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Summary

Making active and context-aware decisions is a fundamental part of human intellect. Op-
erations Research is the engineered version of this process.

An Operations Research problem is usually translated into the mathematical language of
Optimization, where one is requested to maximize a given objective, expressed as a func-
tion of decision variables, while satisfying given constraints. If the decision variables are
continuous and both the objective and the constraints are convex functions, the optimiza-
tion problem is called a convex optimization problem and there are efficient algorithms
to find the optimal solution. When some decision variables are discrete or the convexity
requirement is not satisfied, the problem becomes much more difficult to be solved to opti-
mality. Therefore, one settles for a suboptimal solution that can be found in a reasonable
amount of time and computing resources, with case-specific algorithms, called heuristics.

This work studies one of the most important theoretical questions in Operations Research:
to find the approximation ratio ρ, if it exists, of a given heuristic algorithm. In other words,
one is interested in certifying that the ratio between the proposed algorithm solution value
and the optimal solution value is bounded in a minimization (maximization) problem
above (below) by ρ. Such algorithm has then a ρ-approximation ratio.

In this work, we develop new approximation algorithms for the scheduling problem of
minimizing the maximum completion time on a set of uniform parallel machines. In the
literature, there are examples of such algorithms. However, the proofs are often complex
and difficult to be generalized, as they rely on proofs handling many exhaustive subcases
or requiring algorithm-specific properties. We try, instead, to delineate a methodology
that can be applied and possibly generalized to other algorithms and problems.

The methodology works as follows. First we prove a very general theorem that can be
applied to all proposed algorithms and then, leveraging the power of commercial Mixed-
Integer Non-Linear Program (MINLP) solvers, we solve an optimization problem for each
proposed algorithm. Joining the analytical proofs with the optimality results, we formally
prove the approximation ratios.
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Chapter 1

Introduction

We consider the problem of scheduling a set of jobs on a set of uniform parallel machines
with the aim of minimizing the maximum completion time, and we will denote it as
QM ||Cmax.

Given a list of J jobs (also called tasks or processes), each characterized by a length pj

(also called duration), and a list of M machines (also called workers or processors), each
characterized by a speed factor qm, how do we assign the jobs to the machines (called
scheduling) in a way that minimizes the maximum completion time?

This problem is an NP-hard optimization problem. In other words, since one basically
should evaluate all possible MJ assignments, optimally solving the problem is too time-
consuming if the number of machines and jobs is big enough.

Hence, the need to develop algorithms that find suboptimal schedules in a reasonable
time. Moreover, one could be interested in proving that the value of such a suboptimal
schedule is at most ρ times worse than the optimal one. If it can be proven that ρ is always
finite, even in the worst possible combination of jobs lengths and machines speeds, then
the used algorithm is called a ρ-approximation algorithm. The Longest Processing Time
(LPT) algorithm is an example of an approximation algorithm, as we will show later.

In this work, we develop new approximation algorithms for the uniform machine scheduling
problem. In particular, we find valid proofs for approximation ratios by mathematical
optimization and commercial solvers.

1.1 What is an optimization problem?
How can we design an efficient electricity grid? Which is the optimal price for this product?
What is the shortest route from point A to point B? What are the solutions to this Sudoku
puzzle? Which of these options is the best one according to this criterion?

7



Introduction

All the questions above can be mathematically formulated as optimization problems. An
optimization problem consists of an objective function, a domain, and several variables.
The objective function is the mathematical formulation of the criterion to be optimized
(maximized or minimized), for example, a measure of the efficiency of an electricity grid or
the number of errors in a Sudoku puzzle. The domain is the mathematical formulation of
the constraints that must be satisfied, for example, the start and end points of a route or
the already placed clues in a Sudoku puzzle. The variables are the mathematical objects
used to encode a possible solution, for example, the yet unknown numbers in a Sudoku
puzzle. Let f be the objective function, Ω be the domain, and x be the vector variable of
the problem. The problem can then be mathematically modeled as:

max
x∈Ω

f(x)

Three clarifications are necessary. Firstly, note that by applying the operators max and
min, we get a value f∗ = f(x∗) for a point x∗ in the domain and not the point x∗ itself.
If one is interested in the optimal variable x∗ itself, one should use the operators argmax
and argmin. These operators describe the subset of the domain formed by all the points
in the domain where f is optimized. From now on, as the computational implementations
of max and argmax operators return both the optimum and the point of optimum, we will
use the two forms interchangeably. Secondly, note that we can use the maximization form
without loss of generality, as it holds that −maxx∈Ω f(x) = minx∈Ω−f(x). Thirdly, with
an abuse of notation, in this work we will use the operator max even when the operator
sup should be used.

Now that the general structure of an optimization problem is defined, we focus on how to
solve an optimization problem.

If Ω is a finite set with a sufficiently low number of elements, the optimization problem
can be solved simply by evaluating the objective function f over each element of Ω and
selecting the ones that maximize f . Unfortunately, Ω is often an infinite subset of Rn that
satisfies multiple constraints, for example Ω =

î
x ∈ Rn : g⃗(x) ≤ 0⃗

ï
where g : Rn → Rm

is a known function. In this case, a plethora of optimization problems families emerges,
such as linear problems, quadratic problems, convex problems, concave problems, integer
problems, and combinatorial problems, ...

The most important properties for categorizing an optimization problem are:

• Continuity: If all the variables are continuous, the problem is said to be continuous.
On the other hand, if some variables are discrete, then the problem is called a mixed-
integer problem.

• Convexity: If both the objective function and the domain are convex, then the
problem can be solved to optimality by a gradient descent procedure.

– If both the objective function and the domain are described by linear functions
(hence they are also convex) the gradient descent procedure can be discarded
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for more efficient algorithms, both in practice and in theory. Refer to Tadei and
Della Croce [2010] for an in-depth explanation of the solution process of a linear
problem with the Simplex algorithm.

In this work, we mostly deal with Mixed-Integer Non-Linear Problems (MINLP). These
problems are characterized by the presence of both continuous and binary variables (dis-
crete variables that can assume only the values 0 or 1) and also by the presence of non-
linear constraints. In particular, all the non-linearizable non-linearities are non-positive
definite quadratic non-linearities, i.e., some constraints contain products of two continuous
variables.

1.2 What is a machine scheduling problem?
A machine scheduling problem is an optimization problem whose input are a set of jobs
and a set of machines. The expected output is a schedule, which is the assignment of jobs
to machines. Details of the problem, such as the objective function, scheduling constraints,
and job characteristics, can be specified using a standard three-field notation that can be
found in Graham et al. [1979]. The fields describe respectively the machine environment,
the job characteristics and constraints, and the objective function.

• Examples for the first field are P , Q, and R. P means that the machines are
parallel and identical. Q means that the machines are parallel machines, but each
one is characterized by a speed factor. For example, if machine A is twice as fast
as machine B, then each job on machine A will be completed twice as fast as the
same job on machine B. R means that the machines are parallel but unrelated, i.e.,
each job has an unrelated duration on each machine. These letters (P , Q, R) can be
followed by the number of available machines. If the number of machines is present,
for example, P2 or Q3, then it is a fixed parameter.

• Examples for the second field are prec, dj or fixj . prec means that a given precedence
relation must be respected while scheduling the jobs, i.e., job A must be finished
before starting job B (as in a production chain). dj represents the due date of each
job, i.e., job A must be finished before a given time otherwise a penalty must be
paid. fixj means that each job has a known subset of machines and needs all of
them for its execution.

• Examples for the third field are Cmax, Cmean or Fmean. Cmax, also called makespan,
is the maximum completion time. In other words, it is the time at which the last
running job has finished. Cmean is the mean completion time, i.e., the mean of all
machines completion times. Fmean is the mean flow time, i.e., the mean difference
between completion times and release times (the earliest time when a job can start
execution).

In this work, we will focus on the QM ||Cmax problem. There are M machines, each
characterized by a speed factor qm. Each job is characterized only by its length pj . The
schedule must minimize the makespan, i.e., when the last running job on the last running
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machine has finished. Note that the second field is empty, hence no further jobs constraints
are present.

1.3 What is a computationally impractical problem?
Some scheduling problems, for example, P2|fixj |Cmax or QM ||Fmean, can be efficiently
solved to optimality using specific algorithms, as done in Hoogeveen et al. [1994], Horowitz
and Sahni [1976]. Other problems are computationally impractical, hence they cannot be
solved efficiently. Here, computationally impractical means that, if the input is big enough,
the expected running time quickly becomes comparable with the life of the universe (see
Table 1.1).

This is closely linked to the very famous P-vs-NP problem, a fundamental question in
theoretical computer science and one of the Millennium Problems1. Loosely speaking,
this question asks if any problem, whose solution can be efficiently checked, admits an
algorithm that can solve it efficiently or if there are problems that are intrinsically hard
to be solved.

If an algorithm has an execution time that can be bound with a function f of the size n of
its input, it is common to say that the algorithm has a complexity of O (f(n)). Table 1.1
shows some algorithm complexities and examples of their expected running times.

Algorithm complexity n=10 n=20 n=30 . . . n=100
f(n) ∈ O (n) 0.1 sec 0.2 sec 0.3 sec . . . 1.0 sec
f(n) ∈ O (2n) 0.0001 sec 1.0 sec 17.1 min . . . 3.8× 1016 years

Table 1.1. Algorithm Complexity with some examples of expected running times

To clarify the concept of running time complexity, let us consider as an example a list of
n real numbers that must be sorted in ascending order.

Firstly, it is easy to check that a solution to this problem, i.e., a candidate sorting, can
be checked in linear time O (n). It suffices to iterate over each element once and check
that the current element is smaller than the next one. Hence, the number of operations
necessaries to check a candidate solution is n− 1 = O (n).

One very inefficient algorithm to sort the list is to iteratively check each permutation until
a sorted one is found. As the number of permutations of n objects is n!, and checking if
a list of n objects is sorted requires n − 1 comparisons, the total number of operations
needed to sort the list in this way is O (n! · n). As the number of operations required by
an algorithm is proportional to its running time, this algorithm is said to have a non-
polynomial run-time complexity. Surely, a human tasked with sorting a list will never try

1https://www.claymath.org/millennium-problems
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each permutation and check if it is sorted.

A more natural approach is the Insertion Sort algorithm. This algorithm iteratively takes
an item from the input list and puts it in the output list in the correct position, keeping
the output list sorted. This algorithm has a run-time complexity of O

!
n2", hence a

polynomial one.

Note that there are more efficient algorithms, for example the Heapsort algorithm, that
have a run-time complexity of O (n log n). As it can be proved that a lower complexity
cannot be reached, it is guaranteed that the problem of sorting a list has a complexity of
O (n log n). Refer to Crescenzi et al. [2012] for a deeper explanation.

Now that we have matured an intuition about this subject, we can give the following
definitions:

• A Decision Problem is a problem whose solution is binary: yes or no. Note that
any optimization problem can be translated into a series of decision problems. For
example, “How long is the shortest path from A to B?” may become “Does it exist
a path from A to B shorter than 3 units?”. Also note that sorting a list is not a
decision problem, but one could rephrase it as “Is list α the sorted version of list β?”.
Formally, there is a very elegant definition for a decision problem. Let us represent
an input to a decision problem as a string of symbols, for example a binary string.
Then we identify the decision problem itself as the possibly infinite set of binary
strings {0,1}∗ whose answer is “yes”. In this representation, a decision problem is
simply the set of binary strings that, interpreted as input, satisfy a certain property.
From now on, x will refer to an (encoded) input, n will refer to the length of x and
Π ⊆ {0,1}∗ will refer to a decision problem.

• An Algorithm A is, without being too technical, a computational representation of
a function from a binary string x to another binary string y. Given a decision problem
Π, A solves Π if A−1(1) = Π, i.e. the preimage of y = 1 through the algorithm A
is Π. The computational aspect is very important: an algorithm follows a finite
sequence of operations, one at a time, to transform the string x to the string y.

• The Complexity of an algorithm A is f(n), where f(n) is the maximum total
number of operations needed to transform the input string x to the output string y.
Note that the complexity is a function of the length of the input string x, not of the
string x itself.

• A decision problem Π belongs to the class P if it exists at least one algorithm A,
whose complexity f(n) is polynomial, that solves it. In other words, problems in P
can be solved in polynomial time.

• A decision problem Π belongs to the class NP if it exists at least one algorithm V
with polynomial complexity and a polynomial p such that:

– x ∈ Π =⇒ ∃y ∈ {0,1}p(n) : V(x, y) = 1

– x /∈ Π =⇒ ∀y ∈ {0,1}p(n) : V(x, y) = 0

11
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The algorithm V is called verifier, and y is called yes-certificate as it should rep-
resent a proof that x ∈ Π. The first condition states that the verifier must accept
all valid proofs. The second condition states that the verifier must reject all invalid
proofs. Nothing is said about how we found a valid yes-certificate y for a given
input x. From a theoretical point of view, we can brute-force every possible binary
string y and test if it is a valid yes-certificate. However, the number of possible y
strings is exponential in n: 2p(n). In other words, problems in NP can be checked
in polynomial time.

Going back to our machine scheduling problem QM ||Cmax, we can show that its decision
version is in NP . In fact, also the P2||Cmax problem is in NP , as shown in Lawler et al.
[1993]. Note that an instance of QM ||Cmax can be reduced to an instance of P2||Cmax by
simply fixing the number of machines to 2 and fixing the speed of the machines to 1. Hence,
the decision version of QM ||Cmax is at least as difficult as the P2||Cmax counterpart.
So, the decision version of QM ||Cmax is in NP . Note that this means that also the
optimization version of QM ||Cmax is difficult to solve, otherwise it should suffice to solve
the optimization version to solve the decision version.

