging.
These limitations led to formulations of theoretical frameworks which, thus, aim
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Cellular Potts Models and application in biology

to reproduce the mechanism of cell organization and motion. Since mechanics
acts at the level of cellular interactions, agent-based models have turned out to
be particularly well-suited for this task. In contrast to continuous models, such
discrete approaches treat cells as individual objects interacting with other units,
allowing to capture heterogeneities on the interaction itself and differences in cellu-
lar properties. Among agent-based models are lattice models [24] that have been
widely used in tissue mechanics simulations [25–27]. In the following, the attention
will focus on a particular class of lattice models—those of which many lattice sites
may be occupied by one biological cell—identifying their limitations and possible
improvements.

Signaling
Mechanical stimulus 
due to interaction 
with neighboring cell

ECM

CSK

Nucleus

Cell behavior 
and function

Mechanical stimulus 
due to interaction 
with ECM

Gene expression

Fi

Signaling

Figure 1.1: Mechanotransduction scheme. Mechanical forces deriving from cell-
cell and cell-ECM interactions are converted into biochemical cues that act on the
molecular-machine signaling of the cell itself. The altered gene expression dictates
cellular functions.

1.2 The Cellular Potts Model
When cells’ shape and size, as well as their contact area, play the key role in
determining interactions, models that can accurately reproduce these properties
are needed. The Cellular Potts Model (CPM) is indeed well-known to fulfill this
request [28, 29].

Alternative approaches also exist, among which vertex models are worth-mentioning
[30, 31]. These off-lattice agent-based models identify cell with a polygon, which
shares vertices and edges with adjacent cells. Although vertex models are quite
successful in simulations of cell-packing geometries [32], approximation of a cell
by straight contours makes such a description unsuitable, e.g., for cells on micro-
patterns—engineered substrates useful to study the relation between cell shape
and function [28, 29].
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CPMs can account for arbitrary cell shapes and do not have to neglect the
intracellular space (Figure 1.2). This model class has been originally proposed by
Glazier and Graner in the context of cell sorting [3], and now it is used to describe a
wide range of biological processes [33–39], as well as in medical applications [40–46].

Figure 1.2: Comparison of Cellular Potts and Vertex model [47]. (A) Two-
dimensional CPM: a set of lattice sites with the same value represents a single
cell. (B) Vertex model of a compact tissue: polygons represent individual cell. The
model simulate compact tissue organization.

CPMs are energy-based methods, which generalize the Potts model [48]. As
a spatial lattice-based formalism, a CPM is characterized by a countable set S
representing a discretized space, which is usually a two- or three-dimensional
regular lattice with fixed or periodic boundary conditions, and by a set of cell
indices Γ = {0, . . . , n}, where n is the total number of cells considered in the
simulation. The function ξ : S → Γ assigns at each site x ∈ S a value γ ∈ Γ and
a cell is identified by a set of all the sites x ∈ S with the same cell index i.e.
cellγ = {x ∈ S : ξ(x) = γ}, γ ∈ Γ \ {0}. The zero cell index is assigned to the sites
x occupied by the medium—not by any of the cells. The state of the whole system
is defined as a configuration γγγ ∈ ΓS. To depict the different mechanical properties
of cells and their interactions, the model uses a parameter referred as cell type σ.
Denoting by Λ ⊂ N0 the set of all possible cell types, the map τ : Γ→ Λ assigns to
each cell its type. The value zero of σ indicates the medium, whereas cells with
the same value of σ belong to the same type. The model’s structure is thus able to
represent different cells of the same type (Figure 1.3).

In the context of the CPMs, the concept of a neighbourhood of a given lattice
site is of central importance. One should distinguish between its coupling and
target neighborhoods, denoted respectively by NC and NT respectively. The first

3
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represents the set of lattice sites involved in the evaluation of the interfacial energy.
The value of a given site may only be replaced by one, which is present in the
set of sites forming the target neighbourhood. Standard choices of the coupling
neighborhood are Moore or IV -order neighborhoods, whereas Moore neighborhood
is the most common choice of the target set (Figure 1.4).

In three-dimension the Hamiltonian H : ΓS → R has a general form

H = 1
2

Ø
x∈S

x′∈NC(x)

J
3

τ(ξ(x)), τ(ξ(x′))
43

1− δξ(x),ξ(x′)

4
+
Ø
γ∈Γ

λτ(γ)

3
Vγ(γγγ)− Vτ(γ)

42
,

Vγ(γγγ) =
Ø
x∈S

δ(γ, ξ(x)), γγγ ∈ ΓS

(1.1)
which accounts for both the intracellular interactions and the preferred shape

of a single cell. The first term describes the surface energy, e.g. cell-cell and
cell-ECM adhesion, through a symmetric coefficient J : Λ x Λ → R. According
to the Steinberg’s differential adhesion hypothesis [49] difference of energy costs
per interface area between two cells gives rise to their sorting. The second term
of the Hamiltonian is a volume constraint which only depends on the cell-type,
through the target volume and the penalty coefficient λτ(γ) (volume elasticity). In
two dimensions the volume constraint is replaced by an area constraint.

Formally, a CPM is a discrete-time Markov chain with the state space ΓS, where
the transition probabilities are specified with the help of the Hamiltonian, the target
neighbourhood and the temperature parameter; each lattice site is authorized to
change its index only into the value of a site belonging to the set of its neighbours,
with a Monte Carlo probability. Such constraint aims to avoid the presence of value
sites different from the ones belonging to the target neighbourhood, favouring the
simulation of compact aggregate patterns and finally defining a modified version of
the Metropolis algorithm (MMA, Algorithm 1) of which unit of time is a Monte
Carlo step, that generally correspond to a number of trial lattice updates, usually
equal to the total number of lattice sites.

The CPM interprets patterns present at the tissue level as a result of interactions
at cellular level, accounting for a description at different spatio-temporal scales.
Cells’ shape is determined by respecting the volume constrains, while cells’ motility
is intrinsic in the modified Monte Carlo Algorithm: at each step, a cell can acquire
or lose a lattice site, resulting in a shift of its center of mass and such displacement
represents the movement of the cell. A more realistic picture might be achieved by
taking into account non-equilibrium phenomena such as cell death, division and
growth, not present in the original formulation of the CPM [3]. A possible approach
for including these natural processes in the model, is to consider them as stochastic
jump-processes. As described in chapter 4, growth is modeled by updating the
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target volume of the cell at each time step, while the division occurs when the
volume of the cell reach a pre-determined division volume. Death of the cell is
usually modeled by setting a death probability and sampling a value from a uniform
distribution; if the latter is lower than the death probability, the simulation will
kill the cell. An example simulation involving non-equilibrium processes is shown
in Figure 1.5.

1
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x13 x14 x15 x16
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x41

x51
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1
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0

0

0
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2 2

2 2
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3 3 3 3
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4 4

4

4
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0

0

1 1

1

1

2

2 2

2 2

2 2

2 2 2

1 1

1 1

1 1

1

1

Lattice site Cell index

Cell type

     
Γ  Λξ τ

x11 x12
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1

1

0
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0
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2 2

2 2

2 2

3 3 3 3

5 5

5 5
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4
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s
x54

x32

Type A

Type B

Medium
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x42 x43 x44 x45 x46

x52 x53 x55 x56

Figure 1.3: Space representation of 2D CPM. Five cells with cell indices 1, 2, 3, 4
and 5. Cells 1, 4 and 5 are of type A (yellow). Cells 2 and 3 are of type B (green).
Cells with index and type equal zero are assigned to the medium sites.

Algorithm 1 Monte Carlo Modified Algorithm (MMA)
1: Select at random a lattice site x with uniform distribution on S
2: Select at random a lattice site x′ with uniform distribution in NT (x)
3: Evaluate the energy difference ∆H = H(ξx′

x )−H(ξ(x)) = H(ξ(x′))−H(ξ(x))
4: Accept the transition with probability p(∆H) = min(1, e−∆H/T )
5: Increment the number of copy attempts
6: if number of copy attempts /= number of lattice sites go to step (1) else

increment time step and repeat.
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(a) (b) (c)

Figure 1.4: Illustration of neighborhood. (a) order I or Von Neumann; (b) order
II or Moore; (c) order IV.

Figure 1.5: Simulation of the CPM with growth, division and death [50].
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1.2.1 Limitations of the Cellular Potts Model

Cellular Potts Models, despite their success in reproducing geometry and dynamics
of cell shapes, have been criticized for the lack of interpretation of the model
parameters in terms of commonly used biological and physical quantities[51].
Though the target volume which depends on the cell type can be inferred from
experiments, as well as the division volume, the quantities Jτ [ξ(x)],τ [ξ(x′)], λτ(γ) and
the temperature T present some issues. Although the surface energy coefficient
Jτ(ξ(x)),τ(ξ(x′)) resembles intracellular interactions, its value is quite challenging to
determine. Furthermore, such a value is homogeneous over the whole perimeter of
a cell and, thus, it neglects variations of adhesion which might be present along
the cell’s membrane. Instead, the penalty coefficient resembles cells’ elasticity,
indeed in the Hamiltonian defines the impact of the volume or surface constrains.
However, it is generally treated as a static parameter during the simulation, which
it is not very realistic since biological elements adapt their properties in response to
internal and external stimuli. The temperature T is a merely technical parameter,
related the membrane fluctuations [52]. A rigorous protocol to adjust the model
parameters is not present yet and their values can only be determined by intuitions
and experiences of the modeler.

Because motion of a cell in CPMs emerges as the displacement of the center of
mass through volume expansion and contraction, such an approach cannot describe
dynamics of incompressible, but flexible cells. Indeed, it has been shown that in
the case of λτ(γ) → ∞ the simulation freezes when the cells acquire their target
volume. The energy penalty of a volume change then blocks any further progress.

Also the choice of the target neighborhood have not negligible effects on the
realism of the model. Usually, the set is chosen as a Moore neighborhood, while
in reality cells present a substantial number of neighbours, thus the simplification
adopted distorts the time scale of the interactions phenomena.
One of the major CPM’s issue is the violation of the detailed balance condition
not only with respect to the Gibbs measure, but any measure due to the modified
Metropolis method [53]. Intuitively, the MMA has been defined with the purpose
to avoid the spontaneous nucleation, an effect where a site assumes a value different
from the ones of its neighbours. Thereby, when evaluating the probabilities of a site
to change its value to ones of its neighbors, such probabilities are weighted according
to the number of sites that have the same value. This also mean that a cell covering
only one site has non-zero probability to disappear during a transition and zero
probability to reappear (Figure 1.6). Therefore, the Markov Chain underlying
the modified algorithm presents absorbing states (characterized by all lattice sites
having same type/cell-index i.e. only one cell covering the whole lattice) where
the chain will be trapped in the long-time behavior (Appendix A). Imposing a
condition on which values a lattice site may change to, influences the impact of
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the Hamiltonian in the transition itself; besides the Hamiltonian, also the set of
neighbours of a lattice site controls the model kinetics. Although the model fixes the
target neighbourhood a priori, the chosen site x′ to which the current site x is going
to change to, it is unpredictable. The topology of cells on the lattice uncontrollably
changes over the simulation steps and such a property influences the transition
probabilities, as well does the Hamiltonian of which structure and parameters
are instead set by the modeler. It emerges a conflict between a controlled and
an uncontrolled term affecting the CPM’s dynamic, which becomes extreme in
the long-time run, where the unpredictable part wins over the Hamiltonian role
[53]. In the case of high temperature, T → ∞ the influence of the Hamiltonian
vanishes completely and the lattice sites are continuously replaced by the value of a
random chosen neighbour, while in a standard Metropolis algorithm the evolution
of one lattice site becomes independent from the other ones. As a consequence,
in this regime, the connectivity of the cells is not guaranteed and fragments may
appear: small portions of the lattice (usually a single lattice site) detach from the
original cell, acquiring an index/type value of a random nearby cell (Figure 1.7).
Besides being unrealistic, these fragmentation events overestimate the number of
cell’s boundaries, complicating the evaluation of the interfacial energies, fact that
slow down the simulation and set a limit on the maximum simulation temperature,
lowering the overall performances of the algorithm itself. Computational issues
are also present in three-dimensional framework where the maximum number of
simulation cells is around 105 when, in order to properly simulate morphogenetic
processes, are usually needed 106 − 108 cells [54].
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(a)  (b)  

x x

Figure 1.6: Detailed balance in CPM. Two cell types (yellow and green) and
medium (light blue). The target neighborhood NT is of order II (Moore).
(a) Detailed balance is not respected: P(x : y → g) = 6

8N
/= P(x : g → y) = 2

8N

(b) Spontaneous nucleation is forbidden: P(x : y → g) = 8
8N

/= P(x : g → y) = 0
8N

Figure 1.7: Fragments [55]. Red circles highlight some of the fragments present
in the simulation.
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From a mechanical point of view, a further limitation of the model is the impossibil-
ity of controlling the properties of a cell (cell motility, shape flexibility, intercellular
adhesion etc.) individually, since the assumption of the CPM relies on the idea
that such cellular characteristics are embedded in the cells’ surface fluctuations,
dependent on the simulation temperature T which indeed simulates membrane
fluctuations caused by cell activity [52]. Moreover, the original Hamiltonian includes
only static properties of the cell, thus to incorporate some dynamical characteristics
it can be possible to either add new terms in the expression of the Hamiltonian or
act on the acceptance rates (kinetic approaches).

A schematic representation of CPM’s pro and cons is shown below.

+ Each cell is an individual object

+ Bound and unbound regions of the cell
membrane is distinct

+ Cell shape is realistically represented

+ Cell motility is incorporated

+ Flexibility of the model which can
be easily extended. Non-equilibrium
phenomena can be included

- Lack of physical and biological meaning
of the model parameters. Difficulty on
properly fit them

- Impossibility to simulate incompressible
but flexible cell

- Detailed balance condition is not re-
spected

- Fragments are possible

- Properties of the cell are static and it
is not possible to control them individually
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1.2.2 Modified versions of the Cellular Potts Model
Thanks to its high flexibility, the Cellular Potts Model has been subjected to a
wide range of modifications and extensions. For instance, if one succeeds to express
a given biological process in form of a generalized potential, a straightforward
procedure consists of just adding this term (denoted by Hprocess) to the standard
Hamiltonian, which then takes the expression of Equation 1.2.

