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Summary

Nowadays, Machine Learning pipelines permeate the scientific computing world. The
flexibility of Neural Networks makes them a formidable tool to perform numerous kinds
of tasks, however their training keeps proving to be a computationally challenging opti-
mization problem. This thesis focuses on a specific kind of Neural ODEs, Kernel Neural
ODEs (KerODEs), where the usual parametric non-linearities are replaced by elements
of a reproducing kernel Hilbert space (RKHS) fixed a priori. Classical training algo-
rithms are based on a variant of stochastic gradient descent, coupled with the celebrated
backpropagation algorithm for gradient computations. Though extremely versatile, these
approaches potentially suffer from long computational times and/or high cost per itera-
tion. We propose and numerically explore methodologies to overcome both of these issues
for the optimization of KerODE parameters in the context of a regression task. In par-
ticular, we first exploit the dynamical systems perspective of Deep Learning to link the
training problem to an optimal control problem and, in turn, reduce it to the solution of a
two-point boundary value problem. Inspired by time-parallel ODE integration techniques,
we develop a multi-grid algorithm to speed up optimization and numerically investigate
its performance. As an alternative approach, we formally introduce a differential struc-
ture on the family of mappings realized by KerODEs, enabling the use of continuous
Riemanninan optimization techniques to solve the training problem. This furnishes a new
and compelling perspective on Neural ODEs as the realization of a Riemannian gradi-
ent/Newton flow which, in practice, leads to layer-by-layer optimization techniques thus
alleviating the cost per iteration of classic approaches.
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Introduction

The last decade has seen Machine Learning (ML) rise to the forefront of scientific research.
This phenomenon is in large part due to the success of Deep Learning (DL) (Goodfellow
et al. [2016]) which has become a primary tool in many modern ML tasks, such as regres-
sion, image classification and segmentation. This sub-field furnishes specialized models
and algorithms to professionals of all backgrounds in order to satisfy the ever increasing
demand from a very heterogeneous group of scientific communities to process data, be
it either abundantly available or very scarce. The fundamental idea in DL is to employ
regressors/classifiers v : X → Y , where X and Y denote the input and output spaces,
which feature a parametric and compositional structure. More precisely

v(·,θ) = vL(·, θL) ◦ . . . ◦ v1(·, θ1), (1)

where θ = (θ1, . . . , θL) are parameters taking values in some parameter set Θ. A popular
architecture is given by Residual Neural Networks (ResNets) introduced in He et al. [2016].
These essentially enforce the following structure

v1(·, θl) = I + ṽl(·, θl), l = 1, . . . , L, (2)

I being the identity mapping. If one introduces step size h > 0 and defines (abusing
notation) ṽl := ṽl/h, the action of the map in (1) on an input x ∈ X is described by the
following discrete dynamical system{

zl+1 = zl + hṽl(zl, θl),
z0 = x.

(3)

The key insight is that the above can be seen as an explicit Euler discretization of the
continuous-time dynamical system{

żt = ṽt(zt, θ(t)), t ∈ (0,1]
z0 = x.

(4)

This is the essence of the so-called dynamical systems point of view on DL which was
independently put forth by the seminal works of E [2017] and Chen et al. [2018]. Re-
cently, following the same research direction, Owhadi [2020] introduced continuous-time
Neural Networks of the structure shown above where, instead of the common parametric
nonlinearities populating the vast majority of architectures, the right-hand side ṽt is taken
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in a reproducing kernel Hilbert space (RKHS). These are the architectures which we focus
on in this thesis and refer to them as Kernel Neural ODEs (KerODEs).

Usually, the network parameters are chosen according to some performance metric
(commonly referred to as loss function or cost function) J : Θ→ R which is task-specific.
For instance, for a regression task, which is the main focus of the thesis, the most common
loss function is the empirical mean square error. Computing the optimal parameters, that
is solving

θ⋆ ∈ arg min
θ∈Θ

J (θ), (5)

is commonly referred to as the training phase of the Neural Network and represents one
of the crucial steps for providing an accurate and useful model for the task at hand.
From an optimization point of view, training the network is a very hard problem. This
is because the loss function J is usually highly non-convex and Θ is very high dimen-
sional. The most popular strategy in order to tackle this optimization problem consists in
stochastic gradient-based optimization starting from random initialization, coupled with
the well-known backpropagation algorithm (Rumelhart et al. [1986]). The backpropa-
gation algorithm works by computing the gradient of the loss function with respect to
each parameter by the chain rule, computing the gradient one layer at a time, iterating
backward from the last layer to avoid redundant calculations of intermediate terms in the
chain rule. The gradient-based approach, although extremely successful, is affected by a
number of issues, among which the unstable gradient problem (Nielsen [2018]), that es-
sentially refers to the behaviour where different layers learn (i.e. are optimized) at vastly
different speeds, and the vanishing gradient problem (Pascanu et al. [2013]), which instead
refers to the phenomenon where the gradient of the loss is vanishingly small, effectively
preventing the parameters from changing their value. These two issues often lead to poor
convergence speed to a good set of parameters. Furthermore, each gradient step involves
a forward propagation, namely a model evaluation, and a backward one, i.e. the chain
rule computation. The larger the model is, the more costly these operations are.

The dynamical system point of view on Deep Learning has also been leveraged for
the design of optimization algorithms of DNNs. Indeed, it has been pointed out by Li
et al. [2017] that training Deep Neural Networks, bearing in mind that the latter can
be seen as discretizations of continuous-time models, shares striking similarities with the
solution of classical optimal control problems. In particular, Li et al. [2017] showed that, in
this context, one can derive backpropagation from the well-known Pontryagin Maximum
Principle (PMP).

The objective of this thesis, is to study the learning problem in the context of Kernel
Neural ODEs, shed light on the links with optimal control and exploit it in order to
devise training algorithms which speed up the training phase. In particular, we show
that training the network is equivalent to solving a two-point boundary value problem
(TPBVPs) and we will explore training strategies inspired by time-parallel integration
techniques for ODEs.

As a further step, we investigate the link between the learning problem with Kernel
Neural ODEs and variational methods for sampling based on Optimal Transport (OT).
These techniques tackle the problem of drawing samples from a target distribution by
recasting it as an optimization problem. In particular, we consider the Stein Variational
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Gradient descent (SVGD) introduced by Liu and Wang [2016] which iteratively transports
a set of particles to match the target distribution by applying a form of functional gradient
descent, with steps taken in a given RKHS, that minimizes the KL Kullback–Leibler (KL)
divergence. The follow up works by Duncan et al. [2019] and Nüsken and Renger [2021]
then endow the space of probability measures with a Riemannian manifold structure (ef-
fectively formally translating the classic works of Otto [2001] in the context of Wasserstein
spaces in the RKHS context) in order to recast SVGD as a gradient flow on the KL di-
vergence. In this thesis we highlight some similarities the SVGD shares with KerODEs
and the optimal control formulation of the training problem. The fundamental difference
lies in the fact that those works take the point of view of the probability measures being
transported, while we are interested in the maps which transport the measures. Hence,
following Duncan et al. [2019] we introduce a formal Riemannian manifold structure on
the setM of mapping realized by KerODEs. This enables the exploration of Riemannian
optimization algorithms, both of first and second order, in order to solve the learning
problem. In practice, this leads to layer by layer optimization techniques which reduce
the cost per iteration of the optimization procedure.

The thesis is structured as follows. In Chapter 1 we review the necessary background
material. In particular, we introduce Optimal Control and the two main approaches based
on the Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman equation. Then, we
give a formal introduction to learning theory, with a focus on reproducing kernel Hilbert
spaces of which we present the main properties. The last part of the background material
concerns instead ML, DL and the dynamical systems perspective on DL.

The second Chapter is the theoretical heart of the thesis. First, we introduce KerODEs
and the learing problem we want to tackle. Then we show that, in the continuous-time
setting, solutions to the problem exist. Furthermore, leveraging the PMP, we recast
the learning problem as the solution of a TPBVP. Finally, we introduce a suitable time
discretization and show that the solution to the discrete-time problem converges in a suit-
able sense to the solution of the continuous-time problem. We then make the connection
between the infinite-particle limit of the Optimal Control problem and Optimal Trans-
port in the context of reproducing kernel Hilbert spaces as introduced by Duncan et al.
[2019]. This prompts the introduction of the manifold M of diffeomorphisms realized by
KerODEs and the statement of the learning problem as an optimization problem on M.
We consequently exploit this point of view to identify KerODEs as both first and second
order geometric flows on the loss functional.

In Chapter 3 we present concrete training algorithms inspired by the theory developed
in Chapter 2. In particular, we first propose a preconditioned version of gradient descent.
Then, we introduce a time-parallel training algorithm in both a single and multi-grid
context. We next present a Riemannian gradient descent training algorithm along with a
stochastic version. The last algorithm we consider is instead a Riemannian damped New-
ton. Finally, we explore the effectiveness of these training strategies on synthetic data.
In particular, we show that the second order methods derived from the OC perspective
improve upon simple gradient descent in terms of speed of convergence, however they still
lack robustness. The training strategies inspired by the Riemannian optimization perspec-
tive, on the other hand, prove to be more robust in terms of problems they manage to find
good solutions to. This, together with their simplicity, make Riemannian optimization a
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very promising approach.
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Chapter 1

Background

1.1 Optimal Control theory
In this section, we will introduce some classical control theory and related discussions,
which will be useful later for the study and design of Neural Networks. The main references
for this section are Liberzon [2012], Chachuat [2007] and Carlsson et al. [2018].

The fundamental mathematical objects we are interested in are Ordinary Differential
Equations (ODEs), which take the following form{

ẋt = f(xt, t), t ∈ (0, T ],
x0 = x̄,

(1.1)

where T > 0 and f : Rd× [0, T ]→ Rd is commonly denominated flux. These objects have
been extensively studied throughout the centuries by mathematicians and are ubiquitous
both in pure and applied mathematics. In general, we say that a solution to (1.1) is any
function x : [0, T ]→ Rd such that

xt = x0 +
∫ t

0
f(xs, s)ds. (1.2)

Note that if such function exists then x ∈ C([0, T ];Rd) and ẋt = f(xt, t), provided f is
well behaved.

To guarantee existence and uniqueness of solutions on [0, T ] for (1.1) we need to impose
some regularity conditions on the right-hand side f . A standard assumption in this regard
is that f is continuous on Rd × [0, T ] and uniformly Lipschitz continuous with respect to
x on Rd × [0, T ], namely there exists a constant Lf > 0 such that

|f(y, t)− f(x, t)| ≤ Lf ∥y − x∥2 , ∀ (y, t), (x, t) ∈ Rd × [0, T ]. (1.3)

Then, owing to the Picard-Lindelöf theorem, a solution to (1.1) exists and is unique for
all x̄ ∈ Rd. Here we are particularly interested in the ability to control such solutions.
The intuition behind this is perhaps best understood with a practical example.
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Example 1.1.1 (Evans [2013]). Suppose we own a factory whose output can be controlled.
Let us further assume that we can consume some fraction of our output at each time, and
likewise can reinvest the remaining fraction which would lead to an increased output.
Then, we can construct a mathematical model by setting

• xt to be the amount produced at time t ≥ 0,

• βt to be fraction of output reinvested at time t ≥ 0.

In this context, xt is said to be the state, while βt the control. The latter is subject to the
obvious constraint that βt ∈ [0,1] for all t ≥ 0. Given such a control, the corresponding
dynamics are provided by the ODE{

ẋt = kβtxt, t ∈ (0, T ],
x0 = x̄,

(1.4)

the constant k > 0 modelling the growth rate of our reinvestment and x̄ a given initial
state for the system.

This example captures the fundamental elements which characterize a control problem,
i.e. the interplay between state and control variables. The latter are design variables
which we assume to be able to modify at will, while the former represent the response
of the system as a result of the chosen control. From this point onward, we will write
x = (x1, . . . , xd)⊤ for the (dependent) state function, ẋ = (ẋ1, . . . , ẋd)⊤ for their time
derivatives, and β = (β1, . . . , βm)⊤ for the control function. In order to make this precise,
let us further define the space of admissible controls on the sub-interval [t, T ]

B[t, T ] = {β : [t, T ]→ B | regularity condition on β} . (1.5)

This entails that the controls will take values in some control set B ⊂ Rm, usually a closed
subset of Rm which can be the entire Rm; in principle B can also vary with time, but here
we take it to be fixed. Moreover, for the sake of simplicity, if not stated otherwise, we
will consider B to be compact and B[t, T ] = C([t, T ];B). Finally, we will sometimes use
b = (b1, . . . , bm)⊤ ∈ B to denote the control variables for some fixed time instant, and,
with a little abuse of notation, x = (x1, . . . , xd)⊤ ∈ Rd will denote the state variables for
some fixed time instant. With this notation, the control systems that we want to study
take the form {

ẋt = f(xt, βt, t), t ∈ [0, T ],
x0 = x̄,

(1.6)

where now the flux is a function f : Rd × B × [0, T ] → Rd. Sometimes we will refer to
the solution of the above system as xβ in order to make its dependence on the specific
control function explicit. As the initial condition x0 = x̄ is given while xT is not, these
problems are refereed to in the literature as fixed-time, free-endpoint problems. Note that
the model in Example 1.1.1 fits into our general framework for d = m = 1, once we set

B = [0,1] and f(x, t) = kbx. (1.7)

14



1.1 – Optimal Control theory

To guarantee local existence and uniqueness of its solutions, we can impose conditions
on f and β that let us invoke the previous existence and uniqueness result for the right-
hand side

f̄(x, t) := f(x, βt, t). (1.8)

Here is one such set of assumptions which, although not the weakest possible, is adequate
for our purposes: f(x, b, t) is continuous in t, b and C1 in x and fx(x, b, t) is bounded
uniformly in t and b. Note that this assumptions imply that the following Lipschitz
property holds

|f(y, b, t)− f(x, b, t)| ≤ Lf ∥y − x∥2 , ∀ (y, b, t), (x, b, t) ∈ Rd ×B × [0, T ], (1.9)

for some Lf > 0.

1.1.1 Setting up an Optimal Control problem
To give some intuition on Optimal Control and to introduce the basic concepts let us
consider Example 1.1.1 again.

Example 1.1.1 (Continued). Recall that in this imaginary setting we own a factory whose
output we can control. With this premise, any sensible owner should then be concerned
with controlling the factory in a way that benefits his needs the most. Assuming, for
instance, that our satisfaction is directly proportional to the amount consumed, the goal
then becomes maximizing the total consumption of the output, our consumption at a
given time t being (1− βt)xt, i.e.

J(β) :=
∫ T

0
(1− βt)xtdt. (1.10)

In addition, we may be concerned with the amount of wealth xT we leave behind us at
time T , which leads to the modified cost functional

J(β) :=
∫ T

0
(1− βt)xtdt+ γxT , . (1.11)

γ > 0 being a parameter controlling the trade-off between consumption and heritage.

In general, a performance criterion (also called cost functional, or simply cost) must
be specified for evaluating the performance of a system quantitatively, i.e. we can state
our problem in Optimal Control terms as the minimization1 of an objective functional
J : B[0, T ]→ R. The latter can be defined in the so-called Lagrange form

J(β) :=
∫ T

0
ℓ(xβt , βt, t)dt, (1.12)

1Note that in Example 1.1.1 we take the perspective of a maximization problem which, however,
can always be turned into a minimization problem as max J = − min(−J).
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where the running cost ℓ : Rd × B × R → R is assumed to be defined and continuous,
together with its partial derivatives ℓx(x, b, t). The objective functional may as well be
specified in the Mayer form,

J(β) := h(xβT , T ), (1.13)

with h : Rd × R → R being a real-valued function which, again, shall be assumed to be
defined and continuous along with its partial derivatives hx(x, t). More generally, we may
consider the Bolza form which corresponds to the sum of an integral term and a terminal
term as

J(β) :=
∫ T

0
ℓ(xβt , βt, t)dt+ h(xβT , T ). (1.14)

Interestingly enough, Mayer, Lagrange and Bolza problem formulations can be shown to
be theoretically equivalent (see, e.g., Chapter 3 in Liberzon [2012]). Hence, in the following
we will stick to the latter as they are often amenable to more natural interpretations.

A mathematical setting for optimally controlling the solution to a deterministic ODE
is then to solve

inf
β∈B[0,T ]

J(β). (1.15)

Similar to problems of the calculus of variations, we shall say that J assumes its minimum
value at β⋆ provided that

J(β⋆) ≤ J(β) ∀ β ∈ B[0, T ], (1.16)

in which case the infimum in (1.15) can be replaced by a minimum. This assignment is
global in nature and does not require consideration of a norm. The statement (1.16) is
global in nature and does not require to introduce a topology on B[0, T ]. On the other
hand, to describe local minima of J we need to endow B[0, T ] with a topology or even
better a structure of normed vector space. Having chosen the class B[0, T ] of admissible
controls to be continuous function with values in B, it is natural to choose the supremum
norm

∥β∥L∞ = sup
t∈[0,T ]

∥βt∥2 . (1.17)

Then, a local minimum β⋆ of J is such that

∃ δ s.t. J(β⋆) ≤ J(β) ∀ β ∈ Ballδ(β⋆) ∩ B[0, T ], (1.18)

where Ballδ(β⋆) = {β ∈ C([0, T ];Rm) | ∥β − β⋆∥L∞ < δ}. Finally, we say that a (local)
minimum β⋆ of (1.14) is internal if there exists a δ > 0 such that Ballδ(β⋆) ⊂ B[0, T ].

The question then is how to characterize and compute the Optimal Control. Classically,
this problem has been tackled by two approaches, the Pontryagin maximum principle, and
dynamic programming, which we shall introduce in the subsequent sections. Moreover,
for simplicity in the following we are going to consider autonomous systems where the
the ODE right-hand-side f , the running cost ℓ and the terminal cost h do not depend
explicitly on time.
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1.1 – Optimal Control theory

1.1.2 Pontryagin maximum principle
Before reviewing the Pontryagin Maximum Principle, let us introduce the variational
approach (or Lagrange principle) which seeks a minimum of the cost with the dynamics
as a constraint. Both of them, indeed, lead to the to the solution of a Hamiltonian system
of ordinary differential equations which are intimately connected.

Theorem 1.1.1 (Euler-Lagrange equations). Consider the minimization problem (1.15)
subject to (1.6). Suppose f satisfies the assumptions which lead to (1.9) and that it is
differentiable in b as well. Assume further β⋆ ∈ B[0, T ] is a (local) internal minimizer
for the problem, and let x⋆ ∈ C1([0, T ];Rd) denote the corresponding state trajectory.
Then, there is a function p⋆ ∈ C1([0, T ];Rd) such that the triple (x⋆, β⋆, p⋆) satisfies the
Euler-Lagrange equations

ẋ⋆t = f(x⋆t , β⋆t ), t ∈ [0, T ], x⋆0 = x̄, (1.19)
ṗ⋆t = ℓx(x⋆t , β⋆t )− (p⋆t )⊤fx(x⋆t , β⋆t ), t ∈ [0, T ], p⋆T = −hx(x⋆T ), (1.20)
0 = fb(x⋆t , β⋆t )⊤p⋆t − ℓb(x⋆t , β⋆t ), t ∈ [0, T ]. (1.21)

Proof. Define the Lagrangian L : C1([0, T ];Rd)× B[0, T ]× C1([0, T ];Rd)→ R

L(x, β, p) = h(xT ) +
∫ T

0
ℓ(xt, βt)dt+

∫ T

0
p⊤
t (ẋt − f(xt, βt)) dt. (1.22)

associated to the minimization problem. Then, the first variations of the Lagrangian
provide necessary conditions for optimality:

Lp(x⋆, β⋆, p⋆) = 0, Lx(x⋆, β⋆, p⋆) = 0, Lβ(x⋆, β⋆, p⋆) = 0. (1.23)

Consider a one-parameter family of controls β = β⋆ + εv for v ∈ C([0, T ];Rm) and note
that the assumption that β⋆ is an internal minimizer implies that β ∈ B[0, T ] for ε small
enough. Then, the function

L(ε) = L(x⋆, β⋆ + εv, p⋆) (1.24)

features a local minimum at ε = 0. Imposing the first order condition L′(0) = 0 yields

0 =
∫ T

0
v⊤
t ℓb(x⋆t , β⋆t )dt−

∫ T

0
v⊤
t fb(x⋆t , β⋆t )⊤p⋆tdt

=
∫ T

0
v⊤
t

(
fb(x⋆t , β⋆t )⊤p⋆t − ℓb(x⋆t , β⋆t )

)
dt.

(1.25)

As fb(x⋆t , β⋆t )⊤p⋆t − ℓb(x⋆t , β⋆t ) is continuous we may conclude that (1.21) holds by the
arbitrariness of v. Similarly, set L(ε) = L(x⋆+εv, β⋆, p⋆) where we take v ∈ C1([0, T ];Rd)
such that v0 = 0 in order to ensure x⋆0 + εv0 = x̄. Imposing L′(0) = 0 gives

0 = v⊤
T hx(x⋆T ) +

∫ T

0
v⊤
t ℓx(x⋆t , β⋆t )dt+

∫ T

0
(p⋆t )⊤ (v̇t − fx(x⋆t , β⋆t )vt) dt

= v⊤
T (hx(x⋆T ) + p⋆T ) +

∫ T

0
v⊤
t

(
ℓx(x⋆t , β⋆t )− fx(x⋆t , β⋆t )⊤p⋆t − ṗ⋆t

)
dt.

(1.26)
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As the integrand is continuous the above immediately implies (1.20). Finally, taking again
v ∈ C1([0, T ];Rd), setting L(ε) = L(x⋆, β⋆, p⋆ + εv) and imposing L′(0) = 0 we obtain∫ T

0
v⊤
t (ẋt − f(xt, βt)) (1.27)

which, by continuity of f(xt, βt)− ẋt, is equivalent to (1.19).

Remarks.

• The optimality conditions consist of d algebraic equations (1.21), together with 2d
ODEs (1.19) - (1.20) and their respective boundary conditions. Hence, the Euler-
Lagrange equations provide a complete set of necessary conditions. However, the
boundary conditions for (1.19) and (1.20) are split, i.e., some are given at t = 0 and
others at t = T . Such problems are known as two-point boundary value problems
(TPBVPs) and are notably more difficult to solve than initial value problems (IVPs).

• It is convenient to introduce the Hamiltonian function H : Rd × B × Rd associated
with the Optimal Control problem (1.6) - (1.15), by adjoining the right-hand side of
the differential equations to the cost integrand as

H(x, b, p) = p⊤f(x, b)− ℓ(x, b) (1.28)

Thus, the Euler-Lagrange equations (1.19)–(1.21) can be rewritten as

ẋ⋆t = Hp(x⋆t , β⋆t , p⋆t ), x⋆0 = x̄, (1.29)
ṗ⋆t = −Hx(x⋆t , β⋆t , p⋆t ), p⋆T = −hx(x⋆T ), (1.30)
0 = Hb(x⋆t , β⋆t , p⋆t ). (1.31)

• As expected by classical theory of Hamiltonian systems, H yields a first integral to
the TPBVP (1.29)-(1.31) assuming β⋆ is continuously differentiable. Indeed, the
variation of the Hamiltonian function along an optimal trajectory is given by

d

dt
H(x⋆t , β⋆t , p⋆t )

=Hx(x⋆t , β⋆t , p⋆t )⊤ẋ⋆t +Hb(x⋆t , β⋆t , p⋆t )⊤β̇⋆t +Hp(x⋆t , β⋆t , p⋆t )⊤ṗ⋆t

=Hx(x⋆t , β⋆t , p⋆t )⊤Hp(x⋆t , β⋆t , p⋆t )−Hp(x⋆t , β⋆t , p⋆t )⊤Hx(x⋆t , β⋆t , p⋆t ) = 0.

(1.32)

As Theorem 1.1.1 states, the conditions given are only necessary for local extrema of J .
The question then is if and under which conditions we may characterize global extrema.
An answer to this question is provided by the following theorem.

Theorem 1.1.2 (Pontryagin Maximum Principle (PMP)). Let β⋆ ∈ B[0, T ] be an Optimal
Control and let x⋆ ∈ C1([0, T ];Rd) be the corresponding optimal state trajectory. Then,
there exists a function p⋆ ∈ C1([0, T ];Rd) having the following properties:
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1. x⋆ and p⋆ satisfy the canonical equations

ẋ⋆t = Hp(x⋆t , β⋆t , p⋆t ) (1.33)
ṗ⋆t = −Hx(x⋆t , β⋆t , p⋆t ) (1.34)

with the boundary conditions

x⋆0 = x̄, p⋆T = −hx(x⋆T ). (1.35)

2. For all fixed t, the function b→ H(x⋆t , b, p⋆t ) has a global maximum at b = β⋆t , i.e.

β⋆t ∈ arg max
b∈B

H(x⋆t , b, p⋆t ). (1.36)

The proof of this result is highly non trivial and is out of the scope of this chapter,
hence we refer the reader to Liberzon [2012]. It is noteworthy that a necessary condition
for the triple (x⋆, β⋆, p⋆) to give a global minimum of J is that β⋆t be a global maximum of
the function H(x⋆t , b, p⋆t ) for all t ∈ [0, T ]. In some cases, as we shall see in later chapters,
one can express β⋆t as a function of xt and pt from (1.36), and then substitute into (1.33)-
(1.34) to get a TPBVP in the variables x and p only. Finally, note that (1.31) is implied by
(1.36) whenever β⋆ is an internal minimum and H is b-differentiable, so that the Lagrange
principle is implied by the Pontryagin Maximum Principle.

1.1.3 Dynamic programming
The dynamic programming view to solve Optimal Control problems is based on the idea
to track the optimal solution backwards. In order to do this, we embed the usual control
problem on [0, T ] into a larger family of similar problems, by varying the starting times
and starting points and defining

J(β; x̄, t) :=
∫ T

t
ℓ(xs, βs)ds+ h(xT ) (1.37)

with {
ẋs = f(xs, βs), s ∈ [t, T ],
xt = x̄,

(1.38)

where β ∈ B[t, T ]. In this setting, it is convenient to take B[t, T ] to be the set of measurable
functions with values in B, so that B[0, T ] = ∪[t,s]∈∆B[t, s] where ∆ is any countable
partition of [0, T ]. Note that, in order to be completely explicit, we will sometimes refer
to the solution of (1.38) as xβ,x̄,t. The fundamental mathematical object in this context
is represented by the value function.

Definition 1.1.1 (Value function). Let x̄ ∈ Rd, t ∈ [0, T ], then define the value function
as the infimum of the cost functional if the dynamics starts in x̄ at time t, namely

V (x̄, t) := inf
β∈B[t,T ]

J(β; x̄, t) (1.39)
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Since at the final time the value function is trivially given by V (·, T ) = h we can,
recursively for small time steps of size ∆t > 0 backwards, find the Optimal Control to
go from each point (x̄, t) on the time level t to the time level t + ∆t with the value
function V (·, t + ∆t). This procedure leads to the characterization of the value function
as the solution to the well known Hamilton-Jacobi-Bellman equation, which is a (highly)
nonlinear partial differential equation.

Theorem 1.1.3 (Hamilton-Jacobi-Bellman (HJB) equation). Assume that the value func-
tion V ∈ C1(Rn × [0, T ];R), then it solves the nonlinear partial differential equation

∂tV (x̄, t) + min
b∈B

{
∂xV (x̄, t)⊤f(x̄, b) + ℓ(x̄, b)

}
= 0, x̄ ∈ Rd, t ∈ [0, T ], (1.40)

with the terminal condition
V (·, T ) = h. (1.41)

Proof. We prove this assuming the infimum of the optimization problem is attained. Let
x̄ ∈ Rd, t ∈ [0, T ] and let ∆t > 0 be given. Pick any parameter b ∈ B and use the constant
control β ≡ b for times s ∈ [t, t+ ∆t]. Then, the definition of the value function implies

V (x̄, t) ≤
∫ t+∆t

t
ℓ(xβ,x̄,ts , b)ds+ V (xβ,x̄,tt+∆t, t+ ∆t), (1.42)

whence
V (xβ,x̄,tt+∆t, t+ ∆t))− V (x̄, t)

∆t + 1
∆t

∫ t+∆t

t
ℓ(xβ,x̄,ts , b)ds ≥ 0. (1.43)

Letting ∆t→ 0 and recalling V is C1 yields the differential form of the above inequality,
namely2

∂tV (x̄, t) + ∂xV (x̄, b)⊤f(x̄, b) + ℓ(x̄, b) ≥ 0, (1.44)
where we exploited the fact that xβ,x̄,t is a solution to (1.38). As the above holds for any
b ∈ B, we have that

min
b∈B

{
∂tV (x̄, t) + ∂xV (x̄, t)⊤f(x̄, b) + ℓ(x̄, b)

}
≥ 0. (1.45)

Finally, let us prove that the above is an equality. Assume β⋆ is optimal starting in x̄ at
time t with corresponding optimal trajectory x⋆, and consider the following decomposition
which, again, is a consequence of the definition of value function:

V (x̄, t) =
∫ t+∆t

t
ℓ(x⋆s, β⋆s )ds+ V (x⋆t+∆t, t+ ∆t). (1.46)

If we let b⋆ = β⋆t , a similar argument to the one employed earlier yields

∂tV (x̄, t) + ∂xV (x̄, t)⊤f(x̄, b⋆) + ℓ(x̄, b⋆) = 0, (1.47)

which proves the claim.

