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Abstract

Sleep diseases are one of the major causes of physical and psychological problems
for workers, resulting in high financial losses in terms of direct, indirect, related
and intangible costs. This thesis will focus on a particular type of sleep-related
disorder, the Sleep Apnea-Hypopnea Syndrome (SAHS) which causes numerous
involuntary respiratory pauses during the night (“apneic events”)leading to a drop
of blood oxygen saturation with consequent subject awakening and reduction of
sleep quality. There are mainly three forms of sleep apnea: 1)The Obstructive
Sleep Apnea (OSA), which is characterized by an upper airway airflow reduction
caused by the collapse of the soft tissues in the back of the throat and the tongue;
2) The Central Sleep Apnea (CSA), which is characterized by the absence of respi-
ratory effort and, thus, the absence of airflow; 3) The Mixed Sleep Apnea (MSA),
which is a combination of the previous two. Respectively, they represent the 84%,
the 0.4% and the 15% of the total cases in U.S. and Europe. The gold standard
diagnosis system for sleep apnea is Polysomnography (PSG) that is conducted
in special sleep units during an entire night. Numerous physiological signals are
recorded during the PSG, and then analyzed by experts that divide the entire
signal into epochs and assign to each epoch a sleep stage and an apneic score to
specify the subject’s condition during sleep. Manual revision of the PSG record-
ings requires a considerable amount of time and effort, it is not error free, and
together with the sleep units saturation elevates the economic burden of SAHS.

In this perspective, a system based on artificial intelligence could offer support
to the experts. The main purpose of the present work is to develop an automatic
sleep apnea detection algorithm based on only a subset of the signals recorded
during a PSG . In particular, it includes only signals from non-invasive sensors
that are: EEGs (C3-M2 and O1-M2), EOGs, ECG, SpO2, thoracic volume, audio
recording and body position.

The dataset used for the present work is the Wisconsin Sleep Cohort DB. It
includes more than 2’500 subjects’ PSG (with an average length of 6.13h ± 0.97h)
and 3 textual files with useful information. The dataset was cleaned removing
potential outliers and a set of 130 features was computed for each subject using
the Matlab® working environment.

Then, a MANOVA was performed in order to understand how many clusters
could be distinguished among the 4 considered (normal, CSA, OSA, MSA), based
on the data variability. Only 3 classes were distinguishable, since the MSA is very
less represented and with features similar to those of OSA and CSA, therefore it
was excluded from the dataset.



Finally, different machine learning models were trained, such as Decision Trees,
Naïve Bayes, Discriminant Analysis, SVM and K-NN, and underwent hyperpa-
rameters optimization according to built-in MatLab routines.

In conclusion, among the models trained, the most efficient classifier manages to
distinguish between normal sleep epochs and apnea epochs, while the classification
performances deteriorated when hypopnea was considered since this condition is
in the middle of the previous two. Moreover, a cascading classifier was tested
to distinguish between different apnea forms after separating normal epochs from
apnea epochs.
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Chapter 1

Introduction

1.1 Physiological and clinical background
Sleep is a very important physiological condition for the whole body as it relaxes
the muscles, allows cell turnover and tissue regeneration and especially strengthens
the CNS since during sleep the maximum of neuronal plasticity is reached.
Sleep is fundamental for everybody, especially for those who carry out purely
intellectual activities, allowing the formation of memories.

Subjects who have sleep disorders go to places called sleep clinics where they
undergo analysis of the gradual transition from waking to resting condition, the
maintenance of the condition of rest, and the return from the condition of rest to
the condition of wakefulness.
In such sleep clinics, patients are sensorized by expert technicians in order to record
the activity of most of the physiological systems in the form of biomedical signals
successively used to analyze manifestations of sleep disorders.

As reported in Roebuck’s review [Roebuck et al., 2013], sleep disorders were
divided into eight categories by the International classification of sleep disorders
(ICSD):

1. Insomnias: difficulty falling asleep, difficulty staying asleep, early awakening,
or poor sleep quality;

2. Sleep-related breathing disorders;

3. Hypersomnias of central origin not due to a circadian rhythm sleep disorder,
sleep-related breathing disorder, or other cause of disturbed nocturnal sleep;

4. Circadian rhythm sleep disorders;

1
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5. Parasomnias: disorders that intrude into the sleep process and are manifes-
tations of central nervous system activation;

6. Sleep-related movement disorders;

7. Isolated symptoms, apparent normal variants, and unresolved issues;

8. Other sleep disorders.

This thesis will discuss a particular type of sleep-related breathing disorder,
the Sleep Apnea-Hypopnea Syndrome (SAHS), whose effects influence physical
and psychological aspects of subjects’ life and represent an important financial
impact on society.

1.2 Costs of sleep disorders
In their work, Hossain and Shapiro [Hossain and Shapiro, 2002] identified four
categories of the costs due to sleep disorders, which were reported in Roebuck’s
work [Roebuck et al., 2013] as:

• Direct costs: such as visits to health care professionals, diagnostic tests, treat-
ments, and hospital services;

• Indirect costs: such as ambulatory care, work absenteeism, disability, reduc-
tion or loss of productivity, industrial and motor vehicle accidents, hospitaliza-
tion, increase in medical costs comorbid conditions, and alcohol consumption;

• Related costs: such as accident-related property damages, travel costs to
health care providers, and cost to family of additional care;

• Intangible costs: such as decreased quality of life, impaired schooling, and
loss of activities of daily living.

The main aspects causing causes an elevation in the economic costs associated
with the diagnosis of SAHS are:

• Manual revision of the PSG recording which requires a considerable amount
of clinicians’ time and effort;

• Waste of the personnel resources;

• Saturation of sleep units.

2



1.3 – Sleep Apnea-Hypopnea Syndrome (SAHS)

According to Huyett and Bhattacharyya, 2021, sleep disorders afflict 13.6 ± 0.6
million adults in the US. These subjects were found to have increased utilization
of office visits (16.3 ± 0.8 vs 8.7 ± 0.3, P < .001), emergency room visits (0.52 ±
0.03 vs 0.37 ± 0.02, P < .001), and prescriptions (39.7 ± 1.2 vs 21.9 ± 0.4, P <
.001) with respect to those without sleep disorders.
The additional incremental health care expenses for those with sleep disorders were
increased in all examined measures: total health care expense ($6,975 ± $800, P <
.001), total office-based expenditures ($1,694 ± $277, P < .001), total prescription
expenditures ($2,574 ± $364, P < .001), and total self-expenditures for prescrip-
tions ($195 ± $32, P < .001).
It is clear that sleep disorders are associated with significantly higher rates of
health care utilization and expenditures.
In 2021, the overall incremental health care costs of sleep disorders in the US rep-
resents approximately $94.9 billions.
According to Streatfeild et al., 2021, the estimated overall cost of sleep disorders
in Australia in 2019–2020 (population: 25.5 million) was $35.4 billions divided
in $25.4 billions of nonfinancial costs and $10.0 billions of financial costs which
comprise health system costs for $0.7 billions, productivity losses for $7.7 billions,
informal care for $0.2 billions, other mainly non-medical accident costs for $0.4
billions and deadweight losses for $1.0 billions. For moderate to severe OSA syn-
drome, insomnia unrelated to other conditions and Restless Leg Syndrome (RLS),
financial costs represented $16,717, $21,982, and $16,624 per adult with the con-
dition for the year, respectively.

1.3 Sleep Apnea-Hypopnea Syndrome (SAHS)
Patients affected by SAHS experience numerous involuntary respiratory pauses
during the night. The duration of these nocturnal respiratory events, called ap-
neic events, differs from patient to patient and in order to be considered clinically
significant must last from 10 seconds to 2 minutes. The common duration of the
apneic event, though, is usually about 20 to 40 seconds.
Such apneic events lead to a drop in the oxygen saturation levels in arterial blood
proportional to the causing airflow reduction which triggers an autonomic response
that increases the subject’s alertness level often causing neurophysiological awak-
ening which breaks up the normal sleep structure interrupting a refreshing rest
[Shokoueinejad et al., 2017].
Common symptoms during sleep are:

• Snoring (usually loud).

• Gasping or choking sounds.

3
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• Breathing pauses observed by someone watching you sleep.

• Sudden or jerky body movements.

• Restless tossing and turning.

• Frequent awakenings from sleep.

Common symptoms while awake are:

• Daytime sleepiness.

• Morning headache.

• Dry or sore throat in the morning.

• Fatigue or tiredness throughout the day.

• Personality changes, such as mood swings and difficulty getting along with
others.

• Problems with poor memory or inability to concentrate.

1.3.1 Forms of sleep apnea
In particular, sleep apnea is categorized into three forms: Central Sleep Apnea
(CSA), Obstructive Sleep Apnea (OSA), and Mixed Sleep Apnea (MSA) (the com-
bination of OSA and CSA), constituting 0.4%, 84%, 15% of cases, respectively, in
United States and Europe [Morgenthaler et al., 2006].

CSA Characterized by the absence of respiratory effort and, thus, the absence
of airflow during sleep. It may occur secondary to lesions that affect the sensory
component, the integrative and executive neuronal systems, or the motor compo-
nent (i.e., the lower motor neurons, nerves, and muscles) of the neural systems
involved in respiratory control.

OSA Characterized by times during sleep in which air cannot flow normally into
the lungs due to an obstruction usually caused by the collapse of the soft tissues
in the back of the throat (upper airway) and tongue during sleep. OSA is more
common in men, women after menopause, people over the age of 65 and can also
occur in children.
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Polysomnography (PSG)
Nowadays, the gold standard diagnosis system for SAHS recognition is Polysomnog-
raphy (PSG). This test usually involves the following steps:

• The subject has to go to the sleep unit of medical center where he will spend
the night in order to record several physiological signals;

• The resulting signals, which will be referred to as "polysomnographic record-
ing" or "PSG", are then visually analyzed offline by the medical specialists.

The aim of this analysis is to identify sleep stages, score breathing-related events
which occur during the night, and extract characteristic indices which describe
the subject’s sleep condition during that night (e.g. Apnea-Hypopnea Index, the
number of events per hour of sleep).
The Standards of Practice Committee of the AASM develops and reviews indica-
tions for PSG in the diagnosis of commonly encountered sleep disorders, including
sleep apnea.

One of the main problems of this syndrome is that patients are usually unaware
of their own symptoms. Moerover, it is known that subject who suffers SAHS have
an higher probability of having cardiac and cerebral infarcts or high arterial blood
pressure, as well as arrhythmias and other dysfunctions of the cardiorespiratory
system. [Alvarez-Estevez and Moret-Bonillo, 2015].

According to the US Institute of Medicine Committee on Sleep Medicine, about
50–70 million US adults suffer of sleep or wakefulness disorders and American
Academy of Sleep Medicine estimates that more than 29 million US adults suffer
from moderate to severe OSA, with an estimated 80% living unaware and undi-
agnosed. It is obvious to understand why SAHS is a public health and economic
challenge. During the last 30 years, lots of researches has been conducted to clarify
the incidence and the risk factors, such as the obesity epidemic and global preva-
lence of OSA. In fact, being OSA the most probable from of apnea, have been
encouraged OSA studies [Shokoueinejad et al., 2017].

Although various devices have been used to measure physiological signals, de-
tect apneic events and help treat sleep apnea, significant opportunities remain to
improve the quality, efficiency, and affordability of sleep apnea care.
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1.4 System requirements to diagnose and detect
apneic events

American Academy of Sleep Medicine (AASM) digital task force identifies five
basic tasks a system used to diagnose and detect breathing-related events must
embrace [Penzel and Conradt, 2000]:

1. The system must allow to acquire and record data;

2. The system must allow to visualize the aforementioned data;

3. The system must allow data manipulation so that clinicians can visually assign
a score to events;

4. The system must allow for data reduction. In particular, the final goal is
to obtain useful diagnostic summary statistics for reporting starting from
epochs;

5. The system must allow storage of relevant data and results.

It is important to say that does not exist a uniform standard for the upper listed
processes.
Stages 3 and 4 are the most interesting ones in the light of this thesis.

AASM also indicates four types of sleep diagnostic devices which are better
described in Table 1.1.
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TYPE 1 TYPE 2 TYPE 3 TYPE 4

Parameters At least seven:

• EEG
(C4-A1 or
C3-A2);

• EOG;

• chin EMG;

• ECG;

• airflow;

• respiratory
effort;

• oxygen sat-
uration

At least seven:

• EEG
(C4-A1 or
C3-A2);

• EOG;

• chin EMG;

• ECG or
heart rate;

• airflow;

• respiratory
effort;

• oxygen sat-
uration

At least four:

• ventilation
(at least
two chan-
nels of
respiratory
movement,
or res-
piratory
movement
and air-
flow);

• ECG or
heart rate;

• oxygen sat-
uration

At least
one

Body
position

Documented or
measured

Not mandatory Not mandatory Not
measured

Leg
movement

EMG or motion
sensor

EMG or motion
sensor

Not mandatory Not
manda-
tory

Personnel Always
present

Not
present

Not
present

Not
present

Possible
Intervention

Yes No No No

Table 1.1: Sleep diagnostic devices types according to American Academy of Sleep
Medicine (AASM) [Ferber et al., 1994].
Type 1: Standard PSG system.
Type 2: Comprehensive portable PSG.
Type 3: Modified portable sleep apnea testing.
Type 4: Continuous single- or dual-bioparameter recording.
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1.5 Current Treatment Modalities
Sleep apnea is a complex condition for which it has not yet been identified an
efficient and comfortable treatment.
In this section will be discussed the treatment modalities which are currently used.

1.5.1 Assistive devices
The assistive devices are by far identified with the Positive Airway Pressure (PAP)
devices whose aim is to apply external pressure to the patient’s upper airway.
They usually consist of three major parts:

1. A positive pressure generator, such as a fan or turbine;

2. A nasal or oral interface, such as a mask;

3. A tube connecting the two parts.

PAP devices are usually divided into four categories:

1. Continuous Positive Airway Pressure (CPAP) devices: the basic type of PAP
machines. They deliver constant pressure during the whole night and require
manual laboratory titration prior to use. According to Becker et al., 2003,
CPAP devices are effective in the treatment of apneas and hypopneas but the
major problems are that over 40% of the patients with OSA are noncompliant
[Weaver and Grunstein, 2008] and it may not suppress CSA, especially in
patients who experienced heart failure [Arzt et al., 2007];

2. Bi-level Positive Airway Pressure (BPAP) devices: a pressure-controlled ven-
tilation which delivers higher inhalation positive airway pressure (IPAP) and
a lower expiratory positive airway pressure (EPAP) decreasing the subject’s
breathing effort since the timing to change from EPAP to IPAP is carefully
clocked by a flow sensor. According to Berry et al., 2012, typical IPAP and
EPAP ranges go from 4 to 30 cmH2O;

3. Auto-titrating Positive Airway Pressure (APAP) devices: such devices pro-
vide adjustable pressure to maintain airway patency and provide an adequate
response to respiratory events. The data in the literature mostly shows that
CPAP and APAP affect similarly sleep quality and that they can adjust and
compensate for the pressure when leaks occur [Shokoueinejad et al., 2017].
However, Berry and Sriram, 2014, observed that some patients may be sen-
sitive to the pressure changes and consequently feel less comfortable with
APAP;
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4. Adaptive Servo Ventilation (ASV) devices: these are devices that provide pa-
tients steady, minute ventilation based on the measurement of patient breaths.