H = Hadhesion + Hvolume + Hprocess

Hadhesion = 1
2

Ø
x∈S

x′∈NC(x)

J
3

τ(ξ(x)), τ(ξ(x′))
43

1− δξ(x),ξ(x′)

4

Hvolume =
Ø
γ∈Γ

λτ(γ)

3
Vγ(γγγ)− Vτ(γ)

42

(1.2)

One of the most common modification of the CPM’s Hamiltonian provides that
the additional term is related to the chemotaxis, phenomenon of crucial importance
in the long-range signaling during morphogenesis [56]. Therefore, in this case, the
addend Hprocess will coincide with

Hchemotaxis =
Ø

γ∈Γ\{0}

Ø
x∈cellγ

λchemotaxis(γ)c(x)

where c : S → [0,∞) is interpreted as the chemical potential, while λchemotaxis(γ)
as the chemotactic response parameter of the cell, which may depend on its type.
Another way of integrating chemotaxis in the model is using a kinetic approach as
it is done in [57].

Biological phenomena are physically interpreted as multi-scale processes since
they act in mainly three different temporal and spatial scales: molecular or subcel-
lular (microscopic), cellular (mesoscopic) and at tissue level (macroscopic). The
CPM works on the mesoscopic scale, interpreting the cell as a spatially extended
but internally structureless object. In this way any intrinsic inhomogeneities of the
cell and information about the molecular-level processes influencing its behavior
and morphology, are lost. Therefore, it arises the need of new frameworks able to
capture the different biological scales [58–60]. Models that integrate the standard
CPM description with a microscopic one have been developed by using, for example,
a compartmentalization technique according to which parts of the CPM unit objects
are reasonably organized in clusters representing cell subunits like nucleus, cytosol,
organelles etc. [5, 61].
Furthermore, the CPM suffers for a limitation on the total number of simulation
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cells and the high computational cost of simulating three-dimensional lattices. The
sequential algorithm has thus been substituted by different parallelized approaches
that improve the performances at three-dimensional scale and increase the total
number of possible simulation cells [62–67].
The unrealistic formation of fragments inside a cell of the CPM, has been addressed
through the so-called connectivity algorithm (CA, [55]) which modifies further the
MMA (Algorithm 1). The fragments break the connectivity of the cell i.e. they
break the path that links every couple of lattice sites belonging to a cell, where a
path is a list of lattice sites having same value and each of which is a neighbour of
the preceding one. Thereby, an algorithm that aims to forbid cells’ fragmentation,
before changing cell site’s value, has to check the connectivity of the two cells
involved at each simulation step i.e. the cell of which a site value might change
and the cell that provide the alternative value. However, verifying the existence of
a path for every couple of cells’ lattice sites is computational expensive, thus a new
notion of connectivity to be checked, might be useful. The CA algorithm defines
the local connectivity on a connected domain Dc(x), because it has been proven
that if the initial configuration is connected, the test of such local connectivity will
ensure cells’ connectivity during the simulation. By introducing the concept of
adjacency neighborhood NA as the list of different site values that are neighbours
of a given cell’s lattice site, it is possible to define the connected domain Dc(x)
as the set of lattice sites containing the adjacency neighborhood of x, but not x
itself. Therefore, the local connectivity at site x∗ manifests itself if all the cell
sites belonging to the adjacency neighborhood of x∗ are connected through paths
included in Dc(x∗). The choices of Dc(x), NA and NT are of crucial importance for
the performances of the algorithm. The adjacency neighborhood NA is set to be
as small as possible (usually Von Neumann) to not overestimate the number of
different values around a site, while the target neighbourhood verifies the condition
NT ⊆ NA so that detailed balance is restored (Figure 1.8). The most common
choice is to take NT coinciding with NA, while the typical choice of the connectivity
domain is defining it as a domain containing the lattice sites of the adjacency
neighborhood NA plus the shortest paths that connect them. The connectivity
algorithm can be then formalized as in Algorithm 2.
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X*
Von 
Neumann

Dc(x*)

(a)

X*
Von 
Neumann

Dc(x*)

(b)

Figure 1.8: Illustration of CA. The neighborhood of site x∗ is Von Neumann
(purple contour) and the connectivity domain Dc(x∗) is Moore (pink contour).
(a) Local Connectivity: the green cell in Dc(x∗) respects local connectivity (black
path) while the yellow cell does not (red path). (b) Detailed balance: given the
Von Neumann target neighborhood, the possible value type are yellow and green
i.e. NA = {yellow, green}. The choice NT ≡ NA ensures P(x∗ : y → g) = P(x∗ :
g → y) = 1

2N

Algorithm 2 Connectivity Algorithm (CA)
1: Select at random a lattice site x with uniform distribution on S
2: Select at random a lattice site x′ with uniform distribution in NT (c)
3: Check the local connectivity at x on Dc(x)
4: Check the local connectivity at x′ on Dc(x′)
5: Evaluate the energy difference ∆H = H(ξx′

x )−H(ξ(x)) = H(ξ(x′))−H(ξ(x))
6: Accept the transition with probability p(∆H) = min(1, e−∆H/T )
7: Increment the number of copy attempts
8: if number of copy attempts /= number of lattice sites go to step (1) else

increment time step and repeat.
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The Cellular Potts Model does not allow to treat single cell’s property individu-
ally since they are all interpreted in terms of surface fluctuations which depends
on temperature. However, one of the main feature characterizing various biological
processes is the cellular motility [68, 69] which generally depends on other mech-
anisms and parameters, rather than temperature [70]. In the CPM, the motility
is interpreted as the sequential movement of the cells’ center of mass and such
dynamic is intrinsic in the expression of the probability computed in the modified
metropolis algorithm which depends on energy difference and the temperature. The
latter formulation does not give any insights for a rigorous mechanical construction
of the CPM, thus it emerges a substantial need to model better the motion of
cells. One attempt has been made and it consists on adding an Hamiltonian term
related to the inertia of the cells [54]. However, the resistance to motion that cells
experience when moving through a fluid, due to dissipation and viscosity, needs to
be described more realistically. Furthermore, living matter is a composite material
made of a combination of materials with different physical and chemical properties,
thus a theoretical formulation also capable of taking track of such heterogeneities
will be useful. In the following contents it will be presented a kinetic framework that
tries to satisfy these needs. First, the approach is introduced on a paradigmatic
case of the Ising spin-dynamic, then it will be extended at the Cellular Potts Model.
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Chapter 2

A paradigmatic example

The CPM is a generalization of the Potts Model and the Ising model is a particular
case of the latter. Therefore, on the following sections, the basis of the kinetic
framework, subject of this work, will be introduced in the case of the one-dimensional
Ising model.

2.1 The Ising Model
The Ising model was originally formulated for studying the phenomenon of sponta-
neous magnetization, occurring at a certain critical temperature Tc in ferromagnetic
systems. If a magnetic material is held at a constant temperature and it is placed
in a magnetic field, the latter will create a tendency for the magnetic moments of
the material to point in its same direction. If the external field is slowly turned off,
the behavior of the magnetic material is different according to the temperatures it
is kept; for high temperatures the material is in an unmagnetized condition, while
for low temperatures the material retains a degree of magnetism. Thus, there exist
a critical temperature at which the system is subject to a phase transition i.e. at
which the spontaneous magnetization occurs. The interest of the Ising model relies
indeed in the explanation of such phase transitions: the study of the mechanism
according to which short-range interactions between molecules (elementary units
of the model) propagate over the long-range will give insights on the prediction of
the phase transition. Physical-chemical and biophysical systems can be formalized
by a lattice arrangements of molecules, with interactions on a small and defined
range. Therefore, the Ising model represents the simplest theory to study such
large systems where cooperative behavior occurs. These extensions to different
fields than the physics of ferromagnetism are possible thanks to the mathematical
formulation characterizing the Ising model, as well as its generalizations.

The lattice is usually in one, two or three d dimension (Figure 2.1), where each
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line segment connects two lattices, thus called nearest neighbors. Each lattice site
not at the boundary has 2d neighbors, but periodic boundary conditions are usually
adopted so that differences between lattice sites at boundary and those which are
not, do not longer exist. At each lattice site i is assigned a variable assuming only
two values σi = ±1, commonly called states. In the model of ferromagnetism the
values ±1 indicate if the spin points "up" or "down", but this couple of values can
be used in any model where its variables can assume only two possible states.
Given the configuration σ = (σ1, σ2, ..., σN), the total energy of the system is the
Hamiltonian in Equation 2.1, where h is the external field and Ji,j is a coefficient
weighting the interaction between spin i and spin j. If each coefficient Ji,j is positive
for all the couples (i, j), the preferred configuration is that of spins having parallel
moments (ferromagnetic), while anti-parallel configurations (antiferromagnetic)
are favoured if the coupling coefficients are negative.

H = H(σ) = −h
NØ
i

σi=1 −
Ø
(i,j)

Ji,jσiσj (2.1)

The focus will be on the case of a one-dimensional lattice, imposing periodic
boundary conditions so that the lattice will form a ring. Usually the Hamiltonian
of such system is given by the relation:

H = H(σ) = −h
NØ

i=1
σi −

NØ
i=1

Ji,jσiσi+1, σN+1 = σ1 (2.2)

Denoting by N the number of spins in the lattice, the total number of configu-
rations is 2N and the partition function Z is given by summing the exponential of
the Hamiltonian over all the possible configurations:

Z =
Ø
σ

e− H(σ)
kBT =

Ø
σ

e−βH(σ)

The probability that the system at equilibrium will be in a particular configura-
tion σ∗, is given by the Gibbs measure:

P(σ∗) = e−βH(σ∗)

Z
(2.3)

The average magnetization of the system, when it is in the configuration σ, is
given by

M(σ) = 1
N

NØ
i

σi (2.4)
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and by rewriting it as
M = − 1

N

∂F

∂h

where F = −kBT lnZ is the Helmotz free energy, one can show that the Ising model
in one-dimension fails to predict the spontaneous magnetization (Appendix B).
However, it has been proven that the model in higher dimensions shows a phase
transition [71–74] and that, the behaviour of physical quantities (such as magne-
tization density) near phase transition are described by power low with critical
exponents that are considered universal i.e. dependent only on general features of
the system, like the lattice dimension and the range of interactions, where the latter
is consider to be at the nearest neighbours level in the Ising model. Furthermore, for
dimension d > 2 analytical results for the determination of the critical exponents
are provided by the mean field theory (MFT) and the renormalization group (RF)
framework [75, 76].

1 2 3 N 1 2 3

N

(a) (b) (c)

N

Figure 2.1: Lattice models. (a) One-dimensional lattice where repeating units are
point and lines. (b) Two-dimensional lattice where the units are squares.
(c) Three-dimensional lattice whose repeating units are cubes.

2.2 Microscopic Stochastic Kinetics
In the context of phase transitions, there exist an interesting class of problems
studying the dynamical evolution of a system subject to a rapid change of some of its
parameters; the system will go from an initial equilibrium state to a final equilibrium
state on a certain timescale, but the knowledge about the dynamic of these relaxation
process (through non-equilibrium states) is still of main interest. These problems
are categorized under the framework of the kinetic of phase transitions and, since
the Ising models were initially formulated with the purpose of studying phase
transitions, one can define the so-called kinetics Ising models. Phase transitions
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are ubiquitous in biology [77–80] and in such field of research it has been done a
wide use of Ising models and its generalization. The Ising spin variables do not
have any intrinsic dynamic, thus there is a significant freedom in formulating the
kinetic rules of such systems. For instance, the "spin-change" events can occur one
at the time or in correlated blocks, a spin may flip its value (Glauber dynamic)
or exchange its position with a neighbouring one (Kawasaki dynamic) as shown
in Figure 2.2. In the following section, the focus will be on the single spin-flip
dynamic in the case of the one dimensional Ising model, even tough it is know that
the latter does not show phase transition. The interest is to compare the already
formulated Glauber dynamic with a new one following different kinetics rules and
that will be applied in the context of the Cellular Potts Model.

(a) (b)

Figure 2.2: Kinetics Ising models. (a) Glauber dynamic: one spin flips at the
time. (b) Kawasaki dynamic: two spins exchange their position

The Glauber dynamic assumes that each spin of the chain can randomly change its
value due to the interactions with neighbouring spins and an heat bath at a certain
temperature. Thus, the spin particles may be represented as stochastic functions
σi(t), i = 1, . . . , N restricted between ±1 and the random transitions between these
two values happen at a certain rate wi(σi). Denoting by σ the configuration of
the Ising chain at time t and considering that only one spin can flip at the time,
the configuration may change from the one of type σ = (σ1, . . . , σi, · · · , σN) to
σ−i = (σ1, . . . ,−σi, · · · , σN ) and one can study the time evolution of the probability
function P(σ, t) which express the probability of being in configuration σ at time t.
Since the total number of possible configuration is 2N , there will be 2N probability
functions. The model is describing a Markov process where the states are given by
configurations with a spin value different from the previous one and the transition
between one state to another happens with rate of the spin that flips. Thus, we
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can write the following master equation:

d

dt
P(σ, t) =

Ø
i

ri(σi)P(σi, t)−
Ø

i

ri(σ−i)P(σ−i, t) (2.5)

which expresses the fact that any configuration σ can be destroyed by a flip of any
of its spin, but it can be created by the flip of any spins in the configuration σ−i.
At equilibrium, a stationary distribution is reached and one may write

d

dt
P(σ, t) = 0 =

Ø
i

ri(σi)P(σi, t)−
Ø

i

ri(−σi)P(σ−i, t)

from where, the detailed balance condition can be derived:

ri(σi)P(σi, t) = ri(−σi)P(σ−i, t) (2.6)

Since at equilibrium, the probability of being in a certain configuration is given
by Equation 2.3 one can write:

ri(σi)
ri(−σi)

= P(σ−i, t)
P(σi, t) =

= e−βH(σ−i)

e−βH(σ) = e−β

è
H(σ−i)−H(σ)

é
= e−β∆H(σi)

⇒ ri(σi)
ri(−σi)

= e−β∆H(σi)

(2.7)

where ∆H(σi) is the difference on the Hamiltonian when only the spin ith flips and
it is equal to

∆H(σi) = 2σi[h + Ji−1,iσi−1 + Ji,i+1σi,i+1]

If Ji−1,i = Ji,i+1 = J then

∆H(σi) = 2σi[h + J(σi−1 + σi+1)]

One may notice that the ratio of the transition rates solely depends on the
difference of the energy, according with the fact that the kinetics has been formu-
lated considering only the interactions between nearby spins and the heat bath,
information stored in the Hamiltonian. It is also possible to find an explicit form
of the transition rates as following, where by semplicity it has been considered
Ji−1,i = Ji,i+1 = J :
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ri(σi)
ri(−σi)

= e−βH(σ−i)

e−βH(σ) = eβσi[h+J(σi−1+σi+1)]

e−βσi[h+J(σi−1+σi+1)]
2
2 =

= (1 + σi)e−β[h+J(σi−1+σi+1)] + (1− σi)eβ[h+J(σi−1+σi+1)]

(1 + σi)eβ[h+J(σi−1+σi+1)] + (1− σi)e−β[h+J(σi−1+σi+1)] =

=
2cosh

1
β[h + J(σi−1 + σi+1)]

2
− 2σisenh

1
[h + J(σi−1 + σi+1)]

2
2cosh

1
β[h + J(σi−1 + σi+1)]

2
+ 2σisenh

1
[h + J(σi−1 + σi+1)]

2 =

=
1− σitanh

1
β[h + J(σi−1 + σi+1)]

2
1 + σitanh

1
β[h + J(σi−1 + σi+1)]

2
⇒ri(σi) = 1

2

;
1− σitanh

1
β[h + J(σi−1 + σi+1)]

2<
where the factor two is due to normalization.

