
POLITECNICO DI TORINO

MASTER’S DEGREE PROGRAMME IN MECHATRONIC ENGINEERING

A.a 2021/2022

July 2022

MASTER’S DEGREE THESIS

Software compressive optimization of
deep neural networks

AUTHOR

Diego Garćıa González

SUPERVISORS

Carla Fabiana Chisserini

Claudio Ettore Casetti

Acknowledgements

This project means a full stop in my academic life. All these years have involved a great

effort that finally brings the rewards and comes to an end.

Firstly I want to thank Professor Carla Fabiana Chiasserini, Doctor Franceso Malandrino

and Giuseppe Di Giacomo their implication in this work and their help. Without them

this thesis would have been impossible to finish.

Thanks to my new and old friends. The Erasmus experience has allowed me to meet

incredible people that I would like to keep in my life. Thanks Jamal for all those funny

moments in Torino, thanks Felix for the talks and the nice moments at home, thanks

Victor for making me feel like one more of the team and thanks Giulio for you generosity

and your friendship. On the other hand, I also need to mention my people from Spain.

My university friends, Vela, Miguel and David, you have been a great help during the

pandemic while I was in Torino. And thanks to my second family, Mery, Marta, Cris and

above all, Raúl and Dani, you have made me strong and feel capable of achieving anything,

so a part of this thesis is also yours.

Last but not least, thanks to my real family. Thank you Álvaro for your advises, your

help and your mentorship. A new time is coming for you and you need to enjoy in to the

full. Thank you dad for all your support. Your help, commitment and love have made

that, after eight years of university studies and some bad moments, I can get his wonderful

achievement. And finally, thank you mum. You have always been the greatest support in

my life, so I owe you everything. This thesis is dedicated to my family, because without

them, I wouldn’t be writing these words.

i

ii

Abstract

Software compressive optimization techniques are based on the need of deploying complex

and large deep neural network models in devices with low processing capacity. Their high

efficiencies allow deep neural networks to reduce the cost of resources while maintaining

a good performance and reliable results. In this project, two optimization techniques are

studied, analysed and combined in order to maximize the compression of a state-of-the-art

deep neural network model. The results achieved show the different approaches that can

be followed and the great impact that these techniques have in the downsizing of large

models.

Keywords: deep neural networks; knowledge distillation; pruning; optimization; compres-

sion.

iii

iv

Contents

1 Introduction 1

2 State of the Art 5

2.1 Artificial Neural Networks . 5

2.1.1 Deep Neural Networks . 8

2.1.1.1 Convolutional Neural Networks 9

2.2 Training process of Neural Networks . 11

2.3 PyTorch . 18

2.4 Transfer Learning . 19

2.5 Knowledge distillation . 20

2.6 Neural Network Pruning . 23

2.6.1 Pruning structures . 24

2.6.1.1 Structured pruning . 24

2.6.1.2 Unstructured pruning . 24

2.6.2 Pruning criteria . 25

2.6.3 Pruning methods . 26

2.6.3.1 One-shot pruning . 27

2.6.3.2 Iterative training-pruning method 27

2.6.4 Pruning in PyTorch . 28

2.6.5 The Simplify library . 31

3 Compressive optimization of Deep Neural Networks 33

3.1 Knowledge distillation . 34

3.1.1 The Teacher model . 34

3.1.2 The student model . 37

3.2 Neural Network Pruning . 43

3.2.1 One-shot unstructured global pruning 44

3.2.2 Structured local training pruning . 51

3.2.2.1 Static structured training pruning 53

3.2.2.2 Dynamic structured training pruning 59

4 Results 73

v

CONTENTS

4.1 Knowledge distillation . 73

4.1.1 Settings . 73

4.1.2 Results . 74

4.2 One-shot unstructured global pruning experiment 75

4.2.1 Settings . 75

4.2.2 Results . 75

4.3 Structured local training-pruning . 76

4.3.1 Static pruning . 77

4.3.1.1 Teacher settings . 77

4.3.1.2 Teacher results . 77

4.3.1.3 Student settings . 78

4.3.1.4 Student results . 78

4.3.2 Dynamic pruning . 78

4.3.2.1 Teacher settings . 78

4.3.2.2 Teacher results . 79

4.3.2.3 Student settings . 79

4.3.2.4 Student results . 80

5 Conclusions and future work 83

5.1 Conclusions . 83

5.2 Future work . 84

A Mininet 85

B SCAPY 87

C Definition of the models 89

D Main code relating the Teacher model 93

E Main code relating the Student model. 95

Bibliography 101

vi

List of Figures

2.1 Basic structure of a node where xi are the inputs, wi are the weights, b is

the bias and y is the output. 6

2.2 Most typical activation functions. 6

2.3 Representation of an Artificial Neural Network. 7

2.4 Representation of an Deep Neural Network, with N hidden layers. 8

2.5 Representation of the weights assigned in the kernel. 9

2.6 Representation of the max pooling process. 10

2.7 Representation of a CNN. 11

2.8 Different techniques of image processing. 12

2.9 Computation and minimization of the Cross Entropy. 13

2.10 Representation of a NN with all its weights. 14

2.11 Inference process of a DNN with two hidden layers and 50% of dropout

probability. 16

2.12 Example of model complexity graph. 17

2.13 Diagram of the Response-based knowledge distillation process. 21

2.14 Diagram of the Feature-based knowledge distillation process. 21

2.15 Diagram of the offline distillation training process. 22

2.16 Diagram of the online distillation training process. 23

2.17 Graphic representation of unstructured and structured pruning in a convo-

lutional layer. 25

2.18 Graphic representation of local pruning (left) and global pruning (right). . . 26

2.19 Representation of the iterative training-pruning process. 28

2.20 Representation of the pruning process in PyTorch. 30

3.1 Graphic representation of the VGG16 DNN structure. 35

3.2 Complexity graph of the VGG16 teacher model. 36

3.3 Representation of the structure of the student neural network 1. 38

3.4 Complexity graph of the Student 1 model. 39

3.5 Representation of the structure of the student neural network 2. 39

3.6 Complexity graph of the Student 2 model. 40

3.7 Representation of the structure of the student neural network 3. 41

3.8 Complexity graph of the Student 3 model. 42

vii

LIST OF FIGURES

3.9 Sparsity of each layer of the Student model after applying a one-shot un-

structured global pruning to the 20% of parameters. 46

3.10 Sparsity of each layer of the Student model after applying a one-shot un-

structured global pruning to the 30% of parameters. 47

3.11 Sparsity of each layer of the Student model after applying a one-shot un-

structured global pruning to the 40% of parameters. 48

3.12 Sparsity of each layer of the Student model after applying a one-shot un-

structured global pruning to the 50% of parameters. 49

3.13 Sparsity of each layer of the Student model after applying a one-shot un-

structured global pruning to the 60% of parameters. 50

3.14 Representation of the accuracy achieved by the Student model when it is

pruned for different percentages of parameters. 51

3.15 Complexity graph of the structured trained-pruned Teacher model. 54

3.16 Comparison of the pruned/non-pruned Teacher models. 55

3.17 Complexity graph of the structured trained-pruned Student model. 57

3.18 Comparison of the pruned/non-pruned Student models. 58

3.19 Complexity graph of the structured trained-pruned Teacher model with

customized amount of pruned parameters. 61

3.20 Comparison of the pruned/non-pruned Teacher models. 62

3.21 Complexity graph of the structured trained-pruned Student model with

customized amount of pruned parameters following an early pruning strategy. 65

3.22 Comparison of the pruned/non-pruned Student models following an early

pruning strategy. 66

3.23 Complexity graph of the structured trained-pruned Student model with

customized amount of pruned parameters following a middle pruning strategy. 68

3.24 Comparison of the pruned/non-pruned Student models following a middle

pruning strategy. 69

3.25 Complexity graph of the structured trained-pruned Student model with

customized amount of pruned parameters following a late pruning strategy. 70

3.26 Comparison of the pruned/non-pruned Student models following a late

pruning strategy. 71

viii

List of Tables

3.1 Relations among the pruned nodes, pruned parameters and final parameters

of the Teacher model. 60

3.2 Relations among the pruned nodes, pruned parameters and final parameters

of the Student model. 63

3.3 Relations among the percentage of pruned modules in each epoch, the num-

ber of pruning epochs, and the expected and real percentage of pruned

modules of each layer of the Student model. 64

ix

LIST OF TABLES

x

Chapter 1

Introduction

Machine Learning [Mitchell, 1997] and more specifically, Deep Learning [Schulz and Behnke,

2012] appeared for the first time by the hand of Paul Werbos, who described for the first

time the process of training an artificial neural network through backpropagation of er-

rors in 1974 [Werbos, 1994]. Ever since then, researchers have focused on the creation

and development of new deep neural networks that could accomplish better predictions

or classifications [Li et al., 2021]. This improvement in performance always came together

with larger and sometimes more complex neural networks. Although the accuracy of these

neural networks was in many cases astonishing, its huge size often made them impossible

to be used in common applications.

With the time, many new applications have been field of research in the deep learning

field. Computer vision [Sinha et al., 2018], speech recognition [Roger et al., 2020], natural

language processing [Torfi et al., 2020], machine translation [Yang et al., 2020] or medical

image analysis [Litjens et al., 2017] are only examples of some of the fields that have

experience the application of neural networks with surprising results. However, the use

of deep neural networks is subject to severe constraints. A large deep neural network

can have more than a hundred billion parameters that must be trained in data processing

centres for days or even weeks. Therefore, common users, companies or researchers cannot

afford such a huge amount of resources.

One of the technological fields that intrinsically has a lack of resources is the self-driving

vehicles field [Huang and Chen, 2020]. Despite cars can have powerful onboard computers,

the computations they must do usually require a very short time and thus, the use of large

deep neural networks is non-functional. Nowadays, self-driving and non-self-driving car

are supposed to have a fast response in the performance of image recognition and data

1

CHAPTER 1. INTRODUCTION

computation, and still, maintain a good accuracy. Thus, the use of small and rapid neural

networks is so important in this fields.

Along with self-driving vehicles, edge computing [Zhang et al., 2020] is becoming more

important each day. This new paradigm, based on the location of small processing data

centres in near locations, allows processing data much faster than the cloud paradigm

thanks to the proximity of the servers. However, again, the resources that edge computing

provide are limited and hence, the operations it treats must be very optimized.

More and more applications, paradigms and devices need to process data in an efficient

and fast way, but common state-of-the-art deep neural networks cannot satisfy this need,

since, despite being very accurate, they need a lot of resources.

Because of this problem, the researching community has put its effort in the optimization

of large deep neural networks. Its aim is to reduce that size of the large state-of-the-art

neural networks and their computing time while maintaining the accuracy. In this regard,

it is possible to take advantage of the fact that these deep neural networks are usually

over-parametrized.

Different compression techniques have appeared in the last years [Matsubara et al., 2021].

These techniques try to solve the problem of excessive size and computing time by opti-

mizing the cost of models. Even though many compression methods are coming to light,

the most important ones that have recently emerged are known as quantization, neural

network pruning and knowledge distillation.

Quantization [Gholami et al., 2021] is a technique based on the change of the formats

of the variables used by neural networks. It leverages the fact that most systems use

float32 variables to perform their computations, and converts these variables into the

int8 format. Doing this, neural networks experience a significant reduction in size since

each variable occupies 4 times less in memory, and computations are faster.

Pruning [Molchanov et al., 2016] is a technique based on the removal of the least important

parameters or nodes of a neural network. This technique leverages the fact that over-

parametrized neural networks accept removing its most superfluous parts without having

an impact on its performance.

