
POLITECNICO DI TORINO
Corso di Laurea in Ingegneria Elettronica

Tesi di Laurea

Fault-tolerance classification in
virtualized redundant

environment using Docker
containers technology

Relatori
prof. Stefano Di Carlo
prof. Alessandro Savino

Candidato
Gennaro Cimmino

matricola: 274493

Anno accademico 2019-2022



A te, nonna ...



Indice

Elenco delle figure 5

1 Introduzione 7

2 Docker containers 9
2.1 Software Virtual Machine . . . . . . . . . . . . . . . . . . . . 9
2.2 Container virtualization and VMs . . . . . . . . . . . . . . . . 11
2.3 Docker containers . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Docker engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Redundancy 17
3.1 Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Abstraction levels of fault model . . . . . . . . . . . . 18
3.2 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Software Redundancy . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 NVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Recovery Block Technique . . . . . . . . . . . . . . . . 23

4 Container Classes 25
4.1 Docker compose parsing . . . . . . . . . . . . . . . . . . . . . 25
4.2 Fault tolerance parameters . . . . . . . . . . . . . . . . . . . . 26
4.3 Database class . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Database Logs . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Web Server Class . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Load Balancing Problem . . . . . . . . . . . . . . . . . 30
4.4.2 Web server logs . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Programming Application class . . . . . . . . . . . . . . . . . 33
4.6 Monitoring class containers . . . . . . . . . . . . . . . . . . . . 36

4.6.1 Inputs parameter . . . . . . . . . . . . . . . . . . . . . 38

3



4.6.2 Data analyzer configurations . . . . . . . . . . . . . . . 38
4.7 Continuous Integration class . . . . . . . . . . . . . . . . . . . 39
4.8 Service Discovery Class . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Model-driven Redundancy . . . . . . . . . . . . . . . . . . . . 44

5 Methodology Validation 47
5.1 Dockerfile Preparation . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Correct system execution . . . . . . . . . . . . . . . . . . . . . 53
5.3 Fault Injections validation . . . . . . . . . . . . . . . . . . . . 55

6 Conclusions 59

Bibliografia 61

4



Elenco delle figure

2.1 Standard Virtualization . . . . . . . . . . . . . . . . . . . . . 10
2.2 Virtualization types . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Docker system . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Docker engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Docker Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Reliability scheme of systems . . . . . . . . . . . . . . . . . . 17
3.2 Abstraction levels of fault model . . . . . . . . . . . . . . . . . 18
3.3 The N-version software (NVS) model with n = 3 . . . . . . . . 22
3.4 The recovery block (RB) model . . . . . . . . . . . . . . . . . 24
4.1 Web server class redundant scheme, without Load Balancing . 30
4.2 Web server class scheme with Load Balancing (ft_level = 2,

routing_level = 3) . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Service discovery class typical architecture . . . . . . . . . . . 43
4.4 Model-driven Docker system architecture . . . . . . . . . . . . 44
5.1 MySQL databases fault tolerance system . . . . . . . . . . . . 47
5.2 Connections to MySQL databases and CREATE DATABASE

queries voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 USE and CREATE TABLE queries . . . . . . . . . . . . . . . 54
5.4 INSERT queries . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 SELECT and UPDATE queries . . . . . . . . . . . . . . . . . 55
5.6 DROP queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 CREATE DATABASE queries with fault injection . . . . . . . 56
5.8 CREATE TABLE queries with fault injection . . . . . . . . . 57
5.9 INSERT queries critical failover . . . . . . . . . . . . . . . . . 57

5



6



Capitolo 1

Introduzione

With the popularity of cloud computing platforms, server virtualization is a
widely used and powerful technique, for consolidating servers in data centers.
For many years, standard virtualization enable an efficient sharing of phy-
sical resources by multiple, independent entities. Therefore, this technology
provide cost reduction, through resource consolidation, and reliability bene-
fits. However, it has several drawbacks: running a virtual machine is often
resource-intensive, complex and costly.

An alternative to classical virtualization is the container virtualization.
Container virtualization is a virtual run-time technology, that emulates a
hosting operating system kernel, rather than the underlying hardware, as in
the case of classical virtualization. Nowadays, with the emergence of Docker,
containers are gaining in popularity. In fact, a lot of cloud providers, such as
Amazon, Google, Azure and Digital Ocean, are leveraging Docker features.
Docker is a software platform that allow applications distribution, through
containers deployment. Docker containers have many interesting advantages,
such as fast start-up, lightweight execution environments, easy deployment
and portability. Lastly, Docker provides useful supporting tools, such as the
docker-compose. Docker-compose is an orchestration tool that introduce au-
tomated configuration, coordination and management of container services.
It’s used to deploy multi-container applications.

However, the issue of container security and stability is increasingly rele-
vant, especially with the rise of multi-container and large-scale application
systems. Many cloud systems depend on the reliability of containers. As a
result, a critical failure in these systems, led to invalidation of thousands of
services. Therefore, it’s necessary to increase the reliability of these systems,
by introducing fault tolerance mechanisms. One of the techniques used to

7



1 – Introduzione

increase the reliability of a system, is redundancy.
Aim of this thesis is to provide methodologies for introducing redundan-

cy, in container systems. A container is redundant if multiple instances of
the same, are deployed in a system. Outputs generated by each redundant
container, is monitored by a voting system, which guarantees the correct
execution of the service. Each methodology introduced, differ according to
a containers classification. The classification is based on parameters, needed
to introduce additional blocks, suitable for ensuring an entire control system.
Classification allows to include,in a docker-compose, all redundancy parame-
ters to containers, that belong to a specific class. In this way, a service can be
deployed in fault tolerant mode, using an alternative version of that compose
file.

Finally, for the purpose of testing the feasibility of a proposed methodo-
logy, a MySQL database container, was deployed in fault-tolerant mode.

8



Capitolo 2

Docker containers

Docker is a popular open-source engine to perform virtualization mechanism,
that automates the deployment of applications into containers. It was written
by the team at Docker Inc., formerly called dotCloud Inc., which is an early
player in the Platform-as-a-Service market, and released by them under the
Apache 2.0 license. Container refers to a lightweight, stand-alone, executable
package of a piece of software that contains all the libraries, configuration
files, dependencies, and other necessary parts to operate the application.

A container engine uses the Linux Kernel features like namespaces and
control groups to create containers on top of an operating system, called
OS-level virtualization. Docker has well-defined wrapper components that
make packaging applications easy. Before Docker, it was not easy to run
containers. Meaning it does all the work to decouple your application from
the infrastructure by packing all application system requirements into a
container.

2.1 Software Virtual Machine
A virtual machine is a computer file or software usually termed as a guest,
or an image that is created within a computing environment called the host.

The implementation of a VM emulate specialized software or an entire ope-
rating system. Therefore, are broadly divided into two categories depending
upon their use:

• System virtual machines: also termed full virtualization VMs. They
provide functionality needed to execute entire operating systems. These

9



2 – Docker containers

Figura 2.1. Standard Virtualization

types of systems allow sharing resources among virtual machines instal-
led, in order to perform a simultaneous execution of multiple operating
systems;

• Process virtual machines: allow to a single process to run as an ap-
plication on a host machine. They are designed to execute computer
programs in a platform-independent environment. This feature is obtai-
ned by masking the information of the underlying hardware or operating
system. An example of a process VM is the Java Virtual Machine, which
enables any operating system to run Java applications, as if they were
native to that system;

Regarding system virtualization, it uses software to simulate virtual hard-
ware that allows multiple VMs to run on a single machine. This process is
managed by software known as a hypervisor. The hypervisor is responsible
for managing and provisioning resources, for instance memory and storage,
from the host to guests. It also schedules operations in VMs so they don’t

10



2.2 – Container virtualization and VMs

overrun each other when using resources. VMs only work if there is a hy-
pervisor to virtualize and distribute host resources. There are two types of
hypervisors used in virtualization, also showed in fig. 2.1:

• Type 1 hypervisors or bare metal hypervisors: The feature of this type
of virtualization is that the hypervisors are installed natively, on the
underlying physical hardware. A computer, on which the hypervisor
runs single or multiple virtual machines, is called a host machine. VMs
interact directly with hosts, to allocate hardware resources without any
extra software layers in between. Host machines, running type 1 hyper-
visors, are embedded solutions for virtualization. They’re often found in
server-based environments, like enterprise datacenters. Some examples
of type 1 hypervisors include Citrix Hypervisor and Microsoft Hyper-V.
A separate management tool is needed to handle guest activities, like
creating new virtual machine instances or managing permissions;