From now on, with a slight abuse of notation, we state that an optimization problem is
in NP if its decision version is in NP .

1.4 What is an approximation algorithm?
If an NP optimization problem is sufficiently large, then finding the optimal solution
is computationally impractical and, even if supplied, it is computationally impractical to
prove its optimality. We are thus forced to drop the requirements of certified optimality
and settle for a humbler target: finding efficiently suboptimal solutions.

There are two main kinds of algorithms developed for this goal: heuristics and approxima-
tion algorithms. This duality reflects the one introduced at the beginning of this chapter:
finding a solution vs proving its optimality.

Heuristics are algorithms created to be effective in real-life scenarios. It means that, while
no solid theoretical foundations are present, solutions reached by heuristics are normally
satisfactory. Heuristics are often developed by combining sensible strategies to provide
solutions that are as good as possible in the majority of real-life cases. But, in the remote
possibility of a pathological instance forged with the intent of tricking the heuristic, the
solution can be arbitrarily worse than the optimal one.

Some famous heuristics are the following:

• Greedy algorithms is a general term that defines any iterative algorithm that
performs the most profitable action at each step, without any kind of future foresight.
For example, playing a turn in chess by just looking at the current state of the board,
without thinking of future moves.

• Beam Search can be considered an evolution of a greedy algorithm, as it takes into
account a “fixed amount of foresight”. Going back to the chess example, a beam
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search algorithm could be one that explores all different scenarios up to three moves
in the future.

• Local Search heuristics typically improve a given starting solution by sequentially
applying “small” modifications to it. This means that a “geometry” is constructed
in the solution space, and all the solutions nearby the current one are considered in
search of an improvement. In other words, this resembles a discrete version of the
famous gradient descent algorithm.

• Genetic Algorithms are heuristics that imitate the natural evolutionary processes.
Overall, the algorithm considers a pool of candidate solutions. Each solution is en-
coded in a problem-dependent way, to resemble the DNA. Each step of the algorithm
contains a reproduction phase and a selection phase. In the reproduction phase,
new solutions are generated by combining already present solutions. In the selection
phase, each solution is scored with a fitness function and the lowest solutions are
discarded.

• Matheuristics can be described as local search heuristics that perform the local
search step by solving an optimization problem using, for example, a MILP solver.
Matheuristics are typically superior to classical local search procedures as they are
able to explore efficiently a bigger neighborhood.

As we will use local search procedures, let us study them more deeply. These heuristics
are used to solve optimization problem by iteratively exploring the solution space. The
exploration produces a sequence of feasible solutions xi. The central idea of the local
search procedures is that these solutions should be pairwise near to each other. Indeed,
to use a local search heuristic a neighborhood must be defined for each feasible solution.
Typically, some sort of similarity measure is used, for example the Hamming distance.
Procedure 1.1 summarizes the main steps of a text-book local search procedure.

Procedure 1.1: Generic Local Search Procedure

1 Initialization: selection of an initial (feasible) solution x1 as current
solution and computation of its objective function value f(x1) ;

2 Neighborhood generation: construction of a (totally feasible)
neighborhood N (xi) of the current solution xi and selection of a
candidate solution x̃ ∈ N (xi) ;

3 Acceptance test: check whether solution x̃ should be accepted to replace
xi. In the negative case the current solution remains xi+1 = xi. In the
positive case the current solution must be updated: xi+1 = x̃. Typically,
this step is based on randomness to “escape local optima” ;

4 Stopping test: if the test is positive stop the local search algorithm and
return the best solution encountered, else go to the Neighborhood
generation step

If the best solution in the neighborhood is selected at each step, the local search heuristic
is said to follow the steepest descent strategy. On the other hand, if the first solution
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that improves the current one is selected, the local search heuristic is said to follow a first
improvement strategy.

Approximation algorithms, on the other hand, are created in order to address worst cases.
It can be proved that their solutions are always “almost good as” the optimal one. The
concept of approximation ratio is used to quantify by how much their solutions differ from
the optimal one. The approximation ratio of an algorithm used to solve an optimization
problem is defined as the worst possible ratio between the suboptimal value returned by
the algorithm and the optimum of the optimization problem. If this ratio exists and is
finite, then the algorithm is called an approximation algorithm.

Schematically, let I be any instance of an optimization problem and H be a candidate
approximation algorithm to solve the optimization problem. We can define the approxi-
mation ratio ρ of the algorithm H as:

ρ = max
I

Value of the solution provided by H applied to I
Value of the optimal solution of I (1.1)

This optimization problem is usually solved indirectly by proving problem-specific prop-
erties that connect the value of the algorithm solution with the optimal one. In this
work, we try to do the opposite: we will add constraints to this optimization problem
to encode the approximation algorithm logic and the optimal solution value. Finally, ex-
ploiting the power of commercial solvers, we will solve the optimization problem and get
the approximation ratios.

For some optimization problems, there are approximation algorithms having the ability
to “control” the approximation ratio, getting it arbitrarily close to 1. They are called
Approximation Schemes. There are two kinds of approximation schemes: Polynomial
Time Approximation Scheme (PTAS) and Fully Polynomial Time Approximation Scheme
(FPTAS).

A PTAS is an approximation algorithm that offers a controllable approximation ratio.
Indeed, a PTAS takes as input an arbitrary parameter ϵ > 0 and an instance of the opti-
mization problem and yields a solution with an approximation ratio ρ < 1 + ϵ. Moreover,
a PTAS must have a runtime complexity polynomial in the input instance size.

A FPTAS is a PTAS whose runtime complexity is polynomial both in the input instance
size and in 1

ϵ .

1.5 What are LPT and LS?
As discussed, the problem QM ||Cmax is in NP . In other words, no known algorithm can
solve it efficiently. Hence, the need for developing efficient algorithms that find suboptimal
solutions. Surely, two famous algorithms are the List Scheduling (LS) rule and the Longest
Processing Time (LPT) rule.
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List Scheduling is an iterative algorithm that starts from an empty schedule and, given a
fixed list of jobs, updates the schedule at each step by assigning the job to the machine
that would finish it first given the current schedule. List Scheduling can also be applied
to other problems, such as P2||Cmax or even RM ||Cmax. We give here a pseudocode
implementation of the List Scheduling algorithm for P2||Cmax because it is probably the
easiest machine scheduling problem.

Procedure 1.2: List Scheduling for P2||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J
Output: The value Cmax of the List Scheduling schedule
// Initialize an empty schedule
// T1, T2 are sums of jobs lengths assigned to each machine

1 T1 ← 0;
2 T2 ← 0;

// Now start building the schedule iteratively
3 for j = 1, . . . , J do

// Assign the job to the machine that would finish it first
4 if T1 + pj ≤ T2 + pj then

// Assign job j to machine 1 and increment T1
5 T1 ← T1 + pj ;
6 end
7 else

// Assign job j to machine 2 and increment T2
8 T1 ← T1 + pj ;
9 end

10 end
// Now compute the schedule value by Cmax rule

11 Cmax ← max {T1, T2};

The List Scheduling algorithm is an example of a greedy heuristic. It is greedy, as each
job is placed without caring for the next ones. It is also a (very simple) heuristic, as it is
sensible to place each job to minimize, at each step, the maximum total running time.

The List Scheduling algorithm is easily extendable to the QM ||Cmax problem, by intro-
ducing in the input also the speeds of the machines and considering them during the
assignment process:
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Procedure 1.3: List Scheduling for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The value Cmax of the List Scheduling schedule
// Initialize an empty schedule
// Tm is sums of jobs lengths assigned to machine m

1 T1, . . . , TM ← 0;
// Now start building the schedule iteratively

2 for j = 1, . . . , J do
// First compute all possible partial completion time

3 Fm ← (Tm + pj)qm ∀m = 1, . . . , M ;
// Then find the machine m̃ that would finish it first

(minimum partial completion time)
4 m̃ = argmin {F1, . . . , FM};

// Then assign job j to machine m̃ and increment Tm̃

5 Tm̃ ← Tm̃ + pj ;
6 end

// Now compute the schedule value by Cmax rule
7 Cmax ← max {q1T1, . . . , qM TM};

Even if applied to QM ||Cmax this algorithm is very fast: it is linear in the number of jobs
J and in the number of machines M . In other words, its complexity is O (JM). Let us
try to deduce it from the pseudocode:

1. The first row performs exactly M operations, hence it has a complexity of O (M).

2. The second row is a fixed for loop over the jobs, so each further row complexity
should be multiplied by J .

3. The third row performs M times the same two operations: addition and mul-
tiplication. Hence, we could say that inside the for loop has a complexity of
O (2MJ) = O (MJ).

4. The fourth row has to find the minimum in a list of M numbers. Hence, inside the
for loop, has a complexity of O (MJ). In fact, to find a minimum of a list, we just
need to scan the list once keeping a pointer to the minimum element found so far.

5. The fifth row is a single operation that requires O (1). So inside the loop, it brings
a complexity of O (J).

By summing the complexity of each row we get:

O (M) +O (MJ) +O (MJ) +O (J) = O (MJ)

If the number of machines M is fixed than the overall complexity is just O (J).
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The LPT algorithm is just LS applied to the sorted list of jobs in decreasing job length
order.

Procedure 1.4: LPT for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The value Cmax of the LPT schedule
// Sort the jobs by decreasing length

1 (pj)j=1,...,J ← sort((pj)j=1,...,J);
// Apply LS and return its schedule

2 ListScheduling((pj)j=1,...,J ,(qm)m=1,...,M );

Let us try again to derive the complexity of this algorithm directly from the pseudocode:

1. The first row sorts a list of J numbers. To do that, we can apply the Heapsort
algorithm that has a complexity of O (J log J).

2. The second row is just List Scheduling, hence it has a complexity of O (MJ).

Supposing the number of machines fixed, by summing the complexity of each row we get:

O (J log J) +O (MJ) = O (J log J) +O (J) = O (J log J)

Hence, the LPT algorithm has a log-linear complexity, only due to the initial sorting of
the jobs. This means that the LPT algorithm is not simply slower than the List Schedul-
ing, but it has greater complexity. Surely, there is a benefit for this added complexity.
For PM ||Cmax, both algorithms are approximation algorithms. LPT has a tight approx-
imation ratio of 4

3 −
1

3M and List Scheduling has an approximation ratio of 2 − 1
M . For

QM ||Cmax, the LPT algorithm has an approximation ratio ρ ≤ 2, as we will discuss later.
The List Scheduling algorithm is not even an approximation algorithm (see Lenstra and
Shmoys [2019]).

Figure 1.1 shows the LPT algorithm at work. There are 5 jobs and 2 machines. The jobs
lengths are {5,3,2,2,1}. For the sake of simplicity, the machines are identical and they
have the same speed factor of 1. The final makespan is 7.
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M1: p1 = 5

M2: p1 = 5

M1: p1 = 5

M2:

M1: p1 = 5 p2 = 3

M2: p2 = 3

M1: p1 = 5

M2: p2 = 3

M1: p1 = 5 p3 = 2

M2: p2 = 3 p3 = 2

M1: p1 = 5

M2: p2 = 3 p3 = 2

M1: p1 = 5 p4 = 2

M2: p2 = 3 p3 = 2 p4 = 2

M1: p1 = 5 p4 = 2

M2: p2 = 3 p3 = 2

M1: p1 = 5 p4 = 2 p5 = 1

M2: p2 = 3 p3 = 2 p5 = 1

M1: p1 = 5 p4 = 2

M2: p2 = 3 p3 = 2 p5 = 1

Figure 1.1. An example of LPT schedule building process.
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Related Work

The seminal work of Graham [1969] is fundamental as he was the first to analyze the LPT
algorithm for PM ||Cmax as an approximation algorithm. In that work, he first proved
that the approximation ratio of LPT is 4

3 −
1

3M , where M is the number of machines.

The scheduling problem on uniform machines, i.e., the QM ||Cmax problem, was introduced
by Horowitz and Sahni [1976]. They developed two PTASs, one for Q2||Cmax and one for
R2||Cmax

A series of results focus on bounding the approximation ratio ρ of LPT applied to the
problem Q||Cmax, i.e., when the number of machines M is not fixed. The first result was
by Gonzalez et al. [1977]. They proved that 3

2 ≤ ρ ≤ 2. The lower bound was proved by
explicitly giving a family of instances such that, in the limit M →∞, attains an approx-
imation ratio of 3

2 . Afterward, Dobson [1984] gave an instance where the approximation
ratio is ≈ 1.512, hence improving the lower bound. He also improved the upper bound to
19
12 ≈ 1.583 by making a connection to a bin packing problem. Then Friesen [1987] gave an
instance where the approximation ratio is ≈ 1.52, hence improving the lower bound. He
also proved, independently of Dobson, a worse upper bound: 5

3 ≈ 1.666. Finally, Kovács
[2010] tightened the bounds to 1.54 ≤ ρ ≤ 1 +

√
3

3 ≈ 1.5773.

Regarding the LPT algorithm applied to the QM ||Cmax problem, in recent years Mit-
sunobu et al. [2022] found the approximation ratio when the number of processors M
is 2,3,4,5: ρ2 ≈ 1.28, ρ3 ≈ 1.38, ρ4 ≈ 1.43, ρ5 ≈ 1.46. The best previous result was by
Gonzalez et al. [1977] who showed that ρ ≤ 2M

M+1 ∀M .

