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Abstract

The increase of electricity consumption and the increase of Distributed Energy
Sources in the electrical grid both introduce problems to the dispatch of electricity
to the final consumers. The presence of sources whose production is related to
the weather conditions also brings uncertainty to the definition of a dispatching
strategy.
The aim of this thesis is to analyze a portion of the grid to define the dispatch
strategy for supplying electricity to consumers with the use of a photovoltaic
plant and a wind turbine, with the support of a battery and the grid, following
the examples set by the literature. The concept of the model is of a Plug &
Play perspective, meaning that the elements considered in the analysis could be
connected or disconnected as desired. Pyomo and CPLEX were used to define an
optimal solution, both in a deterministic and a stochastic way.
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Chapter 1

Introduction

According to the Intergovernmental Panel on Climate Change (IPCC), climate
change is identified as changes in the state of the climate in the form of variation of
its properties and that persists for an extended period or time [1]. Climate Change
can be attributed to natural causes, such as volcanic activity, oceans circulation
and variation in solar radiation, or to anthropogenic causes. To quantify the impact
from Climate Change, the IPCC releases, every couple of years, an assessment
report. In Assessment Report 5 [2], the authors stated that:

• Over the period between 1880 and 2021, the combined global average tem-
perature of land and ocean surface has followed an increasing linear trend of
0.85°C;

• The upper 75 m of the ocean water increased their temperature of 0.11°C per
decade in the year between 1971 and 2010;

• Ocean surface salinity has also changed since 2050: high salinity regions have
become more saline while low salinity one have become fresher;

• Due to the increase of CO2, the ocean was subjected to acidification, since
surface water’s pH has decreased of 0.1, resulting in an increase of its acidity
of 26%;

• Almost all around the world, the size of glaciers have continued to drop;
also, in most regions, permafrost temperature have increased from the values
they had in the 1980s due to the increase of surface temperature and to the
variations in the snow cover;

• In 2010, the global mean sea level has increased of 0.19 m from the level it
had than 100 years before (1901), reaching the value to 0.21 m.
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Introduction

The authors of [2] also analyzed the causes behind Climate Change, focusing on
the increase of the emissions of anthropogenic Greenhouse Gases (GHG) since
the pre-industrial values. The definition of GHG includes all those gases that are
in the atmosphere, and contribute to the Greenhouse Effect that allows planet
Earth to have the atmosphere it has, but that causes global warming when their
concentration in the atmosphere is too high. These gases absorb and emit radiant
energy at specific wavelengths within the spectrum of the radiation emitted by
Earth’s surface. Among these gases there are water vapor (H2O), carbon dioxide
(CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3) [2]. As can be seen
from figure 1.1, the sector that is the main contributor to the emission of GHG is
the energy sector.

Figure 1.1: Industrial GHG emissions, subdivided by sector [3]
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In the Global Energy Review: CO2 Emissions in 2021, the International Energy
Agency (IEA) [4] stated that, in 2021, CO2 emissions reached the highest record
for their annual value and that the biggest increase registered was the one caused
by the electricity and heat production sector, responsible for 46% of the global
increase in emissions. This variation is justified by the growth, in the same time
period, of the electricity demand.
In fact, the Electrical Energy consumption, in recent years, has followed a general
trend that is increasing every year. In 2019, in Italy the value of electricity
consumption was of 319.6 TWh and, while the spread of COVID-19 impacted on
different industrial sectors, leading to a decrease of 5.8% in 2020, then, in 2021, the
consumption of electricity returned to 318.1 TWh, that is only 0.5% lower than
the value of 2019 [5] [6].
Therefore, except for the year 2020, these trends of general increase of electricity
lead to a necessity of increase of the generation of electricity.
In the last 36 years, the Italian electricity mix changed following the trends as
shown in figure 1.2. The use of coal indeed decreased in recent years, giving more
space to less CO2 emitting sources, like natural gas and hydropower. Still, natural
gas is a fossil fuel and it still is, for definition, a resource that has quite an important
environmental impact. In 2021, 40.91% of the electricity produced in Italy was
derived from Renewable Energy Sources (RES) [7], where RES include hydropower,
wind, solar, geothermal, modern biomass and wave and tidal power. As stated in
the Integrated National Energy and Climate Plan (PNIEC) [8] from the Italian
Government, the goal is to reach a share of 55% of RES in the electricity production
within 2030.
To reach the goal set form the PNIEC [8], the National Recovery and Resilience
Plan (PNRR) [9] includes a section dedicated to the investment to increase the self-
consumption with the installation of new RES plants, especially in the framework
of Energy Communities.
According to the European Commission, an Energy Community is citizen-driven
local community organization that contributes to clean energy transition and to
the increase of energy efficiency [10]. These organizations, usually, rely on the
Distributed Energy Resources to supply their energy demand.
The International Energy Agency (IEA) defines the Distributed Energy Resources
(DER) as energy resources of small size that are usually placed near the location in
which electrical energy is used [11]. The traditional electrical system paradigm had
four separated subsystems:

• centralized generation

• trasmission system

• distribution system

3
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Figure 1.2: Electricity generation mix in Italy for years 1985-2021 [7]

• utilization

With the increase of these small plants installed and connected to the grid, a
paradigm shift from centralized to distributed generation is occurring. The emerging
paradigm considers the presence of the generation subsystem also in the utilization
one, as the figure of the prosumer is catching on. Prosumers are grid users that are
both consumers and producers, since they have installed energy generation plants
that usuallly can be attributable to DERs.
Furthermore, the transmission system shall shift from centralized to a Super Grid,
that includes few high rated power plants, high voltage transmission of power might
have to follow long distances and it should be operated centrally. Similarly, the
distribution system has to change, from a decentralized system to a Smart Grid.
Smart Grids have a high number of Distributed Generation (DG) plants, it can
sustain a bidirectional power flow over the network and it should be operated in a
dispersed way.
In the context of Smart Grids, there is the definition of MicroGrids (MG). A MG is
defined as a group of electrical loads and DERs within defined electrical boundaries,
that acts as a single entity with respect to the grid. A MG can operate in island
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mode or in grid-connected mode, depending on the fact that is connected or not to
the grid.
The increase of DER connected to the grid introduces issues related to the fact that
most of these resources, such as photovoltaic power systems or wind turbines, are
of unpredictable and intermittent nature, since they depend on weather conditions.
Abrupt variations on the produced energy and therefore injected into the electricity
grid may lead to stability problems, such as sudden variations on voltage and
frequency values, that could be also worsened by the variation on the load. The
changes in voltage and frequency can lead to power quality issues, then power
outages could arise. Therefore, the definition of an optimal dispatch strategy is
necessary to ensure the electrical grid stability and reliability.
A dispatch strategy is a set of rules that defines which generator or storage system
would supply electricity to the load in a given time step. The optimization of a
dispatch strategy can be performed according to different parameters.
In the first part of the following chapter 2, the state of the art in the literature
concerning the optimization of the sizing of resource is illustrated, while in the
second part (section 2.2) the optimization of the dispatch strategies will be discussed
in detail. Then, in chapter 3, a MG composed by the load of 12 households, a
photovoltaic power system, wind generator and a battery storage system, with
the electrical grid support, is developed and simulated in two different weather
conditions, to give a broader idea of how the dispatch strategy can change according
to the season. The following chapter 4 introduces the uncertainty of time-depending
parameters, such as wind speed, solar radiation, electricity demand and electricity
market price, and defines a set of scenarios affected by uncertainty that are used
as input to determine an optimal dispatch strategy. The MGs analyzed in both
chapters 3 and 4 were developed in a plug-and-play type of framework, that allowed
to easily change their configuration, to see how the different resources affect the
dispatch of electricity.

5



Chapter 2

State of the art

The intention of this section is to present some existing literature concerning the
use of optimization in the Energy systems.
In the energy sector, the types of optimization that can be performed can be
subdivided according their purpose, that usually corresponds to different time
periods in the life of an energy system. If the optimization is carried out with
the aim of defining the design of a power generation plant, in terms of size and
according to its location, then it is performed in the planning phase. Instead, if its
purpose is to obtain a dispatch strategy in a system that consists of one or more
power generation plants to supply a given load, the optimization will define which
type of plant is working, for how long and in which operating conditions at every
moment of a given period of time, then this is completed in the operational stage.