Since the dynamical rules can be arbitrarily fixed, one may define an alternative
kinetics in which each spin makes an attempt to flip with a certain rate αi(σi) that
may depend on the value of the spin itself. Once the attempt has been made, the
spin can succeed in changing its value or not. Following the same framework of [81],
it is possible to express the latter conditional probability in terms of the directing
functions L(±σi) as:

P(σi → −σi|attempt) ∝ eL(−σi) P(−σi → σi|attempt) ∝ eL(σi)

By defining the normalization factor as Z = eL(σi) + eL(−σi), the probabilities take
the form:

P(σi → −σi|attempt) = eL(−σi)

eL(σi) + eL(−σi)
= eL(−σi)

eL(σi)(1 + eL(−σi)−L(σi)) =

= e

∆L(σi)ú ýü û
L(−σi)− L(σi)

1 + e

∆L(σi)ú ýü û
L(−σi)− L(σi)

= e∆L(σi)

1 + e∆L(σi)
=

= wi

1 + wi

(2.8)

and likewise:
P(−σi → σi|attempt) = e−∆L(σi)

1 + e−∆L(σi)
= 1

1 + wi

(2.9)
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The unconditional probabilities of making a flip can thus be written as:

P(σi → −σi) = αi(σi)dtü ûú ý
probability of

making an
attempt

P(σi → −σi|attempt) =

= αi(σi)dt
eL(−σi)

Z
= αi(σi)

e∆L(σi)

1 + e∆L(σi)
dt =

= αi(σi)
wi

1 + wi

dt

(2.10)

and likewise:

P(−σi → σi) = αi(−σi)dtP(−σi → σi|attempt) =

= αi(−σi)
e−∆L(σi)

1 + e−∆L(σi)
dt = αi(−σi)

1
1 + wi

dt
(2.11)

where the escape rates κ(±σi) are:

κ(σi) = αi(σi)
wi

1 + wi

, κ(−σi) = αi(−σi)
1

1 + wi

(2.12)

However, the probabilities introduced are still dependent on the directing func-
tion which expression can be found considering the system at equilibrium and
imposing detailed balance conditions, obtaining:

P(σi)P(σi → −σi) = P(−σi)P(−σi → σi)

e−βH(σi)αi(σi)dteL(−σi) = e−βH(−σi)αi(−σi)dteL(σi)

e

∆L(σi)ú ýü û
L(−σi)− L(σi) = αi(−σi)

αi(σi)
e−β[

∆H(σi)ú ýü û
H(−σi)−H(σi)]

⇒e∆L(σi) = wi = αi(−σi)
αi(σi)

e−β∆H(σi)

(2.13)

At this point, it is possible to find an explicit expression of the equations 2.8-2.12,
using Equation 2.13.
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2.2.1 Entropy-Frenesy decomposition formalism

Microscopic kinetics has been motivated from the need of studying the dynamic of
physical systems subject to a statistical description. Since the dynamic is the centre
of interest, it turns out to be useful formulating frameworks within dynamical ensem-
bles i.e. ensembles in which it is considered the time evolution of the stochastic phys-
ical system (Figure 2.3). This kind of formulation is quite interesting when studying
non-equilibrium physics in which time-reversability is broken at some level, also
considering the fact that such processes are widely spread in biological systems [82,
83]. Historically, the intrinsic irreversibility of a system has been characterized intro-
ducing the entropy production, a thermodynamic quantity expressing the additional
entropy increase due to irreversible processes inside the system. However, nowadays
new techniques, as the optical ones [84, 85] have been developed, allowing to ac-
quire non-thermodynamic information like micro-fluctuations [86] or jump events in
multilevel system [87]. These new advances in the study of non-equilibrium physics
give the right to introduce new theoretical features, not of thermodynamic nature.

Figure 2.3: (a) Dynamical ensemble: possible trajectories of
a stochastic process. (b) Lagrangian mechanics: all the possible
trajectories the system can take between two point in the config-
uration space. The chosen trajectory (red) is a stationary point
of the action.

To this purpose and
considering dynam-
ical ensembles, it is
possible to develop
frameworks in the
context of the La-
grangian statistical
mechanics’s view.
Under this prospec-
tive, one may make
use of the functional
action A, defined as
the integral over a
time interval of the
Lagrangian and, by
imposing the sta-
tionary condition of
such functional, it is possible to derive the Euler-Lagrange equations of motion-
which solutions are stationary points of the action functional and represent the
trajectories the physical system will follow, from a starting point to a final one.
It thus results that the action A assigns a value at each possible path the system
might follow in the space-time window. For all the possible paths or trajectories
ω characteristic of a stochastic physical system, one can think of weighting them
with an action functional made of two components: an anti-symmetric (in time)
part which is the total entropy S(ω) associated to a path, made of all the entropy
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changes s(x, y) when passing from state x to state y and a time-symmetric part
called frenesy, a kinetic rather than a thermodynamic quantity [9]. A trajectory is
the sequence of states the physical system passes through, where the jump and the
quiescence of the system itself is determined by kinetic features and constrains so
that the system may wait for a certain amount of time in the same state and jump
to another one with certain rates, defined by its kinetics rules. The frenesy D(ω)
wishes to evaluate the level of traffic and persistence of a given trajectory.
The trajectory weight might then be defined as:

P(ω) ∼ e−D(ω)+ 1
2 S(ω)

In order to get an exact evaluation of the probability of a given trajectory, it
must be defined a reference process that also allow to evaluate entroy and frenesy
with respect to it (Equation 2.14).

P(ω)
Pref(ω) = e−A(ω)

A(ω) = ∆D(ω)− 1
2∆S(ω)

(2.14)

Considering a trajectory ω and another one ω′ which is the trajectory ω traveled
in reverse, one may write:

ln[P(ω)]− ln[P(ω′)] = ln
5 P(ω)
P(ω′)

6
=

= −∆D(ω) + 1
2∆S(ω) + ∆D(ω′)− 1

2∆S(ω′) =

= ∆S(ω) = S(ω)− S(ω′)

⇒ ∆S(ω) = ln[P(ω)]− ln[P(ω′)] = ln
5 P(ω)
P(ω′)

6
(2.15)

ln[P(ω)] + ln[P(ω′)] = ln
5
P(ω) · P(ω′)

6
=

= −∆D(ω) + 1
2∆S(ω)−∆D(ω′) + 1

2∆S(ω′) =

= −2∆D(ω)

⇒ ∆D(ω) = −1
2
1
ln[P(ω)] + ln[P(ω′)]

2
= −1

2 ln
5
P(ω) · P(ω′)

6
(2.16)
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Since the probability of the whole trajectory can be expressed as a product of
probabilities of starting in an initial configuration, making a transition and possibly
remain in the final state (idle), the entropy and the frenesy at equilibrium can be
rewritten as:

∆S(ω) = ln

 P[σ0] ·
rntrans

k=1 Pk · Pidle

P[στ ] ·rntrans
k=1 P′

k · P′idle

 =

= −β[H(σ0)−H(στ )] + ln

Pidle

P′
idle


ü ûú ý

boundary terms B.T

+
ntrans−1Ø

k=0
ln

Pk

P′
k


ü ûú ý

Sk elementary entropy

= B.T. +
ntrans−1Ø

k=0
Sk

∆D(ω) = −1
2 ln

P[σ0] ·
ntransÙ
k=1

Pk · Pidle

P[στ ] ·
ntransÙ
k=1

P′
k · P′

idle

 =

= β

2 [H(σ0)−H(στ )]− 1
2 ln

è
Pidle · P′

idle

é
ü ûú ý

boundary terms B.T.

+
ntrans−1Ø

k=0
−1

2 ln
5
Pk · P′

k

6
ü ûú ý

Dk elementary frenesy

=

= B.T. +
ntrans−1Ø

k=0
Dk

Focusing the attention only in one transition k and considering the case of the
single spin-flip dynamic, the elementary frenesy is:

Dk = −1
2 ln

è
P(σ → −σ)P(−σ → σ)

é
Recalling Equation 2.3 of Glauber dynamic

P(σ → −σ) ∝ e−β∆H(σi) P(−σ → σ) ∝ eβ∆H(σi)

and Equation 2.10 - 2.11

P(σ → −σ) ∝ αi(σi)e∆L(σi) P(−σ → σ) ∝ αi(−σi)e−∆L(σi)
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one may evaluate the elementary frenesy in both the dynamics, obtaining:

Dk,Glauber = −1
2 ln

è
c1e−β∆H(σi)c2eβ∆H(σi)

é
= const

Dk,Directing = −1
2 ln

è
c′

1αi(σi)e−∆L(σi)c′
2αi(−σi)e∆L(σi)

é
=

= const · ln[αi(σi)αi(−σi)]

⇒Dk,Glauber = const Dk,Directing = const · ln[αi(σi)αi(−σi)]

The above results show that, in the case of the Glauber dynamic, the frenesy is
a constant; its kinetic does not contain any parameters giving a direct information
about how "fast" or "slower" the spins are to make a transition, but it is indirectly
contained in the Hamiltonian of the system and in the factor β which depends
on the temperature. Instead, by defining the action rates for each spin, that can
also depend on the value the spin assumes, the frenesy is not anymore a constant,
but its value change with the variation of these rates. The new dynamical rules
allow to set parameters that directly control how frequently a transition may occur,
thus impacting the value of the frenesy that actually aims to assess the level of
"lingering and trafficking" of a trajectory.
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2.2.2 Entropy and Frenesy in the single spin-flip dynamics
In the case of the single spin-flip dynamics, the states are characterized by con-
figurations that differ from the previous state only on the value of one spin. The
process is Morkovian with transition rates given by Equation 2.12.
Thereby, the probability of a given trajectory from time zero to time τ can be
defined as follow:

P[σ(0)→ σ(τ)] = P[σ(τ) = στ , σ(τ − dt) = στ−dt, . . . , σ(0) = σ0] =
= P[σ(τ) = στ |σ(τ − dt) = στ−dt, . . . , σ(0) = σ0]·
· P[σ(τ − dt) = στ−dt, . . . , σ(0) = σ0] =

= P[σ(τ) = στ |σ(τ − dt) = στ−dt]·
· P[σ(τ − dt) = στ−dt|σ(τ − 2dt) = στ−2dt] · · ·P[σ(0) = σ0]

As it is shown in Figure 2.4, a trajectory for the spin-flip dynamics may includes
a number nk of steps in which nothing happens i.e. none of the spin in the
configuration σk will flip and there will be a number of step nflips in which only one
spin will flip. Moreover, when the system will arrive at the final configuration, it
may remain in such configuration for a certain number of time steps with probability
Pidle. Thus, the trajectory’s probability may be evaluated as:

P[σ(0)→ σ(τ)] = P[σ(0) = σ0] ·

nflips−1Ù
k=0

Pnk(no flips|σk)Pi(1 flip|σk)ü ûú ý
Pk elementary probability

 · Pidle =

= P[σ(0) = σ0] ·
nflips−1Ù

k=0
Pk

 · Pidle

⇒P[σ(0)→ σ(τ)] = P[σ(0) = σ0] ·
nflips−1Ù

k=0
Pk

 · Pidle

(2.17)
Likewise, for the time-reverse trajectory:

P[σ(τ)→ σ(0)] = P[σ(τ) = στ ] ·
nflips−1Ù

k=0
P′

k

 · P′
idle (2.18)

However, it results that Pidle = P′
idle and that, when no flip occurs at all, the

configuration of the forward and backward trajectory will coincide, as well as
the number of steps nk = n′

k, meaning that Pnk(no flip|σk) = P′nk(no flip|σk).
Furthermore, in the case of the flip of only one spin, the same spin will flip in the
forward and backward trajectory with a different probability, but the probability
of the other spins of not even trying to flip will be the same: if spin i makes the
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flip, for all the j /= i, it holds that the term P(σj no flip|σi flips) is the same in the
two trajectories. With these premises, it is now possible to find an explicit formula
for the probability Pk of Equation 2.17:

P(1 flip|σk) = P(σi flips)
L−1Ù

j=0,j /=i

P(σj no flip|σi flips) =

= αi(σi)
wi

1 + wiü ûú ý
κ(σi)

dt ·
L−1Ù

j=0,j /=i

5
1− αj(σj)dt

6
ü ûú ý
probability that all the spins

j /=i do not even make
an attempt to flip

=

= κ(σi)dt ·
L−1Ù

j=0,j /=i

5
1− αj(σj)dt

6

P(no flip|σk) =
L−1Ù
j=0

P(σj no attempt)+

+
L−1Ø
i=0

P(σi tries but fails)
L−1Ù

j=0,j /=i

P(σj no attempt) =

=
L−1Ù
j=0

[1− αj(σj)dt]+

+
L−1Ø
i=0

αi(σi)dt
1

1 + wi

L−1Ù
j=0
j /=i

[1− αj(σj)dt]1− αi(σi)dt

1− αi(σi)dt
=

=
L−1Ù
j=0

[1− αj(σj)dt] +
L−1Ù
j=0

[1− αj(σj)dt]
L−1Ø
i=0

αi(σi)dt

1− αi(σi)dt

1
1 + wi

=

=
L−1Ù
j=0

[1− αj(σj)dt]
A

1 + dt
L−1Ø
i=0

αi(σi)
1− αi(σi)dt

1
1 + wi

B
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For the case of the reverse trajectory, the term expressing the probability that
the spin i is going to flip is changing since in this trajectory its value is opposite to
the one of the forward. Therefore, the probability P′(σi flips) is:

P′(σi flips) = αi(σ′
i)

w′
i

1 + w′
i

dtü ûú ý
κ(σ′

i)

= αi(−σi)
1

1 + wi

dt

σ′
i = −σi ⇒ αi(σ′

i) = αi(−σi) w′
i = 1

wi

Figure 2.4: Sigle spin-flip dynamic in a 3-spins Ising chain. The blue and red
arrows indicate respectively the forward and backward direction of time. In each
transition a spin may make an attempt to change and the flip can occur or not. The
number of transitions in which no spin flips is the same in forward and backward
trajectory (red and blue arrows). The number of flip occurrences is also the same
(pink arrows), but the rates are different in the two trajectories.
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Thus:
ln[Pk] = ln