Note how all these results are independent of the machines speeds. A beautiful parametric
analysis of the approximation ratio of the LPT algorithm applied to Q2||Cmax was done
by Mireault et al. [1997]. They designed a function f (q1, q2) such that

ρ (q1, q2) ≤ f (q1, q2) ∀q1, q2 ∈ R+

Then they produced examples to prove that the inequality is tight for all machines speeds.
To get this beautiful result, they hinted at the usage of the optimization problem method
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to prove approximation ratios. In particular, they explicitly wrote some optimization
problems, but they did not solve them directly, probably for a lack of resources. In-
stead, they manually analyzed some constraints and proved the approximation ratios in
a standard analytic fashion.

Regarding the LPT algorithm applied to Q2||Cmax, Massabò et al. [2016] found some
interesting posterior bounds. In this context, posterior bound refers to information that
is available only after the application of the LPT algorithm, for example, the index of the
machines where the makespan will take place or the index of its last inserted job. They
developed a posterior worst-case performance ratio bound and, through examples, showed
that the ratio is tight.

Moving on from the LPT algorithm applied to Q2||Cmax, Koulamas and Kyparisis [2009]
proposed a modified version of the LPT algorithm and showed that their version is an
approximation algorithm for Q2||Cmax with a ratio of

ñ
3
2 ≈ 1.2247. Note that this

approximation ratio is an improvement over the LPT approximation ratio for Q2||Cmax,
which is ρ2 ≈ 1.28. The main difference in their algorithm is an initial “brute-force” phase
on a fixed number of large jobs.

In recent years, Della Croce et al. [2019] developed an approximation algorithm for
P2||Cmax with an approximation ratio of 13

12 . Their algorithm was essentially the LPT algo-
rithm followed by a step of a local search procedure. Focusing on PM ||Cmax, Della Croce
and Scatamacchia [2020] developed a modification of the LPT algorithm that improves
Graham [1969] bound from 4

3 −
1

3M to 4
3 −

1
3(M−1) for M ≥ 3 and from 7

6 to 9
8 for M = 2.

As one can imagine, there is a myriad of variations of machines scheduling problems.
Refer to “Elements of Scheduling” by Lenstra and Shmoys [2019] or to “Scheduling” by
Pinedo [2012] as a starting point for further references.
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Chapter 3

Proposed approach

3.1 Description of the Problem
We focus on the problem known in literature as QM ||Cmax, that is: given a set of jobs,
each characterized by its length, and a set of machines, each characterized by its speed,
find the assignment of the jobs to the machines that minimize the maximum completion
time.

To properly state the QM ||Cmax problem, we use the following notation:

• M ∈ N is the number of machines and J ∈ N is the number of jobs.

• An instance is the pair I =
1
{qm}m=1,...,M , {pj}j=1,...,J

2
where qm is the speed factor

of the machine m and pj is the length of job j.

• A schedule is defined as a function S : {1, . . . , J} → {1, . . . , M}.

• The makespan of the m-th machine of an instance I with respect to a schedule S is
defined as:

Cm,I,S =
Ø

j∈S−1(m)
qmpj

Note that if a speed factor qm is qm ≥ 1, it plays the role of a “slowness” factor.

• Finally, the makespan of an instance I with respect to a schedule S is defined as:

CI,S = max
m∈{1,...,M}

Cm,I,S

So the problem QM ||Cmax is: given an instance I find an optimal schedule S∗ such that
the makespan CI,S is minimized.

We can try to solve the problem to optimality using a commercial Mixed-Integer Linear
Programming (MILP) solver as the problem admits a MILP formulation:
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Optimization Model 3.1: MILP model for solving QM ||Cmax

C∗ = min
C,xj,m

C

s.t. C ≥ qm

JØ
j=1

xm,jpj (∀m ∈ {1, . . . , M})

Ø
m

xm,j = 1 (∀j ∈ {1, . . . , J})

xm,j ∈ {0,1} (∀m ∈ {1, . . . , M} ,∀j ∈ {1, . . . , J})
C ≥ 0

Where for all m ∈ {1, . . . , M} and j ∈ {1, . . . , J}, xm,j is a binary variable whose value is
1 if job j is assigned to machine m, i.e. S∗(j) = m, and 0 otherwise. Note that the above
optimization problem is a Mixed-Integer Linear Program (MILP), as its variables are C
and {xj,m}, and it is “parametric” in {qm} and {pj}.

Alas, while solving a continuous linear problem is a polynomial problem, for example using
the ellipsoid method from Karmarkar [1984], solving a mixed-integer linear program is
NP . The school-book solution process is typically the Branch and Bound algorithm
(see Tadei and Della Croce [2010]). This algorithm iteratively performs a tree-like search
procedure, to find the optimal integer variable values. At each step of the algorithm, a
leaf is selected, where an integer variable is fixed with a constraint and a new continuous
linear program is solved. Then the algorithm may perform a pruning step where all the
leafs that can be proved to be suboptimal are discarded and no more explored.

Hence, if a given instance has too many jobs, even the best MILP solver cannot solve it
to optimality. So we apply a scheduling algorithm H and get a suboptimal result. After
getting the schedule provided by algorithm H, one could ask how good or bad is this
schedule with respect to the unobtainable optimal one. This question can be addressed
by considering the approximation ratio ρ. Recall equation (1.1):

ρ = max
I

Value of the solution provided by H applied to I
Value of the optimal solution of I ((1.1) revisited)

If we solve this optimization problem and find a finite ρ than H is an approximation
algorithm with approximation ratio equal to ρ. This means that, even in the worst
possible case, the algorithm H schedule value will be at most ρ times worse than the
optimum schedule value.

The above optimization problem is too “high level” to be solved in practice. We need to
encode into constraints all three elements of the problem: any instance I, the value of the
solution provided by H applied to I and the value of the optimal schedule of I.

In the next chapter we enter into details on how we solve all these issues for the LPT
algorithm and also for new algorithms.
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3.2 Methodology
In this section, we delineate a methodology that we will use with all the algorithms.

It is clear that it is impossible to study any conceivable algorithm in a unified manner and
elegantly. So we need to delineate a particular family of algorithms we are interested in.
Taking inspiration from the work of Della Croce et al. [2019], we will consider algorithms
that produce a partial schedule using only a sub-list of the jobs and then complete that
schedule with List Scheduling. This approach is also favorable from a complexity point of
view.

As we discussed, the LPT complexity is O (J log J), only due to the required sorting
of all the jobs. One could wonder if it is possible to devise an algorithm that could
both reduce the complexity (by ordering a small fixed number of jobs) and improve the
approximation ratio. So we focus on the following algorithm structure, denoted hereafter
as “meta-algorithm”:

Procedure 3.1: Meta-Algorithm for QM ||Cmax

Parameters: A number L ∈ N
A scheduling algorithm H for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: C
1 Find the LM -th longest job in {pj}j=1,...,J

2 Let J +,J − be, respectively, the list containing all the jobs larger than the
LM -th one and the list containing the remaining jobs (if any).

3 Sort only the list J +.
4 Apply algorithm H to the sorted list J + and obtain a (partial) schedule S.
5 Complete the schedule S using list scheduling with J −.

Below we assess the complexity of the proposed Meta-Algorithm:

1. As L and M are fixed numbers, the complexity of the first row is O (J). In fact,
finding the k-th largest element in an unsorted list of length can be done in linear
time O (LMJ) using a multiple scans approach.

2. The second row can be implemented by simply scanning each job once and placing
it in either one of the lists. Hence, it has a complexity of O (J).

3. By construction, the list J + has exactly LM elements. Hence, the complexity of
the third row is O (LM log (LM)), using for example the Heapsort algorithm.

4. The fourth row complexity depends on the complexity of the algorithm H. As H
accepts as input the list J + (length LM) and the list of machines (length M), H
complexity has the form O (f(LM, M)).
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5. The fifth row is just an application of the List Scheduling algorithm, whose com-
plexity is the product of the number of machines times the length of the list of the
input jobs: O (M(J −ML)+).

Hence, the overall complexity of the Meta-Algorithm is linear in J when M and L are
fixed:

O
!
LMJ + LM log(LM) + f(LM, M) + M(J −ML)+" = O (LMJ) = O (J) (3.1)

It is important to note that the overall complexity of Meta-Algorithm is independent of
the complexity of the algorithm H used. Moreover, its complexity is O (J), hence it is an
improvement over the complexity of LPT, that is O (J log J).

We want to study the approximation ratio of multiple algorithms that follow the structure
of the Meta-Algorithm. Hence, we need to fix a scheduling algorithm H, applicable to the
QM ||Cmax problem, and a number L ∈ N, that will limit the number of jobs in the
input of H. Let CH be the value of the suboptimal schedule produced by Meta-Algorithm
instantiated with H and L. Let C∗ be the value of the optimal schedule. Then, we have
to solve the following optimization problem:

ρ = max
instance I

CH

C∗ (3.2)

We remark that the J jobs lengths and the M machines speeds should be variables of
problem (3.2). While M can be considered fixed, for example M = 2 if we are interested
in finding approximation ratios for Q2||Cmax, surely the number of jobs J is not fixed as
any instance I should be taken into consideration, regardless of its length. An elegant
solution could be to add an infinite number of variables, one for each possible job, and
treat the resulting problem with variational methods. Alas, the commercial solvers are
able to represent only finite dimensional problems, hence a different strategy must be
followed.

We propose the following approach to solve (3.2). We split the optimization problem
domain into two parts, according to the index of the critical job K. The critical job is
the smallest job whose removal causes the makespan to strictly decrease. For example,
looking back at Figure 1.1, the critical job index is K = 4. We obtain the following:

ρ = max

 max
instance I with

K ≤ LM

CH

C∗ , max
instance I with

K ≥ LM + 1

CH

C∗


Note that choosing LM as the “threshold” for K, we actually separate the algorithm H
from the List Scheduling algorithm. In fact, if K ≥ LM + 1, the critical job is scheduled
according to the List Scheduling algorithm. On the other hand, if K ≤ LM , the critical
job is scheduled by the algorithm H.
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Moreover, the first sub-problem can be simplified from an infinite dimensional problem to
a finite dimensional one, using the following proposition:

Proposition 3.2.1. It holds that:

max
instance I with K ≤ LM

CH

C∗ ≤ max
instance I with J = LM

CH

C∗

Proof. Recall the structure of the Meta-Algorithm. If the critical job index is K
and K ≤ LM , then the critical job has been scheduled by algorithm H and not
by the List Scheduling part. Moreover, by the definition of critical job, any job
scheduled by List Scheduling does not increase the makespan. Otherwise, if such
a job existed, then it would be the new critical job, contradicting the fact that
K ≤ LM . So, we can remove the jobs in J − without changing the performance of
the overall algorithm.
On the other hand, removing the jobs in J − can only reduce the makespan of the
optimal schedule, i.e., reducing C∗.
In other words, for any instance I with K ≤ LM , there is an instance I ′ with
J ≤ LM such that the makespan of the overall algorithm cannot decrease and the
makespan of the optimal schedule cannot increase.

Applying the above proposition, we get the following inequality:

ρ ≤ max

 max
instance I with

J = LM

CH

C∗ , max
instance I with

K ≥ LM + 1

CH

C∗

 (3.3)

The first sub-problem is algorithm dependent, and it is tackled with commercial solvers.
The latter sub-problem is instead more general, and it will be tackled in the next section.
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Main Propositions

The goal of this section is to devise a bound for the Meta-Algorithm if the critical job is
in J −. To simplify the notation, given the machines speed factors, we define the following
quantity:

Q =
Ø

m=1,...,M

1
qm

The following proposition provides a bound for the optimal value of an instance (no
reference to any approximation algorithm).

Proposition 4.0.1. Let C∗ be the value of an optimal schedule S∗ = {S∗
1 , . . . ,S∗

M}
with respect to an instance I = ({qm} , {pj}). Then:Ø

j=1,...,J

pj ≤ C∗Q

Proof. By the definition of C∗:

C∗ = max
m=1,...,M

qm

Ø
j∈S∗

m

pj


≥

Ø
m=1,...,M

αmqm

Ø
j∈S∗

m

pj

 ∀α1, . . . , αM > 0 :
Ø

m=1,...,M

αm = 1

(4.1)

The inequality follows from the fact that the maximum of a set of scalars is greater
than or equal to any convex combination of such scalars. Hence, αm are free
coefficients of an arbitrary convex combination. We choose the following:
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αm = 1
qmQ

∀m = 1, . . . , M (4.2)

This choice is valid as the resulting coefficients are positive and sum up to 1:
Ø

m=1,...,M

αm =
Ø

m=1,...,M

1
qmQ

= 1
Q

Ø
m=1,...,M

1
qm

= 1
Q
Q = 1

By substituting (4.2) in (4.1) we get the result:

C∗ ≥
Ø

m=1,...,M

αmqm

Ø
j∈Sm

pj


=

Ø
m=1,...,M

 1
qmQ

qm

Ø
j∈Sm

pj


=

Ø
m=1,...,M

 1
Q
Ø

j∈Sm

pj


= 1
Q

Ø
m=1,...,M

Ø
j∈Sm

pj


= 1
Q

Ø
j=1,...,J

pj

The next proposition provides a bound to the approximation ratio of each scheduling
algorithm using list scheduling.