Another type of PAP device is the Nasal Expiratory Positive Airway Pressure
(NEPAP) device which consists of two nasal valves placed on the nostrils that
provide variable resistance during breathing: low when the subject inhales and
high when the subject exhales. Providing high resistance translates in applying a
positive pressure through the airway that open the soft tissues up contrasting their
collapse[Berry et al., 2011]. However, NEPAP devices are not side effects free, for
instance subjects have reported dry mouth, headache, and others.

Figure 1.1: Depiction of a Sleep Apnea patient using a CPAP machine. Licensed
under Creative Commons Attribution-Share Alike 4.0 International.

As reported in Shokoueinejad’s review, "current continuous technological ad-
vances aim to improve the patient’s comfort, adherence, and clinical benefits which
could be categorized as respiration phase detection, ventilation estimation, CSA
distinguishing, humidifiers, expiratory pressure relief (EPR), ramp, and automatic
start and finish" [Shokoueinejad et al., 2017].

1.5.2 Therapeutical oral devices

Oral Appliances (OAs)

Oral Appliances (OAs), or Intraoral Devices (ODs), physically interact with mandible,
tongue, or soft palate during sleep in order to prevent the collapse of upper airway
muscles causing OSA. In their work, Shokoueinejad et al. reported that "ODs
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are found to have higher adherence rates but still tend to be a secondary form of
treatment for OSA to CPAP, which results more efficient". Moreover, ODs often
resulted helpful for patients who become non-compliant to CPAP despite they
have been shown to not strictly alter sleep apnea in patients [Shokoueinejad et al.,
2017]. In the same review is indicated that ODs can be divided in:

• Soft Palate Lifters (SPLs): These devices need to be in contact with the
most posterior region of the mouth and to be secured by a mouth guard or
retainer, therefore are the most uncomfortable kind of OAs. This kind of OAs
are less effective and less compliant than CPAP according to Barthlen et al.,
2000, and the most common side effects are gagging, soft tissue irritation and
choking.

• Tongue Retaining Devices (TRDs): These are the second most utilized form
of OAs. They utilize negative pressure to secure the tongue but have lower
efficacy and compliance rates than MAAs. These devices can be applied either
in combination with MAAs or stand-alone if MAAs cause dental issues. These
devices have less effectiveness but similar compliance compared to CPAP
according to Deane et al., 2009, and the most common side effects are excess
salivation, dryness of mouth, and soft tissue irritation.
A sketch of such devices can be observed in figure 1.2.

Figure 1.2: Sketch of tongue retaining device. [Bender, 2012]
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• Mandibular Advancement Appliances (MAAs): These devices are by far the
most used ODs to combat OSA. They are molded using dental impressions of
the patient’s mouth and fixed by attaching them to one or two dental arches.
The working principle of all MAAs is to rotate the mandible downwards and
protrude the mandible into an anterior position to force an increase in the
upper airway as stated by Schmidt-Nowara et al., 1995.
The major problem is determining how far protruded the mandible needs to
be in order to reduce the AHI and to prevent Temporo-Mandibular Joint
(TMJ) pain. There are several protocols that can be followed with the newer
ones being automatized while the older ones need manual titration.
A sketch of MAAs working principle can be observed in figure 1.3. A compar-
ison between MAAs and CPAP showed that MAAs are less effective but more
compliant than CPAP and the most common side effects are jaw soreness, as
said before, and mouth dryness [Hoffstein, 2007].

(a)
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(b)

Figure 1.3: a) Sketch of a mandibular advancement device in neutral position.
b) Sketch of a mandibular advancement device with lower jaw protruded. [Bender,
2012]

1.5.3 Oral Pressure Therapy (OPT)

This is a more recent approach that consists in pulling the soft tissues forward
preventing their collapse by applying a vacuum in the mouth. This method still
requires an external device but tends to be less noisy than CPAP and does not
need a full mask but only a small mouth guard.

1.5.4 Positional Therapy

Positional OSA is a particular subset of OSA characterized by a double increase in
AHI while the patient is in a supine position compared to a non-supine position.
It is stated that about half of all OSA are positional OSA. The aim of PT is
to force the patient to sleep in a non-supine position; examples of PT are alarm
systems, pillows with straps, and vibrating devices. This approach has big initial
compliance which decreases over time to sub-optimal rates.
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1.5.5 Other therapies
The approaches discussed until now are the most used. As reported in Shok-
oueinejad’s review, there are also other therapies used as alternatives to CPAP,
custom-made OA, and upper airway surgery such as the electrical stimulation of
the hypoglossal and phrenic nerves and the use of inspired CO2.

The hypoglossal nerve innervates the genioglossus muscle whose correct stim-
ulation leads to increased inspiratory airflow (since the activation of this muscle
is correlated with increased upper airway patency) without waking the patient.
Schwartz et al., 2001, observed that these conditions can let patients go into deeper
sleep stages. The stimulation is granted by an electrode chirurgically placed on
the hypoglossal nerve, which stimulates tongue protrusion. The main problem is
that surgery is required in order to implant the electrical stimulator.
Another electrical stimulation method has been investigated as a treatment for
SAHS: the stimulation of the phrenic nerve. The key concept is to stimulate the
diaphragm in order to restore a normal, physiological breathing pattern during
sleep. Such stimulus is provided when the subject is recognized as being in normal
sleeping and posture conditions trying to synchronize it with the inspiratory phase
of respiration. Both phrenic nerve and hypoglossal nerve stimulation systems con-
sist of a pulse generator, a stimulation lead, and a sensing lead.

The inspired CO2 method is used method to control abnormal breathing. In
particular, breathing in low CO2 concentrations can help prevent periodic reduc-
tions in partial pressure of CO2 below the apnea threshold which is usually 2 to
6 mmHg below the eucapnic sleeping partial pressure level of CO2. This could
reduce the number of apnea events.
However, the system required for exogenous CO2 is impractical to keep at home.
Another method of increasing CO2 is the addition of about 500ml of dead space
which does not contribute to gas exchange [A. Xie et al., 2001]. The main problem
is that this practice could lead to cardiovascular problems.

1.6 Thesis Goal
The purpose of the present work is to extract a particular set of parameters, called
features, from the polysomnographic record and uses these features in order to
train some machine learning model to recognize apneic epochs. The concept of
"sleep epoch" will be deepened in the next chapter.

As can be observed in table 1.1, some of the signals acquired by standard PSG
systems and comprehensive portable PSGs (respectively type I and type II devices)
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can be considered intrusive to a subject’s sleep and can make sleep uncomfortable.
Examples of such intrusive signals can be airflow signals and nasal pressure signal.
The firsts are usually taken by airflow thermistors inserted inside the subject’s
nostrils (nasal airflow) or mouth (oral airflow) and whose wires need to be taped
to the outer sides of the nose in order to not come out during rest. The latter is
usually acquired by a nasal pressure transducer through a nasal cannula placed
over the top of the airflow sensor transducers and whose wires are taped together
with the wires of the airflow sensor. Moreover, these signals were excluded because
also CPAP users were considered since the recording equipment results even more
uncomfortable for them.

The thesis goal will be pursued trying to use low intrusive signals. In order to
do so, it has been decided to use an alternative set of signals that includes some
of the signals required by type II devices and some of the signals required by type
III devices.In particular, the chosen signals are:

• EEG and EOG signals;

• ECG or RR signal;

• SpO2 signal;

• Thoracic volume signal;

• Audio recording;

• Body position signal.

Such signals have been selected with the intention of having a simple-to-put-on
and comfortable recording system for the patient that could be embedded in some
wearable system and that could represent an alternative to portable PSG systems.
The exception are EEG and EOG signals whose recording requires the placement
of some electrodes; they were not excluded because considered very informative
about the sleep condition of the patient being some of the pivotal signals for the
assignment of sleep stages.
As reported in the manual of operations of WSC [Wisconsin Sleep Cohort, 2009],
the data channels critical to the sleep analysis process are EOG and EEG channels,
nasal pressure, respitrace, and oximetry.
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Chapter 2

Database and signals
description

Thanks to Professor Alessandro Puiatti (SUPSI), with whom this thesis project
was carried out, who asked and obtained permission for the Wisconsin Sleep Cohort
(WSC) database.

2.1 Wisconsin Sleep Cohort (WSC)
The Wisconsin Sleep Cohort (WSC) is an ongoing longitudinal study of the causes,
consequences, and natural history of sleep disorders, particularly sleep apnea
[G.-Q. Zhang et al., 2018; Young et al., 2009].

As reported in National Sleep Research Resource (NSRR) website: "the WSC
collected overnight in-laboratory sleep studies (in-patient studies at the University
of Wisconsin - Madison ICTR’s CTRC). The provided data represent a limited
portion of all potentially available Wisconsin Sleep Cohort data. Some Wisconsin
Sleep Cohort data are presently withheld from NSRR due to one or more of the
following":

• Constraints on sharing due to some participants refusing data sharing options
at the point of obtaining informed consent;

• Data are being used to address currently-funded projects;

• Data have not yet been prepared for sharing;

• Data are not available in an electronically-shareable format (e.g., "old-school"
paper-based polysomnographic recordings);
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2.2 Database Details
The database was provided together with a dataset containing useful information
about the subjects who underwent PSGs such as anthropometric parameters (e.g.
body mass index (BMI), height, neck circumference, etc.), demographics param-
eters, clinical data (e.g. blood pressure, total cholesterol, etc.), sleep question-
naires scorings from different scales (e.g. Epworth sleepiness scale (ESS), modified
Horne-Ostberg Morningness-Eveningness Questionnaire, etc.) or such as PSG de-
rived indexes (e.g. Apnea-Hypopnea Index (AHI), total sleep time (TST) both
REM and NREM, minimum blood saturation value, etc.).
Some important data are reportend in table 2.1.

Male (n=848) Female (n=739)

Age [years] 58 ± 8 56 ± 8

BMI [kg/m2] 31 ± 6 33 ± 8

Neck circumference [cm] 41 ± 3 36 ± 4

TST [h] 5.9 ± 0.9 6.4 ± 0.9

NREM TST [h] 5 ± 0.8 5.3 ± 0.8

REM TST [h] 1 ± 0.4 1.1 ± 0.5

AHI∗ [events/h] 1.9 ± 1.4 1.5 ± 1.4

NREM AHI∗ [events/h] 1.7 ± 1.5 1.5 ± 1.2

REM AHI∗ [events/h] 2.4 ± 1.2 2.3 ± 1.3

ESS score 9 ± 4 9 ± 4

CPAP (n users) 51 33

Table 2.1: Comparison of demographic, clinical ans polysomnographic Character-
istics of WSC database subjects. Data are presented as mean ± SD.
Abbreviations: Obstructive Sleep Apnea (OSA); body mass index (BMI); Epworth
sleepiness scale (ESS); total sleep time (TST).
* Notice that since AHI, NREM AHI and REM AHI have similar to lognormal
distributions, for these parameters mean and standard deviation are indicated in
log scale.
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For each subject in the database are provided 16 signals recorded during the
night and three textual files. In particular, the available signals are:

• 2 EEG signals: C3-M2 and O1-M2;

• 2 EOG signals: E1 and E2;

• 2 EMG signals: chin (mastoid) and linked legs;

• 1 ECG signal;

• 1 microphone registration (called "Snore");

• 2 flow signals: oral and nasal flows;

• 1 nasal pressure;

• 3 volume signals: thoracic volume, abdominal volume and the sum of the
previous;

• 1 body position signal;

• 1 blood saturation signal.

The textual files provided are:

• A log file in which are reported some useful information about the measure-
ments of the signals during the PSG;

• A staging file with the sleep staging epoch per epoch made by an expert
technician according to the R&K rules;

• A scoring file which contains information about the events which occurs dur-
ing the sleep, such as OSA and CSA.

The log files contain information about the calibration process of the measure-
ment system used to record all the signals. The purpose of doing both machines
and biophysical calibrations is to validate the integrity of the input data. The first
step is to check if there is data coming in on all channels and artifact-free being
particularly careful with EOG, EEG, respitrace, and oximeter channels which are
critical to the analysis process. In other words, a loss of data in these channels
may cause sleep epochs to be unscorable.
Then the recording on the Grass system starts and the bio-calibration process
begins with the isomaneuver: the patient has to twice take in a deep breath and
exhale and after the second exhalation, have the patient hold the breath in order
to apply nose clips and with mouth tightly closed make paradoxical movements of
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the chest and abdomen, simulating an apneic event. This process is required in
order to adjust the gains of the channels.
Once the gain has been set, the remaining bio-calibrations are performed:

• Eyes closed for 15 seconds;

• Eyes open for 15 seconds;

• Move eyes up and back to center;

• Move eyes down and back to center;

• Move eyes left and back to center;

• Move eyes right and back to center;

• Blink several times;

• Clench teeth and relax;

• Move tongue back and forth in the mouth;

• Flex left big toe;

• Flex right big toe;

• Count from 1 to 10;

• Simulate snore sounds;

• Put on nose clip and breathe through mouth;

• Remove nose clips, close mouth, and breathe through the nose;

• Take a deep breath, exhale, and hold breath as long as possible;

• Record peak SAO2 and lowest value as a user-defined annotation;

• Close eyes and start steady state for 2 minutes;

• Open eyes and start steady state for 2 minutes;

• End steady state.
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The "log" files contain other important information such as possible changes in
the subject’s position during sleep, possible gain changes of some signal channels,
or if the subject spent time awake during the night because of different reasons
(e.g. Needed to go to the bathroom, or needed to take some medicine...) indicat-
ing the epochs when the wake condition starts and ends. The epochs in which the
lights are switched off and switched back on are also written in these files. The
latter are epochs that will be useful to give the definition of "useful signals" and
"sleep epochs" that will be given later in this chapter.

It is important to notice that each signal is divided into 30 seconds segments
called "epochs" and at each epoch is assigned a numeric value indicating the sleep
stage of the patient according to the rules that will be discussed in the following
paragraph. The aforementioned 30 seconds epochs’ length is a legacy of paper
PSGs since 30 seconds of recording occupied a page when recorded at a speed of
10 mm/s (ideal for viewing alpha spindles).

2.2.1 Sleep Staging
"Sleep has been traditionally divided into non-REM (NREM) sleep and REM sleep.
The sleep staging criteria were standardized in 1968 by Rechtschaffen and Kales
[Rechtschaffen, 1968] (or R&K rules), based on EEG changes, dividing NREM
sleep into four stages: stage I, stage II, stage III, stage IV. In 2007 was published
a revised version of the R&K scoring system in which arousals, as well as respira-
tory, cardiac, and movement events, were also added to the scoring. This revised
system is called the AASM Manual for the Scoring of Sleep and Associated Events
and the most significant change was merging stages III and IV into stage N3"
[Roebuck et al., 2013].

The sleep staging guidelines followed by WSC clinicians and the numerical en-
coding for sleep stages are resumed in table 2.2.

For all the epochs in which the patient was moving have been used the numeric
code 6 and for all the remaining epochs which can not be categorized have been
used the numeric code 7.
The sleep stage encoding will be essential for the definition of "useful signal" (see
section 2.3).
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STAGE CODE EEG EOG EMG

Wake 0 Alpha activity and/or low
voltage mixed frequencies.

REMs and
eye blinks.

High tonic
EMG.

1 1

Relatively low voltage,
mixed frequency EEG
predominantly in the 2-7
Hz range, at about 50-75
µV. Vertex sharp waves up
to 200 µV.

Slow eye
movements
of several
secs dura-
tion. No
REMs.

Tonic
EMG lev-
els below
those of
Stage W.

2 2

Sleep spindles and/or K-
complexes (0.5 sec dura-
tion), and absence of suffi-
cient high amplitude to de-
fine presence of Stage 3 or
4.