2.1 Planning stage optimization
The optimization performed in the planning stage aims at defining the optimal size
of a given type of generation plant that is going to be installed at a given location
to deal with an electricity demand. This is usually done with the objective of an
optimal economic outcome, minimizing the investment costs for the realization
of the plant. Performing the optimization in the planning stage considering the
economic aspect of the project could also mean to take into account the expected
operational costs that will be faced during the lifetime of the plant. While the
investment costs include all the capital costs that are needed to design and realize
the plant, the operational one are the costs the system will meet to generate power
and to be able to fully operate during its useful timelife.
An example of planning economic optimization is presented in the first stage of
the problem analyzed by Wu et al. [12]. Through the optimization, the optimal
size of the system’s components was defined, minimizing the expectation of the

6
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total net-cost. The objective function of this optimization problem is composed
by both the investment costs and the expected annual operational cost of the
Distributed Energy Resources (DER). It is subjected, among other constraints, to a
survivability requirement, that indicates whether the MicroGrid (MG) in question
is resilient enough to survive a random outage. Therefore, in case the DERs operate
in grid-connected mode, the optimization is performed with the main objective of
minimizing of the operational costs, while, in case of a random outage that requires
island-mode operation, the main goal is for the system to survive the outage. The
uncertain parameters presented in this article are the load, the weather conditions,
on which depends the power output from Renewable Energy Sources (RESs), the
starting and ending time of a random outage and the State of Charge (SoC) of the
battery in case a random outage occurs. These are represented by a vector and are
solved in the first stage of the problem. Once the first stage is solved, the second
stage aims at the minimization of the expected operational costs. Both stages of the
problem were modelled as stochastic Mixed Integer Linear Programming (MILP)
problems and are merged into a single equivalent deterministic MILP problem,
solved by an open-source solver named Cbc (COIN-OR branch and cut). The
proposed method was tested in a resource planning analysis for a U.S. military
base, for which many details could not be divulged.
Another example comes from Boloukat et al. [13]. The authors aimed at obtaining
the optimal combination of various technologies for a resource expansion planning,
that maximizes the profit and the reliability and minimizes the costs. The model
formulation is a Multi-objective MILP problem and Benders Decomposition (BD)
is applied to simplify the solution of the problem. BD is used to subdivide the
problem into a master investment problem and two sub-problems (in this case,
operation and reliability). The master investment problem defines whether a given
type of technology is installed and at which capacity, minimizing the investment
cost. The operation sub-problem maximizes the profits of the technologies, as
designed in the master problem, defining their optimal output, considering also a
part of energy that could be sold to or bought from the grid and the charge and
discharge of storage systems. The reliability sub-problem rearranges the output
of the technologies when the operation of the system is not at the optimal point
found in the other sub-problem. Often, this occurs in case of disturbances in the
main grid that could isolate the MG. The uncertain nature of the RESs is included
in this analysis with the use of Interval Linear Programming (ILP). ILP describes
uncertainties as intervals and it is usually used when their distribution functions
lack information. The solution to this optimization problem is found with the
application of a specific algorithm. The case study was implemented on a MG
composed of Photovoltaic panels (PV), Fuel Cells (FC), Wind Turbines (WT),
diesel generator, a heat source, Heat Storage (HS) and Electrical Storage System
(ESS). The optimization was performed in three different conditions:
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• considering only the reliability of the grid and not the intermittency of the
RES

• considering only the intermittency of the RES and not the reliability of the
grid

• considering both grid reliability and RES intermittency

Also, Zhang et al. [14] performed the optimization in the planning stage through the
minimization of the total cost of the energy system. Unlike the previous papers, in
this article the demand is not simulated as a given fixed value subjected to a certain
level of uncertainty, but it was described by an Agent Based Model. ABM generates
uncertain demand scenarios for a community with different energy consuming
activities and considering different types of households, based on probability models
and demographic information. Probability functions related to the different types
of behaviours of the occupants are considered, as well as two different settings for
weekdays and weekends. Therefore, each run of the model could generate many
different load profiles. K-means clustering approach is used to have a sufficient
representation of the fluctuation of demand profiles and to make them suitable
to be included in the system design optimization model. The optimization model
is formulated as a Stochastic MILP problem, its objective is the minimization of
the total cost of the energy system, expressed as the summation of the total costs
of each scenario multiplied by the scenario probability. The total cost of each
scenarios is given by the summation of the capital expenditures, the fuel costs and
the maintenance costs, considering price variations related to both the season and
the hour of the day. This simulation is applied to a case study of a residential
community in Shanghai, China, that include 13 residential buildings and 1024
households. Said community is served by a Combined Heating and Power (CHP)
unit, a boiler, an electrical chiller, an absorption chiller, a heat pump and a heat
storage tank. The model is developed in GAMS and solved by CPLEX.
In [15], the optimal sizes of the components of two hybrid off-grid MGs are defined
considering not only the minimum of CO2 emissions, Net Present Cost (NPC)
and Levelized Cost of Energy (LCOE), but also according to five different pre-
defined dispatch strategies that can be employed in meeting the load. These
dispatch strategy are Generator Order (GO), Cycle Charging (CC), Load Following
(LF), HOMER predictive dispatch and Combined Dispatch (CD) strategy and are
analyzed using the HOMER software. With the GO dispatch strategy, there is a
predefined order of generator combination that meets the demand. CC dispatch
strategy has the generator operative at full capacity at all time it is required and
the energy in surplus from meeting the load is used to charge the storage device.
In LF, the operation of the generator is at a value enough to fulfill the load. The
HOMER predictive dispatch already knows the load and the availability of the

8
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resources due to forecasts. With CD, the least expensive optimal combination of
generators indicates whether to apply LF or CC in every time-step. Frequency and
Voltage stabilization constraints are considered to ensure MG systems stability. No
stochastic behaviour of the RESs is included in this study. The objective function
is the minimization of the sum of fuel costs as a quadratic function of the power
output of each type generator employed. The simulation’s MGs are composed
of Diesel generators, PV systems, EESs and WTs. The dispatch simulations are
performed with HOMER software, while the system performance and feasibility
studies are perfermed in MATLAB Simulink.
The article from [16] considers the capacity design of off-grid Energy Hubs (EH).
The capacity design of the components of the EHs is made of two phases. The first
phase is a chance-constrained optimization problem that defines the capacity of
the components, through the minimization of the NPC, with a certain value of
virtual Load Shedding (LS). LS is performed by the system operator and consists
of cutting unimportant parts of the load when the system faces some kind of
emergency conditions, in this case when rare weather conditions that limit the
RESs generation occur. The uncertainties related to solar and wind resources and
to the load are considered in this part of the problem. The second phase of the
capacity problem consists in the validation of the design defined in the first phase,
through a set of deterministic multiperiod feasibility problems that use the true LS
limit. The outcome of this phase defines a new value of the virtual LS limit, with
which the first, and then again the second phase, is iterated. This iterative process
allows to achieve a trade-off between reliability and cost. The chance-constrained
optimization problem is reformulated as a robust model to allow a easier solution
of the model, that is then solved as a Linear Programming (LP) problem, with
the MATLAB-based CVX toobox together with the Gurobi solver. This model is
applied to an EHs composed of WT, PV panels, ESS, FC, CHP and an electrolyzer
and Hydrogen tank as bulk energy storage. The EH peak demand is on 100 kW
scale.
Most studies that handle the sizing of a MG do not usually include the possibility of
changes in demand, technology, fuel and components price, including these values
only as they are at the beginning of the project that lead to unrealistic results.
Perera et al. [17] consider a standalone MG to visualize how three stages of changes
condition the optimal design of the system. The MG is composed of PV panels,
ESS, Biomass Gasification Combined Heat and Power unit (BGCHP) and Internal
Combustion Generators (IGC). HOMER Pro is used to optimize the design in the
three cases, that consist into different components’ prices and demand profiles, and
for which a comparison is made between the Cost of Energy and the percentage
of Renewable energy penetration. The peak demand in the different stages are
respectively 536 kW, 580 kW and 581 kW.
Wang et al. [18] analyse the optimization of the design of a integrated energy
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system, meaning a system that couples different types of energy, in particular
electrical, chemical and thermal energy. The sources of electrical energy are PV
panels, WTs, CHP system and the public power grid to guarantee the backup for
the system. Power-to-gas is employed to use the excess electricity and generated
chemical energy. Finally, thermal energy comes from gas-source thermal generators,
HPs and electricity-source thermal equipment. The objective function is composed
of three goals:

• Minimization of the total economic cost

• Minimization of the total carbon dioxide emission

• Minimization of the comprehensive energy loss, to obtain the maximum
comprehnsive energy efficiency

The multi-objective function includes these objectives with the weighted sum
method. The optimization is performed with the Genetic Algorithm (GA) in
Matlab/Simulink software.
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2.2 Operational stage optimization

When the optimization is performed in the operating stage, the size and location
of the power generation equipment are usually already defined, at an optimal value
or not, and the analysis aims at finding an optimal strategy to supply the load
considering the use of different types of energy sources.
As presented by Wu et al. [19], the economic dispatch of a power system can be
static or dynamic. Static economic dispatch defines a strategy considering only
the operation of the system and the load as a constant value that changes with
each independent period. Instead, with dynamic economic dispatch, the economic
allocation of the generation is performed considering the knowledge of both present
and future electricity demand, represented as a profile changing over several periods,
allowing to have better coordination between different Distributed Generation (DG)
systems. There are two cost-related objective functions that need to be minimized.
One is the operating cost of the MG and the other is the pollutant treatment cost,
and these are first investigated as individual objective functions and then together
as the sum of the two costs. Normal Probability Distribution Function (PDF) is
employed to describe the uncertainties related to the load and to the RESs power
output. The paper in question found a dynamic economic dispatch for a simple MG
(PV and WT, backup Diesel Engines, FC), that can operate either connected or
disconnected from the main grid. When operating disconnected from the grid, there
is an EES system to aid the demand supply, but in case the resources are still not
enough to meet the load, parts of the demand that are considered unimportant can
be interrupted (Load Shedding). The simulation is run and the dispatch strategy is
defined for a 24 hours scenario, with time steps of 5 minutes. The model is solved
in Visual C++ with Improved PSO (Particle Swarm Optimization) algorithm in
combination with Monte Carlo Simulation (MCS) that determines whether the
inequality related to the probability constraint of the spinning reserve is satisfied
and, in case it is not, it considers a penalty function. PSO is based on the emulation
of the behaviour of birds and fishes to initialize a set of candidate solutions to
search for the optimal value. It is a meta-euristic method, meaning that few or no
assumptions are made.
Toopshekan et al. [20] developed a new dispatch strategy that reduces the cost of
energy of the systems compared to the pre-prepared dispatch strategies usually
used by HOMER (Hybrid Optimization Model for Multiple Energy Resources)
software. These strategies are LF and CC. The former establishes that whenever a
generator is operating, it produces just enough power to to meet the demand, while
with the latter the generator is always operating at full capacity and any excess
power will be used to charge a battery system. The dispatch strategy developed in
this article takes into account 24-h foresight of electrical load, wind speed, solar
radiation and grid’s cut-offs and it is developed to give information of a whole year.