• Type 2 hypervisors or hosted hypervisors: they run on the host com-
puter’s operating system. Hosted hypervisors forward virtual machine
requests to the host operating system, which then provides the appro-
priate physical resources to each guest. One disadvantage of this type of
virtualization is the speed. Compared with type 1 virtualization, it has
a higher latency, being that the handling of operations must be handled
first by the operating system. Unlike bare-metal hypervisors, guest ope-
rating systems are not tied to physical hardware. Users can run virtual
machines and use their computer systems as usual. This makes Type
2 hypervisors suitable for personal or small business users, who haven’t
got dedicated servers for virtualization;

2.2 Container virtualization and VMs

A container is a virtual runtime environment, that runs on top of a single
operating system kernel, and emulates an operating system rather than the
underlying hardware, as showed in fig 2.2. Instead of using an hypervisor,
it leverage features of the host operating system, to isolate processes and
control the processes’ access to CPUs, memory and desk space. There are
several differences between container virtualization and virtual machines. In
particular, containers offer:

11



2 – Docker containers

Figura 2.2. Virtualization types

• Better performance: Because containers are lightweight and only include
high level software, they are very fast to modify and iterate on. Further-
more, a containerized application usually starts in a couple of seconds.
Virtual machines could take a couple of minutes;

• Flexible resource distribution: Containers use up only as many system
resources as they need at a given time. Virtual machines usually require
some resources to be permanently allocated before the virtual machine
starts. For this reason, virtual machines tie up resources on the host,
even if they are not actually using them. Containers allow host resources
to be distributed in an optimal way;

• Direct hardware access: Applications running inside virtual machines
generally cannot access hardware like graphics cards on the host in order
to speed processing, but containers can access directly to this resources;

• Less memory utilization: VMs are more resource-intensive than con-
tainers, as the virtual machines need to load the entire OS to start.
Installation of an entire guest operating system, require duplication of
a lot of components, already running on the host server. Containers
doesn’t require all components, but it’s necessary to install a minimal
amount of libraries;

• Portability: With docker containers, users can create an application and
store it into a container image. Then, they can run it across any host

12



2.3 – Docker containers

environment. VMs don’t have a central hub and they requires more
memory space to store data;

Container virtualization, despite of all its advantages, cannot replace virtual
machine because it could be a better choice in some situations. Virtual
machines are considered a suitable choice in a production environment, rather
than containers since they run on their own OS without being a threat to
the host computer. In fact, it’s possible that a break out in one or more
container, could affect the shared underlying hardware, since they all share
the underlying hardware.

Furthermore, most popular container runtimes have public repositories of
pre-built containers. There is a security risk in using one of these public
images, as they may be vulnerable to corruptions or manipulations.

Another disadvantage is that containers have a complex usage mechanism
and managing tools, whereas tools are easier in VMs to work with.

2.3 Docker containers

Figura 2.3. Docker system

Docker is a virtualization platform based on containers. It is a container ma-
nagement system that helps to efficiently manage Linux Containers (LXC),

13



2 – Docker containers

more easily and universally. This lets you create images in virtual environ-
ments on a host machine and run commands against them. The actions
performed to the containers, running in these environments, locally on a
machine, will be the same commands or operations running against them,
when they are running in a production environment. Overall, Docker greatly
simplifies containers deployment, bringing benefits to container virtualized
systems. Some of the main benefits Docker offers are:

• Containers have the added benefit of running anywhere and scalable,
thanks to the Docker images feature. A Docker image is made up of
a collection of files that bundle together all the essentials components
required to configure a fully operational container environment, such as
installations, application code, and dependencies;

• Docker improves container isolation by leveraging the namespaces featu-
re. Namespaces make sure that a container’s filesystem, hostname, users,
networking, and processes are separated from the rest of the system.
In addition, they also allow isolation between containers, as processes
running within a container cannot see, and even less affect, processes
running in another containers. Each container also gets its own network
stack, meaning that a container doesn’t get privileged access to the soc-
kets or interfaces of another container. Container communications are
allowed only if the host system is setup accordingly, so they can interact
with each other, through their respective network interfaces;

• Another important feature are cgroups. They are responsible for mana-
ging resources used by a containers. They provide many useful metrics,
but also help ensuring that each container gets its fair share of memory,
CPU, disk I/O and, more importantly, that a single container cannot
bring the system down by exhausting one of those resources;

2.4 Docker engine
Docker is a client-server application. The Docker client talks to the Docker
server or daemon, which in turn, does all the work. Docker system has several
components, that allow developing, assembling, shipping, and applications
deployment. Docker system is also called Docker engine, as showed in fig 2.4,
and it has following components:

14



2.4 – Docker engine

Figura 2.4. Docker engine

• Docker Daemon: A persistent background process that manages Docker
images, containers, networks, and storage volumes. The Docker daemon
constantly listens for Docker API requests and processes them;

• Docker Engine REST API: Communication between Docker daemon and
applications, pass through a RESTful API. It can be accessed by an
HTTP client;

• Docker CLI: A command line interface execute commands, like Docker
build, Docker run, and so on, and handle interactions with the Docker
daemon;

The main objects for application development are two: Docker images and
Docker compose files.

A Docker image is a read-only template that contains a set of instructions
for creating a container, that can run on the Docker platform. Each of the
files that make up a Docker image is known as a layer, as showed in fig 2.5.
These levels are a series of intermediate images, built on top of each other in
successive stages, where each level depends on the one immediately below.

15



2 – Docker containers

Figura 2.5. Docker Images

Thanks to this architecture, changing a layer at the top of a stack, require
a minimum amount of computational work, in order to rebuild the entire
image. This is because, Docker doesn’t need to rebuild lower layers, but only
top layers modified.

Docker Compose is used for running multiple containers simultaneously,
using a single command. All containers are defined within a compose, writ-
ten in a scripting language called YAML. It’s a XML-based language, that
stands for "Yet Another Markup Language". These tools that automate si-
multaneous configurations, coordination, and management of systems , are
called "Orchestrators".

16



Capitolo 3

Redundancy

3.1 Fault-Tolerance

Figura 3.1. Reliability scheme of systems

Continuous reduction of feature sizes implies that, both transient and perma-
nent hardware faults are more probable in today’s integrated circuits. There
are two types of failures: transient errors, or soft errors, and permanent er-
rors, or hard errors. Atmospheric disturbances and natural radiations may
lead to soft errors, whereas manufacturing defects or extreme operating con-
ditions can cause hard errors. In order to provide reliable computing systems
there are two complementary approaches which can be adopted, as shown in
fig 3.1: fault prevention and fault tolerance. The former approach is more

17



3 – Redundancy

straightforward, as it tries to ensure that the system is error free. In this way,
the reliability of the system is increased, ensuring that new failures cannot
occur and potential faults are avoided.

The second approach accepts that an implemented system will not be
perfect, and that measures are therefore required to enable the operational
system to cope with the faults that remain or develop.

3.1.1 Abstraction levels of fault model

Figura 3.2. Abstraction levels of fault model

Faults could occur on various layers of a system: from the hardware layer
down to the software layer. Examples of hardware faults might be bit flips, or
multi-bit flips[19], while software faults are for design defects, timing errors,
etc. As showed in fig 3.2, faults could propagate along a system. Similar
to the operating system level, non-masked errors at the ISA level can pro-
pagate and manifest at the application level, in different ways. The main
manifestations are data, program flow, access and timing errors [19]:

• Data Errors: represent erroneous values of parameters or variables in
the system. Data errors can arise in a variety of ways, and can be

18



3.2 – Redundancy

costly. Examples of data errors are data corruptions, data missing,
inconsistencies, and so on;

• Program Flow: when in a software, the resulting behavior is different
from that expected, such errors may occur. They possibly leading to
missed, wrong or superfluous operations, being carried out due to an
erroneous sequence or execution order;

• Access Errors: When accessing one of the system resources, such as a
CPU, or a memory partition, access errors may occur. They could lead
to a weakening of the applications isolation and affect the data of other
applications. In fact, these errors could result in the generation of other
types of errors, an invalid counter or pointer, and so on;

• Timing Errors: tasks are assigned by scheduling algorithms. When so-
me of them are executed too early, too late or even not executed at
all, timing errors can arise. In terms of scheduling, it’s about deadline
missing and dealing omission, so they appear at operating system le-
vel .Other factors that could generate these error type are changes in
task priorities, omission of task activation and/or erroneous scheduling
decisions;

3.2 Redundancy
Redundancy is a methodology aiming to improve the reliability and avai-
lability of a system. Generally speaking, electronic systems consisting of
software and hardware components, in which redundancy can be achieved by
applying extra copies of these components in parallel to handle the system
workloads. Applying redundancy to a system involves increased complexity
and additional costs. For this reason, it’s better to limit it only in appli-
cations where the cost of failure is too high. For example, business-critical
systems, safety-critical systems and systems that have a significant impact
during downtime, belong to this category. In addition, many applications
store sensitive information and data in databases. Therefore, for business
continuity purposes, protecting databases with redundancy, must be a safety
priority, in order to prevents catastrophic failures.