3 3

20% but not more that 50%
of epoch consists of 2 Hz
or slower waves with am-
plitude greater than 75 µV
peak to peak. Sleep spindles
may or may not be present.

4 4

More than 50% of epoch
consists of 2 Hz waves
or slower with amplitudes
greater than 75 µV peak to
peak. Sleep spindles may or
may not be present.

REM 5

Relatively low voltage,
mixed frequency EEG.
Presence of saw tooth
waves in vertex and frontal
areas. Alpha activity that
is 1-2 Hz slower than wake-
fulness may be prominent.
Absence of K-complexes
and sleep spindles.

Tonic
mental-
submental
EMG
at lower
level than
preced-
ing sleep
stage.

REMs.

Table 2.2: Sleep staging: criteria and encoding in the Grass Heritage System.
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2.2.2 Scoring of breathing events and epochs encoding
In the scoring files are reported tables containing useful information about the
events which happen during the PSG such as the epoch in which the event starts,
the length of the event in samples, the exact time of the event, the minimum SpO2
value reached during the event, the recording channel from which the presence of a
given event is recognized, a marker code and a marker text indicating what type of
event it is (e.g. "OSA-100", "CSA-102, "Hypopnea-202", "LMA-405", "LM-412",...).
On the base of the scoring files, was implemented a function that extracted, for
each subject, a table with the events’ information and that assigned returned a
numeric encoding at each event as reported in Table 2.3.

EVENT CODE

Normal sleep 1

Hypopnea 2

Obstructive Sleep Apnea (OSA) 3

Central Sleep Apnea (CSA) 4

Mixed Sleep Apnea (MSA) 5

Table 2.3: True Class, numerical encoding

In particular, in the manual of operation provided with the database are re-
ported the definitions and the scoring procedures of apneas, hypopneas, and leg
movements. The ones of interest for the goal of this thesis are the first two.
More accurate definitions of breathing events and scoring procedures for each event
can be found in Appendix A.

2.2.3 Database dimension
Among the 2559 subjects provided with the WSC database, only 1827 subjects
have been considered due to the lack of scoring and staging information needed
in order to proceed with supervised learning algorithms training and due to the
absence of occipital EEG channel.
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2.3 Definition of useful signal
In order to normalize the pre-processing routines of all the signals used it has been
decided to consider only the epochs in which the subject is effectively sleeping
because the apnea events begin and develop during sleep. To do so a function
that separates the sleep epochs from the non-sleep epochs was implemented. This
function calculated the number of epochs in the signals as the length of a signal
(all the signals for a specific subject must have all the same length) divided by the
length of an epoch (30 seconds) and extracted from the staging files the relative
code for each epoch, as stated in table 2.2, and make a double check extracting
the lights-out and lights-on epochs from the log file and forcing the epochs before
lights-out and after lights-on to be considered as non-sleep epoch.
In this way, it was possible to remove all the epochs in which the subject was
not sleeping such as wake epochs, calibration epochs, or the epochs in which the
subject was not in the bed. The latter epochs are usually characterized by an
initial detachment of the sensors which results in abrupt changes in the signals
until the subject return to bed with all the sensors correctly attached as shown in
the figure 2.1.

Figure 2.1: Example of SpO2 signal considering only useful epochs.

Notice that major movement epochs which cause subjects to wake up were
accounted for in the initialization of the sleep epochs. In conclusion, all the subjects
without indications in the log file about the lights-out and lights-on epochs were
discarded leaving 1587 subjects out of 2559 ready for features extraction.

22



2.4 – Signals details

2.4 Signals details
Before proceeding with the description of the processing routines for each signal,
it is important to say that all the signals in the database have been recorded using
the Grass Heritage system.
According to this system, all the signals have been sampled with a sampling fre-
quency (fs) equal to 100Hz and have been pre-filtered by the hardware. In par-
ticular, the upper cut-off frequency for all signals is 30Hz while the lower cut-off
frequency varies by signals: the EOG signals, the EEG signals, the ECG signal,
the EMG signals, the audio record, the nasal and oral flow signals, and the nasal
pressure signal have a lower cut-off frequency of 0.1Hz while the SpO2 signal, the
position signal, the thorax volume, abdomen volume and sum of volumes signals
have a lower cut-off frequency of 0.01Hz.

In their work Penzel and Conradt indicated that "currently 100 Hz is regarded as
the minimum acceptable sampling rate for EEG, EOG, and EMG in sleep record-
ings when using 35 Hz high filters while international recommendations for ECG
require a sampling rate of at least 250 Hz for long-term ECG recordings and that
at least two channels of ECG are recorded but if the ECG is recorded in a sleep
laboratory and is only used to estimate the heart rate and not to investigate heart
rate variability, then a sampling rate of 100 Hz may be sufficient. This results in
an accuracy of 10msec when calculating RR intervals which is sufficient for clinical
interpretation." [Penzel and Conradt, 2000].

The signals units of measure and pre-filter specifications are resumed in table 2.4.

In conclusion, the goal of signal processing for features extraction is to extract
a table of features for each subject such that each row of this table represents a
sleep epoch for that subject and each column represents a specific variable.
Finally, all the tables will be merged along columns into a unique table and two
more columns will be added: the first identifies the subject while the second con-
tains the true class to whom a specific epoch belongs (according to the numerical
encoding reported in table 2.3).

23



Database and signals description

SIGNAL PRE-FILTER UNITS

E1 BP: 0.1Hz - 30Hz µV

E2 BP: 0.1Hz - 30Hz µV

C3-M2 BP: 0.1Hz - 30Hz µV

O1-M2 BP: 0.1Hz - 30Hz µV

chin EMG BP: 0.1Hz - 30Hz µV

Linked Legs EMG BP: 0.1Hz - 30Hz µV

Snore BP: 0.1Hz - 30Hz µV

ECG BP: 0.1Hz - 30Hz µV

Nasal flow BP: 0.1Hz - 30Hz µV

Oral flow BP: 0.1Hz - 30Hz µV

Nasal Pressure BP: 0.1Hz - 30Hz µV

Thorax volume BP: 0.01Hz - 30Hz V

Abdomen volume BP: 0.01Hz - 30Hz V

Sum of volumes BP: 0.01Hz - 30Hz V

Position BP: 0.01Hz - 30Hz V

SpO2 BP: 0.01Hz - 30Hz Percentage

Table 2.4: Signals available in the WSC database with pre-filter settings and units
of measure according to Grass Heritage system.
BP = band-pass.
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Chapter 3

Signal preprocessing and
features extraction

Theoretically, at this point in the workflow there should be the pre-processing of
the signals in terms of filtering and artifact removal but, since the signals were
supplied after a step of analog pre-filtering and artifacts rejection done by the
recording system, will be discussed other pre-processing and features extraction
algorithms implemented for the considered signals.
For each signal, was implemented a function that initializes, subject per subject,
an mxn matrix such that m is the number of epochs for the considered subject and
n is the number of features extracted from the considered signal. The initialization
assigns NaN values along the rows which represent the no-sleep epochs and zeros
along the rows which represent sleep epochs.

3.1 General Statistics features
A set of general statistics features was extracted from all the epochs of a great
part of the signals. These are time-based statistics describing the signals’ time
series data distribution. They comprehend measures of central tendency, such as
the mean and the median of the epoch’s samples, and measures of dispersion, such
as the range, the minimum (which is not a measure of dispersion itself but will be
useful to give a statistical meaning as will be described later in this subsection),
the standard deviation and a percentile range.
It was specified percentile range because for the blood saturation signal was decided
to calculate the 5 to 95 percentile range while for the rest of the signals have been
calculated the interquartile range.
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In particular, it was decided to calculate the mean because it uses all the data
values and is, in a statistical sense, efficient but it is vulnerable to outliers while
the median is not affected by outliers but is not statistically efficient, as it does
not make use of all the individual data values.
Dispersion describes the spread or variability of the data, it has been decided to
calculate the range because it is the simplest measure of variability; since it is
physically described by a single number, it is not a statistical representation of the
range (which is given by two numbers: the highest and the lowest of the series).
In order to fix this, the minimum value has been added as a feature while the
maximum value can be derived as range plus minimum.

3.2 BLOOD SATURATION signal
With the term "SpO2" we refer to the percentage of oxygenated hemoglobin in
the blood. Oxygen concentration is a great interest parameter to monitor during
sleep studies because it may reduce dramatically during an apneic event causing
low organ perfusion and, eventually, possible organ failure.
The device used for measuring SpO2 is called "pulse oximeter" and it monitors
non-invasively the peripheral oxygen saturation by shining red and infrared light
through a fingertip, ear, or toe. The amount of red or infrared light that is ab-
sorbed corresponds to the concentration of oxygenated hemoglobin and deoxyhe-
moglobin in the blood, and therefore the oxygen concentration in the blood can be
determined. Figure 3.1 shows a sketch of a pulse oximeter functioning principle.

Figure 3.1: Sketch of a pulse oximeter functioning principle. Licensed under Cre-
ative Commons Attribution-Share Alike 4.0 International.
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3.2 – BLOOD SATURATION signal

Regarding the SpO2 signals present in the WSC database, they were recorded
using an Ohmeda 3900 oximeter with a 3 seconds averaging rate.

In their review, Roebuck et al. indicated that normally SpO2 ranges fall be-
tween 85–95% with a certain inter-subject variability [Roebuck et al., 2013] with
the biggest limitation of pulse oximetry monitors being the high rate of false alarms
caused by motion artifacts and poor sensor contact, as noticed by Chambrin, 2001.
As described in section 2.3, major movements were already considered as part of
non-useful epochs since they also greatly influence the other signals.
In particular, it was observed that movement artifacts generate false alarm rates
between 70% and 80% [Petterson et al., 2007].
Since major movements cause the awake of the patient with the exit from a sleep
stage, these events were already accounted for in the initialization of the sleep
epochs on which will be calculated all the features as explained earlier in section
2.3.

Before proceeding with features extraction it was decided to downsample SpO2
signals with a decimation factor of 20 (from 100Hz to 5Hz) in order to reduce
the computational burden of the calculation of the features since they are slow
time-variating signals.

3.2.1 Features extraction
For blood saturation signal the calculated features (or biomarkers) as indicated by
Levy et al., 2021, can be divided in:

• General statistic features: time-based statistics describing the oxygen satura-
tion time series data distribution;

• Complexity features: quantifies the presence of long-range correlations in non-
stationary time series;

• Hypoxic burden features: time-based measures quantifying the overall degree
of hypoxemia imposed on the heart and other organs during the recording
period.

General statistic features

In particular, with respect to the general statistic features discussed in subsection
3.1, the following features were added:
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Mx The percentage of the signal at least x% below median oxygen saturation
with x=2% as suggested by Deviaene et al., 2018. In other words, it represents
the percentage of SpO2 signal at least 2% below median oxygen saturation.

5 to 95 percentile range Used instead of the interquartile range, in order to
consider a bigger portion of the signal since desaturations caused by apnea events
can abruptly lower the SpO2 levels that want to be considered.

ZCx The number of zero-crossing points at the x% SpO2 within the considered
epoch. It is used to characterize the signal oscillations around a certain blood
oxygen saturation level, x. In this case, as the baseline level was chosen the mean,
as indicated by B. Xie and Minn, 2012. In particular, when two consecutive
samples of the blood saturation signal are, respectively, lower and higher (or vice
versa) than the baseline, a crossing point is detected.

As reported in Levy’s work, "one should expect that a SpO2 time series from
an apneic patient as compared to that of a non-apneic patient will oscillate more
around the baseline because of the presence of desaturations and then reach a
higher value" [Levy et al., 2021]. ZCav is defined as:

ZCav =
NSpO2 −1Ø

i=10
ZCi(av),

ZCi(av) =

1 if (SpO2i
− av) ∗ (SpO2i+1 − av) < 0

0 else

where NSpO2 is the number of samples of the SpO2 time series.

Delta Index (∆I) It was defined by Pépin et al., 1991 as "the sum of the absolute
variations between two successive points divided by the number of intervals. The
original intuition was that SpO2 oscillations, induced by repeated apnea resump-
tion of ventilation sequence, will lead to a high ∆I, while prolonged desaturations
or nearly constant SpO2 values would lead to a low ∆I".
The ∆I index is defined as:

∆I = 1
Nwindow

NwindowØ
i=1

|SpO2windowi+1 − SpO2windowi
|,

where SpO2windowi
is the average of the level of oxygen saturation for the window

i of length x s, and Nwindow is the number of windows. In this case it has been
chosen x = 30 seconds.
Since for each current epoch was needed the previous and the following epochs for
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3.2 – BLOOD SATURATION signal

calculating the Delta Index, it is obvious that no ∆I values have been calculated
for the first and the last useful epochs since the previous and the following epochs,
respectively, are initialized as NaN values as explained in section 2.3.

Complexity features

The only feature that have been considered is the approximate entropy (ApEn),
whose properties make it suitable for biomedical time series analysis.
This feature aims to quantify irregularity, as stated by Pincus, 2001. In partic-
ular, "ApEn evaluates both dominant and subordinant patterns in the data, and
discriminates series for which clear feature recognition is difficult being almost
unaffected by low level noise, robust to outliers, scale invariant and model inde-
pendent" [Álvarez et al., 2007].

One limitation is that it is applicable to time series with at least 50 data points.
This represent a lower limit to downsampling of the signal, in fact SpO2 signal has
been downsampled to 5Hz in order to have 150 data points for each epoch despite
even if, in order to calculate the other features, it could have been downsampled
more drastically (e.g. to 1Hz, which would have meant to have 30 data points for
each epoch).
Pincus states also that "ApEn assigns a non-negative number to a sequence or
time series, with larger values corresponding to greater apparent process random-
ness or serial irregularity, and smaller values corresponding to more instances of
recognizable features or patterns in the data". Moreover, "two input parameters,
a run length m and a tolerance window r, must be specified to compute ApEn. In
other words, ApEn measures the logarithmic likelihood that runs of patterns that
are close (within r) for m contiguous observations remain close (within the same
tolerance width r) on subsequent incremental comparisons" [Pincus, 2001].
ApEn(m,r,N) can be defined as:

ApEn = φm(r) − φm+1(r),

φm(r) = 1
N − m + 1

N−m+1Ø
i=1

ln
A

Nm(i)
N − m + 1

B
,

where Nm(i) is the number of windows of length m for which the distance from
the window beginning at the index i is lower than or equal to r.

The criticality of ApEn is the choice of the values for m and r.
Actually there are no straight rules but approximately m should be linked to the
length of signal fluctuations that one can expect. Since speaking about fluctuations
is similar to speaking about spectral content of the signal, an empirical rule is to
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choose m near to the mid-band frequency of the considered signal.
For r, instead, it is usually chosen a value between 0.1 and 0.25 times the standard
deviation of the signal, as indicated by Pincus et al.

In this case, in order to have a more complete depiction of the differences
among different couples of values of m and r it was chosen to calculate three ApEn
parameters:

1. ApEn010 : with m=1 and r=0.10·std(x),

2. ApEn015 : with m=1 and r=0.15·std(x),

3. ApEn025 : with m=1 and r=0.25·std(x),

where x is the considered epoch.

Hypoxic burden features

It was decided to calculate the cumulative time, that is the percentage of time
spent below a certain oxygen saturation level. In particular, five cumulative times
have been calculated:

1. TSA70 : Percentage of the time spent below the 70% oxygen saturation level;

2. TSA80 : Percentage of the time spent below the 80% oxygen saturation level;

3. TSA85 : Percentage of the time spent below the 85% oxygen saturation level;

4. TSA90 : Percentage of the time spent below the 90% oxygen saturation level;

5. TSA95 : Percentage of the time spent below the 95% oxygen saturation level;

In conclusion, the subset of features calculated from the SpO2 signal amount
to 18 features: 10 general statistic features, 3 complexity features and 5 hypoxic
burden features.