13



State of the art

It is applied to a hybrid system based in Tehran (Iran), that is composed by PV,
WT, DGs and battery, and it is connected to the main grid. The comparison of the
new dispatch strategy with LF and CC find that the former not only has a lower
cost of energy than the pre-prepared strategies, but also has higher percentage of
use of the RES, but this comes with the expense of a higher initial capital cost
related to the different optimal system architecture defined for each strategy.
Zeng et al. [21] performed the economic optimization minimizing the costs while
considering both the unit operating costs and the start-stop costs. Start-stop
costs are related to the continuous turning on and off of the generation set. The
optimization is simulated on a system composed by conventional thermal power
plants, WT and PV. The model is a multi-scenario stochastic problem that is turned
into a MILP problem to better find the solution. Load and RESs uncertainties are
modelled starting from historical data with the Gaussian Autoregressive model and
then Autoregressive Moving Average Model (ARMA) to have better fitted values.
Quantile Regression is used to reduce the number of scenarios, considered with their
quantile weights. The simulation time is of 24 hours, with 1 hour time-step.There
are different types of scenarios to define the day-ahead dispatching schedule:

• Considering only the uncertainty of the RESs output

• Considering the uncertainty of both load and RESs output

• Considering no uncertainty

• Considering the uncertainty of both load and RESs output under different
quantiles

• Considering the uncertainty of both load and RESs output with a traditional
stochastic optimization method

The optimization from Daneshvar et al. [22] introduces, in the cost minimization
objective function, a voice of cost related to the LS. The study applies the optimiza-
tion to five different renewable-based EHs, in which the energy production comes
from different combinations of RESs (WT and PV), EES and thermal storage and
Combined Cooling Heating and Power (CCHP) unit. The uncertainties related
to the solar radiation and wind speed are modelled with MCS approach and the
Fast Forward Selection (FFS) is applied for scenario reduction. The case study is a
24 hours simulation with 1 hour time-step. The problem is modelled as a Mixed
Integer Non Linear Programming (MINLP) problem and it is solved on GAMS
with the use of DICOPT and SBB solvers.
Farsangi et al. present, in [23], a two-stage stochastic MINLP problem for the
minimization of the operational costs of a MG, that can operate both connected to
the main grid and in island mode, and in presence of a Demand Response (DR)
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program. The DR program can be price based, meaning that the consumers change
their habits according to the electricity price, and incentive based, meaning that
the customers sign a contract that regulates the curtailment of their load in case
of disturbances that cause the MG to operate in island mode. Both types of DR
programs are included in the model. The uncertainties taken into account in the
model are the electrical load, the market price of electricity, both modelled with
Normal PDFs, the wind speed, modelled with the Weibull PDF and the solar
radiation, with the Beta PDF. A MILP problem is employed to reduce the number
of scenarios generated. The simulation is applied to three different cases:

• grid-connected without Demand Response programs

• grid-connected with Demand Response programs, considering maximum pos-
sible load shifting of 10% and 20%

• island condition with Demand Response programs, considering maximum
possible load shifting of 10%

The MG for the validation of the model is served by PV, WT, CHP, thermal energy
storage, FC and a Power generating unit. The loads are both thermal and electrical,
Plug-in Electric Vehicles (PEV) are also included in the analysis. The model is
modelled with GAMS and a ALPHAECP solver is emplyed.
Di Somma et al. [24] considered two objective functions in the optimization, one is
economic and the other is environmental. The economic objective function was
used to minimize the total energy cost of the DER system, while the environmental
one is represented by the CO2 emissions related to the different technologies, that
also need to be minimized. The simulations are performed first considering each of
the two objective functions individually and then considering both together, varying
the importance given to one of the two at the expense of the other. Both supply
and demand side uncertainties were considered in the stochastic approach of the
problem, they were modelled using Roulette Wheel mechanism and MCS method
and were represented as 24h scenarios. The model is formulated as a Stochastic
Multi-Objective Linear Programming problem. The three simulation cases are also
solved in a deterministic way, without taking into account the uncertainties. The
case study used to validate this model is based on a residential building composed
of 50 apartments in Turin, served by CHP, PV, EES and considering that energy
can be bought from and sold to the grid. The optimization was modelled and
solved with CPLEX.
Other than the capacity design of the components of an off-grid EH, the paper from
Geng et al. [16], presents also the definition of an optimal dispatch strategy of the
optimally sized devices. The operation strategy is composed of a day-ahead optimal
scheduling and of a real-time Model Predictive Control (MPC). The day-ahead
scheduling is based on the forecast of the RESs generation and of the load and
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aims at the minimization of the fuel cost and of LS. This optimization problem is
reformulated as MILP through McCormick relaxation, and solved with the CVX
toolbox and Gurobi solver. The real time MPC is a way to manage any deviation
that might occur from what is defined in the day-ahead optimal schedule. The
prediction horizon is of 4 hours with a 15 minutes time-step.
[25] present a security constraint multi-objective optimal dispatch for a grid-
connected or islanded MG, based on the Pareto Concavity Elimination Transfor-
mation (PaCcET). There are two objective functions. The first one is to minimize
the operation cost, including the one from of DERs, and the cost related to the
power exchange with the main grid when in grid-connected mode. The second
one aims at improving the reliability through the decrease of the power exchange
between the MG and the main grid and the reduction of the use of the EES when in
island-mode operation. This second objective function includes also some penalty
costs related to the LS of non-essential and essential loads. The proposed model is
called Security-Constrained Multi-Objective Optimal Dispatch (SC-MOOD). This
model is applied to a MG that consists into two dispatchable DERs, ESS and
PV panels. This MG is simulation with DIgSILENT software and implemented
in MATLAB. The uncertainties of PV generation and loads were not taken into
account.
Zhang et al. [26] present an optimization for the definition of a dispatch strategy
of a cluster of MGs. This optimization is a two-levels problem. The overall goals
are the stability and the benefits from the MGs’ cluster. The first level employs
an improved PSO algorithm for the maximization of the MGs’ benefits and for
the minimization of the operation risk index. The benefits are defined as the
incomes from the new energy consumed by the load and energy surplus on-grid
minus the fuel costs and the electricity bought from the external grid, while the
operation risk index represents the risks related to the load shortage and to the
RESs overflow. Uncertainties related to wind, solar radiation and load are included
in the operational risk index objective function and can be described as Gaussian
PDF. The simulation period is of 24 hours and the time step is of 1 hour. The
second level of the optimization aims at minimizing the power exchanged at Point
of Common Coupling (PCC) and at minimizing the fluctuations of the DERs’ gen-
erated power to reduce the impact of the MGs on the stability of the distribution
network. Also, the power transmission losses, that occur when the distribution
follows long-distance paths, need to be minimized. The number of iterations need
to reach a solution with the Improved PSO is compared to the standard PSO and
the Tabu Search (TS) algorithm.
Dynamic economic load dispatch (DELD) problem is faced in this paper [27] in
the optimization of the power supply strategy of a system composed of Thermal
power generators and WT generators. Load and wind power uncertainties are
included in the scenario-based stochastic programming problem. The scenarios
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are generated with MCS method and a scenario reduction technique is employed.
The model developed is a nonsmooth non-convex optimization problem and it
is solved with a modified Teaching-Learning-Based Optimization (TLBO), that
is a metaheuristic algorithm inspired from the interactions between teacher and
students and among students themselves in a classroom environment. The changes
on this algorithm allow better solution quality, convergence speed, robustness and
efficiency. The objective function of the problem in question is represented by the
minimization of fuel consumption rate. The formulation includes constraints such
as transmission power losses, valve point loading effects and ramp rate limits. The
modified algorithm is tested considering five individual independent cases with
different combinations of constraints. The simulation period is of 24 hours and the
time step is of 1 hour.
The day-ahead scheduling of a islanded MG is proposed in [28]. Said MG consists
of PV panels, a Geothermal generator and a Biomass generator. The objective
function is represented as the minimization of the operating costs of the MG, con-
sidering the costs related to each generating unit. The PSO algorithm is employed
in the solution of this problem. The time step is of 1 hour, but the simulation
period could either be of 1 day or of 1 month. Solar energy is evaluated with the aid
of statistical meteorological data and panels’ properties. The results are compared
to the to one obtained from the use of the Harmony Search Algorithm instead of
the PSO, finding that the solution is quite similar, but the computational time is
lower with the PSO algorithm.
A two-step multi-objective scheduling problem based on cloud-edge computing is
presented in [29]. A Central Energy Management System (CEMS) is employed for
the day-ahead economical and environmental scheduling of a MG. The concept of
two-step is included in the fact that the optimization is divided into two models:
the global optimization model on cloud-side and the online local optimization model
on edge-side. The first one is employed to find the global optimal day-ahed schedule
usign the forecast data, while the second one is used to correct what is computed
in the first model. The first optimization model has two objective functions: an
economic objective function that includes the minimization of fuel, Operation and
Maintenance (O&M), start-up and depreciation costs and the maximization of the
benefit from the main grid, and an environmental objective function that is the
minimization of the air pollutants derived from the DGs. The objective function of
the local optimization model is to minimize the correction on cost and emissions.
Three different MGs are used to validate these models:

• Composed by microturbines (MTs), FC and ESS in island mode

• Composed by MTs, FC and ESS in grid-connected mode

• Composed by MTs, FC, ESS and WT in grid-connected mode
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The optimization algorithm used to solve this problem is a Non-dominated Sorting
Genetic Algorithm II (NSGAII), The global optimum obtained in the first step
of the model is used as the initial population of the local optimization. For the
electric load and the wind speed both forecasts and actual values are used.
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State of the art

This Chapter proposed a comprehensive review that highlights the main charac-
teristics of the solutions analyzed in the literature. Both planning and operational
stage models have been introduced. However, after careful consideration, it has
been chosen to focus on a day-ahead optimization that minimizes the costs asso-
ciated with the resources considered for the scenario. The framework introduced
in this thesis allows to easily select the resources for the simulation in a plug-and-
play fashion. In fact, the developed code follows the principle of modularity, i.e.
according to the type of available resources, the optimized dispatch strategy can
consider different types of setup MicroGrid under simulation. For the purpose of
this thesis, the Renewable resources that have been considered are:

• Photovoltaic Plant

• Wind Turbine
Moreover, also a simple model of a Battery has been considered, in order to allow
the system to charge it when there is exceeding RES production and to discharge it
when it is needed to supply the load. The thesis does not limit itself to consider only
one kind of optimization. Different users might have different requirements and
focus their analysis on different topics, considering different resources or different
sizes of installed resources.
Therefore, this thesis proposes a first MILP aimed at minimizing the electricity
provision costs, in a context that considers a deterministic framework of a day in
the past with defined values of Electricity Demand, Electricity Market Price, Wind
Speed and Solar Radiation for a 24 hour time period. This was done with different
configurations of the MG, giving the right importance to the plug-and-play aspect
of the model.
In a second approach, probabilities studies have been introduced, so that the
definition of the dispatch strategy could include the variability of the values of
Electricity Demand, Electricity Market Price, Wind Speed and Solar Radiation,
considered in the first part of the analysis. To do so, Probability Density Function
have been introduced and used as input to a MILP that had the objective of
reducing the number of scenarios related to the probability of said time-related
variables (ED, MP, WS and SR), keeping a reasonable level of uncertainty. Then
these scenarios are used as inputs to a MILP equal to the one in the first approach,
defines a dispatch strategy with minimum operational costs for the MG.
In conclusion, the main features of the proposed framework are:

• the flexibility of the input

• the capability of easily adding new modules

• the possibility to choose the optimizatiion

• the possibility to compare different configuration of the MG
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Chapter 3

Deterministic
approximation of the model

3.1 Model
The following chapter introduces the model that represents the plug-and-play
framework. The first part of the chapter presents the resources that are included
and defines the equations that describe the parameters related to those resources.
Then, in the second part of the chapter, the plug-and-play model is used, coupled
with a MILP, to define an optimal dispatch strategy in a deterministic approach,
in which the variables that change in time come from the literature. Among
these values, the Electricity Demand is represented by the aggregated load of 12
households, the Electricity Market Price comes from the Gestore Mercati Energetici
(GME) website [30], and takes as a reference the year 2013. Also, the variables that
depend on the weather conditions, that are the wind speed and the solar radiation,
are taken in the year 2013 [31] [32].
For the purpose of this chapter, these time-related values were taken for a time
period of 24 hours and, to have a more complete look on how the dispatching of
electricity can change throughout the year, it is repeated for two different days,
one that is representing of the summer season, and one for the winter season.
Moreover, a Battery Electrical Storage System (BESS) is considered, so that it can
offer support to the RES in case the weather conditions would not be suitable for
production, and in case of excess of RES production to charge it. The direction of
these energy flows are related to economic convenience, since also the Electrical
Grid takes part in the dispatch. In particular, the grid operates as a backup source
of energy for when the RES production coupled with the battery is not enough,
and as a "sink" that gathers the excess of RES production when it is higher than
the load and the BESS is already fully charged. Furthermore, these rules also obey
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Deterministic approximation of the model

to the economic advantage, therefore the MILP takes into account the costs related
to the use of each resource.

3.2 Resource modelling
3.2.1 Wind Turbine
Following the line of reasoning of Farsangi et al. [23], the power from the WT is
evaluated as represented in eq. 3.1.

Pwind =



0 for 0 ≤ vi < vcut in

Prated ·
3

vi−vcut in

vcut out−vrated

43
for vcut in ≤ vi < vrated

Prated for vrated ≤ vi < vcut out

0 for vi ≥ vcut out

(3.1)

where vi is the value of wind speed in the time step i, vcut in represents the cut-in
speed, below which the wind turbine blades do not rotate and therefore the output
power is zero, vcut out is the cut-out speed, above which the turbine is stopped to
maintain the structural integrity of the blades, for which again the output power is
zero. vrated is the rated speed, that represents the speed associated to the rated
power of the wind turbine, and therefore the maximum output power. For vi
greater that the cut-in speed vcut in and lower than the rated speed vrated, the
output power follows a cubic law, while when the wind speed is greater or equal
to the rated speed vrated the output power is constant and equal to the rated or
nominal power of the wind turbine.

3.2.2 Photovoltaic Plant
On the other hand, the power from the PV plant is evaluated as

PPV = S · POAglobal · ηmp (3.2)

where S is the area of whole PV system, POAglobal is the global irradiance of the
Plane Of Array (POA) and ηmp is the efficiency of the modules in the maximum
power point.
These parameters are evaluated as

S = NPV cells · Acell = Prated,tot
Prated,cell

· Acell (3.3)
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Deterministic approximation of the model

Tcell =
Tamb + (Tc,NOCT − Tex,NOCT ) · POAglobal

GNOCT
· (1− ηmp,ST C ·(1−αP ·Tc,ST C)

τ ·α )
1 + (Tc,NOCT − Tex,NOCT ) + POAglobal

GNOCT
· (αP ηmp,ST C

τα
)

(3.4)

Tamb = Tex + 0.05 · POAglobal (3.5)

ηmp = ηmp,STC · (1− αP · (Tc − Tc,STC) (3.6)

3.2.3 Battery Electrical Storage System
Following the reasoning from Wu et al. [19], the BESS model includes the evaluation
of the State of Charge of the storage system (3.7), that varies at each time step of
the model and depends on the SoC of the previous time step. Equation 3.7 takes
also takes into account the Self-Discharge SDB, the charging/discharging energy of
the BESS, that changes with time, EB,c(t) and EB,d(t), the capacity QB and the
efficiency ηB.

SoCB(t) =



(1− SDB) · SoCB,init −
EB,d(t)
QB · ηB

for t = 1

(1− SDB) · SoCB(t− 1)− EB,c(t) · ηB
QB

for t > 1; EB ≤ 0

(1− SDB) · SoCB(t− 1)− EB,d(t)
QB · ηB

for t > 1; EB > 0

(3.7)

Also, minimum and maximum values of both charging/discharging energy of the
BESS and of the SoC are taken into account, according to the limit of the Battery
system. SoCB,init represents the initial State of Charge of the battery and it is set
to 0.5 for all simulations that will follow in this work of thesis.

The energy exchanged with the BESS is given by the summation of discharged
and re-charged energy to the battery (3.8).

EB(t) = EB,d(t) + EB,c(t) (3.8)
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Deterministic approximation of the model

Where EB,d(t) is the discharged energy from the battery into the load and it is
defined to assume a value between zero and the maximum value of BESS charge,
while EB,c(t) is the energy flowing into the battery that assumes values between
the minimum value of BESS charge and zero.