Proposition 4.0.2. Consider a scheduling algorithm H and let I be an instance
such that the critical job K has been scheduled according to the list scheduling rule.
Then the following inequality holds:

CH

C∗ ≤ 1 + (M − 1)pK

C∗Q

Proof. Let t1, . . . , tM be the sums of the jobs scheduled respectively on machines
m = 1, . . . , M before the K-th job, i.e., the critical one.
The makespan CH is equal to the completion time of the critical job pK . Moreover,
due to list scheduling, the critical job is scheduled on the machine that completes
it first. Hence, the following holds:
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CH = min
m̃=1,...,M

qm̃ (tm̃ + pK) ≤ qm (tm + pK) ∀m = 1, . . . , M

Dividing by qm and summing on m we get:

=⇒
Ø

m=1,...,M

CH

qm
≤

Ø
m=1,...,M

(tm + pK)

⇐⇒ CH
Ø

m=1,...,M

1
qm
≤

Ø
m=1,...,M

(tm + pK)

⇐⇒ CHQ ≤
Ø

m=1,...,M

(tm + pK)

⇐⇒ CHQ− (M − 1)pK ≤ pK +
Ø

m=1,...,M

tm

Note that we can apply Proposition 4.0.1, because:

pK +
Ø

m=1,...,M

tm =
Ø

j=1,...,K

pj ≤
Ø

j=1,...,J

pj ≤ C∗Q

Correspondingly, we get the following inequality:

CHQ− (M − 1)pK ≤ C∗Q

Proposition 4.0.3. Under the same hypotheses of Proposition 4.0.2, let addition-
ally suppose that there are X jobs greater than pK . It holds that:

CH

C∗ ≤ 1 + M − 1
X + 1

Proof.

C∗Q ≥
Ø

j=1,...,J

pj ≥

 Ø
jobs greater than pK

pj

+ pK ≥ XpK + pK = (X + 1)pK

That is:
pK

C∗Q
≤ 1

X + 1
By plugging this last inequality in Proposition 4.0.2 we get the result.

As a corollary of Proposition 4.0.3, the next proposition gives a bound for every algorithm
that follows the framework of the Meta-Algorithm. This bound depends only on the
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number of machines M and the parameter L.

Proposition 4.0.4. Suppose that the Meta-Algorithm is applied to an instance I
such that K ≥ LM + 1. Then it holds:

CH

C∗ ≤ 1 + M − 1
LM + 1

Proof. As K ≥ LM + 1, the Meta-Algorithm puts pK ∈ J −, so the critical job K
will be scheduled according to list scheduling. Moreover, any job in J + is greater
than pK . By remembering that |J +| = LM we have that at least LM jobs are
greater than pK . Applying Proposition 4.0.3 we get the result.

Note that if we consider problem PM ||Cmax, i.e. identical processors, a better bound can
be proved:

CH

C∗ ≤ 1 + M − 1
(L + 1)M

Indeed, the following proposition holds.

Proposition 4.0.5. Suppose that the Meta-Algorithm is applied to an instance I
such that K ≥ LM + 1. Then:

CH

C∗ ≤ 1 + M − 1
Q(L + 1) min

m=1,...,M
qm

Proof. As K ≥ML + 1 then, for the pigeonhole principle, in the optimal schedule
it exists a machine with at least (I + 1) jobs. Moreover, as K ≥ ML + 1 then
pK ≥ pj ,∀j = 1, . . . , LM + 1. So the following inequality holds:

C∗ ≥ (L + 1)pK min
m=1,...,M

qm

Hence:
pK

C∗ ≤
1

(L + 1) min
m=1,...,M

qm

We recover the thesis applying this last inequality to Proposition 4.0.2
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Developed Algorithms -
Examples

In this section we finally define the new algorithms. Remember that each of them is
created from Meta-Algorithm by specifying an algorithm H and a positive integer L. In
fact, the algorithm H is applied only to the sorted list containing the LM largest jobs.
Afterwards, List Scheduling is applied to the remaining jobs.

Consequently, a new approximation ratio must be proved for each choice of H and L,
as the initial part of the resulting algorithm is different. To study these approximation
ratios, we will use the following inequality (obtained by plugging Proposition 4.0.4 into
(3.3)):

ρ ≤ max

 max
instance I with

J = LM

CH

C∗ , 1 + M − 1
LM + 1

 (5.1)

Note that only the first sub-problem involves algorithm H while List Scheduling is not
involved. This issue will become very handy later.

In this section, for each new algorithm H, we give its pseudocode implementation. After-
wards we derive equality and inequality constraints. These constraints represent the logic
and the rules of the algorithm H. With these constraints we will construct optimization
problems following the first sub-problem scheme. To solve the optimization problems we
use the commercial solver Gurobi v9.2.

Beyond H, also L is a free parameter of the Meta-Algorithm. Hence, also L needs to be
taken into consideration when solving (5.1) for each algorithm H. Choosing L as small as
possible has two benefits. First, according to equation (3.1), a smaller L implies faster
runtimes, as only the largest LM jobs need to be “filtered”. Secondly, the first sub-
problem optimum increases (non strictly) as L increases. In fact, any instance with L1M
jobs is also an instance with (L1 +1)M jobs by simply adding an infinitesimal job, without
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altering CH or C∗. On the other hand, the second term in (5.1) decreases as L increases.
Hence, for each algorithm H, we will choose the smallest L such that the maximum in
(1.1) is given by the first sub-problem.

In the following, several low-complexity polynomial-time algorithms are presented with
their relevant approximation ratios.

5.1 LPT Algorithm
5.1.1 The Algorithm
The first algorithm H that we test is the classic LPT. In this way, a somehow direct
comparison with Mitsunobu et al. [2022] and Mireault et al. [1997] can be made.

A succinct pseudocode implementation of the LPT algorithm for QM ||Cmax problem is:

Procedure 5.1: LPT for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The LPT schedule S and its value C
1 Sort the jobs in decreasing order, i.e.

i ≤ j =⇒ pi ≥ pj , ∀i, j ∈ {1, . . . , J};
2 Tm ← 0 ∀m = 1, . . . , M ;
3 Sm ← {} ∀m = 1, . . . , M ;
4 for j = 1, . . . , J do

// Assign the job to the machine that would finish it first
// Break eventual ties at random

5 m← argmin
m̃=1,...,M

qm̃(Tm̃ + pj);

// Update partial schedule and partial completing times
6 Tm ← Tm + pj ;
7 Sm ← Sm ∪ {j};
8 end
9 C = max

m=1,...,M
qmTm;

This algorithm requires in input the list of machines speed factors {qm}m=1,...,M and the
list of jobs lengths , {pj}j=1,...,J .

1. In the first row the jobs are sorted from the longest to the shortest.

2. In the second row, M variables are initialized to zero. The m-th variable, Tm, will
hold the current total jobs lengths assigned to machine m. At the start, no jobs are
assigned, hence all the totals are zero.
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3. The third row initializes an empty schedule. In principle, there are multiple ways to
represent a schedule. Here, the variable Sm will hold the indexes of the jobs assigned
to machine m.

4. The fourth row is a for loop over the (sorted) jobs.

5. The fifth row is the core of LPT algorithm. Here we select the machine where job j
will be assigned. The criterion is to assign the job to the machines that would finish
it first. Note that qm̃Tm̃ is the current completion time of machine m̃. If we assign
the job to machine m̃, its completion time would be qm̃Tm̃ + qm̃pj , as we need to
consider also the speed factor.

6. The sixth row updates the chosen machine completion time.

7. The seventh row registers the assignment in the schedule.

5.1.2 From the Algorithm to the Model
Now we want to encode the run-time logic of the algorithm in the first sub-problem of
(5.1).

The main difficulty is how to encode the “LPT logic”. Intuitively, let us suppose that
LPT had assigned job j to machine m. This means that, at that step of the for loop, the
machine m is such that:

m ∈ argmin
m̃=1,...,M

qm̃(Tm̃ + pj)

Instead of dealing with the argmin operator, we can equivalently reformulate it using only
inequalities. At that step of the for loop, it holds that:

qm(Tm + pj) ≤ qm̃(Tm̃ + pj), ∀m̃

Note that the variables Tm̃ can be substituted with the sum of jobs lengths assigned to
machine m at the proper for loop step.

Now we are ready to introduce the corresponding optimization problem and relevant
mathematical programming formulation for LPT.

For the sake of brevity the “loop variable” j always ranges in {1, . . . , J} and m ∈
{1, . . . , M}. Note that the constraint J = LM is implicit, as the number of jobs in
the instance is directly related to the number of variables in the model. The variables for
the following mathematical programming model are:

• qm ∈ R+ is the speed factors of the m-th machine

• pj ∈ R+ is the length of the j-th job

• xLP T
m,j ∈ {0,1} is the indicator variable if LPT schedules job j on machine m.

• x∗
m,j ∈ {0,1} is the indicator variable if the optimal schedule schedules job j on

machine m.
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• CLP T ∈ R+ is the value of the LPT schedule

• C∗ ∈ R+ is the value of an optimal schedule

Optimization Model 5.1: LPT

max CLP T

C∗

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


C∗ = max

m

qm

Ø
j

x∗
m,jpj


Ø
m

xLP T
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

xLP T
m,j = 1 =⇒qm

pj +
j−1Ø
i=1

xLP T
m,i pi

 ≤ qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ,∀m̃

 (∀m, j)

p1 ≥ p2 ≥ · · · ≥ pJ

The first two constraints simply calculate the values of the LPT schedule and the optimal
one, respectively. As the objective function should be maximized, and the two schedules
share all jobs lengths and machines speed factors, the problem is pushed towards the worst
instance with respect to the approximation ratio. The third and fourth constraints say
that each job should be assigned to one and only one machine (both in LPT and optimal
schedules). The fifth constraint represents the list scheduling rule. Indeed, if job j has
been assigned by LPT to machine m, i.e. xLP T

m,j = 1, then the machine m should be the
machine that, respecting the actual loads, would finish the j-th job first. Finally, the last
constraint simply fixes the order of the jobs, as LPT sorts them before applying the list
scheduling rule.

Note that Optimization Model 5.1 is highly non-linear as the objective function is ex-
pressed as a ratio of variables. Further, the following proposition holds.

Proposition 5.1.1. The objective function Cmax is independent of the units of
measure / normalization constants of the machines speeds and the jobs lengths.
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Proof. Let A, B ∈ R+ be, respectively, the units of measure / normalization con-
stants of the machines speeds and the jobs lengths. Then it holds that:

max
m

qm

A

Ø
j

xLP T
m,j

pj

B


max

m

qm

A

Ø
j

x∗
m,j

pj

B

 =

1
AB

max
m

qm

Ø
j

xLP T
m,j pj


1

AB
max

m

qm

Ø
j

x∗
m,jpj

 =

=

max
m

qm

Ø
j

xLP T
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = CLP T

C∗

We apply Proposition 5.1.1 and correspondingly these constraints:

• The unit of measure of the machines speeds is not fixed, and, without loss of gen-
erality, the machines can be sorted w.r.t. their speed factors. Note that the LPT
algorithm does not sort the machines in any way, hence they are “equivalent”. How-
ever, it is convenient to sort them by speed in the optimization model: in this way
we restrict the domain and remove symmetric solutions. So we can impose the
additional constraints:

1 = q1 ≤ q2 ≤ · · · ≤ qM

• The unit of measure of the jobs lengths is not fixed. Correspondingly, the value of
the optimal schedule can be arbitrarily fixed to a constant value, e.g. it can be fixed
to 1. In this way, we get rid of the denominator in the objective function. So we can
impose the following constraint:

C∗ = max
m

qm

Ø
j

x∗
m,jpj

 = 1

• As the speed factors are greater than 1 and the optimal schedule value is fixed to 1,
it means that each individual job length must lay in [0,1].

Moreover, the implication constraints, modeling the core of LPT logic, can be “linearized”
following a big-M approach (see Tadei and Della Croce [2010] for a deeper explanation
of logic constraints modeling). Let B be a positive constant. If B is big enough, the
implication constraints are equivalent to the following:

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

34



Developed Algorithms - Examples

In fact when xLP T
m,j = 1 the left-hand side becomes 0 and the original constraint is recov-

ered. We choose B to be greater than the upper bound of the right-hand side:

RHS = qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi


≤ qm

pj +
j−1Ø
i=1

zLP T
m,i


≤ qm

JØ
j=1

pj

≤ qmax

JØ
j=1

pj

≤ Jqmax

≤ B

5.1.3 The model
So we end up with the following mixed-integer non-convex quadratic problem, that a
commercial solver is capable of solving to optimality (see Achterberg and Towle [2020] for
a deeper explanation of the solution process).

Optimization Model 5.2: LPT

max CLP T

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM

There are still some non-linearities: the products qmxLP T
m,j pj , the products qmx∗

m,jpj , and
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the maximum operators inside constraints. All these issues can be managed by the com-
mercial solver, and some of them can even be linearized:

• To address the product of variables qm, xLP T
m,j and pj we do the following. First we

introduce continuous variables
î

zLP T
m,j

ï
and add constraints zLP T

m,j = xLP T
m,j pj . In this

way any product of three variables is decomposed into two products of two variables.
Note that any product that contains the binary variable xLP T

m,j can be “linearized”:


zLP T

m,j = xLP T
m,j pj

pj ∈ [0,1]
xLP T

m,j ∈ {0,1}
⇐⇒



zLP T
m,j ≤ xLP T

m,j

zLP T
m,j ≤ pj

zLP T
m,j ≥ pj + (xLP T

m,j − 1)
zLP T

m,j ∈ [0,1]
pj ∈ [0,1]
xLP T

m,j ∈ {0,1}

A similar transformation is also used with z∗
m,j = x∗

m,jpj .