There are various methods, techniques, and terminologies for implemen-
ting redundancy and they depends on application type:

19



3 – Redundancy

• Parallel Redundancy: having multiply units running in parallel, all units
are highly synchronized and receive the same input information at the
same time. Their output values are then compared and a voter decides
which output values should be used. There are several topologies, such
as Dual modular redundancy, Triple modular redundancy and Quadru-
ple Modular Redundancy. This technique can be applied at both the
software and hardware levels. The most widely used software redun-
dancy techniques are N-version programming(NVP) and recovery block
technique(RB);

• Information redundancy: such as error detection and correction me-
thods;

• Time redundancy: performing the same operation multiple times such
as multiple executions of a program or multiple copies of data transmit-
ted. This method attempt to reduce the amount of additional hardware
whereas time resource is not critical;

There are several redundancy structures and most used are classified into
three macro categories:

• Active redundancy: when all redundant units in a system work concur-
rently. It can in turn be classified into 3 configurations: Full, Partial and
Conditional. Full configuration works with all units activated with one
surviving unit that ensures non-failure. In a partial configuration, only
a minimum number of units can fail, to ensure a specific fault tolerance
level. Majority voting systems often fall into this category; for example
in a four units system, no more than two units can fail to achieve a ma-
jority. A conditional configuration is a form of redundancy that occurs
according to the failure mode;

• Standby redundancy: involves backup auxiliary units. If failover occur,
these units will take in place of the main units, in order to maintain a
correct execution of the system;

• Load sharing: when a failure of one or more units, requires a workload
distribution over the remaining active units;

• Redundancy and repair: where redundant units are subject to immediate
or periodic repair. The reliability of a system depends on units reliability
and by the repair times;

20



3.3 – Software Redundancy

Other forms of multiple node redundancy structures are available that al-
low for greater redundancy and robust load balancing solutions and also
possibility to realize hybrid solutions.

3.3 Software Redundancy
Software redundancy is an important problem taken into account by Software
reliability engineering(SRE) [8] and it’s a technique used for fault tolerance.
Especially in the domain of safety-critical embedded and cyber-physical sy-
stems, is generally the optimal solution for increasing the reliability of these
systems. Software reliability is defined as the probability of failure-free soft-
ware operation for a specified period of time in a specified environment [9].
In the literature, a number of techniques have been proposed to attack the
software reliability engineering problems, based on software fault lifecycle:

• Fault prevention: trying to prevent failovers, by construction;

• Fault removal: using verification and validation methodologies to detect
errors, in order to eliminate them;

• Fault tolerance: a unit of software is fault-tolerant if it can continue de-
livering the required service, even if an error occurred and not removed.
These types of errors are called software faults. When these errors are
generated, they produce errors in program flow, output errors, internal
state, and so on. Software redundant techniques can be applied here
to manage faults. In particular, main goal of this thesis is to propo-
se software fault tolerance methodologies, applied to Docker container
systems;

• Fault/failure forecasting: leveraging faults evaluation methodologies, it
is possible to estimate when they might occur and what consequences
might occur. Software reliability modeling focuses on these types of
techniques;

Diversity: When redundancy is applied to a power or mechanical system,
fall back strategies requiring the mere presence of another of the same type
of component. The important difference between hardware redundancy and
software systems redundancy is that the second one usually require extra con-
figurations, on the host system. Specifically, when a software is redundant,
all dormant software faults are also copied. Therefore, all N units in a fault

21



3 – Redundancy

tolerance system, are designed and setted up, differently and independently.
This is the concept of software design diversity. In other words, redundant
units must to be different version of a specific unit. Thus, if anyone of the
redundant version fails, at least one of the others will provide an acceptable
output. The two basic models of fault software units are N-version software
(NVS), shown in fig 3.3, and recovery blocks (RB), shown in fig 3.4.

3.3.1 NVP

Figura 3.3. The N-version software (NVS) model with n = 3

N-version programming (NVP), also known as multi version programming,
is a fault tolerant software that runs different version of the same algorithm.
In other words, equivalent programs are independently generated from the
same initial specifications. The units generate a series of outputs over time,
and then they depends on a generic decision algorithm, also called voter,
in order to determine a consensus result, comparing each output. If the
units work perfectly, they will all generate same outputs, hence voter obtain
unanimity. If one or more units fail, the voter processes the outputs, getting
the majority.

An initial specification should define:
• which function should run each unit, belonging to an N-version fault

tolerance system;

• data formats for the special mechanisms: comparison vectors (k-vectors),
comparison status flags (cs-flags), and synchronization mechanisms;

22



3.3 – Software Redundancy

• the cross-check points(cc-points) for c-vector generation;

• the comparison or voting algorithm, to be executed by voter unit;

• the response to the possible outcomes of matching or voting. The com-
parison algorithm explicitly states the allowable range of discrepancy in
numerical results, if such a range exists;

As NVP is based on design diversity technique, the built program will fail
independently and with low probability of coincidental failures. This en-
sures that one of the other versions will continue to provide the required
functionality.

Probability of failures is directly proportional to complexity, in chip tech-
nologies. The need to introduce fault tolerance systems has increased over
the years, due to the exponential growth of technologies. However, it’s in-
creasingly difficult to calculate the probability of fault, being that a complete
design verification, especially in VLSI circuits, is very hard to achieve.

Using N-versions of a software, allows to a system to continue operations,
even if faults are occurred. Furthermore, Software verification and validation
time is reduced, executing two independent versions in an operational envi-
ronment. In this way, complete verification and validation, with concurrent
production operation, is achieved.

A huge advantage of NVP is that it allows programmers working with their
own time and location. In fact, given a formal and an effective specification,
different versions of software can be written by different programmers, using
their own personal computing equipment. Expecially in highly controlled
professional programming environments, this approach will drastically bring
down the cost of programming.

3.3.2 Recovery Block Technique
The system consists of using a series of modules, called recovery blocks, which
are executed one at a time. The process begin by starting the primary mo-
dule. An acceptability test is performed on this module: if the acceptance
test determines that the output of the primary module is not acceptable, it
recovers or rolls back the state of the system before the primary module is
executed. Therefore, the primary module is deactivated and the secondary
module takes its place. The process, carried out on the first module, is re-
peated on the second module as well. Thus, if the acceptance test is failed,
a third module will be activated, and so on. When all alternate modules

23



3 – Redundancy

Figura 3.4. The recovery block (RB) model

are exhausted, the recovery block itself is considered to have failed and the
entire system goes down. In order to minimizes the total system cost, given
the reliability of each module, reliability optimization models has been desi-
gned. These models allow to determine the optimal number of modules, to
introduce in an RB system.

In a N-version programming, all modules are executed in parallel, while
modules are execute sequentially in a recovery block system. Finally, The
recovery block, generally, is not the best solution in critical systems where,
one of the requirements is to have an optimized real-time response.

24



Capitolo 4

Container Classes

As discussed in the previous chapter, redundancy is necessary to guarantee
software reliability. Aim of this work is to illustrate methodologies to intro-
duce software redundancy through Docker container technology. The main
idea is to instantiate a desired number of containers, which will identify the
level of redundancy. Therefore, this fault-tolerance system will require the
installation of additional modules that allow monitoring of specific characte-
ristics and outputs of all containers. Results obtained from this monitoring
are analyzed by voting blocks and ensure correct outputs.

Because containers have different characteristics and features, they were
organized into container classes:

• Web server class;

• Database class;

• Monitoring class;

• Programming application class;

• Continuous Integration class;

• Service Discovery class;

4.1 Docker compose parsing
Compose is a tool for defining and running multi-container Docker appli-
cations. It’s possible to define and configure all application’s services, by

25



4 – Container Classes

compiling a file in YAML format. Then, with a single command, all the
services are created and started, depending on these configurations.

First step is to write a compose file, observing composition rules deter-
mined by Docker. In order to implement a fault tolerant system, another
version of this file must be properly generated. This task is achieved by
writing additional sections, for each container which needs redundancy. All
container classes, define additional entries to introduce in a standard compo-
se file, which have different values and/or types. Therefore, a computational
block needs to be properly designed to performs:

• Parsing operation, by searching all required parameters for fault-tolerant
containers;

• Knowing in advance which additional containers are needed to perform
voting operations (for instance the voter), it place them in the new com-
pose. These containers are defined in different Dockerfiles, previously
prepared;

Parser block leverages Docker feature of passing parameters through Envi-
ronment variables. Containers can be setted up in this way, therefore voters
are parametrized to manage operations. Voter architectures depends on con-
tainer classes because, for instance, operations to execute are more or less
complex or input formats from container system can be different.