3.2.4 Electrical Grid
As already stated, the Electrical grid supplies energy to the framework when there
is not enough electricity production from the RES and the BESS to supply the
load or there is an economic advantage in buying electricity from the grid. On the
other hand, the grid receives energy from the RES when their production is higher
than the load and the BESS is already charged or it is not advantageous to charge
it. These reasoning, without the economic part, that is largely explained later in
the chapter, is summarized in the system of equations 3.9 below.when |EED(t)| > EPV (t) + EWT (t) + EB(t)→ Eg(t) > 0

when |EED(t)| < EPV (t) + EWT (t) + EB(t)→ Eg(t) < 0
(3.9)

As a reference, the electricity supplied by the grid is defined as positive, while the
electricity injected into the grid is negative.
The economic advantage of buying and selling from the grid comes from the costs
associated to these flows. In Italy, Gestore Servizi Energetici (GSE) provides
different tariff mechanisms according to the needs and possibilities of the users.
One of these is called Scambio sul Posto [33]. It is a form of self-consumption
that takes place on-site and allows the prosumer to use the electrical network as a
virtual storage for the produced electricity but not consumed right away.
In the context of this tariff mechanism, the electricity produced from the DERs is
sold to the main grid at the Electricity Market Price, that assumes different values
along the day and comes from the GME website [30].
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3.3 Dispatch strategy optimization model
The balance of electricity of the MG is performed through the minimization of
the operational costs. This is embodied in the objective function as represented in
3.10. The optimization is carried out with a time step of 1 hour, over a period of
24 hours, therefore considering the Day-Ahead market.

minf =
T=24Ø
t=1,2,...

pWT ·EWT (t) + pPV ·EPV (t) + pMP (t) ·Eg(t) + pB ·EB,d(t) (3.10)

The unit costs that participate to the objective function are the cost per unit of
energy of the elements connected to the MG, respectively:

• pWT for the WT, that is represented by the WT Levelized Cost of Energy
(LCOE), taken from the literature, more precisely from the International
Renewable Energy Agency (IRENA) Power Generation costs of 2020 [34], for
the onshore Wind power plants installed in Italy, equal to 0.062 $/kWh;

• pPV for the PV, that is represented by the PV LCOE, also taken from the
IRENA Power Generation costs of 2020 [34], for the residential sector PV
installed in Italy, that is equal to 0.104 $/kWh;

• pMP is the Market Price for electrical energy, it varies in time and it represents
the cost for the electricity exchange with the Electrical Grid;

• pB is the cost related to the use of BESS, that is included only when the BESS
is discharging, supplying energy to the load. This cost is assumed to be equal
to the Levelized Cost of Storage for a Lithium-Ion battery for residential use,
usually coupled with a PV system, from the version 7.0 of Lazard’s Levalized
Cost of Storage (LCOS) Analysis [35], that has the value of 0.621 $/kWh.
Meanwhile, the charging process is assumed to be free of costs, since it is
performed only with the RESs connected to the MG

The values of LCOE and LCOS are converted from USD to Euro with an exchange
rate of 0.88 €/$ [36].

The formulation also includes the energy balance, as for eq. 3.11, that forces
the supply of the Electricity Demand (ED) with the available sources (PV, WT,
BESS and electricity from the grid).

|EED(t)| = EPV (t) + EWT (t) + Eg(t) + EB(t) (3.11)
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For what concerns the BESS model, there is a further constraint, that defines
the circumstances of battery charge or discharge, that also cannot occur in the
same time step. This is represented by the system of equation in 3.12 and 3.13.


EB,c(t) > |EED(t)|E + Eg(t)− (EPV (t) + EWT (t))

if |EED(t)| < EPV (t) + EWT (t)

EB,c(t) = 0 if |EED(t)| > EPV (t) + EWT (t)
(3.12)


EB,d(t) < |EED(t)|+ Eg(t)− (EPV (t) + EWT (t))

if |EED(t)| > EPV (t) + EWT (t)

EB,d(t) = 0 if |EED(t)| < EPV (t) + EWT (t)
(3.13)

These last two constraints define that if the RESs’ production is larger than the
demand, then the battery could be charged, while when the electricity from RESs
is smaller than the demand, the storage system could be discharged to supply it.

3.3.1 Applications of the model

The model introduced in the previous sections was first applied to a MG composed
by the modelled resources, with the hypothesis of optimizing the electricity dispatch
for a day in the year. Two days along the year were selected in ordered to have
a generic idea of how the MG would behave in two different type of weather
conditions. The first day that is analysed is July 1st 2013 (day 182) to represent a
summer day, while the second one is December 14th 2013 (day 348), a winter day.
The data concerning the PV panels, the WT and the BESS is summarized in the
following tables (table 3.1, table 3.2 and table 3.3). The total PV rated power is
assumed to be of 15 kW. This value was chosen based on the assumption that, on
average, each of the household would install a PV system with rated power of 1.25
kW, or 5 of the households would install a PV system of 3 kW. The rated power
of the WT comes from the assumption that the totality of the households would
install a WT as a community, with a value of installed power of 10 kW. On the
other hand, the rated capacity of the battery is of 25 kWh and its rated power of 6
kW.
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Table 3.1:
PV parameters [37]

Pc,rated 0.283 kW

Ac 1.725 m

nPV panels 53

Tc,NOCT 45 ◦C

Tex,NOCT 20 ◦C

Tc,STC 25 ◦C

τα 0.9

Ptot,rated 15 kW

pPV 0.09152 e
kWh

Table 3.2:
WT parameters [38]

Prated,WT 10 kW

vcutin 3 m
s

vcutout 30 m
s

vrated 10 m
s

pWT 0.05456 e
kWh

Table 3.3:
BESS parameters [35]

SDB 0.02 %
h

QB 25 kWh

ηB 0.96

SoCB,min 0.1

SoCB,max 0.9

EB,min -6 kW

EB,max 6 kW

pB 0.54648 e
kWh

As already stated, for what concerns the information on the Market Price of
electricity, the data is taken from the GME website [30] in the selected days. Also
the information on wind speed and solar radiation are delimited to the selected
days, respectively from the Visual Crossing website [31] and from the PVGIS tool
[32]. The Electricity Demand is represented by the aggregated values of load from
12 households, this data is representative of one year of consumption and the
selected days are taken from it.

3.4 Summer day (July 1st)

3.4.1 Input data
The following graphs represent the curves of 24 hours of data for respectively
Electricity Demand (Figure 3.1), Market Price of Electricity (Figure 3.2), Wind
Speed (Figure 3.4) and Solar Radiation (Figure 3.3) on said summer day of the
year 2013.

In figure 3.1, it can be clearly noted the increase of demand that typically occurs
in the evening.
Figure 3.2 shows the electricity market price throughout the day, it is interesting
to point out that the maximum price reached during this day is of 0.0003113 e

Wh
,

that is equal to 0.3113 e
kWh

, meaning that is always lower than the cost associated
to the BESS.

The power extracted from the PV panels is evaluated using the values from the
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Figure 3.1: Electricity Demand for July 1st 2013

Figure 3.2: Electricity Market Price for July 1st 2013

curve represented in figure 3.3 as input to the model described in section 3.2.2.
The resulting values of instantaneous power are represented in graph 3.5.

Similarly, the power extracted from the WT is evaluated using the values of
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Figure 3.3: Solar Radiation for July 1st 2013

Figure 3.4: Wind Speed for July 1st 2013

wind speed as represented in figure 3.4 as input to the model preViously described
in 3.2.1. The following graph (3.6) shows the instantaneous power curve for the
WT. It is worth mentioning that the power from the WT is orders of magnitude
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Figure 3.5: PV production for July 1st 2013

lower than the power extracted from the PV system.

Figure 3.6: WT production for July 1st 2013
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3.4.2 Results
With the data presented in the previous sections (3.3.1 and 3.4.1), the optimization
model is first run considering a configuration without RES production and BESS
support for the electricity supplying. Therefore, in this case, the whole ED is
supplied by the grid as can be seen in the following block diagram of the MG 3.7.

Figure 3.7: Representation of the MG with only the Grid supplying the Load

Since the totality of the electricity needed to supply the load is bought from the
grid, as can be seen in the figure 3.8, the cost related to this dispatch strategy for
the summer day is of 11.75e.

Figure 3.8: Electricity Demand dispatch with only the main grid on the summer
day

Then, the framework is optimized in the case in which all renewable sources are
connected as it is the BESS, as represented in figure 3.9.
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Figure 3.9: Representation of the MG with all resources and the BESS connected

The resulting curves are represented in Figure 3.10. To better understand the
graph, it is worth mentioning that the ED is shown in blue and it is considered a
negative value, while the available DERs, meaning WT and PV, are respectively
represented in red and green and are considered positive. The power exchanged
with the Electrical Grid is shown in orange and it is considered positive when it
is extracted from the grid, therefore when it supplies energy to the load, while
when energy is injected into the grid, its value is considered negative. This last
case occurs only when the production of the RESs is higher than the ED and the
amount of energy injected into the grid is given by the difference between what is
produced from both WT and PV plants and the energy needed to supply the load,
eventually reduced by the quantity supplied by the BESS. The steps in purple are
representative of the energy flow exchanged with the BESS, in this case they are
not showing since it does not participate to the dispatch strategy.

In the representation of the optimized MG dispatch strategy, in the first hours
of this summer day, the ED is supplied by the grid, while starting from around 5
in the morning, the contribution of the PV plant increases due to the occurrence
of daylight, and it supplies the load up until 20 in the evening, when the sun is
set and the load is supplied by the grid. Since the production from WT is orders
of magnitude smaller than the PV production, it only gives a small contribution
to the ED supply briefly during the afternoon hours. It is worth mentioning that
between 6 and 7 in the morning, the PV production gets much higher than the
Electrical load, meaning that there is an injection of electricity in the grid for a
value that is equal to the RES production net of the load, as can be seen up until
18 in the evening.
In this case, the BESS does not contribute at all to the energy balance, nor it is
charged, due to the fact that there is not an economical convenience.
The optimized cost associated to this dispatch strategy is −1.45 €. With respect to
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Figure 3.10: MG energy balance for the summer day

the case in which the load is entirely supplied by the main grid, there are savings
of 112.34% for the single day, related to the fact that for the central part of the
day, the system injects most of the PV production into the grid, earning from its sale.