• Also, the maximum constraints can be linearized. For example, introducing a binary
variable y and a big enough positive constant B, it holds that:

X = max {x1, x2} ⇐⇒



X ≥ x1

X ≥ x2

x1 − x2 ≤ By

x2 − x1 ≤ B(1− y)
X ≤ x1 + B(1− y)
X ≤ x2 + By

y ∈ {0,1}

5.1.4 The Approximation Ratio
We can now use the developed model optimum to study the approximation ratio of the
Meta-Algorithm that uses LPT as algorithm H. In particular, the developed model is a
“specific setting” of the first sub-problem in (5.1), by fixing J = LM . The following table
shows different approximation ratios by varying L:

L CLP T

C∗ 1 + M−1
LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.2808 1.2000 1.2808
3 1.2808 1.1429 1.2808

Table 5.1. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using LPT as H and varying L.
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Besides the approximation ratio itself, the optimization problem solution also includes a
schedule with J = LM = 4 jobs that numerically achieves that ratio. One of them is a
zero-length job. By removing it, we deduce the following instance with M = 2 machines
and J = 3 jobs, which achieves the approximation ratio:

ILP T = ({q1 = 1, q2 = 1.2808} , {p1 = 0.7808, p2 = p3 = 0.5000})

We can deduce an algebraic form of ILP T from its numeric values, by solving the following
system of equations: 

q1(p1 + p3) = q2(p2 + p3)
q1(p2 + p3) = q2(p1) = 1
p2 = p3 = 1

2
q1 = 1

In fact:

• The first equation is justified by direct inspection of Figure 5.1, where the LPT
algorithm is shown building the schedule for the instance ILP T . The last job could
be assigned to any machine without changing the final makespan.

• The second row represents the value of the optimal schedule x∗
m,j , given in the

solution of the optimization model. In this case, the optimal schedule assigns jobs
p2 and p3 to machine q1 and job p1 to machine q2.

• The fourth equation is directly justified from the numeric values of ILP T .

• The last equation is just the constraint from the optimization problem regarding the
normalization constant of the machines speeds.

Solving the above system of equations, we get the algebraic form of ILP T :

ILP T =
AI

q1 = 1, q2 = 1 +
√

17
4

J
,

;
p1 = 4

1 +
√

17
, p2 = p3 = 1

2

<B

Hence, the Meta-Algorithm, fixing L = 2 and LPT as H, has an approximation ratio
of 1+

√
17

4 ≈ 1.2808 for the problem Q2||Cmax. This is actually the same value found in
Mitsunobu et al. [2022] for the “full” LPT algorithm.
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M1: p1 = 0.7808

M2: p1 = 0.7808

M1: p1 = 0.7808

M2:

M1: p1 = 0.7808 p2 = 0.5000

M2: p2 = 0.5000

M1: p1 = 0.7808

M2: p2 = 0.5000

M1: p1 = 0.7808 p3 = 0.5000

M2: p2 = 0.5000 p3 = 0.5000

M1: p1 = 0.7808 p3 = 0.5000

M2: p2 = 0.5000

Figure 5.1. The LPT algorithm building the schedule of the instance ILP T .

5.1.5 Three Machines and some Parametric Results
If we set M = 3 and re-solve the model, we get the approximation ratio for Q3||Cmax:
1.3837. The corresponding instance is:

ILP T
M=3 =

)
{q1 = 1, q2 = 1.1316, q3 = 1.3837} ,

{p1 = 0.8837, p2 = 0.7227, p3 = p4 = 0.5000}
*

It should be clear that by simply increasing time and computation power resources we
can compute the bound for any number of machines M , without relying on long and
complex analytical proofs, such those in Mitsunobu et al. [2022]. See Appendix A for
deeper explanation.

It is interesting to consider the speed factors {qm} as parameters. Then, the same model
becomes a parametric mixed-integer linear program (parametric MILP). Figure 5.3 shows
the graph for M = 2, which is the result obtained by the complex and long analytical
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M1: p1 = 0.8837

M2: p1 = 0.8837

M3: p1 = 0.8837

M1: p1 = 0.8837

M2:

M3:

M1: p1 = 0.8837 p2 = 0.7227

M2: p2 = 0.7227

M3: p2 = 0.7227

M1: p1 = 0.8837

M2: p2 = 0.7227

M3:

M1: p1 = 0.8837 p3 = 0.5000

M2: p2 = 0.7227 p3 = 0.5000

M3: p3 = 0.5000

M1: p1 = 0.8837

M2: p2 = 0.7227

M3: p3 = 0.5000

M1: p1 = 0.8837 p4 = 0.5000

M2: p2 = 0.7227 p4 = 0.5000

M3: p3 = 0.5000 p4 = 0.5000

M1: p1 = 0.8837 p4 = 0.5000

M2: p2 = 0.7227

M3: p3 = 0.5000

Figure 5.2. The LPT algorithm building the schedule of the instance ILP T
M=3.

proof in Mireault et al. [1997]. Moreover, we can also plot the graph for M = 3, yielding
a completely novel result, as shown in Figure 5.4.
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

q2

ρ

3 q 2 q 1

4

Parametric approximation ratio of LPT for Q2||Cmax

Our Method
Theoretical Method

Bound

Figure 5.3. Parametric analysis of the approximation ratio of the LPT algorithm for the
Q2||Cmax problem. As done in Mireault et al. [1997] we fix q1 = 1 and let q2 be free. The
red solid line is the theoretical approximation ratio. Each blue dot is the optimum of the
parametric MILP. The brown solid line is the 1 + M−1

LM+1 bound, with M = 2 and L = 3.
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Parametric approximation ratio of LPT for Q3||Cmax

1.15

1.2

1.25

1.3

Figure 5.4. Parametric analysis of the approximation ratio of the LPT algorithm for the
Q3||Cmax problem. As done in Figure 5.3, we fix the fastest machine speed q1 = 1 and
let q2, q3 be free. The surface represents ρ

1
q2
q1

, q3
q1

2
. It was obtained by fixing different

speeds pairs in Optimization Model 5.2.
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5.2 Koulamas and Kyparisis Algorithm
We can also replicate the results of the algorithm proposed by Koulamas and Kyparisis
[2009]. We will call it the Algorithm-κκ. The Algorithm-κκ uses a positive integer pa-
rameter R and is divided into three phases. The first phase sorts the jobs by decreasing
length, as LPT. The second phase, core of the algorithm innovation, is a “brute-force”
phase. Here, the largest R jobs are assigned to the machines in the best possible way. In
other words, every possible schedule of the first R jobs is generated, and, among these,
the schedule minimizing the makespan of the R jobs is selected. In the third and last
phase, the selected schedule, currently accounting only the largest R jobs, is completed
using the standard LPT logic.
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Procedure 5.2: Algorithm-κκ for QM ||Cmax

Parameters: R ∈ N
Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The algorithm-κκ schedule S and its value C
// First Phase

1 Sort the jobs in decreasing order, i.e.
i ≤ j =⇒ pi ≥ pj , ∀i, j ∈ {1, . . . , J};

// Second Phase
2 vbest ← +∞;
3 S ← {};

// Iterate over all possible partial schedules with only R
jobs

4 for S̃ schedule of R jobs on M machines do
// Compute makespan after R jobs

5 v ← max
m=1,...,M

Ø
j∈S̃−1(m)

qmpj ;

// Update, if needed, the best partial schedule
6 if v < vbest then
7 vbest ← v;
8 S ← S̃;
9 end

10 end
11 Tm ←

Ø
j∈S−1(m)

qmpj ∀m = 1, . . . , M ;

// Third Phase
// The LPT loop starts from the R + 1-th job

12 for j = R + 1, . . . , J do
13 m← argmin

m̃=1,...,M
qm̃(Tm̃ + pj);

14 Tm ← Tm + pj ;
15 Sm ← Sm ∪ {j};
16 end
17 C = max

m=1,...,M
qmTm;

Similarly to what done with the LPT algorithm in the previous section, we now want
to develop a mathematical optimization model to study the approximation ratio of the
algorithm-κκ. As the first and third phase of the algorithm resemble very closely the LPT
algorithm, we will use Optimization Model 5.2 as a backbone model: only few constraints
must be modified, added or removed. These alterations must reflect how the algorithm-κκ
works. We will rename the LPT variables as κκ variables.
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• The for loop in row 12 involves only the jobs after the R-th job. Hence, the con-
straints in Optimization Model 5.2 that encoded the full LPT logic:

qm

pj +
j−1Ø
i=1

zκκ
m,i

− qm̃

pj +
j−1Ø
i=1

zκκ
m̃,i

 ≤ B(1− xκκ
m,j) (∀m, m̃,∀j = 1, . . . , J)

must be modified as:

qm

pj +
j−1Ø
i=1

zκκ
m,i

− qm̃

pj +
j−1Ø
i=1

zκκ
m̃,i

 ≤ B(1− xκκ
m,j)

(∀m, m̃, ∀j = R + 1, . . . , J)

• We need to encode the logic that selects the best partial schedule for the longest
R jobs. Note that the whole schedule that will be selected is encoded into the zκκ

variables. Hence, we need to add constraints to the first part of this schedule that
reflect the logic of the for loop at row 4:

max
m=1,...,M

qm

Ø
j=1,...,R

zκκ
m,j

 ≤ max
m=1,...,M

qm

Ø
S̃−1(m)

pj

 (∀ schedule S̃ of R jobs)

The quantifier “∀ schedule S̃ of R jobs” means that the constraint must be repeated
for every possible schedule of the longest R jobs on the M machines. In other words,
we are adding MR constraints, and each of them should be linearized as it contains
maximum operators.

Hence, the model for the algorithm-κκ is:
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Optimization Model 5.3: Algorithm-κκ

max Cκκ

s.t. Cκκ = max
m

qm

Ø
j

xκκ
m,jpj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xκκ
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xκκ
m,ipi

− qm̃

pj +
j−1Ø
i=1

xκκ
m̃,ipi

 ≤ B(1− xκκ
m,j)

(∀m, m̃, ∀j = R + 1, . . . , J)

max
m

qm

Ø
j=1,...,R

xκκ
m,jpj

 ≤ max
m

qm

Ø
S̃−1(m)

pj

 (∀ schedule S̃ of R jobs)

1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM

We choose M and R as Koulamas and Kyparisis [2009] did: M = 2 and R = 3. We get:

L Cκκ

C∗ 1 + M−1
LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.2247 1.2000 1.2247
3 1.2247 1.1429 1.2247

Table 5.2. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using algorithm-κκ as H and varying L.

Note that in the pathological case R = 3, M = 2 and L = 1, it holds that J = LM = 2 <
R. In this case, the pure algorithm-κκ is reduced to brute-force.

An instance for L = 2 that achieves the approximation ratio is:

IκκR=3 = ({q1 = 1, q2 = 1.2247} , {p1 = 0.5918, p2 = p3 = p4 = 0.4082})

As done with LPT, we can deduce an algebraic form of IκκR=3 by solving the following
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system of equations: 
q1(p2 + p3 + p4) = q2(p1 + p2)
q1(p1 + p2) = q2(p3 + p4) = 1
p2 = p3 = p4

q1 = 1

Giving:

IκκR=3 =
AI

q1 = 1, q2 =
ò

3
2

J
,

;
p1 = 1− 1√

6
, p2 = p3 = p4 = 1√

6

<B

Therefore, the Meta-Algorithm, fixing L = 2 and using algorithm-κκ as H, has an approx-
imation ratio of

ñ
3
2 ≈ 1.2247 for the problem Q2||Cmax. This is actually the same value

found in Koulamas and Kyparisis [2009] for the “full” algorithm-κκ.

In the same work by Koulamas and Kyparisis [2009], two modification are suggested:
take R = 4 or R = 5. They provide only the following bounds: 1.167 ≤ ρR=4 ≤ 1.2
and 1.143 ≤ ρR=5 ≤ 1.167, as obtaining the actual approximation ratios would require
significant modification to the proofs. With our model, we simply need to set a different
value of R and let the solver do the rest. We get ρR=4 = 1.1861 and ρR=5 = 1.1583.

The two instances are:

IκκR=4 = ({q1 = 1, q2 = 1.6861, } , {p1 = 0.4069, p2 = p3 = p4 = 0.2965, })

IκκR=5 = ({q1 = 1, q2 = 2.1583, } , {p1 = 0.3050, p2 = · · · = p6 = 0.2317})

What about successive values of R? Is there a closed formula for IκκR?

To answer the first question, we could simply re-run the model with other values of R.
Alas, the second question cannot be directly answered by the model based approach, as
R must be fixed in each run of the model. However, we can try to deduce a formula from
the data. Comparing the instances IκκR=3 , IκκR=4 , IκκR=5 , we can “naturally” generalize
the system of equations that holds for IκκR=3 to:


q1(p2 + · · ·+ pJ) = q2(p1 + p2)
q1(p1 + p2 + · · ·+ pJ−2) = q2(pJ−1 + pJ) = 1
p2 = · · · = pJ

q1 = 1

That simplifies to:
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p1 + (R− 2)p2 = 1
2p2q2 = 1
Rp2 = (p1 + p2)q2

Hence, we may conjecture that the worst instance for a generic R is:



p1 = (1−R+
√

R2+2R+9)(3−R+
√

R2+2R+9)
8R

pj = 3−R+
√

R2+2R+9
4R ∀j = 2, . . . , J

q1 = 1
q2 = 1

4

1
R− 3 +

√
R2 + 2R + 9

2
=⇒ ρκκ

R = 1
4

1
3−R +

√
R2 + 2R + 9

2
(5.2)

The asymptotic behavior of ρκκ
R , shown in Figure 5.5, is coherent with the algorithm-κκ.