2In order to avoid confusion, we use the more explicit notation ∂tV and ∂xV when referring to the
derivatives of the value function, as opposed to the subscript notation adopted throughout the section.
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Remark. Note that the HJB equation can be recast as

∂tV (x̄, t)−H⋆(x̄,−∂xV (x̄, t)) = 0, x̄ ∈ Rd, t ∈ [0, T ], (1.48)

where
H⋆(x̄, p) := max

b∈B
H(x̄, b, p). (1.49)

1.1.4 Characteristics and the Pontryagin Principle
The last remark hints at the possibility that the Pontryagin principle and the dynamic
programming approach are somehow related as the same Hamiltonian maximization is
involved in both. On the other hand, one would expect such relation to exist as they are
both strategies to solve the same problem. The first step in this direction is to show that
the characteristics of the HJB equation solve an Hamiltonian system.

Theorem 1.1.4. Assume V ∈ C2, H ∈ C1 and define

ẋt := H⋆
p (xt, pt), (1.50)

with pt := −∂xV (xt, t). Then, the characteristics of (1.48) satisfy the Hamiltonian system

ẋt = H⋆
p (xt, pt),

ṗt = −H⋆
x(xt, pt)

(1.51)

Proof. The definition ẋt = H⋆
p (xt, pt) implies by x-differentiation of the HJB equation

that along the path (xt, t) the following holds:

0 = ∂xtV (xt, t)−H⋆
x(xt,−∂xV (xt, t))

= ∂txV (xt, t) + ∂2
xV (xt, t)H⋆

p (xt,−∂xV (xt, t))−H⋆
x(xt,−∂xV (xt, t))

= d

dt
Vx(xt, t)−H⋆

x(xt,−∂xV (xt, t))

= −ṗt −H⋆
x(xt,−∂xV (xt, t))

(1.52)

as V ∈ C2, and the claim is proved.

The next step is to relate the characteristics (xt, pt) to the solution of the Pontryagin
Maximum Principle. But note first that the Hamiltonian H⋆ in general is not differen-
tiable, even if f and ℓ are very regular: for instance given ẋt = f(xt) and ℓ(x, b) = xb
implies for B = [−1,1] that the Hamiltonian becomes H⋆(x, p) = pf(x) − |x| which is
only Lipschitz continuous if, for instance, f is differentiable and bounded. In fact, if f
and ℓ are bounded differentiable functions the Hamiltonian H⋆ will always be Lipschitz
continuous satisfying |H(x, p)−H(y, q)| ≤ L(∥x− y∥2 + ∥p− q∥2) for some L > 0.

Theorem 1.1.5. Assume that f , h are x-differentiable in (x, b⋆) and a control b⋆ is
optimal for a point (x, p), i.e.

p⊤f(x, β⋆)− ℓ(x, β⋆) = H⋆(x, p). (1.53)
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Assume further that H⋆ is differentiable in the point or that β⋆ is unique. Then

H⋆
p (x, p) = f(x, β⋆)

H⋆
x(x, p) = p⊤fx(x, β⋆)− ℓx(x, β⋆)

(1.54)

Proof. See Carlsson et al. [2018].

This Theorem shows that the Hamiltonian system (1.51) is the same as the system
(1.33)-(1.36), given by the Pontryagin principle using the Optimal Control β⋆.

If β⋆ is not unique (i.e not a single point) the proof shows that (1.54) still holds for
the Optimal Controls, so that H⋆

p and H⋆
x become set valued. We conclude that non

unique local Optimal Controls β⋆ is the phenomenon that makes the Hamiltonian non
differentiable in certain points. In particular a differentiable Hamiltonian gives unique
Optimal Control fluxes H⋆

p and H⋆
x, even if β⋆ is not a single point. If the Hamiltonian

can be explicitly formulated, it is therefore often practical to use the Hamiltonain system
formulation with the variables x and p, avoiding the control variable.

Finally, let us remark that the non linear Hamilton-Jacobi-Bellman partial differen-
tial approach has the theoretical advantage of well established theory and that a global
minimum is found; its fundamental drawback is that it cannot be used computationally
in high dimension d ≫ 1, since the computational work increases exponentially with the
dimension d as is customary when dealing with the numerical solution to PDEs. The
Pontryagin principle, on the other hand, has the computational advantage of dealing with
ODEs which are much better conditioned with respect to the dimensionality of the am-
bient space of many practical problems, so that for d ≫ 1 one can often hope to get a
solution, albeit in practice only local minima can be found computationally, often with
some additional error introduced by a regularization method (Carlsson et al. [2018]).

1.2 Learning in Reproducing Kernel Hilbert Spaces
Reproducing Kernel Hilbert Spaces are spaces of functions widely used in Machine Learn-
ing tasks. Indeed, they are backed by a solid theoretical understanding and prove to be
a convenient ambient space for many learning problems. In this work, they represent a
fundamental building block for the construction of a large class of Artificial Neural Net-
works which will be introduced in the next chapter. Hence, in this section we are going to
briefly introduce the problem of learning and review Reproducing Kernel Hilbert Spaces
and their main properties. The main references for this section are Cucker and Zhou
[2007], Álvarez et al. [2012] and Rosasco [2010].

1.2.1 The problem of learning and regularization
We begin by introducing the problem of learning. Let X be a metric space and Y = Rn.
For convenience we will take n = 1 for the time being. Let µ be a Borel probability
measure on S = X × Y whose regularity properties will be assumed as required.
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1.2 – Learning in Reproducing Kernel Hilbert Spaces

A central concept which will accompany us throughout the thesis is the generalization
error (or least squares error) of a given function f , for f : X → Y , defined by

Eµ(f) :=
∫

S
(f(x)− y)2dµ(x, y). (1.55)

This means that for each input x ∈ X and output y ∈ Y , (f(x)− y)2 is the error incurred
through the use of f as a model for the process of producing y from X , which is then
averaged over X × Y according to µ. It can be shown that there exists a function fµ,
the so-called regression function, which achieves the minimal error and has the following
representation

fµ(x) =
∫

Y
ydµ(y|x), (1.56)

where µ(·|x) denotes the conditional distribution on Y given x ∈ X . Then, the general-
ization error features the following decomposition

Eµ(f) =
∫

X
(f(x)− fµ(x))2dµX (x) + σ2

µ (1.57)

where
σ2
µ =

∫
Y

(y − fµ(x))2dµ(x, y) (1.58)

and µX denotes the marginal distribution on X , namely

µX (A) =
∫
A×Y

dµ(x, y). (1.59)

The latter measures the irreducible uncertainty which affects the learning problem and
is sometimes called conditioning of µ, in connection to the classical condition number
of matrices in linear algebra. The following statement from Cucker and Zhou [2007]
encompasses the fundamental objective of learning theory:

“The goal is to “learn” (i.e., to find a good approximation of) fµ from samples
on S.”.

A practical example of how the joint measure µ can arise is the following. Consider a
function g : X → Y affected by noise represented by some random variable ε on Y , and a
random variable x on X . In other words, the underlying process to be learned is g(x) + ε
and µ is the joint probability measure of the random vector (x, g(x) + ε). Notice that
assuming ε to have zero mean implies g = fµ, so that we achieve the optimal model once
we know exactly the function g which generates the process. An interesting particular case
is the one of vanishing irreducible uncertainty σµ = 0, which coincides with the problem
of approximating g. Indeed, the generalization error takes the form

Eµ(f) =
∫

X
(f(x)− g(x))2dµX (x). (1.60)

Given this framework, it is clear that dealing with a (in general) infinite-dimensional
object µ is computationally impractical on one hand, and outright impossible if we do not
have direct access to it. In other words, we can think of two settings:
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• the process which gives rise to µ and, consequently, error (1.55), is unknown and
accessible only through a finite sample;

• we can draw independent samples from µ at will, albeit arbitrarily computationally
expensive.

The reason for this distinction lies in the fact that, in principle, the latter situation allows
for a higher number of degrees of freedom which may, and should, be exploited when
designing learning algorithms. This is the common situation when µ can be sampled
through scientific computing pipelines involving, for instance, the solutions of given para-
metric PDEs. In both of these cases, however, we are concerned with dealing with a
sample in SN , i.e.

s = ((x(1), y(1)), . . . , (x(N), y(N))) ∈ SN , (1.61)

where SN denotes the N -fold Cartesian product of S. The sample s should then be
thought of as a point-wise discretization of µ. The most natural way this may happen is
if s is a collection of independent and identically distributed (i.i.d.) samples drawn from
µ, namely

(x(i), y(i)) iid∼ µ. (1.62)

However this is not the only way to discretize a distribution. Indeed, one can employ,
for instance, deterministic sets of points in the input space X in order to represent µX .
One very popular approach of this kind is Quasi-Monte Carlo (QMC) sampling. QMC
is an alternative approach to random sampling in order to generate points in domains
of interest (Caflisch [1998]). Let, for example, X be a compact domain with µX being
the uniform distribution. Intuitively, one can think of a Quasi-Monte Carlo sampling as
a way to “better cover” the domain than, say, drawing i.i.d. samples from µX . This
can be made into a rigorous statement and one can prove there exist sequences of points
which are optimal in the sense of their ability to cover the domain X . This is indeed the
approach we take for our numerical experiments in Chapter 3.

Let us define the empirical error of f (w.r.t. s) to be

Es(f) = 1
N

N∑
i=1

(f(x(i))− y(i))2 =
∫

S
(f(x)− y)2dµ(N)(x, y), (1.63)

where

µ(N) := 1
N

N∑
i=1

δ(x(i),y(i)) (1.64)

denotes the empirical measure associated to s. Note that by the law of large numbers we
have Es → Eµ as N →∞.

Learning does not take place in a vacuum and some structure needs to be present at
the beginning of the process. Let C(X ;Y) be the space of continuous functions on X with
values in Y endowed with the norm

∥f∥∞ = sup
x∈X
∥f(x)∥Y . (1.65)
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We ambient the learning task in a normed subspace (H, ∥·∥H), the hypothesis space, con-
tinuously included in C(X ;Y), where algorithms will work to find, as well as is possible,
the best approximation for fµ. Note that ∥f∥H is often taken as a measure of complexity
of f ∈ H.

Definition 1.2.1. Given a measure µ and a hypothesis space H we define the target
function fH, if it exists, as an optimizer of

min
f∈H
Eµ(f), (1.66)

and the empirical target function fs, if it exists, as an optimizer of

min
f∈H
Es(f). (1.67)

The existence of such optimizers is guaranteed under mild conditions on H, provided
one also restricts the minimization problems to a ball in H (see Chapter 1 in Cucker and
Zhou [2007]). In practice, then, one looks for fs in place of the unobtainable fH and this
is called empirical risk minimization (ERM) technique.

In the context of ERM, a popular technique is that of regularization whose goal is to
restore the well-posedness (specifically, making the result depend smoothly on the data)
of the ERM technique by effectively restricting the hypothesis space H. One specific way
of doing this is to introduce a penalization term proportional to the complexity of the
candidate (empirical) target function f in our minimization as follows:

Eµ,γ = Eµ + γ ∥f∥2
H , Es,γ = Es + γ ∥f∥2

H , (1.68)

where the regularization parameter γ controls the tradeoff between the two terms. This
will then cause the minimization to seek out simpler functions, which incur less of a
penalty. Regularization, as shown in Figure 1.1, provides one way to strike the appropriate
balance in creating our model. It requires a (possibly large) class of models and a method
for evaluating the complexity of each model in the class. The concept of kernels will
provide us with a flexible, computationally feasible method for implementing this scheme.

1.2.2 Properties of reproducing kernel Hilbert spaces
Definition 1.2.2 (Mercer kernel). Let X be a metric space. We say that K : X ×X → R
is symmetric when K(x, x′) = K(x′, x) for all x, x′ ∈ X and that it is positive semi-definite
when for all finite sets x = {x1, . . . , xN} the N × N matrix K[x], whose (i, j) entry is
K[x]ij := K(xi, xj), is positive semi-definite. We say that K is a Mercer kernel if it is
continuous, symmetric, and positive semi-definite. The matrix K[x] above is called the
Gramian (or Gram matrix) of K at x.

For the remainder of this section we fix a compact metric space X and a Mercer kernel
K : X × X → R. Note that the positive semi-definiteness implies that K(x, x) ≥ 0 for
each x ∈ X . We define

CK := sup
x∈X

√
K(x, x) < +∞. (1.69)
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Figure 1.1: The role of regularization. Left: A sample from µ of size N = 10. Center:
Smooth function that will likely be a good model for the process described by µ. Right:
Function that is likely to describe the process described by µ poorly, yet minimizing the
empirical error.

Then, CK = supx,x′∈X
√
K(x, x′) as the positive semi-definiteness of the matrix K[{x, x′}]

implies
K(x, x′)2 ≤ K(x, x)K(x′, x′). (1.70)

For x ∈ X , we denote by Kx the function K(·, x). The first main result we are going to
state is given in the following theorem.

Theorem 1.2.1. There exists a unique Hilbert space (HK, ⟨·, ·⟩HK
) of functions on X with

values in R satisfying the following conditions:

1. Kx ∈ X for all x ∈ X ;

2. the span of the set {Kx | x ∈ X} is dense in HK;

3. f(x) = ⟨f,Kx⟩HK
for all f ∈ HK and x ∈ X .

Moreover, HK consists of continuous functions and the inclusion IK : HK → C(X ;R) is
continuous with ∥IK∥ ≤ CK.

Proof. First, let H0 be the span of the set {Kx | x ∈ X}. Given f =
∑N
i=1K(x, xi)αi, g =∑M

i=1K(x, x′
j)βj ∈ H0 define the inner product

⟨f, g⟩H0
=

N∑
i=1

M∑
i=1

αiK(xi, x′
j)βj . (1.71)

Note that by the properties of the Gramian matrix this is trivially symmetric, bilin-
ear, associative and positive semi-definite. To prove positive definiteness observe that if
⟨f, f⟩H0

= 0 for some f =
∑N
i=1K(x, xi)αi ∈ H0, then the positive semi-definiteness of

the Gramian associated to the set {x1, . . . , xN} ∪ x′ implies
N∑

i,j=1
αiK(xi, xj)αj + 2ε

N∑
i=1
K(x′, xi)αi + ε2K(x′, x′) ≥ 0 (1.72)
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for all ε ∈ R. The first term vanishes as it coincides with ⟨f, f⟩H0
, hence taking ε

arbitrarily small implies that
∑N
i=1K(x′, xi)αi = 0, i.e. f = 0 by arbitrariness of x′.

Let now HK be the completion of H0 with the associated norm. It is easy to check that
HK satisfies the three conditions in the statement. We now need to prove uniqueness. So,
assume H is another Hilbert space of functions on X satisfying the conditions noted. We
want to show that

H = HK and ⟨·, ·⟩H = ⟨·, ·⟩HK
. (1.73)

We first observe that H0 ⊂ H. Moreover, for any x, x′ ∈ X it holds ⟨Kx,Kx′⟩H =
K(x, x′) = ⟨Kx,Kx′⟩HK

. Then, as both H and HK are completions of H0, the claim
follows from the uniqueness of the completion.

Finally, to see the remaining assertion, consider f ∈ HK and x ∈ X . Then

|f(x)| =
∣∣∣⟨f,Kx⟩HK

∣∣∣ ≤ ∥f∥HK
∥Kx∥HK

= ∥f∥HK

√
K(x, x). (1.74)

This implies that ∥f∥∞ ≤ CK ∥f∥HK
and, thus, ∥IK∥ ≤ CK. Therefore, convergence in

∥·∥HK
implies convergence in ∥·∥∞ and this shows that f is continuous since f is the limit

of elements in H0 that are continuous.

In what follows, to reduce the amount of notation, we will write ⟨·, ·⟩K instead of ⟨·, ·⟩HK
and ∥·∥K instead of ∥·∥HK

.

Definition 1.2.3. The Hilbert space HK in Theorem 1.2.1 is said to be a Reproducing
Kernel Hilbert Space (RKHS). Property 3 in Theorem 1.2.1 is referred to as the repro-
ducing property.

Consider now a Borel measure µ on X , the Hilbert space of µ-square-integrable func-
tions L2

µ(X ) and the linear operator Tµ : L2
µ(X ) → C(X ) associated to K defined by the

following integral transform

Tµf :=
∫

X
K(x, x′)f(x′)dµ(x′). (1.75)

Note that this is well-defined as K is continuous and X is compact. Composition of Tµ
with the inclusion C(X ) ↪−→ L2

µ(X ) yields a linear operator from L2
µ(X ) to L2

µ(X ) which
we again denote by Tµ abusing notation.

Proposition 1.2.2. If K is a Mercer kernel, then Tµ : L2
µ(X ) → L2

µ(X ) is well-defined,
self-adjoint, positive and compact. In addition, ∥Tµ∥ ≤

√
µ(X )C2

K.

The above assertions imply that the Spectral Theorem applies and that the following
theorem holds.

Theorem 1.2.3. Let K : X × X → R be a Mercer kernel. Then, there exists an or-
thonormal basis {φi}i of L2

µ(X ) consisting of eigenfunctions of Tµ. If λi is the eigenvalue
corresponding to φi, then either the set {λi}i is finite or λi → 0 as i→ +∞. In addition,
if λi /= 0, then φi can be chosen to be continuous on X .
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If f ∈ L2
µ(X ) and {φi}i is an orthonormal basis of L2

µ(X ) then f can be uniquely
written as f =

∑
i≥1 aiφi for some {ai}i ∈ ℓ2. When the basis has infinitely many

functions then the partial sums
∑N
i=1 aiφi converge to f in L2

µ(X ). If the convergence also
holds in C(X ) then we say that the convergence is uniform. Moreover, a Borel measure
µ on X is said to be non degenerate if for all nonempty open subsets U ⊆ X it holds
µ(U) > 0. We are now ready to state the second central theorem in RKHS theory.

Theorem 1.2.4 (Mercer’s theorem). Let µ be a non-degenerate Borel measure on X and
K : X × X → R a Mercer kernel. Let λi be the i-th positive eigenvalue of Tµ, and φi the
corresponding continuous L2

µ-orthonormal eigenfunction. Then, for all x, x′ ∈ X it holds

K(x, x′) =
∑
i≥1

λiφi(x)φi(x′), (1.76)

where the convergence is absolute (for each (x, x′) ∈ X × X ) and uniform (on X × X ).

We now aim at further characterizing the relationship between the RKHS HK, the
integral operator Tµ and its spectrum.

Theorem 1.2.5. Let µ be a non-degenerate Borel measure on X and K : X × X → R
a Mercer kernel. Let λi be the i-th positive eigenvalue of Tµ, and φk the corresponding
continuous orthonormal eigenfunction. Then

{√
λiφi | λi > 0

}
is an orthonormal basis of

HK.

Since the RKHS HK is independent of the measure µ, it follows that when µ is nonde-
generate and dim(HK) = +∞, Tµ has infinitely many positive eigenvalues λi , i ≥ 1, and

HK =
{
f ∈ L2

µ(X )
∣∣∣∣∣ f =

∞∑
i=1

ai
√
λiφi, {ai}∞

i=1 ∈ ℓ
2
}
. (1.77)

When instead dim(HK) = m < ∞, Tµ has only m positive repeated eigenvalues and, in
this case,

HK =
{
f ∈ L2

µ(X )
∣∣∣∣∣ f =

m∑
i=1

ai
√
λiφi, (a1, . . . , am) ∈ Rm

}
. (1.78)

Corollary 1.2.5.1. Let µ be a non-degenerate Borel measure on X and K : X ×X → R
a positive-definite Mercer kernel. Then, the map

T 1/2
µ : L2

µ(X )→ HK∑
i≥1

aiφi →
∑
i≥1

ai
√
λiφi.

(1.79)

defines an isomorphism of Hilbert spaces. In particular, HK = T
1/2
µ (L2

µ(X )), namely every
function f ∈ HK can be written as f = T

1/2
µ g for some g ∈ L2

µ(X ) with ∥f∥K = ∥g∥L2
µ(X ).

In addition T 1/2
µ , considered as an operator on L2

µ(X ), is the square root of Tµ in the sense
that Tµ = T

1/2
µ ◦ T 1/2

µ , hence the notation.
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We remark that Corollary 1.2.5.1 has the important implication that we can charac-
terize the inner product3 in HK through the one on L2

µ(X ) for any non-degenerate Borel
measure µ on X as follows:

⟨f, g⟩K =
〈
T−1/2
µ f, T−1/2

µ g
〉
L2

µ(X )
=
〈
f, T−1

µ g
〉
L2

µ(X )
. (1.81)

Finally, we state and prove a classical theorem which motivates the wide use of repro-
ducing kernel Hilbert spaces in learning theory.

Theorem 1.2.6. (Representer Theorem) Let HK be an RKHS and
s = ((x(1), y(1)), . . . , (x(N), y(N))) be a sample in S = X × Y. The optimizer fs,γ of

min
f∈HK

Es,γ(f) = 1
N

N∑
i=1

(f(x(i))− y(i))2 + γ ∥f∥2
H , (1.82)

enjoys the following representation:

fs,γ =
N∑
i=1
Kx(i)β(i), (1.83)

for some N-tuple (β(1), . . . , β(N)) ∈ RN . Hence, the (possibly, depending on dim(HK))
infinite dimensional minimization problem (1.82) is equivalent to a finite dimensional
optimization problem in RN .

Proof. Define the linear subspace of HK

H0 := span {Kx(i) | i = 1, . . . , N} , (1.84)

namely the space spanned by the representers of the training set. As H0 is finite dimen-
sional and, hence, closed we have HK = H0 ⊕ H⊥

0 . Let now f = f0 + f⊥
0 with f0 ∈ H0

and f⊥
0 ∈ H⊥

0 , then ∥f∥2
K = ∥f0∥2

K +
∥∥f⊥

0
∥∥2

K and by the reproducing property

f⊥
0 (x(i)) =

〈
f⊥

0 ,Kx(i)

〉
K

= 0 (1.85)

for all i = 1, . . . , N . This entails that

Es,γ(f) ≥ Es,γ(f0), (1.86)

which yields the claim.

3This characterization also holds true with milder assumptions on X . Indeed, the compactness
of X can be relaxed for X ⊆ Rd, assuming the probability measure µ admits a smooth and strictly
positive density with respect to the Lebesgue measure and that K is continuously differentiable off the
diagonal, bounded and integrally strictly positive definite, that is∫

X

∫
X

K(x, x′)dν(x)dν(x′) > 0 (1.80)

for all signed nonzero Borel measures ν on X .

29



Background

Let us conclude this section by introducing Kernel Ridge Regression (KRR).

Corollary 1.2.6.1. (Kernel Ridge Regression) With the notation of Theorem 1.2.6, as-
sume the kernel K is positive definite. Then, the unique minimizer of the optimization
problem in (1.82), which is commonly referred to as Kernel Ridge Regression, is

fs,γ =
N∑
i=1
Kx(i)β(i), β = K[x]−1y. (1.87)

Proof. Note that, owing to Theorem 1.2.6 any minimizer admits the representation

f =
N∑
i=1
Kx(i)β(i). (1.88)

Then,
Es,γ(f) = ∥K[x]β − y∥2

2 + β⊤K[x]β. (1.89)

The above is a continuous and differentiable function in β, hence imposing first order
optimality conditions and exploiting the fact that K[x] is invertible we recover the thesis.

1.2.3 Some Mercer kernels
Now we have a more concrete concept of what an RKHS is and how we might create such
spaces for ourselves. Indeed, if we succeed in writing down a Mercer kernel, we know that
there exists an associated RKHS featuring all the properties just listed.

Linear kernel

The first kernel we are going to look at is one of the simplest ones, i.e. the linear kernel
with X ⊂ Rd

K(x, x′) := x⊤x. (1.90)

This is obviously symmetric and continuous. To see the positive semi-definiteness note
that for any set x = {x1, . . . , xN} ⊂ X and α ∈ RN we have

α⊤K[x]α =
N∑

i,j=1
αix

⊤
i xjαj =

∥∥∥∥∥
N∑
i=1

αixi

∥∥∥∥∥
2

≥ 0. (1.91)

In this case, the RKHS is that of linear functions fw(x) = w⊤x, and the RKHS norm
gives

∥fw∥2
K = ⟨fw, fw⟩K = ⟨Kw,Kw⟩K = K(w,w) = ∥w∥2 , (1.92)

i.e. the magnitude of the slope of the plane. This example intuitively shows why in
learning theory RKHS norms are taken as a measure of function complexity.
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Christoffel-Darboux kernel

Let µ be a Borel probability measure on Rd with compact support, say, X and denote by
Pm the set of polynomials of degree at most d (of dimension s(m) :=

(d+m
m

)
). Then

(p, q)→ ⟨p, q⟩µ =
∫

X
p(x)q(x)dµ(x) (1.93)

defines a valid scalar product on Pm, hence (Pm, ⟨·, ·⟩µ) is a finite dimensional Hilbert
space of functions from X to R. The interesting question concerns what kernel generates
such Hilbert space. Take any basis {Pj}s(m)

j=1 of Pm and define the map wm : X → Rs(m)

such that
wm(x) =

(
P1(x), . . . , Ps(m)(x)

)
. (1.94)

Call the matrix of inner products associated to such basis Gµ,m, i.e.

Gµ,m =
∫

X
wm(x)wm(x)⊤dµ(x). (1.95)

Then, it turn out that the kernel generating (Pm, ⟨·, ·⟩µ), the so called Kristoffel-Darboux
kernel, admits the following representation:

Kmµ (x, x′) = wm(x)⊤G−1
µ,mwm(x′) =

s(m)∑
i,j=1

Pi(x)(G−1
µ,m)ijPj(x′). (1.96)

In the case where {Pj}s(m)
j=1 is an orthonormal basis the above expression takes the simpli-

fied form

Kmµ (x, x′) = wm(x)⊤wm(x′) =
s(m)∑
i=1

Pi(x)Pi(x′). (1.97)

Symmetry and continuity here are again trivial, moreover for any set x = {x1, . . . , xN} ⊂
X and α ∈ RN we have

α⊤K[x]α =
N∑

i,j=1

s(m)∑
r,l=1

αiPr(xi)(G−1
µ,m)rlPl(xj)αj

=
∥∥∥∥∥
N∑
i=1

αiG
−1/2
µ,m wm(xi)

∥∥∥∥∥
2

≥ 0.

(1.98)

Translation invariant kernels

Another large class of kernels is represented by the so-called translation invariant kernels.
Let X = Rd and consider the family of kernels given by

K(x, x′) := k(x− x′) (1.99)

for some even function k on Rd, i.e. k(x) = k(−x) for all x ∈ Rd.
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Proposition 1.2.7. Let k ∈ L2(Rd) be continuous and even. Assume the Fourier trans-
form k̂ of k is nonnegative, that is k̂(w) ≥ 0 for all w ∈ Rd. Then, K(x, x′) is a Mercer
kernel on Rd and, hence, a Mercer kernel on any subset of Rd.