Knowledge distillation [Gou et al., 2021] is a method based on the training of a small

neural network from the results of the performance of a larger one. With this technique is

possible to obtain reduced neural networks capable of mimicking the behaviour of a bigger

one.

2

CHAPTER 1. INTRODUCTION

This work is focused on the study and analysis of the neural network pruning and knowl-

edge distillation techniques. Several experiments will be done in order to obtain results

of the performance of the methods and finally, both will be combined in an attempt to

achieve an effective compression of a neural network along with a reliable performance.

Along this project a thorough explanation of Deep Neural Networks and some possibili-

ties for their compressive optimization will be shown. In Chapter 2, an overview of the

structure and functioning of Deep Neural Networks (DNNs) is given. Furthermore, it is

included an introduction of the software DNN compressive optimization techniques that

are studied throughout the project. Chapter 3 is divided in two main sections that ex-

plain the two techniques analysed in this work. In Section 3.1 the technique of Knowledge

Distillation is explained along with different experiments and in Section 3.2 the technique

of Neural Network Pruning is presented and analysed along with its experiments. In the

Chapter 4 the results of the experiments and their explanations are discussed. Finally, in

the Chapter 5 a summary of the conclusions of the project is given and approximation to

a future work that can mean a continuation of this project is introduced.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

State of the Art

In this Chapter all the different elements that are related to this project are described.

First of all, we are explaining the definition and composition of Artificial Neural Networks

(ANNs) and Deep Neural Networks (DNNs). Afterwards, we are going to deepen from

DNNs to Convolutional Neural Networks (CNNs) and their importance in image recog-

nition. Then, we are going to explain the software environment that we have used to

perform this project, this is, Pytorch, and the libraries in which we have focused the most.

Finally, we are going to explain the Simplify library of Python, which is a key part of this

project.

2.1 Artificial Neural Networks

Over the last twenty years great investments and continuous researching on Artificial In-

telligence (AI) have lead to an astonishing development of this field. Artificial Intelligence

can be defined as the combination of algorithms whose final purpose is the performance

of tasks that normally would require human intelligence. AI can be splitted into many

different branches among which we find the so called Artificial Neural Networks (ANNs)

or Neural Networks (NNs). ANNs are computing systems that try to mimic the behavior

of human neural networks. NNs are based on the connection of individual neurons (also

called nodes or perceptrons) which are generally formed by four different elements: the

input, the weights, the bias and the outputs (Figure 2.1). In fact, they are called neurons

because they copy the form of the human neurons, where the inputs are based on the

dendrites, the node is based on the nucleus and the output is based on the axon.

5

CHAPTER 2. STATE OF THE ART

Figure 2.1: Basic structure of a node where xi are the inputs, wi are the weights, b is the bias and
y is the output.

The basic structure of a node is compounded by two parts:

1. Firstly, a linear combination with the form of the equation 2.1, in which y is the

output, xi are the inputs, wi are the weights and b is the bias. The output of this

equation is called logit or score.

logit = (w1x1) + (w2x2) + ...+ (wnxn) + b (2.1)

2. Secondly, the output obtained in the previous step is passed through a function,

called activation function, in order to achieve a non-linear output in the continuous

space. Therefore, the final output of a node has the form of the equation 2.2.

y = g((w1x1) + (w2x2) + ...+ (wnxn) + b) (2.2)

The most typical activation functions used in Neural Networks are the sigmoid func-

tion (Figure 2.2a), the hyperbolic tangent function (Figure 2.2b) and the Rectified

Linear Unit (ReLu) function (Figure 2.2c).

(a) Sigmoid function. (b) Hyperbolic tangent function. (c) ReLu function.

Figure 2.2: Most typical activation functions.

6

CHAPTER 2. STATE OF THE ART

The connection of the output of different neurons to the input of others creates the Arti-

ficial Neural Network. When different neurons receive the same inputs and their outputs

are the inputs of same other nodes, we can call this group of neurons as a layer. The first

layer of the ANN is always called the input layer, since it represents the inputs, and the

last layer is called the output layer. This last layer must have the same number of nodes as

possible targets our NN can have. The rest of the layers between the input and the output

layers are called hidden layers. Therefore, the minimal representation of an ANN have at

least one input layer, one hidden layer and one output layer, as we can see in Figure 2.3.

Figure 2.3: Representation of an Artificial Neural Network.

Depending on the number of nodes that the output layer has, the ANN can be meant to

solve two kind of problems:

1. If the output layer contains only one node, the NN will be focused on a prediction

problem.

2. If the output layer contains more than one node, the NN will solve a classification

problem.

It is important to mention that in classification problems, the activation function used by

the nodes of the output layer must take into account the contribution of all the output

7

CHAPTER 2. STATE OF THE ART

nodes, since the output probabilities of each node will be dependent each another. Thus,

we cannot use a Sigmoid or ReLu functions.

In this case, the activation function used by the output layer is called Softmax function

and it has the form of the equation 2.3, in which zi are the logits of the different output

nodes and yi is the final output probability.

yi =
eziPn
i=1 e

zi
(2.3)

Because of computation requirements, Neural Networks usually have more than one hidden

layer. In this case, they are called Deep Neural Networks (DNNs). In the next subsection

we are explaining the capabilities and power of DNNs.

2.1.1 Deep Neural Networks

As we explained in the last section, Deep Neural Networks are ANNs which have more

than one hidden layer (Figure 2.4). The number of hidden layers is a parameter defined by

the programmer to get the best performance in a computation process. There are DNNs

with a very reduced number of layers and nodes, as the famous LeNet [LeCun et al., 1989],

and huge DNNs with a large amount of parameters, for example, VGG16 [Simonyan and

Zisserman, 2015].

Figure 2.4: Representation of an Deep Neural Network, with N hidden layers.

8

CHAPTER 2. STATE OF THE ART

The size of the DNN depends on the requirements that the computation process has. In

the case of having a reduced amount of available memory or limited computation time we

will choose a smaller DNN. However, when requirements are related to accuracy in the

performance of the DNN we will normally choose a larger DNN.

There are several kinds of DNNs that are used for different applications. This is, some

DNNs work better in some applications than others. For example, Recurrent Neural

Networks are frequently used for the field of Natural Lenguage Processing. But in this

project, we are going to focus on Convolutional Neural Networks (CNNs), which are used

in a wide range of applications mostly related to image recognition.

2.1.1.1 Convolutional Neural Networks

Convolutional Neural Networks are NNs specialized in extracting features from related

data, most typically pixels of an image. They are normally composed of two parts:

1. The first part of the CNNs are the convolutional layers, which are in charge of

extracting the image features.

2. The second part are the fully connected layers, whose purpose is to obtain relations

from the image features previously extracted.

Convolutional layers work in a way in which each data (pixel) of an image is related to

the ones next to it. This is done thanks to the so called kernel. The kernel assigns weights

to the surrounding data in the way that is shown in the Figure 2.5. In order to obtain an

output related to the data of the middle of the kernel (the grey square) we would multiply

the weights of each data by its value. As we can see, the kernel shown in the Figure 2.5 is

designed to find and enhance horizontal edges and lines in an image.

Figure 2.5: Representation of the weights assigned in the kernel.

9

CHAPTER 2. STATE OF THE ART

The kernel passes through all the pixels of an image obtaining an output in which the

features of an image can be found out.

However, for each convolutional layer we do not have only one kernel. It is the job of

the programmer to choose the number of times that different kernels passes though and

image to obtain new features. The obtained outputs create new sets of data that are called

filters. Therefore, we can not talk of nodes in convolutional layers, but of filters. Each

filter is responsible of finding a pattern in the image. After computing the outputs, which

in reality are the logits, these values are usually passed through a ReLu function.

After each convolutional layer the data must be filtered and for that, we use the pooling

layers. As previously said, pooling layers take convolutional layers as input. Their aim

is to reduce the size of feature maps (filters). There are two types of pooling layers: the

max pooling layer and the average pooling layer. However, in this project we will focus on

the max pooling layer, that works by taking a stack of feature maps as input and reduces

its size by removing the least important parameters. We can see a representation of this

process in the Figure 2.6.

Figure 2.6: Representation of the max pooling process.

After the convolutional and pooling layers, as said, the data goes through one or more

than one fully connected layers. These layers (that have been slightly explained in the

Section 2.1) are formed by nodes that receive the data as inputs from all the nodes of the

10

CHAPTER 2. STATE OF THE ART

previous layer and send their outputs to all the nodes of the following layer.

Therefore, convolutional, pooling and fully connected layers together form the so-called

CNN as the Figure 2.7 shows.

Figure 2.7: Representation of a CNN.

After seeing the structure of the NNs we are going to focus on how they work. As we have

said, the ultimate aim of NNs is usually to predict or classify. However, before being able

to do this, they must be trained. Next, we are going to explain the training process of the

Neural Networks.

2.2 Training process of Neural Networks

The training process of NNs is usually composed of two or three stages, which are the

training optimization, the validation and optionally, the testing. In this project we are

focusing on the first two processes, but we will also briefly explain the testing process.

The first step in this process is the treatment of the data that we are using to train our

model. Depending on the kind of data (images, text characters, voice inputs) there are

different techniques to treat them. For this work, we will focus on the treatment of images

as data.

Image data can have many different ways of treatment. The most common are normal-

ization and augmentation. Normalization is a technique that requires an input with two

arguments: the mean and the standard deviation. Its main purpose is to standardize the

modules of all the data of an image. On the other hand, augmentation is a technique

basically used in the training of the Neural Network. The purpose of this technique is

to randomly modify the images by inverting, rotating or moving them. This will avoid

the so-called overfitting, which is a problem that we will explain next. There are other

11

CHAPTER 2. STATE OF THE ART

techniques as cropping and resizing that as well as being used to process the image, they

standardize the size of images that are the inputs to a NN model. In the Figures 2.8 we

can see some of the different techniques to process the input data.

(a) Original image. (b) Cropped, resized and inverted
image.

(c) Rotated image.

Figure 2.8: Different techniques of image processing.

After processing the input data, the following process is the called feed-forward or infer-

ence. In this process, the data passes through all the defined operations in the NN model.

From this process, in a classification problem (after the softmax function), we obtain the

probabilities of each output to fit with the target. These probabilities, of course, are values

from zero to one.

The objective in the training is to maximize the product of all the output probabilities

that fit with the required target. However, this product is an operation that may cause

problems in its computations, since it deals with very small floating point values. To

manage these problems we use a powerful method called crossed entropy. It is based on

the use of logarithms to turn the probability products into sums, which greatly facilitates

the computation process. Therefore, using the minus logarithm of the probabilities, the

new objective is to minimize the sum of the cross entropy.

Since cross entropy is the new operation to minimize, we can also treat it as an error

function.

In the Figure 2.9 we can see how this process works. The values of the operations are

the probabilities of the appropriate outputs to fit with the targets. To obtain the error

function (Cross Entropy) we apply the minus logarithm to each probability. Finally, our

objective is to minimize this function.

12

CHAPTER 2. STATE OF THE ART

Figure 2.9: Computation and minimization of the Cross Entropy.

The next step of the training is the minimization of the error function. There are different

algorithms to do it, but the most common is the so-called Gradient Descent. Using this

algorithm, our goal is to calculate the gradient of the error function E, at a point x =

(x1, x2, ..., xn), given the partial derivatives of the equation 2.4.

∇E = (
∂

∂w1
E,

∂

∂w2
E, ...,

∂

∂wn
E,

∂

∂b
E) (2.4)

In which wi, b are the weights and biases (parameters) of the NN model.