As R grows, more and more jobs are scheduled optimally. In the limit R → ∞, all jobs
will be scheduled optimally, hence the approximation ratio should approach 1. Indeed,
the conjecture satisfies this limit:

lim
R→∞

ρκκ
R = lim

R→∞

1
4
1
3−R +

√
R2 + 2R + 9

2
= 1

0 5 10 15 20 25 30 35 400.95

1

1.05

1.1
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R

ρ
κ

κ
R

Figure 5.5. Asymptotic behavior of ρκκ
R .
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It should be noted that the algorithm-κκ approach (brute-force on the largest R jobs)
cannot be extended indefinitely: as R increases, the brute-force phase becomes quickly
computationally infeasible (it is an NP problem).
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5.3 Local search V1 Algorithm
Inspired by Della Croce et al. [2019], we introduce a lightweight modification to LPT by
appending to it a simple local search procedure. This procedure, that we will call from
now on algorithm-σ1, will modify the LPT schedule and find, in the neighborhood of the
LPT schedule, a better schedule. We need to formally define what the neighborhood of
a schedule S is. As intuitively as possible, a schedule S̃ is in the neighborhood of the
schedule S if one can obtain S̃ from S by pairwise exchanging any two jobs.
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Procedure 5.3: Algorithm-σ1 for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The algorithm-σ1 schedule S and its value C
// Apply LPT. Inside LPT the jobs will be sorted

1 S, C ← LPT ({qm} , {pj});
2 Tm ←

Ø
j∈S−1(m)

qmpj ∀m = 1, . . . , M ;

// Now search for the best one-job-to-one-job swap
// The variable Cσ1 will hold the value of the schedule found

after the local search step V1
3 Cσ1 ← C;
4 iσ1 ← −1;
5 kσ1 ← −1;

// There are smarter ways to implement this search. This is
the simplest way

// Cycle through each pair of jobs on different machines
6 for i = 1, . . . , J do
7 for k = 1, . . . , J do

// Get which machines jobs i and j are assigned to
8 mi ← S(i);
9 mk ← S(k);

10 if mi /= mk then
11 c← max

)
q1T1, . . . , qmi(Tmi − pi + pk), . . . , qmk

(Tmk
+ pi −

pk), . . . , qM TM

*
;

12 if c < Cσ1 then
13 iσ1 ← i;
14 kσ1 ← k;
15 Cσ1 ← c;
16 end
17 end
18 end
19 end

// Update the schedule S, if needed, by exchanging job iσ1

with job kσ1.
20 if iσ1 /= −1 then
21 mi ← S(i);
22 mk ← S(k);
23 S(i)← mk;
24 S(k)← mi;
25 end

50



Developed Algorithms - Examples

For the sake of simplicity, we introduce the model of the algorithm-σ1 only for the problem
Q2||Cmax, i.e., fixing the number of machines to 2.

As done with the algorithm-κκ, we use Optimization Model 5.2 as a backbone model,
introducing the following modifications:

• The algorithm-σ1 has two phases. The first is simply LPT, hence all the constraints
in Optimization Model 5.2 are valid. The second phase is the single local search
step, where a new schedule is developed, whose value is encoded in the new variable
C. Then the best between these two schedules is returned. To reflect this duality,
we propose the following structure:

max Cσ1

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


C = schedule value after local search step
Cσ1 ≤ CLP T

Cσ1 ≤ C

...

In this way, CLP T and the whole LPT schedule are not affected by the local search
step “until the objective function”.

• How to constrain the new variable C? Suppose that M = 2:

C ≤ max
)
q1

pk − pi +
Ø

j

xLP T
1,j pj

 ,

q2

pi − pk +
Ø

j

xLP T
1,j pj


*

+ B(2− xLP T
1,i − xLP T

2,k ) (∀i, k = 1, . . . , J i /= k)

In this way, when job i is assigned by LPT to machine 1 and job k is assigned by LPT
to machine 2, the term with the big constant B cancels. Hence, the variable C is
truly constrained, by varying i and k among 1, . . . , J . We remind that all maximum
constraints are handled as presented in Section 5.1.3.

Therefore, the model of algorithm-σ1 for Q2||Cmax is:
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Optimization Model 5.4: Algorithm-σ1 for Q2||Cmax

max Cσ1

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

C ≤ max

q1

pk − pi +
Ø

j

xLP T
1,j pj

 , q2

pi − pk +
Ø

j

xLP T
2,j pj

+

+ B(2− xLP T
1,i − xLP T

2,k ) (∀i, k = 1, . . . , J i /= k)
Cσ1 ≤ CLP T

Cσ1 ≤ C

1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM

Solving the model, we get the same results as the LPT case:

L Cσ1
C∗ 1 + M−1

LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.2808 1.2000 1.2808
3 1.2808 1.1429 1.2808

Table 5.3. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using algorithm-σ1 as H and varying L.

Indeed, the Meta-Algorithm, fixing L = 2 and algorithm-σ1 as H, has an approximation
ratio of 1.2808 for the problem Q2||Cmax. Its approximation ratio is the same as the LPT
algorithm. Also, the corresponding worst instance is the same:

Iσ1 = ({q1 = 1, q2 = 1.2808} , {p1 = 0.7808, p2 = p3 = 0.5000}) = ILP T
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The above result indicates that the local search step could not improve the LPT schedule.
So, even a variation of algorithm-σ1, where a sequence of local search steps is performed,
would have the same approximation ratio. We need to improve the quality of the local
search step by enlarging its neighborhood.

However, the algorithm-σ1 is an improvement over LPT for the problem P2||Cmax. Indeed,
we can run the model fixing both speed factors to 1, reducing the Q2||Cmax problem to
the P2||Cmax problem. Using Proposition 4.0.5 as bound, we get:

L Cσ1
C∗ 1 + M−1

M(L+1) ρ

1 1.0000 1.2500 1.2500
2 1.0000 1.1667 1.1667
3 1.1250 1.1250 1.1250
4 1.1250 1.1000 1.1250

Table 5.4. Table of model optima, theoretical bounds (using Proposition 4.0.5) and
approximation ratios of the Meta-Algorithm using algorithm-σ1 as H and varying L
for the P2||Cmax problem.

Hence, fixing L = 3, the algorithm-σ1 is an approximation algorithm for the problem
P2||Cmax with an approximation ratio of 1.1250 ≈ 9

8 . The LPT algorithm has an approx-
imation ratio of 7

6 ≈ 1.1667 for the problem P2||Cmax.
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5.4 Local search V2 Algorithm
As the algorithm-σ1 has the same approximation ratio as LPT for Q2||Cmax, a wider local
search neighborhood must be considered. We enlarge the old neighborhood to the new
neighborhood by including also other two kinds of swapping. Indeed, in algorithm-σ1, only
one-to-one job swappings were considered. In this algorithm, introduced in Della Croce
et al. [2019], also two-to-one (and one-to-two) job swappings are considered.

Given a schedule S, any schedule that is “reachable” by performing only one of the
following actions is considered in the neighborhood of S:

• Swap one job on a machine with one job on another machine (also done in algorithm-
σ1).

• Swap two jobs on a machine with one job on another machine.

• Swap one job on a machine with two jobs on another machine.

We will call this algorithm algorithm-σ2.

As the algorithm-σ2 is very similar to algorithm-σ1 (only the definition of the neighborhood
is changed), the optimization model for algorithm-σ2 is based on the one for algorithm-σ1.
For the sake of simplicity, we fix M = 2; as such the model is:
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Optimization Model 5.5: Algorithm-σ2

max Cσ2

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

C ≤ max

q1

pk − pi +
Ø

j

xLP T
1,j pj

 , q2

pi − pk +
Ø

j

xLP T
2,j pj

+

+ B(2− xLP T
1,i − xLP T

2,k ) (∀i, k = 1, . . . , J i /= k)

C ≤ max

q1

pk − pi − pl +
Ø

j

xLP T
1,j pj

 , q2

pi + pl − pk +
Ø

j

xLP T
2,j pj

+

+ B(3− xLP T
1,i − xLP T

2,k − xLP T
1,l )

(∀i, k, l = 1, . . . , J i /= k, i /= l, k /= l)

C ≤ max

q1

pk + pl − pi +
Ø

j

xLP T
1,j pj

 , q2

pi − pk − pl +
Ø

j

xLP T
2,j pj

+

+ B(3− xLP T
1,i − xLP T

2,k − xLP T
2,l )

(∀i, k, l = 1, . . . , J i /= k, i /= l, k /= l)
Cσ2 ≤ CLP T

Cσ2 ≤ C

1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM

Solving the model we get:
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L Cσ2
C∗ 1 + M−1

LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.1805 1.2000 1.2000
3 1.1805 1.1429 1.1805

Table 5.5. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using algorithm-σ2 as H and varying L.

The instance corresponding to L = 3 is:

Iσ2 = ({q1 = 1, q2 = 1.1805} , {p1 = 0.8471, p2 = p3 = p4 = 0.3333})

As done with LPT and algorithm-κκ, we can get the following algebraic form:

Iσ2 =
A;

q1 = 1, q2 = 6
−1 +

√
37

<
,

I
p1 = −1 +

√
37

6 , p2 = p3 = p4 = 1
3

JB

Hence, the approximation ratio of the meta-algorithm applied with the algorithm-σ2 and
L = 3 to the problem Q2||Cmax is 6

−1+
√

37 ≈ 1.1805.

It is interesting to note that the new expanded neighborhood is large enough to improve
on the LPT approximation ratio. However, the LPT algorithm applied to this instance
produces the same schedule as algorithm-σ2. It means that, as in algorithm-σ1, the
worst instance of algorithm-σ2 does not benefit from the local search step. Hence, even a
variation of algorithm-σ2, where a sequence of local search steps is performed, would have
the same approximation ratio as algorithm-σ2.

As done with algorithm-σ1, we can re-run Optimization Model 5.5, fixing q1 = q2 = 1,
hence reducing again the Q2||Cmax problem to the P2||Cmax problem. Using Proposi-
tion 4.0.5 as bound, we get:

L Cσ2
C∗ 1 + M−1

M(L+1) ρ

1 1.0000 1.2500 1.2500
2 1.0000 1.1667 1.1667
3 1.0000 1.1250 1.1250
4 1.0833 1.1000 1.1000
5 1.0833 1.0833 1.0833
6 1.0833 1.0714 1.0833

Table 5.6. Table of model optima, theoretical bounds (using Proposition 4.0.5) and
approximation ratios of the Meta-Algorithm using algorithm-σ2 as H and varying L
for the P2||Cmax problem.
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M1: p1 = 0.8471

M2: p1 = 0.8471

M1: p1 = 0.8471

M2:

M1: p1 = 0.8471 p2 = 0.3333

M2: p2 = 0.3333

M1: p1 = 0.8471

M2: p2 = 0.3333

M1: p1 = 0.8471 p3 = 0.3333

M2: p2 = 0.3333 p3 = 0.3333

M1: p1 = 0.8471

M2: p2 = 0.3333 p3 = 0.3333

M1: p1 = 0.8471 p4 = 0.3333

M2: p2 = 0.3333 p3 = 0.3333 p4 = 0.3333

M1: p1 = 0.8471 p4 = 0.3333

M2: p2 = 0.3333 p3 = 0.3333

Figure 5.6. The LPT algorithm building the schedule of the instance Iσ2 . Remember
that eventual ties are broken at random, and we must always check for the worst case.

Fixing L = 5, the algorithm-σ2 is an approximation algorithm for the problem P2||Cmax

with an approximation ratio of 1.0833 ≈ 13
12 . This is a complete confirmation of the result

found by Della Croce et al. [2019].
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5.5 Alternative start V1 Algorithm
We could keep improving the approximation ratio by enlarging the neighborhood consid-
ered in the local search step, but this entails much longer run-times. Instead, somewhat
inspired by Koulamas and Kyparisis [2009], we introduce the algorithm-α1. This algorithm
considers two schedules: the one generated by LPT and a “revised” one.

During the first step of the LPT algorithm, the first job (the longest one) will always be
assigned to the fastest machine. By doing so, the LPT algorithm, the algorithm-σ1 and
the algorithm-σ2 all misplace the first job in their worst case. Indeed, in all cases, the
corresponding optimal schedules assign the longest job to the slowest machine.

As such, we propose to consider another schedule, where the first job (the longest one) is
always fixed on the slowest machine. Then the LPT rule is followed onwards.

Finally, algorithm-α1 returns the best schedule between the pure LPT one and the “re-
vised” one.