Proof. Symmetry is trivial. We need to show positive semi-definiteness. Consider any
x1, . . . , xN ∈ Rd and α1, . . . , αN ∈ Rd and the inverse Fourier transform

k(x) = 1
(2π)d

∫
Rd
k̂(w)eix⊤wdw (1.100)

to get

N∑
j,l=1

αjK(xj , xl)αl =
N∑

j,l=1
αjαl

1
(2π)d

∫
Rd
k̂(w)ei(xj)⊤we−i(xl)⊤wdw

= 1
(2π)d

∫
Rd
k̂(w)

 N∑
j=1

αje
i(xj)⊤w

 N∑
j=1

αjei(xj)⊤w

dw
= 1

(2π)d
∫
Rd
k̂(w)

∣∣∣∣∣∣
N∑
j=1

αje
i(xj)⊤w

∣∣∣∣∣∣
2

dw ≥ 0.

(1.101)

Hence, K is a Mercer kernel in any subset of Rd.

A prominent example of translation invariant kernel is the Gaussian kernel

K(x, x′) = e−r∥x−x′∥2
2 , r > 0. (1.102)

Note that for all r > 0 the Fourier transform of e−r∥x∥2
2 is given by (

√
π/r)de−∥w∥2

2/4r > 0
for all w ∈ Rd, hence this is indeed a Mercer kernel. Moreover, note that CK = 1 in this
case. Contrary to the polynomial case, the RKHS generated by the Gaussian kernel is
infinite dimensional. This RKHS also enjoys interesting approximating properties, such
as density in C(X ) if X is compact (Steinwart [2002]). Rather curiously, however, it can
be shown that it does not contain any polynomial on X , including the constant function.

1.2.4 Vector valued Reproducing Kernel Hilbert Spaces
In the previous sections we have introduced the classical R-valued case, however in the
following chapters we are mainly going to be interested in spaces of Rd-valued functions for
some arbitrary d ≥ 1. Hence, we now introduce the needed generalization to our relevant
case. The construction mirrors the one in the scalar case, with the main difference that
the kernel is a continuous and symmetric matrix-valued function K : X ×X → Rd×d such
that for all finite sets x = {x1, . . . , xN} ⊂ Rd the dN × dN matrix

K[x] =

K(x1, x1) . . . K(x1, xN )
... . . . ...

K(xN , x1) . . . K(xN , xN )

 (1.103)
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is positive semi-definite. Again, there exists a unique RKHS HK (up to isomorphisms)
associated with K defined as the closure of the set of linear combinations

f(x) =
N∑
i=1
K(x, xi)βi, β ∈ Rd (1.104)

where we note that in the above equation each term K(x, xi) is a matrix acting on a vector
βi. Moreover, K enjoys the usual reproducing property which, in this setting, reads

⟨f,K(·, x)β⟩K = f⊤(x)β (1.105)

for all β ∈ Rd and f ∈ HK. Again, the choice of the kernel corresponds to the choice of
the representation (parameterization) for the function of interest. If we then assume the
same working hypothesis on X as in the scalar case, similar properties hold. The reader
is referred to, e.g., Álvarez et al. [2012] and Carmeli et al. [2006] for further details.

Example 1.2.1 (Separable Kernels and Sum of Separable Kernels). A simple way one
can construct matrix-valued kernels is by taking a scalar-valued Mercer kernel k, a positive
semi-definite matrix A and defining

K(x, x′) := Ak(x, x′). (1.106)

We refer to this type of kernel functions as separable kernels as the contribution to the
kernel of input and output are decoupled (in particular, A encodes output interactions).
Notice that K inherits symmetry and continuity from k and for any x = {x1, . . . , xN} ⊂ X
the Gram matrix K[x] can be realized as the Kronecker product of A and the Gramian
k[x] of k at x, namely

K[x] = A⊗ k[x], (1.107)

the symbol ⊗ being the Kronecker product. As the factors A and k[x] are positive semi-
definite then also K[x] is. A straightforward extension of this construction (which yields
the so-called sum of separable kernels) considers Q scalar-valued Mercer kernels k1, . . . , kQ
and positive semi-definite matrices B1, . . . , BQ and defines

K(x, x′) :=
Q∑
q=1

Bqkq(x, x′). (1.108)

It is easy to check that in this case we have for any x = {x1, . . . , xN} ⊂ X

K[x] =
Q∑
q=1

Bq ⊗ kq[x], (1.109)

so that arguing analogously as for separable kernels we prove that this is indeed a valid
kernel.
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1.3 Machine Learning and Deep Learning

1.3.1 Introduction
In recent years the need for numerical tools to efficiently deal with and interpret all sorts
of data types has considerably risen. The demand is very heterogeneous as it arises across
different scientific communities, such as biology and neuroscience, as well as industries,
such as financial institutions and internet service providers. This is in large part the
reason why the field of Machine Learning (ML) (James et al. [2013]) has gained immense
popularity in the last decades enjoying stable growth showing no signs of slowing down.
The problem addressed by ML is indeed the one of processing data, be it either abundantly
available or very scarce, relevant for applications. ML can serve as a tool to provide
professionals with further understanding of relevant phenomena, forecast the most likely
scenarios based on past knowledge, prescribe favourable actions to be taken in highly
complex systems, automate and improve processes and much, much more. In particular,
the sub-field of Deep Learning (DL) (Goodfellow et al. [2016]) has proven to be a flexible
framework suited to perform multiple kinds of tasks related to the learning paradigm
(e.g. regression, classification, etc...), all without the need for specialized algorithms and
hand-crafted features.

The most commonly employed algorithms in Deep Learning are deep versions of Artifi-
cial Neural Networks (ANNs). The latter are composite parametric computational models
where the fundamental building blocks, the so-called layers, are implemented sequentially
to produce an output. When the number of layers is large these architectures are referred
to as Deep Neural Networks (DNNs). To make these concepts more concrete we give a
brief mathematical description of ANNs. Let as usual X and Y denote the input and
output spaces. Consider, further, intermediate spaces X1, . . . ,XL (heuristically, think of
these as interpolating between X and Y) and associated parameter spaces Θ1, . . . ,ΘL.
Then, given a set of parameters θ = (θ1, . . . , θL) ⊂

∏
i Θi, an ANN can be described as a

(nonlinear) function v(·,θ) : X → Y realized as the composition of (nonlinear) functions
vi(·, θi) : Xi−1 → Xi, i = 1, . . . , L, where we used the notation X0 := X , i.e.

v(·,θ) = vL(·, θL) ◦ . . . ◦ v1(·, θ1). (1.110)

Here each of the vi(·, θi) represents a layer of the ANN and the total number of layers L
is referred to as the depth of the network. When L ≫ 1 such an architecture is referred
to as a DNN. Statistical problems with high-dimensional data are frequently plagued by
the curse of dimensionality, in which the number of samples required to solve the problem
with a given accuracy grows rapidly (often exponentially fast) with the dimensionality of
the input. Arguably the merit that makes DNNs so widely used nowadays is their ability
to represent arbitrarily complex functions and efficiently learn those from data in high
dimension, seemingly beating the curse of dimensionality (although how exactly these
methods break such curse remains a fundamental open question) and effectively solving
statistical learning problems previously thought intractable. On one hand, indeed, owing
to the compositional structure (1.110), one can construct a very rich class of functions
by taking the building blocks vi(·, θi) to be very simple parametric functions. Moreover,
these compositional function spaces have shown both experimentally and theoretically to
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improve the efficiency of the learning procedure. Usually the layers are realized as a further
composition of a linear function and a very simple nonlinear function σ : R → R. More
concretely, let for instance Xi = Rdi , θi = (Wi, bi) ∈ Θi := Rdi×di−1 ×Rdi for i = 0, . . . , L,
then

vi(x, θi) = σ(W⊤
i x+ bi), (1.111)

where the action of σ is understood as point-wise. In standard Deep Learning jargon the
natural number di is said to be the number of neurons of the i-th layer, while the matrices
Wi and vectors bi are usually called weights and biases respectively. This particularly
simple structure, which can be summarized as

“compose simple nonlinear parametric functions to get a complex nonlinear
parametric function”,

often enables the construction of DNNs that exploit the structure and associated geometric
symmetries and invariances which each data type features. These data-specific architec-
tural choices are often referred to inductive biases as they embed a-priori knowledge about
the target function. A prime example of how inductive biases represent drivers of success
for deep neural approaches is image processing, where information locality and grid shape
featured by images are effectively exploited by translationally equivariant operators, i.e.
convolutional layers.

On the other hand the celebrated backpropagation (Rumelhart et al. [1986]) method
is an extremely versatile algorithm which, when coupled with a gradient descent type
algorithm, allows for efficient training (i.e. optimization) of virtually any DNN. Consider
for instance a regression setting4 where a dataset s = ((x(1), y(1)), . . . , (x(N), y(N))) ∈ SN
(recall S = X × Y) is given, and consider the error introduced in Section 1.2.1 (or, as
is commonly called in Machine Learning literature, the loss function) E(z) which, with a
slight abuse of notation, we now denote as a function of the predictions

z := (z(1); . . . ; z(N)) = (v(x(1),θ); . . . ; v(x(N),θ)) (1.112)

of the model given by the ANN (1.110). Backpropagation works by computing the gradient
of the loss function with respect to each weight and bias by the chain rule, computing the
gradient one layer at a time, iterating backward from the last layer to avoid redundant
calculations of intermediate terms in the chain rule. This is briefly sketched in Algorithm
1.3.1 in the simple case where N = 1 for ease of notation, but it trivially extends to the
setting N > 1 with the appropriate vectorizations.

4The backpropagation Algorithm 1.3.1 can be readily implemented with arbitrary loss functions as
long as they are differentiable.
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Algorithm 1.3.1: Gradient descent algorithm with backpropagation
Input: Data (x, y), maximum steps M , step size ε.
Output: Trained parameters θ⋆.

1 Initialize θ0 = (θ0
1, . . . , θ

0
L) ;

2 for k = 1, . . . ,M do
3 Compute

wL = ∂zE(v(x,θk−1)), gL = ∂θL
vL(. . . , θk−1

L )⊤wL; (1.113)

4 Update θkL = θk−1
L − εgL ;

5 for i = L-1,. . . ,1 do
6 Compute

wi = ∂xvi+1(. . . , θk−1
i+1 )⊤wi+1, gi = ∂θivi(. . . , θk−1

i )⊤wi; (1.114)

7 Update θki = θk−1
i − εgi ;

8 end
9 end

1.3.2 Neural ODEs
Despite its widespread use and flexibility, there are several challenges associated to the
practical use of backpropagation which usually manifest when training very deep networks
(hundreds or thousands of layers). The main issue is what is commonly known in DL
literature as exploding or vanishing gradients, namely the well-known phenomenon which
characterizes products of a large number of terms (as is the gradient in Algorithm 1.3.1
for layers l≪ L) making it vanish or explode depending on the norm of each term in the
product. Hence, if one is note careful, training deep networks with backpropagation is an
ill-conditioned and very unstable problem. In order to recover stability of the algorithm
one should build DNNs such that

∥∂θvi(x, θi)∥ ≈ 1. (1.115)

Assume for simplicity Xi = X for all i = 1, . . . , L. The key insight is that (1.115) can be
achieved if vi(x, θi) is represented as a small enough perturbation of the identity mapping
I : X → X , i.e. instead of layers vi(x, θi) use

ṽi(x, θi) = x+ hvi(x, θi), (1.116)

the parameter h > 0 being an arbitrary scaling factor. The above choice, which yields the
well-known neural architecture

v(·,θ) = (I + hvL(·, θL)) ◦ . . . ◦ (I + hv1(·, θ1)) (1.117)

denoted Residual Neural Network (ResNet) (He et al. [2016]), allows for the construction
and efficient optimization of very deep networks. Note that composing, e.g., a projection
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operation with v(·,θ) permits to build a mapping to an arbitrary output space Y . Given
an input x ∈ X its evolution according to (1.117) is governed by the following dynamical
system: {

zl+1 = zl + hvl(zl, θl),
z0 = x.

(1.118)

The works of Chen et al. [2018] and E [2017] independently showed the connection of
(1.118) with continuous-time dynamical systems which is immediately understood if one
sets the scaling factor h = 1/L. With this choice, indeed, the propagation of the states
through the layers can be seen as an explicit Euler discretization scheme on a uniform
partition {[(i−1)h, ih)}Li=1 of the unitary interval [0,1] for the integration of the following
IVP: {

żt = vt(zt, θ(t)), t ∈ (0,1]
z0 = x.

(1.119)

Notice that in order to make sense of (1.119) we should think of the parameters as a
function θ : [0,1]→ Θ.

This connection sparked a lot of research activity focused on both exploiting the flexibil-
ity of the continuous-time model and applying classical ideas from the seasoned literature
on continuous-time dynamical systems for the construction and optimization of ANNs.
Chen et al. [2018] proposed to go beyond the concept of layer which intrinsically imposes
uniformity of the time discretization of trajectories. Instead, they integrate the dynamical
system exploiting off-the-shelf ODE solvers which provide guarantees about the growth
of approximation error, monitor the level of error, and adapt their evaluation strategy on
the fly to achieve the requested level of accuracy. This entails choosing the step size for
each trajectory in response to the stiffness of the underlying ODE. They further took ad-
vantage of this new-found flexibility with respect to time for learning tasks which involve
time series data naturally arising irregularly in time. Finally, they provided an application
to the computation of transport maps, showing that the continuous-time model allows for
the computation of the transported (via the ODE) density with a reduced cost of O(d2)
operations instead of O(d3), d being the dimensionality of the input space X .

Another line of work is centered around employing more stable and accurate discretiza-
tion schemes for the ODE (1.119). Ruthotto and Haber [2019] proposed to integrate
(1.119) with the leapforg method, a second order scheme, to improve convergence of the
discretization to the true continuous-time solution. Furthermore, they explored the possi-
bility of imposing Hamiltonian structure to the right-hand side of the ODE which entails
preservation of hyper-volumes in phase space by the ODE flow and is argued to make the
system more stable. Other attempts to design architectures which correspond to higher
order integration schemes can be found in Larsson et al. [2017].

1.3.3 ANNs as Optimal Control problems
The dynamical systems point of view on Deep Learning has also been leveraged for
the design of optimization algorithms of DNNs. Indeed, it has been pointed out (Li
et al. [2017]) that training Deep Neural Networks, bearing in mind that the latter can
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be seen as discretizations of continuous-time models, shares striking similarities with
the solution of classical Optimal Control problems (see Section 1.1.1). Given a sample
s = ((x(1), y(1)), . . . , (x(N), y(N))) a supervised learning task can be written as

min
θ:[0,1]→Θ

E(z(1)
1 , . . . , z

(N)
1 ) +

∫ 1

0
ℓ(θt)dt

subject to ż
(i)
t = v(z(i)

t , θt), i = 1, . . . , N

z
(i)
0 = x(i)

(1.120)

where E is the empirical loss function and ℓ is some running cost representing a regu-
larization factor. Note that for simplicity we dropped the explicit time dependence of v
meaning that we assume a fixed relation between the parameters and the functional form
of v. Clearly, upon defining the state zt := (z(1)

t ; . . . ; z(N)
t ) ∈ XN and considering the

parameter function θ as control (1.120) immediately falls into the category of fixed-time,
free-endpoint problems introduced in Section 1.1.1.

The review presented in Section 1.1 reveals two fundamental approaches to the solution
of OC problems, namely the Pontryagin Maximum Principle and dynamic programming.
Recall that the latter is based on the solution of the Hamilton-Jacobi-Bellman PDE and
yields control policies in feedback (or closed-loop) form, that is the Optimal Control is
expressed as a function of the state XN ∋ z→ θcl(z). This property is especially desirable
when the forward model is affected by uncertainty, e.g. when the ODE is replaced with
an SDE, as it provides the optimal policy whatever state is visited as a result of the
noisy dynamics. However, as already mentioned, solving a highly nonlinear and high
dimensional PDE poses serious computational hurdles making this strategy unfeasible for
Machine Learning applications where usually at least one among d = dim(X ) and N is
very large. On the other hand, the PMP entails solving the following two-point boundary
value problem

żt = Hp(zt, θt,pt), z0 = x, (1.121)
ṗt = −Hz(zt, θt,pt), p1 = −∂zE(z1), (1.122)
θt ∈ arg max

θ′∈B
H(zt, θ′,pt), (1.123)

the function p : [0,1] → XN being the adjoint state as usual, x := (x(1)
t ; . . . ;x(N)

t ) ∈ XN

and the Hamiltonian

XN ×Θ×XN ∋ (z, θ,p)→ H(z, θ,p) = p⊤v(z, θ)− ℓ(θ). (1.124)

The PMP approach effectively restricts the problem onto a one dimensional manifold
embedded in XN , the trajectory of the forward ODE, and yields an Optimal Control
in open-loop form [0,1] ∋ t → θol

t . This property is what makes the PMP the natural
approach to the optimization of DNNs.

There are many ways of solving OC problems via the PMP. A very simple algorithm
able to solve large scale problems is the Method of Successive Approximation (MSA). This
is summarized in Algorithm 1.3.2.
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Algorithm 1.3.2: MSA
Input: Dataset s, loss function E(s), maximum steps M .
Output: Open-loop solution θol to the PMP.

1 Initialize θ0 ;
2 for k = 0, . . . ,M do
3 Given z0 = x integrate

żt = Hp(zt, θkt ,pt); (1.125)

4 Given p1 = −∂zE(z1) integrate

ṗt = −Hz(zt, θkt ,pt); (1.126)

5 Set
θk+1
t = arg max

θ′∈Θ
H(zt, θ′,pt), (1.127)

for all t ∈ [0,1] ;
6 end

A discrete version of the MSA follows from the outlined procedure by discretizing the
integration procedure of the state and adjoint ODEs, for instance with a symplectic Euler
discretization scheme. Interestingly enough, Li et al. [2017] showed that if one replaces
the Hamiltonian maximization step in Algorithm 1.3.2 with a gradient ascent step

θk+1
t = θkt + εHθ(zt, θkt ,pt), (1.128)

and then discretizes the procedure as described, one recovers exactly backpropagation
with gradient descent in Algorithm 1.3.1.
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Chapter 2

Learning with reproducing
kernel Hilbert spaces and
Neural ODEs

2.1 Kernel Neural ODEs
This section introduces the neural architecture which will accompany us for the remainder
of the thesis. Inspired by the dynamical syestems perspective on Deep Learning, we wish
to combine the expressivity and flexibility of reproducing kernel Hilbert spaces and the
compositional structure of ANNs for the design of powerful surrogate models amenable
to numerical optimization based on data.

Let X ⊆ Rd, Y be the input and output spaces respectively, and H be a given RKHS
of functions from Rd to Rd along with the associated matrix-valued reproducing kernel
K : X × X → Rd×d. Following Owhadi [2020], we focus in the continuous-time model
specified by the following ODE:{

żt = vt(zt), t ∈ [0,1],
z0 = x,

(2.1)

where vt ∈ H for all t ∈ [0,1]. Throughout the thesis we will refer to ANNs of this kind
as Kernel Neural ODEs (KerODEs). The main difference with a traditional Neural ODE
as described in the previous section is that the model in (2.1) is non-parametric as the
right-hand-side vt is taken in a (possibly infinite-dimensional) RKHS. For v : [0,1] → H,
then, (2.1) defines an (invertible, provided the fields vt are regular enough) map ϕv :
X → Rd if one assumes existence and uniqueness of solutions for all initial conditions
(later in the section we give conditions on K so that this is always true). Assume further
Vm ⊂ C1(Rd;Y) is some fixed m dimensional space of functions (e.g. polynomials) from
Rd to Y endowed with a (semi) norm ∥·∥Vm

, so that f ◦ ϕv : X → Y for all f ∈ Vm. We
are now ready to state the general form of the problem we are interested in.
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Problem 1. Consider a target function g ∈ L2
µ(X ;Y) where µ is a given Borel probability

measure supported on X , Y = Rn, and whose observation may be affected by noise
represented by the random vector ε on Y . Our goal is to approximate g solving the
following minimization problem:

min
f∈Vm, v:[0,1]→H

1
2

∫
X ×Y

(f(z1(x))− y)2 dν(x, y) + η

2 ∥f∥
2
Vm

+ γ

2

∫ 1

0
∥vt∥2

H dt

subject to żt(x) = vt(zt(x)),
z0(x) = x.

(2.2)

where ν is the joint probability measure of the random vector (x, g(x) + ε) with x ∼ µ,
γ > 0 and η ≥ 0.

Note how this falls into the setting of Section 1.2.1 where the problem of learning and
regularization is introduced. In (2.2), indeed,

1
2

∫
X ×Y

(f(z1(x))− y)2 dν(x, y) (2.3)

measures the misfit with the data associated to the approximation function f ◦ϕv (notice
that with the notation introduced in Problem 1 we have z1 = ϕv as a function from X to
Rd). The probability measure µ, which will be sometimes referred to as reference measure
in the following, should be considered a fixed element of the learning problem as it reflects
our needs in terms of approximation, namely it places a larger mass in those regions of
the domain X where the approximation is required to be more accurate and vice-versa
for the regions where accuracy is of a smaller concern. On the other hand

γ

2

∫ 1

0
∥vt∥2

H dt (2.4)

is a regularization term weighted by the parameter γ > 0, introduced, in analogy with
kernel ridge regression, to promote low-complexity functions in the RKHS. Similarly, term
η
2 ∥f∥

2
Vm

is weighted by the parameter η ≥ 0 and serves regularization purposes for the
last approximation step. Let us now further introduce the notation µt := zt#µ for the
push-forward of the measure µ through the map zt, that is

µt(B) = µ(z−1
t (B)) (2.5)

for all Borel sets B ⊆ Rd. Assuming ϕv is an invertible transformation and that the
observation noise term ε vanishes almost surely, the rationale behind the proposed model
is revealed by writing∫

X
(f(z1(x))− g(x))2 dµ(x) =

∫
ϕv(X )

(
f(z)− g(ϕ−1

v (z))
)2
dµ1(z). (2.6)

The above, indeed, shows that the role of the mapping ϕv is to apply a change of variables
on the input space so that the function being approximated in the mapped space ϕv(X ),
namely g ◦ϕ−1

v , hopefully is more amenable to approximation in the space Vm, albeit with
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2.1 – Kernel Neural ODEs

respect to the push-forward measure µ1. Clearly, perfect reconstruction can be achieved
whenever g ◦ ϕ−1

v ∈ Vm.
Problem 1 in not tractable from a computational point of view. Consistently with the

typical setting in learning theory, we assume g may only be known through a finite number
of possibly noisy observations. Hence, we consider a point-wise space discretization (e.g.
with random samples) of (2.2), essentially replacing the misfit in (2.3) with its point-wise
approximation.

Problem 2. Given a sample (x(1); . . . ;x(N)) and possibly noisy observations
(y(1); . . . ; y(N)) := (g(x(1)) + ε(1), . . . , g(x(N)) + ε(N)) where ε(i) iid∼ ε, solve

min
f∈Vm, v:[0,1]→H

1
2N

N∑
i=1

(
f(z(i))− y(i)

)2
+ η

2 ∥f∥
2
Vm

+ γ

2

∫ 1

0
∥vt∥2

H dt

subject to ż
(i)
t = vt(z(i)

t ), i = 1, . . . , N,

z
(i)
0 = x(i), i = 1, . . . , N.

(2.7)

Recall that in the context of empirical risk minimization via kernel ridge regression
the role of the penalization term proportional to the RKHS norm of the regressor serves
the key purpose, encompassed by the Representer Theorem 1.2.6, of transforming an
otherwise intractable infinite-dimensional problem into a convex and finite-dimensional
optimization problem. It turns out that a version of the Representer Theorem holds for
Problem 2 as well.

Theorem 2.1.1. Let v be a minimizer of (2.7), then the following representation holds:

vt =
N∑
i=1
K(·, z(i)

t )β(i)
t , (2.8)

where β(i) : [0,1]→ Rd, i = 1, . . . , N .

Proof. This result follows as a consequence of a similar Hilbert space decomposition to
the one employed in the proof of the Representer Theorem 1.2.6. Assume v : [0,1] → H
is a minimizer of (2.7). Then, let z(i) : [0,1] → Rd, i = 1, . . . , N denote the solutions to
the N Cauchy problems in (2.7) and define

Ht :=
{

N∑
i=1
K
z

(i)
t
β(i) | β(i) ∈ Rd, i = 1, . . . , N

}
, t ∈ [0,1], (2.9)

where we recall notation K
z

(i)
t

= K(·, z(i)
t ). The subspace Ht is finite dimensional and,

hence, closed. This entails that the decomposition

vt = wt + w⊥
t , wt ∈ Ht, w⊥

t ∈ H⊥
t (2.10)

holds for all t ∈ [0,1]. Then, as usual ∥vt∥2
H = ∥wt∥2

H +
∥∥w⊥

t

∥∥2
H and, owing to the

reproducing property, (
w⊥
t (z(i)

t )
)⊤

β =
〈
w⊥
t ,Kz(i)

t
β
〉

H
= 0 (2.11)
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for all i = 1, . . . , N and β ∈ Rd, whence

w⊥
t (z(i)

t ) = 0 (2.12)

for all i = 1, . . . , N . As the ODE right-hand-side vt is evaluated only at points z(i)
t ,

i = 1, . . . , N , the term w⊥
t yields no contribution and∫ 1

0
∥vt∥H dt ≥

∫ 1

0
∥wt∥H dt. (2.13)

Therefore, as v is a minimizer, it must hold w⊥
t = 0 for all t ∈ [0,1].

2.1.1 Existence of minimizers
By virtue of Theorem 2.1.1 the minimization in Problem 2, which is infinite dimensional
in both time and space, reduces to a finite-dimensional minimization problem in space
(albeit still infinite-dimensional in time). It is interesting to notice how this property
follows directly by the space discretization of the misfit (2.3). For ease of presentation we
introduce the following vectorized notation:

• x := (x(1); . . . ;x(N)) ∈ RdN ;

• y := (y(1); . . . ; y(N)) ∈ RdN ;

• zt := (z(1); . . . ; z(N)) ∈ RdN and z : t→ zt;

• βt := (β(1); . . . ; β(N)) ∈ RdN and β : t→ zt;

• K[·] : RdN → RdN × RdN defined as in Section 1.2.4.

Until now we have not been specific as to the function space it is best to ambient the
learning problem in (i.e. concerning the regularity with respect to time of v : [0,1]→ H).
Therefore, let us take a further step in the direction of having a well defined problem.
Clearly, the first thing that is needed is for the ODE to admit a unique solution on [0,1]
for all initial conditions in X . For this purpose, let us introduce the some assumptions on
the RKHS H following Owhadi [2020].

Assumption 1. Assume K is a uniformly bounded Mercer kernel with first and second
order partial derivatives being continuous and uniformly bounded. Assume further that
there exists δ > 0 such that β⊤K[z]β ≥ δ ∥β∥2

2 for all β, z ∈ RdN .

Assumption 1 has a number of useful consequences which will be thoroughly exploited
in the following. For z ∈ RdN denote by ∥·∥K[z] the norm on RdN induced by the matrix
K[z]. Then, we have

δ ∥β∥2
2 ≤ ∥β∥

2
K[z] ≤ ∆ ∥β∥2

2 (2.14)

for constants δ,∆ > 0 independent of z, that is ∥·∥2 and ∥·∥K[z] are equivalent norms
uniformly in z. Note that this also entails ∥K[z]∥ ≤ ∆, ∥·∥ being the spectral norm.
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Moreover, for any continuous function z ∈ C([0,1];RdN ) we have that the bilinear map
⟨·, ·⟩K[z] defined by

⟨β,α⟩K[z] :=
∫ 1

0
β⊤
t K[zt]αtdt (2.15)

for α,β ∈ L2([0,1];RdN ) defines an equivalent inner product on L2([0,1];RdN ). Finally,
owing to the boundedness of first order partial derivatives, we have Lipschitz continuity
of K[·], namely for all z, z′ ∈ RdN it holds

∥K[z]−K[z′]∥ ≤ LK ∥z− z′∥2 (2.16)

for some constant LK > 0.
The properties just listed, combined with mild regularity assumptions on β : [0,1] →

RdN are enough to recover existence and uniqueness of solutions of the ODE driving
the particles provided we generalize the notion of solution to an ODE introduced at the
beginning of Section 1.1.1. For this purpose, consider the Cauchy problem{

żt = K[zt]βt, t ∈ [0,1] a.e.,
z0 = x.

(2.17)

and let a solution be any function z : [0,1]→ RdN such that

zt = z0 +
∫ 1

0
K[zt]βtdt. (2.18)

Then, the following result shows that it is sufficient to take

β ∈ B := L2([0,1];RdN ), (2.19)

where the notation B explicitly recalls the one introduced in Section 1.1.1 for the set of
admissible controls. Note further that for simplicity, from now on, we will work under the
assumption that X = Rd.