This approach create a subsystem level that doesn’t need to manage,
thanks to the automatic deployment. Therefore, Docker managers only need
to specify fault tolerant parameters, without having to worry about deploying
of additional containers.

4.2 Fault tolerance parameters
Fault-tolerant entries for each container class are mainly four: input, output,
storage and ft_parameter. All entries have different value or type, depen-
ding on the class:

• input: this entry define format and type of input to be sent to all
redundant containers;

• outputs: main goal of this work is to identify outputs coming out from
each container class, which then have to be observed by the voting
system;

26



4.3 – Database class

• storage: each container class could manage files and directories in dif-
ferent ways. They needs to be accessible, shared among fault-tolerant
system and configured, if necessary, to perform computations;

• ft_parameter: sets the level of redundancy, which blocks to instantiate,
how to manage resources between containers or properly configurations
for containers;

4.3 Database class

########################
#### DATABASE CLASS ####
########################
inputs:

queries: shell/webserver
outputs:

databases: True/False
Tables: True/False
logs:

enabled: True/False
redirection: single file/multiple files/stream
format: SQL statements

storage:
database: 'directories'
logs: 'directories'
config: 'directories'

ft_parameters:
ft_level: N
forwarding: 'block name'

Parser block starts deploying number of redundant database containers, rea-
ding fault-tolerant parameter, named ft_level. After that, is always man-
datory to deploy a container that send the same inputs to the redundant
container system, reading input entries. In this way, it is possible to make
the voting of containers outputs. This block is specified in the forwarding
entry. The approach is to prepare a Dockerfile with a precompiled container
that perform this tunneling work or to use a container builded on an image
from DockerHub.

A database class container is characterized by data exposure based on a
system of folders and subfolders. Voter container performs control operations

27



4 – Container Classes

on files, such as databases or tables. Therefore, in the respective entries, it’s
possible to activate the voting on these files and specify the level of compa-
rison to be made, providing it with parameters in the form of environment
variables or files.

All data to be checked must be specified in the entry storage, letting
Docker to create all Docker volumes needed. Volume is a useful and easy
Docker feature, used to share these data among the voter and containers.

Fault tolerant system strategy, works by doing following operations:

• Whenever a new query incoming in input, tunneling container split the
same query among all fault tolerant containers. In addition, a trigger is
sended to the voter, in order to perform its operations;

• The voter read last log, as specified in the respective entry, to identify
query type;

• Depending on log reading, it chooses properly operations and votes out-
puts. If something goes wrong, it notify errors, and conversely it provides
correct outputs;

4.3.1 Database Logs
As showed in the fault tolerant specifications, logs have three entries, which
affects voter behavior. A database class has generally disabled logging into
files, by default. Consequently, it is necessary to be able to activate them in
the fault tolerance system, by acting on the respective environment variables.
Alternatively, it may acts on the configuration files, but in this way, relative
directories must be specified inside the config entry. Redirection into file or
files is specified and, with it, related log directory in the storage section. Log
format depends on database type, so voter needs to know how logs will be
readed.

The voter must be sure that the last log readed, related to the same
incoming query, matches for all containers. This ensures that the voting
operation is carried out on the correct outputs. So, voter must also perform
this log comparation. However, logs may contain variable informations, like
time stamps. As a result, may not match, even if the query is the same
for all containers. Voter must take into account all random informations,
before making operations. Random variables could also occur in other types
of data, voter exploit byte contents checking only the relevant ones.

28



4.4 – Web Server Class

4.4 Web Server Class

##########################
#### WEB SERVER CLASS ####
##########################
inputs:

requests: HTTP/HTTPS
domains:

outputs:
html: True/False
files: JSON/image/audio/video/ecc
logs:

enabled: True/False
redirection: stream
buffered: True/False
format: Web

storage:
html: 'directory'
data: 'directory'
configs: 'directory'
logs: '../<container id>-json.log'

ft_parameters:
ft_level: N
forwarding: 'block name'

configs:
labels:
...

routing_level: M
load_balancing:

enabled: True/False
algorithm: Round Robin/Least-connected/..

Web servers are programs that make website files and programs accessible
to web browsers over a network. They are running software that receive and
elaborate HTTP requests, which is the protocol that browsers (or other type
of clients, such as software applications) use to view webpages. They can be
accessible through domain names of the websites that store, and thy delivers
the content of these hosted websites to the end user’s devices. Whenever
a browser needs files hosted on a web server, it requests them via HTTP
protocol. When the request reaches the correct (hardware) web server, the
(software) HTTP server accepts the request, finds the requested documents,

29



4 – Container Classes

and sends it back to the browser, also through HTTP. If the server doesn’t
find the requested document, it returns a 404 response instead. For this
reason, in the entry input, HTTP requests have to handled by fault-tolerant
system.

As done in each other classes, the ft_level parameter is readed, to de-
termine how many redundant containers will be deployed. The container
deployment, in this case, that performs forwarding of HTTP/HTTPS re-
quests, can be a reverse proxy. It differs, for example, from the database
class, whose inputs consist of different formats. Adopting a reverse proxy for
forwarding work allows to take advantage of its features, such as load ba-
lancing, uses of middlewares, encryption supports, etc. If the reverse proxy
allows it, it could be useful to modify the load balancing algorithm, by acting
on algorithm entry.

4.4.1 Load Balancing Problem

Figura 4.1. Web server class redundant scheme, without Load Balancing

An important feature of a reverse proxy to consider is load balancing. It is an
effective mechanism for managing container failovers. It increase application

30



4.4 – Web Server Class

Figura 4.2. Web server class scheme with Load Balancing (ft_level =
2, routing_level = 3)

availability and performance by distributing traffic across more than one
server. To ensure requests are assigned to servers, that can handle the traffic,
many load balancers monitor server health and implement failover execptions.
Health check monitor, periodically sends HTTP/HTTPS requests to server
pools to monitor their status. If the HTTP/HTTPS check reveals that a
server is unhealthy or offline, load balancer will reroute traffic to an available
server.

A container introduced into the fault-tolerance system, may have a load
balancer enabled. The information regarding load balancing is transmitted
to the parser via the parameter: load_balancing. It is essential to take this
feature into account, as it may compromise the voting mechanism.

Two types of methodologies can be adopted: one involving the load ba-
lancer activated, and one without load balancer. As an example, the metho-
dology used in this container class without load balancer, is shown in fig 4.1.
This approach works exactly like the database class, with the only difference
being the introduction of routing blocks:

• The parser instantiates a number of containers equal to the parameter:

31



4 – Container Classes

ft_level;

• HTTP requests are forwarded simultaneously to the routing blocks,
which in turn forward them to redundant web servers;

• Requests processed by web servers are sended back to routers, which
forward the content to voter for processing;

• Voters know the request type by reading the last log, which must be
the same from all containers. Next, it votes the outputs from the web
servers and returns a correct copy to the routers;

Routers handle data traffic that flows among redundant web servers, reverse
proxy and the voter container. Furthermore, they allow a correct outputs
synchronization between web servers and the voter.

The methodology that leverages use of the load balancer is more complex.
In this case, the parameter routing_level must also be specified. The para-
meter ft_level, in this case, assigns a number N of redundant web servers
behind each router, while routing_level defines number of routers connected
to the reverse proxy. The reverse proxy redirects traffic to one of the connec-
ted routers, therefore 1 voter must be assigned for each path. The difference
with the first solution is that is more resource-intensive, but it increase relia-
bility of the fault tolerant system. Furthermore, it fits well in cluster systems,
where each path can be assigned to a different node, maintaining the same
level of fault-tolerance on each node.

4.4.2 Web server logs
Most of the logs generated by web servers, are redirected to stdout and stderr.
This feature is marked in the redirection = stream, inside the logs entry. In
this configuration, Docker handles this stream by default, saving logs output
to the local host, in JSON format. Therefore it’s possible to access these
logs, from outside of the container, pointing to the local directories, in the
entry storage. Docker organizes directories by container IDs, so they must
be communicated to the voting system, during the deployment phase.

Another problem is the log buffering. In this configuration, a log buffer is
always open, and a web server continuously write data on it. Whenever is full,
container deploy all the content to stdout, and finally Docker can print the
logs. To overcome this issue, a configuration file inside containers has to be
deployed, in order to set the disable option. To avoid writing a configuration

32



4.5 – Programming Application class

file, some containers allow management of environment variables, that can
be setted up during the development phase.

