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Abstract

Since climate change has continued to raise global temperatures, wildfires are
becoming a greater hazard with increased severity and frequency. To help fire
management agencies better plan their preventive measures and increase the
effectiveness of suppression, it is crucial to monitor and map fire-susceptible areas
through a deep analysis of the regional fire trends.

The aim of this thesis is to test the ability of supervised machine learning
methods to map and measure the risk of fires in the vegetative areas of Sicily in
2021 using data from 2016 to 2020. This task was performed on areas of 200x200
square meters by creating a novel dataset with variables representing potential fire
drivers: weather, topography, and fuel.

Fuel type and moisture content are modeled using a collection of spectral indices
taking advantage of open source multispectral data from Sentinel-2 mission (ESA).
Despite the low spatial resolution, the results are encouraging and this work could
represent a starting point to build a solid fire management Italian system.
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Chapter 1

Introduction

Historically, it is acknowledged that forest fires are essential for forest renewal or
to reduce build-up of fuel and thus to control future fire intensity. Nevertheless,
extensive and frequent fires can cause economic damages and loss of human lives
in populated areas and can have negative impact on biodiversity both on air and
water quality. Nowadays, they are a major environmental problem which is going
to worsen in the next years in light of the current worldwide climate situation.
Especially during hot summers, this increasing number of wildfires is the result of
prolonged droughts, heatwaves and altered meteorological patterns.

According to EFFIS (European Forest Fire Information System) [1], in 2021
Italy was the European country with the highest number of fires and the second
most severely damaged in terms of burned area, after Turkey (Figure 1.1). Indeed,
the overall burned area, mapped from 1422 fires, was the biggest in almost ten

Figure 1.1: European 2021 fires distribution. The plot on the left (blue)
shows the distribution of the total number of fires while the one on the right(red)
shows the total burnt area(source EFFIS "Advance Report on Forest Fires in Europe,
Middle East and North Africa in 2021 " [1])
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Region Burnt Area(ha) N2000 Area(ha) Fires Fires(%)
Sicily 327.042,18 43.519,35 2161 40.79

Calabria 128.944,58 24.661,55 1386 26,16
Sardinia 120.221,39 98,92 246 4,64

Campania 42.006,19 15.951,38 532 10,04
Lazio 32.281,92 6.949,36 428 8,08
Apulia 18.388,40 8.230,34 119 2,25

Piedmont 12.104,71 1.660,11 41 0,77
Basilicata 11.518,13 841,80 131 2,47
Abruzzo 9.453,28 3.863,28 59 1,11
Liguria 6.517,80 339,57 46 0,87
Tuscany 6140,47 903,28 60 1,13

Lombardy 3436,23 365,84 28 0,53
Umbria 1.537,57 219,83 19 0,36
Molise 1.446,64 0 20 0,38

Friuli V. G. 1.118,77 0 7 0,13
Veneto 749,48 1,34 3 0,06

Emilia-Romagna 604,19 50,15 5 0,09
Marche 362,58 5,51 4 0,08

P.A. Trento 50,22 0 3 0,06
Aosta Valley 0 0 0 0

Italy 723.924,73 107.670,61 5.298 100

Table 1.1: Italy fires statistics processed by Legambiente from 2008 to
2021. The total burnt area per region is comprehensive of the Natura2000 areas,
which are highlighted in the second column. The first fires column describes the
absolute number of fires, while the second provides the percentage per region over
the total Italian fires. These values are underestimated as all fires under 30 hectares
are missing (source [2]).

years with 159.537 acres and in the summer months of July and August, 90%
of the damage was done. In addition to that, Italy was afflicted by 49 fires larger
than 500 hectares with the largest (in Sardinia) was over 13.000 hectares and 32 of
these 49 big fires occurred in Sicily. The Natura2000 zones, which are protected
locations for rare and threatened species as well as other rare natural habitat types,
suffered 16% of all fires in 2021.

The data shown in Table 1 are a result of Legambiente’s processing of EFFIS
data between 2008 and 2021. They show that a total of over 723.924 hectares of
land were burned as a consequence of 5298 fires, which is almost as much as the
entire region of Umbria. Around the 45% of the vegetative surface that was burned
throughout these fourteen years is accounted for by Sicily alone. The first three
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regions in Table 1, Sicily Calabria and Sardinia result in slightly under 80% of the
total burned area, whereas Campania, Lazio, and Apulia added to these three areas
result in over 90% of the total surfaces crossed by fire. Therefore, only six regions’
territories account for more than 90% of all Italian surfaces that are burned in
these years.

The causes of wildfires in Italy, thoroughly described in the most recent Legam-
biente report "Italia in Fumo" [2], are mainly human-related. Fires, for example,
might result from outdated or improper agronomic methods, such as burning
pruning scraps and stubble. These fires frequently happen each year and have
terrible effects on soil biodiversity and organic matter.

Since weather patterns and land cover characteristics are not uniformly dis-
tributed throughout the Italian peninsula, the majority of academic studies examine
regional assessments: impact of 2021 large fires was studied using remote sensing
techniques in [3] and [4]; fire trend monitoring using spectral indexes was explored
in [5] for Campania; in [6] fire perimeters available by the European Forest Fire
Information System (EFFIS) were used to map burnt area in Sicily using different
types of remote sensing data. It is clear that further research must be conducted
in order to take a step toward an automated monitoring system.

This thesis explores the possibility of estimating weekly wildfire hazard in
Sicily using a unique dataset and supervised machine learning techniques. The
fire environment triangle, which consists of weather, topography, and fuel, is the
foundation around which the dataset is constructed as these three factors have
complete control over a wildfire’s origin and spread. While data about the weather
and topography are easy to find, it is different for fuels. Sampling fuel data is
a costly procedure that needs to be performed in-situ and it is rarely carried
out. Because of this, fuel data are frequently incomplete or outdated despite
being essential to make a meaningful monitoring. This work makes use of spectral
indexes computed from multispectral open-source images to describe different
characteristics of fuels, from moisture content to chlorophyll production, with an
update period equal to the availability of Sentinel-2 images (around 2/3 images for
month considering a cloud coverage of 20%).

The analysis focuses on the southern part of Sicily which is divided into small
200x200 metre zones that are labelled as burned or unburnt thanks to fire data
provided directly by Regione Sicilia. The dataset is made up of four different types
of information that together depict the weekly state of each area:

• Temporal variables to report seasonality vegetation tendencies;

• Static variables to describe topographical characteristics;

• Historical variables to provide information of past fuel status;
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• Forecasting variables to give info about potential future weather trends.

In order to make the model as general as possible, spatial information have been
intentionally omitted. This allows future work improvements by leaving open the
possibility of expanding the study area, initially, including entire Sicily and later
scaling up with other regions.

The filling of the training and the test set follows the same pattern that will
try to preserve seasonality and fire regime information. The training set will have
wildfires 2016 to 2020 events, while 2021 will be the test. This study examined
ML approaches for wildfire risk mapping, including random forest (RF), support
vector machine (SVM), k-nearest neighbor (KNN), and gradient boosting classifier
(GB), combined with different approaches to deal with the natural class imbalance
of burnt and unburnt areas.

This work may have real-world practical applications as it demonstrates that it
is possible to develop a framework that can handle raw data of different formats and
convert it into tabular data. The dataset may carry way more information more
than using a single source, and it is really simple to expand. For example when
a new multi-spectral image is produced, it can be automatically processed and
added to the dataset. In fact, with some additional computing and storage power,
an analogous procedure may be effectively scaled up and automated.

1.1 Thesis outline
The thesis will develop along five different chapters along with the introduction.
Chapter 2 will provide a general overview of the background context with the
purpose of introducing the domain knowledge required to understand this work.
Chapter 3 will describe the area of interest and its fire regime, the data of topography,
weather and fuel, with a detailed description of each spectral index used, and the
feature engineering process developed to build the dataset. Chapter 4 presents
all the methods behind the machine learning sub-framework used with special
attention to methods that deals with data imbalance. Chapter 5 presents all the
experiments and the results obtained. The final Chapter 6 focuses on conclusions,
limitations, and potential future studies.
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Chapter 2

Background work

The sections below provide a general overview of the background context with the
purpose of acquiring enough domain knowledge to create the dataset.

The physical and chemical explanation of the event is provided in section 2.1,
along with a brief historical introduction and some terminology definitions. In
order to carry out the feature extraction to build the dataset, it is crucial to have
a strong understanding of which variables are the most crucial and how they have
been used in literature. In order to introduce multispectral remote sensing and the
spectral indexes, which will be the features utilised to define fuel attributes, some
spectroscopy concepts are reviewed in section 2.2. Finally, a brief summary of the
work that has been done on Earth Observation wildfire monitoring is provided in
the final section 2.3.

2.1 Wildfire modelling
Wildfire is a complex phenomena that combines chemical kinetics and heat transfer.
It has been faced with a wide range of approaches from purely physics to statistics
that has been investigated since the 1920s. This section will help the reader to
better understand the basis that lay the foundations for what has been done in
this thesis. Along with the historical overview, a brief description of the physics
and the chemistry behind fires will be provided. Finally, some clarifications will be
done on fire terminology

2.1.1 An historical overview
The idea that understanding of a fire could be gained through theoretical analysis
of the factors that could influence fires, started to raise in the 1920s, but it was
not until the 1940s that the first physical model came out.
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The pioneer of fire modeling was a mechanical engineer named Wallace Fons
[7] who worked for the United States Forest Service. He modelled fuel as a discrete
set of particles, where each particle could heat neighboring fuel particles up to
ignition temperature. With this idea, he noticed that the rate of fire spread is
controlled by three main characteristics: how long it takes fire to ignite, by the
type of fuel and by how far apart the fuel particles are. This was a simplified
model that was validated through laboratory experimentation and it had quit good
results, but most importantly, it laid the basis for the modelling research.

It is reasonable to state that the birth of fire modelling coincided with the end
of WWII, during which fire was widely used as a weapon and it was necessary to
find a way to suppressing it. Actually, after the war, authorities were convinced
that the next war would also be a fire war so considerable effort was expended
exploring the effects of mass bombing (such as occurred in Dresden or Hamburg,
Germany) and the collateral incendiary effects of nuclear weapons [7]. The United
States Forest Service became actively involved in nuclear blast tests, employing
the country’s best fire scientists. This war-inspired research helped to discover
fundamental knowledge about fire.

So, the late 1960s saw an explosion of research publications and several countries
released new fire models, such as Australia, Russia, and Canada. Like Fons’s model,
many of the newer models were physical and based on the laws of combustion, and
heat transfer. However all these model were not self-determining and they were not
free from empirical components. Many specific properties of fuels or gases should
be provided ahead to these models to work, properties that can only be measured
through experimentation. For this reason, a new wave of fire models started to
raise, made possible by the experiments and data-gathering of the previous decades:
empirical and semi-empirical models. [8]

One of the most important semi-empirical fire models was published in 1972 by
Dick Rothermel. His equations were suitable for so many wildfires that the Forest
Service implemented them in the first release of the National Fire Danger Rating
System (NFDRS), which initially simply consisted of lookup tables. Firefighters
manually filled in the wind and slope angle to determine the speed and direction of
the spread of the fire using paper and pencil. The NFDRS is computerised today,
but it continues to be based on Rothermel’s revolutionary equations. In reality, the
Rothermel model serves as the foundation for every fire model now being utilised
in the field.

Another theoretical approach born thanks to the increased computational power
in 1996 by Terry Clark [9]: fire spread models coupled with numerical atmospheric
models. The coupling could be done with computational fluid dynamics (CFD)
which simulate turbulent airflow at a very high resolution or with 3D numerical
weather prediction models. In both cases, this model allows fire to interact with
the atmosphere as it does in the real world.
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2.1 – Wildfire modelling

In general wildfire models are composed by a certain number of equations whose
solution usually gives values for rate of spread , flame height of fuel consumption.
Following this definition, as in [10], wildland fire mathematical models may be
classified:

• According to nature of equations:

– Theoretical models. They are based on the physics and chemistry of
combustion. They can be further divided into models that attempts to
represent only the physics and models that attempts to represent both
the physics and chemistry of fire spread[11];

– Semi-empirical models are often based on simple physical idea like the
conservation of energy principles without making difference between dif-
ferent heat transfer mechanisms nor consider the combustion chemical
processes[8];

– Empirical models are purely statistical models which are based upon
observation and experiment and not on theory[8];

– Mathematical models. They use a mathematical approach by implementing
mathematical ideas that appear similar to the spread of fires [12];

– Simulation and GIS models. They implement other types of models in a
simulation rather than modelling context and their primary function is to
convert one dimensional models to two dimensions and then propagate a
fire perimeter across a modelled landscape [12].

Author Year Country Type Fire Model
W. Fons [13] 1946 USA Theoretical Surface

McArthur [14] 1966 Australia Empirical Surface
Van Wagner [15] 1977 Canada Semi-Empirical Crown
Rothermel [16] 1972 USA Semi-Empirical Surface
Rothermel [17] 1991 USA Semi-Empirical Crown

Grishin [18] 1997 Russia Theoretical Surface
Linn [19] 1997 USA Theoretical Surface

Tarifa [20] 1965 USA Semi-Empirical Spotting
Albini [21] 1979 USA Theoretical Spotting

Frandsen [22] 1987 Canada Theoretical Ground

Table 2.1: Most important fire models. Current fire monitoring systems
incorporate powerful calculation tools with some of the most important research
models.
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Figure 2.1: Types of wildland fires. Ground fires occur in deep accumulations
of dead vegetation; surface fires burn only surface litter and duff; crown fires burn
trees up their entire. Each type of fire should be modelled in a different way as
they all have very different characteristics.

• According to physical system modelled:

– Surface fire models. Bushes, tiny trees, and anything with a height of less
than 2 m form the physical system for these fire, which are the simplest
to extinguish and do the least harm to the fores.[23];

– Crown fire models. The strata of surface and aerial plants that make up
the physical system are higher vegetation. These are the wildfires that
are most intense and hazardous.[23];

– Spotting models. The physical system is made up of firebrands or flaming
material that is moved away from main fire perimeter by the convection
column. It is a phenomenon that is mostly related to huge wildland fires,
and it can cause extremely dangerous scenarios. For example, firefighters
might become caught between two fire fronts, or in an urban wildland, it
could be the cause of building fires.;

– Ground fire models. Humus, peat, and other similar types of dead vegeta-
tion that have dried up sufficiently to burn compose the physical system.
Although they burn very slowly, these fires can become challenging to
completely extinguish or suppress. Sometimes, especially amid a pro-
tracted drought, these fires might smoulder underground all winter until
resurfacing in the spring [23].