Lemma 2.1.2. Assume β ∈ B, and consider the Cauchy Problem{
żt = K[zt]βt, t ∈ [0,1] a.e.,
z0 = x.

(2.20)

Then, the above admits a unique generalized solution for all x ∈ X .

Proof. First, the the map
(z,β)→ K[z]β (2.21)

is Lipschitz continuous in both z and β. This entails that z → K[z]βt is continuous for
a.e. t ∈ [0,1], t → K[z]βt is measurable for all z ∈ RdN , and, owing to the boundedness
of the kernel, we have that

∥K[z]βt∥2 ≤ ∆ ∥βt∥2 , (2.22)
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with t→ ∥βt∥2 being summable. Finally, Lipschitz continuity of the kernel implies
∥K[z]βt −K[z′]βt∥2 ≤ LK ∥z− z′∥2 ∥βt∥2 (2.23)

for all z, z′ ∈ RdN . This is sufficient for a global version of Carathéodory’s classical
existence and uniqueness theorem (Theorem 1.45 of Chapter 1 in Roubicek [2005]) to
hold.

Remark. Denote ϕβ the map resulting from the integration of (2.20) for some fixed β ∈ B.
Dupuis et al. [1998] show that, under mild regularity assumptions onH (and, in particular,
under Assumption 1), ϕβ ∈ diff(Rd), where diff(Rd) denotes the set of diffeomorphisms
from Rd to Rd. Furthermore, let us remark that for both this property and Lemma 2.1.2
to hold, the assumption ∥β∥2

K[z] ≥ δ ∥β∥2
2 is not needed.

Remark. Let us now address the fact that the assumption that there exists δ > 0 such
that ∥β∥2

K[z] ≥ δ ∥β∥2
2 may appear too strong. This, however, proves to be crucial for

the existence of minimizers result to establish. Thanks to Lemma 2.1.2 we can give a
heuristic on how one may consider kernels K with this property. The idea is to consider
the following modified matrix

K̃[z] := K[z] + δI. (2.24)
First, we trivially have ∥β∥2

K̃[z] ≥ δ ∥β∥2
2 by construction. Then, it is easy to check that

the arguments provided in the proof of Lemma 2.1.2 still hold if we replace K with K̃.
By the uniqueness result we have that the trajectories of two particles z(i)

t and z
(j)
t never

coincide for a non vanishing Lebesgue measure set in [0,1], unless the initial conditions
coincide, which we assume to never be the case. But this means that we can consider the
modified kernel

K̂(x, x′) := K(x, x′) + δ D(x, x′), (2.25)
where D(x, x′) denotes the d-dimentional Dirac delta function centered around x ∈ Rd.
Then, denoting K̂ the usual kernel matrix associated to K̂, we have that for all sets of
distinct particles z = (z(1); . . . ; z(N)), that is z(i) /= z(j) if i /= j, it holds

K̂[z] = K̃[z]. (2.26)
In particular this happens along the solution zt to the modified ODE. This entails that
K is a kernel with the desired property as it behaves as a “regularized” version of the
original kernel along the ODE solutions.

With the aim of further reducing Problem 2, we notice that the minimization over the
finite-dimensional space Vm can be eliminated. In order to make things more concrete,
choose Vm to be an m-dimensional space of polynomials and assume that µ is absolutely
continuous with respect to the Lebesgue measure and is such that Vm ⊂ L2

µ(Rd;Y). Then,
let us consider ∥·∥Vm

= ∥·∥L2
µ(Rd;Y), an L2

µ-orthonormal basis {f1, . . . , fm} of Vm, and the
associated Vandermonde matrix V[z] ∈ RN×m, namely V[z]ij = fj(z(i)), i = 1, . . . , N ,
j = 1, . . . ,m. Assume further the regularization parameter η > 0 and ∥f∥Vm

= ∥c∥2 for
f =

∑m
i=1 cifi. Then, we have that

c⋆η[z] := arg min
c∈Rm

N∑
i=1


 m∑
j=1

cjfj(z(i))− y(i)

2

+ ηc2
i

 (2.27)
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is the solution of the well-known normal equations and, therefore, admits the representa-
tion

c⋆η[z] =
(
V[z]⊤V[z] + ηI

)−1
V[z]⊤y, (2.28)

which is continuous in z. Then we can define

E(z,y) := min
c∈Rm

N∑
i=1


 m∑
j=1

cjfj(z(i))− y(i)

2

+ ηc2
i

 =
∥∥∥V[z]c⋆η[z]− y

∥∥∥2

2
+ η ∥c⋆∥2

2

(2.29)
which, owing to the continuity of c⋆η[z], is continuous in z. We can now recast Problem 2
in an equivalent yet simplified form.

Problem 3. Given a sample (x(1); . . . ;x(N)) and possibly noisy observations
(y(1); . . . ; y(N)) := (g(x(1)) + ε(1), . . . , g(x(N)) + ε(N)) where ε(i) iid∼ ε, solve

min
β∈B

1
2N E(z1,y) + γ

2

∫ 1

0
β⊤
t K[zt]βtdt

subject to żt = K[zt]βt,
z0 = x.

(2.30)

Thanks to Lemma 2.1.2, for Problem 3 to be well defined under Assumption 1 we only
need to show the existence of minimizers, which is the goal of the next two statements.

Lemma 2.1.3. Let (βi)i≥0 ⊂ B be an L2-weakly convergent sequence, namely βi ⇀ β

for some β ∈ B, and denote zβi : [0,1] → RdN the solution of (2.20) for the control βi.
Then,

∥∥∥zβi − zβ
∥∥∥

∞
→ 0 as i→∞.

Proof. In this proof we will make use of the constant ∆ as defined in the remark following
Assumption 1. As (βi)i≥0 is weakly convergent it is bounded in B by some constant
C > 0. Moreover, for all i ≥ 0 it holds∥∥∥żβi

t

∥∥∥
2

=
∥∥∥K[zβi

t ]βi
t

∥∥∥
2
≤ ∆

∥∥∥βi
t

∥∥∥
2

(2.31)

which, by boundedness of (βi)i≥0, implies that there exists a compact subset K ⊂ RdN

depending on x such that zβi

t ∈ K for all i ≥ 0 and t ∈ [0,1]. The bound in (2.31) yields∥∥∥żβi
∥∥∥
L2
≤ ∆C, (2.32)

and we deduce that (zβi)i≥0 ⊂ W 1,2([0,1];RdN ) is bounded. This entails that it is pre-
compact1 and, hence, there exists a W 1,2-weakly converging subsequence (zβi)i≥0, the
weak limit being denoted by z∞. Owing to the compact inclusion W 1,2([0,1];RdN ) ↪−→

1A pre-compact subset, or relatively compact subset, is a subset whose closure is compact.
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C([0,1];RdN ) it follows that zβi → z∞ as i → ∞ uniformly. In particular, we have
z∞

0 = x and for α ∈ B∣∣∣∣∫ 1

0
α⊤
t

(
K[zβi

t ]βi
t −K[z∞

t ]βt
)
dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0
α⊤
t

(
K[zβi

t ]βi
t −K[z∞

t ]βi
t

)
dt

∣∣∣∣+ ∣∣∣∣∫ 1

0
α⊤
t

(
K[z∞

t ]βi
t −K[z∞

t ]βt
)
dt

∣∣∣∣
≤CLK ∥α∥L2

∥∥∥zβi − z∞
∥∥∥

∞
+
∫ 1

0
(K[z∞

t ]αt)⊤
(
βi
t − βt

)
dt −−−→

i→∞
0

(2.33)

where in the last line we used Lipschitz continuity of K[·], boundedness of K[·] (which
entails the map t→ K[z∞

t ]αt is in B) and the fact that βi ⇀ β. It then follows that{
ż∞
t = K[z∞

t ]βt, t ∈ [0,1], a.e.
z∞

0 = x,
(2.34)

which, in turn, implies z∞ = zβ. Finally, as this holds true for all weak limiting points
of subsequences of (zβi)i≥0, we obtain that the whole sequence is weakly convergent.
Repeating the arguments above we then recover the thesis.
Theorem 2.1.4. Problem 3 admits a solution.
Proof. The result follows from the classical Direct Method of Calculus of Variations. De-
fine the functional J : B → R as

J (β) := 1
2N E(z1,y) + γ

2

∫ 1

0
β⊤
t K[zt]βtdt (2.35)

which trivially satisfies J (β) ≥ 0 and the relation

J (β) ≥ δγ

2

∫ 1

0
∥βt∥2

2 dt (2.36)

owing to Assumption 1. This, in turn, implies that letting ∥β∥L2 →∞ we have J (β)→
∞, while assuming J(β) ≤ c for some c > 0 yields ∥β∥L2 ≤ k for some k > 0. The former
implies that the search for a minimum can be restricted to a sufficiently large bounded
subset K ⊂ B, while the latter means that the functional is coercive on B. Now let
(βi)i≥0 ⊂ B be an L2-weakly convergent sequence to β ∈ B and consider the following
decomposition∫ 1

0

(
βi
t

)⊤
K[zβi

t ]βi
tdt

=
∫ 1

0

(
βi
t

)⊤
K[zβi

t ]βi
tdt−

∫ 1

0

(
βi
t

)⊤
K[zβ

t ]βi
tdt+

∫ 1

0

(
βi
t

)⊤
K[zβ

t ]βi
tdt.

(2.37)

On one hand we have ∣∣∣∣∫ 1

0

(
βi
t

)⊤
K[zβi

t ]βi
tdt−

∫ 1

0

(
βi
t

)⊤
K[zβ

t ]βi
tdt

∣∣∣∣
≤
∫ 1

0

∥∥∥∥(βi
t

)⊤
(K[zβi

t ]−K[zβ
t ])βi

t

∥∥∥∥
2
dt

≤LK

∥∥∥βi
∥∥∥2

L2

∥∥∥zβi − zβ
∥∥∥

∞
−−−→
i→∞

0

(2.38)
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where we used the fact that zβi → zβ uniformly as i→∞ by virtue of Lemma 2.1.3 and
(βi)i≥0 is bounded. On the other hand, exploiting the fact that the map

(ρ,α)→
∫ 1

0
ρ⊤
t K[zβ

t ]αtdt (2.39)

defines an equivalent inner product on B owing to Assumption 1, we have that the map

ρ→
∫ 1

0
(ρt)⊤ K[zβ

t ]ρtdt (2.40)

is weakly lower semi-continuous. Finally, by continuity of the map z1 → E(z1,y), we
conclude that J is weakly lower semi-continuous and the claim follows.

Remark. As it is remarked in Owhadi [2020], hoping for uniqueness of solutions to prob-
lems of the same kind of Problem 3 is in vain as this is violated by the most simple
counterexamples.

2.1.2 Characterization of minimizers
We are now ready to leverage the formulation of Problem 3 which, by design, falls exactly
into the framework of control problems. This, as we have already seen and discussed in
previous sections, allows us to characterize the solutions to the learning problem and,
ultimately, will suggest numerical strategies for their explicit computation. Notice finally
that, by virtue of the Optimal Control view, in the following we are sometimes going to
adopt the relevant jargon introduced in Section 1.1.1 calling, for instance, β ∈ B a control
and the associated ODE solution zβ the state trajectory.

Theorem 2.1.5. Let β ∈ B be an Optimal Control for Problem 3 and z ∈ C([0, T ];RdN )
be the corresponding optimal state trajectory. Then, there exists a function p ∈ C([0, T ];RdN ),
the adjoint state, satisfying the following optimality system:

żt = 1
γ

K[zt]pt, z0 = x,

ṗt = − 1
2γ ∂z

(
p⊤
t K[zt]pt

)
, p1 = − 1

2N ∂zE(z1,y),

βt = 1
γ

pt.

(2.41)

where ∂z
(
p⊤
t K[zt]pt

)
and ∂zE(z1,y) are notation for

∂z
(
p⊤
t K[z]pt

)∣∣∣
z=zt

, ∂zE(z,y)|z=z1
(2.42)

respectively.

Proof. The proof follows from the Pontryagin Maximum Principle. Indeed, the Hamilto-
nian H : RdN × RdN × RdN → R associated to Problem 3 is

H(z,p,β) = p⊤K[z]β − γ

2 β⊤K[z]β. (2.43)
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The above is easily maximized with respect to the control as Assumption 1 ensures K[z]
is invertible. Maximization yields

βt = arg max
β∈B

H(zt,βt,pt) = 1
γ

pt, (2.44)

so that the third equation in (2.41) is proved. The first two then directly follow from the
canonical equations

żt = ∂pH(zt,pt,βt), z0 = x,

ṗt = −∂zH(zt,pt,βt), p1 = − 1
2N ∂zE(z1,y).

(2.45)

Remark. Owing to Theorem 2.1.5 and the regularity assumptions on K stated in As-
sumption 1, we recover regularity of minimizers of Problem 3, indeed we have that any
minimizer β ∈ C2([0,1];RdN ).

There are some interesting consequences stemming from Theorem 2.1.5 as far as the
characterization of solutions of the learning problem are concerned. First and foremost, we
remark the importance of (2.41) as the problem of minimizing a cost functional is recast
as a TPBVP where the control has been effectively eliminated. Moreover, the whole
dynamics can be further reduced and be expressed in terms of the state only. Indeed,
from (2.41) it follows immediately that the adjoint state is related to the time derivative
of the state by the relation

pt = γK[zt]−1żt. (2.46)

which, in turn, implies that the relevant equations describing the system are

d

dt

(
K[zt]−1żt

)
− 1

2∂z
(
ż⊤
t K[zt]−1żt

)
= 0 (2.47)

along with conditions

z0 = x, ż1 = − 1
2γNK[zt]∂zE(z1,y). (2.48)

Equations of motion such as the ones just derived can be recovered (Owhadi [2020]) as
the Euler-Lagrange equations stemming from the least action principle associated to the
following action:

A(z) :=
∫ 1

0
L(zt, żt)dt, (2.49)

the Lagrangian being defined by

L(z, ż) := ż⊤K[z]−1ż = ∥ż∥2
K[z]−1 . (2.50)

The action should be minimized over trajectories z ∈ C1([0,1];RdN ) constrained to z0 = x
and z1 as in the solution to the original problem. This formulation suggests that the map
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RdN ∋ z → K[z]−1 may be interpreted as a metric tensor and the Euler-Lagrange equa-
tions are equivalent to the equations of geodesic motion corresponding to the minimization
of the length

∫ 1
0

√
żt⊤K[zt]−1żtdt of the curve z : [0,1]→ RdN connecting x and z1. Hence,

the role of the kernel is to define a geometry on the space RdN which, in turn, defines
the geodesics along which the dynamics moves. Introducing again the adjoint state p, the
Hamiltonian corresponding to the dynamics in (2.41) reads2

H(z,p) := 1
2γp⊤K[z]p = ∥p∥2

K[z] . (2.51)

Owing to its time independence it is well-known that it is conserved along solutions of the
ODE. Then, the role of the regularization term is to impose a total budget on ∥pt∥K[zt] at
all times and, as it turns out, the optimal allocation is constant in time. This phenomenon
is also reminiscent, from an optimization point of view, of the observation that oftentimes
regularization on the norm of model parameters is actually equivalent to a constraint on
their maximum norm. Indeed, the control βt may be seen as being restricted to a ball (of
radius proportional to γ) in the norm ∥·∥K[zt] for all t ∈ [0,1].

Problem 3 is only concerned with training points and their optimal trajectories. Once
the latter are found, we wish to evaluate the model at some x ∈ X by integrating the
ODE with the appropriate initial condition. Letting as always the mapping (x, t)→ zt(x)
denote such propagation operator, it follows that3

żt(x) = K[zt(x), zt]K[zt]−1żt, z0 = x. (2.52)

As one would expect, the above coincides with the minimum norm interpolation in the
RKHS of the time derivative at the “anchor” points zt = (z(1)

t ; . . . ; z(N)
t ), namely

żt(·) = arg min
vt∈H

∥vt∥2
H

subject to vt(x(i)) = ż
(i)
t , i = 1, . . . , N.

(2.53)

2.1.3 The role of adjoint variables
We have seen that the adjoint variables can be interpreted as generalized momentum
variables as classicaly defined in the context of Hamiltonian dynamics. Furthermore,
Theorem 2.1.5 reveals that p(i) is precisely proportional to the Optimal Control and,
as such, represents the contribution of data pair (x(i), y(i)) to the regressor4. First and

2According to the notation introduced in Section 2.1 this corresponds to the reduced Hamiltonian
H⋆ where the control is eliminated by maximization. As here we mostly work with H⋆ we instead
denote it by H for ease of notation.

3Whenever x = (x(1); . . . ; x(N1)) ∈ RdN1 and z = (z(1); . . . ; z(N2)) ∈ RdN2 we extend notation
K[x, z] to denote the dN1 × dN2 block-matrix where the (i, j)-th block is given by K(x(i), z(j)).

4This is what classically happens in Support Vector Machines (James et al. [2013]). In the context
of classification, employing the hinge loss leads to a regressor defined only by the points on the margin
(i.e. those closer to the points of the opposite class).
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foremost, by the Optimal Control tools introduced in Section 1.1.1 we can adopt the
Hamilton-Jacobi-Bellman point of view of Problem 3 which leads to the following PDE:

∂tV (z, t) + 1
2γ ∥∂zV (z, t)∥2

K[z] = 0, V (·,1) = 1
2N E(·,y), (2.54)

where V : RdN × [0,1] → R denotes the value function. Moreover, owing to the link
between PMP and HJB equation through the method of characteristics highlighted in
Section 1.1.4, the adjoint variables are related to the value function by

pt = −∂zV (zt, t), (2.55)

the pair (z,p) : [0,1] → RdN × RdN being a solution to the PMP. Hence, for all fixed
time instants t ∈ [0,1] the squared ∥·∥K[zt] norm of adjoint variables is interpreted as the
instantaneous-in-time decrease of the value function along the optimal path. Also, (2.55)
shows that p(i)

t represents the sensitivity of the value function with respect to the position
of the i-th particle, therefore supporting the proposed interpretation. Arguably the most
important observation in this sense is the one expressed by the following theorem.

Proposition 2.1.6. Let (z,p) be an optimal pair satisfying the PMP as defined in The-
orem 2.1.5. Assume further that p(i)

1 = 0 for some i ∈ {1, . . . , N}, then p
(i)
t = 0 for all

t ∈ [0,1].

Proof. Consider the reversed trajectories (z̄t, p̄t) = (z1−t,−p1−t), t ∈ [0,1]. It is easy to
check that they are still a solution to the Hamiltonian ODE in (2.41) with time-reversed
boundary conditions (i.e. the condition on the state is given at time t = 1 while the one
on the adjoint variable is given at time t = 0). Then, p̄(i)

0 = 0 is sufficient to prove ˙̄p(i)
t = 0

for all t ∈ [0,1] and the thesis follows by direct integration.

As far as interpreting the role of adjoint variables, it is also interesting to consider the
instance when the particles are split into two groups, one of them having a fixed control.

Proposition 2.1.7. Let x1 ∈ XN1 , x2 ∈ XN2 represent a partition of a sample of total
size N = N1 + N2, and y1 ∈ YN1 , y2 ∈ YN2 the corresponding two sets of observations.
Assume further β1 ∈ L2([0,1];RdN1) is given. Write in short x = (x1; x2) and similarly
for all other vectors concerning the two sets of observations. The solution to

min
β2∈L2([0,1];RdN2 )

1
2N E(z1,y) + γ

2

∫ 1

0
β⊤
t K[zt]βtdt

subject to żt = K[zt]βt,
z0 = x.

(2.56)

satisfies the canonical equations
żt = ∂pH(zt,pt, t), z0 = x,
ṗt = −∂zH(zt,pt, t), p1 = − 1

2N ∂zE(z1,y),
β2
t = 1

γp2
t −K[z2

t , z2
t ]−1K[z2

t , z1
t ]
(
β1
t − 1

γp1
t

)
,

(2.57)
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the Hamiltonian being defined as

H(z,p, t) := 1
2γp⊤K[z]p− γ

2

(
β1
t −

1
γ

p1
)⊤

K[z1|z2]
(

β1
t −

1
γ

p1
)

(2.58)

where we introduced the notation

K[z1|z2] := K[z1, z1]−K[z1, z2]K[z2, z2]−1K[z2, z1] (2.59)

for the Schur complement of the block K[z2, z2] of the matrix K[z].

Proof. The direct application of the PMP yields

β2
t = arg max

β2∈RdN2
H(z,β2,p, t), (2.60)

where
H(z,β2,p, t) := p⊤K[z]

(
β1
t

β2

)
− γ

2

(
β1
t

β2

)⊤
K[z]

(
β1
t

β2

)
. (2.61)

This immediately implies the third condition in (2.57). Plugging the latter into (2.61)
gives the Hamiltonian in (2.58) and the state and adjoint equations in (2.57) follow.

This proposition reveals how the momentum variables p1
t indeed measure the contri-

bution to the regressor of first group of particles, even though the associated control is
fixed. The term β1

t − 1
γp1 represents the “shock” there is at time t between the gradient

information relevant to the first group of particles and the employed control (which, upon
minimization over β1 ∈ L2([0,1],RdN1), vanishes as we recover the original full solution
of Theorem 2.1.5). Then, if the Optimal Control is not used, the contribution of the
first group of particles encompassed by momentum variables affects (proportionally to the
shock β1

t − 1
γp1) the Optimal Control of the second group of particles as is shown in the

third equation of(2.57).

2.1.4 The discrete-in-time Optimal Control problem
The formulations introduced and studied in the previous sections involve either time or
space-time continuity. These, on one hand, provide a simplified framework to study the
properties of the learning problem we are concerned with. On the other hand, they provide
valuable insight into sensible methodologies for their numerical solution. The fist step in
this direction is to write down a discretized version of the problem. In particular, we
take Problem 3 as a starting point and introduce a suitable time discretization. In this
section we hence consider a partition of the time interval [0,1] defined by a time grid
0 = t0 < t1 . . . < tL = 1 where the l-th time step is hl := tl+1− tl, l = 0, . . . , L−1. Owing
to the Deep Learning view highlighted in this chapter, we refer to l ∈ {0, . . . , L} as the
l-th layer and the integer L, which controls the granularity of the grid, as the number
of layers. Problem 3 involves both an objective functional as well as the state ODE,
therefore it is natural to turn to a Runge-Kutta ODE integration method (Hairer et al.
[2006]) characterized by coefficients {aij , bi}si,j=1 and collocation points {ci}si=1. Given a
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control β ∈ C([0,1];RdN ) and the associated state function z, let us introduce the notation

zl ≈ ztl , βli = βtl+cihl
, i = 1, . . . , s, l = 0, . . . , L. (2.62)

to denote, respectively, the discrete-in-time state approximations and the evaluations of
the control at the collocation points specified by the chosen Runge-Kutta method and
time grid. Moreover, with a slight abuse of notation, we denote zli the i-th Runge-Kutta
internal stage of the l-th layer, namely

zli = zl + hl

L∑
i=1

aijK[zli]βli, i = 1, . . . , s, l = 0, . . . , L. (2.63)

This procedure leads to the statement of the following problem.

Problem 4. Given a sample (x(1); . . . ;x(N)) and possibly noisy observations
(y(1); . . . ; y(N)) := (g(x(1)) + ε(1), . . . , g(x(N)) + ε(N)) where ε(i) iid∼ ε, choose a time grid
0 = t0 < t1 . . . < tL = 1, a Runge-Kutta method {aij , bi}si,j=1 and solve

min
βli∈RdN

1
2N E(zL,y) + γ

2

L−1∑
l=0

hl

s∑
i=1

biβ
⊤
liK[zli]βli

subject to zl+1 = zl + hl

s∑
i=1

biK[zli]βli, l = 0, . . . , L− 1,

zli = zl + hl

s∑
j=1

aijK[zlj ]βlj , i = 1, . . . , s, l = 0, . . . , L− 1,

z0 = x.

(2.64)

The above is a fully discrete problem which provides the foundation for the the numer-
ical solution of the learning problem. With standard constrained optimization techniques,
first order optimality conditions for Problem 4 can be easily computed. At this point it is
natural to ask is how the latter are related to their continuous-in-time counterpart given
in Theorem 2.1.5. It turns out (Bonnans and Laurent-Varin [2006]) that the optimality
conditions for Problem 4 are equivalent to the discretization of the continuous-time op-
timality conditions for Problem 3, provided the discretization scheme is carefully chosen.
Indeed, the following statement holds.

Proposition 2.1.8. Let pl,pli ∈ RdN , i = 1, . . . , s, l = 1, . . . , L, denote a set of adjoint
variables and associated internal stages respectively. Assume the Runge-Kutta method in
Problem 4 is such that bi /= 0 for all i = 1 . . . , s and define

b̂i := bi, âij := bj −
bj
bi
aji. (2.65)

Then, the first order optimality conditions characterizing the solution to Problem 4 are
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given by the following system:
zl+1 = zl + hl

γ

∑s
i=1 biK[zli]pli, zli = zl + hl

γ

∑s
i=1 aijK[zlj ]plj ,

pl+1 = pl − hl

2γ
∑s
i=1 b̂i∂z

(
p⊤
liK[zli]pli

)
, pli = pl − hl

2γ
∑s
i=1 âij∂z

(
p⊤
ljK[zlj ]plj

)
,

βli = 1
γpli.

(2.66)
for i = 1, . . . , s, l = 0, . . . , L− 1 and

z0 = x, pL = − 1
2N ∂zE(zL,y). (2.67)

Furthermore, the above coincides with the discretization of the optimality system in The-
orem 2.1.5 through the partitioned Runge-Kutta method defined by the pair of coeffi-
cients ({aij , bi}si,j=1, {âij , b̂i}si,j=1). Finally, the latter is a symplectic integrator for the
Hamiltonian system 2.41 and ∥pl∥2

K[zl] fluctuates like O
(
hk
)

with respect to l, where
h := maxLi=1 hi and k denotes the order of the partitioned Runge-Kutta method.

Proof. Introduce Lagrange multipliers pl,αli ∈ RdN , i = 1, . . . , s, l = 1, . . . , L, and define

Sli := K[zli]βli (2.68)
so that

zl+1 = zl + hl

s∑
i=1

biSli, Sli = K[zl + hl

L∑
j=1

aijSlj ]βli. (2.69)

Then, using variables Sli instead of zli for convenience, the Lagrangian associated to the
minimization problem reads

L(zl, Sli,βli,pl,αli) = 1
2N E(zL,y) + γ

2

L−1∑
l=0

hl

s∑
i=1

biβ
⊤
liK[zli]βli

+
L−1∑
l=0

p⊤
l+1

(
zl+1 − zl − hl

s∑
i=1

biSli

)
+ p⊤

0 (z0 − x)

+
L−1∑
l=0

s∑
i=1

α⊤
li (Sli −K[zli]βli) .

(2.70)

Setting derivatives with respect to βli to zero yields

αli = γhlbiβli =⇒ βli = 1
γ

pli (2.71)

if we define pli := αli/(hlbi), effectively exploiting the hypothesis that bi /= 0. Then,
differentiation with respect to variables zl gives

γhl
2

s∑
j=1

bj∂z
(
β⊤
ljK[zlj ]βlj

)
− pl+1 + pl −

s∑
j=1

∂z
(
α⊤
ljK[zlj ]βlj

)
= 0

⇐⇒ pl+1 = pl −
hl
2γ

s∑
j=1

b̂j∂z
(
p⊤
ljK[zlj ]plj

) (2.72)
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for l = 0, . . . , L− 1 and, doing the same for variables Sli,
γh2

l

2

s∑
j=1

bjaji∂z
(
β⊤
ljK[zlj ]βlj

)
− hlbipl+1 + αli − hl

s∑
j=1

aji∂z
(
α⊤
ljK[zlj ]βlj

)
= 0

⇐⇒ pli = pl −
hl
2γ

s∑
j=1

b̂j∂z
(
p⊤
ljK[zlj ]plj

)
,

(2.73)
for l = 0, . . . , L− 1, i = 1, . . . , s. The rest of the conditions are easily derived taking the
remaining derivatives. It is also easy to verify that (2.66) can be equivalently derived by
direct discretization of the optimality system in Theorem 2.1.5 through the partitioned
Runge-Kutta method defined by the pair of coefficients ({aij , bi}si,j=1, {âij , b̂i}si,j=1). Fur-
thermore, the relation in (2.65) immediately implies that the partitioned Runge-Kutta
method satisfies Sun’s condition and, hence, is symplectic. Finally, if k is the order of the
method, owing to its symplecticity we have that the Hamiltonian is conserved with an
error O

(
hk
)

with respect to l.