4.5 Programming Application class

#######################################
#### PROGRAMMING APPLICATION CLASS ####
#######################################
inputs:

codes: C/Python/..
outputs:

files:
format: audio/video/...
stream: serialized/parallel
type: short process/ long running

stream:
enabled: True/False
redirection: files/None
buffered: True/False

logs:
enabled: True/False
redirection: stream
buffered: True/False
format: custom

storage:
entrypoints: 'directories'

ft_parameters:
ft_level: N
maximum_cores: M

Simplest case is an application software running on a single host, i.e. a
computer program that performs a specific function. They are designed
to facilitate a large number of functions, such as: data and information
management, visuals and video development, word processing, web browsers,
graphics and so on. Software applications are classified in respect of the
programming language in which the source code is written or executed, and
respect of their purpose and outputs.

Simplest and cheapest approach, in order to apply redundant mechanism,
is to carry out parsing operation and Dockerfile preparation. Dockerization of

33



4 – Container Classes

an application starts preparing the relative Dockerfile, that specify following
parameters:

• Choose a base Image: Docker build filesystems layers starting on the
base image that is the read-only layer used to run containers. It could
be mounted from the Docker Hub or from a custom image;

• Install the necessary packages: Depending on the base image, addition
packages could be necessary in order to run custom application correctly;

• Add custom files: using ADD or/and COPY command, interpreted ap-
plications (PHP, Python, C, etc.) have to be added, paying atten-
tion to folders and permissions to assign. Using an application speci-
fic configuration file, it’s also possible to define format, fields, location,
environment variables and so on;

In a multiple containers approach, docker-compose file needs to be prepa-
red. All containers run executable files defined in Dockerfile and the better
way is to define a docker entrypoint script where all computational outputs
are redirected to specific directories. As done with other classes, parsing of
the compose file is performed, in order to write another compose-file with
redundant containers for all containerized applications. Furthermore, vo-
ter container must be generated, in order to perform comparisons between
outputs coming from original containers and their redundant counterpart.

Voter can be designed with different fault tolerance structure, as discussed
in the previous chapter, and all redundant containers must introduce diversity
to garantuee redundant mechanism work well. Furthermore, parsing have to
take into account outputs format in order to set operations properly, being
that comparisons could be diversified. This task is accomplished inserting the
format, in the entry files, within fault tolerant section. In this way, parser
can generate correct voters, reading fault tolerance parameters attached to
containers.

Another possibility is to enable byte-to-byte reading in the voters. This
methodology, allow to determine output format by reading output files. This
makes voters as generalized as possible, but this approach increase voting
complexity. Several cases must be take into account to avoid misoperations:

Ouputs sharing: outputs sharing is possible by defining volumes. Doc-
ker volumes are file systems mounted on Docker containers to preserve data
generated by the running containers. Volumes are stored on the host, inde-
pendent of the container life cycle. This allows users to back up data and

34



4.5 – Programming Application class

share file systems between containers easily. Parser have to duplicate volu-
mes for all redundant containers to avoid race condition. A single container
could share many volumes, so parser have to duplicate all of them for the
redundant counterpart.

Outputs could be shared by other sharing mechanism, for instance by soc-
kets. In this case, docker-compose must specify exposed ports for containers.
For standalone containers, it’s possible to remove network isolation among all
containers and the host, using the host’s networking directly. It is important
that the voter receives outputs on different ports for each container, at the
cost of too many busy ports.

Another option is to share ports but syncronization mechanisms are neces-
sary between communication among several containers. Docker offer driver
networking, such as the bridge network. It’s a link layer which forwards traf-
fic between network segments. This bridge is software device running within
a host machine’s kernel and allows containers, connected to the same bridge
network, to communicate each other. Containers which are not connected to
the same bridge network, cannot communicate directly. Network communi-
cation is useful whenever outputs format, generated by containers, are not
files. This is because IPC mechanisms can be used to transfer data. In order
to reduce complication, after parsing of the compose-file, output containers
could be redirected into a file as entrypoints.

CPU assignment: By default, each container’s access to the host machi-
ne’s CPU cycles is unlimited. It’s possible to set various constraints to limit
a given container’s access to the host machine’s CPU cycles. Most users
use and configure the default CFS scheduler or the real-time scheduler. Be-
st choice is to assign different cores among original containers, redundant
containers and voters, specifying maximum_cores in the fault tolerance.

Syncronization: Application can generate multiple outputs sequentially
and in different time intervals. Moreover, they couldn’t be syncronized with
the redundant ones, therefore voters needs to manage syncronization between
outputs. They can afford it by checking outputs whenever a new one is
created and if exist the relative redundant outputs. Thus, it’s freezed when
containers aren’t syncronized and waiting for valid outputs.

Whenever outputs are printed to stdout, users must be redirect printed
output into a files, in order to share among containers. Moreover, Operating
system cannot manage delay between output generation and redirection, thus

35



4 – Container Classes

there is out of syncronization, also in this case. This solution can afford syn-
cronization, even without operating system working, because syncronization
management are left to voters.

Logging: it’s not necessary to get all deeply informations from all contai-
ners, in this kind of environments, [28]. Tuning and troubleshooting can be
performed in real time if needed and standard informations, such as RAM
and CPU consuming, are enough to proper management. After parsing of
the compose file with redundant containers, it could be istantiate another
container that receive and elaborate logs from entire containerized system.
Optimal choices are external services like: cAdvisor, Sysdig and so on.

Advantages of parsing and Dockerfile preparation approach are: easy mana-
gement, easy preparation of the system, customizable voters and fixed re-
source assignment. However, it’s a static approach, thus Docker limitations
cannot be avoided. Whenever applications require fined tuning, advanced
methodologies like MDE, as showed in chapter 4.8, can be applied.

4.6 Monitoring class containers

##########################
#### MONITORING CLASS ####
##########################
inputs:

metrics:
Counter: True/False
Gauges: True/False
Histograms: True/False
Summaries: True/False
...
format: Time series/Event data/Real-time data/..

query: HTTP/ DQL
outputs:

data points: Time series/Event data/Real-time data/..
data sources:

type: 'monitor_name'
access: 'proxy'
org_id: 1
url: 'http://monitor_name:9090'

36



4.6 – Monitoring class containers

is_default: true
version: 1
editable: true

storage:
provisioning: 'directory'
config: 'directory'
datasource: 'directory'
database: 'directory'

ft_parameters:
ft_level: N
forwarding: 'block name'

scraping_interval: N sec
alert manager:

name: Alertmanager
type: alertmanager
url: http://localhost:9093
access: proxy
#optionally
#basicAuth: true
#basicAuthUser: my_user
#basicAuthPassword: test_password

This class of containers includes monitoring softwares. When a system or an
entire infrastructure are administrated, it is necessary to ensure that the dif-
ferent system element services are running smoothly, in order to keep services
going as expected. Moreover, they rely on metrics to monitor and understand
the performance of their applications and infrastructure. System monitoring
containers (such as cAdvisor, Syslog, Prometheus) helps in resolving those
issues, which may lead to a significant break in the systems.

A possible methodology to structure a fault tolerance system for this class
of container is the adoption of a data analyzer and monitoring tool, works
as a voter block. The parser distributes, as usual, a number of monitor
containers equal to ft_level and forwards the same inputs to them.

The data analyzer picks up metrics processed by the monitoring contai-
ners, which can be leveraged to perform voting. Voting is achieved by loading
custom dashboards into the analyzer. A dashboard is a set of one or more
panels, organized and arranged into one or more rows. Each of them can be
configured to perform custom operations on the controlled metrics. These
tools have alert manager built-in softwares, which allow to notify and hand-
ling certain events. In this fault-tolerant system, it’s used to notify voting

37



4 – Container Classes

status: whenever an error voting occur, a notification is sended by alert
manager.

4.6.1 Inputs parameter
This class receives input types defined in the respective entry, which are
generally of two types: metrics and queries. A monitor starts identifying
one or more targets, called endpoints, and then retrieving metrics. Metrics
represent the data in a system i.e., in other words, numeric measurements.
What users want to measure differs from application to application. For
example, for a web server it might be request times, for a database it might
be number of active connections or number of active queries, and so on. A
container monitor stores all scraped samples locally, so directories have to be
defined in storage entry. Moreover, all collected data are saved in a specific
format, as specified in format entry.

Metrics are retrieved via HTTP requests or by query language, so an entry
called query taking into account this inputs.

Since the inputs can be either files or streams, the forwarding block must
be programmed to handle them, simultaneously. Metrics management can be
handled differently from other classes, by leveraging Docker volumes. Since
monitoring containers process metrics by working on specific working direc-
tories, inputs can be shared simply by using Docker volumes. The goal of the
forwarding block is to take metrics from target containers and move them
to local volumes, accessible among all monitor containers. This operation
"masks" this volumes from the external service. However, it must take into
account the scraping interval, for all monitors to pick up the data only after
the block has moved them into the volumes.