Taking the appropriate derivatives, t can be easily demonstrated that the computation of

the Gradient Descent algorithm leads to an update of the model parameters of the form

showed in the equations 2.5 and 2.6.

wi′ = wi + α[(y − ŷ)xi] (2.5)

b′ = b+ α(y − ŷ) (2.6)

In the equations 2.5 and 2.6 we introduce the new parameter α, called learning rate,

which is the constant in charge of the amplitude of each Gradient Descent step. It is also

important to mention that these equations are specifically related to NNs with sigmoid

activation functions, since it is well known that the derivative of this function has the form

of the equation 2.7.

σ′ = σ(x)(1− σ(x)) (2.7)

Having a first insight of the updating of parameters with the Gradient Descent algorithm

we must understand how these derivatives can propagate through the NN. This process

is called backpropagation. Backpropagation is a powerful tool that allows updating all the

parameters of the NN by using the Gradient Descent algorithm and the chain rule.

13

CHAPTER 2. STATE OF THE ART

Having the example of a NN as the one shown in the Figure 2.10, we can understand the

error function as a function of all the weights of the model.

Figure 2.10: Representation of a NN with all its weights.

Knowing this, to minimize this function we need to calculate its gradient, which has the

form of a matrix as the one shown in the equation 2.8.

∇E =



∂E

∂W
(1)
11

∂E

∂W
(1)
12

∂E

∂W
(2)
11

∂E

∂W
(1)
21

∂E

∂W
(1)
22

∂E

∂W
(2)
21

∂E

∂W
(1)
31

∂E

∂W
(1)
32

∂E

∂W
(2)
31


(2.8)

Although the element of the matrix 2.8 in which ∂W has superscript 2 can be computed

by using the Gradient Descent algorithm, the rest of the element cannot. To calculate

these elements we need to use a mathematical tool called the chain rule.

The chain rule states that if we have a function h that is a composition of two functions

of x, where z = f(x) and h = g(f(x)) or h = g ◦ f , then, its derivative can be defined as

the equation 2.9.

∂h

∂x
=

∂h

∂z

∂z

∂x
(2.9)

14

CHAPTER 2. STATE OF THE ART

Therefore, with the Gradient Descent algorithm and the chain rule, it is possible to com-

pute all the elements of the matrix 2.8. We can find out the variations that each parameter

must have in our NN model in order to minimize the error function. As an example, the

equation 2.10 would calculate the optimal variation of E with respect to W
(1)
11 . In this

equation, E represents the error function, ŷ represents the prediction or output of the

model, h and h1 represent the outputs of the respective activation functions (see Figure

2.10) and W
(1)
11 represents a weight.

∂E

∂W
(1)
11

=
∂E

∂ŷ

∂ŷ

∂h

∂h

∂h1

∂h1

∂W
(1)
11

(2.10)

After the first feed-forward and backpropagation processes we obtain an optimized model.

At this point, it is time to validate our model. The validation is a process in which

an inference of new data is performed through the optimized model with the purpose of

calculating the accuracy of the model. There are two ways of computing this accuracy:

1. Calculating the average loss (from the error function) of all the outputs corresponding

to all the data.

2. For each data, comparing the most probable output with the correct target.

The training optimization and the validation processes must be repeated until the model

reaches a good performance, this is, the training and validation losses are low and the

validation accuracy is high. Each iteration that this process repeats is called an epoch.

The programmer must find the perfect number of epochs to iterate the training process.

Too many epochs would lead to a phenomenon that has been mentioned in the section

2.1, called overfitting.

Overfitting is a phenomenon for which the NN model behaves too good for the training

data set but does not fit properly the general data. There are some techniques to prevent

overfitting. We have already mentioned one, that is the data augmentation. However, the

most common techniques are the so-called Dropout and Early Stopping. We are explaining

them next.

Dropout

Sometimes one part of the network has very large weights and it ends up dominating all

the training, while another part of the network does not get trained. Dropout [Srivastava

et al., 2014] is a technique that consists of turning the dominating part off and letting the

rest of the network train.

15

CHAPTER 2. STATE OF THE ART

More thoroughly, as we go through the epochs, we randomly turn some nodes off avoiding

the feed forward process to pass through them. Doing this, the other nodes take more

part in the training.

The Figure 2.11 represents a DNN with two hidden layers of four nodes in which there is a

50% of probability of dropout. As we can see, two random nodes of each layer are turned

off each epoch.

Figure 2.11: Inference process of a DNN with two hidden layers and 50% of dropout probability.

Early Stopping

Usually the training process is started with random weights in the first epoch, having

a terrible behavior with very large validation and training losses. When we keep going

through the epochs, the model is trained and fits the data much better. However, there is

a point in which the more epochs we train the model, the better it fits the training data,

but generalizes horribly. As a result, the training losses will continuously decrease but the

16

CHAPTER 2. STATE OF THE ART

validation losses will increase.

The Figure 2.12 represents the so called model complexity graph, which measures the

training and validation errors with respect to the epochs.

Figure 2.12: Example of model complexity graph.

As we can see in the Figure 2.12, the training curve is always decreasing, since, as we train

the model, we keep fitting the training data better and better.

On the other hand, we can observe that at the beginning of the training the validation

error is very large because the model is not exact (we call this underfitting). Then, it

decreases as the model generalizes well until it gets to a minimum point, the so called

Goldilocks spot. Finally, once we pass that spot, the model starts overfitting since it stops

generalizing and just starts ’memorizing the training data’.

Therefore, the model complexity graph divides the training process into two parts: the

underfitting part, when the training and validation losses decrease; and the overfitting part,

when the validation loss starts increasing. These two parts are separated by the Goldilocks

spot, that is the point where the model generalizes the best. Thus, this determines the

number of epochs we must use in our training process.

This algorithm is called Early Stopping [Girosi et al., 1995] and it is very widely used to

train neural networks.

17

CHAPTER 2. STATE OF THE ART

2.3 PyTorch

Neural Network computation are linear algebra operations on tensors, a generalization of

matrixes. For example, an RGB image is based on a 3-dimensional tensor.

PyTorch [Paszke et al., 2019] is an open source machine learning framework used for deep

learning applications such as image recognition. It was primarly developed by the Facebook

AI Research team. Although PyTorch interface is mainly developed and optimized for

Python, it also has an interface for C++. Pytorch tensors are similarly used as Numpy

[Harris et al., 2020] arrays but with some great benefits, as the graphics processing units

(GPU) acceleration.

PyTorch provides different packages that facilitate the work with neural networks. Next

we are explaining the process of the most important:

1. The package torch of Pytorch provides different modules such as nn, that allows

building efficiently large neural networks; autograd, which records the operations

accomplished in the inference process and replies them backwards to compute the

gradients; and optim, which implements several optimization algorithms in order to

perform the backpropagation of the NN models.

2. The package torchvision provides different data sets for the training, validation and

testing processes of a NN model. With this package is also possible to process the

downloaded data in order to adjust it to our neural networks needs.

As previously said, PyTorch is capable of using GPU acceleration thanks to the Com-

pute Unified Device Architecture (CUDA). CUDA is a parallel computation platform that

includes a compiler and a set of of development tools created by Nvidia.

CUDA leverages the large parallelism and high band-width of GPU memories in appli-

cations with high arithmetic cost. It is designed in a scalable way in order to be able

to increase the number of computational kernels. This design contains three key points,

which are the string group hierarchy, the shares memory and the synchronization barriers.

In practice, in PyTorch it is necessary to use the package torch.cuda. This package supports

the so-called CUDA tensor types, which implement the same functions as CPU tensors

but running on the GPU.

18

CHAPTER 2. STATE OF THE ART

2.4 Transfer Learning

Once an overall review of the core of this project (DNNs) and the used programming

environment (PyTorch) have been exposed, we are going to present the different methods

and algorithms that have been used in the development of this work.

The most famous and common DNNs (VGG16, VGG19, Densenet121, AlexNet...) are

typically trained in a massive data set with over one million images labelled in 1000

different categories. These DNNs are based on convolutional neural network architectures

and once they are trained, they work astonishingly well as feature detectors for images

that they have not been trained on.

The training process of these DNN models normally takes very long times, in the order

of days, weeks or months, so the development of daily and common applications cannot

afford it.

Transfer Learning [West et al., 2007] is a method that consists of the use of pre-trained

DNN models to work on data sets in which they have not been trained on. As previously

said , the pre-trained DNNs usually work very well as feature detectors. As we have seen

in the section 2.1, feature detection is performed by the convolutional layers of the model.

The first convolutional layers of the pre-trained model extract more general features from

the data set and, this extraction of general features can also be applied to different data

sets. Therefore, usually it is not necessary to train the firt layers of a pre-trained model.

However, when using pre-trained models it is normally necessary to adjust the numbers of

nodes of the last layer in order to obtain the same number of possible outputs as targets

has our data set.

A good practice to train pre-trained DNN models for our own data sets is to leave all the

parameters of the convolutional layers of the DNN unchangeable and train the classification

layers, this is, all the fully connected layers. Then, checking the results obtained by the

first training of the pre-trained model we can adjust the number of layers to train to get

a better performance.

In PyTorch, transfer learning can be done by the torchvision.models package. This package

has multiple models that can be easily loaded and used in a project. With this package it

is also possible to load pre-trained models in order to train them for a specific data set.

19

CHAPTER 2. STATE OF THE ART

2.5 Knowledge distillation

Large machine learning and deep learning models are very common. They are mainly

used for researching purposes, so training these models allows improving the state of the

art knowledge. However, when it comes to a practical use, such big and complex models

are difficult to deploy in edge devices, what prevents them from obtaining real world data

sets.

Moreover, the majority complex deep learning modelling work focuses in the development

of one or several machine learning models whose objective is to achieve a good performance

in validation data sets, which in the end is not representative of the real world data.

Therefore, this friction between training and validation data leads to models that have a

good accuracy on validation data sets but do not perform well when it comes to real world

data.

Knowledge distillation [Hinton et al., 2015] is a technique that tries to overcome these

difficulties by transferring the knowledge from a large model or collection of models to a

smaller one that can be deployed on an edge device without significant loss in performance.

This technique was primarily demonstrated by Bucilua and collaborators in 2006 [Bucilua

et al., 2006].

Knowledge distillation is mainly based on two models:

1. The teacher, which corresponds to the large and complex model from which we want

to extract the knowledge.

2. The student, which is a small model whose purpose it to mimic the behaviour of the

teacher leveraging its knowledge to obtain similar accuracy.

There are different types of knowledge distillation that can be categorized in two main

forms: Response-based knowledge and Feature-based knowledge. We are going to briefly

define all of them, but in this project we will mainly focus on the Response-based knowl-

edge.

1. The Response-based knowledge focuses on the output of the teacher model. This

is, it compares the scores of the teacher model with the scores of the student model,

getting a distillation loss function. In this way, the student model improves its

performance by trying to make the same predictions as the teacher model.

20

CHAPTER 2. STATE OF THE ART

A basic diagram of the Response-based knowledge distillation can be seen in the

Figure 2.13.

Figure 2.13: Diagram of the Response-based knowledge distillation process.

Regarding image recognition and computer vision tasks, as for example image clas-

sification, the inputs to compute the distillation loss are comprised of soft targets

and not the scores. As seen in section 2.1, soft targets are usually calculated using

the softmax function on all the possible scores, obtaining a probability distribution

of the targets.

2. Feature-based knowledge is particularly suitable for deep neural networks. As we

have seen in the section 2.1 each hidden layer of a model deals with specific features

of the data. The final aim of this type of knowledge distillation is to make the

student model mimic the feature activations of the teacher model.

As we can see in Figure 2.14, in this case the distillation loss in computed by means

of the outputs of specific layers.

Figure 2.14: Diagram of the Feature-based knowledge distillation process.