2.1.2 Physics and chemistry of combustion
Fire is the complicated combination of energy released due to chemical reactions
and the transport of that energy to surrounding unburnt fuel. The energy is
released as heat and it allow the fuel to reach the ignition temperature and burn.
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2.1 – Wildfire modelling

Figure 2.2: Fire descriptive figures. Left: Fire triangle for non-flaming
combustion; Centre: fire tetrahedron for a sustained fire; Right: Multi-scale fire
triangles

This idea can be summed up by the so-called fire triangle (Figure 2.2). It is a
simple model to understand the necessary ingredients for a non-flaming combustion
comprised of three elements:

• Oxygen to sustain combustion;

• Heat to let the substance reach the ignition temperature;

• Fuel to have something burnable.

However, combustion alone is not enough to cause a fire. Actually, once a fire
has started, it needs to be sustained by exothermic chain reactions that allows it
to continue burning. So a sustained fire is described by a fire tetrahedron (Figure
2.2): a fire is stopped when one of the four elements is removed.

In the context of wildland fire, the fire triangle can be scaled up to apply to fire
spread over landscapes, as can be seen in the right figure (Figure 2.2). A wildland
fire is the resultant of the environment in which the fire is burning and the fire
triangle can be scaled up to apply to fire spread over landscapes and recurrence
of fire over time. A wildland fire is controlled by three elements, the so-called fire
environment triangle: fuel, topography and weather.

Topography describes the shape of the land surface and it is a combination of
elevation, slope (steepness of the land) and features like canyons, valleys, rivers,
etc. Elevation controls fuel distribution and condition as it may lead to different
rainfall patterns, temperature, relative humidity and so on. Steepness directly
influences the rate of spread, indeed fires burning upslope preheat and dry potential
fuel, which can lead to faster spread rates. Finally, features of topography also
influence the wind flow behavior: for example, complex terrain can result in gap
flow scenarios, where the wind accelerates in gaps between mountain tops.
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Weather play an important role to determine the conditions of fuels and how a
fire can spread. Indeed, temperature, precipitation, and relative humidity affect
the moisture content of fuels: low relative humidity and high temperatures result
in extremely dry fuels that are susceptible to ignition. At the time of ignition, wind
can be the dominant factor in fire spread as it increases contact between flames and
fuels and facilitate transport of heat through convection, creating the conditions
for a quicker spread in the wind direction.

Fire behaviour is also strongly influenced by both vegetative and structural fuel
characteristics. Its present is determined by land use and the material and its
moisture content determine the ignition potential.

Chemistry of combustion

The chemistry of combustion involved in wildland fire is complex for two main
reasons: the great amount of different fuels and the range of conditions over which
combustion can occur [11]. As different types of solids heat up, they will behave in
different ways: some solids first change into liquid before they form fuel vapour
and burn; other vapour directly upon heating. In general, solid organic materials
do not burn in flaming combustion directly, but must first be decomposed by heat
and chemical reactions into various combustible. This process of decomposition
caused by heat is called pyrolysis.

Figure 2.3: Wood pyrolysis. When a piece of wood is ignited, the pyrolysis,
but as the combustion continues, a char layer forms on the surface and deepens
as the pyrolysis penetrates into the wood. The char burns slower rate than that
of the wood following inward to to form grey ash. Unlike wood, the char burns
directly without being pyrolyzed into gases. These steps can be seen if we examine
a section of burning wood [24].
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Wildland fuel is generally composed of live and dead plant material consisting
primarily of leaf litter, twigs, bark, grasses, and shrubs. Typical forest fuel primarily
consists of cellulose, hemicellulose, and lignin in varying proportions, as well as
extractive and mineral substances.

So, the overall process of pyrolysis of fuels is believed to proceed as follows:

1. Dehydration: the temperature is raised from ambient temperature until the
fuel looses its moisture;

2. Fuel thermal degradation: the temperature continue to raise and the plant ma-
terial starts its decomposition process. Hemicellulose is the first to decompose
at 200–350°C [25], yielding predominantly volatile products such as carbon
dioxide, carbon monoxide and condensable vapours. Then cellulose undergoes
its degradation producing reactive gases that react with the oxygen of the air
with a temperature above 300°C [25]. With a temperature of 200–450°C[25],
also the decomposition of lignin starts. All gaseous decomposition products of
these substance are released into the atmosphere and subsequently cause fuel
ignition as well as support the combustion.

There are two types of thermal degradation reaction: volatilisation and char
formation. The first is an endothermic reaction whose major product is the
levoglucosan, which is often used as a chemical tracer for biomass burning in
atmospheric chemistry studies. Instead the production of char, which is a generic
term for carbonized solid fuels, is an exothermic reaction and it is the char that
reacts directly with the oxygen on the surface during non-flaming combustion.

Several kinetic models have been proposed for the description of the endothermic
and exothermic reactions that occur during pyrolysis, they are typically divided
into two groups: models based on the global decomposition of wood and models
based on the breakdown of wood’s constituents, namely hemicellulose, cellulose,
and lignin.

Physics of combustion

The physics involved in the combustion of wildland fuel and the behaviour of
wildland fires is complicated and highly related on the condition in which a fire is
burning. The primary physical process in a wildland fire is that of heat transfer.
There are three modes of heat transfer :

• Conductionis a process by which energy caused by molecular agitation, heat
is spontaneously transmitted from a hotter to a cooler body.;

• Convection is the transfer of heat by the movement of a gas or a liquid, even
if in wildfires liquid phases are really rare. However, the movement of a gas
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can be modelled using fluid dynamics laws for a continuous medium as the
molecules or particles of a gas are assumed to be continuous and act as a fluid
rather than a collection of particles;

• Radiation is electromagnetic radiation emitted from a hot source generated
by the thermal motion of particles in matter.

All these three methods are usually operating at the same time: radiation and
convection can transfer heat to the fuel surface and conduction can transfer heat
into the interior fuels. In low wind conditions, the dominating process is that of
radiation, but in conditions where wind is not insignificant, it is convection that
dominates. However, it is not reasonable to assume one works without the other
and thus both mechanisms must be considered.

Heat transfer by conduction is a slower process and has minor direct consequences
in the rate of spread of a wildland fire. Indeed, conduction carries heat through fuels
and can raise the temperature of fuels to the point that they ignite. Conduction
can preheat and dry larger fuels that are touching each other and may increase the
duration those fuels burn by promoting the internal transfer of heat if flammable
vegetation is abundant and continuous.

As seen in the chemistry section, gases are heated during the pyrolysis which
cause a reduction in density and a increase in the buoyancy: it results in the gas
rising. This moving upward can cause two main drawbacks:

• ignite the leaves and branches of trees and plants above the fire;

• turbulence can be caused in the flow.

The first case is a form of solid phase transport also called advection. The
floating embers, sometimes known as firebrands, might fall in regions that have
not yet burned and spark smaller flames. This behaviour, known as spotting, can
cause the fire to spread quickly.

Instead, turbulence acts to mix the heated gases with unburnt solid phase fuels
or ambient air, to increase flame immersion of fuel and it could have an effect on
the movement of firebrands and other solid phase combustion products, causing
spot fires to spread downwind of the main burning front.

Solid phase transport can happen in two different cases. The first is through
advection, so transport of solid materials by convective fluxes, as indeed the vertical
convective currents can also lift burning materials.

Even if convection, solid phase transport and conduction are important, radiation
is generally considered as the dominant heat transfer mechanism. The source of the
radiation emits energy in all directions until it comes into contact with something
that absorbs it. The substance’s molecular activity is increased by the absorbed
radiation, raising its temperature and the amount of heat it contains. Thermal
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emission from burning fuel surfaces and flames is the main radiation source in a
flame.

2.1.3 Fire management terminology
Commonly the terms danger, hazard and risk are used as synonyms, probably
because in many languages they are translated with one word, but they are
technically different. Basing on accurate definitions provided in [26] using FAO (i.e
Food ad Agriculture Organization of the United Nation) glossary, the three terms
could be described as follows:

• Fire hazard: it is the fire component regarding the fuels available for burning,
so a ratio between the amount of fuel available for combustion over all fuels
available in that area. This ratio is strictly correlated to fuel moisture content
as fuels with high moisture content are difficult to ignite;

• Fire danger : it expresses the difficulty of controlling an active fire. It is both
related to human factors, as burning area accessibility, and to weather and
topography conditions, as strong wind or steep slopes. It considers more
factors than the fire hazard, which relay only on the amount of burning fuels;

• Fire risk: it is the probability of a fire to spread in a specific situation and
the damage it might produce. It can be expressed with a simple formula:

Risk = Pign · Pprec · V (2.1)

where Pign is the probability of ignition, while Pprec is the probability that the
fuel allows the ignition and V is a measure for the expected loss due to the
fire. The ignition can be caused by a natural event, such as lightning, or by an
unintentional or intentional human action. Indeed, the evaluation of human
component requires an understanding of the way in which human activities
are related to fire occurrence.

A comprehensive evaluation of fire damage would require an analysis that is out
of the scope of this thesis, therefore from now on only the terms fire danger and
fire hazard will be used.

2.1.4 Fire danger rating systems
While dozens of variables have been pointed to as important drivers, the majority
fall into the three categories of climate, fuel, and socioeconomic. As already stated,
climate change is expected to have a strong impact on forest fire risk because of
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issues like warming temperatures, increased vapor pressure deficit, and drought
severity. Key problems related to fuels include abnormally dry fuel conditions, bark
beetle outbreaks, and fuel accumulation due to a legacy of fire suppression. In the
socioeconomic category, features that are routinely pointed to as contributors to
the wildfire crisis are the rise in the recreational use of forests, population density,
and the number of people living in the wildland-urban interface.

An effective way to summarize all the steps needed to manage these extreme
events with efficient response is the disaster management cycle [27]. It illustrates
how to reduce losses, to react during and immediately following a fire and to achieve
a rapid and effective recovery, with the following steps:

1. Prevention and Mitigation: preventive activities carried out to reduce the
probability of a disaster occurrence and, consequently, to reduce its damage;

2. Preparedness: plans, initiatives, rules to develop response capabilities;

3. Response: efforts to minimize the hazards created by the fire;

4. Rehabilitation and Recovery: strategies to support short and long term recov-
ery.

Each phase of this cycle involves a different group of stakeholders, each bearing
its own set of responsibilities, interests, and needs. For example, fuel conditions
are significant to efficiently clear-cut forest to limit fire spread in the mitigation
phase, to deploy resources in advance in the preparedness phase and to decide
attack strategies in the response phase[26].

Figure 2.4: The Disaster Management Cycle. This scheme breaks down
the different aspects of disaster management, from prevention to preparedness,
from response to recovery. It is essential to provide efficient and punctual hazards
handling.
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Being able to classify fire danger is the key idea to build strategies for each stage
of the disaster management cycle (Figure 2.4). Indeed, several fire danger rating
systems exist worldwide to support the decision-making process. The three most
important operational models are:

• McArthur Forest Fire Danger Index (FFDI): developed by a CSIRO (Com-
monwealth Scientific and Industrial Research Organisation) scientist called
McArthur, provides a measure of forest fire danger that combines a measure
of vegetation dryness with air temperature, wind speed and humidity [28]. It
is used in Australia and it is based upon the purely empirical model built by
McArthur [14];

• National Fire Danger Rating System (NFDRS): used in the United States,
it is a collection of fuel condition and fire behaviour indices computed from
weather station measurements. It is based upon the semi-empirical model of
Rothermel [16].

• Fire Weather Index (FWI): is a collection of different components that account
for the effects of fuel moisture and wind on fire behaviour and spread. This
system was born in Canada, but it has been proved to be robust and it is used
in Europe by EFFIS [29] (European Forest Fire Information System).

At the core of all three fire danger rating systems above mentioned there is the
fuel moisture content (FMC). It reflects the ratio of the water contained in the
sample to its dry mass and is determined by the formula

FMC = wt − wd

wd

where wt is the biomass before drying and wd is the dried biomass. The moisture
content is central as it has a major influence on the properties of the fuel: it will be
more difficult to ignite forest fuel with high moisture content, since a large amount
of heat is required for moisture evaporation.

Nowadays, remote sensing technology is widely used to determine FMC and
other useful parameters to provide a fire danger mapping.

2.2 Remote sensing and Earth observation
Remote sensing is the discipline based on the measurement of some property of an
object by an acquisition platform that is not in contact with the object. So the
goal is to obtain the most accurate measurement using the most appropriate sensor
on the post practical platform.
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2.2.1 Historical overview

The first remote sensing technique is photography with camera being the first
sensor. It dates back to 1858, when the first aerial photo was taken from a baloon
by the French photographer Gaspard-Félix Tournachon, known as "Nadar" over
Paris. However, hisphotographs no longer exist and therefore the earliest surviving
aerial photograph is from 1860 and it is a picture of Boston taken from 630m
(Figure 2.5).

Aerial photography became a recognized as a valuable tool during the First
World War. Aerial views of enormous surface regions were made possible by
cameras that were mounted aboard aircraft, and these views were crucial for
military reconnaissance. Aerial cameras had proven to be a really useful tool to
monitor enemy positions, movements and defenses so governments funding were
made to further improve this promising technology.

During World War II, the main idea was to expand the acquirable spectrum of
the camera. Instead of acquiring only color images, they started to capture other
types of images at different wavelengths of non-visible portions of electromagnetic
spectrum, thanks to the improvements of radar (radio detection and ranging),
thermal infra-red detection, and sonar (sound navigation ranging) systems. Thanks
to these technologies, multispectral remote sensing is born.

Figure 2.5: First aerial photo. "Boston, as the Eagle and the Wild Goose See
It" taken by James Wallace Black
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The development of satellites during the Cold War allowed remote sensing to
progress to a global scale. The Soviet Union launched the first artificial satellite,
Sputnik 1, into orbit in 1957, with cameras. The Cold War decade brought
about rapid developments in satellites and imaging technology. In 1972 Landsat
1, the first satellite designed specifically to study and to monitor the Earth’s
surface, was launched by the US. The original goal of the Landsat program was to
collect data from the Earth through remote sensing techniques. It captured over
300.000 multispectral images, thanks to its Multispectral Scanner (MSS), before
its termination in January 1978.

There are a great number satellites in operation today, many of which are used
for remote sensing applications: there are currently over 3,600 satellite orbiting
the Earth, but only approximately 1400 are operational. Among these satellites,
earth observation satellites consist in over 100 and each of them is equipped with
a range of sensors that can measure and record information about the Earth.
Governments frequently launch these satellites to keep an eye on Earth’s resources,
but private business organisations are also taking a greater interest in launching
earth observation satellites. [30]

Prior to 2008, the costs for a Landsat MSS image varied from 20 dollars
(1972–1978) to 200 dollars (1979–1982), but then a free and open data policy was
adopted. After that all major governative space agencies applied a free data policy
together with ESA, the European Space Agency.