è
Pnk(no flips|σk)P(1 flip|σk)

é
=

= nkln
è
P(no flips|σk)

é
+ ln

5
P(σi flips)

L−1Ù
j=0,j /=i

P(σj no flip|σi flips)
6

=

= nkln
è
P(no flips|σk)

é
+

L−1Ø
j=0,j /=i

ln
5
P(σj no flip|σi flips)

6
+ ln

5
P(σi flips)

6

ln[P′
k] = ln

è
P′nk(no flips|σk)P′(1 flip|σk)

é
=

= ln
è
Pnk(no flips|σk)] + ln

5
P′(σi flips)

L−1Ù
j=0,j /=i

P(σj no flip|σi flips)
6

=

= nkln
è
P(no flips|σk)

é
+

L−1Ø
j=0,j /=i

ln
5
P(σj no flip|σi flips)

6
+ ln

5
P′(σi flips)

6

⇒ ln[Pk]− ln[P′
k] = ln

5 P(σi flips)
P′(σi flips)

6
= ln

5 αi(σi) wi

1+wi

αi(−σi) 1
1+wi

6
=

= ln
5

αi(σi)
αi(−σi)

wi

6
= −β∆H(σi)

The elementary entropy is:

Sk = ln
5 Pk

P′
k

6
= −β∆H(σi)

with spin i being the spin that flips at transition k.
Instead, for the calculus of the elementary frenesy the sum ln[Pk] + ln[P′

k] shall be
evaluated:

⇒ ln[Pk] + ln[P′
k] =2nkln

è
P(no flips|σk)

é
+ 2

L−1Ø
j=0,j /=i

ln
5
P(σj no flip|σi flips)

6
+

+ ln
5
P(σi flips)

6
+ ln

5
P′(σi flips)

6
=

=2nkln


L−1Ù
j=0

[1− αj(σj)dt]
A

1 + dt
L−1Ø
i=0

αi(σi)
1− αi(σi)dt

1
1 + wi

Bü ûú ý
A

+

+ 2
L−1Ø

j=0,j /=i

ln
è
1− αj(σj)dt

é
+ ln[κ(σi)dt] + ln[κ(σ′

i)dt]
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The term A is:

A =
L−1Ø
j=0

ln
è
1− αj(σj)dt

é
+ ln

A
1 + dt

L−1Ø
i=0

αi(σi)
1− αi(σi)dt

1
1 + wi

B
small dt≃

≃
L−1Ø
j=0

ln[e−αj(σj)dt] + ln
3

edt
qL−1

i=0
αi(σi)

1−αi(σi)dt
1

1+wi

4
=

= −
L−1Ø
j=0

αj(σj)dt +
L−1Ø
i=0

αi(σi)dt

1− αi(σi)dt

1
1 + wi

=

i=j=
L−1Ø
j=0

A
−αj(σj)dt + αj(σj)dt

1− αj(σj)dt

1
1 + wj

B
=

since αj(σj) = κ(σj)
1 + wj

wj

=
L−1Ø
j=0

−κ(σj)dt
1 + wj

wj

+
κ(σj)dt1+wj

wj

1− κ(σj)dt1+wj

wj

1
1 + wj

 =

=
L−1Ø
j=0

A
−κ(σj)dt

1 + wj

wj

+ κ(σj)dt

wj − κ(σj)dt(1 + wj)

B
=

= −
L−1Ø
j=0

κ(σj)dt

A
1 + wj

wj

− 1
wj − κ(σj)dt(1 + wj)

B
=

= −
L−1Ø
j=0

κ(σj)dt

A
[1 + wj][wj − κ(σj)dt(1 + wj)]− wj

wi[wj − κ(σj)dt(1 + wj)]

B
=

= −
L−1Ø
j=0

κ(σj)dt

A
wj − κ(σj)dt(1 + wj) + w2

j − wjκ(σj)dt(1 + wj)− wj

w2
j − wjκ(σj)dt(1 + wj)

B
=

= −
L−1Ø
j=0

κ(σj)dt

A
1− κ(σj)dt(1 + wj)

w2
j − wjκ(σj)dt(1 + wj)

B
=

= −
L−1Ø
j=0

κ(σj)dt +
L−1Ø
j=0

κ2(σj)dt2(1 + wj)
w2

j − wjκ(σj)dt(1 + wj)
dt2→0≃

≃ −
L−1Ø
j=0

κ(σj)dt

⇒ A ≃ −
L−1Ø
j=0

κ(σj)dt
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So the term ln[Pk] + ln[P′
k] will become:

ln[Pk] + ln[P′
k] =− 2nk

L−1Ø
j=0

κ(σj)dt + 2
L−1Ø

j=0,j /=i

ln
è
1− αj(σj)dt

é
+

+ ln[κ(σi)dt] + ln[κ(σ′
i)dt]

for small
dt≃

≃− 2nk

L−1Ø
j=0

κ(σj)dt + 2
L−1Ø

j=0,j /=i

ln
è
e−αj(σi)dt

é
+

+ ln[κ(σi)dt] + ln[κ(σ′
i)dt]

for small
dt≃

≃− 2nk

L−1Ø
j=0

[κ(σj)dt]− 2
L−1Ø

j=0,j /=i

[αj(σi)dt] +

+ ln[κ(σi)dt] + ln[κ(σ′
i)dt] =

=− 2nk

L−1Ø
j=0

[κ(σj)dt]− 2
L−1Ø

j=0,j /=i

C
κ(σj)

1 + wj

wj

dt

D
+

+ ln[κ(σi)dt] + ln[κ(σ′
i)dt] =

=− 2nk

L−1Ø
j=0

[κ(σj)dt]− 2
L−1Ø

j=0,j /=i

C
κ(σj)

1 + wj

wj

dt

D
+

+ ln[κ(σi)dt] + ln[κ(−σi)dt]

since ln[κ(−σi)dt] = ln[κ(σi)dt] + ∆ln[κ(σi)dt]

ln[Pk] + ln[P′
k] =− 2nk

L−1Ø
j=0

[κ(σj)dt]− 2
L−1Ø

j=0,j /=i

C
κ(σj)

1 + wj

wj

dt

D
+

+ 2ln[κ(σi)dt] + ∆ln[κ(σi)dt]

(2.19)
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Finally, the elementary frenesy Dk is:

Dk =− 1
2 ln

5
Pk · P′

k

6
=

= nk

L−1Ø
j=0

κ(σj)dt

ü ûú ý
contribution of the cases when

no spins flip

+
L−1Ø
j=0
j /=i

κ(σj)
1 + wj

wj

dt

ü ûú ý
contribution of the spins
that do not flip when one

spin has flipped

+

− ln[κ(σi)dt]ü ûú ý
contribution of
the spin that
has flipped

on the forward
trajectory

−1
2 ∆ln[κ(σi)dt]ü ûú ý

contribution of
the spin that
has flipped

on the backward
trajectory w.r.t

the forward trajectory

(2.20)

Thus, the entropy and frenesy of a trajectory following the single spin-flip dy-
namics as in section 2.2 are:

S(ω) =B.T.− β
nflips−1Ø

k=0
∆H(σi|σk

) =

=− β[H(σ0)−H(στ )] + ln

C
Pidle

P′idle

D
− β

nflips−1Ø
k=0

∆H(σi|σk
) =

Pidle≡P′
idle= − β[H(σ0)−H(στ )]− β

nflips−1Ø
k=0

∆H(σi|σk
)
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Since the entropy’s contribution is given only by those states in which a flip has
happened, one can rewrite the entropy of the trajectory as a sum over consecutive
states of the system where the configuration change by only one spin, thus rewriting:

S(ω) = −β[H(σ0)−H(στ )]− β
nflips−1Ø

k=0
∆H(σi|σk

) =

= −
nflipsØ
k=0

s(σk, σk+1) =

with, s(σk, σk+1) = −β[H(σk)−H(σk+1)] = −β∆H(σk)

(2.21)

D(ω) =B.T. +
nflips−1Ø

k=0
nk

L−1Ø
j=0

κ(σj|σk
)dt +

nflips−1Ø
k=0

L−1Ø
j=0
j /=i

κ(σj|σk
)1 + wj|σk

wj|σk

dt+

−
nflips−1Ø

k=0
ln[κ(σi|σk

)dt]− 1
2

nflips−1Ø
k=0

∆ln[κ(σi|σk
)dt]

(2.22)
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According to the present entropy-frenesy decomposition formalism, the total
entropy and frenesy of the path are expressed in function of the sum of elementary
entropy and frenesy (Sk and Dk respectively), where the latter depend on the action
rates that resemble the active part of the system i.e. the tendency of the spins to
change their values. Therefore, one could think of parametrizing the transition
rates κ(σi) of Equation 2.12 as:

κ(σx, σy) = a(σx, σy)ü ûú ý
activity

parameter

e−

entropy changeú ýü û
s(σx, σy) /2

with the entropy change being anti-symmetric and equal to:

s(σ, σ−i) = −s(σ−i, σ) = ln

C
κ(σ, σ−i)
κ(σ−i, σ)

D
=

= ln

 α(σi) eL(−σi)

Z

α(−σi) eL(σi)

Z

 = ∆L(σi) + ln

C
α(σi)

α(−σi)

D
=

= −β∆H(σi)

where in the last equality it has been used the result of Equation 2.13. Instead,
the activity parameter is the symmetric part and it is equal to:

a(σ, σ−i) = a(σ−i, σ) =
ñ

κ(σ, σ−i)κ(σ−i, σ) =

=
ó

αi(σi)
wi

1 + wi

αi(−σi)
1

1 + wi

=

= 1
1 + wi

öõõôαi(σi)αi(−σi)
αi(−σi)
αi(σi)

e−β∆H(σi) = αi(−σi)
1 + wi

e− β
2 ∆H(σi) =

= αi(σi)αi(−σi)e− β
2 ∆H(σi)

αi(σi) + αi(−σi)e−β∆H(σi)
= αi(σi)αi(−σi)

αi(σi)e
β
2 ∆H(σi) + αi(−σi)e− β

2 ∆H(σi)
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From Equation 2.19 the terms related to the contributions of a spin i that flip
in the forward and backward trajectory, can be reformulated as following:

ln[κ(σi)dt] + ln[κ(−σi)dt] =ln[αi(σi)dt] + ln[αi(−σi)dt] + ln[wi]− 2ln[1 + wi] =

=ln[αi(σi)dt] + ln[αi(−σi)dt] + ln
5
α(−σi)
α(σi)

e−β∆H(σi)
6
+

− 2ln
5
αi(σi) + αi(−σi)e−β∆H(σi)

αi(σi)

6
=

=ln[αi(σi)] + 2ln[dt] + ln[αi(−σi)] + ln[αi(−σi)]+
− ln[αi(σi)]− β∆H(σi) + 2ln[αi(σi)]+

− 2ln
5
αi(σi) + αi(−σi)e−β∆H(σi)

6
=

=2ln[αi(σi)αi(−σi)dt]− β∆H(σi)+

− 2ln
5
αi(σi) + αi(−σi)e−β∆H(σi)

6
=

=2ln[αi(σi)αi(−σi)dt]− 2ln
5
e

β
2 ∆H(σi)

6
+

− 2ln
è
αi(σi) + αi(−σi)e−β∆H(σi)

é
=

=2ln


αi(σi)αi(−σi)

αi(σi)e
β
2 ∆H(σi) + αi(−σi)e− β

2 ∆H(σi)ü ûú ý
a(σ,σ−i)=a(σ−i,σ)

dt



The final term is expressed in term of the activity parameter which indeed
indicates the level of activity of the trajectory when considering both the directions
of time.
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2.3 Response to perturbation
In the previous section it has been adopted a perspective in which the system (the
d− dimensional lattice) evolves in time visiting the possible states i.e. changing
its configuration, according to stochastic kinetic rules. This point of view has
been useful to evaluate the frenesy of a trajectory, revealing the importance also
of kinetic quantities, besides thermodynamic ones. However, the Ising model still
relies in an Hamiltonian formalism, useful to model particle systems whose the
study of the response to perturbations is a matter of interest. Such response is
identified as a variation of a macroscopic quantity called observable, measurable at
macroscopic scale and associated to the system of interest which is kept at fixed
(thermodynamic) conditions. Due to the fact that the observable is measurable,
its value is determined by the act of measurement that takes a certain time t
at the macroscopic scale. During this time, a large number of events happen at
the microscopic scale, which then can be described by the evolution of an initial
microstate during the time interval t. Therefore, the time of the measurement at
macroscopic scale is infinitely larger from the point of view of the microstate’s
evolution, thus it is possible to assume that the measurement coincides with the
average in time of the observable:

Ō(x) = lim
t→∞

1
t

Ú t

0
O(Φsx)ds

x is a microstate of the phase space M
Φt is the time evolution operator, Φ : M →M

(2.23)
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Given a system under certain fixed conditions (e.g. temperature, volume), the
macroscopic state is the ensemble of all the microstates that realize it. In the
interval of time t, if the system is "fast enough" [88] in visiting all the microscopic
states representative of its macroscopic state, the Equation 2.23 coincides with the
measure actually made and the system is at equilibrium. The main issues of the
expression in Equation 2.23 are its dependence on the initial condition x and the
interval of time t; the starting point x ∈ M is unknown and the time t for the
meseaurament of the same observable O may change with the experiment, thus
influencing its average value. However, in the limit t→∞ one can assume that
the system is indeed fast enough, so that the observable explores many times its
range of values with proper frequencies and it results that the initial condition x is
irrelevant. Thus, instead of integrate in time one can assume that there exists a
probability measure u such that:

Ō(x) = lim
t→∞

1
t

Ú t

0
O(Φsx)ds =

Ú
M

Odu = ⟨O⟩u u-q.o. x ∈M (2.24)

When the system reaches equilibrium, a stationary probability density f over the
states x of the phase space M exists and it is such that:

du(x) = f(x)dx ∀x ∈M

Using this result one may express the Equation 2.24 as:

Ō(x) = lim
t→∞

1
t

Ú t

0
O(Φsx)ds =

Ú
M

O(x)f(x)dx (2.25)

Figure 2.5: Ergodicity, schematic
representation. The phase space M is
densely explored by the trajectories.