21

CHAPTER 2. STATE OF THE ART

As well as the different techniques of computing the distillation loss, there are different

methods to train the teacher and student models.

Specifically, there are two main methods for training, which are called the offline and

online distillation. Next we are explaining both, but in this project, the method that is

used is the offline distillation.

1. Offline distillation is the most common method of training in knowledge distillation.

In this technique, firstly, the teacher model must be completely trained, and after-

wards, the student is trained on the basis of the knowledge of the teacher. Usually,

both models are trained with the same training data set.

Offline distillation is a well known technique in deep learning, since it is can be

implemented very easily.

In Figure 2.15 it is shown a simple diagram of the offline distillation training process,

in which, firstly, the teacher model is trained and then, the knowledge is passed to

the student.

Figure 2.15: Diagram of the offline distillation training process.

2. Online distillation, on the other hand, is a technique in which both, the teacher

and the student models are trained simultaneously in a single end-to-end training

process.

This way of training is particularly suitable when a pre-trained teacher model is

not available for offline distillation. Moreover, it can be a highly effective technique

thanks to the use of parallel computing.

In Figure 2.16 it can be seen a diagram that shows the process of online distillation

training. As we can observe, every epoch of the training process the state dictionaries

(the parameters) of the teacher and student models are updated.

22

CHAPTER 2. STATE OF THE ART

Figure 2.16: Diagram of the online distillation training process.

2.6 Neural Network Pruning

The cost of many neural networks in terms of computational power, memory or energy

consumption can be huge and thus, unaffordable for most limited hardware. Yet, many

fields can benefit from their use, so it is important to reduce their cost while maintaining

their performance.

Hence, identifying techniques that permit model compression is important in these over-

parametrized models in order to reduce the computational resources.

Neural network pruning [Riera et al., 2015] [Blalock et al., 2020] is a technique based on

the idea of removing the least important parts of a network, achieving a reduction in cost

of resources without a significant decrease in the performance of the model.

Pruning can be accomplished in several ways depending on its structure, criteria and the

method that it follows. The different pruning structures differ in the parts of the model

that are pruned. The pruning criteria refers to which way pruning should be applied to

the model. The pruning method refers to the mode in which pruning is included in the

process of obtaining a neural network model.

In the next subsections the different structures, criteria and methods will be explained.

Eventually, an explanation of how pruning works on the PyTorch framework will be un-

dertaken.

23

CHAPTER 2. STATE OF THE ART

2.6.1 Pruning structures

Depending on the parts of the model that are pruned it is possible to differentiate between

structured and unstructured pruning. Next, both structures are explained.

2.6.1.1 Structured pruning

Structured pruning [Anwar et al., 2015] focuses on large structures such as nodes in the

case of fully connected layers, or filters in the case of convolutional layers.

One essential aspect that must be considered is that, when using this kind of pruning,

as we are reducing the number of nodes or filters from the layers of a model, we are also

removing the feature maps that are the outputs of such nodes and filters, and therefore,

the inputs of the following layer.

This important factor can be understood with a simple example. Let us consider a con-

volutional layer with Nin input channels and Nout output channels. By definition, the

convolutional layer has Nout filters with Nin kernels in each filter. Having this architec-

ture, we can observe that when pruning a layer we are not only reducing the number of

filters of that layer, but also reducing the corresponding kernels of the following layer.

This means that when using structured pruning, it must be expected a pruning of twice

the percentage of parameters that would be thought in the first place. This is, if a 30% of a

convolutional network is pruned, the first and the last convolutional layers will experience a

reduction of 30% of the parameters, while the rest on the layers will have a reduction of 51%

of the parameters. The first and the last layers will maintain the 70% of the parameters,

whilst the hidden layers will keep the (0.7 ∗ 0.7) ∗ 100 = 49% of the parameters.

Therefore, when pruning filters or nodes it is necessary to consider calculating the number

of actual pruned parameters.

2.6.1.2 Unstructured pruning

Unstructured pruning focuses on reducing the size of a model by removing parameters,

such as weights or biases. Han et al. [Han et al., 2022] presented the basis of this kind of

pruning, which has become one of the most widespread paradigms in the pruning literature.

Pruning connections has advantages such as its simplicity,as it is only needed to replace

24

CHAPTER 2. STATE OF THE ART

the value of a parameter with zero to prune a connection. Still, the most important

advantage of the unstructured pruning is that it focuses on he most fundamental elements

of a network, and thus, it permits removing a large amount of them without having a

significant impact on the performance of the model.

However, this method has a major disadvantage. With most of the current frameworks, re-

placing the parameter tensors with zeros does not have an impact on the cost of the model,

since they cannot accelerate sparse tensors’ computation. To have a real impact, frame-

works would need to modify the architecture of the network, but nowadays no framework

can cope with this.

The Figure 2.17 [Tessier, 2021] represents the difference between unstructured and struc-

tured pruning in convolutional layers. While unstructured pruning is focused on pruning

the parameters inside the kernel, structured pruning removes complete filters from the

layer.

Figure 2.17: Graphic representation of unstructured and structured pruning in a convolutional
layer.

2.6.2 Pruning criteria

Once the pruning structures have been seen, it is important to understand that pruning

can be applied to a model in two different ways: locally or globally.

25

CHAPTER 2. STATE OF THE ART

Local pruning focuses the pruning process on each layer individually and independently

for each other. On the other hand, global pruning is applied to all the parameters of the

network at the same time.

Global structured pruning should not be used unless the norm is normalized by the size

of the parameters, therefore global pruning must be limited to unstructured methods.

Figure 2.18 graphically represent local pruning on the left part and global pruning on the

right. As it is shown, local pruning applies a pruning rate (in this case 50%) to each layer

individually, while global pruning applies it on the whole network at once.

Figure 2.18: Graphic representation of local pruning (left) and global pruning (right).

2.6.3 Pruning methods

Once pruning structures and criteria have been seen, we are focusing on the pruning

method. There are multiple pruning methods in the literature, since many papers bring

their own. However, these methods tend to be customisations of other which are more

general.

In this project we will work with two of the best known methods: the one-shot pruning

and the iterative training-pruning. Next we are explaining them.

26

CHAPTER 2. STATE OF THE ART

2.6.3.1 One-shot pruning

One-shot pruning [Chen et al., 2021] is a method based on the application of pruning on

a DNN which is completely trained. The only objective of this method is to seek the

reduction in size of the model, since it is already trained and therefore, there cannot be

an improvement in training time.

With this method, the definition of pruning is directly applied on a DNN. In practice, one-

shot pruning does no offer many benefits, but it can be an interesting method to figure

out which layers of a model are the least important. Therefore, it is an interesting way to

theoretically understand the performance of a DNN model layer by layer in order to take

another actions afterwards.

As the one-shot pruning is done at the very end of the training process, there are no

constrains in its use, and thus, it can be combined with the different structures and

criteria.

2.6.3.2 Iterative training-pruning method

Iterative training-pruning [Paganini and Forde, 2020] is a method which aims to reduce

the size of the model and its training time. Its performance is based on the fact that the

model is pruned each iteration and hence, it becomes smaller and faster to train.

This method is specially adequate for those models whose training process must be opti-

mized in time.

The Figure 2.19 represents the iterative process that training-pruning method follows for

each epoch. It starts with the training of the model, continues with its pruning and

finalizes with its validation.

This method is limited to structured local pruning techniques, since, as previously said,

unstructured techniques can not improve the performance of pruned models in time.

27

CHAPTER 2. STATE OF THE ART

Figure 2.19: Representation of the iterative training-pruning process.

2.6.4 Pruning in PyTorch

The torch package of PyTorch includes a set of functions that allow the pruning of a model.

In this section it is explained the functioning of these functions and their limitations.

The first task that must be accomplish when pruning in PyTorch is selecting the technique

to prune our model. PyTorch offers different types of pruning in the torch package, for

example, the l1_unstructured, global_unstructured or l2_structured meth-

ods, which perform a norm one unstructured pruning, a global unstructured pruning and

a norm two structured pruning, respectively.

The pruning methods of PyTorch can only be applied on modules, this is, layers or filters.

So the next task is to identify the modules of the model to prune and include them as the

first argument in the pruning method.

Then, the next parameter which must be specified is the sort of parameter to prune within

the module. This argument is normally completed using a string of the value ’weight’ or

’bias’.

Finally, the last argument that must be filled is the percentage of parameters or modules

that have to be pruned (if it is a number between 0 and 1) or the absolute number of

parameters ro modules that should be pruned (if it is a positive integer higher than 1).

In PyTorch, it is possible to have access to the value of all the tensors of parameters that

form a module and we can see if those tensors belong to a bias or a weight. When pruning

a parameter or module, PyTorch fulfills two operations:

28

CHAPTER 2. STATE OF THE ART

1. Firstly, it replaces the name of pruned elements with a parameter formed by adding

orig to the initial parameter name. This is, if weight or bias is the name of the

parameter, the new parameter will be called weight orig or bias orig.

2. Secondly, it creates a buffer with the same size as the parameter in which the pruning

masks are stored. This buffer will only contain zeros or ones depending on whether

the corresponding parameter is pruned or not.

After a model is pruned, all its relevant tensors, including mask buffers and original pa-

rameters, are stored in the model’s state dictionary and thus, can be saved easily.

However, if a permanent pruning is needed, it must be done by a re-parametrization. This

can be performed by means of the remove functionality, which combines the mask buffers

with the original parameters to create a permanent parameter in its pruned version.

The Figure 2.20 represents the pruning process performed by the pruning library of Py-

Torch. As it is seen, it is divided into two steps. Starting from an original weight pa-

rameter, a pruning function is used (in this case, unstructured with a scope of the 30%),

obtaining the two attributes called weight orig and weight mask. Afterwards, the remove

method is used to implement the permanent prune.

29

CHAPTER 2. STATE OF THE ART

Figure 2.20: Representation of the pruning process in PyTorch.

However, there is a major drawback in the pruning library of PyTorch. When a module

is totally pruned, it remains with the same size (same number of parameters) as at the

beginning of the pruning process. The remove method does not literally remove the

parameters that have been pruned from the model, it just makes them zero.

Currently, PyTorch does no have any way to remove those parameters from the model

and solve this problem. Consequently, using PyTorch it is not possible to implement the

definition of pruning in a model, since it will not experience any optimization.

30

CHAPTER 2. STATE OF THE ART

2.6.5 The Simplify library

Simplify [Bragagnolo and Barbano, 2022] is a library created by Andrea Bargagnolo and

Carlo Alberto Barbano whose purpose is to solve the main problem that pruning frame-

works present.

As it has been said in the previous section, neural network pruning theoretically aims to

reduce the models size and complexity. However, in practice, pruning offers few benefits

since current frameworks are limited to converting the pruned weights into zero, and

therefore not removing the pruned parameters.

Simplify allows the effective pruning of neural network model by removing its zeroed

parameters, accomplishing the reduction of computing resources, such as memory footprint

or inference time.

This library is only capable of pruning complete nodes or filters, so its scope is restricted

to models in which structured pruning techniques have been performed.

Simplify provides a method which is very simple to use. This method, which called

simplify, has two main arguments. The first one, is the model to simplify, which

should have been previously trained and pruned. The second argument must be a tensor

of zeros with the same size as the input of the model. Other arguments can be added, but

it is optional.

31

CHAPTER 2. STATE OF THE ART

32

Chapter 3

Compressive optimization of Deep

Neural Networks

In this chapter, the work accomplished along this project is presented. The chapter in-

cludes two sections, which correspond to the two ways that we have studied to optimize

Deep Neural Networks: knowledge distillation and neural network pruning.