Another important earth observation program is the Copernicus Programme. It
builds up on three different components:

• Space component with observation satellites and associated ground segment
with the mission of observing land, atmospheric and oceanographic parameters).
This consists of two categories of satellite missions: Contributing Missions
from other space agencies and the five Sentinel (space mission) families of the
European Space Agency;

• In-situ measurements with ground-based and airborne data-gathering networks
providing information on oceans, continental surface and atmosphere);

• Services developed by Copernicus and are mostly open-source, that cover six
main interacting themes: atmosphere, marine, land, climate, emergency and
security [31].

So satellites are specifically designed to monitor and measure specific information
about land, ocean, and weather, the table 2.2.1 show some active and inactive
governative satellites from different space agencies with a brief description of their
use.
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Mission Agency Activity period Description

Landsat (1-9) NASA 1973-

MSI high reso-
lution images of
land surfaces and
coastal areas

Envisat ESA 2002-2012

Different sensors
to monitor oceans
and natural haz-
ards and to obtain
a digital elevation
model

ACRIMSAT NASA 1999-2013
Sun’s UV to in-
frared energy out-
put

Jason (1-2) NASA and CNES 2011-2013

Radar altimeters
used to monitor
ocean surface
height

Sentinel-1(A,B) ESA 2014-
Copernicus Pro-
gram’s C-SAR
sensors

Sentinel-2(A,B,C) ESA 2015-
Copernicus Pro-
gram’s MSI
sensors

Aqua NASA 2002-

Interactions
among oceans,
land, atmosphere,
and biosphere

COSMO-SkyMed
1 to 4 ASI 2007 -

Seismic hazard
analysis, environ-
mental disaster
monitoring, de-
fence and security

PRISMA ASI 2019-
Development and
delivery of hyper-
spectral products

GOSAT JAXA 2009 -
Greenhouse Gases
Observing Satel-
lite

Table 2.2: Some governative earth observation satellites. [32]
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2.2.2 Spectroscopy
Spectroscopy is the study of matter and its properties via an analysis of the radiant
energy that is absorbed, emitted, or scattered by the target object. Although the
study of the interaction between visible light and materials was the original purpose
of spectroscopy, it has since been expanded to include the entire electromagnetic
spectrum, from short-wavelength X rays to long-wavelength microwaves.

The electromagnetic spectrum, shown in Figure 2.6, is important as the first
requirement for remote sensing is to have an energy source to illuminate the target
and this energy is indeed in the form of electromagnetic radiation. There are several
regions of the electromagnetic spectrum which are useful for remote sensing:

• Ultraviolet radiation helps rocks and minerals detection as it fluoresces them
and they emit visible light when irradiated;

• Visible radiation provides the visible usual colors. It helps discriminating
between objects, for example green reveals green vegetation and trees while
bluish-green color describes lakes;

• Infrared radiation can be thermal and it discloses information about the
temperature of the Earth’s surface;

• Microwave radiation can penetrate cloud cover, haze, dust, and even heavy
rainfalls to provide information even in bad weather conditions.

Figure 2.6: Electromagnetic Spectrum.
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Figure 2.7: Remote sensing acquisition process. (1) The sun provides the
radiant energy that falls on the Earth’s surface; (2) the atmosphere is crossed from
the source to the target and back again to the sensor platform; (3)the Earth’s
surface illuminated by the radiation reflects and/or reemits the incident energy; (4)
a platform with sensors receiving the energy reflected or emitted by the Earth’s
surface; (5) ground-based receiver that processes the information sent to it from the
sensors on the observation platform; (6) A final station dedicated to interpreting
the information processed by the ground-based receiver and presenting it in visual,
digital, or electronic form.

Through the remote sensing acquisition process decribed in Figure 2.7, incoming
light and radiation may be affected by atmospheric particles and gases, and energy
passing through the atmosphere will experience absorption and scattering:

• Scattering it occurs when a radiation path is deflected from its intended course
and it spreads the energy of the incident in all directions. So, the wavelength of
the radiation, the quantity of particles or gases, and the distance the radiation
travels through the atmosphere all affect how much scattering occurs;

• Absorption: it occurs when radiation energy is transformed into the excitation
energy of the molecules. The three main components of the atmosphere that
absorb radiation are ozone, carbon dioxide, and water vapour. While water
vapour absorbs a large part of incoming longwave infrared and shortwave
microwave radiation, carbon dioxide absorbs radiation in the far infrared
region of the spectrum, trapping heat inside the atmosphere. Ozone also
absorbs ultraviolet radiation.
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2.2.3 Types of remote sensing
So, in general, it is possible to create a spectral response for a target on the Earth’s
surface by analysing the energy that is reflected (or emitted) by that target over a
range of various wavelengths using different remote sensing technique. They can be
divided into two main categories based on the signal source that is used to examine
the item: passive remote sensing devices rely on reflected light to examine the itme,
while active ones need their own source of emission of light to work.

Active sensors sends their signal in the direction of the object and then check the
response. They can operate at any time of day as they don’t need sunlight. The
difference between active remote sensing techniques lies in what they send (light
or waves) and what they measure (e.g., distance, height, atmospheric conditions,
etc.), here are some examples:

• Radar sensors uses radio frequencies through an antenna that emits impulses,
but energy flow encounters an obstruction and, to some extent, scatters back
to the sensor. It is possible to calculate how far away the target is based on
the amount and distance travelled;

• Lidar sensors use light to measure distance by sending light pulses and
measuring the amount received;

• Laser altimeters are used to measure elevation.

Unlike active ones, passive remote sensing sensors do not direct their own energy
toward the surface, but sunlight reflected by the target is the source of natural
energy used. Because of this, it can only be used when there is adequate sunshine, as
there won’t be anything to reflect. Various band combinations are used to measure
the obtained quantity through multispectral or hyperspectral sensors. The number
of channels used in these combinations varies, but generally the range of bands
include both spectra visible and invisible (visible, IR, NIR, TIR, microwave). The
most often used passive remote sensing equipment includes several spectrometers
and radiometers, for example:

• Spectrometer can identify and examine spectral bands;

• Radiometer measures the power of radiation emitted by an object in specific
band ranges;

• Hyperspectral radiometer is able to distinguish among hundreds of spectral
bands thanks to its exceptionally high resolution;

• Imaging radiometer creates a surface picture by scanning it.

Regardless the type of remote sensing technique used, sensors data quality is
evaluated considering four types of resolution:
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• Radiometric resolution represents the amount of information given by each
pixel, so the number of bits that indicates the energy captured.Because there
are more values available to store information, there is better ability to
distinguish between even tiny variations in energy with increased radiometric
resolution;

• Spatial resolution is determined by the size of each pixel recorded in a raster
image and the area of the Earth’s surface that each pixel represents. More
detail can be seen when the resolution is finer (lower number);

• Spectral resolution is the capacity of a sensor to distinguish finer wavelengths,
or having more and smaller bands. Sensors categorised as multispectral
typically have from 3 to 10 bands, while hyperspectral sensors have hundreds
or thousands of bands. The spectral resolution is finer when the wavelength
range for a given band is smaller;

• Temporal resolution is The amount of time it takes a satellite to complete an
orbit and return to the same observation region. This resolution is influenced
by the orbit, the features of the sensor, and the swath size. The temporal
resolution is substantially higher for geostationary satellites since they rotate
at the same speed as the planet. The temporal resolution of polar orbiting
satellites can range from one day to sixteen days.

It is challenging to incorporate all the ideal qualities into a single remote sensor,
so trade-offs are necessary. This is why it is crucial to understand the kind of data
required for a particular field of study.

Spectral indexes

Spectral bands carry different types of information as every object has its own
chemical composition and each composition has its own spectral signature. As
shown in Figure 2.8, different Earth features have different spectral signatures:
turbid water is different from clear water, while dry soil is different from wet soil.
The intuition is that spectral bands can be used in many application, starting from
water monitoring, to land cover classification.

To obtain even more information, these bands can be combined into spectral
indexes. They enhance the contribution of some particular chemicals or features to
provide a more detailed of the object of interest. A wide range of features, such as
vegetation photosynthetic activity or vegetation moisture content can be extracted
using these indices, which can be computed without any bias or assumption as
they are essentially a straightforward modification of spectral bands.
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Figure 2.8: Spectral signatures of different Earth features within the
visible light spectrum. (Source [33], Credit: Jeannie Allen.)

Typical algebraic formula are normalized differences and ratio:

Index = Bx

By

Index = Bx − By

Bx + By

where Bx and By are two different spectral bands.
These kind of formulas help to enhance spectral features and to reduce the

impacts of illumination and, more significantly, shadows. There isn’t a single
mathematical formula from which to calculate all spectral indices because equipment,
platforms, and resolutions are different between different sensors. Spectral indexes
have a lot of potential, they also have some significant limitations: for example, a
given surface may have different signatures depending of many different factors,
such as approximations of atmospheric corrections or different latitudes, indeed
what is actually a normal value for a location at one time may not have the same
typical value for that area. So attention needs to be paid when building the index
pool for a specific task.

2.3 Remote sensing and wildfires: state-of-the-
art

Pre-fire, active fire, and post-fire are the three fire stages that can be used to
categorise wildfire monitoring and management tasks, and remote sensing can
contribute in each of them.
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• Pre-fire stage: the monitoring of this stage focuses on fuel types and their con-
ditions with a close relationship to tree species. They are influenced by factors
such as topography, land use, vegetation zones, climate, and meteorological
variables including wind speed;

• Active stage: phase in which the fire starts and spreads. Fire output and
intensity can both be measured and the fuel type, topography, and weather
all have an impact on this stage;

• Post-fire stage: after the fire has been extinguished, it is important to describe
what remains of the vegetation. Three possible measurements can be made
during this stage: mapping the burned area, determining the intensity of the
fire, tracking the vegetation’s recovery, and taking restoration measures.

Fuels’ type and state are mapped during the pre-fire phase. A combination of
factors, including vegetation species, form, and size arrangement, determine fuel.
Moisture content and the status of the fuel—live or dead—determine its condition.
The majority of remote sensing fuel-type mapping is carried out by classifying plant
functional kinds and using vegetation index methodologies ([34], [35]). LiDAR
structural data can supplement these analyses by potentially revealing details about
the structure of vegetation canopy [36].

Remote sensing methods for the active fire phase include temperature retrieval
and fire detection. For instance, MODIS and VIIRS satellites, two NASA satellites
with thermal bands, are used to retrieve data regarding active fires for EFFIS
Active Fire Monitoring tool [37]. The information is based on the detection of
thermal differences between a possible fire and the terrain around it. The presence
of a potential fire is identified as a "hot spot" if the temperature differential meets
a predetermined threshold.

The assessment of fire intensity and the mapping of burned areas are the main
post-fire procedures. Burned area maps for rapid damage assessments can also
be obtained from MODIS data. Unsupervised fire mapping processes are visually
checked and rectified using visual interpretation of the MODIS images. Because of
the 250 m image resolution, tiny flames cannot be precisely mapped. In addition to
thermal analysis, these objectives can addressed with specific spectral indices such
as the Normalized Burnt Ration (NBR) [38]. Additionally, in order to quantify
recovery outcomes, [39] integrated forest spatial structural information with spectral
information obtained from synthetic aperture radar and optical remote sensing.

To sum up, the majority of studies rely on optical vision, with thermal imagery
dominating for active fire detection. Because they have a higher spatial resolution
than MODIS-type sensors, Landsat and Sentinel-2 data are crucial components of
many systems. In addition, Sentinel-3 maybe used to supplement MODIS data to
identify current forest fires [40].
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Chapter 3

Dataset building

Wildfire behavior is driven by the interplay of three components: topography,
weather, and fuels, the so-called fire environment triangle presented in Section
2.1.2. These components need to be quantified precisely to identify locations with
elevated fire hazard potential: topography and weather data are available and
easily accessible, while fuel data strongly vary in space and time, so their detailed
characterization often demands resource-intensive field observation. The underlying
assumption of this work is that spectral indexes computed from multispectral data
can accurately represent continuous fuel properties while preserving their seasonal
behaviour.

After a presentation of the area of interest and its fire regime (Section 3.1), all
the data used to characterise fuels 3.2, weather 3.3 and topography 3.4 features
are described. Finally, the feature engineering work done to build the final dataset
is described in the last section 3.5.

3.1 Area of interest and its fire regime

Sicily is the largest island in the Mediterranean Sea with a total size of 25,711
km2. It has a typical Mediterranean climate which is typically characterized by
mild and wet winters and hot dry summers. Annual rainfall is highly variable,
in general precipitations are concentrated in fall and winter, while summer are
characterized by drought. The average annual rainfall varies from less than 50 cm
in the southeast coast to over 100 cm in the northeastern highlands. In addition to
that, especially in summer, it is common to have the Saharan wind called Sirocco.

The majority of Sicily’s interior is hilly, and when it is possible, it is heavily
farmed and there is a lot of seismic and volcanic activity, indeed Mount Etna is
the tallest active volcano in Europe (3,220 metres).
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Figure 3.1: Sicily Land Cover Map. Yellow describes agricultural areas;
Orange describes permanent crops, like fruit trees; Purple describes vineyards;
Green describes forest and seminatural areas; Light grey describes bare rocks.
(Source: Arpa Sicilia processing of Copernicus Corine Land Cover data 2018 [41]).

Thanks to Arpa’s processing of Copernicus Corine Land Cover data from 2018,
the Figure 3.1 gives a more comprehensive representation of Sicily’s land cover.
Agriculture, woods, and semi-natural regions make up the majority of the land
cover. Arable fields are the most common type of agricultural land, followed by
fruit trees(orange) and vineyards (purple).

Being covered mostly in vegetation, Sicily is the region most frequently crossed
by wildfires, indeed from 2016 to 2021 there has been 6860 fires. Figure 3.2 shows
that 2016 and 2017 were the years with the major number of fires, while 2018 were
the year with the less number of fires. Typically the number of wildfires slightly
increases between May and June, reaching a peak in August. In February and
August 2021 there has been the two biggest wildfires during this period of time.
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Figure 3.2: Sicily wildfires from 2016 to 2021. The first shows the yearly
trend of the number of fires; the second plot shows the mean area yearly trend;
in the third plot the green areas are the burnt polygons to describe fires spatial
distribution (Data Source Comando del Corpo Forestale della Regione Siciliana)
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3.2 Fuel data
Fuel data are essential to make a meaningful monitoring but frequently incomplete
or outdated as they should be usually taken in-situ and it is a costly procedure.
This work makes use of two different sources: LUCAS dataset and Sentinel-2
multispectral images. LUCAS is a European dataset with in-situ collected data
that provides land cover information (Section 3.2.1); while Sentinel-2 images will
be used to compute spectral indexes (Section 3.2.2).

3.2.1 LUCAS
LUCAS is a Land Use / Cover Area Frame Survey in which data are actually
gathered through direct observations on the entirety of the EU’s territory. The aim
is to create a uniform framework for coherent sampling plans, classifications, and
data collection processes to provide unbiased statistics on land use for agriculture
and environmental and landscapes monitoring in the European Union.