Remark. Though we discretized the learning problem with respect to time starting from
the more convenient parametric formulation (obtained originally in Theorem 2.1.1 as a
consequence of the space-discretization), we remark that an equivalent course of action
would have been the time-discretization of the nonparametric Problem 2 directly through
a Runge-Kutta scheme characterized by coefficients {aij , bi}si,j=1 and collocation points
{ci}si=1, namely

min
vli∈H

1
2N E(zL,y) + γ

2

L−1∑
l=0

hl

s∑
i=1

bi ∥vli∥2
H

subject to z
(k)
l+1 = z

(k)
l + hl

s∑
i=1

bivli(z(k)
li ), l = 0, . . . , L− 1, k = 1, . . . , N,

z
(k)
li = z

(k)
l + hl

s∑
j=1

aijvlj(z(k)
lj ), i = 1, . . . , s, l = 0, . . . , L− 1, k = 1, . . . , N,

z
(k)
0 = x(i), k = 1, . . . , N.

(2.74)
This formulation, indeed, may be easily recast as Problem 4 trough the usual argument
exploiting the orthogonal decomposition of the functions vli.

Though it is of interest to state the formulation of the discrete problem for a generic
Runge-Kutta method as in Problem 4, in what follows the main discretization scheme
employed is the explicit Euler method due to its simplicity and efficiency. Therefore, we
wish to study the properties of Problem 4 with a11 = 0, b1 = 1 and c1 = 0 in further detail.
In particular, we are concerned with the existence of solutions and how they are related
to those of the continuous-in-time Problem 3. In this context, the natural technique to
produce such results is provided by Γ-convergence (Dal Maso [1993]). The fist step we take
is to ambient both the discrete functionals and the continuous one on the same function
space B := L2([0,1],RdN ). Hence, we prove the following lemma.
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Lemma 2.1.9. Under Assumption 1 and with the notation introduced in Problem 4, define
the discrete functional J L : B → R as

J L(β) := 1
2N E(zL1 ,y) + γ

2

∫ 1

0
β⊤
t K[zLt ]βtdt, (2.75)

where the discretized state zLt follows the dynamics
zL0 = x,

zLtl+1
= zLtl + hl

∫ tl+1

tl

K[zLtl ]βtdt, l = 0, . . . , L− 1,

zLt = zLtl , t ∈ (tl−1,tl], l = 1, . . . , L.

(2.76)

Then,
min
β∈B
J L(β) (2.77)

admits a solution and is equivalent to Problem 4 with the explicit Euler method.
Proof. First, define the set PCL ⊂ B of piecewise-constant functions on the grid {tl}Ll=0,
which is finite dimensional. Then, consider the decomposition

β = α + ρ, α ∈ PCL, ρ ∈ PC ⊥
L , (2.78)

and notice that ∫ 1

0
β⊤
t K[zLt ]βtdt

=
∫ 1

0
α⊤
t K[zLt ]αtdt+ 2

〈
ρ,K[zL]α

〉
B

+
∫ 1

0
ρ⊤
t K[zLt ]ρtdt

=
∫ 1

0
α⊤
t K[zLt ]αtdt+

∫ 1

0
ρ⊤
t K[zLt ]ρtdt

≥
∫ 1

0
α⊤
t K[zLt ]αtdt,

(2.79)

where in the second equality we used the fact that ρ ∈ PC ⊥
L and K[zL]α ∈ PCL since

zL ∈ PCL. Moreover, the fact that ρ ∈ PC ⊥
L also implies∫ tl+1

tl

K[zLtl ]βtdt =
∫ tl+1

tl

K[zLtl ]αtdt, (2.80)

for all l = 0, . . . , L− 1, that is ρ does not contribute to the evolution of the state. Then,
owing to the inequality in (2.79), we immediately have that any minimizer β of J L must
be an element of PCL. This observation entails that we can equivalently ambient the
problem on the finite dimensional space PCL of piecewise constant functions which, upon
defining βl := 1/hl

∫ tl+1
tl

βtdt ∈ RdN , l = 0, . . . , L− 1, is enough to prove the equivalence
with Problem 4 with the explicit Euler method, namely

min
βl∈RdN

1
2N E(zL,y) + γ

2

L−1∑
l=0

hlβ
⊤
l K[zLl ]βl

subject to zl+1 = zLl + hlK[zl]βl, l = 0, . . . , L− 1,
z0 = x.

(2.81)
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Denote Ĵ L(β0, . . . ,βL−1) the functional in the above minimization problem defined on
RdN × · · · × RdN . It follows from the continuity of K[·] that Ĵ L is continuous in βl,
l = 0, . . . , L− 1. As it further holds

Ĵ L(β) ≥ δγ

2

L−1∑
l=0

hl ∥βl∥2
2 , (2.82)

the constant δ being the one defined in Assumption 1, then Ĵ L → ∞ as ∥βl∥2 → ∞ for
any l = 1, . . . , L− 1. This is enough to prove the existence of a minimizer of (2.81) and,
in turn, of J L.

The tools of Γ-convergence require the domain where the functionals are defined to be
equipped with a metrizable topology. Recalling that the weak topology of L2 is metrizable
only on bounded sets, we need to properly restrict the functionals. For every r > 0 we
set

Br := {β ∈ B | ∥β∥L2 ≤ r}, (2.83)

and define the corresponding restricted functionals J L
r := J L|Br , L = 1, 2, . . . ,∞, with

the convention that J∞ := J represents the continuous functional defined as in Theorem
2.1.4. Then, take β ≡ 0 and note that

J L(0) = 1
2N E(x,y) =: C, (2.84)

the constant C > 0 being independent from L = 1, 2, . . . ,∞. Denote βL⋆ ∈ B, L =
1, 2, . . . ,∞, a minimizer of J L, then it holds

δγ

2
∥∥∥βL⋆

∥∥∥2

L2
≤ J L(βL⋆) ≤ J L(0) = C, (2.85)

where we used both Assumption 1 and the definition of βL⋆ . This entails that taking
r =

√
2C
δγ is enough to state

arg min
β∈Br

J L
r = arg min

β∈B
J L, (2.86)

for all L = 1, 2, . . . ,∞. With this choice we restrict the minimization problem to a
bounded subset of B, without losing any minimizer. Let us now recall the definition of
Γ-convergence.

Definition 2.1.1. The family of functionals (J L
r )L≥1 is said to Γ-converge to a functional

Jr : Br → R ∪ {+∞} with respect to the weak topology of B as L → ∞ if the following
conditions hold:

• for all (βL)L≥1 ⊂ Br such that βL ⇀ β ∈ Br as L→∞ it holds

lim inf
L→∞

J L
r (βL) ≥ Jr(β); (2.87)
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• for all β ∈ Br there exists a sequence (βL)L≥1 ⊂ Br such that βL ⇀ β ∈ Br as
L→∞ and

lim sup
L→∞

J L
r (βL) ≤ Jr(β). (2.88)

If (2.87) and (2.88) are satisfied, then we write J L
r

Γ−→ Jr as L→∞.

Lemma 2.1.10. Under Assumption 1, let β ∈ B and z, zL denote the solutions of the
continuous time dynamics (2.20) and the discrete time dynamics (2.76) respectively. Then,∥∥∥zL − z

∥∥∥
∞
≤ Ch, (2.89)

where C = C(∥β∥L2) denotes a constant monotonically increasing in ∥β∥L2 and h :=
maxl hl.

Proof. The structure of this proof follows closely the classical arguments to prove estimates
on the global error of Runge-Kutta methods (see, e.g., Hairer et al. [1993]). The fist step is
to prove local convergence, i.e. convergence of the discretized solution to the true solution
on any time interval (tl, tl+1], l = 0, . . . , L− 1, when the initial condition at time tl is the
same. For notational simplicity we concentrate on the first time interval (0, t1], bearing
in mind the following statements hold for any other time interval. Define the local error
e1 :=

∥∥zLt1 − zt1
∥∥

2 and note that

e1 =
∥∥∥∥∥
∫ h0

0
(K[x]−K[zs]) βsds

∥∥∥∥∥
2
≤ LK ∥β∥L2(0,h0)

(∫ h0

0
∥zs − x∥2

2

)1/2

. (2.90)

Furthermore

∥zs − x∥2 =
∥∥∥∥∫ s

0
K[zr]βrdr

∥∥∥∥
2
≤
√

∆
∫ h0

0
∥βr∥2 dr ≤

√
∆h1/2

0 ∥β∥L2(0,h0) , (2.91)

which implies
e1 ≤ LK∆ ∥β∥2

L2(0,h0) h. (2.92)

Clearly, we can extend the definition of the local error el to any other time interval (tl−1, tl],
l = 1, . . . , L, and the same bound will hold with hl−1 in place of h0. Fix now L̄ ≤ L− 1
and define the global error in the time interval (tL̄, tL̄+1] as

E := sup
t∈(tL̄,tL̄+1]

∥∥∥zLt − zt
∥∥∥

2
. (2.93)

Define further

El := sup
t∈(tL̄,tL̄+1]

∥∥∥zt(zLtl , tl)− zt(zLtl−1
, tl−1)

∥∥∥
2
, l = 1, . . . , L̄, (2.94)
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where zt(x, s) denotes the true ODE solution with initial condition x at time s. Let
t ∈ (tL̄, tL̄+1], then∥∥∥zt(zLtl , tl)− zt(zLtl−1

, tl−1)
∥∥∥

2

≤
∥∥∥zLtl − ztl(zLtl−1

, tl−1)
∥∥∥

2
+
∫ t

tl

∥∥∥(K[zs(zLtl , tl)]−K[zs(zLtl−1
, tl−1)]

)
βs
∥∥∥

2
ds

≤
∥∥∥zLtl − ztl(zLtl−1

, tl−1)
∥∥∥

2
+ LK

∫ t

tl

∥∥∥zs(zLtl , tl)− zs(zLtl−1
, tl−1)

∥∥∥
2
∥βs∥2 ds

(2.95)

and, owing to Gronwall’s inequality,∥∥∥zt(zLtl , tl)− zt(zLtl−1
, tl−1)

∥∥∥
2
≤ (1 + LK ∥β∥L2 e

∥β∥L2 )
∥∥∥zLtl − ztl(zLtl−1

, tl−1)
∥∥∥

2

≤ (1 + LK ∥β∥L2 e
∥β∥L2 )el,

(2.96)

which, in turn, yields

El ≤ (1 + LK ∥β∥L2 e
∥β∥L2 )el, l = 1, . . . , L̄. (2.97)

Finally

E ≤
L̄∑
l=1

El

≤
L̄∑
l=1

(1 + LK ∥β∥L2 e
∥β∥L2 )el

≤LK∆(1 + LK ∥β∥L2 e
∥β∥L2 )h

L̄∑
l=1
∥β∥2

L2(0,hl)

≤LK∆ ∥β∥2
L2 (1 + LK ∥β∥L2 e

∥β∥L2 )h,

(2.98)

which proves the claim as the above holds uniformly for all L̄.

This result gives that, as expected, the explicit Euler method is globally convergent
in [0,1]. In particular, it proves that the convergence to the true solution is uniform with
order O(h) and a constant of convergence dependent only on the norm of the control β.
We shall now see that this is enough to prove the Γ-convergence of the discrete functionals
to the continuous one.

Theorem 2.1.11. Under Assumption 1, the family of functionals (J L
r )L≥1 Γ-converges

to Jr with respect to the weak topology of B as L→∞.

Proof. Let us prove condition (2.88) first. Take β ∈ Br and consider the constant sequence
βL := β, L ≥ 1. Then, owing to Lemma 2.1.10, the discretized solution zL uniformly
converges to the true ODE solution z and, by the Lipschitz continuity of K[·], we have

J L(β) −−−→
L→∞

J (β) (2.99)
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as desired. In order to prove condition (2.87), let β ∈ Br and consider (βL)L≥1 ⊂ Br such
that βL ⇀ β ∈ Br as L → ∞. Call zβL and zL,βL the solutions to the continuous time
dynamics (2.20) and discrete time dynamics (2.76) with control βL respectively, L ≥ 1,
with the usual convention β∞ := β. Then∥∥∥zL,βL − zβ∞

∥∥∥
∞
≤
∥∥∥zL,βL − zβL

∥∥∥
∞

+
∥∥∥zβL − zβ∞

∥∥∥
∞
. (2.100)

As (βL)L≥1 is weakly convergent it is bounded by a constant, say, K > 0. This and
Lemma 2.1.10 entail that the first term in the right-hand side of (2.100) can be uniformly
bounded with respect to L, namely∥∥∥zL,βL − zβL

∥∥∥
∞
≤ Ch, (2.101)

the constant C being independent of L. Furthermore, Lemma 2.1.3 implies that the second
term in the right-hand side of (2.100) vanishes as L → ∞, effectively proving uniform
convergence of zL,βL to zβ∞ as L→∞. This is enough to prove that

lim inf
L→∞

J L
r (βL) ≥ Jr(β) (2.102)

arguing as in the proof of Theorem 2.1.4.

Establishing Γ-convergence allows us to immediately characterize the behaviour of the
minimizers of the discrete functionals in the limit L→∞.
Corollary 2.1.11.1. With the notation and assumptions of Theorem 2.1.11, it holds that

lim
L→∞

min
Br

J L = min
Br

J , (2.103)

and any cluster point β of a sequence of minimizers (βL)L≥1 is a minimizer of Jr. Fur-
thermore, any sequence of minimizers (βL)L≥1 is is pre-compact with respect to the strong
topology of L2.
Proof. The inequality

J L(β) ≥ δγ

2 ∥β∥L2 (2.104)

entails that the sequence (J L)L≥1 of functionals is equi-coercive. This, together with
[Dal Maso, 1993, Corollary 7.20], implies (2.103) and that any cluster point β of a sequence
of minimizers (βL)L≥1 is a minimizer of Jr. Assume the sequence of minimizers is weakly
converging to β (which we stress must be a minimizer of Jr), then, arguing as in Theorem
2.1.4, we have that

1
2N E(zL,β

L

1 )+
∫ 1

0

(
βL
t

)⊤
K[zL,β

L

t ]βL
t dt−

∫ 1

0

(
βL
t

)⊤
K[zβ

t ]βL
t dt −−−→

L→∞

1
2N E(zβ

1 ). (2.105)

This, together with (2.103), implies∫ 1

0

(
βL
t

)⊤
K[zβ

t ]βL
t dt −−−→

L→∞

∫ 1

0
(βt)⊤ K[zβ

t ]βtdt. (2.106)

Owing to the equivalence of the L2 norm and the K[zβ]−weighed L2 norm observed in
Theorem 2.1.4, this is enough to prove that the sequence (βL)L≥1 converges in L2 with
respect to the strong topology as well, and the claim follows.
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2.2 A Riemannian Optimization perspective on the
learning problem

2.2.1 Remarks on the infinite data points limit for the Optimal
Control problem

Before we go any further, it is insightful to take a step back and consider again the limiting
case where an infinite number of data pairs are available. Ultimately, we wish to show,
though only formally, that the extension of the results obtained in Section 2.1.2 hold when
Problem 1 is directly tackled. In this setting we directly deal with absolutely continuous
probability measures (with respect to the Lebesgue measure) instead of particles in space.
Hence, we first give a brief review of the learning Problem at heart of the thesis highlighting
the connection with the field of Optimal Transport (OT) (Figalli and Glaudo [2021]) which
is exactly concerned with optimization over the space of probability measures. Hopefully,
this will make it clearer to the reader how the need for an RKHS arises in the context of
learning and transporting measures in space according to an optimality criterion.

Given complete information on the target function g, the most general way we can
(formally) state the problem we seek to solve is the following:

inf
f∈Vm, π∈Π(µ)

∫
X ×Rd

(f(z)− g(x))2 dπ(x, z), (2.107)

where Π(µ) :=
{
π | π(·,Rd) = µ

}
denotes the set of joint probability measures on X ×Rd

with marginal µ on X . As always, the measure µ is imposed by accuracy requirements on
the reconstruction of the target g, while the marginal π(X , ·) can be chosen arbitrarily.
This formulation is reminiscent of Kantorovich’s formulation of the OT problem5 and, in
some way, represents a non-parametric (with respect to the involved measures) version
of the learning problem introduced at the beginning of Section 2.1. In OT literature,
Kantorovich’s formulation was introduced as an improvement (with respect to existence
of minima) over Monge’s formulation which, in our setting, is instead analogous to the
problem

inf
f∈Vm, µ1, ϕ∈Φ(µ,µ1)

∫
X ×Rd

(f(ϕ(x))− g(x))2 dµ(x) (2.109)

with Φ(µ, µ1) := {ϕ : X → Rd | ϕ∗µ = µ1} being the set of transport maps from µ to
µ1. Within either Kantorovich’s or Monge’s framework, one very common approach to
the solution of the OT problem is through point-wise discretizations of space. Typically,
a number of particles are dispatched in space and some numerical scheme is employed in
order to make such particles approximate the sought-after joint distribution, or otherwise

5Kantorovich’s and Monge’s formulations of the OT problem read

inf
π∈Π(µ,µ1)

∫
X ×Rd

c(x, z)dπ(x, z), inf
ϕ∈Φ(µ,µ1)

∫
X ×Rd

c(x, ϕ(x))dµ(x) (2.108)

respectively, where c : X × Rd → [0, ∞] denotes a cost function.
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the optimal transport map. This clearly reminds of the space discretization introduced in
Section 2.1 which led to the statement of Problem 2. However, once the space discretiza-
tion is introduced, we actually have a stronger requirement in that we wish to extrapolate
what was learned with the “training” particles to the whole ambient space, for in OT
there is no need to “interpolate” between particles. In other words, we must in some
capacity turn to a parametric model where not only particles are moved around in space,
but their trajectories should inform about the movement of any other chosen particle.
Our own way to do so, as described in Section 2.1, is to approximate the transport map
in (2.109) as the flow of an ODE whose flux is taken in a particular function space, i.e.
an RKHS. At first glance this RKHS may seem like an untameable object as it possibly
is an infinite dimensional space. However, owing to the representer-like Theorem 2.1.1,
after the space discretization introduced for Problem 2 (which is ultimately the only one
we can hope to solve in practice) reduces to a finite dimensional parametric problem in
space. Let us introduce some assumptions and notation. For simplicity let X = Rd and
denote P(Rd) the space of Borel probability measures on Rd. Abusing notation, we will
use the same letter for their Lebesgue densities in case they exist. Furthermore, in this
section we consider an RKHS associated to a kernel with the following properties.

Assumption 2. Assume K is a C∞ diagonal kernel on Rd, i.e. K(x, x′) = Ik(x, x′),
k : Rd ×Rd → R being a scalar-valued kernel function, satisfying Assumption 1. Assume
further that k is integrally strictly positive definite, that is∫

Rd

∫
Rd
K(x, x′)dν(x)dν(x′) > 0 (2.110)

for all signed Borel nonzero measures ν on Rd, and that supx∈Rd k(x, x) <∞.

Remark. Note that the regularity assumptions on the kernel imply H ⊆ C∞(Rd) and are
motivated by the wish to tackle the problem in its simplest form, however some of what
follows holds under milder regularity conditions as well. Furthermore, throughout this
and the following sections we will refer to the RKHS of functions from Rd to R associated
to k as G. Note that with this notation H = Gd.

Given a kernel K satisfying Assumption 2 let us define the following subset of P(Rd),

PK(Rd) =
{
µ ∈ P(Rd)

∣∣∣∣ dµdλ is C∞, supp(µ) = Rd
}
. (2.111)

where λ denotes the Lebesgue measure on Rd. We remark that for any fixed ODE flow
v : [0,1] → H and measure µ ∈ PK(Rd) the evolution of the density of the push-forward
measure µt through the ODE flow associated to v at time t is governed by the well-known
continuity equation which, formally, reads

∂tµt + div(µtvt) = 0. (2.112)

A number of works on variational methods for sampling (see, e.g., Duncan et al. [2019]
and references therein) have recently taken the above as the starting point to construct
a mathematically sound kernel approach to the transport of measures, as opposed to
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the usual one ambiented in Wasserstein spaces6. Indeed, they define the so-called Stein
distance on PK(Rd) as

d2
K(ρ, ν) := inf

v∈Γ(ρ,ν)

∫ 1

0
∥vt∥2

H dt (2.114)

where
Γ(ρ, ν) := {v : [0,1]→ H | µ0 = ρ, µ1 = ν,

(2.112) holds in the sense of distributions} .
(2.115)

Then, they show that the Stein distance defines an extended metric7 on PK(Rd) and that
there exists a constant C > 0 such that

W2(ρ, ν) ≤ CdK(ρ, ν), (2.116)

namely dK induces a stronger topology on PK(Rd) than the topology induced by the
Wasserstein distance. We refer the reader to Duncan et al. [2019] and references therein
for further details. The connection with our methodology as presented in Problem 1 is
then clear. In (2.114) the concern is to join two given measures through a flow in the
RKHS H, minimizing the length of the resulting curve in the space of measures PK(Rd).
Our goal is very similar but, instead of having a pre-specified target measure to connect
the original measure with, we choose the target measure through a performance criterion
specified by the misfit with the target function and have a regularization parameter γ
tuning the trade-off between the minimization of the curve length and the misfit.

We now want to show through a formal argument that in this infinite-dimensional
setting the natural extension to the infinite data points limit N → ∞ (i.e. formally
replacing sums with integrals) of the discrete optimality conditions shown in Theorem
2.1.5 holds. Recall from Section 1.2.2 that, under Assumption 2, for all µ ∈ PH(Rd) the
operator Tµ : L2

µ(Rd)→ H defined by

Tµw =
∫
Rd
K(x, x′)w(x′)dµ(x′) (2.117)

is compact, self-adjoint and positive semi-definite. Furthermore, T 1/2
µ defines an isometry

between L2
µ(Rd) and H, so that the RKHS inner product features the characterization

⟨v, w⟩H =
〈
v, T−1

µ w
〉
L2

µ

(2.118)

for all v, w ∈ H.

6In Rd and for p ≥ 1, the p-Wasserstein space is defined as the set of Borel probaility measures
P(Rd) endowed with the p-Wasserstein distance

Wp(ρ, ν) =
(

inf
π∈Π(ρ,ν)

∫
Rd

(z − x)pdπ(x, z)
)1/p

, ρ, ν ∈ PK(Rd). (2.113)

7An extended metric satisfies the usual metric axioms but it allows for infinite distance between
elements.
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Lemma 2.2.1. Under Assumption 2 the RKHS H consists of L2
µ-functions for any µ ∈

PH(Rd). Furthermore, let µ ∈ PH(Rd) be a given reference measure, v ∈ L2([0,1];H) a
flow in the RKHS and denote ϕ and µϕ respectively the map obtained by integrating the
usual ODE ż = vt(z) up to time t = 1 and the corresponding pushforward measure ϕ#µ.
Then, µϕ ∈ PH(Rd).
Proof. The proof of the first statement, which we recall for completeness, is canonical
in RKHS literature and can be found in, e.g., Steinwart and Christmann [2008]. Let
µ ∈ PH(Rd) and w ∈ H, then

∥wi∥2
L2

µ
=
∫
Rd
|wi(x)|2 dµ(x)

=
∫
Rd
|⟨wi, k(·, x)⟩H|

2 dµ(x)

≤
∫
Rd
∥wi∥2

H ∥k(·, x)∥2
H dµ(x)

= ∥wi∥2
H

∫
Rd
k(x, x)dµ(x) <∞.

(2.119)

Consider now the ODE ż = vt(z), then, owing to the regularity of the RKHS we have
that ϕ is a C∞ diffeomorphism (Dupuis et al. [1998]). This concludes the proof.
Theorem 2.2.2 (Formal). Under Assumption 2, assume Problem 1, which we recall is

min
f∈Vm, v:[0,1]→H

1
2

∫
X

(f(z1(x))− g(x))2 dµ(x) + η

2 ∥f∥
2
Vm

+ γ

2

∫ 1

0
∥vt∥2

H dt

subject to żt(x) = vt(zt(x)),
z0(x) = x,

(2.120)

admits a solution v ∈ C([0,1];H). Then, there exist functions z ∈ C1([0,1] × Rd) with
żt ∈ L2

µ(Rd) for all t ∈ [0,1] and p ∈ C1([0,1];L2
µ(Rd)) such that

żt(x) = 1
γ

∫
Rd
K(zt(x), zt(x′))pt(x′)dµ(x′), z0(x) = x,

ṗt(x) = − 1
2γ

∫
Rd
∂z
(
pt(x)⊤K(zt(x), zt(x′))pt(x′)

)
dµ(x′), p1 ◦ z−1

1 = − δ

δz1
E(z1, g)

vt = 1
γ
Tµt(pt ◦ z−1

t )
(2.121)

where we defined

E(z1, g) := min
f∈Vm

{1
2

∫
Rd

(f(z1(x))− g(x))2 dµ(x) + η

2 ∥f∥
2
Vm

}
(2.122)

Proof. First, owing to Lemma 2.2.1, taking v ∈ C([0,1];H) implies that µt ∈ PK(Rd) for
all t ∈ [0,1]. Introduce the adjoint state p ∈ C1([0,1];L2

µ(Rd)) and consider the Lagrangian
associated to the minimization problem

L(z, p, v) := E(z1, g) + γ

2

∫ 1

0
∥vt∥2

H dt+
∫ 1

0
⟨pt, żt − vt ◦ zt⟩L2

µ
dt. (2.123)
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Note that the above is well defined as vt ◦ zt ∈ L2
µ if and only if vt ∈ L2

µt
which is true by

Lemma 2.2.1. Let us now compute the first variation of L in v: let v̄ ∈ C([0,1];H), then

d

dε
L(z, p, v + εv̄)

∣∣∣
ε=0

= γ

∫ 1

0
⟨v̄t, vt⟩H dt−

∫ 1

0

〈
v̄t, pt ◦ z−1

t

〉
L2

µt

dt

= γ

∫ 1

0
⟨v̄t, vt⟩H dt−

∫ 1

0

〈
v̄t, Tµt(pt ◦ z−1

t )
〉

H
dt

(2.124)

where in the last line we used the characterization of the RKHS inner product through
the one in L2

µt
(Rd). Setting the above to be equal to zero then implies

vt = 1
γ
Tµt(pt ◦ z−1

t )

= 1
γ

∫
Rd
K(·, z̃)pt(z−1

t (z̃))dµt(z̃)

= 1
γ

∫
Rd
K(·, zt(x))pt(x)dµ(x).

(2.125)

and the third equation in (2.121) is proved. Plugging this result into the Lagrangian yields
a reduced Lagrangian

L̃(z, p) := E(z1, g) +
∫ 1

0

(∫
Rd
pt(x)⊤żt(x)dµ(x)

)
dt

− 1
2γ

∫ 1

0

(∫
Rd×Rd

pt(x)⊤K(zt(x), zt(x′))pt(x′)dµ(x)dµ(x′)
)
dt

(2.126)

Computing variations with respect to z and p gives the first two equations in (2.121) and
the claim is proved.

Write p̃t := pt ◦ z−1
t . Then, the continuity equation describing the evolution of the

optimal measure µt as defined by the optimality system (2.121) reads

∂tµt + div(µtTµt p̃t) = 0. (2.127)

Owing to the results obtained by Duncan et al. [2019], the above describes the motion in
measure space PK(Rd) along the geodesics8 defined by the Stein distance. The role of the
field Tµt p̃t, then, is to guide the flow towards a favourable target measure according to
the misfit with the target function g.