Procedure 5.4: Algorithm-α1 for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The algorithm-α1 schedule S and its value C
// First Step: order the jobs

1 Sort the jobs in decreasing order, i.e.
i ≤ j =⇒ pi ≥ pj , ∀i, j ∈ {1, . . . , J};

// Second Step: apply LPT
2 SLP T , CLP T ← LPT ({qm} , {pj});

// Third Step: consider a start-corrected schedule and then
apply LPT

3 Tm ← 0 ∀m = 1, . . . , M ;
4 Sm ← {} ∀m = 1, . . . , M ;

// Assign job 1 to the slowest machine
5 TM ← p1;
6 SM ← {1};

// From job 2, start with LPT logic assignments
7 for j = 2, . . . , J do
8 m← argmin

m̃=1,...,M
qm̃(Tm̃ + pj);

9 Tm ← Tm + pj ;
10 Sm ← Sm ∪ {j};
11 end
12 C = max

m=1,...,M
qmTm;

As the algorithm-α1 is basically two full LPT applications, the model will encode two
schedules: xLP T

m,j and xREV
m,j , standing for revised schedule. The model will obviously
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encode also the (single) optimal schedule x∗
m,j .

Optimization Model 5.2 is used as backbone and it is modified as following.

• As done in algorithm-σ1 and σ2, we introduce the following modification to account
for returning the best of two schedules:

max Cα1

s.t. CLP T = max
m

qm

Ø
j

xLP T
m,j pj


CREV = max

m

qm

Ø
j

xREV
m,j pj


Cσ1 ≤ CLP T

Cσ1 ≤ CREV

...

Where the new variable CREV will encode the value of the revised schedule.

• The constraints for xREV
m,j are almost the same as for xLP T

m,j , but the first job is fixed
on the second machine:

xREV
M,1 = 1

Hence, the model for algorithm-α1 is:
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Optimization Model 5.6: Algorithm-α1

max Cα1

s.t. Cα1 ≤ CLP T

Cα1 ≤ CREV

CLP T = max
m

qm

Ø
j

xLP T
m,j pj


CREV = max

m

qm

Ø
j

xREV
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

xREV
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

qm

pj +
j−1Ø
i=1

xREV
m,i pi

− qm̃

pj +
j−1Ø
i=1

xREV
m̃,i pi

 ≤ B(1− xREV
m,j )

(∀m, m̃, ∀j = 2, . . . , J)
xREV

M,1 = 1
1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM

For simplicity, fixing M = 2 we get:

L Cα1
C∗ 1 + M−1

LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.2071 1.2000 1.2071
3 1.2071 1.1429 1.2071

Table 5.7. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using algorithm-α1 as H and varying L.
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The instance with L = 2 is:

Iα1 = ({q1 = 1, q2 = 1.4142} , {p1 = p2 = 0.5000, p3 = p4 = 0.3536})

Its algebraic form is:

Iα1 =
3î

q1 = 1, q2 =
√

2
ï

,

;
p1 = p2 = 1

2 , p3 = p4 = 1
2
√

2

<4

Hence, fixing L = 2 and algorithm-α1 as H, the Meta-Algorithm has an approximation
ratio of 1

2 + 1√
2 ≈ 1.2071 for the problem Q2||Cmax. The corresponding instance is shown

in Figure 5.7.

Algorithm-α1 was inspired by algorithm-κκ. There are two main differences. Firstly,
α1 does not check for every possible starting schedule, but only for two of them, in a
fixed manner. Hence, α1 should be faster than κκ. Secondly, α1 decides which schedule
to return after placing all LM jobs. On the contrary, κκ confronts partial schedules
containing only R jobs. Moreover, the worst instance of algorithm-κκ can be solved to
optimality with LPT. Hence, algorithm α1 “mixes together” LPT and some important
starting schedules from algorithm-κκ.
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M1: p1 = 0.5000

M2: p1 = 0.5000

M1: p1 = 0.5000

M2:

M1: p1 = 0.5000 p2 = 0.5000

M2: p2 = 0.5000

M1: p1 = 0.5000

M2: p2 = 0.5000

M1: p1 = 0.5000 p3 = 0.3536

M2: p2 = 0.5000 p3 = 0.3536

M1: p1 = 0.5000 p3 = 0.3536

M2: p2 = 0.5000

M1: p1 = 0.5000 p3 = 0.3536 p4 = 0.3536

M2: p2 = 0.5000 p4 = 0.3536

M1: p1 = 0.5000 p3 = 0.3536 p4 = 0.3536

M2: p2 = 0.5000

Figure 5.7. The LPT algorithm building the schedule of the instance Iα1 .
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5.6 Alternative start V2 Algorithm
This algorithm, called algorithm-α2, improves upon the algorithm-α1 by considering one
more revised schedule. In particular, this new revised schedule is obtained from the
optimal schedule of the algorithm-α1 worst case.

Procedure 5.5: Algorithm-α2 for QM ||Cmax

Input: A sequence of J jobs lengths (pj)j=1,...,J

A sequence of M machines speed factors (qm)m=1,...,M

Output: The algorithm-α2 schedule S and its value C
// First Step: order the jobs

1 Sort the jobs in decreasing order, i.e.
i ≤ j =⇒ pi ≥ pj , ∀i, j ∈ {1, . . . , J};

// Second Step: apply LPT and algorithm-α1
2 SLP T , CLP T ← LPT ({qm} , {pj});
3 Sα1 , Cα1 ← Alpha1 ({qm} , {pj});

// Third Step: consider a new start-corrected schedule and
then apply LPT

4 Tm ← 0 ∀m = 1, . . . , M ;
5 Sm ← {} ∀m = 1, . . . , M ;

// Assign jobs 1,2 to the fastest machine
6 T1 ← p1 + p2;
7 S1 ← {1,2};

// From job 3, start with LPT logic assignments
8 for j = 3, . . . , J do
9 m← argmin

m̃=1,...,M
qm̃(Tm̃ + pj);

10 Tm ← Tm + pj ;
11 Sm ← Sm ∪ {j};
12 end
13 C = max

m=1,...,M
qmTm;

The optimization model of algorithm-α2 uses as backbone the one of algorithm-α1. We
simply introduce a new schedule xREV 2

m,j and constrain it with xREV 2
1,1 = xREV 2

1,2 = 1. The
value of the schedule xREV 2

m,j is represented by the variable CREV 2. Hence, the model is:
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Optimization Model 5.7: Algorithm-α2

max Cα2

s.t. Cα2 ≤ CLP T

Cα2 ≤ CREV

Cα2 ≤ CREV 2

CLP T = max
m

qm

Ø
j

xLP T
m,j pj


CREV = max

m

qm

Ø
j

xREV
m,j pj


CREV 2 = max

m

qm

Ø
j

xREV 2
m,j pj


max

m

qm

Ø
j

x∗
m,jpj

 = 1

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

xREV
m,j = 1 (∀j)Ø

m

xREV 2
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

qm

pj +
j−1Ø
i=1

xLP T
m,i pi

− qm̃

pj +
j−1Ø
i=1

xLP T
m̃,i pi

 ≤ B(1− xLP T
m,j ) (∀m, m̃, j)

qm

pj +
j−1Ø
i=1

xREV
m,i pi

− qm̃

pj +
j−1Ø
i=1

xREV
m̃,i pi

 ≤ B(1− xREV
m,j )

(∀m, m̃, ∀j = 2, . . . , J)

qm

pj +
j−1Ø
i=1

xREV 2
m,i pi

− qm̃

pj +
j−1Ø
i=1

xREV 2
m̃,i pi

 ≤ B(1− xREV 2
m,j )

(∀m, m̃, ∀j = 3, . . . , J)
xREV

M,1 = 1
xREV 2

1,1 = 1
xREV 2

1,2 = 1
1 ≥ p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0
1 = q1 ≤ q2 ≤ · · · ≤ qM
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Solving the model with M = 2 we get:

L Cα2
C∗ 1 + M−1

LM+1 ρ

1 1.0000 1.3333 1.3333
2 1.1754 1.2000 1.2000
3 1.1754 1.1429 1.1754

Table 5.8. Table of model optima, theoretical bounds and approximation ratios of the
Meta-Algorithm using algorithm-α2 as H and varying L.

The instance for L = 3 is:

Iα2 = ({q1 = 1, q2 = 2.3507} , {p1 = 0.5000, p2 = 0.4254, p3 = p4 = 0.2500})

and its algebraic form:

Iα2 =
AI

q1 = 1, q2 = 1 + 16
√

11
23

J
,

;
p1 = 1

2 , p2 = 23
1 + 16

√
11

, p3 = p4 = 1
4

<B

Hence, Meta-Algorithm applied with algorithm-α2 and L = 3 has an approximation ratio
of 1+16

√
11

46 ≈ 1.1754 for the problem Q2||Cmax.
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Developed Algorithms - Examples

M1: p1 = 0.5000

M2: p1 = 0.5000

M1: p1 = 0.5000

M2:

M1: p1 = 0.5000 p2 = 0.4254

M2: p2 = 0.4254

M1: p1 = 0.5000 p2 = 0.4254

M2:

M1: p1 = 0.5000 p2 = 0.4254 p3 = 0.2500

M2: p3 = 0.2500

M1: p1 = 0.5000 p2 = 0.4254

M2: p3 = 0.2500

M1: p1 = 0.5000 p2 = 0.4254 p4 = 0.2500

M2: p3 = 0.2500 p4 = 0.2500

M1: p1 = 0.5000 p2 = 0.4254

M2: p3 = 0.2500 p4 = 0.2500

Figure 5.8. The LPT algorithm building the schedule of the instance Iα2 .

66



Chapter 6

Results

6.1 Approximation Results
Table 6.1 reports the approximation ratios of all the algorithms analyzed in the previous
section, applied to the problem Q2||Cmax. Recall that all results are valid concerning the
framework of the Meta-Algorithm, where an algorithm H and an integer L must be chosen
as parameters.

ρ for Q2||Cmax L = 1 L = 2 L = 3 L = 4

H = LPT 1.3333 1.2808 1.2808 1.2808
H = κκ with R = 3 1.3333 1.2247 1.2247 1.2247
H = κκ with R = 4 1.3333 1.2000 1.1861 1.1861
H = κκ with R = 5 1.3333 1.2000 1.1583 1.1583
H = σ1 1.3333 1.2808 1.2808 1.2808
H = σ2 1.3333 1.2000 1.1805 1.1805
H = α1 1.3333 1.2071 1.2071 1.2071
H = α2 1.3333 1.2000 1.1754 1.1754

Table 6.1. Recap approximation ratios for various algorithm applied to Q2||Cmax

For each algorithm H, we choose the smallest L that results in the smallest approximation
ratio. Hence, we propose as approximation algorithm the Meta-Algorithm with any of
the following (H, L) pairs:
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H L ρ ≈ ρ q2 Jobs Lengths

LPT 2 1+
√

17
4 1.2808 1+

√
17

4

î
−1+

√
17

4 , 1
2 , 1

2

ï
κκ with R = 3 2

ñ
3
2 1.2247

ñ
3
2

î
1− 1√

6 , 1√
6 , 1√

6 , 1√
6

ï
κκ with R = 4 3 −1+

√
33

4 1.1861 1+
√

33
4

î
9−

√
33

8 , 1−
√

33
16 , 1−

√
33

16 , 1−
√

33
16

ï
κκ with R = 5 3 −1+

√
11

2 1.1583 1+
√

11
2

î
13−3

√
11

10

ï
∪
î

−1+
√

11
10

ï
× 5

σ1 2 1+
√

17
4 1.2808 1+

√
17

4

î
−1+

√
17

4 , 1
2 , 1

2

ï
σ2 3 1+

√
37

6 1.1805 1+
√

37
6

î
−1+

√
37

6 , 1
3 , 1

3 , 1
3

ï
α1 2 1

2 + 1√
2 1.2071

√
2

î
1
2 , 1

2 , 1
2
√

2 , 1
2
√

2

ï
α2 3 1+16

√
11

46 1.1754 1+16
√

11
23

î
1
2 , 23

1+16
√

11 , 1
4 , 1

4

ï
Table 6.2. Proposed Approximation Algorithms for Q2||Cmax with their approximation
ratios ρ and the instance achieving it.

We also run the models for the P2||Cmax problem by fixing the machines speeds to 1.
Table 6.3 shows the corresponding approximation ratios, using Proposition 4.0.5 as bound.

H L ρ Jobs Lengths

LPT 3 7
6

)1
2 , 1

2 , 1
3 , 1

3 , 1
3
*

κκ with R = 3 3 7
6

)1
2 , 1

2 , 1
3 , 1

3 , 1
3
*

κκ with R = 4 3 7
6

)1
2 , 1

2 , 1
3 , 1

3 , 1
3
*

κκ with R = 5 3 8
7

)3
7 , 3

7 , 2
7 , 2

7 , 2
7 , 2

7
*

σ1 3 9
8

)5
8 , 3

8 , 1
4 , 1

4 , 1
4 , 1

4
*

σ2 5 13
12

) 7
12 , 5

12 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6
*

α1 3 7
6

)1
2 , 1

2 , 1
3 , 1

3 , 1
3
*

α2 3 9
8

)5
8 , 1

2 , 3
8 , 1

4 , 1
4
*

Table 6.3. Proposed Approximation Algorithms for P2||Cmax with their approximation
ratios ρ and the instance achieving it.

6.2 Heuristic Results
Up to now, all the results in this work are about algorithms performance guarantees in
the worst case. We now briefly focus on the “average” performance of our algorithms and
consider them as heuristics.

To this extent, we arbitrarily pick the following distribution:
M = 8 J = 2048 pj ∼ qm ∼ U [10,11,12, . . . ,100] i.i.d (6.1)

68



Results

The chosen distribution is formed by instances with numerous jobs and machines, hence it
is better suited for a practical average performance comparison. In fact, smaller instances,
for example the instances in Table 6.2, can be solved optimally by direct inspection.