The Equation 2.24-2.25 are expressions of
the well-known relation named Ergodic Hy-
pothesis which commonly states that the
phase space M , representative of all the
possible microstates, is densely explored by
almost all the possible trajectories (Fig-
ure 2.5).
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The context of the canonical ensemble is a special case, where the statements
above are valid and the equilibrium has to be taken in the sense of thermal
equilibrium. In equilibrium statistical mechanics, it is possible to evaluate the
dynamics of the many particles system in terms of the Hamiltonian H = H(Γ), with
Γ = (q, p) ∈M and expressing the probability density function f (Appendix C) as:

f = e−βH(Γ)

Z

Z =
Ú

e−βH(Γ)dΓ

β = 1
kBT

, kB Boltzmann constant, T temperature

(2.26)

Now, supposing the system is in an initial condition with energy H0(Γ) and prob-
ability density f0. If a perturbation of the kind λA(Γ) with λ ∈ R is applied, the
system will evolve in a state whose energy can be written as H(Γ) = H0(Γ)+λA(Γ).
Supposing the new state is an equilibrium one, it is possible to write the new
probability density f as [89, 90]:

f = e−βH(Γ)s
e−βH(Γ)dΓ = e−β[H0(Γ)+λA(Γ)]s

e−β[H0(Γ)+λA(Γ)]dΓ = e−βH0(Γ)e−βλA(Γ)s
e−βH0(Γ)e−βλA(Γ)dΓ

In the case of small λ it is possible to use the approximation e−x ≃ 1− x + O(x2)
and write:

f = e−βH0(Γ)e−βλA(Γ)s
e−βH0(Γ)e−βλdΓ ≃

e−βH0(Γ)[1− βλA(Γ) + O(λ2)]s
e−βH0(Γ)[1− βλA(Γ) + O(λ2)]dΓ

s
e−βH0(Γ)dΓs
e−βH0(Γ)dΓ =

= e−βH0(Γ)s
e−βH0(Γ)dΓ ·

[1− βλA(Γ) + O(λ2)]s e−βH0(Γ)s
e−βH0(Γ)dΓ [1− βλA(Γ) + O(λ2)]dΓ

=

= f0 ·
[1− βλA(Γ) + O(λ2)]s

f0[1− βλA(Γ) + O(λ2)]dΓ = f0 ·
1− βλA(Γ) + O(λ2)

1− βλ⟨A(Γ)⟩0 + O(λ2) ≃

≃ f0[1− βλA(Γ) + O(λ2)][1 + βλ⟨A(Γ)⟩0 + O(λ2)] ≃

≃ f0
è
1− βλ{A(Γ)− ⟨A(Γ)⟩0}

é
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⇒ f = f0
è
1− βλ{A(Γ)− ⟨A(Γ)⟩0}

é
(2.27)

Using Equation 2.25-2.27 one can evaluates the difference on the value of the
observable O before and after the perturbation as follow:

⟨∆O⟩0 =
Ú

M
O[f − f0]dΓ ≃

Ú
M

Of0
è
1− βλ{A− ⟨A⟩0} − 1

é
dΓ =

= −βλ
Ú

M
Of0

è
A− ⟨A⟩0

é
dΓ = −βλ

5Ú
M

(OA)f0dΓ− ⟨A⟩0
Ú

M
Of0dΓ

6
=

= −βλ
è
⟨OA⟩0 − ⟨A⟩0⟨O⟩0

é

⇒ ⟨∆O⟩0 ≃ −βλ
è
⟨OA⟩0 − ⟨A⟩0⟨O⟩0

é
(2.28)

2.3.1 Temperature perturbation

With the Ising model formalism, it has been supposed that the physical system
described is held at certain temperature T0 so that there exists a probability
equilibrium density f0 over the states given by Equation 2.26 where β = 1/kBT0.
If at a certain time the temperature is suddenly changed to a value T = T0 + ∆T ,
such system will reach an equilibrium state where the probability density is now f ,
different form f0 since the coefficient β has been changed. One may be interested
in the response of the system’s energy at the variation of the temperature, thus
evaluating the quantity:

⟨(H0|T )− (H0|T0)⟩ =
Ú

H0(f − f0)du (2.29)

where H0 is the energy of the system before and after the perturbation. In order
to find a more informative expression of the above integral, it is useful to exploit
the relation between f and f0:

f = e− H0
kBTs

e− H0
kBT du

= e− H0
kB(T0+∆T )s

e− H0
kB(T0+∆T ) du

= e− H0
kB(T0+∆T )

T0
T0s

e− H0
kB(T0+∆T )

T0
T0 du

=

= e− H0
kBT0

· T0
T0+∆Ts

e− H0
kBT0

· T0
T0+∆T du

= e
− H0

kBT0
· 1

1+ ∆T
T0

s
e

− H0
kBT0

· 1
1+ ∆T

T0 du
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For small changes of temperature i.e. for small ∆T , one can write
1

1+ ∆T
T0
≃ 1− ∆T

T0
+ O(∆T

T0
), so that:

f = e
− H0

kBT0
· 1

1+ ∆T
T0

s
e

− H0
kBT0

· 1
1+ ∆T

T0 du

≃ e− H0
kBT0

1
1− ∆T

T0

2
s

e− H0
kBT0

1
1− ∆T

T0

2
du

= e− H0
kBT0

1
1− ∆T

T0

2
s

e− H0
kBT0

1
1− ∆T

T0

2
du

=

= e− H0
kBT0 e

H0∆T

kBT 2
0s

e− H0
kBT0 e

H0∆T

kBT 2
0 du

≃
e− H0

kBT0
1
1 + H0∆T

kBT 2
0

2
s

e− H0
kBT0

1
1 + H0∆T

kBT 2
0

2
du

Z0

Z0
=

= e− H0
kBT0

Z0
·

1 + H0∆T
kBT 2

0s e
− H0

kBT0
Z0

1
1 + H0∆T

kBT 2
0

2
du

= f0 ·
1 + H0∆T

kBT 2
0s

f0
1
1 + H0∆T

kBT 2
0

2
du

=

= f0
1 + H0∆T

kBT 2
0

1 + ⟨H0∆T
kBT 2

0
⟩0
≃ f0 ·

CA
1 + H0∆T

kBT 2
0

BA
1− ⟨H0∆T

kBT 2
0
⟩0
BD
≃

≃ f0

C
1 + H0∆T

kBT 2
0
− ⟨H0∆T

kBT 2
0
⟩0
D

= f0

C
1− ∆T

kBT 2
0

(⟨H0⟩0 −H0)
D

⇒ f = f0

C
1− ∆T

kBT 2
0

(⟨H0⟩0 −H0)
D

It is then possible to express Equation 2.29 as:

⟨(H0|T )− (H0|T0)⟩ =
Ú

H0(f − f0)du =

=
Ú

H0 · f0

C
1− ∆T

kBT 2
0

(⟨H0⟩0 −H0)− 1
D

du =

= − ∆T

kBT 2
0

Ú
H0 · (⟨H0⟩0 −H0) f0du =

= − ∆T

kBT 2
0

5
⟨H0⟩0

Ú
H0 · f0du−

Ú
H2

0 · f0du
6

=

= − ∆T

kBT 2
0

è
⟨H0⟩20 − ⟨H2

0 ⟩0
é

= ∆T

kBT 2
0

var(H0)

⇒ ⟨(H0|T )− (H0|T0)⟩ = ∆T

kBT 2
0

var(H0) (2.30)
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Chapter 3

Numerical simulations and
results - Ising chain

3.1 Metropolis-Hastings algorithm
The Markov Chain Monte Carlo (MCMC) techniques were first introduced in the
context of statistical mechanics [91] and, as of today, they are one of the most
powerful methods used to solve the problem of Bayesian inference. Indeed, there
exists a close similarity between statistical mechanics and parametric Bayesian
inference: suppose to parameterize the energy associated to a certain state in the
canonical ensemble as Es(θ) = −kBT ln[f(x|θ)f(θ)]. The partition function Z will
be:

Z =
Ú

dθe−βEs(θ) =
Ú

dθf(x|θ)f(θ) = f(x)

The canonical distribution is given by:

e−βEs(θ)

Z
= f(x|θ)f(θ)

f(x) = f(θ|x) (3.1)

i.e. the canonical distribution coincides with the bayesian posterior, where θ is the
set of parameters of which a prior probability density f(θ) is defined, while f(x|θ)
is called likelihood. In order to correct the assumption made on the prior and
make it converges to the posterior, one should be able to evaluate the likelihood
f(x|θ). However, unless some special case, solving Equation 3.1 is not trivial or
it is even impossible to find an analytical solution; the MCMC algorithms offer a
numerical solution to this problem by generating a sequence (chain) of values in
the parameters space, where the value (state) θi is updated with θi+1 in a way that
the final distribution over the chain follows the desired one (posterior). The chain
is supposed to be a Markov one and the probability of going from a state θi to θi+1
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is encoded in the transition matrix T which is supposed to be homogeneous i.e. it
depends only on the state of the system and not on the number of steps that have
been made (Ti[θi, θi+1] = T [θi, θi+1]). The homogeneity of T allows the chain to be
completely specified once it has been given the transition matrix T and the initial
distribution π0 over the states. If the chain is ergodic i.e. limi→∞ πi = π, it holds
that it has a unique and invariant distribution (equilibrium distribution), where
invariance means that π(θ) = q

θ′ π(θ′)T (θ′, θ). The equilibrium distribution
satisfies detailed balance condition:

π(θi)T (θi, θi+1) = π(θi+1)T (θi+1, θi)

The Metropolis-Hasting algorithm is a MCMC method that builds a chain of
states θi where a new state is accepted with probability

αi,i+1 = min

C
1,

pi+1,iπ(θi+1)
pi,i+1π(θi)

D

where pj,k is a proposal transition probability between states i and j so that
the actual transition matrix of the chain will be T (θj, θk) = αj,kpj,k. However,
since the choice of pj,k is arbitrary, one can also assume that such probabilities are
symmetric (pj,k = pk,j) so that the Metropolis-ratio αi,i+1 is equal to:

αi,i+1 = min

C
1,

π(θi+1)
π(θi)

D

The latter construction still allows to satisfy the detailed balance condition and
π is an equilibrium distribution:

π(θi+1)T (θi+1, θi) = π(θi+1)αi+1,ipi+1,i = min[π(θi+1), π(θi)]pi+1,i =
= min[π(θi), π(θi+1)]pi,i+1 = π(θi)αi,i+1pi,i+1 =
= π(θi)T (θi, θi+1)

In the case of the Ising chain, the energy is defined by the Hamiltonian H(σ)
and the set of parameters coincides with the spins of the chain i.e. θ = σ, where σ
is a configuration. The equilibrium distribution is given by Equation 2.3 so that
the Metropolis ratio is defined as:

αi,i+1 = min

C
1,

e−βH(σi+1)

e−βH(σi)

D
= min

è
1, e−β∆H(σi)

é
(3.2)

where the last equality is due to the fact that only one spin can change its value
at each transition.
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One issue concerning the Monte-Carlo methods consist in the number of steps
that the simulation needs to reach the equilibrium distribution, since the initial state
θ0 is usually defined randomly. This imply that, at the beginning of the simulation,
the latter will create states not still representative of the equilibrium distribution,
against the purpose of the method which instead, aims to store samples that comes
more likely from the chosen target distribution. To prevent such disadvantage,
one should define how many number of steps are needed to reach the equilibrium
distribution and to start storing the samples. Such number of step is a parameter
that has to be set a priori, known as burn-in time.
The other problem is about the nature of the Markov chain itself: since each state
of the chain directly depend on the previous one, the risk is that subsequent samples
might be highly correlated. To decrease the impact of this issue, it is useful to set
rules that allow to define a number of steps the simulation has to wait for, before
storing a sample. In the algorithm presented in this section, it has been chosen to
consider a new sample after having tried to evaluate the probability of changing a
value of all the spins of the chain, in a random order, as described in Algorithm 3.
To summarize, the algorithm generates a random initial configuration σ0, it will
wait a burn-in number of steps after which the first state of the chain will be taken
into account. Then, until the total number of simulation step, for each spin of the
chain it will be evaluated if it actually changes its value and, at the end, a new
state will be generate. In order to decrease further the correlation between the
samples, at each fixed frame step the energy and the magnetizaion, whose value is
determined according to Equation 2.2-2.4, will be calculated over the respective
configuration and stored.
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Algorithm 3 Metropolis-Hastings Algorithm (MMC) - Ising Chain
1: Initialize a random configuration σ0 of the chain ▷ σ0 is state of the chain
2: while t < τ0 do ▷ τ0 is the burn-in time
3: for i in random_indices(L) ▷ L is the length of the chain
4: generate u ∼ U(0,1)
5: evaluate ∆H(σi)
6: if α ≥ u accept change ▷ α is given by Equation 3.2
7: else do not accept
8: end for
9: t← t + 1

10: end while
11: σ0 ← σburn−in

12: while t < τ do ▷ τ is the total number of simulation-steps
13: for i in random_indices(L) ▷ L is the length of the chain
14: generate u ∼ U(0,1)
15: evaluate ∆H(σi)
16: if α ≥ u accept change ▷ α is given by Equation 3.2
17: else do not accept
18: end for
19: if t % n = 0 ▷ n is the frame step
20: Store energy H(σt)
21: Store magnetizaion M(σt)
22: end if
23: t← t + 1
24: end while

3.2 Discrete time dynamic algorithm
Unlike the Monte Carlo algorithm that try to find samples from a defined equilibrium
distribution and that assumes the symmetry on the proposed transition probabilities,
the discrete time algorithm (DT) bases the choice of the samples meanly by
evaluating if the probability of flipping the value of the spin (given by Equation 2.10)
is bigger than a random variable generated from a uniform distribution. In this
way, the algorithm still generates a series of configurations representative of a given
probability distribution over the states of the system, but the chosen state of the
chain has been selected on the basis of the transition probability p(σi → −σi),
rather than using rules depending on the equilibrium distribution. Since the state
space admits an equilibrium distribution and the algorithm fixes a random initial
configuration σ0, it will still be necessary to wait a certain number of steps (i.e.
set a burn-in time) before the algorithm will provide a sample representative of
the equilibrium distribution. After this initial relaxation time, the algorithm will
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create the chain with states obtained after that all the spins of the chain have
tried to change their signs, with the purpose to decrease the correlation between
the samples. To further avoid correlation, the energy and magnetizaion will be
evaluated and stored after that a number of time steps (equal to the fixed frame
step) is passed. A summary is given in Algorithm 4.