2.2.2 The manifold of diffeomorphisms
The remarks of the previous section highlight the connection between the learning problem
we have introduced and studied in this chapter so far and some of the works in the field of

8Duncan et al. [2019] show that the space PK(Rd) can be formally equipped with the structure of
a Riemannian manifold.
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variational inference, especially Duncan et al. [2019] and the follow-up paper Nüsken and
Renger [2021], both centered on the analysis of the so-called Stein variational gradient
descent (SVGD) algorithm. In this section we take a further step inspired by SVGD
and devise alternative learning algorithms for the regression task we are interested in.
First, let us briefly report the idea of SVGD. With the notation of the previous section,
consider a target measure π ∈ PH to be approximated. SVGD achieves this goal through
the minimization of the Kullback–Leibler (KL) divergence9. In particular, this is done
through the following gradient flow

∂tµt = −gradKL(µt|π), (2.129)

where
gradKL(ρt|π) = −∇ ·

(
µtTµt∇

δKL(µt|π)
δµt

)
(2.130)

and δKL(µt|π)
δµt

represents the functional (Fréchet) derivative. If an appropriate differential
structure on PH(Rd) is defined, Duncan et al. [2019] show, gradKL(ρt|π) is the Riemannian
gradient of the KL divergence. Let us underline the fact that the driving vector field of
the continuity equation (2.128) is an element of the RKHS, i.e.

Tµt∇
δKL(µt|π)

δµt
∈ H. (2.131)

In the framework of a regression task the main interest lies in the diffeomorphism
instead of the related pushforward measure. In order to correctly ambient the problem
we hence introduce the set of diffeomorphisms realized as the ODE flow at time t = 1 of
the usual form {

żt = vt(zt), t ∈ [0,1],
z0 = x.

(2.132)

with v ∈ L2([0,1];H). More precisely, let us define

M :=
{
ϕ : Rd → Rd : there exists v ∈ L2([0,1];H) such that ϕ(x) = z1,

where zt satisfies an ODE of the form (2.132)
}
.

(2.133)

Note that, under Assumption 2, M is well defined and consists of C∞ diffeomorphisms
(see the proof of Theorem 2.2.2).

In order to get acquainted with this object we show that it has a group structure.

9The KL divergence between a measure ρ ∈ PH a π ∈ PH is defined as follows:

KL(ρ|π) :=
∫
Rd

log
(

ρ(x)
π(x)

)
dρ(x). (2.128)
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Proposition 2.2.3. Under Assumption 2, the set M can be endowed with a group struc-
ture with operation given by function composition.

Proof. Clearly, the neutral element is the identity map, corresponding to the zero flow
0 ∈ L2([0,1];H). Let now w, v ∈ L2([0,1];H) and ϕ, ψ ∈ M be the associated maps,
respectively. Then, ϕ ◦ ψ ∈ M as it is realized through the flow s ∈ L2([0,1];H) defined
as {

st = 2w2t, if t ≤ 1
2 ,

st = 2v2t, if t > 1
2 .

(2.134)

Finally, ϕ−1 ∈ M as it is sufficient to consider the time inverted ODE, namely the one
associated to the vector field t→ v1−t.

Remark. Proposition 2.2.3, though trivial, suggests that the best course of action for
a rigorous treatment of M is to model it as an infinite-dimensional Lie group (Brooks
and Trauber [1978]). Such an object, indeed, can be shown (Rudolf [2010]) to be locally
diffeomorphic to an infinite-dimensional vector space. Here we sidestep this crucial step
and instead proceed to set up a formal Riemannian calculus on M, acting as though M
were a smooth manifold.

Let us introduce a notion of tangent space equipped with positive-definite quadratic
forms, playing the role of Riemannian metrics.

Definition 2.2.1. Let ϕ ∈M, then define the tangent space of M at ϕ as

TϕM := H (2.135)

and the Riemannian metric gϕ : TϕM×TϕM→ R as

gϕ(v, w) = ⟨v, w⟩H . (2.136)

The rationale behind the above definition is clear if one thinks about the structure
of M. The maps in M are realized as ODE flows where the vector field is taken in the
RKHS, hence it is reasonable to think of infinitesimal variations of such maps as elements
of H themselves. Then, the choice of Riemannian metric is natural given the nature of
the tangent space. The latter, in turn, induces a Riemannian distance on M as follows.

Definition 2.2.2. Let us define the distance

d2
K(ϕ, ψ) := inf

v∈Γ(ϕ,ψ)

∫ 1

0
∥vt∥2

H dt (2.137)

where Γ(ϕ, ψ) denotes the set of connecting vector fields, namely

Γ(ϕ, ψ) :=
{
v ∈ L2([0,1];H) | v defines a map ξ such that ξ ◦ ϕ = ψ

}
. (2.138)

Note that the only difference between (2.114) and (2.137) lies in the fact that our
perspective is on transport maps instead of the the probability measures being transported.
The two viewpoints, however, are very much intertwined.
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Proposition 2.2.4. Under Assumption 2, the distance dK defined in (2.137) is a metric
on M.

Proof. First, dK : M×M → [0,∞) and is clearly symmetric. Assume ϕ, ψ ∈ M such
that dK(ϕ, ψ) = 0, then, by definition, there exists ξ ∈M such that ξ ◦ ϕ = ψ. Moreover,
ξ is realized as the flow of the zero vector field 0 ∈ L2([0,1];H), namely ξ is the identity
mapping and, hence, ϕ = ψ. On the other hand, if ϕ = ψ then dK(ϕ, ψ) = 0 trivially.
Finally, let ϕ, ψ, ξ ∈M , then dK(ϕ, ξ) ≤ dK(ϕ, ψ) + dK(ψ, ξ). This is true since

d2
K(ϕ, ξ) = inf

u∈Γ(ϕ,ξ)

∫ 1

0
∥ut∥2

H dt

≤ 1
α

inf
v∈Γ(ϕ,ψ)

∫ α

0

1
α

∥∥∥v t
α

∥∥∥2

H
dt+ 1

1− α inf
w∈Γ(ψ,ξ)

∫ 1

α

1
1− α

∥∥∥w t
1−α

− α
1−α

∥∥∥2

H
dt

≤ 1
α
d2

K(ϕ, ψ) + 1
1− αd

2
K(ψ, ξ)

(2.139)

as any path from ϕ to ξ through ψ is in Γ(ϕ, ξ) . Then, choosing

α = dK(ϕ, ψ)
dK(ϕ, ψ) + dK(ψ, ξ) (2.140)

in the above yields the claim.

Remark. The distance dK is constructed in a way that, formally,

d2
K(ϕ, ψ) = inf

ξ

{∫ 1

0
gξt(∂tξt, ∂tξt)dt

∣∣∣∣ ξ0 = ϕ, ξ1 = ψ

}
, (2.141)

however sidestepping the issue of defining the appropriate notion of differentiation for ∂tξt.

2.2.3 First order Riemannian optimization
Recall now that the L2

µ(Rd) functional derivative of a given functional J : M → R is
defined via ∫

Rd

δJ
δϕ

(ϕ)ψdµ = d

dε
J (ϕ+ εψ)

∣∣∣∣
ε=0

(2.142)

where δJ
δϕ (ϕ) ∈ L2

µ(Rd) and ψ ∈ C∞
c (Rd;Rd) is a test function.

Proposition 2.2.5 (Riemannian gradient). Let J :M→ R be a L2
µ-differentiable func-

tional. Then, under Assumption 2, the Riemannian gradient of J at ϕ ∈M is

Tµϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1
)

=
∫
Rd
K(·, ϕ(x))δJ

δϕ
(ϕ)(x)dµ(x) ∈ H. (2.143)

Proof. By definition, the Riemannian gradient grad(J )(ϕ) ∈ TϕM of J at ϕ is the element
such that

d

dt
J (ψt)

∣∣∣∣
t=0

= gϕ (grad(J )(ϕ), ∂tψt|t=0) , (2.144)
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for all sufficiently regular curves (ψt)t∈(−ε,ε) ⊂M with ψ0 = ϕ and ∂tψt|t=0 ∈ TϕM. Note
that for any such curve with corresponding vector fields (vt)t∈(−ε,ε) formally it holds

∂tψt|t=s = vs. (2.145)

Then, let us compute the left-hand side of (2.144)

d

dt
J (ψt)

∣∣∣∣
t=0

= d

dε
J
(
ϕ+

∫ ε

0
vs ◦ ψsds

)∣∣∣∣
ε=0

=
∫
Rd

δJ
δϕ

(ϕ)(v0 ◦ ϕ)dµ

=
∫
Rd

(
δJ
δϕ

(ϕ) ◦ ϕ−1
)
v0dµϕ

=
〈(

δJ
δϕ

(ϕ) ◦ ϕ−1
)
, v0

〉
L2

µϕ

(2.146)

where µϕ = ϕ#µ. Note that this is well defined as δJ
δϕ (ϕ) ∈ L2

µ(Rd) by assumption and
v0 ∈ L2

µϕ
(Rd) as a consequence of Assumption 2. Then, we can exploit the operator Tµϕ

in order to state that

d

dt
J (ψt)

∣∣∣∣
t=0

=
〈
Tµϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1
)
, v0

〉
H
,

= gϕ

(
Tµϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1
)
, ∂tψt|t=0

)
,

(2.147)

which proves the claim.

Let us now rigorously restate in this context the regression problem of interest. Note
that, for simplicity of exposition we assume the observations of g are not affected by noise,
but all of the following can be readily stated in the context of noisy observations as well,
as in Section 2.1.

Problem 5. Consider a target function g ∈ L2
µ(Rd;Y) where µ is a given Borel prob-

ability measure supported on Rd and Y = Rn. Our goal is to approximate g through
the composition of maps in M and elements of the space Vm, i.e. solving the following
problem:

min
ϕ∈M

J (ϕ) (2.148)

where
J (ϕ) := min

f∈Vm

{∫
Rd

(f(ϕ(x))− g(x))2dµ(x) + η ∥f∥2
Vm

}
(2.149)

and η is a parameter controlling the amount of regression regularization.

Now that the formal Riemannian structure is in place, we can leverage it in order to
solve Problem 5. We propose to do so through a Riemannian geometric flow, of which
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the simplest is a Riemannian gradient flow. In other words, we consider the following
geometric evolution equation

∂tϕt = −grad(J )(ϕt). (2.150)

Assuming δJ
δϕ (ϕ) ∈ L2

µ(Rd), Proposition 2.2.5 implies that (2.150) is equivalent to

∂tϕt = −Tµϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1
)
. (2.151)

Lemma 2.2.6. Let (ϕt)t∈[0,∞) ⊂ M be the curve defined by the gradient flow (2.150),
then

d

dt
J (ϕt) = −

∫
Rd×Rd

δJ
δϕ

(ϕt)(x)K(ϕt(x), ϕt(x′))δJ
δϕ

(ϕt)(x′)dµ(x)dµ(x′). (2.152)

Furthermore
lim
t→∞
∥grad(J )(ϕt)∥H = 0 (2.153)

Proof. The first claim follows from the fact that

d

dt
J (ϕt) = −∥grad(J )(ϕt)∥2

H . (2.154)

Moreover for all t > 0

J (ϕ0) ≥ J (ϕ0)− J (ϕt) =
∫ t

0
∥grad(J )(ϕs)∥2

H ds, (2.155)

where we exploited the fact that J ≥ 0. This entails∫ ∞

0
∥grad(J )(ϕs)∥2

H ds ≤ J (ϕ0), (2.156)

which then yields the claim.

Problem 5 stands as an ideal guiding principle for the design of learning methods,
however we must introduce a point-wise space discretization in order to state a problem
which resembles what in practice we can hope to have access to and solve. We perform
this step analogously to Section 2.1 (again, taking noiseless observations for simplicity).

Problem 6. Given a sample (x(1); . . . ;x(N)) and observations (y(1); . . . ; y(N)) = (g(x(1)), . . . , g(x(N))),
solve

min
ϕ∈M

J N (ϕ) (2.157)

where

J N (ϕ) := min
f∈Vm

{
1

2N

N∑
i=1

(f(ϕ(x(i)))− y(i))2 + η ∥f∥2
Vm

}
(2.158)

and η is a parameter controlling the amount of regression regularization.
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The next step is to define a discrete gradient flow, namely compute the gradient of the
discrete functional J N .

Proposition 2.2.7. The gradient of the discrete functional J N in (2.158) reads

grad(J N )(ϕ) =
N∑
i=1
K(·, z(i))p(i) (2.159)

where we defined

z(i) = ϕ(x(i)), p(i) = ∂z(i)Ĵ N (z(1), . . . , z(N)), (2.160)

and Ĵ N (ϕ(x(1)), . . . , ϕ(x(N))) = J N (ϕ).

Proof. The proof closely follows the one presented for the continuous case. Let (ψt)t∈(−ε,ε) ⊂
M be a sufficiently regular curve with ψ0 = ϕ and ∂tψt|t=0 ∈ TϕM. Then, let us compute

d

dt
J N (ψt)

∣∣∣∣
t=0

= d

dε
J N

(
ϕ+

∫ ε

0
vs ◦ ψsds

)∣∣∣∣
ε=0

= d

dε
Ĵ N

(
ϕ(x(1)) +

∫ ε

0
vs(ψs(x(1)))ds, . . . , ϕ(x(N)) +

∫ ε

0
vs(ψs(x(N)))ds

)∣∣∣∣
ε=0

=
N∑
i=1

(p(i))⊤v0(z(i))

=
〈

N∑
i=1
K(·, z(i))p(i), v0

〉
H

.

(2.161)

which, owing to the definition of Riemannian gradient, proves the claim.

In view of this result, we can state the space-discretized version of the Riemannian
gradient flow, namely

∂tϕt = −
N∑
i=1
K(·, z(i)

t )p(i)
t , (2.162)

where z(i)
t and p

(i)
t , i = 1, . . . , N , refer to the map ϕt and are defined in the usual way.

Remark. As it is the case in Section 2.1, the introduction of a space discretization of the
objective functional naturally induces a discretization on the Riemannian gradient. A
priori, it is not at all obvious that such a property should hold, however, once again, the
properties of the RKHS inner product lead to a (space-wise) finite dimensional problem.
Indeed, the gradient flow in (2.162) is completely determined by the trajectories z(i)

t of
the data points and the discrete functional Euclidean gradients p(i)

t , i = 1, . . . , N .
Exploiting the vectorized notation introduced in the previous sections, we can hence

equivalently consider the finite-dimensional ODE

żt = −K[zt]pt. (2.163)
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Notice the similarity of this with respect to the optimality conditions in (2.41). There, the
gradient at time t = 1 is propagated backwards through the adjoint equation in order to
define the adjoint variables at times t < 1. In some sense, the gradient flow discards the
sensitivity equation and greedily attempts to minimize the objective functional as much
as possible at all times.
Remark. Notice that Problem 6 is theoretically not well posed as it does not feature a
uniquely determined solution. This may seem as a deal-breaker both from the analyti-
cal point of view and the algorithmic one. However, even though regularization in not
explicitly present in the objective functional, recent works in Deep Learning literature
(see, e.g., Belabbas [2020]) suggest that it implicitly lies in the chosen optimization al-
gorithm (Riemannian gradient flow in this instance). This means that the optimization
algorithm selects the solution, among the many available ones, according to some opti-
mality criterion. Then, the latter can be exploited in order to make statements about
the generalization error of the solution provided and, hence, justify the algorithm as a
whole. Even though we do not attempt to characterize this optimality criterion here, it is
important to keep implicit regularization in mind for explaining how this algorithm may
potentially be successful.

The appeal of this approach is clear in that the it effectively decouples the control
across the layers (here, still thought as a continuum) as it is simply determined by the
Riemannian gradient of the loss functional. This makes the computation of the control
at each time a lot cheaper.

2.2.4 Second order Riemannian optimization
The Riemannian gradient flow presented in the previous section may feature slow conver-
gence speed. Given its simplicity, in this section we aim at enriching the dynamics with
second order information, effectively setting up a Riemannian Newton-type flow. As it is
always the case for second order optimization algorithms, our wish is to trade the cost
to compute each descent direction (i.e. the control in our setting) for convergence speed.
The first step in this direction, then, is to compute the Riemannian Hessian of a given
functional J :M→ R. We hence mimic the steps taken to calculate the gradient in the
previous section.

Recall that the functional L2
µ-Hessian of J evaluated at ϕ is a linear operator δ2J

δϕ2 (ϕ)
from L2

µ(Rd) to itself defined via〈
δ2J
δϕ2 (ϕ)(ψ), ψ

〉
L2

µ

= d2

dε2J (ϕ+ εψ)
∣∣∣∣∣
ε=0

, (2.164)

where ψ ∈ C∞
c (Rd;Rd) is a test function.

Proposition 2.2.8 (Riemannian Hessian). Let J :M→ R be a doubly L2
µ-differentiable

functional. Then, under Assumption 2, the Riemannian Hessian of J at ϕ ∈ M is a
linear operator from TϕM to itself acting in the following way

Hess(J )(ϕ)(v) = Tµϕ

(
δ2J
δϕ2 (ϕ) (v ◦ ϕ) ◦ ϕ−1

)
+ T ′

µϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1, v

)
, (2.165)
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where we defined the operator T ′
µϕ

: L2
µϕ
×H → H as

T ′
µϕ

(f, w) =
∫
Rd

(f(x)w(x)⊤)k2(·, x)dµϕ, (2.166)

and k2 denotes the gradient of the kernel k in the second component, namely k2(x, x′)i :=
∂x′

i
k(x, x′).

Proof. The Riemannian Hessian Hess(J )(ϕ) of J at ϕ is the linear operator such that

d2

dt2
J (ψt)

∣∣∣∣∣
t=0

= gϕ (Hess(J )(ϕ)(∂tψt|t=0), ∂tψt|t=0) , (2.167)

for all geodesics (ψt)t∈(−ε,ε) ⊂M with ψ0 = ϕ and vt := ∂tψt ∈ TϕM. Note that for any
geodesic it formally holds

gϕ
(
∂2
t ψt
∣∣∣
t=0

, w
)
, ∀w ∈ TϕM, (2.168)

where ∂2
t ψt formally denotes the covariant acceleration. Let us now compute the left-hand

side of (2.167)

d2

dt2
J (ψt)

∣∣∣∣∣
t=0

= d2

dt2
J
(
ϕ+

∫ t

0
vs ◦ ψsds

)∣∣∣∣∣
t=0

= d

dt

∫
Rd

δJ
δϕ

(
ϕ+

∫ t

0
vs ◦ ψsds

)⊤
(vt ◦ ψt)dµ

∣∣∣∣∣
t=0

=
∫
Rd

(vt ◦ ψt)⊤ d

dt

δJ
δϕ

(
ϕ+

∫ t

0
vs ◦ ψsds

)
dµ

∣∣∣∣
t=0

+
∫
Rd

δJ
δϕ

(
ϕ+

∫ t

0
vs ◦ ψsds

)⊤ d

dt
(vt ◦ ψt)dµ

∣∣∣∣
t=0

.

(2.169)

The first term of the last expression in (2.169) reads∫
Rd

δ2J
δϕ2 (ϕ) (v0 ◦ ϕ)⊤(v0 ◦ ϕ)dµ

=
∫
Rd

(
δ2J
δϕ2 (ϕ) (v0 ◦ ϕ) ◦ ϕ−1

)⊤

v0dµϕ

=
〈
Tµϕ

(
δ2J
δϕ2 (ϕ) (v0 ◦ ϕ) ◦ ϕ−1

)
, v0

〉
H
.

(2.170)

Note that this is well defined as δ2J
δϕ2 (ϕ) (v0◦ϕ) ∈ L2

µ(Rd) by assumption and v0 ∈ L2
µϕ

(Rd)
as a consequence of Assumption 2. Before advancing in the computations, we remark that
Zhou [2008] shows how, owing to the regularity of K, k2(·, x)⊤β ∈ G for all β ∈ Rd and
the following characterization of derivative evaluation holds

(∂xw(x)β)i =
〈
k2(·, x)⊤β, wi

〉
G
, (2.171)
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for all β ∈ Rd and w ∈ H. Then, the second term in (2.169) can be recast as

∫
Rd

δJ
δϕ

(ϕ)⊤ (((∂xv0) ◦ ϕ)v0 ◦ ϕ) dµ

=
∫
Rd

δJ
δϕ

(ϕ) (x)⊤
〈
k2(·, ϕ(x))⊤v0(ϕ(x)), v0

〉
H
dµ(x)

=
〈∫

Rd

δJ
δϕ

(ϕ) (x)k2(·, ϕ(x))⊤v0(ϕ(x))dµ(x), v0

〉
H

=
〈
T ′
µϕ

(
δJ
δϕ

(ϕ) ◦ ϕ−1, v0

)
, v0

〉
H
,

(2.172)

where we exploited (2.168) in order to discard the term involving ∂2
t ψt. This completes

the proof.

Let us now formally state the Riemannian Newton flow we are interested in. Sidestep-
ping the important issue of Hessian invertibility, the relevant geometric evolution equation
is

∂tϕt = −Hess(J )(ϕt)−1 (grad(J )(ϕt)) . (2.173)

We leave a more thorough analysis of this evolution equation as future work. Mirroring
the gradient flow case, the next step is to more precisely specify the Newton flow for the
the discrete functional J N in (2.158).

Proposition 2.2.9. With the same notation as in the previous section, the Hessian of
the discrete functional J N in (2.158) acts as

Hess(J N )(ϕ)(v) =
N∑
i=1

(p(i)v(z(i))⊤)k2(·, z(i)) +K(·, z(i))
N∑
j=1

h(i,j)v(z(j))

 (2.174)

where we defined

h(i,j) := ∂z(j)∂z(i)Ĵ N (z(1), . . . , z(N)). (2.175)

Proof. Here we take a slightly different approach with respect to the infinite dimensional
case and exploit the fact that

Hess(J N )(ϕ)(∂tψt|t=0) = d

dt
grad(J N )(ψt)

∣∣∣∣
t=0

, (2.176)

(ψt)t∈(−ε,ε) ⊂M being a sufficiently regular curve with ψ0 = ϕ and vs := ∂tψt|t=s ∈ TϕM.
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Then, let us compute

d

dt
grad(J N )(ψt)

∣∣∣∣
t=0

= d

dt

N∑
i=1
K
(
·, ϕ(x(i)) +

∫ t

0
vs(ψs(x(i)))ds

)

×∂z(i)Ĵ N

(
ϕ(x(1)) +

∫ t

0
vs(ψs(x(1)))ds, . . . , ϕ(x(N)) +

∫ t

0
vs(ψs(x(N)))ds

) ∣∣∣∣
t=0

=
N∑
i=1

d

dt
K
(
·, ϕ(x(i)) +

∫ t

0
vs(ψs(x(i)))ds

)∣∣∣∣
t=0

p(i)

+K
(
·, z(i)

) d

dt
∂z(i)Ĵ N

(
ϕ(x(1)) +

∫ t

0
vs(ψs(x(1)))ds, . . . , ϕ(x(N)) +

∫ t

0
vs(ψs(x(N)))ds

)∣∣∣∣
t=0

=
N∑
i=1

(p(i)v0(z(i))⊤)k2(·, z(i)) +K(·, z(i))
N∑
j=1

h(i,j)v0(z(j))

 ,
(2.177)

which concludes the proof.

Propagating the Newton flow dynamics entails computing the Newton descent direction
at each time t, i.e. one must solve

Hess(J N )(ϕ)(v) = −grad(J N )(ϕ), (2.178)

for v ∈ H. The fist challenge which arises in this setting, then, is that there is no obvious
finite dimensional subspace of H where to look for v in. Furthermore, it is not clear if no
solutions, one solution or multiple solutions exist. In order to gain further insight, let us
first define the subspace S := S1 ∪ S2 where

S1 :=
{
K(·, z(i))β

∣∣∣ β ∈ Rd, i = 1, . . . , N
}
,

S2 :=
{
p(i)(k2(·, z(i))⊤β)

∣∣∣ β ∈ Rd, i = 1, . . . , N
}
.

(2.179)

Proposition 2.2.10. Under assumption 2, for all ϕ ∈ M the Riemannian Hessian of
J N at ϕ is a linear, continuous and compact operator. Furthermore, S⊥

1 is in the kernel
of Hess(J N )(ϕ).

Proof. The linearity is trivial, while the continuity follows from the boundedness of the
kernel K and its first derivatives. Furthermore, note that the image of Hess(J N )(ϕ)(v)
is in S which is finite dimensional, hence the compactness. Finally, taking v ∈ S⊥

1 yields
v(z(i)) = 0 for all i = 1, . . . , N , which trivially implies Hess(J N )(ϕ)(v) = 0.

Proposition 2.2.10 immediately implies that Hess(J N )(ϕ)(v) is never invertible. This
makes the Newton system in (2.178) ambiguous. Among the strategies to overcome this
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issue one may pursue, we propose to consider, instead of Hess(J N )(ϕ), a damped version

Hess(J N )(ϕ) + ωI, (2.180)
ω > 0 being the damping parameter. In other words, we modify (2.178) and consider the
following equation(

Hess(J N )(ϕ) + ωI
)

(v) = −grad(J N )(ϕ), v ∈ H, (2.181)

defining the descent direction at ϕ. Then, the resulting Riemannian damped Newton flow
formally reads

∂tϕt = vt,(
Hess(J N )(ϕt) + ωtI

)
(vt) = −grad(J N )(ϕt),

(2.182)

where we introduced a possible time-dependency in the damping parameter ωt. Let us
now prove that the linear equation in H in (2.182) can be reduced to a finite dimensional
problem. First, let us introduce some vectorized notation:

K′[z,p] :=

p
(1)k2(z(1), z(1))⊤ . . . p(N)k2(z(1), z(N))⊤

... . . . ...
p(1)k2(z(N), z(1))⊤ . . . p(N)k2(z(N), z(N))⊤

 ∈ RdN×dN (2.183)

and

K′′[z,p] :=

 (p(1))⊤p(1)k12(z(1), z(1)) . . . (p(1))⊤p(N)k12(z(1), z(N))
... . . . ...

(p(N))⊤p(1)k12(z(N), z(1)) . . . (p(N))⊤p(N)k12(z(N), z(N))

 ∈ RdN×dN

(2.184)
where

k12(x, x′)ij := ∂xi∂x′
j
k(x, x′), (2.185)

are the kernel matrix derivatives. Note the dependence on z and p, hence on ϕ and J N

respectively. Moreover, let
v[z] := (v(z(1)); . . . ; v(z(N))) ∈ RdN ,

v′[z,p] := (∂zv(z(1))⊤p(1); . . . ; ∂zv(z(N))⊤p(N)) ∈ RdN ,

H[z] :=
(
h(i,j)

)
ij
∈ RdN×dN ,

(2.186)

be the vector of evaluations of the descent direction v in the points z(i), the vector of
derivatives of the descent direction in z(i) along p(i) and the Euclidean Hessian of Ĵ N .
Proposition 2.2.11. The damped Newton linear system in (2.181) in H is equivalent to
the following linear systems

(K′[z,p] + K[z]H[z] + ωI)v[z] = −Kp, (2.187)
(K′′[z,p] + K′[z,p]⊤H[z])v[z] + ωv′[z,p] = −(K′)⊤p, (2.188)(

K[z] K′[z,p]
K′[z,p]⊤ K′′[z,p]

)
β =

(
v[z]

v′[z,p]

)
, (2.189)
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where β ∈ R2dN and

v =
N∑
i=1

(
K(·, z(i))β(i) + p(i)(k2(·, z(i))⊤β(i+N))

)
. (2.190)

Proof. Denote PS⊥ the projection operator from H onto the subspace S. Applying PS⊥

to both sides of (2.181) yields
PS⊥v = 0, (2.191)

namely v ∈ S. Hence, we can represent v as in (2.190). Then, projecting Hess(J N )(ϕ)(v)
onto K(·, z(r))β gives〈

K(·, z(i))β,Hess(J N )(ϕ)(v)
〉

H

=
N∑
i=1

β⊤p(i)v(z(i))⊤k2(z(r), z(i)) + β⊤K(z(r), z(i))
N∑
j=1

h(i,j)v(z(j))

 , (2.192)

while the result of doing the same for v and grad(J N )(ϕ) is

β⊤v(z(r)), β⊤
N∑
i=1
K(z(r), z(i))p(i), (2.193)

respectively. As this is true for all β ∈ Rd and r = 1, . . . , N equation (2.187) follows. We
then must perform the same projections onto p(r)k2(·, z(r))⊤β which yield〈

p(r)k2(·, z(r))⊤β,Hess(J N )(ϕ)(v)
〉

H

=
N∑
i=1

β⊤(p(r))⊤p(i)k12(z(r), z(i))v(z(i)) + β⊤k2(z(i), z(r))(p(r))⊤
N∑
j=1

h(i,j)v(z(j))

 ,
(2.194)

and

β⊤∂zv(z(r))⊤p(r), β⊤
N∑
i=1

k2(z(i), z(r))(p(r))⊤p(i), (2.195)

respectively. This holds for all β ∈ Rd and r = 1, . . . , N and equation (2.188) is proven.
Finally, equation (2.189) follows from the fact that v ∈ S.