Furthermore, it needs to forward external queries to all monitors, and then
send back metrics. In this case, there is no need for a trigger mechanism,
the data analyzer container is already synchronized with the generation of
all voter outputs, thanks by proper dashboard configurations.

4.6.2 Data analyzer configurations
In order to set up the system, the parser must retrieve the informations from
adding fault tolerance parameters. In the datasources, inside the output
parameter, sources of the metrics to be voted by the data analyzer must be
specified, and also informations about connections, ports, and so on. Sources
are all redundant monitoring containers. This allows to create necessary

38



4.7 – Continuous Integration class

configuration files to allocate inside the container. Also in this case, parser
known locations of this files looking at the storage parameter.

Data analyzers allow the configuration of alert managers, which in this
case is specified in the general fault tolerance parameters.

4.7 Continuous Integration class

######################################
#### CONTINUOUS INTEGRATION CLASS ####
######################################
inputs:

sources: GitHub/local/...
pipeline:

source: Jenkinsfile
format: declarative/scripted

signals: HUP/INT/KILL/TERM/...
outputs:

automations: single task/pipeline/multibranch pipe
build stage:

source: Dockerfile/...
test stage:

code: Python/C/..
results: console/junit/..

deployment stage:
results: console/file/...
sources: GitHub/local/..

logs:
enabled: True/False
redirection: Log file/stream
buffered: True/False
format: standard

external_logs:
enabled: True/False
redirection: Log file/stream
buffered: True/False
format: standard/custom/...

storage:
repository: 'URL/directory'
Workspace: 'directory'
test: 'directory'

39



4 – Container Classes

logs: 'directory'
external_logs: 'directory'

ft_parameters:
ft_level: N
forwarding: 'block name'

Continuous Integration is a automation process that allow cooperation and
many changes, between different contributors, into a unified project. The
process consists of several steps, called stages. A stage block defines a certain
number of tasks, to be executed along the entire process:

1. after the code commission, continuous integration process starts;

2. building and testing of the code;

3. if testing is successfully, building is ready for deployment;

4. pushing into production,

First outputs to be voted on, in this container class, are builded codes. The-
refore, in the buildstage parameter, it has to be specified the type of file or
process that the voter should know about. Accordingly, the parser instantia-
tes a Docker volume containing the building directory, accessible by the voter,
specified in the storage > workspace parameter. For example, using Jenkins,
the building directory is often: "Jenkins/jobs/project_name/builds/build_id".

In the testing phase, builded code is executed and its outputs have to
be voted. Such code, may be written in different programming languages,
so it must be specified, in the teststage > code entry. By knowing which
programming language needs to be voted on, voting algorithms take into
account a specific syntax, how mapping memory is performed, functions,
and so on. Continuous integration software performs testing on the executed
code, printing the results in a specific file format or stream, which can be
viewed in the results entry. Voting results, should be compared with the
results coming from the CI software, in order to ensure a correct execution
of the testing stage.

Deployment stage could consist of different operations, such as pushing
code into a production system or in a simple check that previous stages are
completed successfully. Therefore , it is only necessary to know the directories
or output stream.

After you run a job, Jenkins gives you access to log data. You will find
this extremely important to figure out why things failed and how you can fix
things for future runs.

40



4.8 – Service Discovery Class

For each stage of execution, logs are generated. Monitoring these logs
allows voting to be managed appropriately. Some software for continuous
integrations, allow the use of customizable logs. In that case, they have to
be specified all the necessary parameters, in order to send them to the voter.

4.8 Service Discovery Class

#################################
#### SERVICE DISCOVERY CLASS ####
#################################
inputs:

queries: HTTP API/DNS API
commands: SIGHUP

outputs:
discovery:

results: stream/txt
format: SRV

reload: file
healthchecks:

source: script
timeout: 30s
enable: True/False
type: TCP connection/Docker API/...

kv:
source: file
restriction: True/False

logs:
enabled: True/False
redirection: Log File/stream
buffered: True/False
format: standard

storage:
config: 'directory'
data: 'directory'

ft_parameters:
ft_level: N
forwarding: 'block name'
masked_IP: xxx.xxx.xxx.xxx

Classical architecture, for deliver an application, is called Monolithic. Appli-
cations are packaged and deployed as a single unit, having a specific language

41



4 – Container Classes

and framework. Monolithic architectures have several advantages: easy de-
ployment, easy testing, and easy deployment. However, main drawbacks
are:

• Low reliability: if there is a bug in one of the submodules, the entire
application needs to be reployed;

• Complexity: Size is limited to avoid slowing down performance too much;

• Hard continuous deployment: different modules have conflicting resource
requirements, so it is difficult to make changes and updates;

Microservices architecture is the answer for overcoming the limitations of
monolithic architecture. The idea is to split applications into a set of smaller
and interconnected units, which communicate through a well-defined, light-
weight mechanism, to perform tasks. Service mesh tools, for connecting and
configuring distributed infrastructures, are needed to manage these types of
architectures. The main features of these tools are:

• Service Mesh: this service enables inter-communications between diffe-
rent services, in a distributed application. Applications can use side-
car proxies, in a service mesh configuration, in order to establish TLS
connection and to allow communications without modifying components;

• Service Discovery: is a registry, saved in a database, where all network
locations of services are saved, and made discoverable via a DNS or
HTTP interface;

• Health Checking: issues and failovers could occur in a cluster system,
so some tools offer health checking mechanisms, to handle these events.
Proper services are activated, avoiding a shutdown of an entire system,
by preventing all traffic sended to malfunctioning nodes;

• Key/value Storage: is a storage type that offers several advantages, such
as leader election feature, dynamic configurations, flagging, and so on;

In order to properly deploy a redundant system, for this container class, it
is necessary to manage its client-server architecture. As an example, Consul
service is shown in fig 4.3, which represent a typical architecture belonging
to this fault tolerance class. It can be seen that service discovery container
works in a cluster, where each instance can work in both client or server mode.

42



4.8 – Service Discovery Class

Figura 4.3. Service discovery class typical architecture

Therefore, in order to enable proper cluster management, it is necessary to
specify a forwarding block masked_IP , which will be deployed in front of
the redundant containers. In this way, all containers belonging to the cluster,
will refer to this IP address, regardless of the redundancy level chosen for that
specific container.

A redundancy system, deployed for this container class, must be able
to proper handle each feature services. In general, cluster configurations
are saved in a database. When an update needs to be made to this type
of file, trigger commands are sent, in order to restart that container with
new configurations. Therefore, a redundancy system, has to handle this
input type, as shown in input > commands, observe how reload operation is
performed, via reload parameter, and find storage locations.

One of the major use cases for this container class is the service discovery.
Services can find their dependencies along the cluster, leveraging appropriate
DNS or HTTP interfaces, in order to access the discovery registry. Each
time this task is performed, the voter must check the outputs generated
by redundant containers, as specified in the output > discovery parameter.
Furthermore, whenever the discovery registry is updated with a different
service, the voter must ensure successful connection with the system. In
addition, logs are generated for each access, so they must be compared to
associate tasks with checks.

43



4 – Container Classes

If this class provides health checking algorithms, they should be voted on.
They are generally external scripts that are executed, so it’s necessary to
determine specifications of these scripts, in the healthchecks parameter.

Finally, key value datastore, is distributed on containers, and can be ac-
cessed by any agent, both in client and server mode. Many architectures
are designed to replicate data automatically, across all containers connected.
This type of storage is used to deploy configurations and metadata, across
all services belonging to a microservice architecture, dynamically. Having
a quorum of servers will decrease the risk of data loss if an outage occurs.
Natively, containers forward requests to servers, including key/value reads
and writes. Whenever, this type of access is made, the voter checks storage
endpoints and compares the contents. Therefore, it is important that access
synchronism is maintained between redundant containers.

4.9 Model-driven Redundancy

Figura 4.4. Model-driven Docker system architecture

As showed in the first chapter, container technology provides several advan-
tages: it’s a lightweight, portable and low-consumption technology. However,
Docker has relevant problems, as argued in many applications [26], [27]:

• Lack of verification: once designed, the deployment of the containers
have to be verified, because different problem could occurred such as mi-
sconfigurations, communication between containers, insufficient resour-
ces provided by the hosts to containers, human errors and so on. Docker

44



4.9 – Model-driven Redundancy

doesn’t perform verification that deployed containers are conform with
those designed;

• Resources management at runtime: Docker gives the possibility to set
the resources, such as memory, CPU usage, disk, network and so on,
only at design time. This is a Docker limit because workload could
change run-time and containers resources should increase or decrease, if
it’s necessary;

• Synchronization between deployed and executing containers: Modifica-
tion can be done in the design, such as adding new containers, changes
configurations or links in existing containers, ecc. Updates require a re-
start of the environment because Docker doesn’t provide synchronization
mechanisms;

Attractive and very efficient solution to face off these limitations, is Model-
driven engineering (MDE). MDE is a methodology aims to develop software
leveraging models, metamodels and model transformation techniques, which
help the specification of translations between different model types.