The main aspect characterizing the discrete algorithm is the presence of the
parameter dt, which explicitly appear in the transition probability p(σi → −σi)
and thus in the simulation. If in the Metropolis algorithm the time coincides with
the Monte-Carlo step, in the discrete algorithm the time has to be seen equal to
the product between the simulation step and the parameter dt. How to properly
define the value of dt is not obvious. Considering that the action rates αi(σi) have
been fixed, the parameter dt still depends on the simulation temperature and the
reasons is mainly physical: for higher temperatures the spins will try to change
their values more frequently with respect to lower temperatures, due to thermal
agitation. Indeed, the probability of flipping is expressed through the term e∆L,
which in turn is proportional to e−β∆H that is larger at higher temperature, with
the result that p(σ → −σ) is also larger. This, finally implies that the number
of times in which the condition p(σ → −σ) > u, u ∼ U(0,1) is verified is higher,
so that the spins will flip more likely in the high temperature case than in the
low one. Since the algorithm has been built with the assumption that only one
spin will flip at the time, when the flipping events happen more frequently, the dt
has to be choosen small enough to guarantee that at each time step there will be
only one flip-occurrence. Therefore, the parameter dt will become smaller with
the increasing of the temperature, causing instead a rise of the total number of
simulation step, with the result that for higher temperatures the computational
cost of the algorithm will increase. Since the value of dt has to be fixed in advance,
in order to set it in a reasonable way, a possibility is to compare the autocorrelation
function of the discrete time algorithm with the one of the continuous case, as it is
done in Figure 3.2.
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Algorithm 4 Discrete time Algorithm (DT) - Ising Chain
1: Initialize a random configuration σ0 of the chain ▷ σ0 is state of the chain
2: while t < τ0 do ▷ τ0 is the burn-in time
3: for i < L: ▷ L is the length of the chain
4: generate u ∼ U(0,1)
5: if p(σi → −σi) ≥ u accept change ▷ p(σi → −σi) is given by Equation 2.10
6: else do not accept change
7: end for
8: t← t + 1
9: end while

10: σ0 ← στ0

11: while t < τ do ▷ τ is the total number of simulation-steps
12: for i < L: ▷ L is the length of the chain
13: generate u ∼ U(0,1)
14: if p(σi → −σi) ≥ u accept change ▷ p(σi → −σi) is given by Equation 2.10
15: else do not accept change
16: end for
17: if t % n = 0 ▷ n is the frame step
18: Store energy H(σt)
19: Store magnetizaion M
20: end if
21: t← t + 1
22: end while

3.3 Continuous time dynamic algorithm
The kinetics rules, described in section 2.2, state that each spin will make an
attempt to flip with probability αi(σi)dt and after that, the flip might actually
occur or it might not, with a certain probability. In the case of the DT algorithm
a particular attention has been given on the parameter dt. However, an alternative
approach may be formulated by directly sampling the random time at which the
spins try to flip. By identifying the number of flips that may happen along the
chain during an interval of time I = [0, t] as a Poisson process N(t), the random
times τi at which the spin-flip will occur are exponential random variable with
parameter αi(σi). In order to get samples of such random times a particular
stochastic simulation algorithm, referred as first-reaction method, has been used
[92]: for each spin of the chain, a random variable ui from a uniform distribution is
generating and the respective random times is evaluated as:

τi = 1
αi(σi)

ln
3 1

ui

4
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From the equation above, one may notice that such random times depends
on the action rates of the relative spin, meaning that spins with higher αi(σi)
will generally have a smaller τi. Once the random times has been generated, the
firs-reaction method provides that the spin with minimum τi will flip first and such
change will be accepted with probability given by Equation 2.8. This mechanism
allows to define an order on the sequence of spin-flips, still respecting the fact that
only one variation is accepted at the time. However, the concept of time in this
algorithm might be more clarified. One has to distinguish between the simulation
step (simulation time) and what it is referred as internal time. The algorithm is
characterized by the presence of a parameter dt that represent an interval of time
after which the new state (new configuration σ) is considered part of the chain.
Thus, the parameter dt influences the correlation between consecutive states: the
larger it is, the more the simulation will makes flips with the result that the final
configuration, after that dt is elapsed, will be less correlated to the previous state.
Setting a large value of dt has the disadvantage of making the simulation slower,
however if one decrease its value, the risk is that consecutive states might be highly
correlated. Thus, the internal time scans the flow of time until the value dt is
reached, after which a new state will be added to the chain and the simulation
time will be updated. In more details, the steps that the simulation follows during
the interval dt are summarized in Algorithm 5: the spin with minimum time τi

will flip its value if p(σi → −σi|attempt) > r, with r a random variable sampled
from an uniform distribution. The internal time will be updated by adding the
time τi elapsed, while at the random times of the others spin, the value τi will be
subtracted and a new τi for the spin i will be generated. The procedure repeats
until the sum between internal time is lower than dt. When it ends, if the difference
between the internal time and dt is different from zero, the random times of all the
spins will be updated by subtracting to them the latter difference. Finally, a new
configuration of the system will be obtained.
The whole continuous algorithm (CT) provides a burn-in time, as well as a frame
steps, after which a configuration is obtained, over which energy and magnetzation
are evaluated. The full procedure is summarized in Algorithm 6.
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Algorithm 5 Advance step - Continuous time algorithm
1: while i < L do ▷ L is the length of the chain.
2: generate u ∼ U(0,1)
3: calculate τi

4: end while
5: τ̄k = min[(τi)i=1,...L]
6: while internal time + τ̄k < dt do ▷ Beginning advance
7: internal time = internal time + τ̄k

8: (τj)j=1,...,L
j /=i

= (τj)j=1,...,L
j /=i

− τ̄k

9: generate r ∼ U(0,1)
10: if p(σk → −σk|attempt) > r flip spin i ▷ p(σi→−σi|attempt)is given by Equation 2.8

11: else do not flip
12: generate new τk for spin k
13: τ̄k = min[(τi)i=1,...L] ▷ Find the new spin with minimum τ
14: end while
15: (τi)i=1,...L = (τi)i=1,...L − (internal time− dt) ▷ End advance

Algorithm 6 Continuous time Algorithm (CT) - Ising Chain
1: Initialize a random configuration σ0 ▷ σ0 is state of the chain
2: while t < τ0 do ▷ τ0 is the burn-in time
3: Make a step advance of Algorithm 5
4: end while
5: σ0 ← στ0

6: while t < τ do
7: Make a step advance of Algorithm 5
8: if t % n = 0 ▷ n is the frame step
9: Store energy H(σt)

10: Store magnetization M
11: end if
12: t← t + 1
13: end while
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3.4 Algorithms of ensemble sampling

Figure 3.1: Ensemble sampling algorithm. (a) Burn-in
algorithm: multiple simulations until burn-in time. The last
state of each of them will be part of the final sample. (b)
Average trajectories algorithm. The initial condition of all the
trajectories are generated by algorithm (a). Then, simulations
will run until tfinal and a unique trajectory is obtained by
averaging them.

The algorithms intro-
duced in the previous
sections (Algorithm 3-
4-6) evolve in time,
starting from a ran-
dom initial condition.
However, when the
length of the chain in-
creases or, for exam-
ple, the parameter dt
in the discrete algo-
rithm becomes smaller,
the computational cost
of such algorithms are
quite high. To achieve
better performance
and in a faster time, a
valid alternative solu-
tion relies on the en-
semble sampling algo-
rithms. Since two dif-
ferent quantities shall
be analyzed, two different algorithms have been used in this work. The one referred
as burn-in algorithm provides several different initial conditions, from each of which
a simulation of length of burn-in time is started. At the end, each of these simula-
tions will provide one configuration that will contribute to form a unique sample
over which energy and magnetization will be evaluated. However, the burn-in time
is set after that a simulation as in Algorithm 3-4-6 has been performed, on the basis
of its autocorrelation function. The other approach (average trajectories algorithm)
will start by generating different initial conditions as well, but for each of them a
trajectory until time t will be created. In order to reduce the computational cost of
such methods, the initial conditions are created through the burn-in algorithm so
that the burn-in time of each trajectory can be set to a lower value, thus increasing
the performance of the algorithm itself. At the end, a single trajectory will be
obtained by averaging over all the trajectories. The latter algorithm will be used
on the the response to a temperature perturbation.
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3.5 Results

3.5.1 Observables: energy and magnetization
As it has been introduced in section section 2.3, one could be interested in evaluating
macroscopic quantities of the system under analysis, which are called observables. In
the case of the Ising model, such observables are the energy and the magnetization
of the system, given by Equation 2.1-2.4. In the present work, these two quantities
are evaluated by using the ensemble sampling algorithm (section 3.4), both for
the Metropolis Monte Carlo (MMC), than the discrete (DT) and continuous (CT)
time algorithms. This has been done in order to compare the results given by
these two last methods, with the already well-tested Monte Carlo algorithms. For
the cases in which the number of spins is not too large1, rather than using only
the results provided by the MMC, also theoretical quantities can be computed.
More specifically, given an Ising chain with number of spins N , there will exist
2N possible configurations σ. Since different configurations may contribute to the
realization of the same macroscopic quantity (energy or magnetization), which
in general can assume different values, it is possible to theoretically derive the
probability that certain configurations will realize a precise energy or magnetization
level (H̄ and M̄ respectively):

P
1
H(σ) = H̄

2
=
Ø
σ

P
1
σ|H(σ) = H̄

2
=

=
q

σ e−βH(σ)
✶(σ|H(σ)=H̄)q

H̄

q
σ e−βH(σ)✶(σ|H(σ)=H̄)

P
1
M(σ) = M̄

2
=
Ø
σ

P
1
σ|M(σ) = M̄

2
=

=
q

σ e−βH(σ)
✶(σ|M(σ)=M̄)q

M̄

q
σ e−βH(σ)✶(σ|M(σ)=M̄)

(3.3)

Thus, the probability of having a level H̄ or M̄ is given by the ratio between
the sum of the weights relative to the configurations that give such level and a
normalization factor, expressed by the sum, over all the possible H̄ or M̄ , of the
weights of the configurations realizing each of them. In Algorithm 7 is schematize
how these probabilities are evaluated in the simulation.

1bigger than 80, for computational reasons
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Figure 3.2: Autocorrelation functions for choice of dt.
Sequential DT and CT algorithms are applied on an Ising
chain with N = 10 spins and α2i = 0.1, α2i+1 = 0.3, kBT =
2, J = 1, h = 0. Different dt are used on the discrete algorithm.
The best choice is dt = 10−4 for the DT algorithm.
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Figure 3.3: Autocorrelation functions for choice of burn-in.
Sequential MMC, CT (with frame step n = 1) and DT with
dt = 10−4 algorithms are performed on an Ising chain with
N = 10 spins and α2i = 0.1, α2i+1 = 0.3, kBT = 2, J = 1, h = 0.
The burn-in are respectively equal to 100, 150 · 104, 220.

As it is pointed out
in section 3.2-3.3, the
main issue of dealing
with different kinds of
algorithms relies on the
time-scale they are us-
ing. Thus, in order to
make reliable compar-
isons between the re-
sults of the three dif-
ferent approaches, it
is needed to find a
method such that the
time-scale is the same
for all of them. For
the CT and MMC algo-
rithms it is sufficient to
have same frame step2,
while more attention
is required when deal-
ing with the discrete
time method. Indeed,
as it is mentioned in
section 3.2, the auto-
correlation functions of
the continuous and dis-
crete time algorithms
has been compared:
since the parameter dt
in the continuous al-
gorithms represent the
internal time (see sec-
tion 3.3) i.e. an in-
terval of time of the
trajectory followed by
system in which many
flip events may occur,
while dt of the discrete

2the dt in the CT algorithm is set to be equal to the frame step
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approach is the small time during which only one spin can make an attempt, it
results that, in principle, the time-scales of these two algorithms are different;
to properly compare the results obtained by the DT and the CT method, the
autocorrelation function, that exprimes a dependence in time, is useful to find
the right time scales between the two algorithms (Figure 3.2). Once this purpose
has been achieved, the ensemble sampling algorithms can be computed, where the
choice of the burn-in time is made by looking at the autocorrelation functions of
the three algorithms, performed using the sequential approach of Algorithm 3-4-6
(Figure 3.3). The barcharts of Figure 3.4-3.5 shows the results obtained for a chain
made of N = 10 spins, where energy and magnetization level on the x − axis
indicates the different values of H̄ and M̄ , while the counts are the number of
samples that have a precise value of H̄ and M̄ .

Theory MC CT DT
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Figure 3.4: Barchart for energy samples using ensemble sampling algorithms.
Probability distribution for energy of an Ising chain (N = 10 spins) in the canonical
equilibrium ensemble at temperature kBT = 2, J = 1, h = 0 (arb.u.). In the DT
and CT models, the action rates (arb.u.) are αi = 0.1 for odd indices and αi = 0.3
for the even. Error bars are given by 3 standard deviations; each sample contains
a total of 104 counts.
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Figure 3.5: Barchart for magnetization samples using ensemble sampling algo-
rithms. Probability distribution for magnetization of an Ising chain (N = 10 spins)
in the canonical equilibrium ensemble at temperature kBT = 2, J = 1, h = 0
(arb.u.). In the DT and CT models, the action rates (arb.u.) are αi = 0.1 for odd
indices and αi = 0.3 for the even. Error bars are given by 3 standard deviations;
each sample contains a total of 104 counts.

Both Figure 3.4-3.5 show the accordance on the outcome between the three
algorithm, as well as with the theory. Besides these qualitative results, one should
also evaluate if the approaches are quantitatively the same. In order to do so,
a one sample Likelihood ratio statistical test with William’s correction [93, 94]
(Appendix D) has been performed and of which the null hypothesis consists in
supposing that energy and magnetization samples of the three algorithms come
from the same distribution of the theoretical one, where the latter is a multinomial
distribution M(n, k, p) with n being the total number of samples, k the different
energy/magnetizaton levels the system can account for and p = (p1, . . . pk) being the
theoretical probability of the system to belong to a level i = 1, . . . , k (Equation 3.3).
The results are shown in Table 3.1.
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Energy
pvalue

Magnetization
pvalue

MMC 0.986 0.735
DT 0.996 0.591
CT 0.966 0.801

Table 3.1: Likelihood ratio test - pvalues. Results on the pvalues of the test
both for energy and magnetization samples. Null hypothesis H0 : energy and
magnetization samples of the algorithms come from the same distribution of the
theoretical ones.

Algorithm 7 Theoretical quantities - Ising Chain
1: Initialize empty dictionary H
2: Initialize empty dictionary M
3: Generate 2N configurations σ ▷ N is the number of spins
4: for each configuration σ
5: evaluate energy level h
6: evaluate magnetization level m
7: Set key of H equal to h
8: H[key = h] + = e−h/T ▷ e−h/T is the weight
9: Set key of M equal to m

10: M[key = m] + = e−h/T ▷ e−h/T is the weight
11: end for
12: Initialize Zh = 0
13: Initialize Zm = 0
14: for each different key h
15: Zh = Zh+ number of different σ giving h
16: end for
17: Normalize weights of H by Zh ▷ obtaining probabilities
18:
19: for each different key m
20: Zm = Zm+ number of different σ giving m
21: end for
22: Normalize weights of M by Zm ▷ obtaining probabilities

Simulations for different values of the parameters and with number of spins
N > 80 3 are shown in Appendix E.