Figure 3.3: Sicily distribution of LUCAS points. (Data Source: LUCAS
2018 [42])

30



3.2 – Fuel data

LUCAS points sampling starts from a 1 Km2 grid of 4.400.000 points across the
full territory of the European Union. A subset of 1.1 million points that make up a
2km2 grid are divided in land cover classes through remote sensed images. Among
these points, a stratified sub-sample of points is selected by an iterative algorithm
to run an in-situ survey. To reduce the expense of data gathering effort, sites
over 1500 metres high or far from the road network are excluded from the second
phase subset. However, these locations are analyzed with image interpretation and
classified using regression models that also incorporate data from prior surveys.

In Sicily there are 6423 points of LUCAS grid, and Figure 3.3 shows their
distribution: the most common classes are arable land with 30%, wooded areas
with 20% and permanent crops with 17%. The major difference between LUCAS
and CLC (Figure 3.1) is how the labelling is accomplished: the majority of LUCAS
points are in-situ data, whereas CLC is a processing carried out using LUCAS
points and multispectral images, without any additional in-ground information.
Regarding this work, the LUCAS dataset is preferred due of its detailed information.
Additionally, EUROSTAT will unveil a fresh, updated version of LUCAS before
the end of 2022 [43].

3.2.2 Multispectral data: Sentinel-2
The European Space Agency (ESA) developed the Sentinel-2 mission to acquire
high spatial resolution optical imagery as part of the Copernicus programme of the
European Union (EU).

Band Num Wavelenght (nm) Bandwidth (nm) Res (m)
Coastal 1 442.7 21 60

Blue 2 492.4 66 10
Green 3 559.8 36 10
Red 4 664.6 31 10

Red Edge 1 5 704.1 15 20
Red Edge 2 6 740.5 15 20
Red Edge 3 8 832.8 20 10

NIR 1 8 832.8 106 10
NIR 2 8A 864.7 21 20

Water Vapour 9 945.1 20 60
SWIR 1 10 1373.5 31 60
SWIR 2 11 1613.7 91 20
SWIR 3 12 2202.4 175 20

Table 3.1: Sentinel-2 spectral bands.
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Figure 3.4: Sentinel-2 UTM Tiling. (Data Source: ESA [44])

The Sentinel-2 mission improves the continuation of services that monitor the
earth’s surface using two satellites Sentinel-2A (launched on 23 June 2015) and
Sentinel-SB (launched on 7 March 2017). The satellites are polar-orbiting phased
at 180 degrees to each other in the same Sun-synchronous orbit at a mean altitude
of 786 km, allowing them to achieve a high revisit time (10 days at the equator
with one satellite and 5 days with two satellites under cloud-free conditions). The
satellites also carry a MultiSpectral Instrument (MSI), made by Astrium SAS
(France), that acquires images composed of 13 different bands: four bands at 10 m
(meaning each pixel of the sensed image covers an area of 10 m x 10 m), six bands
at 20 m and three bands at 60 m spatial resolution as listed in Table 3.2.2.

Every image the MSI instrument collects is carefully processed at multiple
processing levels:

• Level-0 (L0) products: raw data packaged for long-term storing and upcoming
reprocessing processes;

• Level-1A (L1A) products: Instrument data that has not been compressed
with rough pixel alignment between images from different spectral bands and
detector modules. Neither radiometric adjustments nor resampling have been
used. These goods are utilised for calibrating;

• Level-1B (L1B) products: Top-of-atmosphere (TOA) radiances with com-
plete radiometric adjustments. These items are used for quality assurance,
calibration, and validation;

• Level-1C (L1C) products: TOA reflectances in the geometry of cartography;

• Level-2A (L2A) products: Bottom-Of-Atmosphere (BOA) reflectances in
cartographic geometry.
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Figure 3.5: L1C and L2A data comparison. Top-of-atmosphere (TOA)
Level-1C image data on the left and associated Level-2A Bottom-of-atmosphere
(BOA) image data (right) (Image Source: ESA [45])

The granules, also known as tiles, for Level-1C and Level-2A are 100x100km2
ortho-images in the UTM/WGS84 projection. The 60 zones that make up the
Earth’s surface are determined by the UTM (Universal Transverse Mercator) system
as shown in Figure 3.4. Images can completely or partially cover tiles depending
on their orbit. Both L1C and L2A product are publicly accessible: while L1C from
data are available from 2016, while already atmospherically corrected L2A images
are from March 2018. Figure 3.5 shows that BOA images (L2A) are clearer and
shaper than TOA ones(L1C) and it is for this reason that in sperimental works
atmosferically corrected images area used. As wildfire data used in this work dates
back to 2016, all images of 2016 and 2017 needs to be atmosferically corrected to
obtain L2A products, and so L1C Sicily products will be processed using Sen2Cor
ESA processor [46], briefly described in the next section.

Sen2Cor processing tool

The main Sen2Cor processing steps are shown in Figure 3.6. The processing is split
into two parts: Scene Classification (SC) that provides a classification map of the
image, and Atmospheric Correction which aims at transforming TOA reflectance
into BOA reflectance. SC includes four different classes for clouds and six different
classifications for shadows, cloud shadows, vegetation, soils/deserts, water and
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snow as shown in Figure 3.7. Thanks to this mapping the recovery of Aerosol
Optical Thickness (AOT) and Water Vapour (WV) content and Cloud Detection
are possible, WV and AOT lead to the final conversion of TOA to Bottom-Of-
Atmosphere (BOA). So, Scene Classification Layer (SCL), Quality Indicators for
cloud and snow probability, AOT and WV maps, and surface (or BOA) reflectance
images, all of which are available at various spatial resolutions, are the Level-2A
outputs (60 m, 20 m and 10 m).

Figure 3.6: Sen2Cor processing steps. Scene classification is made as a first
step to perform Cirrus correction, Aerosol Optical Thickness (AOT) and Water
Vapour content retrieval. After that, the Top-of-Atmosphere (TOA) to Bottom-of-
Atmosphere (BOA) correction is done, to finally produce a L2A image.

Figure 3.7: Scene Classification Layer Labels. Scene classification classes
produces as the first step from Sen2Cor processing tool.
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Spectral indexes

Vegetation indices are considered straightforward methods for obtaining specific
information from remote sensing products. They are computed mathematically
from spectral bands without any assumption on the study region, such as climatic
conditions, vegetation that is there, etc.

The selection of the presented pool of indexes has been carefully done using
literature focusing on the main task of this thesis. Here’s a list of all the chosen
families with the description and the formula for every index. For major clarity,
formulas are written using both general bands names and Sentinel-2 names.

Broadband greenness family. The broadband greenness indexes are used
to evaluate the overall density and vitality of greenery. They are combinations
of reflectance metrics sensitive to the combined effects of canopy chlorophyll
concentration, foliage chlorophyll concentration, canopy leaf area, foliage clumping,
and canopy architecture. They give an indication of the quantity of photosynthetic
material present in vegetation overall, which is crucial to understand the condition
of vegetation for the prediction of a wildfire event. Here’s a list of the two broadband
greenness indexes used in this work:

• NDVI (i.e Normalized Difference Vegetation Index ) [47], [48], [49]: it serves
as a measure for abundant, healthy vegetation; it is sensitive to the effects
of foliage chlorophyll concentration, canopy leaf area, foliage clumping and
canopy architecture. This index’s value lies between -1 and 1 and the typical
range for greenery is between 0.2 and 0.8:

NDV I = NIR1 − RED

NIR1 + RED
= B8 − B4

B8 + B4

• MSAVI2 (i.e Modified Soil Adjusted Vegetation Index 2) [48]: it is a variation
of the MSAVI. The first version of MSAVI suppresses the effects of soil pixels
using a canopy background adjustment factor (L), which is a function of
vegetation density and frequently necessitates prior knowledge of vegetation
amounts. MSAVI2 is based on an inductive method that does not employ a
constant L value to emphasise healthy vegetation, and it also decreases soil
noise and enhances the dynamic range of the vegetation signal:

MSAV I2 =
2 · NIR1 + 1 −

ñ
(2 · NIR1 + 1)2 − 8 · (NIR1 − RED)

2

=
2 · B8 + 1 −

ñ
(2 · B8 + 1)2 − 8 · (B8 − B4)

2
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Narrowband Greenness family. Narrowband greenness indexes are a com-
bination of reflectance measures sensitive to the different effects of canopy leaf
area, foliage clumping, and narrowband chlorophyll concentration. The purpose
of these indexes is still to offer a measure of the total quantity and quality of
photosynthetic material in vegetation, but they are made to be more sensitive to
tiny changes in vegetation health than the broadband greenness indexes. There is
not a direct connection with a fire event, these indexes can be used to detect and
monitor forests which are one of the main fuels for a fire.

• RENDVI (i.e Red Edge Normalized Difference Vegetation Index) [47]: This
index is an adjustment to the standard broadband NDVI. Instead of employing
the primary absorption and reflectance peaks, this index uses bands along the
red edge. It takes advantage of the vegetation’s red edge’s sensitivity to small
variations in canopy leaf content, gap fraction, and senescence. This index’s
value lies between -1 and 1. The typical range for greenery is between 0.2 and
0.9:

RENDV I = E.EDGE2 − E.EDGE1

E.EDGE2 + E.EDGE1
= B6 − B5

B6 + B5

Burnt indexes family. Burnt indexes use NIR and SWIR bands to highlights
burned areas, in this way it is also possible to monitor the recovery phase of an
already burnt area. These indexes may not be able to distinguish between water
bodies and burned areas because of its low-reflectance characteristic, so the water
content family are important also to quantify areas unrelated to flames in order
to get over this problem. In general, burned areas reflect more strongly in the
shortwave infrared band than they do in the near infrared, on average, so another
index is introduced which considers only SWIR bands.

• NBR (i.e Normalized Burn Ratio) [49], [38] : This indicator draws attention
to burned regions in large fire zones with a normalised difference using NIR
and SWIR wavelengths. In general, healthy vegetation is indicated by a high
NBR value, whereas bare ground and recently burned areas are indicated by
a low value:

NBR = NIR1 − SWIR3

NIR1 + SWIR3
= B08 − B12

B08 + B12
• NBR2 (i.e Normalized Burn Ratio2) [49]: it modifies NBR to highlight water

sensitivity in vegetation and may be useful in post-fire recovery studies:

NBR2 = SWIR2 − SWIR3

SWIR2 + SWIR3
= B11 − B12

B11 + B12
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Leaf Pigments. These indexes do not measure the chlorophyll content as
greenness indexed, but the concentration of stress-related pigments as they are are
present in higher concentrations in weakened vegetation. These two pigments are
usually anthocyanins and carotenoids, but only the first ones are usually used to
detect forest.

• ARI [47]: Higher plants often include anthocyanins, so pigments responsible
for their red, blue, and purple colouring. They are thought of as indicators of
many kinds of plant stressors, they offer useful information on the physiological
status of plants. In general, increases in ARI are a sign of new growth or
dying vegetation in the canopy. This index takes advantage of the absorption
characteristics of stress-related pigments by using reflectance measurements
in the visible spectrum:

ARI = 1
GREEN

− 1
R.EDGE1

= 1
B3 − 1

B5

Water Content family. The canopy water content indexes are an indication
of how much water is present in the canopy of leaves. A plant’s water content is
crucial since a plant with more water tends to be healthier, develop more quickly,
and be more resistant to fire. These indexes employ reflectance measurements to
obtain measurements of the total column water content and so are really useful in
a fire prediction scenario as they can provide a picture of the fuel moisture content.

• NDWI (i.e Normalized Difference Water Index) [34]: it is sensitive to changes
in water content of vegetative and it is able to detect subtle changes in water
content of the water bodies. It ranges from -1 to 1

NDWI = GREEN − NIR1

NIR1 + GREEN
= B3 − B8

B3 + B8

• NMDI (i.e Normalized Multi-band Drought Index) [34], [49]: it measures
the water content of the plant canopy by taking into account a soil moisture
background to monitor potential drought conditions. The of NIR and SWIR
bands eliminates water changes due to the internal structure and dry matter
content of the leaf, increasing the precision of the calculation of the vegetation’s
total column water content [50]. In general, this index values range from 0.7
to 1 for dry soil, 0.6 to 0.7 for soil with intermediate moisture, and less than
0.6 for wet soil

NMDI = NIR2 − SWIR2

NIR2 + SWIR2
= B8A − B11

B8A + B11
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3.3 Weather data
Weather is another element of the fire environment and it will be included in this
analysis with the use of ERA5 dataset. ERA5 is a reanalysis dataset produced by
ECMWF(European Centre for Medium-Range Weather Forecasts). It combines
vast observations from satellites, aircraft, land and sea based weather sensors with
atmospheric model data into a globally complete and consistent dataset using
the laws of physics. This method is uses numerical weather prediction models
to forecast weather parameters which are later combined with in-situ/satellite
observations in a physical optimal way. ERA5 provides hourly data on many
atmospheric, land-surface and sea-state parameters, on regular latitude-longitude
grids at 0.25° × 0.25° (approx 28km) lat/lon resolution.

The family of ERA5 datasets comprised the ERA5-Land dataset [51], which
is a land surface dataset produced at higher resolution (0.1° × 0.1°, approx 9km)
with no additional data assimilation [52]. This enhanced spatial resolution makes
this dataset very useful for all kind of land surface applications [51].

Relying on the variables used in all physical wildfire models, in the table 3.3
there is the list of the weather parameters used and how they were aggregated to
have a weekly value. Following, there are a more detailed description for some less
intuitive parameter.

Parameter Unit
Temperature (2t) K

Eastward wind speed (u10) ms−1

Northward wind speed (v10) ms−1

Relative humidity (u) %
Surface solar radiation downwards (ssrd) J m−2

Total Precipitation (tp) m

Table 3.2: Weather variables and statistics used in this work. Tempera-
ture, wind, precipitation and solar radiation are native ERA5Land paramenters,
while relative humidity has been computed using vapour pressure and dewpoint
temperature.

Relative Humidity. It is a parameter which describes the amount of water
vapour present in air expressed as a percentage of the amount needed for saturation
at the same temperature. It is not archived directly in ERA5 datasets, but using
temperature (T ), and dewpoint temperature (Td), is possible to compute relative
humidity as the ratio of vapor pressure (e(Td)) to saturation vapor pressures (es(Td))
[53].
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So the relative humidity u is given by

rh = e(Td)
es(T )

where Rdry = 287.0597, Rvap = 461.5250, a1 = 611.21 hPa, a3 = 17.502,
a4 = 32.19 K and T0 = 273.16 K are constant parameters taken form Chapter 7 of
[54]. Saturation vapour pressure es(T ) is computed with the following formula

es(T ) = a1e
a3

1
Td−T0
Td−a4

2
Low humidity takes moisture from the fuels, and fuels in turn, take moisture

from the air when the humidity is high. Light fuels gain and lose moisture quickly
with changes in relative humidity, so when the the value of relative humidity
drops, fire behavior increases as they become drier. While, heavy fuels, respond to
humidity changes more slowly.