All the computations have been run on a NVIDIA GeForce RTX 3060 Ti GPU with a

12th Gen Intel(R) Core(TM) i5-12600 CPU.

In the 3.1 section we started working with two different teacher models, the Densenet-121

and the VGG16. However, due to several problems with the Simplify library we discarded

the Densenet-121 model, so this work only focuses on the VGG16 DNN. However, also

because of the Simplify library, we needed to tune the VGG16 model to make it work

properly.

In our experience, the simplify method does not accept models in which any of their

layers have bias. Although Densenet-121 does not have bias in any of its layers, it includes

some transition layers that, by default, create a bias and therefore, it is impossible to

make it work. Furthermore, Densenet-121 is a very complex DNN, so it is difficult to tune

its structure for the purposes of this project. On the other hand, VGG16 is a bigger but

simpler DNN. Although its pre-trained model has biases in all its layers, it is possible to

remove them and adjust the model to make it work with the simplify method. Hence,

we have chosen VGG16 as teacher model for this work.

For the fulfilment of this project, we have used the data set CIFAR10, which includes

33

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

60000 32x32 coloured images distributed in ten classes. To use train the models with

CIFAR10, firstly, the data need to process. To do it, the image data is transformed

into tensors, normalized with a mean of [0.485, 0.456, 0.406] and a standard deviation of

[0.229, 0.224, 0.225], resized to 256x256 and finally, cropped with a size of 224x224. With

this pre-process, the data set is perfectly ready to be used with most of the pre-trained

models available in PyTorch, and specifically, with VGG16.

Next, we explain all the stages that have been followed to perform a software compressive

optimization of a VGG16 model.

3.1 Knowledge distillation

Knowledge distillation, as it has been explained in the section 2.5, is a technique that

seeks to transfer the knowledge of a large DNN model to a smaller one. In this work, we

have performed an off-line response-based knowledge distillation, since the training of the

student is based on the outputs of a previously trained teacher model.

For the teacher, we have chosen a tuned VGG16 model and for the student, we have

tried different customized models and chosen the one that performs better. Next, we are

explaining all the processes that we have followed to accomplish the knowledge distillation

from the tuned VGG16 model to the student.

3.1.1 The Teacher model

As previously said, the chosen Teacher model is the VGG16. This DNN is comprised

of thirteen convolutional layers with a kernel size of 3x3. These convolutional layers are

clustered in five groups, which are separated by max pooling layers with a kernel size of

2x2. The first group is formed by two layers of 64 filters, the second has two layers of 128

filters, the third one is comprised of three layers of 256 filters each and the four and fifth

groups are compounded by three layers of 512 filters each.

Finally, VGG16 has three fully connected layers with 4096, 4096 and 1000 nodes. As

we can see, VGG16 has 1000 outputs, since it is pre-trained with an image data set

called ImageNet, which has 1000 different classes. The activation function used in all its

convolutional and dense layers is the ReLu function. The Figure 3.1 shows the structure

of the VGG16 DNN with all its convolutional and dense (fully connected) layers.

34

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.1: Graphic representation of the VGG16 DNN structure.

In our work, in order to train the VGG16 DNN as a teacher model it is necessary to tune

it. To do so, we have fulfilled the next steps:

1. Firstly, we load the pre-trained VGG16 model with biases from the PyTorch set of

models.

2. We define a customized VGG16 model with the same number of layers, filters and

nodes, but without biases.

3. We change the number of nodes of the pre-trained model output layer to ten, so that

it matches with the number of classes of the CIFAR10 data set.

4. We copy the state dictionary (parameters) of the pre-trained model into a variable.

5. We copy all the items of the state dictionary that are not biases into a new variable.

6. We change the names of the layers of the copied non-bias state dictionary in order

to make them match with the names of the customized VGG16 model.

7. We assign the items of the non-bias state dictionary to the customized VGG16 model.

8. Finally, we delete the pre-trained model and the variables that store the state dic-

tionaries in order to save memory space.

Once the model is tuned, it is prepared to be trained. However, as we have introduced

in section 2.4, we do not need to train the whole model, since it is already pre-trained.

Therefore, we must select the number of layers that must be trained, considering the final

performance of the model. After some tests, the chosen layers to be trained are the three

fully connected layers and the last five convolutional layers.

Besides, the Stochastic Gradient Descent is used as optimization function, with a learning

rate of 0.001, a momentum of 0.9 and a weight decay of 0.0005. We also set the Cross

35

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Entropy Loss as error function and finally, the number of epochs to 30. Once all the above

steps are done, we are prepared to train the model.

The Figure 3.2 shows the complexity graph of the Teacher model. To train it and avoid

overfitting, selected a 50% of dropout rate is selected and the technique of early stopping

is used.

Figure 3.2: Complexity graph of the VGG16 teacher model.

During the training process, the time that it takes for the model to be trained each epoch

is around 222 seconds.

36

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

The final teacher model is reached in the fifth epoch of the training process, archiving a

training loss of 0.26, a validation loss of 0.57 and a validation accuracy of the 83%. The

VGG16 Teacher model has a size of 524572 KB.

3.1.2 The student model

Once the teacher model is trained and selected, the next step is to define the student

model based on the teacher results. To do it, we have created three different neural

network structures that have been trained with result-based knowledge distillation in order

to compare their performance.

As said before, the student is trained with respect to the results of the teacher. However,

in order to optimize the training process we need to avoid the feedforward process of the

teacher in each epoch. Thus, the inference of the teacher is done out of the training loop

of the student and its results are saved in a variable. To do this, we must be sure that the

data that the teacher and student models receive is not shuffled.

To train the student models we need to create a new error function that compares the

output of the student with the output of the teacher, which is the target. This error

function passes both outputs through a softmax function and then calculates the minimum

square error between them. However, we must be aware that if we pass the outputs

themselves, when the backpropagation is performed it is done for both models. Therefore,

the inputs of the error function must be the output of the student model and the value of

the output of the teacher model. In this way we achieve that the backpropagation is fulfilled

only in the Student model. To have access to the value of the teacher output it is enough

to add .data to the input variable. Another alternative to avoid the backpropagation is to

set the Teacher model in evaluation mode.

In this case, we obviously need to train all the layers of the models. To do it, we select

the Adam algorithm optimizer with a learning rate of 0.00005.

Model 1

The first model is the smallest of the three and its structure is formed by three convo-

lutional layers and two fully connected layers. All the convolutional layers are separated

by a max pooling layer and have a kernel size of 3x3. The first layer, which receives the

input data, has 8 filters, the second is comprised of 64 filters and the last one is formed

by 128 filters. The first and second fully connected layers have 100 nodes and 10 nodes,

respectively. The Figure 3.3 shows a graphic representation of this structure. Although it

37

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

does not appear in the figure, the activation function used in all the layers of this DNN is

the ReLu function.

Figure 3.3: Representation of the structure of the student neural network 1.

This DNN has been trained for 200 epochs to obtain reliable results, using a dropout of

the 55% and the technique of early stopping. Eventually, the final model is reached in the

epoch 177, achieving a training loss of 0.0051, a validation loss of 0.0091 and a validation

accuracy of the 61.5%. The Figure 3.4 represents the complexity graph of the Student

model 1. It is interesting to notice that the training and validation loss are computed

with respect to the outputs of the teacher model, but the validation accuracy is obtained

with regard to the final targets. The training process of the Student model 1 has taken

58 seconds for each epoch and has achieve a model with a size of 2763 KB.

Model 2

The second neural network that is proposed as student is larger than the first one. In this

case, the DNN is formed by five convolutional layers separated by max pooling layers and

four dense layers. As it is shown in the Figure 3.5, the first convolutional layer has 8 filters,

the second 16 filters, the third has 32 and the fourth and fifth, 64 and 128, respectively.

On the other hand, the DNN has two fully connected layers of 100 nodes, one of 50 nodes

and finally, the output layer with 10 nodes. In this case, all the activation functions of the

different layers are also ReLu functions.

38

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.4: Complexity graph of the Student 1 model.

Figure 3.5: Representation of the structure of the student neural network 2.

39

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

This DNN has been trained for 100 epochs with a dropout rate of 55% and using the

technique of the early stop. As it is shown in the Figure 3.6, the complexity graph

indicates that the final Student model 2 is reached in the epoch 91, obtaining a training

loss of 0.0064, a validation loss of 0.00911 and a validation accuracy of the 62%. Just

like the Student model 1, the training and validation losses shown in the Figure 3.6 are

computed with respect to the teacher model outputs, and the accuracy, with respect to

the final targets. Each epoch of the training process of the model 2 has taken 44 seconds;

and the model obtained has a size of 2897 KB.

Figure 3.6: Complexity graph of the Student 2 model.

40

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Model 3

The DNN of the Model 3 is the largest of the three proposed models. As it can be seen in

the Figure 3.7 this DNN is comprised of seven convolutional layers and five dense layers.

The convolutional layers are divided in five groups which are separated by max pooling

layers. The first group is formed by a layer of 8 filters, the second by a layer of 16 filters,

the third by a layer of 32 filters, the fourth group is comprised of two layers of 64 filters

and finally, the last group is formed by two layers of 128 filters. After the convolutional

layers, the DNN has a sequence of three fully connected layers of 100 nodes, followed by a

dense layer of 50 nodes and finally, the output layer with 10 nodes. Just like the previous

Models, the activation function used by all the layers is the ReLu function.

Figure 3.7: Representation of the structure of the student neural network 3.

This DNN has been trained for 300 epochs with a dropout rate of 55% and using the

technique of early stopping. In the Figure 3.8 it is shown the complexity graph of the

Student model 3, in which it can be appreciated that the Student model 3 is reached in

the epoch 269, having a training loss of 0.0047, a validation loss of 0.0074 and a validation

accuracy of 66.9%. In the Figure 3.8, around the epoch 200, we can observe a little step

in the training loss that is due to the need to perform the training process of the model in

two batches. Computing the Student model 3 takes a training time of 48 seconds for each

epoch, obtaining a model with a size of 3657 KB.

Having the data of the three models we need to choose one of them to continue with the

software optimization. Depending on our final aim there are different criteria that can be

followed in order to select the appropriate model, such as the accuracy, the size or the

training time. The main results of the student models are the following:

41

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.8: Complexity graph of the Student 3 model.

❼ Student model 1 reaches an accuracy of the 61,5% with a size of 2763 KB and a

training time of 58 seconds per epoch.

❼ Student model 2 reaches an accuracy of 62%, having a size of 2897 KB and taking

a training time of 44 seconds per epoch.

❼ Student model 3 reaches an accuracy of 66.9%, with a size of 3657 KB and a training

time of 48 seconds.

42

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

In terms of size, the three models involve a huge reduction with respect to the size of the

Teacher model, which is 524572 KB. The Student 1 means a reduction of the 99.47%; the

Student 2, a reduction of the 99.45%; and the Student 3, a reduction of the 99.3%. As we

can see, despite the Student 1 is the one that reduces the size the highest quantity, all of

them are good enough. In practice, unless there is an explicit constrain in the size of the

model, all the students would be adequate.

The training time can be important in some applications such as communications or dis-

tributed learning. Again, the training times are very similar, with 58, 48 and 44 seconds

for the Student 1, 2, and 3, respectively. So this feature does not make a big difference.

Accuracy might be the most important attribute of a model, since it is directly related to

its performance. Student models 1 and 2 have very similar accuracy, with a 61.5% and a

62%. However, the Student model 3 has almost a 5% more of accuracy than the others,

achieving the 66.9%.

Therefore, taking into consideration all the results, the selected model is the number 3,

since it has a significantly better accuracy than the rest, its training time is the second

lowest and still, conserves a very small size with respect to the teacher.