3For N > 80 is computationally to expensive obtaining the theoretical distributions thus,
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3.5.2 Response to temperature perturbation
Once the observables have been obtained, it is possible to try evaluating how they
vary when one or more parameters of the system change. In the present work, it
will be analyzed how the energy of the Ising chain will respond when a sudden
change on the temperature will happen. At time t̄, the temperature will pass from
a value T0 to a value T with a step-function behavior and, if ∆T = T − T0 is
relative small, one may apply the linear response formalism of subsection 2.3.1.
From a computational point of view, the time evolution of the system has been
obtained by using a simulation based on a combination of both the burn-in and the
average trajectories algorithms (section 3.4). The idea is to create a final trajectory
given by the mean of the different ones of which initial states are obtained by
using the ensemble sampling algorithm. In Figure 3.6 it is shown the trajectory
followed by the system of an Ising Chain with N = 10 spins4. Such trajectory
is the results of the average of 104 trajectories. At simulation time t̄ = 10 the
temperature suddenly change from T0 = 1.8 to T = 2 and in the MMC algorithms,
as well as the DT and the CT ones, the system relaxes to the new equilibrium
state following an exponential behaviour. Since the Ising chain is composed of
N = 10 spins, it is possible to evaluate the theoretical average energy of the system
at both temperatures T0 and T (straight line in Figure 3.6). The simulations of
all the three methods are in accordance with the theoretical averages, however it
exist a main difference between the classical Metropolis Monte Carlo algorithm and
the discrete, as well as the continuous time approach; since the last two methods
make use of the action rates, when these parameters change, it is possible to see
a different relaxation behavior of the system to the new equilibrium state. Such
effect is not possible in the case of an MMC simulation because it does not have
any parameters able to control how fast or slower the dynamic of the system can
be. Indeed, for generally lower αi(σi), the curves are smoother, while when the
αi(σi) increase, the system will go rapidly to the new equilibrium state.

different statistical test and graphical techniques will be used.
4Results with N /= 10 are shown in Appendix E.
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Figure 3.6: Linear response of energy due to a temperature perturbation.
The average trajectories algorithm, combined with the burn-in algorithm, averages
104 trajectories over the interval of time I = [0, 60]. At time t̄ = 10, the temperature
of the system change and ∆T = 0.2. The DT algorithm is implemented with
dt = 10−4. The CT and DT algorithms are evaluated with different combination of
αi(σi). Straight lines indicate the theoretical average energies. Results of the three
algorithm agree within 3 standard deviation.
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Chapter 4

Dynamic Cellular Potts
Model

4.1 Dynamic Cellular Potts

One of the first attempt to explain the mechanism behind tissue morphogenesis relies
on the differential adhesion hypothesis (DAH), a thermodynamic interpretation
stating that the movement made by the cells to self-organize, is dictated by the
minimization of their interfacial free energy [49]. However, such thermodynamic
view is concerning only about equilibrium configurations and not about the kinetics.
Instead, Glazier and Graner have shown, in the context of cell sorting, the key role
played by membrane fluctuations [4]; experimentally it is possible to introduce drugs
able to block membrane fluctuations and thus inhibit cell sorting. Nevertheless,
such drugs act also at the cytoskeleton level, making impossible to distinguish if the
failure to observe sorting is due to absence of membrane fluctuations or changes in
cell-cell adhesivity, in response to the changes of the cytoskeleton. Through Glazier
and Graner simulations it has been possible to show that the loss of membrane
fluctuations is actually deterministic on preventing cell sorting [95]. Despite of
being of thermal nature, membrane fluctuations are generally caused by cellular
activity [96] and its mechanical properties highly influence cell motility [97]. In the
CPM the temperature parameter resembles cellular activity, thus cell motility is
implemented in function of T and it manifests itself through the movement of the
cells’ center of mass. Such method lacks on describing mechanical proprieties of the
cell membrane influencing motility, therefore a more realistic kinetic is worthy of
attention and the Dynamic Cellular Potts model aims to provide different kinetics
rules resembling properties of the cells, on the basis of what it has been done
concerning transport properties of composite materials [81].
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4.1.1 Cell Sorting in the development of mammals

Cell sorting is the process leading the segregation of heterotypic cell aggregates and,
in the present work, the Dynamic Cellular Potts is used for simulating cell sorting in
the development of a mammal, as described in [11]. The early embryogenesis process
starts with the formation of the blastocyst in which it is possible to distinguish
between the outer layer of cells, called trophectoderm (TE) and the inner collection
of cells referred as inner cell mass (ICM). The latter is located in one side of the
blastocyst so that it is present a cavity filled of fluid, denominated blastocoel. The
trophectoderm will develop into structures that help the implant of the embryo in
the uterus, while the ICM will differentiate into epiblast (EPI) that will form the
fetus and the primitive endoderm (PrE). The differentiation of these two cells has
been shown to happen at stage E3.75 (where one must refers to them as pEPI and
pPrE respectively), while the lineage sorting is verified at stage E4.75 in which the
EPI are incapsulated between the trophectoderm and the layer of PrE (Figure 4.1).

Figure 4.1: Cell sorting
[11]. At stage E3.5 ICM
and TE are formed. The
differentiation between
EPI and PrE cells takes
place at E3.75, while the
sorting of the two types
of cells is completed at
stage E4.5
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4.1.2 Microscopic Stochastic Kinetics
The cellular sorting described in subsection 4.1.1 presents two types of cells that
organize in an environment filled of a fluid, scenario that can be properly modelled
through a CPM approach. Indeed, as a modified version of the CPM, the Dynamic
Cellular Potts (DCPM) assigns at the two kinds of cells (EPI and PrE) a type
represented through a natural number, while the medium is indicated with value
zero. Furthermore, the DCPM is coupled with a microscopic stochastic kinetics
that, at equilibrium, can be described as following: each lattice site which can
indicate either a cell of type EPI or PrE, as well as the medium, can make an
attempt to change its value with an action rate that generally depends on the
cell type and usually indicated as α(σE), α(σP ) or α(σM) respectively. In each
attempt, the site has a probability to change its value or to keep it, proportional
to a directing function. More precisely:

P(σE → σP |attempt) ∝ eL(σP ) P(σP rE → σE|attempt) ∝ eL(σE)

P(σM → σE|attempt) ∝ eL(σE) P(σM → σP |attempt) ∝ eL(σP )

It is worth noticing that, when non-equilibrium processes (such as the death of
the cell) are not present, it does not exist a spontaneous transition from an EPI or
PrE state to a medium (M) state. Instead, it is possible that a site indicated the
medium changes its value in EPI or PrE, thus simulating the expansion of such
cells types to an other lattice site. Therefore, the unconditional probabilities of
making a change can be expressed as:

P(σE → σP ) = α(σE)dt
eL(σP )

Z

P(σP → σE) = α(σP )dt
eL(σE)

Z

P(σM → σE) = α(σM)dt
eL(σE)

Z

P(σM → σP ) = α(σM)dt
eL(σP )

Z

with Z being a normalization constant.
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Supposing the feasibility for a change of a value site in terms of connectivity
(Figure 1.8) and that the system is in equilibrium, one can derive the expression
for the variation of the directing functions by using detailed balance:

P(σE)P(σE → σP ) = P(σP )P(σP → σE)

e−βH(σE)α(σE)eL(σP ) = e−βH(σP )α(σP )eL(σE)

e
L(σP )− L(σE)ü ûú ý

∆L(E→P ) = α(σP )
α(σE)e

−β[H(σP )−H(σE)ü ûú ý
∆H(E→P )

]

⇒ e∆L(E→P ) = wE = α(σP )
α(σE)e−β∆H(E→P ) (4.1)

Likewise, for the other possible changes, one can write:

e∆L(P →E) = wP = α(σE)
α(σP )e−β∆H(P →E)

e∆L(M→E) = wME = α(σE)
α(σM)e−β∆H(M→E)

e∆L(M→P ) = wMP = α(σP )
α(σM)e−β∆(M→P )

(4.2)
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4.1.3 The Algorithm

The Dynamic Cellular Potts model has been simulated in three dimension, thus
the unit of the lattice is a cube, usually called voxel, as it is shown in Figure 2.1(c).

Figure 4.2: CPM in 3D [98]. Typical
simulation of a CPM with cells in the three-
dimensional lattice.

Therefore, a cell is made of voxels with
the same index and that have the same
type (Figure 4.2). Besides its type, the
cell is characterized also by its age, tar-
get volume and division volume. The
latter is randomly sampled from a divi-
sion volume distribution, obtained ex-
perimentally, while the target/preferred
volume, at initial time, is set to be equal
to half of the mean of the possible divi-
sion volumes, but it changes during the
simulation according to a growth rate,
set a priori and which may vary with the
type EPI or PrE. Thus, the algorithm
is capable of simulating cell growth, as
well as other non-equilibrium processes,
like division and death. Indeed, the first

step of the algorithm consists in checking, for each cell in the simulation lattice, if
the latter will die or divide; if the death probability is larger than a random value
sampled from a uniform distribution, the cell will be killed i.e. each of its voxel will
become medium, while the division will occur when the cell volume reaches the
division one. In the latter case, the mother cell will be divided along its long axis
in two cells with same type of the parent cell and of volume equal to half of the
volume of the latter. Furthermore, the age, the preferred and the division volume
of the daughters cells will be set and their center of mass will be computed as well.
Besides their structural properties and according to the kinetics rules described
in the previous section, at each voxel of a cell is associated an action rate which
express the tendency of the voxel to modify its type. Indeed, after the death and
division check, the algorithm will evaluate the probability of a value change of each
voxel in the simulation lattice. Firstly, the set of target neighborhood relative to the
current voxel site is computed, considering it as a Von Neuomann neighborhood in
three dimension (Figure 4.3(a)). The voxel will try to change its value if its action
probability is larger than a random value sampled from a uniform distribution,
otherwise it will not even make the attempt. The time dt in which an attempt
is made, is taken so small that only one change is allowed at each step. If the
voxel succeeds to make the attempt, an energy base is evaluated according to the
expression of Equation 1.1, considering the current index and type of the voxels
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being the lattice site x and composing the cell γ. At the energy base will be added
another energy term, still of the type of Equation 1.1, but with index and voxel
type corresponding respectively to the ones of the target site the current voxel may
change to. In each of these energy terms, the part corresponding to the interface
interaction between cells is evaluating considering a coupling neighborhood of order
II (Moore) in three dimension (Figure 4.3(b)). At the end of this process, at each
voxel that has tried to change, correspond a vector of length equal to the number of
its target neighbours, filled with the weights given by Equation 4.1-4.2, according
to the type of the voxel taken into account. In order to prevent fragmentations,
before allowing a voxel to change its type, it must be verified if the target sites
respects the notion of connectivity of [55], already introduced in subsection 1.2.2.
With this check, the possibilities of the current voxel to make a change may be
reduced to those of which the target value respects connectivity. The latter control
allows to compute the normalization factor Z, given by the sum of all the weights
that respect the connectivity requirement. Given the value of Z, it is possible to
evaluate the probabilities and the voxel type and index will change to the one of
the target site in correspondence of which the sum of such probabilities is larger
than a certain threshold. Once the algorithm has computed these steps, for each
voxel of the three-dimensional lattice, all the cells are let to grow according to their
growth rates, their ages are incremented and, at the end, the simulation time is
updated. A scheme of the present algorithm is shown in Algorithm 8.

Figure 4.3: Neighborhood in 3D [99]. (a) Von Neumann in three dimension. (b)
Moore neighborhood in three dimension.
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Algorithm 8 Dynamic Cellular Potts Algorithm (DCPM)
1: Initialize a starting configuration σ0 ▷ σ0 refers to all the cells in

the 3D simulation lattice
2: while t < τ do ▷ τ is the total simulation time

3: for cell in lattice:
4: Check death and division of the cell
5: end for
6: for voxel in lattice:
7: Compute target neighborhood NT

8: Store target voxel in VT

9: if length of VT is 1 exit
10: Compute action probability α ▷ α depends on the type of the voxel

11: if α < u, u ∼ U(0,1) exit
12: Evaluate energy_base Hb ▷ Hb is evaluated with

Equation 1.1 using voxel
13: for target voxel in VT

14: Evaluate H = Hb + Ht ▷
Ht is evaluated with
Equation 1.1 using

target voxels
15: Compute weights w ▷ w are evaluated using Equation 4.1-4.2

16: Store w in buffer
17: end for
18:
19: Check connectivity of voxel in NT ▷ the connectivity refers to [55]

20: Discard from VT target voxels not respecting connectivity
21: Keep the weights on w of voxels in VT

22: Z = q
i wi ▷ Z is the normalization factor

23: Compute probabilities p = w/Z ▷ p is a vector whose indices
correspond to indices of VT

24: Set a threshold s
25: Initialize P = 0
26: for i in p
27: P = P + i
28: if P > s voxel = (VT )i exit ▷ Change the current voxel to

one of its allowed target
29: end for
30: end for
31:
32: for cell in lattice:
33: Compute growth of the cell
34: Update age of the cell
35: end for
36: t = t + 1
37: end while
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4.1.4 Results
The cell sorting phenomena has been simulated in a three-dimensional lattice of
which elementary units are voxels (Figure 4.4). Therefore, the first step of the
simulation is creating the elementary voxels, where the ones with same cell indexes
compose a cell. In Figure 4.5 is shown the output of a simulation carried for a
time t = 5040 that creates 81 different cells. By increases the simulation time, the
number of cells generated grow.

Figure 4.4: Cell sorting simulation in
3D. The simulation lattice is a cube and
the elementary unit is a voxel.

Figure 4.5: Cell sorting simulation in
3D. The voxel with same indeces com-
pose a cell. The different color indicates
different cells.
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Given all the different cells, at each of them is randomly assigned a type (Fig-
ure 4.6). The physical parameters such as the surface tension values between
different types of cells, as well as the growth and division rate are defined for the
different kind of cells. Moreover, the action probabilities for the medium, epiblast
and the primitive endoderm are set. A simultation of total time t = 1440 is
performed and the final sorting is shown in Figure 4.7. The organized cluster of
cells is correctly reproduced; the PRE cells (green colors) occupies the outer layer
which covers the EPI cells (blue) that indeed are located between the trophectoerm
and the PRE cells.