Surface Solar Radiation Downwards. It is the amount of solar radiation
reaching the surface of the Earth, then scattered, absorbed or transmitted by the
atmosphere and reflected or absorbed by the surface[51]. This variable comprises
both direct and diffuse solar radiation as follows

Sdn
surf = Sdn,direct

surf + Sdn,diffuse
surf

where Sdn,direct
surf is the surface solar radiation direct and Sdn,diffuse

surf surface solar
radiation diffuse, as shown in Figure 3.8.

This variable is a good approximation of the total amount of energy provided by
solar radiation. Indeed, thermal radiation is one of the main heat transfer processes
and, as previously underlined, heat is necessary to reach the ignition temperature.

Figure 3.8: Schematic of the short-wave radiative energy flows in the
atmosphere. Radiation from the Sun is partly reflected back to space by clouds
and particles in the atmosphere (aerosols) and some of it is absorbed. The rest is
incident on the Earth’s surface (Source ECMWFF [55]).
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3.4 Topography data
The topographical features will be obtained from European Digital Elevation Model
developed by Copernicus Programme [56]. A digital elevation model (DEM) is a
representation of the topographic surface of the Earth’s naked ground (bare earth),
without considering trees, structures, or other surface items. It is a raster file with
an elevation value for each 25x25 m2 area.

Elevation is not the only interesting topographical characteristic, indeed starting
from EU-DEM other variables maybe computed, such as slope and aspect.

• Elevation is required for temperature and humidity adjustment and it’s given
directly by EU-DEM, so no further computations are required;

• Slope is useful to understand direct effects on fire spread, determining the angle
of incident solar radiation to alter fuel moisture, and converting spread rates
and directions from the surface to horizontal coordinates. It was computed
with algorithm implemented in RichDEM [57] based on [58]. (Figure 3.9);

• Aspect identifies the directions of the slopes faces. For example, a south-facing
hill is significantly hotter, dryer, while north-facing slopes receive less direct
sunlight due to their orientation, so fuels may have very different characteristics.
It was computed with algorithm implemented in RichDEM [57] based on [58].
(Figure 3.9)

Figure 3.9: Sicily topographical features. On the left, the aspect map in
degrees describes the direction of the maximum slope of the cell, while the map on
the right describes values in degree of the slope on the area. (Data Source: DEM
Copernicus [56])
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3.5 Feature engineering sub-framework
This section outlines every step that was taken to construct the training and test
sets. The train dataset will span the years 2016 through 2020, while the test will
include all of the data from the year 2021. Older wildfire data were available, but
as Sentinel-2 hadn’t been launched until 2016, all spectral indexes data would have
been missing.

There are four sequential step performed: subarea selection, dataset core building,
dataset features computing and dataset filling. Every step will be explained in the
following sections

Subarea selection

Sentinel-2 tiles were used to select the subarea since it is the most effective technique
to obtain the wider burnt region while limiting the amount of MS image storage.
Figure 3.10 depicts 12 distinct tiles, each covering an area of 100x100km2 and it
is clear how many tiles are sea for the greatest part. In addition to that, given
that each MSI image is approximately 1 Gb, that there are between 70 and 100
images accessible each year, and this thesis spans 6 years, the necessary storage
would have been the order of 50 Tb. So two tiles have been chosen considering
the statistics shown in Figure 3.11: amount of land in the single tile, amount of
Sicily land in the tile and number of fires. The tiles 33SVB and 33SUB contains
4745 fires over the 6860 provided by Comando del Corpo Forestale della Regione
Siciliana. They are highlighted in green in Figure 3.10.

Figure 3.10: Sicily Sentinel-2 Tiles. Sentinel-2 tiles are 100x100 km2 areas in
UTM projection. Squares in the picture represent tiles that intersects Sicily: the
green ones are the two tiles used in this thesis.
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Figure 3.11: Sentinel2 tiles over Sicily statistics. The green distribution
shows the percentage of land for each tile; the red distribution describes the
percentage of land for the entire region; the pink distribution is the number of fires
per tiles. 42
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Dataset core building

Since feature extraction from raw data is a finite operation, the entire subarea
is covered by the grid. A point grid would be denser and have superior spatial
resolution, but it will not be able to consider the area in its entirety, whereas a
square grid would provide statistics over the area and not punctual information,
but can cover the full area without missing anything. Considering the task and the
spatial resolution of the features used, the choice has been to use a square grid,
more precisely a grid of 200x200 m2 squares, shown in Figure 3.12.

The gridded area contains 43963 distinct areas 10.01% of which have experienced
at least one burn. There are many unburnt areas which are undoubtedly really
similar cases, so it is useless to consider one instance for one area as it does not help
the model to distinguish between burned and unburnt areas. Instead, the goal is
to feed the model varying temporal information for a particular area so that it can
be used to rebuild a historical perspective. With an average of 3/4 multispectral
images per month and a 20% cloud coverage, it is impossible to perform it as a
daily task, so the temporal resolution of this work is being set at one week.

According to the theory, If there has been a fire in a certain area on a specific
week, the fuel’s moisture content has probably dropped in the weeks before, or the
current week’s weather forecast does not call for rain. Additionally, only 67.58% of
burnt areas experienced only one fire, so there are regions where there have been
several fires: 20.55% had two fires, 7.14% three fires and so on. Probably, some
fires have overlapped and some of are just very close and fall in the same square.
But for this reason, it’s also crucial that the model recognises that just because a
region has previously burned, it doesn’t indicate that it can’t do so again or even
more than once. There are areas that have a burnt 11 time from 2016 to 2021, for
example. Due to this, a binary already burned feature and a previously fires count
are two additional features that are taken into account.

Figure 3.12: Gridded subarea example. The grid covers only the land portion
of the area and the green polygons under blue gridded squares are areas burnt
between 2016 an 2021.
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Following this idea, each area will have multiple instances in the dataset, de-
scribing a sort of time series for its features. A single fire event area is filled in the
dataset as follows:

• Present instance: the week-year of the fire event;

• Past instances: there are two different instances, the older one is exactly one
year before the fire event, in order to have seasonality pattern that didn’t lead
to fire while the more recent one is taken only 4 weeks before the event to
have trend behaviour;

• Future instance: 6 weeks after the fire event. In these instances the already
burnt feature is set to 1 and the count increases.

In multi-fire instances, the same theory would produce inaccurate information.
Consider a location that experienced a fire in week 30 of 2017 and another fire in
week 25 of 2018. When considering the second event, the older past instance on
week 25 of 2017 would not have been already burnt, but on week 21 of 2018 the fire
already happened, so the flag should be set to False in the first past instance and to
True in the more recent instance. Since the complexity of these cases increases when
there are more fires in a region, each multiple case has been handled independently
to avoid having this illogical information.

Both the train set and the test set are designed with this concept in mind as
even the test set has multi-fires areas, indeed 6% of burnt areas had two different
fire events in 2021.

Figure 3.13: Areas selected for the dataset. The plot shows the centroids of
the selected areas: the red dots are burnt regions while green ones are vegetation
areas never burnt.
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Without any further addition, the dataset would at this point consist entirely of
locations that have burned at least once. This idea is really far from reality, thus it
is necessary to select some areas that have never burned. The never-burnt areas
sampling cannot be performed randomly to have a uniform spatial distribution
so LUCAS dataset’s points have been considered: all never-burnt squares which
contained a LUCAS points labelled with a vegetation class have been added to the
dataset. Figure 3.13 shows how this idea lead to a spatial uniform dataset.

It is crucial to emphasise that all these criteria are applied to both the training
and test sets, which should present a picture as accurate to reality as possible. As
a result, there should be areas that have already burned, areas that have never
burned where a fire occurred, and areas that have never burned. In addition to
that, the spatial area information have been omitted in order to make the model
as general as possible.

At the end of this phase it is possible to check the label distribution. Figure
3.14 displays the target distribution in both training and testing: A fire event is
described by 20% of instances in both datasets. This imbalance is obviously out
of proportion with reality, which finds a maximum rate of 7 percent for burned
areas in 2021. Even though it is not a perfect representation of reality, this 80/20
imbalance is a significant imbalance for a machine learning model and will require
special attention.

The creation of a dataset that could accurately depict the seasonal fire trend
was the other key goal. In Figure 3.15 the dataset’s train and test distributions are
compared to actual yearly distributions and it is clear that they all have a very
similar trend.

Figure 3.14: Target distribution in the dataset. These pltos shows target
distribution in the test (on the left) and in the train (on the right). The positive
class (orange) are the instances of a fire event occurence, while the negative class
(blue) are non-fire cases.
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Figure 3.15: Train and test distributions. The histograms show positive fire
instances of the dataset, while the lineplots presents is the true fire trend.
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Figure 3.16: The second and the third step of the dataset building. The
result of the subarea selection was the union of two Sentinel-2 tiles: 33SUB and
33SVB. In the dataset core building phase (red), the squares of the subarea grid
were divided into burnt and unburnt in order to fill the dataset with different
instances that respect the seasonal fire trend and to add never-burnt instances. For
this subset of areas, all the features have been computed in the third step (green).
These features have been statistical aggregated both spatially (over the area) and
temporally(for a given week).
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Dataset features computations

A preliminar step for this phase is the acquisition of Sentinel-2 images. It is
significant to mention that clouds are a significant problem for multispectral
images, since the presence of a cloud in the image can alter the value of the bands,
and as a results, of the derived spectral indexes. Due to this, an option called
"cloud coverage" that designates the area of the sky that is typically veiled by
clouds can be adjusted while images are being retrieved. In this work, a 20% cloud
coverage was chosen, yielding a total of around 500 photos for 650 Gb. Because
L2A products weren’t accessible until 2018, L1C products for 2016 and 2017 were
downloaded, and they were atmospherically corrected using the Sen2Cor (v5.5)
tool to have uniform images (L2A) for the full time period taken into consideration.

It is now possible to compute the feature required to fill the dataset using the
areas chosen in the dataset core building stage (Figure 3.16).

• Topographical features have been computed for every area id using RichDEM
package [57];

• Hourly weather features for each area were extracted from ERA5Land and
relative Humidity was computed using MetPy package [53]. Temperature,
Wind, Solar Radiation and Relative Humidity were aggregated by week with
mean and standard deviation. Total Precipitations were instead aggregated
as the sum of weekly precipitations;

• Spectral indexes for the selected areas where computed from multi-spectral
images using zonal statistics of mean and standard deviation. In addition, a
scene classification label, selected with majority voting, was matched to every
single area id.

Multispectral images could have some anomalies and the scene classification
layer is used to filter these cases: for example, even if the cloud coverage is low,
there is still a possibility of finding a cloud, which will alter the value of computed
spectral indexes. So, all instances with scene classification labels not in range 3-8
are dropped (see Figure 3.7 for scene classification labels).

Three new datasets, one for each feature, will be produced as a result of these
calculations: the topography dataset will simply contain variables for all locations
that were chosen, while the weather and spectral index datasets both have a time
series structure. Weekly weather time series don’t have any missing values, but
spectral indices do. There are two types of missing values: those related to the
absence of data during the specified week, maybe as a result of high cloud cover,
and those related to scene classification filtering, therefore the number of missing
values may vary by region.
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Dataset filling

The efforts done in the dataset core and the features computations steps are
combined in this final stage. Keep in mind that a unique dataset core instance
is given by area, year, and week, to fill each instance, area id is used to pick
the topographical features, while year and week attributes are used to extract
values from time series datasets of weather and spectral indexes corresponding to
specific weeks (Figure 3.17). Since the only information that would be available
in a real-world scenario to estimate a fire risk label would come from weather
forecasting, weather data are taken for the current week. Instead, fuel data are
instead taken for the two weeks prior to the event as an information about the fuel
status trend. When the last two weeks were missing for the spectral indexes time
series, the last two available information were taken.

So, an instance of the final dataset would have five different information:

• Past information with fuel data of the last two weeks;

• Future information with weather forecasting;

• Area fire regime information with the count of previous fires and the already
burnt flag;

• Seasonality information thanks to year and week attributes;

• Topographical information for the considered area.

Figure 3.17: Dataset filling step considering one area. For each instance of
the output of dataset core step(red), features are extracted from the three outputs
of the dataset features computation step(green).
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Chapter 4

Methodology

This chapter presents all the methods of pre-processing and classification used on
the dataset created applying the sub-framework presented in the previous section.

The dataset contains features of many formats and scales, ranging from Kelvin
to dimensionless indices, so a feature scaling (Section 4.2) is executed along with a
feature selection to reduce the tasks’s dimensionality (Section 4.1).

The classification task will be performed both using classical machine learning
models (Section 4.3), such as Support Vector Machines and K-Nearest Neighbour
and using ensemble methods (Section 4.4), such as Gradient Boosting or Bagging.
The validation methods and the metrics used are also explained in Section 4.5 and
Section4.6 respectively.

From the exploratory analysis carried out in the previous section (Figure 3.14),
it emerged that the dataset is highly unbalanced because of the nature of the target.
As most of the machine learning methods are built on the assumption of an equal
number of examples for each class, imbalanced classification is a challenge. In the
final section (Section 4.7), some specific techniques to deal with this problem are
presented.

4.1 Feature Selection
The basic idea of feature selection is to lower the number of input variables in order
to enhance the efficiency of the model while also lowering the computational cost
of modelling.

One popular technique used for features selection is Recursive Feature Elim-
ination (RFE). Using all of the features in the training dataset as a starting point,
RFE attempts identify a subset of features by sequentially removing one at a time
until the desired number of features is left. This is accomplished by first fitting
a machine learning algorithm (Random Forest in this case), ranking the features
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according to relevance, eliminating the least important features, and then re-fitting
the model. This process is repeated until a fixed amount of attributes is present.
In Section 5.1 the list of removed features is shown.

4.2 Feature Scaling
Feature scaling is a method for standardizing the independent features in the data
over a predetermined range, typically between 0 and 1. It is done to deal with
extremely variable magnitudes, values, or units. In this study case there are many
different scales, from Kelvin to Pascal, from slope degrees to dimensionless indexes,
so feature scaling is essential to avoid classification algorithms prioritising larger
values over smaller ones.

The scaling method used in this thesis is standardization, which centres the
numbers around the mean and uses a unit standard deviation. As a result, the
attribute’s mean becomes zero, and the distribution that results has a unit standard
deviation. The formula for standardization is the following

X ′ = X − µ

σ

where µ is the mean of the feature values and σ the standard deviation.

4.3 Classification models
In this thesis the machine learning task performed is supervised classification, so
in this section some of the most popular models are presented, with an analysis of
their advantages and disadvantages.