These technique could be used to design abstractions of a running system,
by developing run-time models, from different problem space perspectives.
Thus, a run-time model can target a certain self-management capability and
dynamically perform required operations.

The Eclipse Modeling Framework (EMF) is the main technology in Eclip-
se software for model-driven engineering. EMF is a modelling and a code
generator framework for building tools and other applications based on a
structured data model. This model is written in Ecore language and EMF
generate Java entities, starting from this model. They are based on java API
composed by several setter and getter, which store data of the application or
tool modelled.

Starting architecture of this approach is to depict the entire system in
three parts[26], as showed in fig 4.4:

• Docker Model: represent entire containerized system, which elements
contains all container properties;

• Docker Connector: is a tool which interacts directly with the Docker
daemon though HTTP, using a Docker API. It performs changes in the
environment based on information received by Docker Daemon. It’s
possible for instance a generation of Docker commands, Docker Compose
file, Docker Swarm configurations, modify container resource managing
cgroups and so on;

45



4 – Container Classes

• Executing Environment: it represents container deployed in execution in
the cloud infrastructure;

Docker connector is implemented as Eclipse plug-in, and receiving run-time
informations from Docker daemon, can fix the three problems illustated
before.

Key concept of model-driven redundancy is to implement another Eclipse
plug-in that receive redundancy properties, chosen by the user. After selec-
ting redundancy properties at the design time, Docker connector performs
artifact instantiations, such as voters and redundant containers and handle
syncronization between container outputs and artifacts generation. Leve-
raging interaction with Docker daemon, user only needs to interact with a
redundancy UI and letting connector the management. Interface properties,
such as level-k redundancy, redundancy type, which components needs to be
redundant and so on, have to be selected in order to depict software class.
Classes provide redundancy tasks to connector depending on the applications,
requirement and costs.

46



Capitolo 5

Methodology Validation

Figura 5.1. MySQL databases fault tolerance system

47



5 – Methodology Validation

In the previous chapter, has been explained how containers can be classi-
fied, for instantiate a containers fault tolerance system. The objective of this
chapter is to show how a methodology can be applied and to test its vali-
dity. Therefore, a MySQL database container is chosen, which represents a
container class belonging to "Database container class".

MySQL is the world’s most popular open source relational database mana-
gement system. With its proven performance, reliability and ease-of-use, My-
SQL has become the leading database choice for a wide range of applications,
websites and services.

To demonstrate the methodology, it has been deployed a mySQL contai-
ner, on which fault tolerance has been applied, and a supporting container,
just to access to the database, through port 3306. Port 3306 is the default
port for the classic MySQL protocol, which is used by mysql clients, MySQL
Connectors, other softwares, or other utilities. The fault tolerance system
obtained consists of the deployment of 3 redundant MySQL databases, a vo-
ter container and a tunneling container, as showed in the fig 5.1. Queries
coming from the supporting container are forwarded to each MySQL data-
base, and a trigger signal activates the voting container. The voter reads
the last last log generated by each database, in order to know the type of
query, and then performs the voting operations appropriately. The result of
the voting is sent to the tunneling container, which returns back the correct
output selected by the voter.

5.1 Dockerfile Preparation
Docker builds images automatically by reading the instructions from a Doc-
kerfile, which is a text file that contains all commands needed to build a given
image. The initial Dockerfile deploy a MySQL container, builded upon the
official image from DockerHub, which is the official repository of container
images, provided by Docker:

### Starting Dockerfile ###
version: '3.9'

services:
db1:

image: mysql
ports:

- "3306"

48



5.1 – Dockerfile Preparation

environment:
MYSQL_ROOT_PASSWORD: admin

sup:
image: supporting_image
build:

context: .
dockerfile: Dockerfile_supp

container_name: supp_container
hostname: 'supporting'
ports:

- "3306"

A system of three redundant databases, implies a fault tolerance level equal
to three, i.e. ft_level = 3. As a result, the fault tolerance section has been
written as follows:

### Starting Dockerfile ###
version: '3.9'

services:
db1:

image: mysql
ports:

- "3306"
environment:

MYSQL_ROOT_PASSWORD: admin
### Fault tolerance section ###
inputs:

queries: shell
outputs:

databases: True
tables: True

logs:
enabled: True
redirection: single file
format: SQL_statements

storage:
database: '/var/lib/mysql'
logs: '/var/lib/mysql'
config: '/etc/mysql/conf.d'

ft_parameters:

49



5 – Methodology Validation

ft_level: 3
forwarding: "tunneling"

##############################

sup:
image: supporting_image
build:

context: .
dockerfile: Dockerfile_supp

container_name: supp_container
hostname: 'supporting'
ports:

- "3306"

Input type are queries, so a tunneling block will be deployed that forward this
traffic to all databases through socket connected to port 3306, preparing a
Dockerfile and setting forwarding = tunneling name in the entry. The port
information is passed from the parser to the tunneling container, reading the
compose file. It will be builded a custom image, for a tunneling container
and the voter container deployment. In the storage parameter are present
all needed directories:

• databases: ’/var/lib/mysql’: MySQL has a unique directory, which con-
tains databases. This entry allows to create a shared volume among all
containers. This volume will be instantiated, only if database voting is
enabled, checking the entry: output > databases > True. Therefore,
the parser will perform "AND" operation between two variables;

• logs: ’/var/lib/mysql’: voter needs to know where access to logs. This
entry assumes importance only if container logging is done into a file. In
this case, a mySQL database has logging disabled by default, so parser
has to check the output > enabled entry. If the parameter is setted
to True, it means that logging into file (or multiple files) should be
handled. As a result, the parser has to integrate a configuration file
that enables this feature, within the container. In this specific case of
a mySQL database, it is contained in a directory, specified in the entry
storage > config;

Finally, format for reading logs in the outputs > logs > format entry should
be communicated to the voter, and control over databases and tables should
be enabled, with outputs > databases and outputs > tables entries.

50



5.1 – Dockerfile Preparation

Parsing operation creates a new Dockerfile, structured as follows:

### Starting Dockerfile ###
version: '3.9'

services:
db1:

image: mysql
container_name: mysqldB1
hostname: 'mysqldB1'
ports:

- "3306"
environment:

MYSQL_ROOT_PASSWORD: admin
volumes:

- 'storage1:/var/lib/mysql'
- './conf:/etc/mysql/conf.d'

db2:
image: mysql
container_name: mysqldB2
hostname: 'mysqldB2'
ports:

- "3306"
environment:

MYSQL_ROOT_PASSWORD: admin
volumes:

- 'storage1:/var/lib/mysql'
- './conf:/etc/mysql/conf.d'

db3:
image: mysql
container_name: mysqldB3
hostname: 'mysqldB3'
ports:

- "3306"
environment:

MYSQL_ROOT_PASSWORD: admin
volumes:

- 'storage1:/var/lib/mysql'
- './conf:/etc/mysql/conf.d'

tunneling:

51



5 – Methodology Validation

image: tunneling_image
container_name: tunneling
hostname: 'tunneling'
restart: always
ports:

- "65432"
- "3306"

build:
context: .
dockerfile: Dockerfile_tunneling

voter:
image: voter_image
container_name: voter
hostname: 'voter'
restart: always
ports:

- "65432"
build:

context: .
dockerfile: Dockerfile_voter

volumes:
- 'storage1:/voter_script/log1'
- 'storage2:/voter_script/log2'
- 'storage3:/voter_script/log3'

sup:
image: supporting_image
build:

context: .
dockerfile: Dockerfile_supp

container_name: supp_container
hostname: 'supporting'
ports:

- "3306"

volumes:
storage1:

driver: 'local'
storage2:

driver: 'local'
storage3:

driver: 'local'

52



5.2 – Correct system execution

5.2 Correct system execution
In order to demonstrate the correct execution of the voter, the following
queries have been sended to the system, in the following order:

• $> CREATE DATABASE testdb;

• $> USE testdb;

• $> CREATE TABLE test_table (ID int, name text, primary key(ID));

• $> INSERT INTO test_table (ID, name) VALUES (1, ’name1’);

• $> SELECT * FROM test_table;

• $> UPDATE test_table SET ID = 2 WHERE ID = 1;

• $> DROP DATABASE testdb;

As showed from fig 5.2 to fig 5.6, all containers had work correctly, as voter
logs show debugging of voting operations. When databases are created or
deleted, the voter shows "All database creation success" or "All database re-
moval success"; for table creations, after content comparisons, it shows "All
tables are equal" and finally compares shell outputs for SELECT and USE
query, showing "All shell outputs are Equal".