3.2 Neural Network Pruning

Currently, neural network pruning has become one of the most popular techniques of

software optimization. This popularity has lead to extensive research in the scientific

community. However, despite this effort, nowadays it is still far from being fully developed

since there are great constrains in its deployment.

As already seen in section 2.6, in practice, pruning scope is very limited. Unstructured

methods do not have an actual influence in neural network performance due to the exist-

ing difficulties in removing the the zeroed parameters and main frameworks do not offer

real alternatives for structured pruning either. In the case of PyTorch, pruning scope is

also limited to turning the required parameters into zero, but not removing them form

the neural network. Due to this major drawback, we needed to look for alternatives to

accomplish the removal of zeroed parameters. After an deep search in the field, we found

a library capable of what we were pursuing.

Simplify, introduced in section 2.6.5, is a library able to remove the zeroed parameters

from a pruned neural network. In this context, we will talk of pruned neural network

when its least important parameters or nodes (or filters) are turned into zero; and we will

43

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

talk of a simplified neural network when the parameters that have been made zero during

the pruning process are removed from the neural network.

However, this library also presents some inconvenience. Although it is supposed to dif-

ferentiate which layers must be simplified and which are not (as for example, the output

layer), in our experience, it does not do it. It does not accept deep neural networks whose

nodes or filters have bias. We have experience several problems related to this fact that

have forced us to use a modified VGG16 DNN as a teacher and a student without bias.

Initially, this work was thought around the idea of using a Densenet-121 DNN as a teacher,

since it is a light and powerful neural network, but the impossibility of using it with the

Simplify library made us take the decission of using the VGG16 DNN.

Next, we explain the work performed in this project related to the pruning techniques.

This work is divided in three subsections which are based on the different stages of the

project:

1. Firstly we perform an unstructured one-shot global pruning and explain its implica-

tions.

2. Then we perform a structured local training-pruning.

3. Finally, we perform a structured local training-pruning taking into account the re-

sults obtained from the first unstructured one-shot global pruning.

3.2.1 One-shot unstructured global pruning

Unstructured pruning is a technique based on the removal of the least important param-

eters of a model individually. As previously mentioned, in practice it is not possible to

remove those parameters, hence, what frameworks actually do is just zeroing them.

In our case, we are performing a one-shot unstructured global pruning, which means that

we are zeroing the least important parameters of a complete deep neural network at the

same time, at the end of the training process. Since we cannot optimize a model doing this

technique, our main goal is to identify where the least important parameters of a model

are located.

It is important to mention that we have experience a major drawback in the application

of this technique on the teacher model. VGG16 Teacher model has a huge size, more than

500 MB, which means a massive number of parameters. For this reason, when applying

44

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

global pruning to the VGG16 Teacher model and the pruning method of the PyTorch

pruning package takes places, the GPU runs out of memory, reserving more that 5.5 GB

for PyTorch.

To solve this problem, we have tried to accomplish a local unstructured pruning. However,

the proportion of parameters throughout the VGG16 model is not distributed homoge-

neously. In fact, up to a 90% of VGG16 parameters are located in its classification part,

namely, the fully connected layers. Therefore, even performing the unstructured pruning

locally, when the process reaches the point in which the first fully connected layer must

be pruned, the GPU crashes.

Since it is not possible to accomplish the unstructured global pruning on the teacher model,

we have only performed it on the student. To do so, PyTorch pruning package includes

an specific method called global_unstructured. This method has three arguments,

which are the parameters to prune, the pruning method used and the amount of pruned

parameters.

Having this information, we can follow the next procedure to fulfil the one-shot unstruc-

tured global pruning:

1. Firstly, we load the trained model.

2. We set the percentage of the parameters of the model that must be pruned.

3. Then, we stablish the type of modules that must be pruned. In PyTorch, these

modules usually are nn.Conv2d or nn.Linear, which make reference to the con-

volutional and dense layers.

4. Having the modules, we identify the parameters that must be pruned.

5. We set the pruning method and perform the pruning process using the function

global_unstructured.

6. We use the remove method on the pruned modules.

7. Finally, we accomplish an inference of the pruned model to test its performance.

In our case, firstly we load the state dictionary of the already trained Student model 3.

Our objective is to prune it for different percentage of pruned parameters, so we set those

percentages to run a loop. Afterwards, we identify all the parameters of all the layers as

parameters to prune and set the L1Unstructured method, which compares the values of

those parameters using the norm 1. Finally, we run the global_unstructured method

to perform the pruning process.

45

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

In Figures 3.9, 3.10, 3.11, 3.12 and 3.13, it is shown the sparsity (percentage of pruned

parameters) of the layers of the Student model 3 for a total amount of pruned parameters

of the 20%, 30%, 40%, 50% and 60%, respectively.

Figure 3.9: Sparsity of each layer of the Student model after applying a one-shot unstructured
global pruning to the 20% of parameters.

In the graphic represented in Figure 3.9 we can observe that the first classification layer,

whose name is fc1, has a much higher sparsity than the rest of the of the layers.

It is important to mention that convolutional neural networks which have a feature-

extracting part, formed by convolutional layers, and a classification part, formed by fully

connected layers, the first fully connected layer of the classification part tends to have a

great percentage of the parameters of the whole model. In the case of our Student model,

this layer is the fc1 and has the 67.07% of the parameters of the entire model.

46

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

This explains why the sparsity of the rest of the layers is so low.

Figure 3.10: Sparsity of each layer of the Student model after applying a one-shot unstructured
global pruning to the 30% of parameters.

Analysing the Figure 3.10 we can confirm the tendency of the layer fc1. In the feature-

extracting part, we can also observe that in the first layers the sparsity is lower than in the

last ones. This can be explained according to the sort of features that each layer extract:

while the first layers manage more general features which are usually important, the lest

layers focus on specific features that can be irrelevant.

47

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.11: Sparsity of each layer of the Student model after applying a one-shot unstructured
global pruning to the 40% of parameters.

In the Figure 3.11 we can observe that the tendency of pruned parameters in the different

layers is confirmed. However, we can also observe that fc2 and fc4 have a lower sparsity

than the rest of the fully connected layers. The main reason for this behaviour is that

fc2 receives a huge amount of information from the previous layer (fc1) and therefore, its

classification must be important. On the other hand, fc4 is the output layer and thus, its

parameters take an important part in the performance of the model.

48

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.12: Sparsity of each layer of the Student model after applying a one-shot unstructured
global pruning to the 50% of parameters.

In Figures 3.12 and 3.13 it can be observed that the trends commented before continue.

Particularly, in Figure 3.13, in spite of these trends, the sparsity of all the layers increases

significantly as a consequence of the higher percentage of global parameters.

Once we have seen the impact that pruning has in the different layers of the Student

model, we must analyse its impact on the final accuracy of the model. To do this, we have

compared the amount of pruned parameters of the whole model with its accuracy.

The result is the graphic shown in the Figure 3.14. Analysing this plot, it can be seen

that, theoretically, for a wide range of pruned parameters the accuracy of the model does

not decrease.

49

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.13: Sparsity of each layer of the Student model after applying a one-shot unstructured
global pruning to the 60% of parameters.

It is important to remember that global unstructured pruning affects directly the least

important parameters of the model and therefore, it is very powerful. As we can see in

Figure 3.14, using this method we can prune the 60% of the parameters without any loss

in accuracy. This result is astonishing, since it reveals that the pruned model can perform

exactly the same as the original model, but having the 40% of its parameters. However,

as we have seen in previous sections, unstructured pruning is theoretical and can not be

put into practice. This means that, even thought a 60% of the parameters of the model

can be pruned maintaining its accuracy, there will not be an actual improvement in the

structure of the model, this is, its size will remain the same (3657 KB) and its training

time as well.

50

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Figure 3.14: Representation of the accuracy achieved by the Student model when it is pruned for
different percentages of parameters.

3.2.2 Structured local training pruning

Once the unstructured global pruning is done, the next step in the proposed experiments

is to perform a structured local pruning. As said in section 2.6, using this method, nodes

and filters will be pruned instead of parameters, so if we want to accomplish a pruning of

a certain percentage of parameters, we need to relate the percentage of pruned nodes with

the percentage of pruned parameters. This relation has also been introduced in section

2.6 and links the percentage of pruned input and output channels with the percentage of

pruned parameters.

Unlike the one-shot pruning, with training pruning we must prune the model at the same

time as it is trained. This implies that we must retrain the teacher and the student models

in order to obtain reduced models with adjusted parameters.

51

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

For each epoch, the training pruning process follows the next steps:

1. Firstly, the model is trained as it is done normally.

2. Then, we perform the pruning structured local training of the model. Unlike with

unstructured global pruning, in this case we need to directly identify and prune the

desired layers. To do it, we run a loop throughout the whole model checking if each

module must be pruned. If so, the structured local pruning is performed using the

method ln_structured from the PyTorch pruning package. This method receives

four inputs as arguments, which are the module that contains the tensor to prune,

the name of the parameter on which pruning will act (it can be ’weight’ or ’bias’),

the percentage of nodes or filters to prune, the norm used to compare and choose

the modules to prune and the dimension along the channels to prune are defined. In

our case, we will only prune weights, since they represent the majority of the model

and the two final arguments will always have a value of 1 and 0, respectively. There-

fore, the pruning function will look like this: prune.ln_structured(module,

name="weight", amount, n=1, dim=0). It is important to mention that we

never prune the output layer, since it creates errors when using the simplify

method.

3. Afterwards, we simplify the model using the simplify method. To do so, we only

need to introduce the model and a tensor of zeros as arguments.

4. Then, we need to accomplish the fine-tuning process. Since the structure of the

model changes during the pruning and simplify processes, we need to re-select which

parameters must be trained in the next training iteration.

5. Finally, we validate the pruned model.

As previously said, since we are now pruning nodes and filters, it is possible to use the

Simplify library. Doing this, we will no longer do a theoretical pruning, but will start

performing a real compression of the models.

Another aspect to keep in mind is that, since the training pruning procedure removes a

little amount of nodes or filters each epoch for several epochs, in every iteration the pruned

model is smaller than in the previous one. This involves that the amount of nodes or filters

that are pruned each epoch is not constant for the same percentage, as while the percentage

of pruned modules is constant, the size of the model is constantly reduced. However, it is

possible to compute the percentage of pruned modules in each epoch according to the final

percentage of pruned modules and the number of epochs in which pruning is performed.

The equation 3.1 shows this relation, where y represents the final percentage of remaining

52

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

nodes or filters of a layer, x represents the constant percentage of pruned modules in each

epoch and n represents the number of epochs in which the local pruning of the layer is

accomplished.

y = (1− x)n (3.1)

Therefore, knowing the final percentage of remaining modules of a layer and establishing

the constant percentage of pruned modules in each epoch, it is possible to compute the

needed number of epochs to fulfil this process. Taking logarithms, the equation 3.2 is

achieved.

n =
log(1− x)

log(y)
(3.2)

In the case of structured pruning, it has been possible to perform the experiments for

both the teacher and the student models, since the GPU has been able to withstand the

structured local pruning process. These experiments have the objective of testing the

accuracy and the computing time of both models while training.

The structured local training-pruning experiments are divided into two groups.

1. In the first group of experiments, all the layers have the same percentage of pruned

modules. These experiments will be called static structured training pruning.

2. The second group of experiments is based on the results obtained in the unstruc-

tured global pruning experiment. In this experiment, the final percentage of pruned

modules of each layer is selected according to the percentage of pruned parameters

of each layer achieved in the unstructured pruning experiment. These experiments

will be called dynamic structured training pruning.