4.3.1 Random Forest
The Random Forest is a supervised learning technique that consists in growing
multiple decision trees which are later combined to produce a prediction based on
majority voting.

Each decision tree starts with a root node and it expands into many branches,
forming a structure similar to the one of a tree. It simply asks a question and
based on Yes/No answer and it expands into subtrees, each trained on a separate
subset of the training data in order to avoid having identical trees.

Classifying a test record is straightforward once a decision tree has been con-
structed: starting from the root node, the test condition is applied to the record
and the appropriate branch based on the outcome of the test is followed. To grow
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Figure 4.1: Random Forest algorithm.

a tree, however, requires making choices on the features to use, the conditions to
use for splitting, as well as understanding when to stop.

Not all features are taken into considerations. Each decision tree only considers
a random subset of all the data, often as large as the square root of the entire
number of features, to subdivide the nodes. By doing this, even if each tree may
have a large variance relative to a specific set of training data, the forest as a
whole will have a reduced variance, leading to better predictions thanks to a simple
majority voting system among all trees.

Another problem is to choose the optimal decision tree without computing all
the possible trees as it is computationally unfeasible. Indeed, in training phase
we take a top-down (splitting the predictor space from the top of the tree), greedy
approach (at each step the local best split is performed, rather than the one that
would lead to the best global result) that is known as recursive binary splitting.
The “best split” is the split that minimizes a function that measures the node
purity considering all the features. The most common functions used to choose the
best split are the Gini index and Cross Entropy.

The procedure goes on until a stopping requirement is met for example, we
may continue until no region contains more than a give number of observations. A
common stopping criterion is the maximum depth a single tree can reach, it is the
the length of the longest path from a root to a leaf.

In prediction phase each node in every tree acts as a test case for some feature,
and each edge descending from the node corresponds to the possible answer to the
test case. This operation is done for each subtree rooted at the new node until a
terminal node, associated with a given target variable, is reached.
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To summarize the characteristics of the random forest:

• Advantages:

– Less prone to overfitting than decision trees;
– Handles non-linearity, missing values and outliers;
– Can handle every type of data, both numerical and categorical;

• Disadvantages:

– Complex, not easy to understand;
– Long training period.

4.3.2 SVM
Support Vector Machines (SVMs) are supervised learning models whose aim is to
find the hyperplane that best separates data. It represents each data as a point in
a space mapped in a way that objects from different categories are divided by an
empty space as wide as possible. The new points will be classified according to
which side of the gap they belong to, see Figure 4.3.2.

This gap is called margin and it is marked by two support vectors that, in a
two-dimensional space, are simply lines. These support vector are decided using
the two nearest point to the hyperplane, if they are removed or modified they alter
the position of the hyperplane.

To find the best hyperplane, the following steps need to be done:

• Find a linearly separable hyperplane that divides values from two classes, if
there are more hyperplanes that respect this condition, choose the one with
the highest margin;

• If the hyperplane does not exist, SVM uses a non-linear mapping to transform
the training data into higher dimension as in this way they can always be
divided by an hyperplane.

SVM is based on the strong assumption that an hyperplane can linearly separate
data, but this is far from real life. This idea is referred to as "hard margin" classifier.
However it is possible to soften this idea by choosing an hyperplane that separate
data almost linearly, so the model should be more tolerant towards errors, leading
to a greater generalization ability. This is defined as "soft-margin" classifier. To
obtain this flexible behaviour a regularization parameter is used. It defines the
tolerance of the model towards errors. Smaller values of this parameter λ = 1/C
leads to bigger margins, with greater tolerance, while bigger values of λ lead to the
hard-margin paradigm.
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Figure 4.2: SVM.

By mapping non-linearly separable data onto a higher dimensional space, where
the data could become linearly separable, the so-called kernel trick can be used to
expand the SVM method to non-linear instances. A linear SVM model may be
then trained to classify the data in the new feature space once the data transposed.
This approach is highly expensive to compute, though, so the idea is to use a a
kernel function to avoid the need of explicitly translating input data.

So, to summarize:

• Advantages:

– Good when there is no clue on the data;
– Efficient in high dimensional spaces;
– Handles non linear cases thanks to kernel trick;
– Good generalization, so less overfitting

• Disadvantages:

– Sensitive to noisy data;
– Long training time for large dataset;
– Difficult interpretation.

4.3.3 KNN
It is a non-parametric classification technique that finds the k closest data points
for a given unknown data point and predicts the output class based on the most
frequent class among those k neighbours. It based the idea of similarity of distance
since it assumes that comparable items occur within close proximity. In fact, it
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employs distance metrics like Manhattan distance or Euclidean distance to identify
the neighbours.

Since it simply memorises every point without doing anything else during the
training phase, it is referred to as a lazy-learning algorithm. This approach led to
a relatively quick training period. The intesitve work is done during the validation
stage: each time the model has to categorise data, it must compute every distance
between that point and all the others, store these distances in memory, and then
classify the data by examining labels of nearest k neighbours.

For KNN, the selection of k is crucial: smaller k can result in a lot of noise while
larger k can cause the model to classify based on the more prevalent class. Due
to the difficulty in classifying the minority class, this approach is not particularly
useful in situations when class distribution is skewed.

To summarize:

• Advantages:

– No training period, much faster than other algorithms;
– New data can be added seamlessly and they will not impact the accuracy

of the algorithm;

• Disadvantages:

– High cost for computing the distance between the new point and each
existing points in a large dataset;

– Difficulties with high dimensions because it becomes difficult for the
algorithm to calculate the distance in each dimension;

– Sensitive to noise in the dataset.

Figure 4.3: KNN. The green dot is classified basing on how many neighbours
the model considers: if k = 2 it will be classified as a red triangle e, while if k = 3
it will be a blue square.
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4.4 Ensemble methods
By mixing the predictions from various models, ensemble learning is a machine
learning approach that tries to improve predictive performance. There are two
different types of methods: sequential ensemble methods and parallel ensemble
methods.

In sequential ensemble methods, base learners are created consecutively. The
main motivation to use this kind of methods is to use the dependence between
the base learners by weighing previously mislabeled examples with higher weight.
While parallel ensemble methods are applied wherever the base learners can be
generated in parallel. The main idea of parallel methods it to use independence
between base learners and reducing the errors by averaging.

Even though there are an apparent infinite amount of ensembles you can create,
there are three techniques that rule the world of ensemble learning: bagging,
stacking and boosting.

Stacking. The general process of stacking involves training a learner to combine
the different learners. The combiner is usually referred to as second-level learner
and the individual learners are referred to as first-level learners. Although there
might be more layers of models, the most popular hierarchy has two levels. For
instance, we might have 3 or 5 level-1 models instead of just one, and a single
level-2 model that combines the level-1 models’ projections to produce a prediction.

Bagging. The idea behind bagging is to combine the results of multiple weak
learners to get a generalized result from a final single model. It is a combination of
bootstrapping and aggregation which is possible to reduce variance of an estimate
by taking the mean of multiple estimates.

Three steps are needed to perform bagging, as shown on the left in Figure 4.4:

• Create randomly sampled datasets of the original training data (bootstrap-
ping);

• Build and fit several classifiers to each of these diverse copies;

• Take the average of all the predictions and to make a final overall prediction
(aggregation).

Random Forest can be compared to Bagging with a small modification. Bagged
Decision Trees have access to all available features when selecting where to divide
and how to make decisions, so, even if the bootstrapped samples may differ slightly,
the data will typically split off with the same characteristics for each model. Instead,
Random Forest models select features at random to determine where to split.
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Figure 4.4: Bagging and Boosting. Bagging is described on the left: boot-
strapped subsamples are drawn from a dataset, for each a decision tree is created
and the prediction is done by averaging the outcomes of each tree. Boosting is
shown on the right: every new weak learner tries to correct the errors of the
previous learner by weighting data, until a strong learner is obtained as a weighted
mean of all the weak learnes. (Image source [59])

Boosting. It is a sequential process where the errors of the previous model
is corrected by each subsequent model. Unlike the bagging, boosting relies on
the dependence of weak learners. When weak learners update the weights of
the data points based on the outcomes of the preceding weak learners, the weak
learners become strong learners. By attempting to raise the weight attached to an
observation that was mistakenly categorised, boosting modifies that observation’s
weight. Boosting often reduces bias error, however it can occasionally cause the
training dataset to become overfit. In general, the algorithm is able to identify the
parameters it needs to concentrate on to perform better thanks to this redistribution
of weights. The sequential process of creating and aggregating weak learners varies
between boosting techniques.

The steps in the boosting process are as follows:

• The training dataset is split into a subset with identical weights for each data
point and for the initial dataset, a based model is developed, and predictions
are made using this model for the complete dataset;

• The predicted and actual values are used to calculate errors. The observation
that was mistakenly predicted is given more weight;
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• Boosting attempts to fix the errors in the preceding model by creating a new
weak learner;

• Multiple models are created using the same procedure, each one fixing the
errors in the previous model;

• The weighted mean of all the models (weak learners) is the final model, which
is a strong learner.

Indeed, the main difference between bagging and boosting (Figure 4.4) is how
they are trained: in bagging, each model is built independently of the others and
with identical weight, while in boosting the results of the earlier weak learners
influence the newer learners which are weighted according to their performance.
Bagging typically reduces variance rather than bias. While Boosting seeks to lessen
the issue of bias, Bagging attempts to address the issue of overfitting training data.

There are three common categories of boosting techniques:

• Adaptive boosting or AdaBoost: In order to reduce the training error,
this approach iteratively locates misclassified data points and modifies their
weights. The model keeps improving in a sequential manner until the strongest
predictor is produced. In general weak learners are decision trees with a
single split, called decision stumps which in a complex scenario are usually
not enough;

• Gradient boosting: it is a technique that gradually adds predictors to an
ensemble, with each one repairing the mistakes made by the one before it, but
opposed to AdaBoost, gradient boosting trains on the remaining errors from
the prior predictor. It treats boosting as a numerical optimization problem
where the objective is to minimize the loss function of the model by adding
weak learners using a gradient-descent like procedure;

• Extreme gradient boosting or XGBoost: it is a gradient boosting system
created for speed and scale, indeed through the use of the CPU’s numerous
cores, XGBoost enables parallel learning during training. It doesn’t run
multiple trees in parallel, the parallelisation happens during the construction
of each trees, then each independent branches of the tree are trained separately.

4.5 Model validation
A training phase and a validation phase are often included in the creation of a
classification model. The train/validation split and the k-fold cross-validation
technique are the two most used methods for model assessment. When used
to classification issues with a strong class imbalance, both techniques have the
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potential to fail and can, nonetheless, produce findings that are deceptive. For this
reason, in this work is used stratified 2-fold cross validation which is is able to
stratify the sample by the class label. However, in a real world scenario where fire
data are available yearly, if we are testing for 2020 the data for the current year
would no be available yet, so it is reasonable to say that a random cross validation
in this case it is like cheating. So, another validation approach is tested, where the
samples are stratified by year and not by distribution, the folds will be divided as
follows:

• First fold

– Training: 2016-2017-2018
– Validation: 2019

• Second fold

– Training: 2016-2017-2018-2019
– Validation: 2020

4.6 Performance measures
A metric is a function that compares the expected class label to the predicted
class label and it gives information about how well the model performs. Generally,
problems can be solved using standard metrics, such as accuracy, but they are
misleading when classes are imbalanced. Indeed they treat both minority and
majority classes equally, without differentiating between the number of correctly
classified examples of various classes. In general, in imbalanced classification tasks,
errors that affect the minority class are often more significant than those that
affect the majority class, and as a result, performance criteria that emphasise the
minority class may be necessary.

Figure 4.5: Confusion matrix for a binary target.
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Each measure that will be presented will be based on a confusion matrix (Figure
4.6, which is a highly helpful tool when dealing with binary classification issues.
Using one of the classes as a reference, the values inside the matrix show:

• True Positive (TP): the number of samples that were correctly identified as
not belonging to the reference class;

• False Positive (FP): the number of samples that were incorrectly identified as
belonging to the target class;

• False Negative (FN): the number of samples that were correctly identified as
not belonging to the reference class;

• True Negative (TN): the number of samples correctly predicted as not belonging
to the reference class.

Precision is the fraction of True Positive elements divided by the total number
of positively predicted units (column sum of the predicted positives). Precision
expresses the proportion of units our model says are Positive and they actually
Positive. In other words, Precision tells us how much we can trust the model when
it predicts an individual as Positive;

Precision = TP

TP + FP

Recall: it is the fraction of True Positive elements divided by the total number
of positively classified units (row sum of the actual positives). It measures the
ability of the model to find all the Positive units in the dataset:

Recall = TP

TP + FN

F-Score. It aggregates Precision and Recall measures under the concept of
harmonic mean, where balance of precision and recall in the calculation of the
harmonic mean is controlled by a coefficient called β, which is chosen such that
recall is considered β times as important as precision, as can be seen from the
following formula

Fβ = (1 + β2) · Precision · Recall

(β2 Precision) + Recall

There are three typical values for the beta parameter:

• F0.5 (β = 0.5): Precision is valued more highly than recall;

• F1 (β = 1): Equal the importance of recall and precision, most common;

61



Methodology

• F2 (β = 2): Precision is less important than recall

In this work, F2 score will be used since it focuses more on minimising false
negatives than minimising false positives.

ROC Curves. Receiver Operating Characteristic, or ROC, is an abbreviation
that stands for a branch of research that evaluates binary classifiers based on their
capacity to distinguish between classes. The behaviour of a model is summarised by
a ROC curve (Figure 4.6, which calculates the false positive rate and true positive
rate given a series of predictions made by the model under various thresholds.

• True positive rate (TPR), is defined as

TPR = TP

TP + FN

it measures the percentage of positive data points that, when compared to all
positive data points, are correctly regarded as positive. In other words, we
will miss fewer positive data points if TPR is higher;

• False positive rate (FPR) is defined as

FPR = FP

FP + TN

This fraction is intuitively related to the percentage of negative data points
that are wrongly interpreted as positive. In other words, the more negative
data points that are incorrectly identified, the higher the FPR.

Figure 4.6: ROC curve with false positive rate over true positive rate.
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Computing the area under the ROC curve yields a single score that may be used
to compare models: a classifier with no skills will receive a score of 0.5, whereas a
classifier with perfect skills will receive a score of 1.0. This measure can be overly
optimistic in situations of extreme class inequality, particularly when there are few
examples in the minority class, despite being usually effective.

An alternative to the ROC Curve in an imbalanced scenario, is the precision-
recall curve (Figure 4.6), which works similarly to the ROC Curve but concentrates
on the performance of the classifier on the minority class. To combine the precision
and recall into one single metric the model computes the two metrics with various
thresholds and then they are all plot together to make up a single curve. So,
classifiers will be scored higher if they outperform others under a variety of different
thresholds.