The above proposition effectively reduces (2.182) to a finite-dimensional problem. The
damped Newton evolution equation, indeed, is equivalent to

żt = vt[zt], (2.196)

where computing vt[zt] involves the solution of two linear systems of sizes dN and 2dN
respectively (note that v′

t[zt,pt] can be deduced from (2.188) by rearranging the terms).
Therefore, we achieved the goal of enriching the gradient flow with second order informa-
tion, yet keeping the problem computationally tractable and, more importantly, decoupled
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across time. Clearly, the cost to compute each descent direction is larger, however we ex-
perimentally show in Chapter 3 that this comes with a significant gain in convergence
speed.

Note that the difference between the damped Newton flow (2.182) and the gradient
flow (2.162) lies not only in the optimization strategy, but in principle they may converge
(if they converge at all) to a different solution. In other words, not only the controls are
different as a consequence of the optimization algorithm, but the maps limt→∞ ϕGF

t and
limt→∞ ϕDNF

t may be different as well since J N does not feature a unique minimum in
general. This is also evident from the fact that, for the damped Newton flow, the subspace
where the control lies is different than any other we have seen so far as it involves the kernel
derivatives. If this is indeed the case, the interpretation from the implicit regularization
(assuming there is any) point of view would be that the two optimization algorithms select
solutions according to different optimality criteria.
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Chapter 3

Training algorithms and
numerical experiments

In this Section we detail some training algorithms for Kernel ODEs as introduced in
Chapter 2. The underlying motivating factors are essentially two: either the speed-up of
training with respect to classic approaches (however at the cost of increased computational
complexity), or the wish to reduce the cost per iteration. A batch of algorithms fulfill the
former goal and is based on the formulation of the problem given in Section 2.1, while
the other proposed algorithms stem from the latter motivating factor and follow from the
ideas introduced in Section 2.2. Finally, we perform numerical tests on synthetic data in
order to explore their effectiveness.

3.1 Algorithms
Throughout this section we will make use of the following vectorized notation with respect
the layer index l, namely

z⃗ := (z0; . . . ; zL) ∈ RdN(L+1),

β⃗ := (β0; . . . ; βL) ∈ RdN(L+1),

p⃗ := (p0; . . . ; pL) ∈ RdN(L+1).

(3.1)

Furthermore, we consider a regression space Vm which is the linear span of basis functions
f1, . . . , fm. Then, given a vector of N data points z ∈ RdN we define the associated
Vandermonde matrix V[z] ∈ RN×m as V[z] := (fj(z(i)))ij .

3.1.1 Preconditioned gradient descent
The first algorithm we propose is a preconditioned version of gradient descent. With the
notation introduced in Proposition 2.1.8, consider a uniform time grid with step size h,
s = 1, and a11 = 0, b1 = 1, namely the Explicit Euler method. Recall that the discrete
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Hamiltonian reads

H(z,β,p) = p⊤K[z]β − γ

2 β⊤K[z]β. (3.2)

Fix some layer l, then, taking the gradient with respect to the control of the above gives

∂βH(z,β,p) = K[z](p− γβ), (3.3)

where, for notational simplicity, we dropped the layer index. Standard gradient descent
prescribes to update the control as

β(k+1) = β(k) + ωK[z(k)](p(k) − γβ(k)), (3.4)

ω > 0 being a damping parameter and k = 1,2, . . . the iteration index (note the “+” sign
in the gradient update since we take sign conversions such that the Hamiltonian must be
maximized). On the other hand, if the kernel satisfies Assumption 1 and, hence, K[z] is
invertible, the MSA Algorithm 1.3.2 suggests to maximize the Hamiltonian and set

β(k+1) = 1
γ

p(k). (3.5)

Here we choose to interpolate between these two methodologies and propose a soft Hamil-
tonian maximization update by solving the system

(I + ωγK[z(k)])∆ = ωK[z(k)](p(k) − β(k)) (3.6)

and setting

β(k+1) = β(k) + ∆. (3.7)

Note that for ω →∞ we recover the MSA update, while for ω → 0 the gradient descent
step. The choice of ω is then delegated to a line-search-type procedure, which checks that
the time-discretized functional, which we recall being

J (⃗z, β⃗) := 1
2N E(zL,y) + hγ

2

L−1∑
l=0

β⊤
l K[zl]βl, (3.8)

decreases with the new set of controls. The full procedure is described in Algorithm 3.1.1.
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Algorithm 3.1.1: Preconditioned gradient descent (PGD) algorithm
Input: A sample x, observations y, initial controls β

(0)
0 , . . . ,β

(0)
L−1, kernel K,

maximum iterations M , tolerance tol, line search parameter ω0, regression
basis functions f1, . . . , fm.

Output: Approximation function ĝ.
1 Set iteration counter k ← 0 ;
2 Set z(0)

0 = x
3 for l = 0, . . . , L− 1 do
4 Set z(0)

l+1 = z(0)
l + hK[z(0)

l ]β(0)
l

5 end

6 Compute regression parameters c(0) = arg minc∈Rm

∥∥∥V[z(0)
L ]c− y

∥∥∥2

2
7 Set iteration counter k ← 0
8 while k < M do
9 Set p(k)

L = − 1
2N ∂zE(z(k)

L ,y)
10 for l = 0,. . . ,L-1 do
11 Set p(k)

l = p(k)
l+1 + h∂z

(
(p(k)

l+1)⊤K[z(k)
l ]β(k)

l −
γ
2 (β(k)

l )⊤K[z(k)
l ]β(k)

l

)
12 end
13 Set ω = ω0
14 do
15 Set znew

l = z(k)
l , βnew

l = β
(k)
l , l = 0, . . . , L

16 for l = 0, . . . , L− 1 do
17 Compute update ∆l solving

(I + ωγK[z(k)
l ])∆l = ωK[z(k)

l ](p(k)
l+1 − β

(k)
l ) (3.9)

18 Update βnew
l ← βnew

l + ∆l

19 Set znew
l+1 = znew

l + hK[znew
l ]βnew

l

20 end
21 Update ω ← αω

22 while J (⃗znew, β⃗new) ≥ J (⃗z(k), β⃗(k));
23 Set z(k+1)

l = znew
l , β

(k+1)
l = βnew

l , l = 0, . . . , L
24 Compute regression parameters c(k+1) = arg minc∈Rm

∥∥∥V[z(k+1)
L ]c− y

∥∥∥2

2
25 end
26 Compute the surrogate function ĝ from z⃗(M), β⃗(M) and c(M).

3.1.2 Time-parallel training algorithm

Consider the usual time grid time grid 0 = t0 < t1 . . . < tL = 1 on the time interval [0,1]
and introduce two sets of parameters {al}Ll=0 and {bl}Ll=0 corresponding to approximations
of the state z and the adjoint state p at times t0, . . . , tL. Define the nonlinear solution
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operators d and q for the two point boundary value problem (2.41) on the subinterval
[tl, tl+1] with initial condition ztl = al and final condition ptl+1 = bl+1, defined so that d
propagates the state z forward to tl+1 and q propagates the adjoint backward to tl:(

ztl+1

ptl

)
=
(

d(al,bl+1)
q(al,bl+1)

)
. (3.10)

Using these solution operators, we can write the two-point boundary value problem as a
system of subproblems, which have to satisfy the matching conditions

a0 − x = 0, b0 − q(a0,b1) = 0,
a1 − d(a0,b1) = 0, b1 − q(a1,b2) = 0,

...
...

aL−1 − d(aL−2,bL−1) = 0, bL−1 − q(aL−1,bL) = 0,

aL − d(aL−1,bL) = 0, bL + 1
2N ∂zE(aL,y) = 0.

(3.11)

This nonlinear system of equations can be solved using Newton’s method. Collecting
the unknowns in vectors a⃗ = (a0; . . . ; aL) and b⃗ = (b0; . . . ; bL), we obtain the nonlinear
system

f(a⃗, b⃗) =



a0 − x
a1 − d(a0,b1)

...
aL − d(aL−1,bL)

b0 − q(a0,b1)
...

bL−1 − q(aL−1,bL)
bL + 1

2N ∂zE(aL,y)


(3.12)

Using Newton’s method to solve f = 0 gives the iteration

J(a⃗(k), b⃗(k))
(

∆a⃗(k)

∆b⃗(k)

)
= −f(a⃗(k), b⃗(k)),

(
a⃗(k+1)

b⃗(k+1)

)
=
(

a⃗(k)

b⃗(k)

)
+ ω

(
∆a⃗(k)

∆b⃗(k)

)
(3.13)

where, again, ω > 0 denotes a damping parameter and k = 1,2, . . . denotes the iteration
index. The Jacobian matrix here is given by

J(a⃗, b⃗) =



I 0
−∂ad(a0,b1) I −∂bd(a0,b1)

. . . . . . . . .
−∂ad(aL−1,bL) I −∂bd(aL−1,bL)

−∂aq(a0,b1) I −∂bq(a0,b1)
. . . . . . . . .
−∂aq(aL−1,bL) I −∂bq(aL−1,bL)

1
2N ∂

2
zE(aL,y) I


. (3.14)
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This is already enough to have a working algoritm to solve the problem. Indeed, we can
introduce the discretized versions d̂RK and q̂RK of the solution operators corresponding
to a specific Runge-Kutta method, and, in turn, the discrete function f̂RK and Jacobian
ĴRK. Then, we can set up a Newton iteration with the discretized system. A particularly
favourable choice in this sense is given by the symplectic Euler method, namely

q̂SE(al,bl+1) = al + hl
γ

K[al]bl+1,

q̂SE(al,bl+1) = bl+1 + hl
2γ ∂z

(
b⊤
l+1K[al]bl+1

)
.

(3.15)

The desirable property here is that symplectic Euler effectively decouples the solution
operators so that computing (

ztl+1

ptl

)
=
(

d̂SE(al,bl+1)
q̂SE(al,bl+1)

)
(3.16)

is a matter of a single forward and backward propagation. This, in turn, decouples the Ja-
cobian computation, namely ∂ad̂SE(a0,b1), ∂bd̂SE(a0,b1), ∂aq̂SE(a0,b1) and ∂bq̂SE(a0,b1)
can be separately computed. Recall now from the proof of Proposition 2.1.8 that, once
the symplectic Euler discretization scheme is employed the reduced (with respect to the
controls) Lagrangain reads

L(⃗z, p⃗) := 1
2N E(zL,y)+ h

2γ

L−1∑
l=0

p⊤
l+1K[zl]pl+1 +

L−1∑
l=0

p⊤
l+1 (zl+1 − zl)+p⊤

0 (z0−x). (3.17)

Then, it is easy to see that f̂SE(a⃗, b⃗) is (up to a reordering of the components) the gradient
of L(a⃗, b⃗), namely

∂z⃗L(a⃗, b⃗) = f̂SE(a⃗, b⃗)dN(L+1)+1:2dN(L+1), ∂p⃗L(a⃗, b⃗) = f̂SE(a⃗, b⃗)1:dN(L+1). (3.18)

Then, instead of the standard Newton iteration, we consider the damped Newton system(
ĴSE(a⃗(k), b⃗(k)) + ρ(k)

(0 −I
I 0

))(∆a⃗(k)

∆b⃗(k)

)
= −f̂SE(a⃗(k), b⃗(k)), (3.19)

ρ(k) > 0 being the relevant damping parameter. Note that the minus sign is a consequence
of the fact that, ideally for ρ→∞, we want to perform a gradient descent step in the state
variables, while a gradient ascent step for the adjoint variables. Experimentally, it turns
out the correct scaling (with respect to the iteration k) for ρ(k) is to make it proportional
to the norm of the residual, namely

ρ(k) = ρ(0)
∥∥∥f̂SE(a⃗(k), b⃗(k))

∥∥∥
2
. (3.20)

Instead, in order to adaptively choose the correct amount of damping in ω we implement a
a backtracking line-search based on the Armijo–Goldstein (Armijo [1966]) condition. The
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very simple idea behind this scheme is to make sure at each iteration that the updated
solution achieves a sufficiently large amount of decrease in a performance metric, which
here we take to be

∥∥∥f̂SE(a⃗, b⃗)
∥∥∥2

2
, namely we require

∥∥∥f̂SE(a⃗(k) + ω∆a⃗(k), b⃗(k) + ω∆b⃗(k))
∥∥∥2

2

<
∥∥∥f̂SE(a⃗(k), b⃗(k))

∥∥∥2

2
+ 2ωτ f̂SE(a⃗(k), b⃗(k))⊤ĴSE(a⃗(k), b⃗(k))

(
∆a⃗(k)

∆b⃗(k)

) (3.21)

for the update to be accepted. Here

f̂SE(a⃗(k), b⃗(k))⊤ĴSE(a⃗(k), b⃗(k))
(

∆a⃗(k)

∆b⃗(k)

)
(3.22)

measures the expected amount of decrease of f̂SE moving along descent direction
(
∆a⃗(k); ∆b⃗(k)

)
,

while τ represents a scaling parameter, usually set to τ = 10−4. Each time the Armijo–Goldstein
condition is not satisfied the damping amount is shrunken by a factor of α ∈ (0,1) (hence
the term “backtracking”). The resulting algorithm is summarized1 in Algorithm 3.1.2.

The interesting property of this optimization scheme lies in the fact that the training
is parallelized across the layers. The drawback, however, is in the computational price for
each iteration which involves the solution of a linear system of size O(dNL). This must
be compared with the linear systems for the preconditioned gradient method which are
instead of size O(dN). The wish to control the computational complexity with respect to
the number of layers motivates the next proposed training algorithm.

1Note that we use f and J instead of f̂SE and ĴSE for ease of notation.
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Algorithm 3.1.2: Time-parallel (TP) algorithm
Input: A sample x, observations y, initial solutions a⃗(0), b⃗(0), kernel K,

maximum iterations M , tolerance tol, damping ρ(0), line search
parameters ω, τ and α, regression basis functions f1, . . . , fm.

Output: Approximation function ĝ.
1 Set iteration counter k ← 0 and initialize residual r ←

∥∥∥f(a⃗(0), b⃗(0))
∥∥∥

2
;

2 while r > tol and k ≤M do
3 Compute J(a⃗(k), b⃗(k)), f(a⃗(k), b⃗(k)) and ρ(k) = ρ(0)

∥∥∥f(a⃗(k), b⃗(k))
∥∥∥

2
;

4 Compute regression parameters c(k) = arg minc∈Rm

∥∥∥V[z(k)
L ]c− y

∥∥∥2

2
;

5 Compute descent direction by solving

(
J(a⃗(k), b⃗(k)) + ρ(k)

(0 −I
I 0

))(∆a⃗(k)

∆b⃗(k)

)
= −f(a⃗(k), b⃗(k)); (3.23)

6 Compute expected decrease

m← 2f(a⃗(k), b⃗(k))⊤J(a⃗(k), b⃗(k))
(

∆a⃗(k)

∆b⃗(k)

)
(3.24)

7 of squared residual ;
8 Set t← τm, line search counter s← 0 and initialize ω(0) ← ω ;
9 while∥∥∥f(a⃗(k) + ω(j)∆a⃗(k), b⃗(k) + ω(j)∆b⃗(k))

∥∥∥2

2
>
∥∥∥f(a⃗(k), b⃗(k))

∥∥∥2

2
+ ω(j)t (3.25)

do
10 Set ω(j+1) ← αω(j) ;
11 Update counter j ← j + 1 ;
12 end
13 Update solution (

a⃗(k+1)

b⃗(k+1)

)
=
(

a⃗(k)

b⃗(k)

)
+ ω(j)

(
∆a⃗(k)

∆b⃗(k)

)
; (3.26)

14 Update residual r ←
∥∥∥f(a⃗(k+1), b⃗(k+1))

∥∥∥
2

and counter k ← k + 1 ;
15 end
16 Compute the surrogate function ĝ from a⃗(k), b⃗(k) and c(k).

3.1.3 Time-parallel multi-grid training algorithm
Here we introduce a training method which exploits two levels of time discretization in
order to improve the scalability of Algorithm 3.1.2 with respect to the number of layers

87



Training algorithms and numerical experiments

L. To this end, introduce a coarse uniform grid 0 = T0 < T1 . . . < TLout = 1 of granularity
hout = 1/Lout. Then, consider the same nonlinear system introduced in the previous
section

f(a⃗, b⃗) =



a0 − x
a1 − d(a0,b1)

...
aLout − d(aLout−1,bLout)

b0 − q(a0,b1)
...

bLout−1 − q(aLout−1,bLout)
bLout + 1

2N ∂zE(aLout ,y)


(3.27)

involving the coupled forward-backward solution operators d and q. Following Gander
et al. [2020], we propose to approximate

J(a⃗, b⃗) ≈ ĴSE(a⃗, b⃗), (3.28)

ĴSE(a⃗, b⃗) being the Jacobian when the symplectic Euler discretization scheme is employed
on the coarse grid. Essentially, we approximate the true Jacobian with one of lower
cost, where in each subinterval of the coarse grid the problem is solved in one step with
symplectic Euler. Note that, as we remarked in the previous section, the computation
of this Jacobian is easy since employing d̂SE and q̂SE effectively decouples the solution
operators. In order to make the problem fully discrete, consider the i-th coarse interval
[Ti−1, Ti] and introduce a fine grid Ti−1 = ti,0 < ti,1 . . . < ti,Lin = Ti of granularity
hin = 1/Lin. Then, we may solve the local problems on the fine grid with, e.g., Algorithm
3.1.2. The resulting procedure is reported2 in Algorithm 3.1.3. We remark that, with this
setup, the computation of the local problems may be parallelized. Furthermore, the latter
involve solving linear systems of size O(dNLin), while the outer problem on the coarse
grid requires the solution of linear systems of size O(dNLout). This, then, enables a better
control on the computational complexity of the algorithm with respect to the total layers
in the network L = LoutLin.

2For ease of notation we keep the solution to the local problem implicit and focus only on the outer
parameters.
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Algorithm 3.1.3: Time-parallel multi-grid (TPMG) algorithm
Input: A sample x, observations y, number of coarse grid layers Lout, number of

coarse grid layers Lin, initial solutions a⃗(0), b⃗(0), kernel K, maximum
iterations M , tolerance tol, line search parameters ω, τ and α, regression
basis functions f1, . . . , fm.

Output: Approximation function ĝ.
1 Set iteration counter k ← 0 and initialize residual r ←

∥∥∥f(a⃗(0), b⃗(0))
∥∥∥

2
;

2 while r > tol and k ≤M do
3 Solve local problems on time intervals [Ti−1, Ti], i = 1, . . . , Lout ;
4 Compute f(a⃗(k), b⃗(k)) ;
5 Compute approximated Jacobian J(a⃗(k), b⃗(k)) ;
6 Compute regression parameters c(k) = arg minc∈Rm

∥∥∥V[z(k)
Lout

]c− y
∥∥∥2

2
;

7 Compute descent direction by solving

J(a⃗(k), b⃗(k))
(

∆a⃗(k)

∆b⃗(k)

)
= −f(a⃗(k), b⃗(k)); (3.29)

8 Compute approximated expected decrease

m← 2f(a⃗(k), b⃗(k))⊤J(a⃗(k), b⃗(k))
(

∆a⃗(k)

∆b⃗(k)

)
(3.30)

9 of squared residual ;
10 Set t← τm, line search counter s← 0 and initialize ω(0) ← ω ;
11 while∥∥∥f(a⃗(k) + ω(j)∆a⃗(k), b⃗(k) + ω(j)∆b⃗(k))

∥∥∥2

2
>
∥∥∥f(a⃗(k), b⃗(k))

∥∥∥2

2
+ ω(j)t (3.31)

do
12 Set ω(j+1) ← αω(j) ;
13 Update counter j ← j + 1 ;
14 end
15 Update solution (

a⃗(k+1)

b⃗(k+1)

)
=
(

a⃗(k)

b⃗(k)

)
+ ω(j)

(
∆a⃗(k)

∆b⃗(k)

)
; (3.32)

16 Update residual r ←
∥∥∥f(a⃗(k+1), b⃗(k+1))

∥∥∥
2

and counter k ← k + 1 ;
17 end
18 Compute the surrogate function ĝ from a⃗(k), the solutions to the local problem at

iteration k and b⃗(k) and c(k).
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3.1.4 Riemannian gradient descent
Let us now introduce the training algorithm inspired by the Riemannian gradient flow
introduced in Section 2.2.3. In particular, we turn to the time discretization. Typically,
one considers Riemannian gradient descent, instead of the ideal gradient flow, for practical
applications. The problem of discretizing time in Riemannian optimization is that the
updates lead the solution to escape the manifold the optimization takes palace on (in our
case the manifold M of diffeomorphisms). The solution of Riemannian gradient descent
is to exploit so-called retractions, which essentially at each step project the updated
solution back onto the manifold. We refer the reader to Chapter 4 of Boumal [2022]
for further details. In our setting, however, staying in the manifold during optimization
entails the solution of an ODE integration problem which, clearly, can not happen and
necessarily needs to be discretized. With this in mind, then, our strategy is to allow
for the optimization algorithm to take the solution out of the manifold, and regard the
continuous-time problem just as an idealized version of the discrete one. The hope is that
the two solutions will not differ by much. With the notation of Section 2.2.3, this means
that we consider the following discrete dynamics

ϕl+1 = ϕl − hlgrad(J N )(ϕl). (3.33)

Note that we will refer to this scheme, though somewhat improperly, as Riemannian
gradient descent nonetheless. The iteration index l should remark that, in this setting,
the layers and optimization steps coincide. In a way, we think of the neural network itself
as an optimizer which, through its layers, modifies the inputs in order to minimize the
loss functional. The choice of step size is left up to a backtracking line-search strategy.
The latter can be seen as an adaptive choice of the time discretization granularity. More
precisely, we choose an initial value for hl and shrink it by a factor of α until

J N (ϕl − hlgrad(J N )(ϕl)) < J N (ϕl)− hlτ
∥∥∥grad(J N )(ϕl)

∥∥∥2

H
, (3.34)

τ being the usual scaling parameter set to 10−4. Here
∥∥grad(J N )(ϕl)

∥∥2
H measures the

expected decrease in J N when moving along direction grad(J N )(ϕl). Note that, even
though we have presented Riemannian gradient descent focusing on the maps ϕl, as ex-
plained in Section 2.2.3 we only need to track the trajectories of the training particles,
so that all of the above involves finite-dimensional computations only. The complete
algorithm is shown in Algorithm 3.1.4.

The appeal of this algorithm stems from its simplicity. The controls are decoupled
across layers and, hence, each iteration is extremely cheap to compute with respect to the
previous proposed algorithms. Indeed, it involves a simple gradient computation and a
matrix-vector multiplication of size O(dN). The drawback comes from the fact that we do
not control the necessary number of layers of the network in order to achieve a sufficient
amount of decrease in the objective functional. Then, if convergence is slow, this may
result in networks with many layers which are expensive to evaluate. On a positive note,
this scheme allows for a very cheap validation strategy for the number of optimization
steps. Indeed, one can employ Algorithm 3.1.4 with some number of iterations L to get
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(z0, . . . , zL−1), (β0, . . . ,βL−1), (c0, . . . , cL) and, hence, the maps ϕ1, . . . , ϕL. Then, given
a validation sample yval := (g(x(1)

val), . . . , g(x
(Nval)
val )) of size Nval, it is sufficient to compute

zval
l = (ϕl(x(1)

val), . . . , ϕl(x
(Nval)
val )), (3.35)

and the associated loss ∥∥∥V[zval
l ]cl − yval

∥∥∥2

2
, (3.36)

for each layer l = 1, . . . , L. This allows to choose the layer L⋆ which achieves the smallest
validation loss.

Algorithm 3.1.4: Riemannian gradient descent (RGD) algorithm
Input: A sample x, observations y, kernel K, maximum number of layers L, line

search parameters h, τ and α, regression basis functions f1, . . . , fm.
Output: Approximation function ĝ.

1 Set z0 = x ;
2 for l = 0, . . . , L− 1 do
3 Compute the Euclidean gradient βl = ∂zĴ N (zl) ;
4 Compute the Riemannian gradient vl = K[zl]βl ;
5 Compute regression parameters cl = arg minc∈Rm ∥V[zl]c− y∥2

2 ;
6 Set hl = h ;
7 while Ĵ N (zl − hlvl) > Ĵ N (zl)− hlτ

∥∥grad(J N )(ϕl)
∥∥2

H do
8 Update hl ← αhl ;
9 end

10 Set zl+1 = zl − hlvl ;
11 end
12 Compute regression parameters cL = arg minc∈Rm ∥V[zL]c− y∥2

2 ;
13 Compute the surrogate function ĝ from (z0, . . . , zL−1), (β0, . . . ,βL−1) and cL−1.

In order to further reduce the cost per iteration, we propose a stochastic Riemannian
optimization strategy as well. More specifically, we consider a mini-batch version of the
Riemannian gradient descent algorithm just introduced. The essence of a mini-batch
approach is to, at each iteration, randomly split the data into B subsets (the mini-batches)
and then perform a gradient descent step where the loss functional is computed with the
mini-batch data only, for each of the mini-batches. More in detail, let σ : {1, . . . , N} →
{1, . . . , N} denote a random permutation. Then, fix iteration index l (which we drop for
notational convenience), denote NB := N/B the batch size and consider the mini-batch
of observations

z(b) := (z(σ(bNB+1)); . . . ; z(σ((b+1)NB))), y(b) := (y(σ(bNB+1)); . . . ; y(σ((b+1)NB))), (3.37)

for b = 0, . . . , B − 1. Furthermore, define the mini-batch discrete functional

Ĵ NB (z(b),y(b)) = min
f∈Vm

{
1
NB

NB∑
i=1

(
f(z(σ(bNB+i)))− y(σ(bNB+i))

)2
}
. (3.38)
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Then, instead of one full gradient step, we take B mini-batch gradient steps, namely we
update the particle positions as

zb+1 = zb − hbK[zb, z(b)
b ]β(b), b = 0, . . . , B − 1. (3.39)

where

β(b) := ∂zĴ NB (z(b)
b ,y(b)) (3.40)

Essentially we substitute one big gradient step with B mini-batch updates. The resulting
scheme is presented in Algorithm 3.1.5. Note that we will refer to it, though improperly,
as stochastic Riemannian gradient descent. We want to stress the fact that the result of
employing Algorithm 3.1.5 with L steps and B mini-batches is a network with LB total
layers. However, due to the fact that each control is in a NB dimensional subspace (as
opposed to an N dimensional one), the cost to evaluate the SRGD model is actually of
the same order of an RGD model with L layers.

Algorithm 3.1.5: Stochastic Riemannian gradient descent (SRGD) algorithm
Input: A sample x, observations y, kernel K, maximum number of layers L,

batch size B line search parameters h, τ and α, regression basis functions
f1, . . . , fm.

Output: Approximation function ĝ.
1 Set z0,0 = x ;
2 for l = 0, . . . , L− 1 do
3 Compute regression parameters cl = arg minc∈Rm ∥V[zl,0]c− y∥2

2 ;
4 Compute a random permutation σ : {1, . . . , N} → {1, . . . , N} ;
5 for b = 0, . . . , B − 1 do
6 Compute the Euclidean mini-batch gradient β

(b)
l = ∂zĴ NB (z(b)

l,b ,y(b));
7 Compute the Riemannian mini-batch gradient vl,b = K[zl,b, z(b)

l,b ]β(b)
l ;

8 Set hl,b = h ;
9 while

Ĵ NB ((zl,b − hl,bvl,b)(b),y(b)) > Ĵ NB (z(b)
l,b ,y(b))− hl,bτ

(
β

(b)
l

)⊤
K[z(b)

l,b ]β(b)
l

do
10 Update hl,b ← αhl,b ;
11 end
12 Set zl,b+1 = zl,b − hl,bvl,b ;
13 end
14 Set zl+1,0 = zl,B ;
15 end
16 Compute regression parameters cL = arg minc∈Rm ∥V[zL,0]c− y∥2

2 ;
17 Compute the surrogate function ĝ from (z0,0, . . . , zL−1,B−1), (β(0)

0 , . . . ,β
(B−1)
L−1 )

and c0, . . . , cL.
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3.1.5 Riemannian damped Newton
In this section we specify the damped Newton method introduced in Section 2.2.4. The
rationale for discretizing time is the same as the one for Riemannian gradient descent.
In particular, all the observations about letting the solution get out of the manifold still
apply. Let us remark that the magnitude of damping is chosen to be proportional to the
magnitude of the Riemannian gradient, namely

ωl = ω0

∥∥∥grad(J N )(ϕl)
∥∥∥

H
. (3.41)

The procedure is detailed in Algorithm 3.1.6 with the notation of Section 2.2.4. Note
that the same validation strategy proposed for Riemannian gradient descent allows for
the computation of the optimal number of optimization steps L⋆.