3.3 VOLUME signal
Within the WSC database there were three signals related to respiratory volumes:
thoracic volume signal, abdominal volume signal and the sum of the previous two.
All of these signals have been acquired by respiratory inductance plethysmography
(RIP) which is a widely studied technique highly regarded by the AASM due to
its several advantages such as great accuracy, sensitivity, and high patient safety
[Z. Zhang et al., 2012].
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Shokoueinejad et al., 2017 described the functioning principle of RIP: "it indi-
rectly measures ventilation by recording changes in thoracic and abdomen cross-
section". In other words, "it measures abdomen chest movements through coiled
wires wrapped around a patient’s chest that carry a low amplitude sine wave.
Changes in chest and abdomen circumference alter the self-inductance of the wires,
and therefore the frequency of the sine wave, which can be demodulated and pro-
cessed to track changes in chest and abdomen size [Watson et al., 1988]. The
wires were initially integrated into two elastic bands, one around the abdomen
and one around the chest, but RIP has also been used with wires sewn into shirts,
comfortably worn by patients. Other RIP devices are belts that utilize embedded
piezocrystals that emit changes in voltage corresponding to movement of the tho-
rax and abdomen during breathing". [Levin and Chauvel, 2019] It is important to
remember that the posture of the patient greatly affects the measurement of tidal
volume: if the RIP is calibrated with the patient in the upright position, sleeping
and breathing in the supine position can lead to error.

With proper calibration, RIP can achieve a tidal volume measurement accuracy
of 96% when compared with pneumotachography or spirometry [Gonzalez et al.,
1984].

RIP is noted for its added benefit of helping to distinguish between OSA and
CSA, as illustrated in figure 3.2. While during OSA, cessation of breathing occurs
despite an ongoing effort to breathe, while CSA occurs when the brain does not
properly send signals to the muscles controlling respiration. During CSA, the lack
of effort by the muscles in the abdomen and chest can be noted with the use of
RIP, aiding distinguishing CSA from OSA.

A disadvantage of RIP technique is that it has poor accuracy and precision in
obese patients which can limit the accuracy of detecting hypopneas. However, RIP
scoring has been shown to have increased sensitivity and specificity in overweight
or obese patients when compared to the recommended and acceptable criteria for
sleep scoring by the AASM [Kogan et al., 2016]. Although RIP accuracy and pre-
cision is significantly decreased during sleep in obese patients, RIP is still clinically
useful [Cantineau et al., 1992].

In particular, the Pro-Tech 2-Rip inductance plethysmography summation sys-
tem has been used to record the signals.

It was decided to use only the thoracic RIP signal because it has showed the
greatest changes during most of the sleep apnea events compared with the others
and in order to decrease the computational burden.
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Figure 3.2: Polysomnography (PSG) (3 min) with central sleep apnea (A) and
obstructive sleep apnea (B) Note the absence of chest efforts and abdominal move-
ments in the absence of oronasal airflow in central sleep apnea but not in obstruc-
tive sleep apnea (arrows). Also, note the pronounced decrease in O2-saturation
following each apnea episode [Grimm and Koehler, 2014]. Licensed under Creative
Commons Attribution-Share Alike 4.0 International.
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3.3 – VOLUME signal

Due to the fact that signals contain noise generated from different sources such
as subject movements, electrical inference and other disturbances, in his work Van
Steenkiste identifies an upper cutoff frequency of about 0.7Hz under which all
relevant respiration information in the frequency domain can be extracted [Van
Steenkiste et al., 2018].
After segmenting the signal in 30 seconds epochs, each epoch was decomposed by
performing a six levels wavelet decomposition using Daubechies 4 (db4 ) as mother
wavelet. In particular, only the approximation coefficients were considered. This
resulted in a reduction of the band of the reconstructed signal up to 0.78 Hz.
For a more detailed explanation of the Wavelet Transform see appendix B.
Then each epoch was rescaled to get the minimum section value to 0 and the
maximum section value to 1 to ensures all characteristics in the respiration signal
are equally visible regardless of the signal strength.

3.3.1 Features extraction
For thoracic volume signal the calculated feature can be divided in:

• General statistic features;

• Frequency related features;

• Peaks related features.

General statistic features

For this signal were calculated some of the features indicated in subsection 3.1 such
as the mean, the standard deviation, the median, the interquartile range and were
added the Area under the absolute value of the signal which is straightly related
to the amount of air occupying the airways.

Frequency related features

Since respiration is a quasi periodic behaviour some frequency related feature were
extracted too after computing the Power Spectral Density (PSD) of each section
such as:

• Mean frequency;

• Median frequency;

• Peak frequency;

• Total band-power ;
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• Energy in the filtered band.

These features were chosen in order to account for the variation that an apneic
event could lead the power spectrum of the signal to.
Finally, it has been added the Renyi entropy as a complexity measure with the
intuition that a variation of the morphology of the signal can lead to a variation
of entropy: for example, a lack of breathing effort (typical of CSA epochs) could
lead to a reduction in the complexity of the signal indicating that the physiological
system producing such a signal has reduced activity.

Peaks related features

This is a subset of time-domain features calculated after performing a peak de-
tection to locate respiratory peaks. In particular, it was implemented a function
which searches for peaks with a minimum prominence of 5% the range of the epoch
amplitude (which is exactly 0.05 after the rescaling).
The prominence of a peak measures how much the peak stands out due to its in-
trinsic height and its location relative to other peaks. A low isolated peak can be
more prominent than one that is higher but is an otherwise unremarkable member
of a tall range.
To measure the prominence of a peak the following guidelines from MATLAB
user’s guide [The MathWorks Inc., 2021] were followed:

1. Place a marker on the peak;

2. Draw an horizontal line from the peak to the left and right until the line does
one of the following:

• Crosses the signal because there is a higher peak;
• Reaches the left or right end of the signal.

3. Find the minimum of the signal in each of the two intervals defined in Step
2. This point is either a valley or one of the signal endpoints;

4. The higher of the two interval minima specifies the reference level. The height
of the peak above this level is its prominence.

Then a double check over detected maxima was performed considering a 2 seconds
window centered on each detected peak and verifying that the peak is a local max-
imum in that window in order to exclude that the peak in question derives from
an artifact or that it is generated by noise.
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Two examples are shown in figure 3.3: it is possible to appreciate the differences
between an OSA event, in which respiratory effort is present but hindered by the
collapse of soft tissues (in fact respiratory peaks results still detectable during the
event), and a CSA event, in which, instead, there is no breathing effort (in fact it
is not possible to detect respiratory peaks during the event).

I was decided to calculate the following peaks related features which were indi-
cated in Van Steenkiste’s work [Van Steenkiste et al., 2018]:

• Mean peak height;

• Standard deviation peak height;

• Skewness of peak height;

• Sum of the peak heights.

• Number of peaks;

• Mean inter-peak distance;

• Standard deviation of the inter-peak distance

• Skewness of the inter-peak distance;

The first four characterize the amplitude of the breathing pattern, while the
last four are related to the firsts in terms of conservation of inspired air volume.
The intuition is that whenever an apneic event occurs, there will be a change in
the amplitude of the signal (reduction in OSA, cessation in CSA) but, since the
perfusion must be preserved, one can expect that at the lowering of the amplitude
there will be an increase in number of breaths in a fixed time.
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(a)

(b)

Figure 3.3: (a) Two consecutive epochs of thoracic volume signal containing a
OSA event. (b) Two consecutive epochs of thoracic volume signal containing a
CSA event. The respiratory peaks have been detected and marked in both cases.
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In conclusion, the subset of features calculated from the thoracic volume signal
amount to 19 features: 5 general statistics features, 5 frequency-related features,
1 complexity measure for each signal and 8 peaks related features

3.4 BODY POSITION signal
The body position signal is used to characterize whenever there is a change in posi-
tion of the subject during sleep. Recording body position is important in patients
with OSA since the apneic events occurring in the supine position are more severe
than those occurring while sleeping in the lateral position. Thus, it is not only the
number of apneic events that worsening the supine sleep position but, probably no
less important, the nature of the apneic events themselves. [Oksenberg et al., 2000].

These signals in the WSC database are taken by a Natus Neurology DC body
position sensor which is essentialy an accelerometer fasten to the chest of the sub-
ject by straps or by an adhesive patch. Since the signal is a slow time-variating
signal, it was downsampled with a decimation factor of 20 from 100Hz to 5Hz in
order to reduce computational burden of the features calculation. Then, a moving
mean filter with a 15 samples window (which is 1

10 of the length of the resam-
pled signal) was applied with the intention of smoothing the signal’s oscillation
caused by noise or artifacts. In figure 3.4 is shown an epoch before and after the
aforementioned preprocessing.

Figure 3.4: Body position signal epoch before and after preprocessing
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Before talking about the feature extracted from the body position signal it is
important to say that since major body movement affects negatively all the signals
it was decided to implement a function that detects this major movements during
sleep and discard the epochs where the events were found. To do this, keeping
in mind that the signal was resampled and filtered in order to result almost flat,
considering that all the major movements causes big oscillations with respect to
the mean value of the signal, all epochs with peaks of prominence greater than 5
mV were excluded.

3.4.1 Features extraction
Because a sensorized subject cannot sleep in a prone position due to all the equip-
ment he is connected to, the possible sleeping position are only three: supine, on
the left side and on the right side. To identify the position in which a subject was
sleeping during a certain epoch the numerical encoding in table 3.1 was used.

POSITION CODE

Supine 1

Right side 2

Left side 3

Unidentified 4

Table 3.1: Numerical coding of possible sleep positions

An additional class has been added in order to account for all that epochs in
which the subject position is not assignable to other classes such as the epochs in
which the subject change position multiple times or whenever there is a movement
artifact due to the sensor slip.

With the intuition that there could be epochs in which the subject changes
position due to the possible occurrence of an apneic event, a dispersion measure has
been added. In particular, it has been decided to calculate the standard deviation
of the signal during the considered epoch.
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3.5 EEG and EOG signals
As we can see from table 2.2, EEG and EOG signals (in combination with the
EMG signal), are the are the key signals for assigning of sleep stages since they
carry information about the cerebral activity of the subject during sleep, when
there is the maximum of neuronal plasticity.

In particular, EOG signals are used to evaluate if the subject is in REM or
NREM sleep and to remove eventual eyes motion artifacts from EEG signals.
Since the sleep staging was already provided with the data, no eye motion arti-
facts rejection based on EOG signals was performed on EEG signals with the idea
of characterizing the known REM epochs. Moreover, the acquiring system is al-
ready calibrated so that there are no 60 Hz artifacts or electrode popping artifacts
neither on the EEG and on the EOG signals.

The positioning of the electrodes on the scalp of the subject has been carried
out according to the international 10-20 system of electrode placement whose rep-
resentation in shown in figure 3.5.

Figure 3.5: International 10-20 system of electrode placement. The available EEG
channels electrodes are circled in red.
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For each subject of the database are available 2 EEG signals and 2 EOG signals:

• E1 (left EOG)

• E2 (right EOG)

• C3-M2 (left central EEG)

• O1-M2 (left occipital EEG)

Where E1 is placed 2cm to the left and 2cm down from the outer canthus of
the left eye, E2 is placed 2cm to the right and 2cm up from the outer canthus of
the left eye. The M2 electrode, as shown in figure 3.5, is the reference electrode
applied over the skin at the level of the right mastoid bone (behind the ear) which
is a cephalic standard position. Its potential is subtracted from the potential of
the sampling electrodes since the EEG signals are single-differentials. The EEG
channels that have been acquired are positioned over the motility area (C3) and
over the area of the sight (O1) with the idea of detect eventual EEG variation due
to cerebral activity in these two fields.

For non sleep-related application, the EEG signals are usually acquired using
soft helmets with electrode housings but, since during sleep this can be uncom-
fortable for the subject, in PSGs the sampling electrodes for the EEG signal are
placed manually by the operator and held in place with an adhesive patch. This
can add noise because of variability both inter- and intra-operator.

3.5.1 Features extraction
Since both EEG and EOG signals are stochastic processes (so much so that often
they are referred as "interference signals"), they carry the great part of their in-
formation in the Fourier domain (or frequency domain), so it has been decided to
calculate mostly frequency-related features.
To do so the PSD of the signals was estimated using a traditional method for the
periodogram: the Welch method.
According to this method, in order to estimate the PSD of the signal the following
steps were followed:

1. Divide the considered portion of the signal into smaller overlapping segments.
In particular, in this case, the portion of the signal is one 30 seconds epoch that
has been divided into 1 second overlapping segments of 50% of their length
(this amount of overlap is the most used for biomedical signals), in order to
reduce the number of point on which the PSD is estimated increasing the
consistency of the estimator;
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2. Apply a smoothing window to each segment in order to reduce the polarization
error of the estimator (in other words reducing the power leakage. In this case
it has been used an Hamming window, which is the most used window for
biomedical signals being characterized by small side lobes (<-40dB);

3. Estimate the periodogram for each segment;

4. Calculate the mean of all the periodograms obtained.

A better explanation of Welch’s use of Fast Fourier Transform (FFT) for the
estimation of PSD can be found in Welch, 1967.

The EEG power spectrum can be divided into 5 bands (or rhythms) with dif-
ferent characteristics, as shown in table 3.2

RHYTHM FREQUENCY AMPLITUDE CONDITIONS

Delta (δ) 0.5Hz - 3Hz 20µV - 200µV Pathological or very deep sleep

Theta (θ) 3Hz - 7Hz 5µV - 100µV Deep sleep

Alpha (α) 8Hz - 13Hz 100µV - 200µV Mental relaxation

Beta (β) 14Hz - 30Hz 1µV - 20µV Concentration, activated cortex

Gamma (γ) > 30Hz 1µV - 20µV Concentration, activated cortex

Table 3.2: EEG rhythms with relative frequency and amplitude ranges and asso-
ciated conditions [Molinari, 2021].

Since the signals have been sampled at 100Hz and each epoch has 3000 samples
(30 seconds), considering that the windowing step reduce the number of samples
in each section to 300 (1 second), the theoretical frequency resolution is about 333
mHz which is enough to distinguish the EEG rhythms and eventual small varia-
tions in the power spectrum.

In the figure 3.6 are reported comparisons between PSDs of C3-M2 and O1-M2
signals: the greatest part of signal power is brought by the delta and theta rhythms
indicating that the subject is in a deep sleep condition. Moreover, it is observable
that passing from a normal sleep condition to an apnea condition (either OSA or
CSA) causes power to shift in the theta, low alpha rhythms indicating an increas-
ing activity of the brain. In particular the greatest increase is observable during
the CSA event while a milder increase is observable during the OSA event.
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This is surely linked to the intrinsic difference between the two types of apnea:
CSA characterized by absence of breathing effort and OSA characterised by pres-
ence of breathing effort but obstructed upper airways, as stated in subsection 1.3.1

(a) (b)

(c) (d)

Figure 3.6: PSD comparison between C3-M2 and O1-M2 EEG signals.
(a) Normal sleep. (b) Hypopnea event. (c) OSA event. (d) CSA event.
The PSD are normalized over the respective maximum value in order to appreciate
the relative power change in bands theta and alpha.
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The following spectral features were derived from EEG and EOG signals [Al-
varez et al., 2009]:

• The relative power in the EEG classical frequency bands reported in 3.2;

• The total EEG power ;

• The median frequency;

• 3 ratio of different power values:

– The ratio of power in the Delta band and the combined power in Theta
and Alpha bands;

– The ratio of power in the Theta band and the combined power in Delta
and Alpha bands;

– The ratio of power in the Alpha band and the combined power in Delta
and Theta bands.