Next, we explain the steps followed to accomplish the static and dynamic structured

pruning experiments for the Teacher and the Student models.

3.2.2.1 Static structured training pruning

These experiments are characterised by the fact that all the layers of the pruned model

have the same percentage of pruned modules. Below, we explain the static experiments

53

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

applied on the Teacher and the Student models.

Teacher model

The aim of this training-pruning process of the Teacher model is to get a final percentage of

pruned parameters of the 45%. To perform it, we firstly train the model, without pruning,

for 10 epochs and afterwards, we prune a 3 percent of the nodes or filters for the following

ten epochs.

Figure 3.15: Complexity graph of the structured trained-pruned Teacher model.

54

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Doing this and using the equation 3.1, at the end of the training process a 26.25% of the

nodes or filters of each layer will be pruned, which means a reduction of the 45.6% of

the parameters.Pruning a 26.25% of the total nodes or filters of each layer means that

the 73.75% are still available. As explained in section 2.6, to compute the percentage of

remaining parameters it is only necessary to multiply the percentage of input and output

channels of each layer, which leads to the equation 3.3.

Figure 3.16: Comparison of the pruned/non-pruned Teacher models.

55

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

0.7375 ∗ 0.7375 = 0.55 (3.3)

Therefore, having a reduction of the 26.25% of the nodes will lead to a reduction of the

45% of the parameters in each layer.

However, the input and output layers are an exception to this rule, since they can not be

modified and therefore, can not be pruned.

The Figure 3.15 shows the complexity graph of the structured local training-pruning

Teacher model. When the model starts being pruned at epoch 10, the training and vali-

dation loss increase and the validation accuracy starts decreasing.

Moreover, if we use the early stopping technique, in this context, the pruning process is

useless, since the lowest validation loss remains in the non-pruned region, this is, the ten

first epochs.

However, in the Figure 3.16 it can be seen that the pruning process of the model involves

a great reduction in the training time, above all in the last epochs, when the amount of

pruned parameters is higher.

Therefore, depending on the application of the Teacher model there must be a balance

between the accuracy that the model can achieve and the time that it needs to be trained.

Student model

The objective in the training-pruning process of the Student model is to achieve a 36% of

pruned parameters at the end of the training. To do it, we need to prune a 20% of the

nodes of each layer, allowing keeping a 80% of the nodes or filter. As we have previously

seen, this can be explained by the equation 3.4 which states that:

parameters(%) = input channels(%) ∗ output channels(%) (3.4)

And thus, it can be proved that if we keep the 80% of the nodes or filters and using the

equation 3.4, the final percentage of parameters is (0.8 ∗ 0.8 = 0.64) the 64%.

To deploy this process, we prune the Student model a 2% for every epoch that is higher

than 200 and lower than 280 and also is a multiple of 7. Doing this, all the modules of the

56

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

model will be pruned a 2% eleven times and thus, according to the equation 3.1 we will

achieve the desired pruning percentage of 20%.

It must be noticed that using this procedure, the first two convolutional layers will never

be pruned, since they only have 8 and 16 filters, respectively, and thus, when a pruning of

2% is applied to them, the result is always under 0.5, which makes these layers impossible

to prune.

Figure 3.17: Complexity graph of the structured trained-pruned Student model.

57

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

It is necessary to be aware that for every epoch that we prune the model, we also need to

simplify it, and therefore, we also need to used the simplify method every epoch that

is higher than 200 and lower than 280 and also is a multiple of 7.

In the Figure 3.17 it is shown the complex graph of the pruned Student model.

Figure 3.18: Comparison of the pruned/non-pruned Student models.

During this training pruning process we have only pruned the model for the last 100 epochs.

In order to train the model it has been used a 50% of dropout rate and the early stopping

58

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

technique, and therefore, the final model does not have a 36% of pruned parameters. In

fact, the achieved model has a size of 3142 KB, which means a 15% of size reduction.

Comparing the complexity graph of the Figure3.17 with the one of the Figure 3.4, it

is possible to observe that the pruned model slightly increases its validation losses with

respect to the non-pruned model. However, with the Figure 3.18 we can also notice that

the validation accuracy of the pruned model at the end of the training process is reduced

approximately a 7%, which means an undesired effect of pruning. Regarding the computing

time, in this case we can not conclude that pruning affects it directly.

3.2.2.2 Dynamic structured training pruning

In this subsection we are testing the performance of structured local training pruning using

the data obtained from the unstructured global pruning. Namely, we will locally prune

the different layers of the deep neural networks with the percentage of pruned parameters

obtained in the unstructured global pruning experiment.

Since the objective is to prune a specific percentage of parameters for each layer while we

prune the different nodes or filters of each layer, we need to relate the desired percentage

of pruned parameters with the percentage of modules that we aim to prune. This process

has been done using the equation 3.4 and taking into account that every layer is connected

to the following one.

The result of these computations is the Table 3.1 for the teacher and the Table 3.2 for

the student. Since it has not been able to perform the unstructured global pruning of

the Teacher model due to the computing requirements of the process, we will use, as a

reference, the results obtained from the unstructured global pruning of the Student model,

as they share a similar structure.

Teacher model

Our objective in this experiment is to perform a training-pruning process which prunes

approximately the 40% of the parameters at its end. To do it, we will customize the

amount of pruned parameters of each layer by an estimation, as it is shown in the Table

3.1.

This experiment follows a training-pruning process of 20 epochs in which the model is

trained without pruning for the first ten epochs, and for the second ten it is trained and

59

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

pruned iteratively.

As we can see, this table is created around the idea that the first classification layer of

the model is the one that has the largest number of superfluous parameters and therefore,

we need to prune it for the highest percentage of parameters. However, doing this we are

also forced to prune a high percentage of the parameters of its closest layers. The layers

features28 and classifier3 are the most affected by this fact.

Table 3.1: Relations among the pruned nodes, pruned parameters and final parameters of the
Teacher model.

Name Pruned nodes
(%)

Final nodes(%) Pruned
parameters

(%)

Final
parameters

(%)

features0 4 96 4 96

features2 4 96 8 92

features5 4 96 8 92

features7 4 96 8 92

features10 4 96 8 92

features12 4 96 8 92

features14 4 96 8 92

features17 4 96 8 92

features19 4 96 8 92

features21 6 94 10 90

features24 8 92 14 86

features26 10 92 17 83

features28 26 74 35 65

classifier0 40 60 57 43

classifier3 10 90 46 54

classifier6 0 100 10 90

Since the Table 3.1 represents the final percentage of pruned nodes or filters that the model

must have, it is necessary to follow an strategy to perform the training-pruning process

and thus, remove the redundant nodes gradually. To do it, we use the equation 3.2, as we

already know the percentage of final nodes (second column of the Table 3.1).

The pruning process starts at the epoch 11. All the layers that have a final pruning

percentage of the 4% (see Table 3.1) of their filters are pruned twice, in the epochs 12 and

14, removing the 2% of the filters each time. The convolutional layers called features21 and

features24 have a 2% of their parameters pruned along three and four epochs, respectively.

60

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

The rest of the layers are pruned every single iteration from the epoch 11 until the end

of the training process. Specifically, for each epoch, the layer features26 is pruned a 1%,

the layer features28 is pruned a 3%, the layer classifier0 is pruned a 5% and the layer

classifier3 is pruned a 1% of its nodes. Finally, the layer classifier6, since it is the output

layer and therefore, must be unmodified.

Figure 3.19: Complexity graph of the structured trained-pruned Teacher model with customized
amount of pruned parameters.

61

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

With this pruning strategy, the Teacher model has been trained-pruned, obtaining the

complexity graph showed in the Figure 3.19.

This complexity graph has a major difference with respect to the one seen in the section

3.2.2.

Figure 3.20: Comparison of the pruned/non-pruned Teacher models.

On the one hand, the training loss behaves in a very good way, descending almost all the

time, and the validation loss remains quite invariant, achieving its minimum at the epoch

62

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

11. This means that in this case, if we use the early stopping technique, the resulting

model will be pruned a 10% out of the expected pruning aim, this is, approximately a 5%

of the whole model. Hence, the model passes from a size of 524572 KB to a size of 495081

KB.

On the other hand, the validation accuracy remains quite stable, not descending severely.

In the Figure 3.20 it can be seen that this reduction in the accuracy is very slight for

most of the epochs. Even, in epoch 11 (when the model starts to be pruned) the pruned

Teacher model presents a better accuracy than the original teacher.

The training time graphic shown in the Figure 3.20 also presents an interesting behaviour.

When the model is pruned for the first epochs, the training time increases. However,

despite that increment of the training time, when the model is pruned for a larger amount

of parameters, the training time performs as expected and decreases continuously.

Student model

Our objective with the Student model is also to prune a 40% of its parameters at the

end of the training process. We will use the results obtained from its unstructured global

pruning experiment, which are shown in the Figure 3.11. Using these results, we have

created the Table 3.2.

Table 3.2: Relations among the pruned nodes, pruned parameters and final parameters of the
Student model.

Name Pruned nodes
(%)

Final nodes (%) Pruned
parameters (%)

Final
parameters (%)

conv1 6 94 6 94

conv2 2 98 8 92

conv3 8 92 10 90

conv4 4 96 12 88

conv4 1 10 90 14 86

conv5 4 96 14 86

conv5 1 32 68 35 65

fc1 32 68 54 46

fc2 4 94 35 65

fc2 1 8 92 12 88

fc3 8 92 16 84

fc4 0 100 8 92

63

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

However, although all the layers present a similar percentage of pruned parameters as in

the previous unstructured global pruning experiment, there is a slight difference in the

layers conv5 1 and and fc2, since the constrains regarding pruning nodes instead of the

pruned parameters must be taken into account.

As it can be seen in Table 3.2, each layer is supposed to have a certain percentage of pruned

nodes or filters at the end of the training-pruning process. This percentage has been

calculated using the results obtained from the unstructured global pruning experiment.

Besides, three experiments will be performed using the dynamic structured global pruning

in order to test the effect of starting pruning in a early, middle or late stage of the training

pruning process.

1. In the first strategy, called early pruning, the model is pruned along the entire

training process.

2. In the second strategy, called middle pruning, the model starts being pruned at

epoch 100 and lasts until the end of the training process.

3. In the third strategy, called late pruning, the model is pruned from epoch 200 until

the end of the training process.

In all the strategies the same percentage of nodes and filters is pruned in order fulfil them

using the same number of pruning epochs. Using the equation 3.1 it is possible to establish

a relation among the expected percentage of pruned modules, the real percentage of pruned

nodes and filters, the percentage of pruned modules in each iteration and the number of

epoch that the layers must be pruned to achieve the objective. The Table 3.3 shoes this

relation.

Table 3.3: Relations among the percentage of pruned modules in each epoch, the number of pruning
epochs, and the expected and real percentage of pruned modules of each layer of the Student model.

Pruning step
(%)

Number of
steps

Real pruned
nodes (%)

Expected
pruned

nodes (%)

2 1 98 98

2 2 96 96

2 3 94.1 94

2 4 92.2 92

2 5 90.4 90

2 20 66.7 68

64

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Therefore, having the Tables 3.2 and 3.3, it is possible to relate each layer of the model

with its expected final percentage of pruned modules and thus, the number of epochs that

their nodes or filters must be pruned a 2%.

Figure 3.21: Complexity graph of the structured trained-pruned Student model with customized
amount of pruned parameters following an early pruning strategy.

Since the layers conv1 and conv2 have few output filters (8 and 16, respectively), it is

worthless to prune a 6% or 2% of their filters, as it means that we would remove 0.48

and 0.32 parameters, what is impossible. Therefore, these layers are not included in the

pruning process. This fact, does no affect the quality of the pruning process, since they

65

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

only represent the 1.5% of the parameters of the model.