In the perspective of a Plug and Play model, the MG optimization is analyzed
also in the cases in which respectively only the PV plant and only the WT are
connected. In the circumstances of this summer day, unplugging the BESS would
not be meaningful since it already does not contribute to the dispatch strategy.

In the framework in which the MG electricity demand would only be supplied
by the PV and grid, the optimal dispatch strategy is shown in figure 3.12, while
the representation of the MG can be seen in figure 3.11.

The absence of the WT does not make a great difference in the supply of the
load, hence the cost of this optimal dispatch strategy is very similar to the original
case, −1.15 €. Comparing it to the case in which there is only the grid, the savings
are 109.75%. The RES production still covers the whole demand, but convenience
is slightly lower than the one in case with both PV and WT, due to the fact that
in this configuration the quantity that can be injected into the grid is lower since
there is not the WT production between 14 and 21 in the afternoon.
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Figure 3.11: Representation of the MG with Grid and PV are supplying the Load

Figure 3.12: MG energy balance without WT for the summer day

More noteworthy it is the dispatch strategy without the PV system, as repre-
sented in figure 3.13. In this case, the ED is almost completely supplied by the
grid. This explains the optimal dispatching cost to 11.45 €, with savings of only
2.55% compared to the case in which the ED is only supplied by the grid. The
dispatch strategy is shown in figure 3.14. It can be seen that the WT contribution
to the load supply is only present between 14 and 21 and its order of magnitude is
much lower than the electricity demand’s.
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Figure 3.13: Representation of the MG with the Grid and the WT supplying the
Load

Figure 3.14: MG energy balance without PV for the summer day

3.5 Winter day (December 14th)

3.5.1 Input data
Similarly to the summer day simulation, the data from a winter day, December
14th is used as an input to the model described in the previous sections.
With respect of the summer day, the electricity demand, shown in figure 3.15, has
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a peak value not only in the evening but also one in the morning and a smaller one
in the first hours of the afternoon.

Figure 3.15: Electricity Demand for December 14th 2013

The maximum value of the market price on the winter day is higher than it
was on the summer day, its value at 10 in the morning is of 0.0006347 e

Wh
, that is

equal to 0.6347 e
kWh

, as shown in figure 3.16. This value is higher than the cost
associated to the BESS, meaning that is will be moments during the day in which
it might be more affordable to exploit the stored energy rather than buying it
from the grid or emplying the RES. The PV production and the WT production,
evaluated as presented at the beginning of the chapter, are respectively represented
in figure 3.19 and in figure 3.20. As expected, the PV production for the winter day
is smaller compared to the one from the summer day. Instead the WT production
is slightly higher during the winter day than the it is in the summer day.
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Figure 3.16: Electricity Market Price for December 14th 2013

Figure 3.17: Solar Radiation for December 14th 2013

3.5.2 Results
The energy balance for the winter day, in the case in which there is only the main
grid supplying electricity to the load and the BESS as support, is represented in
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Figure 3.18: Wind Speed for December 14th 2013

Figure 3.19: PV production for December 14th 2013

3.21. The cost associated to this dispatch strategy is of 24.00e.
The energy balance represented in Figure 3.22 shows the case in which all RESs and
BESS are considered in the framework. Differently from the summer day, on this
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Figure 3.20: WT production for December 14th 2013

Figure 3.21: Electricity Demand dispatch with only the main grid for the winter
day

day the BESS participates to the exchange of energy. The energy flow exchanged
with the battery is considered positive when it is a source used to supply the load,
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therefore when the BESS is discharging, and negative when the storage is charging.
The charging of the battery is strictly related to the excess of production from the
RES.
From the start of this winter day, the ED is entirely supplied with the contribution
of the grid, until 3 in the morning, when the WT starts producing and it reduces
the amount of electricity extracted from the grid until 8 in the morning, when
the PV starts producing and it supplies part of the electrical load from 8 in the
morning to 15. Between 10 and 14, the PV production is larger than the ED,
therefore there is injection of electricity into the grid. The BESS contributes to the
load, entirely or as a support for the grid, from 18 to 21. Then, in the last hours of
the day only the grid is employed.

Figure 3.22: MG energy balance for the winter day with the use of RES and
BESS

The minimized cost related to this dispatch strategy is 7.11 €. The use of this
configuration in this case, saves 70.38% with respect to the case without RES and
BESS. Therefore, even if for an extended period of time the PV produces more
than what is need for the electrical load, so that electricity is injected into the grid,
the related revenue is not enough to cover all the cost of energy supply that occur
throughout the day.
Again, it the perspective of the Plug and Play model, the winter day was also
simulated in case of a configuration without the contribution of respectively PV
e WT. Differently from the summer day, here it is interesting to explore also the
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cases without the BESS.
The configuration with the PV and the BESS is represented in figure 3.26,

while the disptach strategy is in figure 3.24. The main difference with the original

Figure 3.23: Representation of the MG with Grid, PV and BESS supplying the
Load

configuration can be noted in the first hours of the day, between 3 and 9, in
which the electricity extracted from the grid is higher. The cost related to this
arrangement is 7.91 €, as expected it is higher than the cost of the optimal dispatch
with all the elements, but with respect to the case without RES there is not such a
difference, since there is still 67.04% of savings compared to it. This is because
the PV production is still large enough to sell electricity to the grid for most of
the day and there is only an increase of electricity extraction from the grid in the
morning when in the previous case there was the WT production.

If the BESS is also removed from the model, as shown in figure 3.25, the dispatch
strategy’s cost increases to 8.65 €, due to the increase of electricity extracted from
the grid when there was the BESS discharge. Compared to the case in which there
are only the main grid there is still 63.96% of savings for this configuration.

On the other hand, in case only the WT and BESS are present, as shown in
figure ??, the cost of the optimal dispatch strategy is 22.44 €. Compared to the
case of with only the main grid, the savings are quite small, only 6.5%. Apart from
the grid, that it supplies electricity almost all day long, the BESS is discharging,
not only between 19 and 21, but also between 10 and 11, as shown in figure 3.27.
This can be explained by the fact that in those hours the MP of electricity is higher
than the cost related to the storage discharge, meaning that there is a monetary
convenience in discharging the BESS rather than buying electricity from the grid. It
can be noted that the absence of the PV production highly affects the cost related
to the supply of electricity and therefore the dispatch strategy. Again, removing
also the BESS from the framework increases the cost up to 23.20 €, decreasing
the savings with respect to the case with only the grid to 3.33%. In this case, the
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Figure 3.24: MG energy balance without WT for the winter day

Figure 3.25: MG energy balance without WT and BESS for the winter day

electricity is extracted all the long from the grid and it is only reduced by the WT
contribution between 4 and 9 in the morning.
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Figure 3.26: Representation of the MG with Grid, WT and BESS supplying the
Load

Figure 3.27: MG energy balance without PV for the winter day

3.6 Observations

In conclusion to this chapter, it can be stated that the component that affects the
most the value of the costs related to the dispatch of electricity to the consumers
is the PV system.
From these simulations it is clear that the employment of RES is advantageous to
reduce the operational costs related to the dispatch of electricity, with particular
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Figure 3.28: MG energy balance without PV and BESS for the winter day

mention to the PV power plants. Moreover, the supply of electricity still highly
relies on the main grid, especially during the night. The BESS could be useful to
store electricity when there is high production of RES and then to discharge it
when the production is lower, therefore reducing the burden and the dependence
on the electrical grid. At the moment, this is not worth doing, due to the fact that
the cost associated to the storage, the LCOS, is still higher than the electricity
Market Price, for most of the time.
The table 3.4 abov summarizes the savings for each configuration analyzed in this

Grid Grid +
PV

Grid +
PV + BESS

Grid +
WT

Grid +
WT + BESS

Grid + WT +
PV + BESS

Summer day 11.75e -109.75% - -2.55% - -112.40%
Winter day 24e -63.96% -67.04% -3.33% -6.50% -70.38%

Table 3.4: Comparison of savings in the different configurations for both summer
and winter day

chapter, for both the winter and the summer day hypothesis. The highest savings
come from the framework in which there are all the elements considered in the
dispatch of electricity, but the storage system, all simulated in the summer day.
In this case, the PV generation is high enough to completely cover the costs of
operation and also to have a profit from operating the MG.
Anyway, even if the BESS does not seem to be convenient in the summer day, in
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the winter configuration, increases the amount of savings in both cases in which
the RES are employed singularly.
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Chapter 4

Introduction of uncertainty

The scenarios presented in Sections 3.4.2 and 3.5.2 represent a good starting point
to simulate interesting case studies. However, they do not consider any uncertainties
in the input data. In more realistic scenarios, there might be the need to consider
uncertainties in some of the variables. To this end, the parameters that could be
affected by uncertainty would be the one related to time, therefore Solar Radiation,
Wind Speed, Electricity Market Price and Electricity Demand.
Following the model from Farsangi et al. [23], the uncertain parameters are
introduced in the model using PDFs. As already stated in section 2.2, PDFs were
often represented in the literature to describe the probabilities related to uncertain
variables. In particular:

• Wu et al. [19] employed the Normal PDF to describe the uncertainty related
to the load and the RES power output, in particular WT and PV system;

• Farsangi et al. [23] used the Normal PDF to model the uncertainty from the
load, and the authors used also to describe the market price of electricity.
Meanwhile for the Wind speed, they employed the Weibull PDF, and for the
solar radiation, the Beta PDF;

• according to Zhang et al. [26], The Gaussian PDF was better suited for the
description of the uncertainty of wind speed, solar radiation and the load;

• Soroudi et al. [39] employed the Normal PDF for the electrical load uncertainty
model, the Weibull PDF for the Wind speed and the Beta PDF for the solar
radiation, in their article that analyzes the impact of DER production on the
Distribution Network

For the purpose of this thesis, the Normal PDF was employed for the definition
of the uncertainty related to the electricity Market Price and to the Electricity
Demand, while the wind speed uncertainty was modeled by the Weibull PDF and
the Beta PDF was used to describe the solar radiations’.
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4.1 Uncertain parameters and probability model
Following the line of reasoning of Farsangi et al. [23], Wu et al. [19] and Soroudi et
al. [39], the a Normal PDF was employed for both the electricity demand and the
electricity market price, for which the formulation is presented in expression 4.1.