Figure 4.6: Cell sorting simulation
in 3D. Each cell has a type, distin-
guished by colors. The green cells are
PRE cells, while the blue ones are EPI.
The action probabilities are α(σM) =
0.1, α(σEP I) = 0.5α(σP RE) = 0.2

Figure 4.7: Cell sorting simulation in
3D. The simulation reproduces the cell
sorting phenomena of subsection 4.1.1.
The outer PRE cells (green) incorporate
an inner cluster of EPI cells (blue).
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Chapter 5

Conclusion and future
research

The present work introduces a novel approach to modeling dynamics of discrete-state
systems, which relies on recent developments in the stochastic thermodynamics.
An application of the framework is demonstrated with a Cellular Potts Model of
cell sorting in mouse embryogenesis—a subject of active research in biology. By
using the paradigmatic example of Ising chain, it has been examined in more detail
the theoretical foundations of the approach and verified it numerically.

The new formulation of Cellular Potts Models provides an immediate physical
interpretation of the model parameters describing cell sorting mechanism, in
continuous and discrete time, removes shortcomings of the modified Monte-Carlo
Metropolis algorithm adopted in the traditional schemes and offers a finer control
of the system’s kinetic properties. Such properties can be interpreted as intrinsic
characteristics of cells and determine their motility. Furthermore, straightforward
computational improvements of the CPM can be sought. For instance, the discrete-
time algorithm admits a simpler parallelization scheme than the traditional Monte-
Carlo calculations.

The example of the Ising chain conspicuously shows that the above kinetic proper-
ties affect only frenesy—the time-symmetric part of the stochastic action associated
with the possible trajectories of the system. The time-symmetric counterpart—
entropy production—remains independent of these properties. Therefore, the new
approach reproduces the distribution of the system’s states determined by the
Hamiltonian in the canonical equilibrium with a heat bath at temperature T , as
confirmed by numerical simulations.
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Conclusion and future research

The new theoretical framework allows to consistently reproduce, qualitatively
and quantitatively, the results both in the Ising simulations, than in the CPM case
(used for the lineage sorting of EPI and PrE cells), with respect to the traditional
methods used.
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Appendix A

Given Γ = 0,1, . . . , n the set of cell indexes and S the lattice, the space configuration
is defined as ΓS.

Definition. The set of absorbing states A is given by all the possible constant-u
configurations Cu, with u ∈ Γ, where all the sites x ∈ S have cell index u

A :=
Û

u∈Γ
Cu

The set A is called absorbing (or trap) because if the chain starts in A, there is no
way to get out of it.
Definition. The return time Ty is a random variable expressing how many steps
are needed to visit y if the chain starts in y. Therefore, the probability of returning
to y in a finite number of steps can be expressed as:

py,y = Py(Ty <∞)

Definition A state y is called transient if py,y < 1.

Definition A state y is called recurrent if py,y = 1.

The transience and the recurrence are class properties. By the definition of
absorbing set is possible to conclude that the states in A are recurrent.

In the case of a Markov chain, the transition probabilities can be summarized in
the transition matrix P

P =
A

IA 0A,T

PT,A PT,T

B
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where PT,T is a substochastic matrix containing the transition probabilities
between transient states, instead the entries of the PT,A matrix are the probabilities
to go from transient states in the set T to absorbing states in A. Since, once the
chain is in A, it cannot escape from the set A, the null matrix 0A indicates the
impossibility on going from the set A to the set T .
Now, for the absorbing property, it is valid that, if the chain starts in A, it will
remain in A. However, supposing that the chain starts in a state in T , one should
show that the chain will eventually reach the set A. Firstly, it is needed to show
that the chain will get in A, almost surely i.e. that, for any initial distribution over
the states, it holds that:

lim
k→∞

P(Xk ∈ A) = 1

Indeed, supposing that to get from the set T to the set A, k steps are need, one
can define the transition probabilities in k steps as entries of the k − th power of
the transition matrix, P k. Indicating by π0 the initial distribution over the states
and by πk the distribution at time k, it holds that πk = π0P

k and that:

P(Xk ∈ A) = πk(A) =
= 1− πk(T ) = 1−

Ø
y∈T

πk(y) =

= 1−
Ø
y∈T

Ø
z∈T

π0(z)P k
T,T (z, y)

And taking the limit k →∞:

lim
k→∞

P(Xk ∈ A) = lim
k→∞

1−
Ø
y∈T

Ø
z∈T

π0(z)P k
T,T (z, y)

 =

= 1−
Ø
y∈T

Ø
z∈T

π0(z)
3

lim
k→∞

P k
T,T (z, y)

4
=

= 1

where the last equality holds because PT,T is substochastic.
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More precisely, transition probabilities from T to A in k steps, entries of the
matrix PT,A, can be derived as following:

P(T,A)k
=
k−1Ø

j=0
P j

T,T

PT,A

and for large k:

lim
k→∞

P(T,A)k
=
 lim

k→∞

k−1Ø
j=0

P j
T,T

PT,A =

= (IT − PT,T )−1PT,A

where the last equality holds because:

(IT − PT,T )
k−1Ø

j=0
P j

T,T

 = (IT − PT,T )(IT + PT,T + P 2
T,T + . . . P k−1

T,T ) =

= IT − PT,T + PT,T − P 2
T,T + P 2

T,T + ..− P k−1
T,T + P k−1

T,T − P k
T,T

and for k →∞:

(IT − PT,T )
 lim

k→∞

k−1Ø
j=0

P j
T,T

 = IT

⇒ lim
k→∞

k−1Ø
j=0

P j
T,T = (IT − PT,T )−1
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Appendix B

In order to show that the one-dimensional Ising model does not show phase transi-
tion, it is useful to reformulate the Hamiltonian in Equation 2.2 by symmetrizing
the field term:

H = −h
N−1Ø
i=1

si + si+1

2 − J
NØ

i=1
sisi+1 =

=
N−1Ø
i=1

Hnn(si, si+1)

where the last equality is due to the fact that is now possible to rewrite the
Hamiltonian totally in function in si and si+1.
The partition function Z will be:

ZN =
Ø
s1

Ø
s2

· · ·
Ø
sN

exp[−βHnn(s1, s2)− βHnn(s2, s3) · · · − βHnn(sN , s1)] =

=
Ø
s1

Ø
s2

· · ·
Ø
sN

T (s1, s2)T (s2, s3) . . . T (sN , s1)

where
T (s, s′) = exp[−βH(s, s′)]

can be seen as an element of what is called Transfer matrix T̂ i.e. T (s, s′) = T̂s,s′ .
The transfer matrix T̂ is such that:

T̂ =
C
eβ(h+J) e−βJ

e−βJ eβ(−h+J)

D

since s, s′ can only assume value ±1.
The partition function can be thus rewritten as:

ZN =
Ø
s1

Ø
s2

· · ·
Ø
sN

T̂s1,s2T̂s2,s3 . . . T̂sN ,s1 =

=
Ø

s1=±1
T̂ N

s1,s1 = Tr(T̂ N) = λN
1 + λN

2
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since it holds that qsi=±1 T̂si−1,si
T̂si,si+1 = T̂ 2

si−1,si
. The parameter λN

1 and λN
2

instead indicates the eigenvalues of T̂ , obtained by solving the characteristic
equations

λ2 − Tr(T̂ N) + det(T̂ ) = 0

which gives
λ1,2 = eβJcosh(βh)±

ñ
sinh2βh + e−4βJ

The free energy density is:

F = −kBT lnZN = −kBT ln(λN
1 + λN

2 ) =

= −kBT ln

λN
1

1 +
A

λ2

λ1

BN
 =

= −kBT lnλN
1 − kBT ln

1 +
A

λ2

λ1

BN
 ≃ −NkBT lnλ1

since in the thermodynamic limit N → ∞, λ2
λ1

<< 1 Now, the magnetization
density m is given by:

M = − 1
N

∂F

∂h

N→∞≃ − 1
N

∂

∂h
[−NkBT lnλ1] =

= kBT
∂lnλ1

∂h
= kBT

∂

∂h

;
ln
5
eβJ

3
cosh(βh) +

ñ
sinh2(βh) + e−4βJ

46<
And, by solving the last derivitive one obtain:

M = sinh(βh)ñ
sinh2(βh) + e−4βJ

So, it is immediate to notice that, for h = 0, it would always be m = 0 and so the
model is not able to predict spontaneous magnetization at any temperature.
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Appendix C

The system introduced in section 2.3 provides that a microstate Γ defines the
positios and momenta of the atoms composing the systems. In the canonical
ensemble, the system is in contact, through rigid walls, with an heat bath at
constant temperature T . Indicating by EB the the energy of the bath and by H(Γ)
the energy of the system (in terms of Hamiltonian since it describes the dynamic),
one can say that the total energy is:

ET = EB + H(Γ)

Indicating by Ω′
B(Γ′) the number of bath’s microstates and by S ′

B its entropy when
the system is in microstate Γ′, the probability that the system is in microstate Γ′

can be thought as proportional to Ω′
B:

P(Γ′) ∝ Ω′
B = e

S′
B

kB

where the last equality is due to the relation S = kBlnΩ. If the system goes from
Γ′ to Γ′′, the ratio of the probabilities to be in that states is:

P(Γ′′)
P(Γ′) = e[S′′

B−S′
B ]/kB

and for the bath:

dSB = 1
TB

(dEB + pBdVB − µBdNB) = 1
TB

dEB

where the last equality holds since there is no mechanical, neither chemical work.
Integrating:

∆SB = ∆EB

TB

= −H(Γ′′)−H(Γ′)
TB

= −H(Γ′′)−H(Γ′)
T
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since the temperature T of the system coincides with the ones of the bath.
At this point, it possible to rewrite:

P(Γ′′)
P(Γ′) = e−[H(Γ′′)−H(Γ′)]/kBT

P(Γ′)
e−H(Γ′)/kBT

= P(Γ′′)
e−H(Γ′′)/kBT

≡ 1
Z

From where:
P(Γ) = e−H(Γ)/kBT

Z
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Appendix D

The one-sample likelihood ratio test bases its idea on verify how the likelihood
functions of a sample differs from the reference (theoretical) one. The null hypothesis
H0 states that the two samples come from the same distribution. The likelihood
function expresses how likely the observed sample has been generated by a given
set of parameter θ so, given θ and a sample X of n observation, the likelihood
function is defined as:

L(θ|X) = Pθ(X = x1, x2, ..., xn)

Thus, if H0 is true, one would expect that the set of parameter of the theoretical
distribution θ and the ones relative to the observed distribution θ̂ would give
likelihoods that do not differ much. The statistic of such test is given by the
formula:

λLR = −2[l(θ)− l(θ̂)]

where l indicates the logarithm of the likelihood function.
In the case of section 3.5 the set of parameters corresponds to the set of probabilities
of the energy or magnetization level, so the test will compare the two likelihoods,
one computed by using the theoretical probabilities as given by Equation 3.3 and
the other by using the estimated ones. Given k levels and indicating with πi,i=1,...k

the theoretical probabilities and by pi = xi

n
the observed probabilities, where n is

the total number of observation and xi the counts for the level i, it is possible to
evaluate the likelihoods of the multinomial distribution1 as:

Ltheory = n!
kÙ

i=1

πxi
i

xi!

Lestimated = n!
kÙ

i=1

pxi
i

xi!

1the counts per level are distributed as a multinomial.
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Now, the the statistic will be:

λLR = −2
C
log

A
n!

kÙ
i=1

πxi
i

xi!

B
− log

A
n!

kÙ
i=1

pxi
i

xi!

BD

= −2
C

kØ
i=1

xilog

A
πi

pi

BD

If H0 is true, as the number of observation n increases2, the statistic distributes
as a χ2(k − 1) and so the pvalue is given by the incomplete gamma Γ(k − 1, λLR).
However the statistic is usually modified with the factor of the Williams’ correction
[94].

2in the case of section 3.5 n = 104
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Appendix E

Further results for a chain with N = 10 spins have been obtained by setting
kBT = 2, h = 0.4, J = −1 and α2i = 0.1, α2i+1 = 0.3. The results are shown in the
following:

-10.-6.8-6.-5.2-3.6-2.8-2.-1.2-0.40.4 1.2 2. 2.8 3.6 4.4
0

1

2

3

4

Energy level

lo
g(
C
ou
nt
s)

Figure E.1: Barchart of energy, N = 10 spins. Sample of 104 observation. In the
DT algorithm the parameter dt = 10−4.
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ou
nt
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Figure E.2: Barchart of magnetization, N = 10 spins. Sample of 104 observation.
In the DT algorithm the parameter dt = 10−4.

Energy
pvalue

Magnetization
pvalue

MMC 0.999 0.999
DT 0.999 0.999
CT 0.999 0.999

Table E.1: Likelihood ratio test - pvalues. Results on the pvalues of the test for
energy and magnetization samples. Parameters: kBT = 2, h = 0.4, J = −1 and
α2i = 0.1, α2i+1 = 0.3. Null hypothesis H0 : energy and magnetization samples of
the algorithms come from the same distribution of the theoretical ones.
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Figure E.3: Linear response to temperature perturbation, N = 10 spins, h =
0.4, J = −1
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As mentioned in section 3.5, in the case of N > 80, obtaining theoretical
probabilities is quite challenging, as well as getting the value of all the possible energy
and magnetization levels. Nevertheless, the three algorithms will be performed
as well, but the theoretical samples will not be generating. Thus, in order to
compare the results, a Kernel Density Estimation (KDE) will be used to plot the
probability density function of energy and magnetization. Instead, in order to get
quantitatively meaning for the agreements of such samples, the χ2 two-samples
test [100] will be applied. The statistic of the test will be computed as following:

tχ2 =
kØ

i=1

(Ri − Si)2

Ri + Si

where k is the number of different energy/magnetization levels, while Ri and Si

are the number of samples in level i for the two algorithm being compered. By
construction of the sampling, the sum of Ri and Si is the same, thus the number of
degree of freedoms of the χ2 is equal to k−1. One shall observe that, if there are no
data neither in Ri or Si, the degree of freedoms of the statistic will be subtracted
by one.
In this case will be shown the results for an Ising chain with N = 100 spins, at
temperature kBT = 2, h = 0, J = 1 and action rates α2i = 0.1, α2i+1 = 0.3.

Energy
pvalue

Magnetization
pvalue

DT 0.855 0.793
CT 0.982 0.910

Table E.2: χ2 test - pvalues. Results on the pvalues of the test both for energy
and magnetization samples. Null hypothesis H0 : energy and magnetization samples
of the CT and DT algorithms come from the same distribution of the MMC one.
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Figure E.4: KDE of energy and magnetization, N = 100 spins. KDE performed
on samples of 104 observation. In the DT algorithm the parameter dt = 10−1.
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Figure E.5: Linear response to temperature perturbation, N = 100 spins.
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