While in their work Alvarez et al., 2009 indicate the spectral entropy as a
plausible complexity measure for EEG signal, in this case it has been decided to
calculate the Renyi’s entropy in order to be consistent with other complexity mea-
sures calculated in other signals.
The intuition is that when the subject is in a deep stage of sleep the signal power
will mainly be carried into the delta or theta rhythms, characterized by low fre-
quency ranges, indicating that nervous central system is less active compared to
when a subject is in a higher sleep stage which causes signal power to be mainly
carried into the alpha rhythm, characterized by an higher frequency range.

Although Renyi’s Entropy is a PSD-based complexity measure susceptible to all
the PSD estimation problems, it was decided to calculate this measure of complex-
ity rather than other non PSD-based complexity measures such as approximate
entropy or sample entropy (which are more often used for EEG signal characteri-
zation) because of the high computational time required for the latter.

In conclusion, since for each signal have been extracted 10 features, the subset
of features calculated from the 2 EEG and 2 EOG signals amount to 40 features:
9 frequency-related features and 1 complexity measure for each signal.
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3.6 ECG signal
The electrocardiogram gives information about the electrical activity of the heart.
The ECG signal is deterministic and is characterized by a distinctive waveform
shown in figure 3.7. It normally consists of the P wave, QRS complex and the T
wave. Among the several methods proposed for identification of sleep apnea based
on a single signal, ECG is the most extensively studied signal and, in terms of
feature extraction, ECG-based features are considered as ones of the most efficient
features to detect sleep disorders and have been extracted using different methods.

Figure 3.7: Points and elements of ECG signal [Saad et al., 2006].

3.6.1 Features extraction
General statistic features

In this case it has been decided to not extract the general statistic features de-
scribed in subsection 3.1 because, as observed by Yılmaz et al., 2010, for ECG
signals in particular, features like mean, standard deviation and range are partic-
ularly affected by outliers and thus classification performance deteriorates when
these features are included in the analysis.
For instance, the ECG signal is greatly affected by the sleep position of the subject
as can be observed in 3.8.
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Figure 3.8: ECG signal with [Saad et al., 2006].

For ECG signals the calculated feature can be divided in:

• RR interval related features;

• Frequency-related features.

RR intervals related features

RR intervals are identified as the time intervals between two consecutive R peaks
of ECG waveform which represent cyclic variations in the duration of a heartbeat.
They have been associated with sleep apnea episodes in terms of bradycardia
during apnea followed by tachycardia upon its cessation [Almazaydeh et al., 2012].

In order to distinguish the R waves from the other waves of the ECG signal, as
proposed by Almazaydeh et al., 2012, the following two conditions were considered:

1. It has to be a local maximum, which is detected by a local max function
within a window of 150ms;

2. The local max peaks must be at least 2 standard deviation above the mean.

In this case, with the intention of discarding eventual outliers generated by mo-
tion artifacts, it was decided to consider all the local max peaks at least 2 and a
half standard deviation above the mean.
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Once the R-peak was determined, RR intervals were computed as the peak to
peak time period from two continuous peak signals:

RR(i) = R(i + 1) − R(i), where i = 1, 2, ..., n - 1
Where n - 1 and n is the number of peaks contained in the considered epoch and
R(i) and R(i+1) are the time instants of two consecutive peaks.

Following Isa and Fanany’s guidelines [Isa et al., 2010], the below listed ECG
features which are most effective for apnea detection are calculated:

• Mean epoch RR-interval;

• Standard deviation of the epoch RR intervals;

• The NN50 measure (variant 1), defined as the number of pairs of adjacent
RR- intervals where the first RR interval exceeds the second RR- interval by
more than 50 ms;

• The NN50 measure (variant 2), defined as the number of pairs of adjacent
RR-intervals where the second RR-interval exceeds the first RR interval by
more than 50 ms;

• Two pNN50 measures, defined as each NN50 measure divided by the total
number of RR-intervals;

• The SDSD measures, defined as the standard deviation of the differences
between adjacent RR intervals;

• The RMSSD measures, defined as the square root of the mean of the sum of
the squares of differences between adjacent RR- intervals;

• Median of RR-intervals;

• Inter-quartile range, defined as difference between 75th and 25th percentiles
of the RR-interval value distribution;

• Mean absolute deviation values, defined as mean of absolute values obtained
by the subtraction of the mean RR-interval values from all the RR-interval
values in an epoch.

The first seven features are proposed by de Chazal et al., 2004, while the three
latter features are proposed by Yılmaz et al., 2010, who claimed that RR interval
mean, standard deviation, and range are sensitive to outliers, and thus classifica-
tion performance deteriorates when only these features are included.
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Frequency related features

In their work Rachim et al., 2014 proposed a five levels wavelet decomposition
to decompose ECG into five detail coefficients and one approximation coefficient.
In particular, since the relative power of an ECG wave is between two and 30
Hz, decomposing ECGs into five levels of signal is enough and, in order to do so,
Debauches 4 (db4) was chosen as the mother wavelet for wavelet decomposition.
A more extensive explanation of wavelet decomposition and Multiresolution Anal-
ysis (MRA) can be found in appendix B.

Following Rachim’s guidelines, the below listed features were calculated 5 times,
one for each detail coefficient. In this perspective, each of the following variables
represents five features in the final dataset:

• Interquartile range;

• Variance;

• Standard deviation;

• Mean Absolute Deviation (MAD), defined as:

MAD = mean(abs(detailcoeff − meandetailcoeff
))

In conclusion, the subset of features calculated from ECG signal amount to
33 features: 10 RR intervals related features, 22 frequency-related features and 1
complexity measure.

3.7 AUDIO signal
As mentioned in section 1.3, snoring and choking sounds are common apnea symp-
toms which can manifest during sleep. It is believed that they could be linked to
NREM and REM sleep as well as upper airway collapse in patients with OSA
[Akhter et al., 2018]. In this perspective it was decided to proceed with sleep
audio recording analysis.

Audio signal is recorded using a microphone which is usually taped, at a point
below the microphone itself, to the volunteer’s forehead or near the trachea. The
audio signals within the WSC database were recorded with a Pro-Tech Snore
Sensor like the one shown in figure 3.9.
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Figure 3.9: Pro-Tech Snore Sensor.

3.7.1 Features extraction
Before proceeding with the description of the calculated features it is important to
remember that usually a audio signals are sampled with high sampling frequency,
such as 44’100 Hz or 48’000 Hz. Nevertheless, the available signals are sampled
at 100Hz which is three orders of magnitude lower than usual. Because of this it
resulted impossible to precisely calculate some of the key features used to charac-
terize audio recordings such as the pitch.

For audio signal the selected feature can be divided in:

• General statistic features;

• Frequency related features;

• Complexity features;
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3.7 – AUDIO signal

General statistic features

For this signal were calculated all the features indicated in subsection 3.1. While
the central tendency measures give information about the trend the signal follows,
the dispersion features can be indicative of the presence of some event such as
snores or breathing-related sounds that generate some oscillations.

Frequency related features

Because of the limitation induced by the low sampling frequency and because
potential snore episodes are known to have nonstationary and complex behaviors
[Wang et al., 2017], it was decided to decompose the signal with a five level wavelet
decomposition with a Debauches 4 (db4) type mother wavelet and to consider
the energy of the six levels (five details levels and one approximation level) of
decomposition. Moreover it was calculated the median frequency with the intuition
that the power brought by higher frequencies increases when the subject is snoring
or chocking.

Complexity features

In their work, Wang et al. also indicate that spectral entropy is used to measure
the flatness of PSD since spectral entropy is a complexity feature.
In this context it was decided to implement a function in order to get 4 spectral
entropy related features. In particular, this function calculates the instantaneous
spectral entropy of the signal(se), and search for spectral entropy peaks outside
the range mean(se) ± 2 · std(se). Then a control on nearby peaks is done in order
to consider two peaks as part of the same respiratory event if there is no portion of
the signal between them whose instantaneous spectral entropy is within the range
mean(se) ± 2 · std(se). In this way it is possible to detect events which increase
signal complexity over a certain threshold.

The features computed from this analysis are:
• The number of SE peaks, with the intention of identifying different events

that occurs in the same epoch;

• The SE mean value, to have an overall vision of complexity;

• The SE range, to understand biggest event’s severity in the epoch;

• The time spent out of the SE threshold, with the intuition that long events
increase signal complexity for a longer time than short events helping dis-
criminating from environmental noises and gasping sounds or snoring;

Examples of the upper algorithm are shown in figure 3.10.
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(a)

(b)

Figure 3.10: (a) OSA epoch (upper image) and relative instantaneous spectral
entropy (lower image) with red circled peak detected. (b) CSA epoch (upper
image) and relative instantaneous spectral entropy (lower image) with red circled
peak detected.
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3.7 – AUDIO signal

Finally, it was also calculated the Renyi entropy since this was the main com-
plexity measure extracted from the previous signals.

In conclusion, the subset of features calculated from audio recording amount
to 18 features: 6 general statistic features, 7 frequency-related features and 5
complexity features.

51



52



Chapter 4

Machine Learning
algorithms preparation

Once features were extracted from processed signals, a dataset (matrix) of 1’514’301
epochs (along the rows) and 130 variables (along the columns) was formed.
In machine learning terms the epochs and the variables in the dataset are called,
respectively, "observations" and "features" (or "predictors").
Since the present work aims to distinguish the sleep apnea condition, it is im-
portant to keep in mind that the data will be used in order to train supervised
learning algorithms which are basically models that make predictions identifying
patterns in data once trained upon available observations. In other words such
models "learn" from observations whose class is already known.

Figure 4.1: Supervised learning workflow [Ghareeb et al., 2022].
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4.1 Data Cleaning
The first step for supervised learning is data preparation.
The dataset underwent a data cleaning process with the intention of eliminating
outliers and artifacts that would have deteriorated the classification performances.
Visual observation of different variables distributions, as expected, identified var-
ious behaviours. Apnea conditions (OSA, MSA and CSA) distributions showed
with different trends: sometime such distribution were overlapped on each other
and on normal distribution with proportionally the same central tendency and
dispersion measures, while other times they were overlapped but with different
central tendency and dispersion measures. Moreover, not all distributions were
normal (e.g. some distribution showed a lognormal trend).

Because of the large number of features, it was decided to start cleaning up the
dataset starting from general statistics features using previous knowledge about
the physiological systems that generated the signals.

For instance, talking about the ECG signal, it is well known that during sleep
the heart rate decreases and considering that patients which experience apneic
events can have an increase of the heart rate caused by the hypercapnic condition
generated by the reduction of blood saturation which lead to sudden arousals, an
upper threshold of 150bpm (mean RR interval of 0.4 seconds) was imposed on the
mean RR interval length feature. In the same perspective, a lower threshold was
applied too, in particular all the epochs with a heart rate less than 30 bpm (mean
RR interval of 2 seconds) were excluded. A double check was done with the same
thresholds on the median value of RR intervals. Moreover, observing the standard
deviation of the RR intervals it was decided to eliminate all the values above the
99.5 percentile of the OSA class, since this was the class with the higher values of
standard deviation.

Considering, now, the blood saturation signal, different arguments have been
made. First of all, as mentioned in section 2.2, together with the signal, was
provided a dataset of clinicians verified parameters which describe the general
condition of the subject and give useful information about the PSG itself such as
the minimum blood saturation value that occurred during sleep. This value was
used as a threshold to remove any epoch whom minimum value of SpO2 was lower
than what the sleep analyst has declared.
Moreover, knowing the SpO2 range and the minimum values for each epoch it was
possible to get the maximum value summing the previous two and since physiolog-
ical blood saturation can not exceed 100% all the epochs with a maximum value
above this threshold were excluded.
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4.1 – Data Cleaning

Another check was performed on the SpO2 ranges. Considering one subject at a
time, the intuition was that a spread distribution of SpO2 ranges calculated over
his epochs was indicative either of low quality signal recording or of multiple severe
apneic events. This way it was possible to remove subject like the one shown in
figure 4.2 which has a clearly poor quality blood saturation signal.

Finally, focusing on thoracic volume signal, since a normal subject has a respi-
ration rate of 12-20 breath per minute, considering that when someone falls asleep
the respiration rate slightly increase and considering that are also present CPAP
users [Sleep Foundation, 2022], it was decided to eliminate all the epochs with
more than 50 breaths (being an epoch 30 seconds long, it would have meant a
respiratory rate of 100 breaths per minute).

Figure 4.2: Example of poor quality SpO2 signal.

After the data cleaning process, the useful observations left were only 973’571.
It is significant to say that the discarded 540’730 epochs represent about the 35.71%
of the total epochs which translates in more that a third of the overall size of the
database (about 100GB out of more than 310GB) of useless information. This
gives an impression of how big the data the processing system has to deal with.
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4.2 Algorithms choice and fitting
The second step for supervised learning is choosing an algorithm and fitting a
model to available data.

4.2.1 Algorithms choice
The algorithm choice is not univocal and requires searching for good tradeoffs
between speed of training, memory usage and interpretability. Table 4.1 shows
typical characteristics of the the aforementioned supervised learning algorithms.

Classifier Multiclass
Support

Prediction
Speed

Memory
Usage Interpretability

Decision
Trees Yes Fast Small Easy

Discriminant
Analysis Yes Fast Small (linear),

large (quadratic) Easy

Naïve
Bayes Yes

Medium (sim-
ple distribu-
tions), Slow
(kernel distribu-
tions or high-
dimensional
data)

Small (simple
distributions),
Medium (ker-
nel distribu-
tions or high-
dimensional
data)

Easy

SVM No
Medium (lin-
ear), Slow
(others)

Medium (lin-
ear), Large
(binary)

Easy (linear),
Hard (other
kernels).

kNN Yes
Slow (cubic),
Medium (oth-
ers)

Medium Hard

Table 4.1: Typical characteristics of principal supervised learning algorithms [The
MathWorks Inc., 2022].

In the present work it was decided to compare the previous models in order to
identify the one with the best performances. Multiple dichotomous classifications
were performed considering different couple of classes as will be described in the
next chapter.
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4.3 – Choice of the validation method

4.2.2 Training Set and Test Set creation
The aforementioned models were trained using only a portion of the initial data
and were tested using another portion with different data. These subsets are
called Training Set and Test Set. Training Set contained a balanced number
epochs picked from the 70% of the database subjects randomly selected. Test
Set contained a balanced number epochs picked from the remaining 30% of the
database subjects. Because it is advisable to work with balanced sets, both training
set and test set are constructed starting from the less numerous class in order to
have a final set with a number of observations equal to the double of the latter.
Attention was payed to keep the same classes proportions of the original dataset
within the clusters considered for each analysis. Since the subjects of training set
are randomly selected and do not have the same number of useful epochs, two
different training sets or test sets will not have the same number of observation.
In order to compare different models it is important to train them using the same
training set and testing them with the same test set.

4.2.3 Models fitting
All the models were trained with training sets created as explained in previous
subsection and it was specified to tune hyperparameters according to the built-in
routines present in MATLAB© working environment limiting the tuning steps to
30 steps to try keeping training time below 6 hours since different trials needed
to be done. Moreover, to obtain a better estimate of the predictive accuracy, a
5-KFold cross validation was done. It basically splits the training data into 5 parts
at random (maintaining proportions between classes) and trains 5 models, each
one on 4 parts holding the last part to examines the predictive accuracy.