PDF (y) = 1
σ
√

2π
· exp

3
−(y − µ)2

2σ2

4
(4.1)

The Weibull PDF was selected for the wind speed as expressed in 4.2, following
the reasoning from Farsangi et al. [23] and Soroudi et al. [39].

PDF (w) = k

c

3
w

c

4k−1
· exp

−3
w

c

4k (4.2)

with k =
3
δ
µ

4−1.086
and c = µ

Γ(1+ 1
k

)

Then, as described by Soroudi et at.[39] and Farsangi et al. [23], the solar radiation
is modeled by the Beta PDF as in expression 4.3.

PDF (sor) = Γ(α + β)
Γ(α) · Γ(β) · sor

α−1 · (1− sor)β−1 (4.3)

Similarly to what presented in Chapter 3, the figures used to construct these PDF
comes from the historical data, more precisely the hourly data for the whole year
for the Market Price[30], Solar radiation [32] and Wind speed [31] was employed.
The figures concerning the electrical load come from the same hourly aggregated
load of 12 households as it was for Chapter 3.

By definition, each of the uncertain parameters has an associated probability.
Since the uncertain parameters can have infinite values, and therefore the same
number of related probabilities, the dispatch optimization model would have infinite
inputs in the form of the PDFs of the variables affected by uncertainty. This would
lead to high computational costs to define the optimal dispatch strategy. Therefore,
the PDFs related to the uncertain parameters are divided into 7 sections, allowing
the definition of 7 probabilities and related values for all uncertain parameters.
The probabilities are evaluated as the integral of the Probability Density Function
defined between the first and last value of each of the intervals that describe the
variable as in expression 4.4).

py,vy =
Ú yend

ystart

PDF (y)dy (4.4)
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for vy = 1, ..., Vy, that are the uncertain parameters (PV, WT, MP and ED). While
y is the value of the uncertain parameters and the intervals are defined as function
of the mean value y and of the standard deviation σ of the variables (eq. 4.5):

y ± a · σ (4.5)

where a is equal to 0.5, 1.5, 2.5, 3.5, and define the extremes of the intervals. The
value of the uncertain parameter associated to each probability is calculated as the
fraction between the integral of the PDFs between the extremities of an interval
and the value of the associated probability:

xy,vy = 1
py,vy

·

Ú yend

ystart

y · PDF (y)dy
 (4.6)

for vy = 1, ..., Vy. ystart and yend represent the lower and upper values of said
section, while the iteration over vy considers each uncertain parameter.
In these last two equations (eq. 4.4 and eq. 4.6), y represents the uncertain
parameter, py,vy represents the probability associated with the parameter y for the
scenario vy.

Since the values of the selected uncertain parameters change throughout the
day, the PDF are created taking as input data the 365 values of the year 2013 for
each hour of the day, ending up with 24 PDFs for each of the uncertain parameters.
In the figures below are represented the discrete PDFs respectively for the wind
speed 4.1, the PV power 4.2, the market price 4.4 and the electrical load4.3.
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Figure 4.1: Wind Speed discretized PDFs for 24 hour time period

Figure 4.2: PV power discretized PDFs for 24 hour time period
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Figure 4.3: Electricity Demand discretized PDFs for 24 hour time period

Figure 4.4: Market Price discretized PDFs for 24 hour time period

4.2 Reduction of number of scenarios
The use as input to the problem of 4 uncertain parameters, that could each be
related to 7 values, would lead to 74 different scenarios, for a total of 2401 scenarios
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each hour for 24 hours of time period that need to be simulated to define an optimal
dispatch strategy. The computational burden of this high number of scenario is still
large, even if only 7 probability are defined and considered. Therefore, a scenario
reduction model is employed to manage the computational costs that this high
number of scenarios would implicate. In the model developed from Farsangi et
al. [23], a MILP optimization problem is employed to minimize the number of
scenarios, while keeping a similar level of uncertainty for the whole model. This
MILP model is composed as follows:

minf =
V1Ø
v1

V2Ø
v2

V3Ø
v3

V4Ø
v4

bv1,v2,v3,v4 (4.7)

The objective function 4.7 aims at minimizing the number of scenarios employed
through the minimization of the summation of the binary variable bvy , that rep-
resents an employed scenario when it is equal to 1, as later described in eq. 4.15.

V2Ø
v2

V3Ø
v3

V4Ø
v4

ps(v1, v2, v3, v4) = p1,v1 for v1 = 1, 2, ..., V1 (4.8)

V1Ø
v1

V3Ø
v3

V4Ø
v4

ps(v1, v2, v3, v4) = p2,v2 for v2 = 1, 2, ..., V2 (4.9)

V1Ø
v1

V2Ø
v2

V4Ø
v4

ps(v1, v2, v3, v4) = p3,v3 for v3 = 1, 2, ..., V3 (4.10)

V1Ø
v1

V2Ø
v2

V3Ø
v3

ps(v1, v2, v3, v4) = p4,v4 for v4 = 1, 2, ..., V4 (4.11)

V1Ø
v1

V2Ø
v2

V3Ø
v3

V4Ø
v4

ps(v1, v2, v3, v4) = 1 ∀v1, v2, v3, v4 (4.12)

ps(v1, v2, v3, v4) ≤ bv1,v2,v3,v4 v1, v2, v3, v4 (4.13)

0 ≤ ps(v1, v2, v3, v4) ≤ 1 ∀v1, v2, v3, v4 (4.14)

bv1,v2,v3,v4 ∈ [0,1] (4.15)

The expression 4.13 imposes the probability of the new scenario to be lower than
the binary variable, meaning that, since probabilities are defined between 0 and
1, when the scenario is not selected, the probability is set to 0, while when the
scenario is selected, the probability has to be lower than 1.

54



Introduction of uncertainty

The other four constraints (4.8, 4.9, 4.10 and 4.11) have the purpose of keeping
the value of probability of the new scenario for each of the variable equal to the
probability of each of the values of the variable, keeping the value of uncertainty of
the new scenarios equal to the one of the original problem. Equation 4.12 imposes
that the sum of the probabilities of the new scenarios has to be equal to 1, while
equation 4.14 defines the upper and lower limit of new scenarios’ probabilities.

This MILP produces a reduced number of scenarios of probabilities for the
4 uncertain parameters, that have the same level of uncertainty of the original
problem. In particular, 8 scenarios for each of the 4 uncertain parameters are
obtained. In the following curves, the values of the parameters throughtout the
day are represented for each of the 8 scenarios selected by the MILP optimization
problem. Figure 4.5 represents the ED scenarios, figure 4.6 represents the MP
scenarios, figure 4.7 represents the PV power scenarios and figure 4.8 represents
the WT power scenarios. Some of the curves might not be showing due to the fact
that the same values could belong to more than one scenario. It could already be
observed that the scenarios from the WT power are mostly all equal to zero, due
to low wind speed.

Figure 4.5: Electricity Demand scenarios over 24 hour time period

The obtained probabilities for each new scenario are shown in table 4.1.
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Figure 4.6: Market Price scenarios over 24 hour time period

Figure 4.7: PV power scenarios over 24 hour time period
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Figure 4.8: Wind Power scenarios over 24 hour time period

Scenario Probability
1 0.01
2 0.04
3 0.38
4 0.06
5 0.24
6 0.01
7 0.20
8 0.06

Table 4.1: Scenarios and related probability

4.3 Optimization of the MG dispatch strategy in
a stochastic context

The values of each parameter for each of the scenarios is used as input to the model
described in the previous chapter (3.1), producing 8 dispatching strategies, one for
each of the new scenarios. The simulation was first run in the case in which no
RES or BESS were employed in the electricity supply to offer a base for comparison
for the dispatch strategies.
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4.3.1 Scenario 1

The first scenario simulation in the framework with only the main grid to supply
load has a related cost of 2.44e, and it is represented in figure 4.9. This value is
not so high due to the fact that this scenario takes into account load values equal
to zero for most of the day, also its probability of occurrence is 0.01.