A horizontal line with a precision proportionate to the number of positive
cases in the dataset will represent a no-skill classifier, for example in a balanced
dataset it will have a value of 0.5. When the classes are severely unbalanced, this
statistic is a helpful indicator of prediction success. Indeed, high recall but low
precision produces a large number of results, the majority of the predicted labels
are different from the training labels. In contrast, a system with high precision
but low recall produces very few results, yet most of its projected labels match
the training labels. A perfect system with great precision and recall will provide a
large number of outcomes, all of which will be correctly categorised.

Figure 4.7: ROC curve with recall over precision.
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4.7 Dealing with imbalanced data
In the previous section, Figure 3.14 shows that the target distribution is imbalanced.
Generally, models are not able to deal with class imbalance without any additional
adjustments, so in this sections some sampling solution are presented [60].

Sampling techniques include modifying an unbalanced data set using certain
procedures to produce a balanced distribution. The sampling can be done in two
directions: eliminating samples from the majority class (under-sampling) or adding
data to the minority class (over-sampling). A combination of both technique can
be also implemented.

It is important to underline that the training dataset is the only one to which
the class distribution has been altered as the goal is to alter how well the models
fit. The test dataset used to evaluate a model’s effectiveness does not undergo
resampling.

4.7.1 Over-sampling methods
There are several sampling methods that increases the number of samples in the
dataset:

• Random. The minority class instances are randomly duplicated and added
to the training set until a more balanced distribution is achieved. In some
circumstances, trying to balance out an unbalanced dataset might lead to
algorithms being overfit to the minority class, as the model sees the same
samples over and over, so the sampling strategy is usually tuned;

• Synthetic sampling. The Synthetic Minority over-sampling Techniques
(SMOTE) provides the minority class some artificially generated data points
so that it can be compared to the majority class. In fact, it selects the
k closest minority class neighbours after randomly choosing an instance xi

in the minority class. A synthetic instance is then produced by joining xi

and x̂i to form a line segment in the feature space, where x̂i is a k nearest
neighbours randomly selected (Figure 4.7.1). One of the major drawbacks of
SMOTE algorithm is over generalization, indeed it produces the same number
of synthetic data samples for each original minority case without taking into
account nearby examples, which enhances the likelihood of class overlap;

• Adaptive Synthetic Sampling. To overcome SMOTE overlapping problem,
adaptive sampling methods. Borderline-SMOTE starts by classifying mi-
nority class observations. If all of the neighbours are members of the majority
class, it labels any minority observation as a noise point and ignores it while
producing synthetic data. So it resamples with a SMOTE technique entirely
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Figure 4.8: SMOTE. On the left, an example of the K-nearest neighbors for the
xi and on the right the data creation based on euclidian distance is shown. (Image
Source [60])

from a small subset of points which have the same number of majority and
minority class neighbours. One major problem is that it eventually pay more
credence to these observations. Another adaptive technique is ADASYN
which creates synthetic data consistent with their distributions. It determines
the impurity of the neighbourhood for each minority observation by taking the
ratio of the majority observations in the neighbourhood.

4.7.2 Under-sampling methods
To reduce the number of samples of from the majority class, two main techniques
are considered:

• Random. The majority class instances are randomly discarded until a more
balanced distribution is achieved. The main drawback of removing samples is
that it impossible to save more informative instances from the majority class.
In addition, random undersampling is used also in methods like random forest
and bagging when there is a sampling phase. In those cases, each boostrap
sample is random under-sampled to balance it;

• Informed Under-sampling: These methods address the information loss
problem that the standard random under-sampling method have. EasyEnsem-
ble creates an ensemble learning system by separately picking a number of
subsets from the majority class and creating several classifiers based on the
combination of each subset with the data from the minority class. By exploring
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the majority class data using independent random sampling with replacement,
EasyEnsemble can be viewed as an unsupervised learning algorithm. Instead,
in NearMiss methods under-sampling is accomplished using the K-nearest
neighbour (KNN) classifier. There are five different proposed methods, but in
this work only NearMiss-1 and 2 are considered. NearMiss-1 eliminates the
majority class examples with the smallest average distance to the minority
class examples that are furthest away from them, while NearMiss-2 removes
the majority class examples with the smallest average distance to the three
minority class examples that are closest to them.

4.7.3 Sampling combination methods
It is also possible to combine over-sampling and under-sampling methods to reach
a more balanced distribution. It can be done in any order and multiple times.

• Random. Random over-sampling and random under-sampling can be mixed
at any extent: the sampling distribution of both tecniques can be tuned.

• Sampling with Data Cleaning. SMOTE-ENN combines the strengths of
SMOTE over-sampling, which can produce synthetic examples for minority
classes, with ENN under-sampling which can eliminate some observations from
both classes if they have a different class from its K-nearest neighbour majority
class. The K-nearest neighbour of each observation is identified first, and
then the ENN technique determines whether or not the majority class from
the observation’s k-nearest neighbour matches the observation’s class. The
observation and its K-nearest neighbour are removed from the dataset if the
majority class of the observation’s K-nearest neighbour and the observation’s
class vary.
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Chapter 5

Results

In the chapter that follows all the experimental results are shown. Initially, the
section 5.1 provides an explanation of how the models will be tuned on a stratified
sample of the entire dataset. All these experiments, listed in section 5.2, differ
for how they tackle the dataset imbalance. Finally, from each tuning setup, the
best model will be extracted and will be trained on the entire dataset. In the final
section 5.3 all these models are compared to determine the most effective strategy
to address the imbalance in the dataset.

5.1 Implementation details
Python has been used throughout to do this task on an Amazon web services
virtual machine. Along with the most well-known data science tools, such pandas
or sklearn, libraries that can handle raster data and geographic locations, like
geopandas, rasterio, xarray, and shapely, have been extensively employed.
Additionally, imblearn has been used for sampling methods.

Before starting with the model tuning and training, feature scaling and feature
selection have been performed using respectively a StandarScaler and RFECV. The
features discarded are:

• Standard deviations of three spectral indexes: MSAVI2, NDVI, RENDVI.
They are all indexes from greenness families, both broadband and narrowband,
which evaluates combined effects of chlorophyll concentration;

• Three weather features: standard deviation for eastward wind speed and both
nean and standard deviation for relative humidity.

A stratified selection of 30%, with fixed random state, samples from both the
training and test were used for the tuning phase. Therefore, it would be possible to
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compare two alternative validation techniques: stratified and annual cross validation.
It might be viewed as a technique to validate that the classifier’s knowledge is
updated annually.

By optimizing F2-score, which is the harmonic mean of recall and precision
with a stronger emphasis on recall, GridSearch is used to fine-tune the parameters.
Precision can be thought of as a measurement of true alarms; in fact, low precision
indicates that only a small percentage of positive predictions are accurate, indicating
that if the model predicted a fire event, it was probably a false alarm. High
precision, in contrast, suggests that the alarm was most likely accurate. Also
recall has an important interpretation in this context: it measures how well a
classifier can identify a fire incident. Generally speaking, it is more crucial to
accurately detect a fire event than to miss it, but precision cannot be neglected
because, if we try to maximise recall, the problem might translate in a model that
predicts largely fire occurrences with a high number of false alarms. The ideal
compromise is indeed F2-score, which takes into account both indicators but places
a greater emphasis on accurately forecasting wildfire incidents.

The experiments were done on four different model and sampling approach
families. Testing was done on SVM, KNN, Random Forest, Gradient Bosting,
Bagging, and XGBoost as

• baseline, so without dealing with the imbalance (Section 5.2.1);

• over-sampling, so the creation of new minority class samples (Section 5.2.2);

• undes-sampling, so removing majority class samples (Section 5.2.3);

• over- and under-sampling combination methods (Section 5.2.4).

The best model for each sampling family was taken, trained on the entire
dataset using parameters obtained from yearly cross validation and tested on the
full dataset. In the Section 5.3 all the best four models are compared.

5.2 Hyperparameters tuning
In general, determinining the appropriate hyperparameter values for a learning
algorithm is challenging. Additionally, in this set of experiments, sampling methods
hyperparameter are also tuned to determine the best sampling strategy.

5.2.1 Baseline results
The first set of experiments is done without any technique that deals with dataset
unbalance and the results are showed in Table 5.2.1. There is no classifier able to
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Model Precision Recall F2-Score AUROC AUPR
KF YF KF YF KF YF KF YF KF YF

SVM 0.52 0.52 0.47 0.47 0.48 0.48 0.68 0.68 0.34 0.34
KNN 0.54 0.54 0.43 0.43 0.44 0.44 0.67 0.67 0.34 0.34
RF 0.86 0.85 0.23 0.23 0.26 0.26 0.61 0.61 0.34 0.34
BG 0.77 0.77 0.38 0.38 0.42 0.42 0.67 0.67 0.41 0.41
GB 0.82 0.81 0.44 0.42 0.48 0.47 0.71 0.70 0.46 0.45
XGB 0.75 0.75 0.37 0.37 0.41 0.41 0.67 0.67 0.39 0.39

Table 5.1: Results without using any technique to manage imbalanced
dataset. KF and YF are the two different validation methods used, KF =
StratifiedKFold, YF = Yearly folds. In the models column is highlighted the best
method for this section: Gradient Boosting.

go above 0.5 recall, which means they are no able to correctly predict even 1 of out
2 fires.

The methods with more consistent precision-recall values are SVM and KNN as
they generally don’t suffer from dataset imbalance, because the algorithms are not
affected by the class size. Instead, Bagging and Random Forest both rely on
Decision Trees, and each tree is constructed using a fraction of the data, so each
tree will be biased in the same direction of class imbalance if the dataset and these
samples are unbalanced. In fact, the results had low recall, making it impossible to
accurately predict a fire event, but great precision, indicating that the few correct
predictions are likely true. If the dataset imbalance, which affects the subsets, is
handled, these results might be improved. Probably, Bagging performs slightly
better than Random Forest because it has access to all the available feature when
selecting where to divide and be, so even if the dataset samples maybe different,
the split will consider all the characteristics of the model.

In general, boosting techniques benefit from the fact that they sequentially
update mistaken classified samples, so Gradient Boosting is the best method as it
has high value precision and a recall of 0.44/0.42 and it has the best AUPR value.
Indeed, high area under the curve represents both high recall and high precision.

5.2.2 Over-sampling results
In these section, two different oversampling approaches are used: random over-
sampling and synthetic sampling generation. Every method is an improvement of
the previous one: random over-sampling tends to overfit data as it creates duplicates
of existing points, so SMOTE tries to mitigate this problem by generating synthetic
samples rather than replicating instances. However, replicating without paying
attention to overlapping data could be uninformative, so the last two adaptive

71



Results

Model Precision Recall F2-Score AUROC AUPR
KF YF KF YF KF YF KF YF KF YF

Random Oversampling
SVM 0.47 0.50 0.55 0.59 0.53 0.57 0.70 0.72 0.34 0.37
KNN 0.44 0.44 0.58 0.62 0.55 0.58 0.70 0.72 0.33 0.35
RF 0.67 0.63 0.46 0.52 0.49 0.54 0.70 0.73 0.41 0.42
BG 0.74 0.74 0.43 0.44 0.47 0.47 0.70 0.70 0.43 0.43
GB 0.79 0.60 0.50 0.50 0.54 0.51 0.71 0.71 0.49 0.39
XGB 0.78 0.49 0.46 0.45 0.50 0.46 0.71 0.67 0.46 0.32

SMOTE
SVM 0.47 0.52 0.44 0.48 0.45 0.49 0.66 0.69 0.32 0.35
KNN 0.45 0.44 0.62 0.65 0.58 0.59 0.72 0.73 0.35 0.35
RF 0.69 0.65 0.43 0.55 0.47 0.50 0.69 0.71 0.41 0.41
BG 0.61 0.58 0.35 0.36 0.38 0.39 0.65 0.65 0.33 0.33
GB 0.72 0.62 0.48 0.39 0.52 0.42 0.72 0.68 0.45 0.36

XGB 0.72 0.60 0.46 0.44 0.50 0.46 0.71 0.68 0.43 0.37
SMOTE Borderline

SVM 0.47 0.50 0.47 0.50 0.47 0.50 0.37 0.69 0.32 0.34
KNN 0.42 0.40 0.66 0.71 0.58 0.61 0.72 0.73 0.34 0.34
RF 0.66 0.60 0.46 0.52 0.48 0.53 0.70 0.72 0.40 0.40
BG 0.56 0.57 0.37 0.37 0.40 0.40 0.62 0.65 0.33 0.33
GB 0.71 0.58 0.49 0.40 0.53 0.43 0.72 0.67 0.45 0.35

XGB 0.69 0.39 0.45 0.43 0.48 0.42 0.70 0.63 0.41 0.28
ADASYN

SVM 0.50 0.50 0.48 0.48 0.48 0.48 0.63 0.68 0.34 0.34
KNN 0.41 0.40 0.67 0.80 0.59 0.62 0.72 0.74 0.33 0.34
RF 0.63 0.61 0.47 0.50 0.50 0.52 0.70 0.71 0.40 0.40
BG 0.57 0.62 0.43 0.41 0.44 0.43 0.67 0.67 0.33 0.36
GB 0.72 0.59 0.49 0.41 0.52 0.43 0.72 0.67 0.45 0.35

XGB 0.70 0.54 0.47 0.45 0.50 0.46 0.71 0.68 0.43 0.34

Table 5.2: Results using oversampling techniques. KF and YF are the two
different validation methods used, KF = StratifiedKFold, YF = Yearly folds. In the
models column is highlighted the best method for this section: Gradient Boosting

methods are considered: SMOTE-Borderline which classify minority classes samples
to understand which points should be sampled and ADASYN which creates data
consistent with their distributions. The results are shown in Table 5.2.2

All over-sampling methods have a parameter which describes how many new
sample should be generated and it needs tuning too. Sampling strategy parameter,
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for over-sampling methods, corresponds to the ratio

Nrm

NM

where Nrm and NM are the number of samples in the minority class after
re-sampling and the number of samples in the majority class, respectively. The
majority of sampling methods reached values of 0.6/0.7 for most models, meaning
that the samples in the minority class needs to be almost doubled.

With random over-sampling KNN and SVM still performs quite similarly to
the baseline methods. KNN with synthetic sampling methods improves its recall
measures as, the sampling generated leads to have more simila neighbours around
the minority class, so it is more easy for KNN to classify. Indeed, the best recall
measure of this slot of experiments is reached by KNN with ADASYN technique.
This model, however has a low precision which means that increasing the number
of minority samples leads KNN to predict the positive class more than necessary
and for this reason, it is not considered the best classifier for this section.

Recall measures for SVM instead worsen from baselines probably because it has
more difficulties in finding the right support vectors in a noisier dataset. Instead,
Random Forest increases its recall but decreases its precision because probably it
tends to overfit data that are generated and it is not able to built general tree.
Even in this case, boosting methods are the ones with the best balance between
precision and recall, fact that is confirmed by the AUPR score.