4.3 Choice of the validation method
Then next step is the choice of the validation method to evaluate the accuracy of
the fitted models. The three main methods are:

1. Examine the resubstitution error;

2. Examine the cross-validation error;

3. Examine the out-of-bag error (for bagged decision trees).

It was chosen to examine the resubstitution error (the error made by the model
when it classifies the same data used for its training) having the lightest computa-
tional workload. In general, it is preferable to have low resubstitution error even
though it does not guarantee good predictions for new data.
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4.4 Prediction metrics
The last step consist in using the fitted model for making predictions on new data.
Hereinafter are listed some important metrics used to compare trained models
performances where TP, TN, FP and FN indicates, respectively, "True positives",
"True negatives", "False positives" and "False negatives". Notice that "positive"
and "negative" indicate belonging to different cluster which are not always normal
and apneic condition therefore, for each of the following classification problems, it
will be specified.

Sensitivity (SENS) It represents the ability to correctly identify positive epochs.
It is defined as:

SENS = TP

TP + FN

Specificity (SPEC) It represents the ability to detect negative epochs correctly.
It is defined as:

SPEC = TN

TN + FP

Positive Predictive Value (PPV) It represents a measure of the correct num-
ber of positive epochs with respect to the total number of positives epochs. It is
defined as:

PPV = TP

TP + FP

Negative Predictive Value (NPV) It represents a measure of the correct
number of negative epochs with respect to the total number of negative epochs.
It is defined as:

NPV = TN

TN + FN

Accuracy (ACC) It represents the number of correct classified epochs, both
positive and negative. It is defined as:

ACC = TP + TN

TP + TN + FP + FN

For the same accuracy, it is preferable to have more FP than FN because an FP
can undergo further investigations that can allow recognizing his negativity.
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Chapter 5

Models performances

Below are discussed the classification performances obtained by the models on
balanced Test Sets created according to subsection 4.2.2 guidelines for different
classification problems.

In particular, for each classification problem, models performances are compared
in terms of:

• Their resubstitution errors in percentage;

• Their prediction metrics (presented in section 4.4) supported by the relative
confusion matrices and Receiver Operating Characteristic (ROC) curves.

The latter report classification performances at different thresholds and can be
plotted because the considered classification problems are binary. On the vertical
axis there is the true-positive rate (sensitivity) and on the horizontal axis there
is the false positive rate (1 - specificity) and each point of the curve represent a
different classifier. The current classifier is indicated in each ROC curve with a
filled blue marker.
Another important metric is the Area under the ROC Curve (AUC) which is a
value between 0 and 1 directly proportional to classification performances.
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5.1 Normal & HYP vs Apnea - 1st Analysis
Before proceeding with the classification itself, to better understand how the vari-
ance of the available dataset can help discriminating through the different classes
a Multivariate ANalysis Of VAriance (MANOVA) was performed.
From this analysis resulted that the variance of dataset was sufficient to distin-
guish four classes out of the five that were scored by clinicians.

In figure 5.1 it is possible to observe a dendrogram plot of the group means
obtained from the MANOVA which clearly shows 2 main clusters: one containing
normal and hypopnea epochs and one containing apnea epochs.

Figure 5.1: MANOVA dendrogram with 5 classes.

In order to numerically support this view, the distances between each pair of
group means were reported in table 5.1.
From this table it is clear how near normal and hypopnea clusters are with re-
spect to the apnea ones and how the apnea clusters are similar to each other.
Because of this result it was firstly decided to consider the problem as a dichoto-
mous classification problem between normal/hypopnea cluster and apnea cluster
(OSA/MSA/CSA).
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5.1 – Normal & HYP vs Apnea - 1st Analysis

Normal HYP OSA CSA MSA

0 2.68 10.34 8.30 15.31

0 3.88 3.98 8.28

0 3.21 3.17

symmetric 0 3.70

0

Table 5.1: Distance between each pair of group means.

5.1.1 Dimensionality reduction
Since the observations are described by many features it was thought to apply
some dimensionality reduction technique after data normalization.
In particular, all the features were normalized according to the z-score normaliza-
tion. In this way, each features vector got null mean and standard deviation equal
to 1.

Firstly, it was thought to apply a Principal Component Analysis (PCA), which
is a feature transformation technique that generates principal components (PCs)
orthogonal to each other (to avoid redundant information) making linear combina-
tions of the original variables forming a new (orthogonal) basis for the space of the
data. In particular, it was decided to consider a number of principal components
that explained the 70% of total variance.
The basic idea is to check if great part of the variance can be explained by a limited
number of PCs and use the latter to proceed with the classification.

The first 10 PCs are shown in the Pareto chart reported in figure 5.2 where the
blue line indicates the cumulative sum of the variances explained by the principal
components.
Looking at this chart it was obvious to conclude that there is a lot of redundant
information since the first 10 PCs explained about the 60% of total variance and
17 PCs were needed to reach the aforementioned 70% of variance.
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Figure 5.2: Pareto chart

To visualize the discriminating power of the features over the considered clus-
ters a parallel coordinates chart was plotted.
It is reported in figure 5.3 and shows how the features median values (continuous
lines) and interquartile ranges (dotted lines) vary between the two classes.
For visual purposes the plot is divided in 4 separate plots.
The idea was removing features whose median values and interquartile ranges are
too overlapped on each other.

It was decided to remove from the dataset the following features:

• 5 blood saturation features: TSA70, TSA80, TSA85 and TSA90 (4 hypoxic
burden features) and ApEn01 (1 complexity feature);

• 24 ECG features: from median frequency to mad5 (21 frequency-related fea-
tures) and NN501, NN502 and SDSD (3 RR interval related features);

• 11 among EEG and EOG features: EEG-O1M2medf, EEG-O1M2re, EEG-
O1M2Ptot and EEG-O1M2PdPaPt (4 from O1-M2 signal), E1-Palpha, E1-
Ptot and E1-PdPaPt (3 from left EOG), E2-Palpha, E2-Ptot, E2-PdPaPt
and E2-PtPaPd (4 from right EOG);

• 1 position feature: standard deviation;

62



5.1 – Normal & HYP vs Apnea - 1st Analysis

• 9 snore features: energD3, energD2 and median frequency (3 frequency re-
lated features), standard deviation, minimum value and interquartile range (3
general statistics features), re, SEpeaks and SEmean (3 complexity measures);

• 2 thoracic volume features: maxPeak (1 peak related feature) and energA (1
frequency related feature).

A total of 52 features which represent the 40% of total were removed and then
both MANOVA and PCA were performed again to understand how this removal
influenced the variance of the data.

Qualitatively, one can expect that reducing the number of low discriminant
features should increase the distance between clusters but in this case, since the
normal cluster and the hypopnea cluster were merged as well as the three apnea
forms clusters, it was expected a reduction of the distance between the two group
means because from table 5.1 it is obvious that the hypopnea cluster has similar
distances from normal, OSA and CSA clusters.

(a)
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(b)

(c)
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(d)

Figure 5.3: Parallel coordinates plots.

MANOVA results confirmed decreased distances between group means.

Figure 5.4: MANOVA dendrogram after features removal.
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This is numerically observable in table 5.2.

Normal+HYP OSA CSA MSA

0 5.90 5.09 9.33

0 2.78 2.22

symmetric 0 2.79

0

Table 5.2: Distance between each pair of group means.

From PCA no massive improvement was observed since the first 10 PCs ex-
plained about 65% of total variance and 11 PCs were needed to explain 70% of
variance meaning that the removed features carried mainly redundant information.

Figure 5.5: Pareto chart after features removal.

Before continuing with features removal, it was thought to proceed with a first
classification test in order to get an idea of models performances on these data.
Training set and test set were built according to the guidelines in subsection 4.2.2:
since apnea cluster had less observations than normal/hypopnea cluster, it was
created a training and a test set which contained all the possible apnea events
of respective subjects and an equal number of randomly chosen epochs from the
normal/hypopnea cluster paying attention to maintain the proportion between
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normal and hypopnea clusters the same as in the original dataset.
In terms of number of observations (epochs) the training set and the test set
contained, respectively, about 47’000 epochs and about 22’000 epochs.

5.1.2 Results
In the results reported below the negative class is indicated with number 1 and is
referred to the normal/hypopnea cluster while the positive class is indicated with
number 2 and is referred to the apnea cluster (OSA/MSA/CSA).
The resubstitution errors of the trained models are reported in table 5.3.

Model Resubstitution Error

Decision Tree 15.53%

Discriminant Analysis 20.07%

Naïve Bayes 21.36%

SVM 19.51%

kNN 10.86%

Table 5.3: Resubstitution errors of the trained models for normal/hypoponea vs
apnea classification considering 78 features.

In table 5.4 are reported the prediction metrics and in figures 5.6a and 5.6b the
relative confusion matrices and ROC curves.

Model SENS SPEC PPV NPV ACC

Decision Tree 82.1% 79.3% 79.8% 81.6% 80.7%

Discriminant Analysis 84.8% 80.9% 81.6% 84.2% 82.9%

Naïve Bayes 87.3% 73.5% 76.7% 85.3% 80.4%

SVM 85.2% 81.9% 82.5% 84.7% 83.6%

kNN 80.4% 81.4% 81.2% 80.6% 80.9%

Table 5.4: Prediction metrics of the trained models for normal/hypoponea vs
apnea classification considering 78 features.
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(a)

(b)

Figure 5.6: Normal/hypopnea vs apnea results comparison.
a) Confusion matrices comparison (normalized over the total number of observa-
tions, in order to see the percentages of FP and FN).
b) ROC curves comparison.
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From the previous analysis resulted that the best models is SVM since it had
almost all prediction metrics above 82%, despite the model with the best resub-
stitution error was the kNN (10.86%).
In particular, Naive bayes had the highest SENS and NPV but lower ACC, SPEC
and PPV than SVM. Moreover, the AUCs of all classifiers were similar with SVM’s
one being the best (0.91) and SVM’s current classifier was slightly nearer to the
top left corner. Furthermore, as observable in figure 5.6a, SVM model, in addition
to having best diagnostic accuracy, returned a greater number of false positives
rather than false negatives.

5.2 Normal vs Apnea - 1st Analysis
Results from the previous classification was considered not optimal so it was
thought to analyze how merging normal and hypopnea clusters affected the clas-
sification, since hypopnea is basically an intermediate condition between normal
and apneic ones that was thought to be prone to missclassification (see Appendix
B for detailed definition and scoring procedures).
Therefore it was considered a scenario where the aim was to distinguish normal
epochs from apnea epochs using the same features of previous analysis without
the normal/hypopnea merging previously considered.

5.2.1 Dimensionality reduction
In this perspective both MANOVA and PCA were performed and, as expected,
results from MANOVA revealed that the distance between group means increased
considering the same features, as shown in table 5.5 and in figures 5.7.

Normal OSA CSA MSA

0 17.25 11.62 22.54

0 4.56 2.92

0 4.53

symmetric 0

Table 5.5: Distance between each pair of group means.
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Figure 5.7: MANOVA dendrogram after features removal.

From PCA no significant improvement was observed since, similarly to the first
analysis, 11 PCs were needed to explain 70% of variance.

5.2.2 Results
In the results reported below the negative class is indicated with number 1 and is
referred to the normal cluster while the positive class is indicated with number 2
and is referred to the apnea cluster (OSA/MSA/CSA).
The classification errors of the trained models are reported in table 5.6.

Model Resubstitution Error

Decision Tree 8.45%

Discriminant Analysis 14.11%

Naïve Bayes 14.89%

SVM 12.20%

kNN 5.95%

Table 5.6: Resubstitution errors of the trained models for normal vs apnea classi-
fication considering 78 features.
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In table 5.7 are reported the prediction metrics and in figures 5.8a and 5.8b the
relative confusion matrices and ROC curves.

Model SENS SPEC PPV NPV ACC

Decision Tree 90.3% 87.7% 88.0% 90.0% 88.9%

Discriminant Analysis 90.1% 88.2% 88.4% 89.9% 89.2%

Naïve Bayes 90.7% 86.6% 87.1% 90.3% 88.7%

SVM 90.2% 91.4% 91.3% 90.3% 90.8%

kNN 85.9% 92.2% 91.7% 86.7% 89.1%

Table 5.7: Prediction metrics of the trained models for normal vs apnea classifica-
tion considering 78 features.

(a)
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(b)

Figure 5.8: Normal vs apnea results comparison.
a) Confusion matrices comparison (normalized over the total number of observa-
tions, in order to see the percentages of FP and FN).
b) ROC curves comparison.

From the previous analysis resulted that the best tradeoff was obtained by the
SVM model since it had almost all prediction metrics above 90%, despite the model
with the best resubstitution error was the kNN (5.95%). In particular, naïve bayes
had the highest SENS and the same NPV but lower ACC, SPEC and PPV than
SVM while the kNN had higher SPEC and PPV but lower SENS, NPV and ACC
than SVM.
Moreover, the AUCs of all classifiers were similar with SVM’s and discriminant
analysis’s ones being the highest (0.96) but with SVM’s current classifier slightly
nearer to the top left corner.
Unlike analysis of section 5.1, as observable in figure 5.8a, SVM classifier returned
a greater number of false negatives rather than false positives.

The previous two analyses showed that SVM had the best performance tradeoff.
In particular, after the hyperparameters optimization processes, in both cases, a
linear kernel with a different scale (1.3299 for the first analysis and 0.1627 for the
second analysis) was chosen, meaning that data are linearly separable using an
hyperplane. Notice that training an SVM with a linear kernel is faster than with
any other Kernel since less parameters need to be optimized.
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5.3 Normal & HYP vs Apnea - 2nd Analysis
Looking at the results obtained from the analysis of section 5.1 it was thought to
proceed with a more radical feature selection with the intention of keeping only
the features that discriminates more according to the parallel coordinate chart of
figure 5.3.

5.3.1 Dimensionality reduction
It was decided to remove all the features whose median values were almost super-
imposed and whose interquartile were too similar.
After this procedure remained the following 32 features:

• 9 blood saturation features: standard deviation, range, min, 95th percentile,
5th percentile, delta index (6 general statistics features), TSA95 (1 hypoxic
burden feature), ApEn025 and ApEn015 (2 complexity features);

• 3 EOG features: E1-Pbeta, E1-Pdelta (from left EOG) and E2-Pdelta (from
right EOG);

• 4 snore features: mean and median (2 general statistic features) and SErange
and SEtimeoutrangeperc (2 complexity features);

• 16 thoracic volume features: mean, standard deviation, median, interquar-
tile range (4 general statistic features), nPeak, minPeak, meanPeakHeight,
devstdPeakHeight, meanInterPeakDistance, sumPeak, AUC (7 peak related
features), mean and median frequencies, peak frequency and band power (4
frequency related features) and Renyi’s entropy (1 complexity feature).

A total of 98 features which represent about the 75% of total were removed.
It is important to notice that all the EEG, ECG and position features were not
considered.

Subsequently, both MANOVA and PCA were performed again to understand
how this removal influenced the variance of the data.
From MANOVA resulted that distance between clusters’ centroids slightly de-
creased with respect to the same distance in the case with 78 features (from 2.61
to 2.31). This reduction suggested that models’ performances may have worsened.
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Figure 5.9: Pareto chart after features removal for normal/hypopnea vs apnea
classification.

Obviously, from PCA an improvement was noted mainly due to the smaller
number of features considered with the first 10 PCs explaining about the 90% of
the total variance. In this case 5 PCs were needed to explain 70% of variance
meaning that there still was redundant information within the data.