The heuristics are compared to the lower bound provided by Proposition 4.0.1, using the
following Monte-Carlo procedure with 1024 samples:

1. Generate an instance I according to the chosen distribution.

2. Compute the “instance optimality constant”: IOC(I) :=
q

j=1,...,J
pj

Q .

3. Run the algorithm H on instance I and get the schedule value CH(I)

4. Compute CH(I)
IOC(I)

We use the above procedure to estimate the average-case performance for the following
12 different algorithms:

• 5 approximation algorithms proposed in Table 6.2: (LPT,2), (σ1,2), (σ2,3), (α1,2),
(α2,3). For example, as prescribed by the Meta-Algorithm, the algorithm (LPT,2)
selects the biggest LM = 2 · 8 = 16 jobs among all 2048 jobs. Then it applies the
LPT algorithm (sorting included) only to the biggest ones. Finally, it completes the
schedule using list scheduling with the remaining 2048− 16 = 2032 jobs.

• 5 heuristic algorithms: Full-LPT, Full-σ1, Full-σ2, Full-α1, Full-α2. Simply, the
algorithm is applied to the whole instance. For example, the Full-LPT algorithm
sorts all 2048 jobs and then applies the list scheduling logic to all 2048 jobs.

• A heuristic algorithm inspired by algorithm σ1. This algorithm applies 10 steps of
first-improvement local search, using the same neighborhood as algorithm-σ1.

• Finally, we employ the commercial Solver Gurobi 9.5.1 with 1 second time-limit. We
choose this time-limit in order to match the Gurobi performance with our proposed
heuristic performance, and make a time-wise comparison between the two. Indeed,
any MILP solver is in theory capable of solving the scheduling problem using Opti-
mization Model 3.1. Alas, the problem QM ||Cmax is in NP , hence even the most
sophisticated MILP solver cannot solve very large instances to optimality. We start
solving the instance with the solver and interrupt it after 1 second, using then as
output the best current schedule encountered by the solver.

Figure 6.1 shows all the 1024 realizations of the Monte-Carlo process to estimate the
average-case performance ratio for all the 12 algorithms. In Figure 6.1, there are three
well separated groups of algorithms, separated by different average-case performances.
We list them in decreasing performance order.

The top-most group is composed by the approximation algorithms. They act on the 16 or
24 largest jobs only, then the list scheduling logic is followed. As they are designed having
the QM ||Cmax problem in mind, they are better suited for large scheduling instances with
respect to the solver.
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The second group is composed by the direct generalization of the approximation algo-
rithms: they act on the whole set of jobs, hence a better average-case performance is
to be expected with respect to the original approximation algorithms. However, we are
not sure if they are still approximation algorithms, in the worst-case sense, or if they are
just heuristics. In particular, it is difficult to imagine a proof strategy for the algorithms
Full-σ1 and Full-σ2.

The last group is composed by the proposed heuristic and by the Gurobi algorithm with 1
second time-limit. Our proposed heuristic is inspired by the Full-σ1, but with an average-
case performance in mind, leaving behind the meticulousness required by an approxima-
tion algorithm.
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Figure 6.1. Heuristic Performance of some algorithms
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In the practical average-case world, it could be interesting to compare algorithms also by
their running times. Table 6.4 shows the average run times for each of the aforementioned
algorithms.

As we can see, the algorithm with the highest runtime is Full-σ2. This is well explained
by the fact that this algorithm has a O

!
J3" complexity, as basically all the possible

combinations of three jobs should be considered during the local search step.

The time-limited Gurobi algorithm is the next slowest algorithm. Remember that we
choose the 1 second time-limit for the Gurobi algorithm in order to match the performance
of our proposed heuristic. Time-wise, the poor performance of Gurobi algorithm is not
surprising. In fact, it is not designed with the scheduling problem in mind, but it is
designed to be a general Mixed-Integer Non-Linear Program solver. This results in Gurobi
being ≈ 1500 times slower than our proposed heuristic.

The Full-σ2 algorithm is the next slowest algorithm, still one-hundred time faster than
Gurobi.

Then there is our proposed heuristic. By reducing the number of first-improvement local
search steps done in this algorithm, the run time can be reduced at the cost of average-case
performance.

The remaining Full-style algorithms are faster than our heuristic, but they have no param-
eters to tune their performances. Finally, the approximation algorithms are the fastest,
as they rely on the linear-time complexity List Scheduling algorithm for the majority of
the jobs.

Algorithm Name Time [µs]

Full-LPT 111.8936
Full-σ1 1714.5967
Full-σ2 1 392 090.5801
Full-α1 147.5859
Full-α2 176.0625
(LPT,2) 54.3008
(σ1,2) 54.5342
(σ2,3) 58.0332
(α1,2) 54.3447
(α2,3) 56.2080
Ours 746.5869

Gurobi 1 126 560.2827

Table 6.4. Average run time for an instance of QM ||Cmax with M = 8
machines and J = 2048 jobs.
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Chapter 7

Conclusions

In this work we addressed the question of approximating the uniform machines scheduling
problem QM ||Cmax. In a nutshell, the QM ||Cmax problem asks how to assign a set
of jobs to a set of machines such that the total maximum running time is minimized,
keeping in mind that each job is characterized by a duration and each machine by a
speed of execution. This problem is NP-hard hence we need to settle for approximation
algorithms. The solution provided by a ρ-approximation algorithm is guaranteed to be at
most ρ times worse than the optimal one. This finite constant ρ is called approximation
ratio.

In this work we developed eight new approximation algorithms for the QM ||Cmax prob-
lem. All the determined algorithms are low complexity polynomial time algorithms pro-
viding constant time approximation ratios. The best one has an approximation ratio
ρ = 1.1583 ≈ −1+

√
11

2 .

Taking inspiration from Della Croce et al. [2019], all the developed algorithms share a
common structure: a particular procedure is applied to a fixed number of long jobs, then
the famous List Scheduling algorithm follows.

To reflect this common structure, in this work we establish a novel proof strategy, used
with all the new approximation algorithms. Indeed, the quest to find approximation ratios
is recast as mathematical programming problems, one for each proposed algorithm. Each
of these optimization problems is split into two parts. One part, custom for each proposed
algorithm, is solved by exploiting the power of a currently available commercial solver.
The other part is dealt with very general propositions (that we developed) that can be
applied to all proposed algorithms and many more.

The strength and beauty of this proof strategy is that, while it mixes both numerical and
analytical results, it maintains complete formal validity. Hence, all efforts to prove ap-
proximation ratios are moved from developing custom proof strategies for each algorithm
to recasting the problem as a mathematical program.

73



Conclusions

Surely, this work delineates a method for developing many more approximation algo-
rithms, both for the QM ||Cmax scheduling problem but also for other different problems.
Indeed, as long as a candidate approximation algorithm can be recast as a mathematical
programming model, the proof strategy explained and used in this work can be reused.
In the world of scheduling problems, surely PM ||Cmax, RM ||Cmax or some variants of
QM ||Cmax can be studied fruitfully with the same approach.

Moreover, it could be fascinating to develop an approximation algorithm for QM ||Cmax

with an approximation ratio of ρ ≤ 3
2 ,∀M ≥ 2 (improving any current known algorithm)

following the same framework of the Meta-Algorithm. Indeed, using Proposition 4.0.4,
only instances with M machines and at most 2M−1 jobs must be taken into consideration.

Another future work could study more deeply the conjecture (5.2), from which a new
PTAS for QM ||Cmax may stem. From a cross-fertilization point of view, another interest-
ing question that could be investigated is why all the approximation ratios obtained for
QM ||Cmax can be expressed as roots of some M degree polynomial.

Finally, as shown in Table 6.4, all the proposed approximation algorithms are very fast,
as their complexity is linear in the number of jobs. This suggests that a more accurate
study about heuristics that are generated from these approximation algorithms could be
very prolific.
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Appendix A

The approximation ratios of
LPT on a small number of
uniform machines

In Section 5.1.4, using the framework of the Meta-Algorithm, we deduced an approxi-
mation algorithm called (LPT,2) for Q2||Cmax. This approximation algorithm takes the
LM = 2 · 2 = 4 largest jobs, applies LPT to them, and completes the schedule applying
list scheduling to the remaining jobs. As the LPT algorithm is just the application of list
scheduling to the sorted jobs, we can give the following equivalent description of (LPT,2).
The (LPT,2) algorithm takes as input the list of all the jobs and select the 4 largest
ones. It sorts them and moves them at the beginning of the list. Finally, it applies list
scheduling to the whole list.

Hence, the (LPT,2) algorithm and the LPT algorithm differ only by “how much” they sort
the whole list of jobs. One could ask if it is possible to deduce the approximation ratio
of LPT itself, dropping completely the Meta-Algorithm framework, using Optimization
Model 5.2. Let recall that the optimum ρ(M) of Optimization Model 5.2 is the approxi-
mation ratio of the LPT algorithm limited to an arbitrary fixed number of machines M
and jobs J . Moreover, the LPT algorithm enjoys a similar property as the one proved in
Proposition 3.2.1 for the Meta-Algorithm. In fact, all the jobs smaller than the critical
one can be discarded without changing the approximation ratio. In other words, we can
focus only on instances whose critical job is the smallest job.

We can include this last-mentioned interesting fact in the model. Moreover, we try to
simplify the model as much as possible to explore higher and higher number of machines
M . We introduce the following modification to Optimization Model 5.2.

1. Split the original model into a family of smaller models, indexed by the index K of
the critical job pK . In this way jobs after the critical one can be discarded.
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The approximation ratios of LPT on a small number of uniform machines

2. As the index of the critical job is fixed in each of the smaller models, the constraint
h = maxm

1
qm
q

j zLP T
m,j

2
simplifies to h ≤ qm

1
pK +

qK−1
j=1 zLP T

m,j

2
∀m because of

the LPT logic.

3. To reduce the number of nonlinear constraints, relax the constraints that impose the
LPT logic by simply removing all of them but one (as it turned out to be necessary
for M = 7). This constraint will be extremely simplified as we know that LPT will
always assign the first job to the first machine.

4. To push the model “near” a LPT schedule, we introduce constraints that force initial
jobs to be scheduled on the initial machines: xLP T

m,j = 0 ∀m ⪈ j.

5. To further reduce the number of nonlinear constraints, use sm = 1
qm

instead of qm

and simplify the denominators.

6. Introduce the positive variables Cm = pK +
qK−1

j=1 zLP T
m,j ∀m.

Hence, the model becomes ρ̃(M) = maxK ρ̃(M, K), where ρ̃(M, K) is given by the follow-
ing model:

Optimization Model A.1: LPT Orlin-Style

ρ̃(M, K) = max h

s.t. Cm = pK +
K−1Ø
j=1

xLP T
m,j pj (∀m)

hsm ≤ Cm (∀m)Ø
j

x∗
m,jpj ≤ sm (∀m)

Ø
m

xLP T
m,j = 1 (∀j)Ø

m

x∗
m,j = 1 (∀j)

xLP T
m,j = 0 (∀m ⪈ j)

Cm ≥ 0 (∀m)
1
s1

(p1 + p2)− 1
s2

(p2) ≤ K(1− xLP T
2,2 )

1 ≥ p1 ≥ p2 ≥ · · · ≥ pK ≥ 0
1 = s1 ≥ s2 ≥ · · · ≥ sM ≥ 0
h ≥ 0, xLP T

m,j ∈ {0,1} , x∗
m,j ∈ {0,1} (∀m, j)
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Note that the only remaining LPT constraint is further relaxed as:

1
s1

(p1 + p2)− 1
s2

(p2) ≤ K(1− xLP T
2,2 )

⇐⇒ s2 (p1 + p2)− s1 (p2) ≤ s1s2K(1− xLP T
2,2 )

=⇒ s2 (p1 + p2)− s1 (p2) ≤ K(1− xLP T
2,2 )

In order to save computational resources, we use the following workflow, exploiting Propo-
sition 4.0.3:

Procedure A.1: Workflow for LPT bound

Input: The number of machines M ≥ 2
Output: The approximation ratio ρM of LPT for QM ||Cmax

1 ρM ← 1;
2 K ← 3;
3 while ρM ≤ 1 + M−1

K do
4 ρM,K ← solution of Optimization Model A.1;
5 if ρM ≤ ρM,K then
6 ρM ← ρM,K ;
7 end
8 K ← K + 1
9 end

We employ this workflow for M = 2, . . . ,7. The results, obtained with the commercial
solved Gurobi in half an hour1, are summarized in the following table:

M ρM K for which ρM is realized

2 1.2808 3
3 1.3837 4
4 1.4327 5
5 1.4591 6
6 1.4744 7
7 1.4837 8

Table A.1. Approximation ratios for LPT with a fixed number of machines M = 2, . . . ,7.

While results for M = 2,3,4,5 were already proved by Mitsunobu et al. [2022] using
standard techniques, the results for M = 6,7 are completely new. These results make again

1Computational resources were provided by HPC@POLITO http://www.hpc.polito.it
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The approximation ratios of LPT on a small number of uniform machines

clear the strength and the beauty of the proposed mathematical programming approach
in deriving approximation results. Indeed, while Mitsunobu et al. [2022] were forced to
prove increasingly difficult analytic propositions, we just let the algorithm run for half an
hour in total, supplying it with different input parameters M .

The instances that realize these approximation ratios are the same proposed all the way
back by Gonzalez et al. [1977]. We indeed have proved that these instances are the worst
ones for M ≤ 7.
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