Considering the four different sampling strategies values from SMOTE to
SMOTE Borderline and ADASYN generally increases, which means that the
overlapping problem cited above lead to wrong predictions. While the basic im-
plementation of SMOTE does not distinguish between easy and hard samples to
be categorised using the nearest neighbours rule, ADASYN focuses on producing
samples next to the original samples that are incorrectly identified using a k-Nearest
Neighbors classifier, which probably provides more informative synthetic samples.

ADASYN models have the highest F2-Score because they have high recall, but
the precision values are really low compared with the over-sampling ones. Because
of their better trade-off between recall and precision, the best model is still Gradient
Boosting along with a random over-sampling techniques.

5.2.3 Under-sampling results
Another way of adjusting class imbalance is by under-sampling majority class.
Generally, under-sampling methods can also help improve run time and storage
problems by reducing the number of training data samples when the training
data set is huge, but it can discard potentially useful information which could be
important for building rule based classifiers.
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Model Precision Recall F2-Score AUROC AUPR
KF YF KF YF KF YF KF YF KF YF

Random Undersampling
SVM 0.46 0.48 0.61 0.36 0.57 0.38 0.72 0.63 0.36 0.29
KNN 0.44 0.47 0.61 0.62 0.57 0.58 0.71 0.73 0.34 0.36
RF 0.67 0.63 0.48 0.55 0.51 0.56 0.71 0.73 0.42 0.43
BG 0.62 0.60 0.58 0.63 0.59 0.62 0.75 0.76 0.44 0.44
GB 0.65 0.62 0.64 0.52 0.64 0.53 0.78 0.72 0.48 0.41

XGB 0.62 0.59 0.61 0.64 0.61 0.63 0.76 0.76 0.45 0.45
NearMiss

SVM 0.35 0.27 0.57 0.75 0.51 0.55 0.66 0.64 0.28 0.25
KNN 0.32 0.31 0.64 0.58 0.49 0.50 0.64 0.64 0.26 0.26
RF 0.35 0.32 0.62 0.69 0.54 0.56 0.67 0.67 0.29 0.28
BG 0.34 0.33 0.73 0.79 0.60 0.61 0.70 0.70 0.30 0.30
GB 0.48 0.33 0.61 0.67 0.58 0.56 0.73 0.68 0.37 0.29

XGB 0.48 0.32 0.59 0.78 0.57 0.61 0.72 0.70 0.36 0.29
EasyEnsembleClassifier

EEC 0.58 0.53 0.29 0.29 0.32 0.32 0.61 0.61 0.29 0.29
Balanced under-sampling

RF 0.75 0.75 0.68 0.68 0.70 0.70 0.81 0.86 0.57 0.56
BG 0.73 0.72 0.50 0.50 0.53 0.53 0.73 0.73 0.46 0.46

Table 5.3: Results using undersampling techniques.KF and YF are the
two different validation methods used, KF = StratifiedKFold, YF = Yearly folds.
In the models column is highlighted the best method for this section: Balanced
Random Forest

Four different under-sampling approaches have been investigated and, even in
this case, the sampling strategy parameter has been tuned. Sampling strategy
parameter, for under-sampling methods, corresponds to the ratio

Nm

NrM

where Nm and NrM are the number of samples in the minority class and the
number of samples in the majority class after re-sampling, respectively. All models
chooses a sampling strategy of 0.4/0.5. In general, the results from the random
under-sampling approach are better than the ones for the random over-sampling in
the previous section, meaning that the majority class features make the classification
more difficult for the model.

The Near-Miss approach incorporates various sorts of criteria that can be chosen
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using the parameter version, which have been tuned along with the sampling
strategy. While NearMiss-2 selects the majority samples whose average distance
to the N furthest minority class samples is the smallest, NearMiss-1 chooses the
majority samples whose average difference to the N nearest minority class samples
is the smallest. Version 1 has always been chosen over version 2 in the tuning
phase because possibly because it performs a better job in cleaning the overlapping
positive and negative instances. This approach with the Bagging model reached the
highest value of recall, but with really low values of precision, the lowest precision
values among all experiments. Indeed, models start predicting many true labels as
they encounter more difficulties in understanding the characteristics linked to the
majority class.

Another approach analyzed is the Easy Ensemble Classifier, which in an ensemble
method based on AdaBoost learners trained on different samples balanced using
random under-sampling. In AdaBoost, data that are hard to categorise are given
increasingly bigger weights until the algorithm finds a model that classify these
samples correctly. As a result, each iteration of the algorithm must learn a
different element of the data, concentrating on regions that include samples that
are challenging to categorise. Probably this technique is not able to apply correct
weights on data as the the random under-sampling may remove data with useful
information.

On Random Forest and Bagging Classifier, the random under-sampling can
be applied in two ways: on the initial dataset, so before the creation of the
bootstrapped sub-datasets or on these subsets, after their creation usinf the entire
dataset. These final methods are called Balanced Bagging and Balanced Random
Forest. The Balanced Random Forest is the best model in this category since it
has the best values in all metrics except recall. It has higher precision than the
plain Random Forest as it still can potentially see all possible samples from the
original dataset.

5.2.4 Combination of sampling techniques results
Over-sampling and under-sampling methods could be combined in order to reduce
the negative effects of both methods: so a combined approach could lead to less
over-fitting and less loss of informative data.

For the random approach two different sampling parameters have been tuned:
the under-sampling sampling strategy was always higher than the over-sampling
one, with the first value of 0.6 and the second ov 0.4 on average. This results
confirm the tendency of the model to prefer under-sampling rather than augmenting
the dataset with new minority class samples.

However the best values for recall and F2-score were reached by the SMOTE-
ENN approach. It generates new minority data using SMOTE and delete majority
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Model Precision Recall F2-Score AUROC AUPR
KF YF KF YF KF YF KF YF KF YF

Random Oversampling/Undersampling
SVM 0.45 0.49 0.60 0.62 0.56 0.59 0.71 0.73 0.35 0.37
KNN 0.43 0.47 0.59 0.59 0.55 0.56 0.70 0.72 0.33 0.42
RF 0.67 0.68 0.47 0.47 0.50 0.50 0.71 0.71 0.42 0.42
BG 0.67 0.70 0.49 0.52 0.52 0.55 0.71 0.73 0.43 0.45
GB 0.73 0.64 0.53 0.44 0.56 0.47 0.74 0.69 0.48 0.39

XGB 0.71 0.72 0.52 0.53 0.55 0.56 0.73 0.74 0.46 0.47
SMOTE-ENN

SVM 0.49 0.51 0.57 0.57 0.55 0.56 0.71 0.72 0.36 0.37
KNN 0.42 0.43 0.70 0.70 0.62 0.62 0.74 0.74 0.36 0.36
RF 0.57 0.60 0.55 0.55 0.56 0.56 0.73 0.73 0.41 0.41
BG 0.49 0.49 0.47 0.47 0.48 0.48 0.68 0.68 0.33 0.33
GB 0.60 0.60 0.56 0.55 0.57 0.56 0.74 0.73 0.42 0.42

XGB 0.60 0.59 0.54 0.53 0.55 0.54 0.72 0.72 0.41 0.40

Table 5.4: Results using a combination of oversampling and undersam-
pling techniques. KF and YF are the two different validation methods used, KF
= StratifiedKFold, YF = Yearly folds. In the models column is highlighted the
best method for this section: XGBoost.

data. When the the observed sampled and the majority class of its K-nearest
neighbours are dissimilar, ENN removes both the observation and its K-nearest
neighbour rather than simply the observation and its 1-nearest neighbour. It
performs an in-depth data cleaning which achieved high recall score with KNN
as it has more minority class neighbours, but the precision score is too low to be
considered a good model, probably the data cleaning is too strong. So, because its
better trade-off between precision and recall, XGBoost is chosen as the best model
of this section.

5.3 Best models comparison
In this section all the best models selected in the previous sections are analyzed.
Every model is re-trained over the entire training set from 2016 to 2020 and then
tested on 2021.

In Table 5.3 the results achieved are shown. The baseline Gradient Boosting has
better performances than the over-sampling one, indeed, even if they have similar
F2 Score and recall, the value of precision is different. With oversampling the
Gradient Boosting lower its precision from 0.81 to 0.60, meaning that it has a higher
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number of false alarms. It can be also seen by their respective precision-recall curves
in Figure 5.1 and 5.2: the over-sampling curve (yellow) has a faster decreases than
the baseline one, meaning that the precision reduces faster as the recall increases.

Considering the over/undersampling combination, the XGBoost had a better
recall but lower precision compared to the baseline. Given that under-sampling
strategies consistently performed better than over-sampling ones, this increased
recall value could be connected to the under-sampling strategy. Indeed, with an
F2-Score of 0.85 and an AUPR of 0.77, the best model is the Balanced Random
Forest which uses an under-sampling strategy on the sampled subsets instead of
applying it over the entire dataset. This model is able to detect more than eight
fires ten and with a precision of around 90%. Additionally, the Figure 5.3 shows
this optimal balance between recall and precision is robust.

The excellent interpretability of tree-based models makes easy to analyse the
relative importance of each attribute in the model classification. In fact, feature
importance may be studied for all of these top tree-base models and all plots can
be found in the next pages: red plot in Figure 5.1 for baseline Gradient Boosting,
yellow plot in Figure 5.2 for over-sampling Gradient Boosting, green plot in Figure
5.3 for Balanced Random Forest and pink plot in Figure 5.4 for XGBoost.

The only element that all of these models have in common is that the two-weeks
prior NBR2 mean value is the most important spectral index feature. The reason
of this could be its ability to recognise plant water sensitivity. In the first ten
features there are always weather-related attributes with total precipitation and
solar radiation typically being the most informative. In several circumstances,
solar radiation has been shown to be more significant than temperature. Year and
week-specific seasonal factors always have a significant impact on the prediction
and even the already-burned feature have shown to be really helpful, particularly
for XGBoost, where it had an importance value of around 35%. It is important to
emphasize that Balanced Random Forest is able to distribute weights uniformly,
and that many of the most crucial features are spectral indexes. For instance,
NDMI (water content index) is more significant than solar radiation, and ARI
index (antocyanins content) is more significant than wind and temperature.

Approach Model Precision Recall F2 AUROC AUPR
Baseline GB 0.81 0.50 0.54 0.73 0.50

Over-sampling GB 0.60 0.52 0.53 0.72 0.40
Under-sampling BRF 0.87 0.85 0.85 0.91 0.77
Comb sampling XGB 0.73 0.60 0.62 0.77 0.52

Table 5.5: Best models metrics comparison. The best models from the four
different setup are trained on the entire dataset and are tested on 2021 samples.
The Balanced Random Forest achieved the best results in every metric considered.
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Figure 5.1: Best baseline results. These results are achieved using a Gradient
Boosting Classifier with 0.1 learning rate, 350 estimators, each with max depth of
30 and max leaf nodes of 170. 78



5.3 – Best models comparison

Figure 5.2: Best over-sampling results. These results are achieved using a
Gradient Boosting Classifier with 0.01 learning rate, 350 estimators, each with max
depth of 30 and max leaf nodes of 120. The over-sampling strategy was 0.7.
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Figure 5.3: Best under-sampling results. These results are achieved using a
Gradient Boosting Classifier with gini as split criterion and 450 estimators. The
under-sampling strategy was 0.6. 80



5.3 – Best models comparison

Figure 5.4: Best sampling combination results. These results are achieved
using a XGBoost with 0.1 learning rate, 350 estimators, each with max depth
of 15 and max leaf nodes of 170. The over-sampling strategy was 0.4 while the
under-sampling strategy was 0.6. 81





Chapter 6

Conclusions

By creating a novel dataset using fire data provided by Comando del Corpo Forestale
della Regione Siciliana, this thesis addressed the problem of forecasting a weekly
wildfire hazard in Sicily. In fact, Sicily is the Italian region most frequently affected
by fires, thus it is necessary to have an automated system for monitoring to have
extensive control over areas with a higher fire risk.

The dataset is based on a 200x200 m2 square grid that has been built over
a southern region that was selected using the Sentinel-2 tiling system. A single
instance of the dataset contains five different types of data: past data using fuel
data from the previous two weeks, future data using weather predictions, area fire
regime data using the count of prior fires, seasonality data using year and week
attributes, and topographical data for the area under consideration.

Due to the nature of the event under consideration, it was important to apply
measurements and sampling strategies that could help the training of the models
dealing with the imbalanced target distribution. Both ensemble approaches and
common classification models were used, along with strategies that addressed class
imbalance. Precision, recall, F2-score, AUROC, and AUPR were employed as the
five measures to evaluate the performance of the models. The model that performed
the best across all five metrics was Balanced Random Forest. Additionally it was
noted how it was the model which made the most intensive use of spectral indexes.

6.1 Limitations
Even if this work has achieved encouraging results, there are two main limitations:

• Areas of 200x200 m2 are too large for a real-world scenario as it would be
extremely challenging to monitor the entire area if the fire danger was really
high. Indeed, a reasonable data area, for instance, should be at least 60x60

83



Conclusions

m2, similar to the highest spatial resolution of Sentinel-2 bands, although
more processing power is required to perform a similar task;

• Spectral indexes times series have missing values which have not been filled so
some instances may have outdated fuel trends. Two practical ways to overcome
this problem is by examining the seasonality of each index or augmenting the
dataset using Landasat-8 multi-spectral images processed with ESA’s Sen2Like
tool. Another more experimental solution would be try computing spectral
indexes from Sentinel-3 bands that are similar to Sentinel-2 ones. This idea it
needs further testing to understand if it is a practicable.

6.2 Next steps and further works
The following steps can be taken to enable real-world applications for this work:

• The first step is to use actual forecasting meteorological data and the the
model against the intrinsic amount of uncertainty and understand how it can
affect the performances;

• Another test should be done with respect to the robustness of the framework
in a scenario with different land cover characteristics and understand at what
extent it can be scaled over the entire country;

• Finally an automated process for the data acquisition and processing should
be built in order to update the dataset real-time.

Along with these more concrete steps, some more theoretical investigation could
be done on the methodologies used in this work. For example, other approaches to
deal with the target imbalance could be tested or maybe, the problem could be
treated as an anomaly detection task.

Further improvements could be made to spectral images data in two ways:
either by increasing the number of bands, so switching from multi-spectral to
hyper-spectral or by enhancing the spatial resolution of the bands. Additionally,
this dataset might benefit from SAR data from the Sentinel-1 mission. Since it is
an active remote sensing technique, radar data can be obtained at any time of day
and they have proven to be quite helpful in mapping drought [61].

In conclusion, even with its limitations, this thesis proved that spectral indexes
are able to provide a good representation of the fuel characteristics and that
good wildfire risk predictions could be achieved through a dataset that provides
information about fire regime, seasonality, weather forecasting, topographical
characteristics and fuel trends.
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