To clarify where redundant information was located, the absolute value of cor-
relation coefficients between each pair of features was calculated and is shown in
figure 5.10. Moreover, in order to highlight the highest correlations all the corre-
lation coefficients less than 0.5 were capped to 0.
From this figure it is clear how features tend to be highly correlated to other fea-
tures derived from the same signal as can be seen observing the cluster of blood
saturation features and the cluster of thoracic volume features, which are the most
numerous.
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Figure 5.10: Correlation matrix in absolute values for normal/hypopnea vs apnea
classification considering 32 features.

Moreover, it was decided to plot an heatmap, shown in figures 5.11 of the first 5
PCs in order to understand how much these features weight in terms of explained
variance. For visual purposes the heatmap is splitted in half.

(a)
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(b)

Figure 5.11: Heatmap of the first 5 principal components for normal/hypopnea vs
apnea classification considering 32 features.

From figure 5.9 it is noticeable that the first 2 PCs explain about the 50%
of variance and from the previous heatmap it is clear that these PCs are mainly
influenced by SpO2 general statistic features and thoracic volume features (more
the second than the first) and less influenced by the other features.

To visually notice what the heatmap is trying to express numerically, it is help-
ful to look at the biplot of figure 5.12 where each point was labeled in order to
recognize the relative feature.
To better visualize features spread it was decided to divide the biplot in four
smaller biplots with the lower two containing the thoracic volumes features and
the upper two containing the remaining features.
The points’ projections on the axes represent the weight that that specific feature
has within the principal component which lies on that axis.
Attention has to be payed to axis scale.
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Figure 5.12: Biplot of the first 2 PCs for normal/hypopnea vs apnea classification
considering 32 features.

In this condition it was decided to proceed with another classification test in
order to examine model performances after this more substantial features removal.

5.3.2 Results
In this case, negative and positive class are the same of subsection 5.1.2.
The resubstitution errors of the trained models are reported in table 5.8.

Model Resubstitution Error

Decision Tree 20.81%

Discriminant Analysis 22.29%

Naïve Bayes 22.92%

SVM 21.77%

kNN 19.98%

Table 5.8: Resubstitution errors of the trained models for normal/hypopnea vs
apnea classification considering 32 features.
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The resubstitution errors have worsened compared to the ones of table 5.3 with
kNN being the most worsened but still the best.

In table 5.9 are reported the prediction metrics and in figures 5.13a and 5.13b
the relative confusion matrices and ROC curves.

Model SENS SPEC PPV NPV ACC

Decision Tree 85.5% 77.3% 79.0% 84.2% 81.4%

Discriminant Analysis 84.4% 78.2% 79.5% 83.4% 81.3%

Naïve Bayes 79.6% 83.2% 82.6% 80.3% 81.4%

SVM 84.3% 78.8% 79.9% 83.4% 81.6%

kNN 84.4% 79.2% 80.2% 83.5% 81.8%

Table 5.9: Prediction metrics of the trained models for normal/hypopnea vs apnea
classification considering 32 features.

From the previous tables it is clear that models’ performances were deteriorated
with respect to models’ performances of the first analysis. In this case the best
tradeoff between prediction metrics was the kNN. It resulted the most accurate
model and shown with seconds highest values for all the remaining metrics.
Comparing this model to the best of the first analysis (SVM) it is clear that all the
prediction metrics decreased: SENS (-0.8%), SPEC (-2.7%), PPV (-2.3%), NPV
(-1.2%) and ACC (-1.8%).
The AUCs of all models were similar with decision tree’s one being slightly lower.
Furthermore, as observable in figure 5.13a, kNN classifier, in addition to having
best accuracy, returns a greater number of false positives (FP) rather than false
negatives.
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(a)

(b)

Figure 5.13: Normal/hypopnea vs apnea results comparison considering 32 fea-
tures.
a) Confusion matrices comparison (normalized over the total number of observa-
tions, in order to see the percentages of FP and FN).
b) ROC curves comparison.
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5.4 Normal vs Apnea - 2nd Analysis
This second analysis was carried out, like the one in section 5.2, to examine models’
performances with the new 32-features dataset obtained in subsection 5.3.1 with
the intention of distinguishing between normal and apnea clusters.

5.4.1 Dimensionality reduction
After removing the features identified in subsection 5.3.1 both MANOVA and PCA
were performed to understand how this removal influenced the variance of the data.
From MANOVA resulted that the distance between clusters’ centroids was almost
the double (4.23) of the same distance when normal and hypopnea clusters are
merged (2.31).

Figure 5.14: Pareto chart after features removal.

Similarly to what seen in subsection 5.3.1, from PCA little improvement was
observed mainly due to the smaller number of features considered: the first 10
PCs explained almost the 90% of total variance and at least 5 PCs continued to
be needed to explain 70% of variance meaning that there still was some redundant
information left from the previous features removal.
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5.4.2 Results
In this case, negative and positive class are the same of subsection 5.2.2.
The classification errors of the trained models are reported in table 5.10.

Model Resubstitution Error

Decision Tree 8.70%

Discriminant Analysis 15.22%

Naïve Bayes 14.50%

SVM 13.26%

kNN 8.97%

Table 5.10: Resubstitution errors of the trained models for normal vs apnea clas-
sification considering 32 features.

The resubstitution errors have worsened compared to the ones of table 5.6.
kNN resulted the most worsened (from 5.95% to 8.97%) and decision tree resulted
the best with an error of 8.70%. However this two models showed very similar and
much lower resubstitution errors than other ones.

In table 5.11 are reported the models’ prediction metrics and in figure 5.15 the
relative confusion matrices and ROC curves.

Model SENS SPEC PPV NPV ACC

Decision Tree 89.8% 87.7% 88.0% 89.6% 88.8%

Discriminant Analysis 89.3% 87.6% 87.8% 89.1% 88.5%

Naïve Bayes 90.9% 86.0% 86.6% 90.5% 88.5%

SVM 88.9% 91.5% 91.3% 89.2% 90.2%

kNN 86.9% 92.0% 91.6% 87.6% 89.5%

Table 5.11: Normal vs apnea prediction metrics considering 32 features.
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(a)

(b)

Figure 5.15: Normal vs apnea results comparison considering 32 features.
a) Confusion matrices comparison (normalized over the total number of observa-
tions, in order to see the percentages of FP and FN).
b) ROC curves comparison.
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From this analysis resulted that the model with the highest diagnostic accuracy
is SVM (90.2%), despite not having any other prediction metric that outperform
the other models and not having one of the best resubstitution errors (13.26%).
In particular, naïve bayes had the highest SENS (90.9%) and NPV (90.5%) while
kNN had the highest SPEC (92.0%) and PPV (91.6%).
Moreover, the AUCs of all classifiers were similar with SVM’s one being the best
(0.96) having current classifier was slightly nearer to the top left corner.
Like analysis of section 5.2, as observable in figure 5.15a, SVM classifier returned
a greater number of false negatives rather than false positives.

The best performance tradeoff from the third and fourth analyses were obtained
with two different models: kNN for the first one and SVM for the second one. Nev-
ertheless, SVM’s performances of the third analysis was not so worse than kNN’s
ones and from SVM’s hyperparameters optimization process resulted a linear ker-
nel. The same thing appened for the fourth analysis where the SVM model was
the best. This led to think that features removal kept data linearly separable with
an hyperplane, similarly to the first two analysis.

5.5 OSA & MSA vs CSA
So far there has been talk of classification tests whose aim is to distinguish between
general apneic condition from another condition (normal or normal/hypopnea clus-
ters).
In this section it was thought to examine classification performances of models
specifically trained to discriminate apnea forms. Looking at figure 5.1 it was clear
that OSA and MSA clusters were nearer to each other with respect to CSA, so it
was decided to merge this two clusters and to consider the problem as a dichoto-
mous classification problem between OSA/MSA cluster and CSA cluster.
It was decided to analyze this case because it was thought that, rather than train-
ing a single model to try distinguish between all the considerable classes, it could
be more efficient to build a cascading structure of dichotomous classifiers where
the first level is trained to recognize the presence or not of apnea and the second
level is trained to distinguish between different apnea forms.

5.5.1 Dimensionality Reduction
Following the same reasoning of the previous cases, before proceeding with the
classification test MANOVA and PCA were performed.
MANOVA results confirmed that the variance of dataset was enough among 2
classes out of three apnea classes.
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The Pareto chart of figure 5.16 clarified that there was a lot of redundant infor-
mation since the first 10 PCs explained about the 60% of total variance and 17
PCs were needed to reach the usual 70% of variance.

Figure 5.16: Pareto chart

As done before, in order to reduce the number of features a a parallel coordi-
nates chart was plotted and as many low discriminating features (whose median
values and interquartile ranges are too overlapped on each other) as possible were
removed.

The following 44 features passed the removal process:

• 9 blood saturation features: standard deviation, range, minimum value, M2,
5th percentile and delta index (6 general statistics features), TSA95 (1 hypoxic
burden feature), ApEn025 and ApEn015 (2 complexity features);

• 18 ECG features: interquartile ranges of 3rd, 4th and 5th detail levels of
wavelet decomposition, variance of 1st, 2nd and 3d detail levels of wavelet
decomposition, standard deviation and MAD of all detail levels of wavelet
decomposition (16 frequency related features) and mean and median of RR
intervals (2 RR-intervals related features;

• 1 position feature: position numerical encoding;

• 4 snore features: energy in the 3rd and 4th detail levels of wavelet decomposi-
tion (2 frequency related features) and instantaneous spectral entropy range
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and Renyi’s entropy (2 complexity features);

• 12 thoracic volume features: standard deviation and interquartile range (2
general statistic features), number of peaks, minimum peak value, mean peak
height, standard deviation of peaks height, mean inter-peak distance, skew-
ness of inter-peak distance, sum of the peak values and AUC (8 peak related
features), mean frequencies and band power (2 frequency related features).

A total of 86 features which represent about the 66% of total were removed.
It is important to note that all the EEG and EOG features were excluded and,
differently from all the previous cases, this time the ECG signal features resulted
having an higher discriminating power, in fact almost all ECG features were con-
sidered.

(a)
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(b)

(c)
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(d)

Figure 5.17: Parallel coordinates plots.

Subsequently, both MANOVA and PCA were performed again in order to un-
derstand how this removal influenced the variance of the data.
As shown in figure 5.18, from PCA resulted a little improvement since the first 10
PCs explained slightly more than 80% of total variance and 7 PCs were needed
to reach the usual 70% of variance meaning that there still was some redundant
information within the data.
Nevertheless, from MANOVA resulted that distance between clusters’ centroids
slightly decreased with respect to the same distance before features removal pass-
ing from 1.68 to 1.27.
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Figure 5.18: Pareto chart after feature removal

To clarify where redundant information was located, a correlation matrix as the
one of subection 5.3.1 was calculated. It is shown in figure 5.19

Figure 5.19: Correlation matrix in absolute values for OSA/MSA vs CSA classifi-
cation considering 44 features.
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From this figure it is clear how features tend to be highly correlated to other
features derived from the same signal. In particular, with respect to the consid-
ered classes, blood saturation and ECG features seems to be more correlated than
thoracic volume features.

Moreover, it was decided to plot an heatmap, shown in figures 5.20 of the first
7 PCs in order to understand how much the selected features weighted in terms
of explained variance. For visual purposes the heatmap is splitted in half and the
values were rounded to the third decimal digit.

From figure 5.18 it is noticeable that the first 2 PCs explain about the 45% of
total variance and from the heatmap it is clear that the first principal component
(which explains about the 30% of total variance) is mainly influenced by ECG
featuers while the second principal component (which explains about the 15%
of total variance) is mainly influenced by blood saturation and thoracic volume
features.

(a)
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(b)

Figure 5.20: Heatmap of the first 2 principal components.

To visually notice what the heatmap is trying to express numerically, it is helpful
to look at the biplot of figure 5.21.

Figure 5.21: Biplot of the first 2 PCs for OSA/MSA vs CSA classification consid-
ering 44 features.
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In this perspective it was decided to proceed with models training in order to
get an idea of models’ performances for this classification problem.

5.5.2 Results
In the results reported below the negative class is indicated with number 1 and is
referred to the OSA/MSA cluster while the positive class is indicated with number
2 and is referred to the CSA cluster.
The classification errors of the trained models are reported in table 5.12.

Model Resubstitution Error

Decision Tree 26.26%

Discriminant Analysis 28.00%

Naïve Bayes 34.03%

SVM 37.45%

kNN 11.10%

Table 5.12: Resubstitution errors of the trained models for OSA/MSA vs CSA
classification considering 44 features.

In table 5.13 are reported the prediction metrics and in figures 5.22a and 5.22b
the relative confusion matrices and ROC curves.

Model SENS SPEC PPV NPV ACC

Decision Tree 79.8% 66.9% 70.7% 76.8% 73.3%

Discriminant Analysis 74.3% 69.9% 71.2% 73.1% 72.2%

Naïve Bayes 76.2% 58.3% 64.6% 71.0% 67.2%

SVM 55.4% 72.6% 66.9% 62.0% 64.0%

kNN 84.9% 79.9% 80.9% 84.1% 82.4%

Table 5.13: OSA & MSA vs CSA prediction metrics considering 44 features.
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From tables 5.12 and 5.13 it is clear that kNN model outperformed all the other
models both in terms of resubstitution error and of prediction metrics with all val-
ues except specificity over 80%.

As observable from figure 5.22, despite having the best prediction metrics, kNN
did not had the highest AUC with Discriminant analysis model having it.
Furthermore, as observable in figure 5.22a, kNN classifier, in addition to having
best accuracy, returns a greater number of false positives (FP) rather than false
negatives.

(a)
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(b)

Figure 5.22: OSA/MSA vs CSA results comparison considering 44 features.
a) Confusion matrices comparison (normalized over the total number of observa-
tions, in order to see the percentages of FP and FN).
b) ROC curves comparison.

From these results it is clear that further investigation has to be done in order
to reach acceptable prediction metrics values for this classification problem.
Nevertheless, it is important to keep in mind that all the features present in the
initial dataset were calculated with the intention of discriminating an apneic con-
dition from a non-apneic condition and not to discriminate between different forms
of apnea.
An important aspect emerged from this analysis is that ECG features showed a
strong discriminant power in apnea distinction but not in apnea detection.
Moreover, the fact kNN outperformed all the other models led to think that the
data which represent the classes do not need to be mapped in another space be-
ing already informative in the current space. Another noticeable aspect is that
the hyperparameters optimization process resulted in a small number of nearest
neighbors (3) exhaustively searched (to find the nearest neighbors the distance val-
ues from all points were calculated) with a standardized euclidean distance metric
(which is basically a classic euclidean distance scaled with standard deviation).
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5.6 Comparison with related work
The first four analyses contained in the present work can be basically considered
as screening approaches to recognize subjects’ apneic condition. This can be useful
to reduce sleep units saturation and to give an approximate idea of subject’s apnea
severity.
In order to get a fair comparison will be considered only the studies whose reference
test is the same-night PSG, since for the present work was used the same reference.

For comparison reference, it was decided to look at Alvarez’s review [Alvarez-
Estevez and Moret-Bonillo, 2015], which summarized in table 4 different apneic
event detection approaches.

It is also important to keep in mind that all the studies contained in table 4 of
Alvarez’s review were conducted on a much smaller number of subjects (18 out of
24 studies considered less than 50 subjects and the most extensive work comprised
less than 250 subjects and no values of sensitivity and specificity are reported for
the latter study) than the one considered by the present work (more than 1’550).
Moreover, it has to be considered that:

• the present work considered also CPAP users;

• the present work was based on a larger subset of polysomnographic signals;

• The events definitions are not unique for all the studies.