Algorithm 3.1.6: Riemannian damped Newton (RDN) algorithm
Input: A sample x, observations y, kernel K, maximum number of layers L,

initail damping ω0, line search parameters h, τ and α, regression basis
functions f1, . . . , fm.

Output: Approximation function ĝ.
1 Set z0 = x ;
2 for l = 0, . . . , L− 1 do
3 Compute the Euclidean gradient pl = ∂zĴ N (zl) ;
4 Compute the Riemannian gradient gl = K[zl]pl and ωl = ω0p⊤

l gl ;
5 Compute regression parameters cl = arg minc∈Rm ∥V[zl]c− y∥2

2 ;
6 Solve

(K′[zl,pl] + K[zl]H[zl] + ωlI)vl = −gl; (3.42)

7 Compute

v′
l = − 1

ωl

(
(K′′[zl,pl] + K′[zl,pl]⊤H[zl])vl + K′[zl,pl]⊤pl

)
; (3.43)

8 Solve (
K[zl] K′[zl,pl]

K′[zl,pl]⊤ K′′[zl,pl]

)(
β1
l

β2
l

)
=
(

vl
v′
l

)
; (3.44)

9 Set hl = h ;
10 while Ĵ N (zl − hlvl) >

Ĵ N (zl)− hlτ
(
(β1

l )⊤K[zl]β1
l + (β1

l )⊤K′[zl,pl]β2
l + (β2

l )⊤K′′[zl,pl]β2
l

)
do

11 Update hl ← αhl ;
12 end
13 Set zl+1 = zl − hlvl ;
14 end
15 Compute regression parameters cL = arg minc∈Rm ∥V[zL]c− y∥2

2 ;
16 Compute the surrogate function ĝ from (z0, . . . , zL−1), (p0, . . . ,pL−1),

(β1
0, . . . ,β

1
L−1), (β2

0, . . . ,β
2
L−1) and cL.
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3.2 Numerical results
In this section we turn to the numerical exploration of the presented training algorithms
with simulated regression tasks. In particular, we employ two target functions, namely
an arctangent and Gaussian bell, which act as prototypes for a discontinuity and local
feature respectively. Note that we can group the presented algorithms with respect to the
problem they solve, i.e. the regularized one of Section 2.1 and the unregularized one of
Section 2.2. In order to make clear which algorithms/optimization problem we refer to, let
us denote the former as Optimal Control (OC) algorithms/optimization problem and the
latter as Riemannian optimization (RO) algorithms/optimization problem. Furthermore,
note that in the following we are going to use zt(x) and ϕt(x) synonymously to denote
the diffeomorphism at time t applied to point x ∈ Rd. Finally, in all our experiments we
take as initial condition for the diffeomorphism the identity mapping.

3.2.1 The prototype of a discontinuity
Let us analyze the presented algorithms and the resulting models in the context of the
following example. We consider multidimensional arctangent functions, namely

gd,λ(x) = arctan(λ⊤x), x ∈ [−1,1]d, (3.45)
where λ ∈ Rd is a parameter controlling the angle and steepness of the slope at the
origin. The latter, then, controls the complexity of the target function. Indeed, letting
∥λ∥2 → ∞ makes the function approximate a discontinuity, as shown in Figure 3.1. For

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5 arctan(1x)

arctan(5x)

arctan(10x)

arctan(20x)

arctan(100x)

Figure 3.1: Arctangent function g1,λ dimensions for different values of λ ∈ R. As λ
increases, arctan(λx) approaches a discontinuity at x = 0.

these experiments we employ the RKHS H generated by the simple separable Gaussian
kernel, namely

K(x, x′) = er∥x−x′∥2
2I, (3.46)

where r > 0 is the shape parameter. We then approximate gd,λ via y(i) = gd,λ(x(i)), i =
1,2, . . . , N noiseless observations in [−1,1]d. The latter are obtained with a Quasi-Monte
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Carlo design. In particular, we choose to work with the Halton sequence. Furthermore,
we mostly employ two kinds of regression space Vm, which we denote V1 and V10. The
former denotes the space corresponding to linear regression, namely

V1 = {1, x1, . . . , xd} , (3.47)

while the latter denotes the space V1 plus all monomials of degree less or equal to 10 in
the last component, namely

V2 = V1 ∪
{
x2
d, . . . , x

10
d

}
. (3.48)

Training analysis

Let us now analyze the performance of the presented training methods. The first ques-
tion we want to address is if the proposed methodologies outperform the preconditioned
gradient method, given that some of them exploit second order information. We test this
on g1,10 for simplicity and report results in Figure 3.2. The hyperparameters setup used
for this experiment is instead reported in Table 3.1.

Algorithm N L r γ Lin Lout

PGD 10 25 5 10−4 - -
TP 10 25 5 10−4 - -
TPMG 10 25 5 10−4 5 5
RGD 10 1000 5 - - -
RDN 10 100 5 - - -

Table 3.1: Network hyperparameters used to approximate the target function g1,10 for the
various algorithms.

Let us first detail the way the TPMG algorithm is employed in practice for this ex-
periment. First, we solve the problem on the coarse grid (i.e. with Lout layers) with
the TP algorithm. Note that we also record this residual relevant to the solution of the
coarse problem in the left plot of Figure 3.2 (green line, up to around iteration 25). Then,
we use this as the initialization of the TPMG algorithm, while also fixing the regression
parameters (in some sense the TPMG adds the missing layers). This corresponds to the
rapid ascent in the residual (green line, at around iteration 25) since the one relevant to
the TPMG algorithm working on L layers is being recorded. The first observation is that,
among the OC algorithms, the second order methods improve upon the PGD in terms
of speed at which a good enough solution is found. This is particularly evident from the
plot of the residuals which shows that, within 500 iterations, it remains at around 10−1

for the PGD, while it converges rapidly to zero both for the TP and TPMG algorithms.
The Riemannian optimization algorithms show a similar trend, namely the second

order information is beneficial both in terms of speed of convergence, as expected, and
in terms generalization power of the computed solution. Furthermore, it is interesting to
notice that, due to the lack of explicit regularization, these algorithms are in principle
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able to make the test error arbitrarily small. This, especially when a richer regression
space is employed, appears to improve (sometimes drastically, as in the case of the RDN)
the performance as seen by the reported test errors.
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Figure 3.2: Training performance of the presented methodologies for the approximation
of g1,10 with N = 10 observations. The employed regression spaces are V1 (top) and V2

(bottom).

This, of course, suggests that we should further decrease the regularization in the
explicitly regularized problem the OC algorithms solve. However, these are ill-conditioned
with respect to this parameter, as it is shown in Figure 3.3, which displays the condition
number of the Jacobian matrix ĴSE of the TP algorithm through the iterations for different
values of the regularization parameter γ. Part of this behaviour is due to the fact that,
whenever linear regression is employed and, hence, all of the non-linearity of the problem
must be addressed by the diffeomorphism, the problem is itself ill conditioned. This is the
result of the diffeomorphism making the training points very close to each other in order
to mimic the shape of the arctangent function. One way this behaviour may be dampened
is by enriching the regression space with polynomials of higher degree which should help
in solving the steep gradient of the target function. In Figure 3.3 it is also shown how, at
the solution, the condition number of the kernel matrix K[zl] explodes faster over time as
the regression space size diminishes.

We further argue that it is precisely this ill conditioning effect which is responsible
for the slow convergence speed of the RGD. In order to experimentally investigate this,
in Figure 3.4 it is shown the performance, along with some training diagnostics, of the

96



3.2 – Numerical results

SRGD when employing the linear regression space V1 to approximate g1,10 with N = 20
observations, across different numbers of batchesNB (note that the RGD is recovered when
NB = 1). The condition number shown refers to the kernel matrix defining the subspace in
which the descent direction is taken, namely K[z(b)

l,b ] where z(b)
l,b denotes the chosen batch at

time t = (lB+b)/(LB). The plot suggests that improving the conditioning of the subspace
containing the gradient benefits the convergence rate as it results in gradients of larger
magnitude. The SRGD successfully achieves this simply by sub-sampling the training
points. This observation yields an unusual interpretation of stochastic gradient descent
as a way to improve the conditioning of an optimization problem. However, employing
a stochastic optimization approach with richer regression spaces becomes unstable since
the regression solution is accurate only if a sufficient number of samples is provided.
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Figure 3.3: Left: Condition number of the matrix ĴSE of the TP algorithm for different
regularization parameters γ. The experiment was carried out in dimension d = 1 with a
complexity parameter λ = 10 and N = 10 training points. Right: Condition number of
the matrix K[zt] for different sizes m of the regression space. The experiment was carried
out in dimension d = 1 with a complexity parameter λ = 10 and N = 20 training points.

Diffeomorphism analysis

The first experiment on the diffeomorphism we perform regards its representation in v :
[0,1] → H, namely the control, for the OC problem with γ = 10−5. In Figure 3.5 it
is shown the norm of the control ∥vt∥2

H over time for L = 10 and L = 100, where the
target function is again g1,10 and the number of observations is N = 10. Recall that in
the continuous time problem ∥vt∥2

H is supposed to remain constant in time as it coincides
with the Hamiltonian of the the system. In the discrete setting, Proposition 2.1.8 predicts
fluctuations in ∥vt∥2

H of the order O(L−1). This is indeed what the plot shows as we have
fluctuation of O(10−1) and O(10−2) respectively.

It is then interesting to explore the convergence of the discrete-in-time solution to the
continuous one. This is shown in Figure 3.6. This plot was constructed taking as an
approximation of the true solution, which we denote ϕ∞ and the associated vector field
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Figure 3.4: This experiment was carried out for target function g1,10 and N = 20 of
training points, across different numbers NB of batches. Top: generalization (left) and
training (right) errors over time. Bottom: condition number of the matrix K[zbatch

t ] over
time (left) and RKHS norm of the stochastic gradient over time (right). Note that in the
bottom plots the true data is transparent, while the opaque lines are smoothed versions
in order to improve readability.

v∞, one with L = 200 layers. Then, we tracked both of the errors∫ 1

0
(ϕL − ϕ∞)2dµ,

∫ 1

0

∥∥∥vLt − v∞
t

∥∥∥2

H
dt, (3.49)

ϕL and vL being, respectively, the map and vector fields solutions with L layers to the
regression problem. First, this corroborates the theoretical convergence results presented
in Section 2.1.4. Furthermore, it is interesting to notice that the L2

µ convergence in the
map seems faster than the one in L2([0,1];H).

Let us now interpret the role of the diffeomorphism in dimensions d = 1 and d = 2. For
this, we first examine the solution to the OC problem. We employ the linear regression
space V1 and then compare it with the solution found for a the richer regression space
V2. The rest of the network hyperparameters for these experiments are summed up in
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Figure 3.5: RKHS norm of the control ∥vt∥2
H over time. This experiment was carried out

in dimension d = 1 with a complexity parameter λ = 10 and N = 10 number of training
points, both for L = 10 and L = 100 layers.
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Figure 3.6: This experiment was carried out with N = 10 particles in d = 1 dimensions
with λ = 10. The plot shows the convergence of the solution of the discrete problem with
L layers towards the true solution, both at the level of diffeomorphisms (i.e.

∫
[0,1](ϕL −

ϕ∞)2dµ in red), and at the level of representing vector fields (i.e.
∫ 1

0
∥∥vLt − v∞

t

∥∥2
H dt, in

green).

Table 3.2. Figure 3.7 reports the results for dimension d = 1. Not surprisingly, using
linear regression makes the diffeomorphism approximate the shape of the target function
directly. In order to achieve this the flow takes the particles and concentrates them at
the extremes of the interval, as it is evident from the density plot over time. The richer
regression space makes the burden on the diffeomorphism much lighter. This results in a
map closer to the identity, which just barely stretches the middle portion of the interval in
order to match the steepness of the target. In Figure 3.8 the two dimensional problem with
linear regression is shown. The target function is aligned with the second axis, hence the
diffeomorphism mimics the one-dimensional behavior along it. It is interesting, however,
that at the beginning of the transformation a rotational motion appears, meaning that the
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diffeomorphism is getting the first variable involved in the approximation as well. When
the regression space V2 is employed, shown in Figure 3.9, the diffeomorphism shows a less
clear interpretation due to the presence of the higher degree polynomials. In particular,
the symmetry which characterizes the vector field is lost, and more “local” phenomena of
either expansion or contraction appear. However, it is interesting that at time t = 1 the
vector field aligns with the x2 axis.

As far as the RO algorithms are concerned, the results for the linear regression case
are shown if figures 3.10 and 3.11, which refer to the RGD and RDN respectively. It
is interesting that no rotational motion appears in the fields. This is because moving
the points along the x1 axis has no effect on the loss. Indeed, the function is constant
along x1. Then, the field concentrates the points at the extremes of the interval with
respect to x2, mimicking what happens in one dimension. Also, there seem to not be any
significant difference in the behaviour of the driving vector field between the RGD and
RDN training strategies. When the richer regression space V2 is employed, we observe
a similar behaviour as far as the vector fields having no component in the direction x1
(although the vector field for the RDN slightly diverges from this trend close to time t = 1).
The main difference from the linear regression case is that the “stretching” behaviour is no
more centered around the subspace identified by x2 = 0, which is where the fast transient
of g2,(0;10) lies. Instead, it seems to not only happen around more general curves in space,
but more than one at the same time (see for instance time t = 1 and time t = 0.6 in
Figure 3.12 and time t = 0.2 in Figure 3.13).

d = 1 d = 2
Algorithm N L r γ N L r γ

OC 10 15 5 10−5 100 6 5 10−6

RGD - - - - 100 1000 5 -
RDN - - - - 100 100 5 -

Table 3.2: Network hyperparameters. Here OC stands for the solution of the OC problem
with any algorithm (although these experiments were performed with the TP algorithm).
These are the same regardless of the employed regression space.
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Figure 3.7: Illustration for target function g1,10 and OC problem. Left: vector field
(1, vt(x)) driving the state (t, zt(x)) over time. Center: diffeomorphism ϕt(x) over time
and space. Right: density µϕt(x) over time and space.
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Figure 3.8: Illustration for target function g2,(0;10) and OC problem with regression space
V1. Top: prediction f(ϕt(x)) over time and space (note that the regression parameters
used at time t are the optimal ones for the remapped points (ϕt(x(1)), . . . , ϕt(x(N)))).
Bottom: vector field vt(x) driving the state zt(x) over time.
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Figure 3.9: Illustration for target function g2,(0;10) and OC problem with regression space
V2. Top: prediction f(ϕt(x)) over time and space (note that the regression parameters
used at time t are the optimal ones for the remapped points (ϕt(x(1)), . . . , ϕt(x(N)))).
Bottom: vector field vt(x) driving the state zt(x) over time.
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Figure 3.10: Illustration for target function g2,(0;10) and RO problem with regression
space V1, solved via RGD. Top: prediction f(ϕt(x)) over time and space (note that
the regression parameters used at time t are the optimal ones for the remapped points
(ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector field vt(x) driving the state zt(x) over time.
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Figure 3.11: Illustration for target function g2,(0;10) and RO problem with regression
space V1, solved via RDN. Top: prediction f(ϕt(x)) over time and space (note that
the regression parameters used at time t are the optimal ones for the remapped points
(ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector field vt(x) driving the state zt(x) over time.
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Figure 3.12: Illustration for target function g2,(0;10) and RO problem with regression
space V2, solved via RGD. Top: prediction f(ϕt(x)) over time and space (note that
the regression parameters used at time t are the optimal ones for the remapped points
(ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector field vt(x) driving the state zt(x) over time.

106



3.2 – Numerical results

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0

f
(z
t (x

))

−1

0

1

t= 0.00

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0

f
(z
t (x

))

−1

0

1

2

t= 0.20

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0
f

(z
t (x

))

−1

0

1

2

t= 0.40

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0

f
(z
t (x

))

−1

0

1

2

t= 0.60

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0

f
(z
t (x

))

−1.0

−0.5

0.0

0.5

1.0

1.5

t= 0.80

x 1

−1.0

−0.5

0.0

0.5
1.0

x2 −1.0
−0.5

0.0
0.5

1.0

f
(z
t (x

))

−1.0

−0.5

0.0

0.5

1.0

t= 1.00

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 0.00

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 0.20

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 0.40

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 0.60

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 0.80

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

t= 1.00

Figure 3.13: Illustration for target function g2,(0;10) and RO problem with regression
space V2, solved via RDN. Top: prediction f(ϕt(x)) over time and space (note that
the regression parameters used at time t are the optimal ones for the remapped points
(ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector field vt(x) driving the state zt(x) over time.
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Order of convergence

Next, we focus on the speed of convergence to the target function the OC, RGD and RDN
models. Table 3.3 reports the relevant hyperparameters for the experiments. Note that
the proposed models are compared against kernel ridge regression (see Section 1.2.2) with
Gaussian kernel k(x, x′) = e−r∥x−x′∥2

2 . The KRR hyperparameters are optimized with a
validation approach over the following grid3:

(γ, r) ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100} × {0.1, 0.5, 1, 5, 10, 15}. (3.50)

Furthermore, we always report the relative error for the polynomial regression (PR) in
the original space as well. That is, we consider the approximation function f⋆ solving the
least squares problem

f⋆ ∈ arg min
f∈Vm

N∑
i=1

(
f(x(i))− y(i)

)2
. (3.51)

This way it is possible to determine the effect of performing the regression in the mapped
space ϕ1([−1,1]d) as opposed to the original space [−1,1]d.

d = 1 d = 2
Algorithm L r γ L r γ

OC 10 5 10−5 10 5 10−5

RGD 1000 5 - 1000 5 -
RDN 100 5 - 100 1 -

Table 3.3: Network hyperparameters. Here OC stands for the solution of the OC problem
with any algorithm (although these experiments were performed with the TP algorithm).
These are the same regardless of the employed regression space.

First, let us consider again the target functions g1,10 and g2,(0;10) with regression space
V1, the results for which are shown in Figure 3.14. The first observation is that, among
the proposed algorithms, the OC solution is the best performing one in d = 1 with order
of convergence O(N3.59), while in d = 2 it is the RDN which prevails. Interestingly
enough, the latter improves the convergence rate from dimension d = 1 to d = 2. The
RGD shows a similar trend in that its performance is very poor in d = 1, suggesting that
1000 iterations are not nearly enough in order to find a good solution, while in d = 2 it
performs like the OC solution. Finally let us remark that (apart from the RDN in d = 1)
the algorithms manage to outperform the KRR by a large enough margin.

Let us now consider the target functions g1,10 with regression space V2. The results
are reported in Figure 3.15. The clear takaway from this experiment is that RGD ben-
efits greatly from the richer regression space as it features an order of convergence of

3Recall that γ denotes the regularization parameter for KRR, not to be confused with the one
relevant to the OC problem.

108



3.2 – Numerical results

O(N−7.58), much higher than the one of the other two approaches. Note also the drastic
improvement with respect to performing the regression in the original space. The issue
with the OC problem is that it is very hard to solve, as it was explained and showed
by previous experiments. As it does not seem to drastically outperform the RGD, while
being outperformed by the RDN instead, we choose to carry on the convergence analysis
based on the RO algorithms only. Then, we continue with the study of the target function
g2,(0;10), again with regression space V2. The results in this setting corroborate the obser-
vations made for the one dimensional case. However, note that, despite being the superior
approach nonetheless, the order of convergence of the RDN deteriorates significantly with
the added dimension.
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Figure 3.14: Plot of the test (left) and train (right) relative errors for target functions
g1,10 (top) and g2,(0;10) (bottom) with regression space V1, across different numbers of
observations N .
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Figure 3.15: Plot of the test (left) and train (right) relative errors for target functions
g1,10 (top) and g2,(0;10) (bottom) with regression space V2, across different numbers of
observations N .
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3.2.2 A local feature
The second example we consider consists of multidimensional Gaussian functions, namely

gd,λ(x) = e−λ∥x∥2
, x ∈ [−1,1]d, (3.52)

where λ ∈ Rd is a precision parameter controlling the shape of the multidimensional bell.
The latter, then, controls the complexity of the target function since ∥λ∥ → ∞ makes
the function approximate a spike-like function centered around the origin, as shown in
Figure 3.16. For these experiments we employ the RKHS H generated by the separable
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Figure 3.16: Gaussian bell function in d = 1 dimensions for different values of λ ∈ R. As
λ increases, e(−λx2) approaches a spike-like function centered in x = 0.

Gaussian kernel in (3.46). We then approximate gd,λ via y(i) = gd,λ(x(i)), i = 1,2, . . . , N
noiseless observations, the points x(i), i = 1, . . . , N being generated in [−1,1]d via a QMC
approach (the Halton sequence, in particular). Furthermore, we take Vm to be the set of
polynomials of total degree less or equal than 10, namely

Vm = {xα1
1 . . . xαd

d | α ∈ Nd,
d∑
i=1

αi ≤ 10} (3.53)

Furthermore, as we have assessed that the more robust and successful training algorithms
seem to be the RO ones, we restrict the analysis to those only.

Diffeomorphism analysis

Given the rich regression space, here we are interested in which transformation the dif-
feomorphism realizes. We address the question with similar plots to what was shown
in the previous section, concentrating on the two-dimensional case. Note that with the
regression space design introduced just before, the dimension is m = 66. As in all our
experiments, we took L = 1000 and L = 100 for the RGD and RDN respectively, while
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the complexity parameter is set to λ = 20. The results are shown in figures 3.17 and 3.18.
First, note how within 1000 iterations the RGD was not able to modify the space enough
for the regression to closely reproduce the target function. The vector field shows clearly
that the space is stretched out from the origin, while simultaneously being compressed
along a one-dimensional manifold whose shape reminds that of a rhomboid. The field
for the RDN shows a similar trend, however towards time t = 1 it slightly diverges from
the usual behaviour. The main difference here is that, within 100 iterations, the RDN is
able to yield a model which very accurately reproduces the target function. Again, this
corroborates the idea that the second order information becomes more important as the
regression space gets richer.

Order of convergence

Let us now turn to the analysis of the convergence of the models to the target function. We
investigate this in dimensions d = 1 and d = 2 for complexity parameter λ = 20. Recall
from the previous section that we compare the models with KRR and, moreover, we report
the performance of the regression in the original space (that is, taking the diffeomorphism
ϕ to be the identity mapping.). Here, however, we have that choosing r = 20 in KRR
gives exactly the target function. We hence artificially restrict KRR to use a smaller shape
parameter. In particular, we tune the KRR hyperparameters considering the grid

(γ, r) ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100} × {0.1, 0.5, 1, 5}. (3.54)

The results are displayed in Figure 3.19. These were obtained with the usual experi-
mental setup of L = 1000 and L = 100 for the RGD and RDN respectively, and setting
the shape parameter to be r = 5 for the RGD and r = 1 for the RDN. Notice that,
in dimension d = 1, KRR and the RGD algorithm perform similarly as far as order of
convergence is concerned, though RGD seems to converge slightly faster. Again, the RDN
instead features a very fast order of convergence. Thing change in dimension d = 2 where
the RGD is outperformed (if raw approximation power is concerned) by KRR. However,
RGD features a much improved order of convergence with respect to the one-dimensional
case. Indeed, it is very close to the one of the RDN which, instead, suffered from the
extra dimension. Finally, note that these trends agree with the observations made in the
previous section for the arctangent function.
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Figure 3.17: Illustration for target function g2,20 and RO problem, solved via RGD. Top:
prediction f(ϕt(x)) over time and space (note that the regression parameters used at time
t are the optimal ones for the remapped points (ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector
field vt(x) driving the state zt(x) over time.
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Figure 3.18: Illustration for target function g2,20 and RO problem, solved via RDN. Top:
prediction f(ϕt(x)) over time and space (note that the regression parameters used at time
t are the optimal ones for the remapped points (ϕt(x(1)), . . . , ϕt(x(N)))). Bottom: vector
field vt(x) driving the state zt(x) over time.
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Figure 3.19: Plot of the test (left) and train (right) relative errors for target functions
g1,20 (top) and g2,20 (bottom), across different numbers of observations N .
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Conclusions

In this thesis, we have considered Kernel Neural ODEs, namely Neural ODEs where the
right-hand side is taken in a fixed reproducing kernel Hilbert space. This structure makes
the learning problem particularly amenable to a rigorous mathematical study. In partic-
ular, we established that, for the continuous-time setting, under suitable assumptions on
the RKHS the regularized learning problem admits minimizers. Furthermore, we char-
acterized these minimizers exploiting the Pontryagin maximum principle, leading to the
reduction of the learning problem to a two-point boundary value problem. We then intro-
duced a suitable time discretization and showed L2 convergence of the minimizers of the
discrete-in-time functional to the continuous-time solutions. The algorithms we designed
starting by the OC perspective are three. The first is a preconditioned version of stan-
dard gradient descent, where the preconditioning matrix is suggested by the Hamiltonian
maximization step prescribed by the PMP. The second algorithm is instead inspired by
time-parallel ODE integration techniques. This algorithm can alternatively be interpreted
as a second order method on the reduced (i.e., where the control has been eliminated)
Lagrangian associated to the learning problem. In order to improve scalability with re-
spect to the number of layers of this scheme, we further introduced a multi-grid method.
The idea behind this is to decompose in time the original TPBVP into a multitude of
sub-TPBVP on a coarse grid. Then, each of these sub-problems may be solved with any
discretization and by any algorithm. Finally one has to impose matching conditions in
order to regain the solution to the original TPBVP. The resulting non-linear system of
equations is then solved via a Quasi-Newton method, where the Jacobian of the system
on the matching conditions is approximated by the Jacobian of the coarse problem.

As an alternative approach, we endow the set of diffeomorphisms M realized by
KerODEs with a formal Riemannian manifold structure following the work Duncan et al.
[2019]. Then, we recast the learning problem as an optimization problem onM. We then
computed the Riemannian gradient of the loss functional and interpreted the KerODE
solution to the learning problem as a gradient flow. This approach was then further ex-
tended to second order optimization. In particular, we computed the Riemannian Hessian
of the loss functional, and showed that, provided a damping term is added, the linear sys-
tem (in the RKHS) defining the direction of the geometric flow can be reduced to a finite
dimensional problem. These results lead to practical layer by layer training algorithms.
In particular, we propose a Riemannian gradient descent algorithm and its stochastic
version based on the Riemannian gradient flow perspective. Furthermore, exploiting the
second order information we develop a Riemannian damped Newton algorithm which at
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each iteration involves the solution to a linear system. The peculiarity of the Riemannian
optimization point of view on the learning problem is that, in some sense, the KerODE
and the optimization problem are identified. In other words, this suggests that a Neural
Network optimizes the loss through its layers.

The numerical experiments show that the second order algorithms derived from the
Optimal Control perspective outperform the preconditioned gradient method in terms of
speed of convergence towards a good solution. However, these are ill conditioned with
respect to the explicit regularization parameter. This makes the prediction of noiseless
data accurately hard since such regularization must be large enough for the methods to
converge. The algorithms inspired by Riemannian optimization are instead a lot more
robust in terms of the problems they manage to find good solutions to. In particular, the
Riemannian damped Newton performs surprisingly well, particularly when the regression
space is rich enough.

The optimal control perspective is very mathematically compelling. Future work di-
rections involve a thorough theoretical investigation into the rate of convergence of the
minimizer of the space-discretized problem to the solution of the continuous-time prob-
lem. On the algorithmic side, it would instead be interesting to devise other, more robust
training strategies. The Riemannian optimization point of view furnishes a compelling
interpretation of learning with DNNs which leads to innovative training algorithms. An
interesting future research direction involves giving a more solid mathematical foundation
to the setting by providing a rigorous treatment of the manifold of diffeomorphisms.
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