Figure 4.9: Scenario 1 MG dispatch with only the main grid

The curves of the first scenario of the MG dispatch strategy in the case in which
all RES and BESS are employed in the supply of electricity to the load are shown
in 4.10. This scenario is represented by a low value of ED throughout the day, that
is mostly supplied by PV and WT production. For most of the day, especially
between 7 and 18 and again between 21 and 22, the production of the RESs is
larger than the electrical load and therefore electricity is injected into the grid,
generating a revenue. The BESS is discharged in the hours in which the RESs
production is not present, therefore between 3 and 4, then between 6 and 9, and
again in the evening, between 22 and 24.
The optimal value of operational cost of this dispatch strategy is −2.95 €, which
represent savings for 220.9% with respect to the case in which only the main grid is
supplying the load. This high share of savings is justified by the fact that the RESs
are producing electricity for the majority of the hours of the day and, since the
load is low, almost all of the energy is sold to the main grid, generating a revenue.
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Figure 4.10: Scenario 1

4.3.2 Scenario 2
In case of Scenario 2, the figure 4.11 shows the configuration in which only the
main grid is employed to supply electricity to the load. The optimal dispatch
strategy cost related to this framework is of 4.41 e. The probability associated to
this scenario is equal to 0.04.

In the case in which both RES and BESS are included the dispatch strategy,
represented in 4.12, the production from the wind source is zero, and the BESS is
neither charged or discharged. Differently from the first scenario, in some hours of
the day, the electrical load reaches the order of magnitude of the PV production.
Electricity is injected into the grid briefly at 9 in the morning and even less at
18. Other than these cases, the PV production only reduces the amount of energy
needed from the grid to supply the load. The optimal operational cost related to
this dispatch strategy is 3.66€, that represents 17.01% of saving with respect to
the case that considers only the main grid.

4.3.3 Scenario 3
Scenario 3 is associated to a probability equal to 0.38. The cost associated to the
framework with only the main grid and the load is of 7.50 e. The curves related
to this simulation are shown in figure 4.13

The introduction of the PV and WT energy source and the BESS leads to a MG
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Figure 4.11: Scenario 2 MG dispatch with only the main grid

Figure 4.12: Scenario 2

dispatch strategy as the one shown in figure 4.14. In this case, the ED is entirely
supplied by the energy from the grid from the start of the day until 6 and from 21
to 24. Then, in the central part of the day, it is supplied by the PV production,
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Figure 4.13: Scenario 3 MG dispatch with only the main grid

that is high enough to also inject electricity into the grid for most of the time.
Again the BESS does not not participate at all to the dispatch strategy and the
wind source is absent. The cost related to this optimal dispatch strategy scenario
is 2.00 €. Therefore, the savings compared to the case with only the electrical grid
are of 73.33%, meaning that even if the PV plant injects energy into the grid for
about 8 hours throughout the day, it is not enough to cover entirely for the cost of
supply the load with the grid during this day.

4.3.4 Scenario 4

The 4th Scenario is related to a probability of 0.06. The case with only the electrical
grid, shown in figure 4.15, has a cost of 2.22 e. When introducing the RES plants
and the BESS, it can be seen that this scenario is characterized by a high production
from the PV plant, as shown in figure 4.16, that allows to inject energy into the
grid for 12 hours continuously. Again, the BESS and the WT do not contribute to
the dispatch strategy. In the hours in which the solar radiation is not present, the
load is supplied entirely by the electrical grid.
This scenario has an optimal cost is 0.39 €, the relative savings compared to the
base case are of 82.43%. Even though many hours of the day are designated to
injection of electricity into the grid, these sales are not enough to entirely cover
the costs of dispatch for the day.
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Figure 4.14: Scenario 3

Figure 4.15: Scenario 4 MG dispatch with only the main grid

4.3.5 Scenario 5
Scenario 5 is characterized by a probability of 0.24. Figure 4.17 shows the simulation
case of load supply entirely performed by the main grid. The associated cost is
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Figure 4.16: Scenario 4

of 16.49 e. This scenario reaches higher values than the scenarios investigated
before, up to more than 3000 Wh in the evening peak. As for the previous three

Figure 4.17: Scenario 5 MG dispatch with only the main grid

scenarios,in the framework with both RES systems and the BESS, in scenario
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5 the BESS does not contributed ot the optimal dispatch strategy and the WT
production is zero, as shown in figure 4.18. The load is mostly supplied by the
grid and the PV source. The solar resource also injects electricity into the network
in the central hours of the day. The cost associated to this scenario is 4.87 €,
with savings of 70.47% compared to the case without DERs. Even though the PV
contribution is equal to the one in scenario 4 4.3.4, the savings are slightly lower
because the load is in fact higher in this scenario, as can be clearly seen comparing
the figures for both scenarios in the case with only the main grid, meaning figure
4.15 and figure 4.17.

Figure 4.18: Scenario 5

4.3.6 Scenario 6
Scenario 6 reaches the highest values of load compared to all the other scenarios,
as shown in figure 4.19. The probability associated to this case is only 0.01, and
the cost associated to the dispatch strategy considering only the main grid is equal
to 9.05 e. In this scenario, after including the BESS and both RES, we can see
that the WT contributes to the dispatch strategy, from 7 to 22, supporting the grid
and the PV plant in the supply of the load. The BESS still does not participate.
The amount of energy injected into the grid is quite low and concentrated in time
step between 8 and 11 and 12 and 14, due to said high values of the ED. The cost
associated to this dispatch strategy is 11.55 €, meaning that the introduction of
the RES lead to higher costs of 21.30%. This increase is related to the fact that
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Figure 4.19: Scenario 6 MG dispatch with only the main grid

when RES generate energy, the MG does not have the possibility to waste this
energy, therefore it is obliged to either use it to feed the load or charge the battery
or to inject it into the grid. In this framework, the cost related to the use of RES
is higher than the MP when the solar and wind source are producing, but their
participation to the dispatch strategy is inevitable, even if it is not economically
convenient.

4.3.7 Scenario 7

Scenario 7 is represented by a probability of 0.20 and the costs of the configuration
in case there is only the main grid, as presented in 4.21, are equal to 4.41 e. This
scenario is characterized by the fact that it has very high PV production in the
central part of the day. Again, the WT production is zero and BESS does not
participate to the dispatch strategy.The grid takes over the electricity supply when
the PV source is not available, therefore in the first and last hours of the day, while
for the rest of the time the PV energy generation is high enough to sell electricity
to the grid, net of the load. The costs related to this strategy is -3.60€, therefore
with savings of 181.63%. This means that the PV system production is enough to
cover the costs of operating this dispatch strategy and also to have a profit from
the electricity sale.
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Figure 4.20: Scenario 6

Figure 4.21: Scenario 7 MG dispatch with only the main grid

4.3.8 Scenario 8
The 8th and last scenario has a probability of 0.06 and its framework in case only
the main grid is present is shown in 4.23 and the related operational cost is equal
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Figure 4.22: Scenario 7

to 36.53e. As illustrated in figure 4.24, the introduction of RES and BESS shows

Figure 4.23: Scenario 8 MG dispatch with only the main grid

some contribution from this last element at 2 in the morning, and again at 24 in
the evening. It can be noted that the PV production in this scenario is higher than
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in all the other scenarios. When discharging, the BESS replaces the extraction
from the grid, while during the day, between 7 and 20, the PV plant produces
enough to supply the whole ED and also to inject electricity into the grid. The
cost related to this scenario is 1.94e, with savings of 94.69%. Meaning that, even
though the PV injects electricity into the grid for 15 hours throughout the day, the
use of the BESS and the extraction of energy from the grid are more expensive
than the revenue that comes from selling electricity.

Figure 4.24: Scenario 8

Table 4.2 summarizes the values of probability and the related savings or increase
of cost for the use of RES and storage system for each of the 8 scenario generated.
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Scenario Probability Grid only With RES and BESS (% variation)
1 0.01 2.44e -220.9%
2 0.04 4.41e -17.01%
3 0.38 7.50e -73.33%
4 0.06 2.22e -83.43%
5 0.24 16.49e -70.47%
6 0.01 9.05e +21.30%
7 0.20 4.41e -181.63%
8 0.06 36.52e -94.69%

Table 4.2: Scenarios, related probability and cost variation with or without RES
and BESS
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Conclusions

The flexibility of the plug-and-play model’s inputs allowed to analyzed different
frameworks in which the MG operates. From chapter 3, the impact of the PV
production on the dispatch strategy is highlighted, since there is a clear economic
convenience in the inclusion of the solar resource in both the summer and winter
days simulated in this context. In particular, for the summer day, there are savings
up to almost 110% with respect to the case in which only the electrical grid serves
the load, while for the winter day the savings are about 64%. On the other hand,
the presence of the BESS does not widely affect the electricity dispatch, as it
happens for the WT. The issue with the BESS is that the cost associated to it is,
for most of the time, higher than the electricity MP, leading to low convenience
it employing it. Further development in the electrical storage market could allow
to decrease the cost associated to this element. Instead, the WT has small rated
power, therefore its production is low.
A similar behavior is shown in chapter 4, in which the PV system is the RES that
contributes more to the supply of electricity in all simulated uncertain scenarios
and, therefore, brings more savings to the MG.
Future developments on this work of thesis could include:

• integrating this analysis with the plants sizing optimization, especially in the
case of the WT

• the inclusion of grid constraints, in terms of voltage and frequency, in the
dispatch strategy definition, so that power quality aspects could be included
in the analysis

• the addition of the most recent incentives proposed by the Energy Authority
in the economic optimization, so that this would better reflect the reality of
operating a MG
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