• The detection unit (time considered for detection) was not unique.

Considering the studies conducted on the same detection unit (30 seconds), it is
clear that the normal/hypopnea vs apnea analyses of the present work does not
outperform the table’s studies in terms of prediction metrics values while normal
vs apnea analyses of the present work (which are more similar to the table’s screen-
ing approaches since hypopnea epochs are not merged with normal epochs) have
more balanced prediction metrics and show better prediction metrics values than
table’s works, in particular, they resulted on average or even better than studies
conducted on different detection units.
Particular attention has to be paid in comparison to some multichannel studies
with 30 seconds detection unit present in table 4.
The first is van Houdt’s work, which is based on nasal airflow and thoracic and
abdominal breathing volumes. The only prediction metrics reported are sensitiv-
ity and positive predictive value. In particular, sensitivity resulted better than
normal/hypopnea vs apnea analyses but worse than normal vs apnea analyses and
PPV resulted worse than any PPV obtained in the present work.
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The second is Waxman’s work, which is based on EEG, ECG, nasal pressure,
oronasal temperature, right EOG, and EMG signals. The only prediction metrics
reported are sensitivity and specificity which result slightly better than the present
work normal/hypopnea vs apnea analyses but worse than the present work normal
vs apnea analyses.
The third is Alvarez-Estevez’s work, which is based on airflow, blood saturation,
thoracic and abdominal breathing signals. The only prediction metrics reported
are sensitivity and specificity which result slightly better than the present work
normal/hypopnea vs apnea analyses but worse than the present work normal vs
apnea analyses.
Another important comparison can be done with Taha’s work, which was carried
out on the WSC database using blood saturation and RIP signals. In particular,
this work considered only 10 male subjects and obtained a sensitivity of 93.1%
and a positive predictive value of 97% which are slightly higher than the ones of
normal vs apnea analyses carried out in the present work.

Instead, for what concerns the apnea distinction analysis, it can be helpful to
look at table 6 of Alvarez’s review where validations of respiratory event classifi-
cation approaches are reported. Since the present work’s OSA/MSA vs CSA clas-
sification problem is not a full distinction will follow a qualitative argumentation.
With particular attention to Taha’s work (the same as the previous comparison),
which was carried out on blood saturation and RIP signals of 10 male subjects
picked from the WSC database, it is clear that the diagnostic accuracy is less than
the diagnostic accuracy obtained in the present work and sensitivity and specificity
are unbalanced for all the classes unlike what seen in the present work.
Moreover, all the studies considered few subjects (10 out of 12 on less than 30
subjects, and the most extensive embraced 66 subjects).

These comparisons help to gain an idea of how wide this problem is and how
much work still needs to be done to better characterize such a problem.
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Chapter 6

Conclusions

The present work has to be seen as a starting point for future projects since it
evidenced that the features extracted from the chosen subset of polysomnographic
signals are capable of characterizing subjects’ condition during sleep with improv-
able prediction metrics’ values.

There are some important conclusions:
• The selected features showed to carry redundant information and the simple

feature selection performed did not manage to reduce enough this redundancy;

• Taking into account hypopnea causes performances to worsen because it is ba-
sically a transition condition between normal and apneic ones. Nevertheless,
a condition of hypopnea not necessarily evolves into one of apnea: for in-
stance there are some subjects within the WSC database that went through
different hypopnea events during the night but did not experience a single
apneic event. This is important to remember since some indexes like Apnea-
Hypopnea Index (AHI) (number of events per hour of sleep) consider every
breathing-related event (either hypopnea or apnea), so subjects with the same
AHI do not necessarily face the same type and severity of events during the
night;

• The more radical feature selection has slightly worsened the performance.
This leads to thinking that a more precise feature selection should maintain
better performances and may eliminate the need to pick up certain signals.
For instance, the 32-features classification cases were characterized by the
absence of EEG and ECG-derived features. This is significant mostly because
recording EEG signals can be uncomfortable for the subject (above all for
CPAP users) and this can simplify an eventual home recording system based
on this subset of signals.

97



Conclusions

• The latest classification case (OSA/MSA vs CSA) brought to light that, in or-
der to distinguish between apnea clusters, ECG-derived features have a more
discriminative power than the other features. This is significant since brings
to the conclusion that monitoring cardiac activity can help to discriminate
between apnea forms but is not strictly necessary to understand if a subject
is affected by SAHS since other signals’ features resulted more informative.

6.1 Limits of present work
The non-optimal classification performances may be traced back to the big overlap
of different clusters’ feature distributions. There are multiple possible explanations
for this phenomenon, such as:

• The chosen features resulted not enough representative about the sleep con-
dition of the subjects since there was a lot of redundant information also after
feature selection;

• The heterogeneity of subjects in the database. This represented a biasing
factor for trained classifiers because subjects with different conditions (e.g.
apnea severity, BMI...) as well as CPAP users were considered resulting in
extensive statistical distributions of the features due to the manual events
titration made by clinicians who consider different normal and apneic ranges
from subject to subject;

• The provided database presented the following main limitations:

– The sampling frequency used to record the signals resulted excessive for
some slow time-varying signals such as blood saturation and body posi-
tion and insufficient for others, for example, it did not allow to correctly
analyze the snore signal which is an important non-invasive to record
signal that is usually sampled at much higher frequencies (see subsection
3.7.1) making possible to extract more interesting features;

– The hardware pre-filtering eliminated frequencies above 30 Hz cutting off
a great part of spectral information from different signals such as ECG
(whose band goes up to 125 Hz);

– It was observed that some subjects have changes in the gain of some
recording channels during the registration that makes it difficult to ex-
tract useful features since these changes could make features appear as
outliers within the dataset;

– Despite the scoring procedures for breathing-related events being stan-
dardized, it cannot be excluded residual inter- and intra-operator vari-
ability which affects the data.
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Moreover, there are two other big limitations that affect this kind of study.
The first one consists in considering 30 seconds epochs and calculating parameters
that try to explain the subject’s condition during the duration of the epoch. This
represents a problem since an event may not start when an epoch starts but that
epoch, according to the standardized scoring procedure will be considered patho-
logical even if the even occupies only a small portion. It could interesting and
maybe more efficient to investigate real-time sleep analysis or sleep analysis based
on smaller detection units rather than analysis based on detection units. More-
over, another big limitation is represented by computational workload since the
step of signal processing features extraction and training and evaluation of models’
performances required a very long time. Just think that the elapsed time for one
cycle of features extraction for all the signals was above 200 hours (being the EEG
processing the longest requiring about 4 days to complete) and the elapsed time
for one run of models training and testing was above 100 hours.
These numbers give an idea of how fundamental is to have high-performance com-
puters to work on.

6.2 Future developments
The present work lays the foundations for future studies on sleep conditions clas-
sification and SAHS screening approaches.

Further studies could follow the same path and refine the feature selection and
hyperparameter optimization processes in order to investigate more deeply the po-
tentialities of this dataset.
Furthermore, other studies could focus on extracting more informative features for
specific classification problems keeping only the most discriminant ones identified
in the present work before proceeding with model training.
Because of the large number of observations in the dataset, it is plausible to think
about using some kind of Artificial Neural Network (ANN) in future works.

In order to increase diagnostic accuracy, it could be useful to train different
models using a group of signals recorded from subjects with similar apnea sever-
ity, and similar central tendency measures of the main general statistic features
rather than considering all the subjects together. This way it should be possible
to narrow statistical distributions making more accurate predictions since normal
and apneic characteristic features ranges should be better distinguishable.
For instance, classifiers with different blood saturation baselines could be trained
and subjects could be asked for measuring blood saturation recording for several
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nights before the polysomnography (or before undergo home-PSG) in order to get
information about the general condition during sleep and assign them to the most
appropriate classifier (using a fuzzy inference system for example).
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Appendix A

Definitions and scoring of
breathing events

In this appendix will be deepened the definitions and the scoring precedures of
apneas and hypopnea reported in the WSC manual of operations [Wisconsin
Sleep Cohort, 2009] followed by clinicians to score the breathing events using the
database signals.

A.1 Apneas

Definitions
Apneas are characterized by no indication of airflow in nasal pressure, no detectable
breathing pattern in the thermistor and a clear amplitude reduction in effort,
followed by an associated desaturation.
The different types of apnea have been distinguished observing the thermocouple
and the respitrace signals:

OSA No indication of airflow by thermocouple and an indication of effort in
respitrace channels.

CSA No indication of airflow by thermocouple and no indication of effort in
respitrace channels.

MSA No indication of airflow by thermocouple and areas of no effort followed
by effort in respitrace channels.
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Definitions and scoring of breathing events

Scoring Procedure
1. Determine if there is flow or no flow. Criteria for NO flow:

• Does not follow previous pattern of flow and/or
• is <20% of amplitude of the largest previous breath (determined by

µV/mm of unclipped air flow sensitivity, if necessary) and
• has an interruption of airflow that is > 10 seconds in duration.

2. Determine if there is effort or no effort. Criteria for No effort (from Respi-
trace):

• Does not follow previous pattern of breathing and
• has no discernable amplitude of the signal in the respitrace.

3. Measure duration of event:

• Measure from the beginning of the last expiration on the air flow chan-
nels to the beginning of the next inspiration on the air flow channels to
determine the 10 second criterion;

• If 10 seconds, measure the duration of the event from the beginning of
the last expiration to the beginning of the next inspiration on the SUM
channel (sum of volumes) of the respitrace that best corresponds to the
points of measurement of duration in the airflow channels;

• If not 10 seconds, determine if the event meets the criterion for a hypop-
nea : 4% desaturation. If it does not, then the event is ignored and not
scored;

• NOTE: When the event is obviously an apnea and is between 9.5 and 10
seconds, round the duration up to 10 seconds and score.
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A.2 – Hypopnea

A.2 Hypopnea

Definition
A discernable decrease in flow in nasal pressure channel and/or thermistor with
an associated oxygen desaturation of 4% or greater indicated in the SpO2 channel
beginning in sleep.

Scoring Procedure
1. Use a display view of at least a 120 second window;

2. Determine a discernable decrease in the SUM channel (sum of volumes) de-
fined as a >50% decrease in the mean amplitude of the three largest breaths
preceding the onset of the event, or a clear reduction in amplitude that is
<50% with an associated oxygen desaturation of > 4%;

3. Measure the duration of the event:

• Measure from the beginning of the last expiration on the SUM to the
beginning of the next inspiration on the SUM to determine the 10-second
criterion (from the beginning to the end of the event);

• If not 10 seconds, delete the event mark;
• Mark the desaturation event on the SpO2 channel following the respi-

ratory event, beginning within 30 seconds of the end of the respiratory
event;

• Delete the desaturation event for a hypopnea if the desaturation is <4%;
• Determine that the desaturation occurs in sleep. Events that begin in

sleep and end in wake are always scored. Events that begin and end in
wake are never scored;

• Mark the beginning and end of the event in the SpO2 channel correspond-
ing to the desaturation. Duration of desaturation events should not be
greater than 120 sec.

4. Mark the corresponding event in the SUM channel as Hypopnea if associated
with a desaturation of > 4%;

5. Without the presence of an adequate signal in the nasal pressure channel, use
the nasal/oral thermistor channel for determination of flow.
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Appendix B

Wavelet Transform (WT)

The Wavelet Transform is a linear Time-Frequency Representation (TFR): time-
frequency representation because it aims to describe how the spectral content of a
signal is changing in time (non Wide Sense Stationary (WSS) signals) and "linear"
because it satisfies the superposition principle: "if x(t) is a linear combination of
some signal components, the its TFR is the linear combination of the TFRs of all
components".[Mesin, 2017]

The wavelet analysis is used because it overpass the limitation of another linear
TFR, the Short Time Fourier Transform (STFT) which was introduced in order to
overcome the difficulties that Fourier analysis finds in representing non-stationary
signals with the basic idea of analyzing successive portions of signal, approximat-
ing them to stationary [Masotti, 2001].
While for the latter time resolution and frequency resolution are constants and
depend on the length of the analysis window, instead for the WT frequency reso-
lution is allowed to vary in the time-frequency plane. In general, there is a linear
relation between the length of the analysis window and the frequency resolution
as there is a linear relation between time resolution and the central frequency of
the considered portion of the spectrum. Therefore, considering the windowing
function as a band-pass filter, by scaling it with frequency, band-pass filters with
constant relative bandwidth are used.

B.1 Multiresolution analysis (MRA)
Another approach for describing wavelet analysis is based on the choice of a pro-
totype function, called wavelet, which can represent the signal in a compact way
if it is chosen in order to approximate well the different components of the signal.
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Wavelet Transform (WT)

The independent variables of the WT (time and scale) can be either continuous
or discrete [Mesin, 2017].

In other words, Fourier Transform decomposes signals into a sum of sine and
cosine (with infinite support) while Wavelet Transform decomposes signals con-
sidering two functions with compact supports, together with their scaled versions,
called Mother Wavelet and Father Wavelet, which represent different frequency
components of the original signal and can be scaled. Father wavelet will be repre-
sentative of the smooth and LOW-frequency part of the signal giving an approx-
imate representation of the signal, while Mother wavelet will be representative of
the detail and HIGH-frequency part of the signal.

Therefore, WT can be used to decompose signals into low-frequency compo-
nents and high-frequency components using low-pass filter (LPF) and high-pass
filter (HPF), respectively: the output of the HPF are the detail coefficients while
the output of the LPF are approximation coefficients as shown in figure B.1.

Figure B.1: First step of wavelet decomposition.

This kind of decomposition can be perpetuated in order to obtain more families
from different Father wavelet and Mother wavelet as con be observed in figure B.2.

Figure B.2: Cascade of filter banks.
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B.1 – Multiresolution analysis (MRA)

WT divides a signal in two parts and then, recursively, divides the low-pass
part into another two parts. In other words, it keeps decomposing only the left
side: if the band of the smallest low-pass part is B, the band of the father of this
part will be 2B and the band of the father’s father will be 4B, as shown in figure
B.3.
Each time the signal is divided there is a shrinkage in time: the LP takes about
a half of the samples of the original signal while the HP takes the other half. In
this way, using the WT you keep decomposing in frequency and at the same time
you are shrinking the size in the time domain as well.

Figure B.3: The left side of the power spectrum continues to be divided in half as
the number of decomposition levels increase.

The previous treatment described the concept of Multiresolution Analysis (MRA)
based on DWT, which is by far the most used since in the real life problems the
signals to be analyzed are finite.

The main problem of the MRA is that the choice of the wavelet type is arbitrary.
There are several types of wavelets families (we talk about families because we
refer to all the mother wavelets and their scaled and shifted versions) as shown in
figure B.4.

The empiric rule that guides the choice is that the wavelet must approximate well
the different components of the signal. For instance, if the signal to be analyzed is
a random process it is reasonable to choose a Daubechies (Db) or a Symlet (varia-
tion of the Daubechies) because the dilated and translated version of this wavelets

109



Wavelet Transform (WT)

Figure B.4: Examples of types of wavelets [Al-Geelani et al., 2016].

can “match” the signal to the hidden event and thus discover its frequency and
location in time. Another example could be the use of the Haar wavelet to match
an abrupt discontinuity or the use of the Db20 to match a chirp signal [Al-Geelani
et al., 2016].

Moreover, the MRA represent an high computational burden above all if there
are many signals to analyze and if these signals are long.
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