Figura 5.2. Connections to MySQL databases and CREATE DA-
TABASE queries voting

53



5 – Methodology Validation

Figura 5.3. USE and CREATE TABLE queries

Figura 5.4. INSERT queries

54



5.3 – Fault Injections validation

Figura 5.5. SELECT and UPDATE queries

Figura 5.6. DROP queries

5.3 Fault Injections validation
The main feature of a redundancy system is to ensure a correct execution,
even if failover occurs in one or more containers. In such cases, the voting
operations don’t get unanimity, but majority. To verify that the redundant
database system works in this situation, a fault injection was performed in
one database. As showed in the figs, the voter shows a warning related to

55



5 – Methodology Validation

the INSERT and CREATE DATABASE queries. The voter signals, with a
warning log, that the system can continue to operate, even though a fault
has occurred in one of the containers. Fig 5.9, on the other hand, considers
the case where all 3 containers don’t create same tables in all redundant
database. In this situation, the majority cannot be obtained, so the system
cannot continue to run. Therefore, the voter reports this failure, requiring
redeployment of the entire system.

Figura 5.7. CREATE DATABASE queries with fault injection

56



5.3 – Fault Injections validation

Figura 5.8. CREATE TABLE queries with fault injection

Figura 5.9. INSERT queries critical failover

57



58



Capitolo 6

Conclusions

Container classification is a useful methodology to instantiate fault toleran-
ce systems, by acting on individual containers. A system can become more
robust by introducing redundancy. Virtualization with containers is a tech-
nology that takes full advantage of such techniques, due to its flexibility and
limited use of hardware resources.

However, two disadvantages emerged from this methodology:

• Facing the study of new container class, it requires a deep understan-
ding of the software, that will run on the container. Some of these
softwares, can be very complex to manage, only using features available
with Docker;

• In systems where there is a large amount of deployed containers, resource
consumption could be higher, if fault tolerance methodologies are adop-
ted on the entire system. For this reason, careful resource allocation is
required at the design phase;

Future improvements of this work could be studied, such as:

• Leveraging techniques for resource management, as explained in the pre-
vious chapter. Being that workload could change run-time, containers
resources should increase or decrease. The adoption of these techniques
should be modeled to work on the fault tolerance system;

• Elimination of the parser, by adding its functions into the Docker engine.
Managers of a container system, only has to worry about compiling the
fault tolerance part, and then let Docker do the deployment;

59



6 – Conclusions

• The introduction of additional of levels of abstraction. Container classi-
fication requires a knowledge of the internal structure of containers and
software. A possible approch could be a definition of default parame-
ters, which reduces the number of input parameters required by those
compiling the compose file. In this way, it’s not necessary a knowledge
of a container structure, simplifying the design process;

60



Bibliografia

[1] https://docs.docker.com/engine/
[2] https://docs.docker.com/config/containers/logging/configure
[3] J. Turnbull, The Docker Book: Containerization is the new Virtualization,

James Turnbull, 2014.
[4] Koren, Israel, Krishna, C. Mani (2007), Fault-Tolerant Systems, San

Francisco, CA: Morgan Kaufmann, p.3, ISBN 978-0-12-088525-1.
[5] Naruemon Wattanapongsakorn, Steven P. Levitan, Reliability Optimiza-

tion Models for Embedded Systems With Multiple Applications, September
2004.

[6] Chunlin Yin1, Zhengyun Fang, Na Zhao, Redundancy Mechanism of Soft-
ware System and Reliability Analysis, IOP Conf. Ser.: Earth Environ. Sci.
440 032022, 2020.

[7] M. R. Lyu, Ed., Handbook of Software Reliability Engineering, Mc-Graw-
Hill, IEEE Computer Society Press, 1996.

[8] M. R. Lyu, Ed., Software Reliability Engineering: A Roadmap, IEEE
Computer Society Press, June 2007.

[9] ANSI/IEEE, Standard Glossary of Software Engineering Terminology,
STD-729-1991, ANSI/IEEE, 1991.

[10] M.R. Lyu , X. Cai, Fault-Tolerant Software, Encyclopedia on Computer
Science and Engineering, Benjamin Wah(ed.), Wiley, 2007.

[11] Bharathi V., N-Version programming method of Software Fault Tole-
rance: A Critical Review, National conference on nonlinear systems and
dynamics, 2003.

[12] A.Avizienis, Version Approach to fault tolerant Software, IEEE Software
eg., vol- SE11, No12, Dec 1985.

[13] Kurt Kanzenbach, Fault tolerance on the system level, Friedrich -
Alexander University Erlangen - Nuremberg.

[14] . Borkar, Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation, IEEE Micro, vol. 25,

61



Bibliografia

no. 6, Nov. 2005.
[15] . Baumann, Soft errors in advanced computer systems, IEEE Design Test

of Computers, vol. 22, no. 3, May 2005.
[16] . Narayanan and Y. Xie, Reliability concerns in embedded system designs,

Computer, vol. 39, no. 1, pp. 118–120, Jan. 2006.
[17] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,

An experimental study of soft errors in microprocessors, IEEE Micro, vol.
25, no. 6, Nov. 2005.

[18] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, Fault injection for dependability validation:
A methodology and some applications, IEEE Transactions on software
engineering, vol. 16, no. 2, 1990.

[19] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault injection techniques and
tools, Computer, vol. 30, no. 4, Apr. 1997.

[20] H. Ziade, R. Ayoubi, and R. Velazco, A Survey on Fault Injection
Techniques, The International Arab Journal of Information Technology,
2004.

[21] S. K. Reinhardt and S. S. Mukherjee, Transient fault detection via simul-
taneous multithreading, In Proceedings of the 27th Annual International
Symposium on Computer Architecture. ACM Press, 2000.

[22] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, An updated perfor-
mance comparison of virtual machines and linux containers, Performance
Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium On, IEEE, 2015.

[23] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht,Y. Cheng,
N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, D. Hildebrand, and A.
R. Butt, Improving docker registry design based on production workload
analysis, in Proc. 16th USENIX Conf. File Storage Technol., 2018.

[24] Zhuping Zou ,Yulai Xie, Kai Huang, Gongming Xu, Dan Feng, Darrell
Long, A Docker Container Anomaly Monitoring System Based on Opti-
mized Isolation Forest, IEEE Transactions on Cloud Computing, vol. 7,
August, 2019.

[25] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, Leve-
raging virtualization to optimize high-availability system configurations,
IBM System Journal, Vol. 47, No. 4, 2008.

[26] Fawaz Paraiso, St´ephanie Challita, Yahya Al-Dhuraibi, Philippe Merle,
Model-Driven Management of Docker Containers, IEEE 9th International
Conference on Cloud Computing, 2016.

62



Bibliografia

[27] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker, In-
cremental Model Synchronization for Efficient Run-time Monitoring, In
Proceedings of the 2009 International Conference on Models in Software
Engineering, MODELS’ 09, Berlin, Heidelberg, 2010, Springer-Verlag.

[28] Russ McKendrick, Monitoring Docker, Livery Place, Packt Publishing,
2005.

[29] Fumio Machida, Masahiro Kawato and Yoshiharu Maeno, Redun-
dant Virtual Machine Placement for Fault-tolerant Consolidated Server
Clusters, Service Platforms Research Laboratories, NEC Corporation,
1753.

[30] Sarita, Sunil Sebastian, Transform Monolith into Microservices using
Docker, International Conference on Computing, Communication,
Control and Automation (ICCUBEA), Pune, Maharashtra, India, 2007.

63


	Elenco delle figure
	Introduzione
	Docker containers
	Software Virtual Machine
	Container virtualization and VMs
	Docker containers
	Docker engine

	Redundancy
	Fault-Tolerance
	Abstraction levels of fault model

	Redundancy
	Software Redundancy
	NVP
	Recovery Block Technique


	Container Classes
	Docker compose parsing
	Fault tolerance parameters
	Database class
	Database Logs

	Web Server Class
	Load Balancing Problem
	Web server logs

	Programming Application class
	Monitoring class containers
	Inputs parameter
	Data analyzer configurations

	Continuous Integration class
	Service Discovery Class
	Model-driven Redundancy

	Methodology Validation
	Dockerfile Preparation
	Correct system execution
	Fault Injections validation

	Conclusions
	Bibliografia