Knowing this, the three strategies are presented.

Early pruning

In the early pruning, we follow the next strategy, which can also be seen in the Appendix

E:

Figure 3.22: Comparison of the pruned/non-pruned Student models following an early pruning
strategy.

66

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

❼ For layers conv4, conv5 and fc2 we prune a 2% of their modules on epochs 50 and

150.

❼ For layers conv3, fc2 1 and fc3 we prune a 2% of their modules on epochs 60, 120,

180 and 240.

❼ For the layer conv4 1 we prune a 2% of its modules on epochs 50, 100, 150, 200 and

250.

❼ For layers conv5 1 and fc1 we prune a 2% of their modules every epoch that are

multiple of 10, higher than 10 and lower than 220.

Performing the training-pruning process with the pruning strategy explained before, leads

to the complexity graph presented in the Figure 3.21. As it can be seen, at the end of

the training process, the training loss and the validation loss achieve values of 0.004 and

0.0053, respectively, outperforming the non-pruned model.

On the other hand, as it can be observed in Figure 3.22, the validation accuracy is slightly

reduced with respect to the non-pruned model. However, this reduction means a 1% of

accuracy, which is almost negligible. Using the technique of early stopping, the obtained

model has a size of 2460 KB, what means that the dynamic structured training-pruning

along with an early pruning strategy is capable of reducing approximately a 33% the size

of the original model maintaining its full performance.

Middle pruning

In the middle pruning strategy, we follow the next scheme that can also be found in the

Appendix E:

❼ For layers conv4, conv5 and fc2 we prune a 2% of their modules on epochs 101 and

201.

❼ For layers conv3, fc2 1 and fc3 we prune a 2% of their modules on epochs 120, 160,

200 and 240.

❼ For the layer conv4 1 we prune a 2% of its modules on epochs 110, 140, 170, 200

and 230.

❼ For layers conv5 1 and fc1 we prune a 2% of their modules every epoch that are

multiple of 10 and higher than 100.

67

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Applying the middle pruning strategy to the Student model leads to the complexity graph

shown in the Figure 3.23. In this figure it can be seen that the model experience a

strange behaviour when it starts being pruned. The accuracy, which is almost stabilized

before epoch 100, rises sharply afterwards. The training and validation loss also have a

marked decrease around epoch 100. This could be caused because, before pruning the

error function is stabilised around a local minimum and when it starts being pruned, the

error function suffers an alteration, reaching a lower minimum.

Figure 3.23: Complexity graph of the structured trained-pruned Student model with customized
amount of pruned parameters following a middle pruning strategy.

68

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

However, in Figure 3.24 it is shown that the final performance of the middle strategy is

not as good a the early strategy. The final validation accuracy of the middle pruning only

achieves a maximum value of the 57.5%, what means a reduction of almost the 10% with

respect to the non-pruned model. In Figure 3.24 it can also be seen that in this case the

computing times of the pruned model is slightly lower than the times of the non-pruned

model. However, this decrease is not very important, since it could simply be caused by a

release of resources of the GPU.

Figure 3.24: Comparison of the pruned/non-pruned Student models following a middle pruning
strategy.

69

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

Late pruning

In the late pruning strategy, that can also be found in the Appendix E, we follow the next

strategy:

❼ For layers conv4, conv5 and fc2 we prune a 2% of their modules on epochs 210 and

220.

❼ For layers conv3, fc2 1 and fc3 we prune a 2% of their modules on epochs 210, 230,

250 and 270.

Figure 3.25: Complexity graph of the structured trained-pruned Student model with customized
amount of pruned parameters following a late pruning strategy.

70

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

❼ For the layer conv4 1 we prune a 2% of its modules on epochs 220, 230, 240, 250

and 260.

❼ For layers conv5 1 and fc1 we prune a 2% of their modules every epoch that are

multiple of 5 and higher than 200.

Figure 3.26: Comparison of the pruned/non-pruned Student models following a late pruning strat-
egy.

The complexity graph of this experiment is presented in the Figure 3.25 and, as in the com-

71

CHAPTER 3. COMPRESSIVE OPTIMIZATION OF DEEP NEURAL NETWORKS

plexity graph of the middle pruning strategy, shows a very interesting behaviour. When

the model starts getting pruned, the loss and validation losses are slightly reduced while

the validation accuracy experiences a sharp increase, achieving a value of approximately

the 63%.

Nevertheless, we can observe in Figure 3.26 that the computing time of the pruned model

compared to the non-pruned model does not present any kind of reduction.

These results confirm the good performance of the training-pruning process when the

amount of pruned nodes or filters are selected according to the pruned parameters of an

unstructured global pruning experiment.

72

Chapter 4

Results

In this chapter the results of the different experiments performed along this project are

presented and discussed. We have used and combined three techniques whose objec-

tive is the compressive optimization of a deep neural network. These techniques are the

knowledge distillation, the one-shot unstructured global pruning and the structured local

training-pruning. Next, the settings and results for these experiments are explained.

4.1 Knowledge distillation

In the knowledge distillation experiment we selected a pre-trained VGG16 model without

biases as teacher and then, tested the performance of three different deep neural net-

works as student. The established settings and the obtained results of this experiment are

explained in the next subsections.

4.1.1 Settings

Firstly, the pre-trained VGG16 DNN without biases was selected as the Teacher model. All

the fully connected layers of this model and the last 5 convolutional layers were trained for

20 epochs, keeping the gradients of the rest layers frozen. In order to train the model, the

stochastic gradient descent optimizer was chosen along with a cross entropy loss function.

The inputs of the optimization function were a learning rate equal to 0.001, a momentum

of 0.9 and a weight decay of 5 ∗ 10−4.

73

CHAPTER 4. RESULTS

The Student model 1 was the smallest among the three proposed student neural networks,

having three convolutional layers and two dense layers, which means a size of 2763 KB.

The Student model 2 had five convolutional layers and four dense layers, resulting a size

of 2897 KB. Finally, the Student model 3 had seven convolutional layers and five dense

layers, involving a size of 3657 KB.

All the proposed student neural networks were fully trained using an offline knowledge

distillation and a response-based knowledge approaches. The loss function used to train

this model was the minimum square error, which compared the softmax outputs of the

teacher and the students. The optimizer used was the Adam function, with a learning

rate of 0.00005. In this case, the Student model 1 was trained for 200 epochs, the Student

model 2 for 100 epochs and the Student model 3 for 300 epochs. All the models were

trained using a dropout rate of the 50% in their classification layers.

4.1.2 Results

The results of this experiment vary depending on the complexity of the model. The

Student model 1, which is the simplest, shows an accuracy of the 61.5%, a training loss

of 0.0051 and a validation loss of 0.0091; the Student model 2 shows an accuracy of the

62%, a training loss of 0.0064 and a validation loss of 0.0091; and the Student model 3,

which is the largest, shows a 66,9% of validation accuracy, a training loss of 0.0047 and a

validation loss of 0.0074.

Amongst the three models we have finally selected the Student model 3 in order to fulfil the

following experiments. Even though this model is larger than the others, it outperforms

them in terms of validation accuracy by almost a 6%. This means a better performance

in the classification problem.

With the results obtained in the knowledge distillation experiment we can conclude that

this technique is highly efficient in terms of compression. In our case, we have passed from

a Teacher model with a size of 524572 KB to a Student model of 3657 KB, what means a

size reduction of the 99,3%. However, this high decrease involves a loss in the accuracy.

Specifically, we pass from a 83% of accuracy of the teacher to a 66.9% of the student, what

means a reduction of a 16.1% of the accuracy.

Depending on the needed application, it is necessary to balance between the size and the

accuracy of the Student model. Results show that the larger the model is, the better

accuracy it will have. However, it is also important to know how to enlarge the Student

model. We must be aware that, usually, the first classification layer of the model, which

74

CHAPTER 4. RESULTS

receives the data from the last convolutional layer, means more than the 50% of the size of

the whole model. Hence, in order to increase the accuracy of a Student model the key is

to add new convolutional and dense layers that do not involve an increase in the number

of parameters of the first classification layer.

4.2 One-shot unstructured global pruning experiment

In the one-shot unstructured global pruning experiment this technique was applied to

the VGG16 Teacher model and the Student model selected in the Knowledge distillation

experiment. Next, we explain the settings of this experiment and its results.

4.2.1 Settings

To perform this experiment the same steps were followed for both the Teacher and the Stu-

dent models. Firstly, the state dictionary saved from the training process of the Knowledge

distillation procedure was loaded into a variable. Then, all the parameters of the models

were identified and assigned to a variable to prune them. Afterwards, the model was glob-

ally pruned and the inference process was performed in order to calculate the accuracy of

the pruned model. This procedure was repeated 20 times, beginning with a 0% of pruned

parameters and rising this percentage a 5% until achieving a 95%.

4.2.2 Results

On the one hand, accomplishing the experiment on the Teacher model was impossible since

its huge size made the GPU run out of memory. Since the global pruning method from

the PyTorch pruning package (global_unstructured(parameters_to_prune,

pruning_method, amount)) takes as first argument the total number of parameters

to prune in the model, it is understandable that the GPU crashed, since it performed

operations on more than 500 MB of variables at the same time. Knowing that the first

classification layer of the Teacher model represents the 69% of its parameters, we also tried

to apply the global pruning only to this layer in order to see if it was possible to perform

the global pruning to the model partially. Trying this, the same problem occurred and the

GPU still run out of memory.

On the other hand, it was possible to perform this experiment on the Student model, since,

as previously commented, it is much smaller than the teacher. Although global pruning

75

CHAPTER 4. RESULTS

can be applied to the Student model, it is not possible to use it to compress and optimize

the model, since the methods of the PyTorch pruning packages do not remove the pruned

parameters from the model. Despite this fact, the results obtained shows that the majority

of the most superfluous parameters of the model are located in its first classification

layer. We can also conclude that the most important parameters are situated in the first

convolutional layer, which is the input layer of the model, and the last fully connected

layer, which is the output layer. This makes sense, as the first convolutional layer is used

to extract the most general features from the data and the last fully connected layer is the

main classifier. The results of this experiment also show the power of the unstructured

global pruning, since, as it can be seen in the Figure 3.14, this type of pruning can support

up to a 60% of pruned parameters without a significant loss of accuracy, what (if it were

possible to put this technique into practice) would mean a reduction of more than half of

the model while maintaining its full performance.

4.3 Structured local training-pruning

Finally, some experiments are fulfilled using a structured local training-pruning procedure.

1. The first experiments, called static pruning, were accomplished by pruning the same

percentage of nodes and filters of each layer of the model locally.

2. The second experiments, called dynamic pruning, were accomplished by choosing

the corresponding percentage of pruned nodes or filters of each layer according to

the percentages of pruned parameters of each layer obtained from the one-shot un-

structured global pruning experiment.

These experiments were fulfilled in both the Teacher and the Student models being aware

that, unlike with the unstructured global pruning, now we are not pruning parameters but

nodes and filters, and therefore if we aimed to perform the pruning procedure according

to the percentage of pruned parameters, we needed to convert the percentage of pruned

parameters of each layer into the percentage of pruned nodes or filters.

On the other hand, aiming to prune a final percentage of modules in different steps involves

the use of the equation 3.1, in which y is the final percentage of pruned modules, x is the

percentage of pruned modules in each epoch and n is the number of epochs in which

pruning is accomplished.

Unlike the previous subsections, in the followings, the performance of both the Teacher

76

CHAPTER 4. RESULTS

and the Student models were tested. Therefore, the following subsections will be divided

into the experiments accomplished on the teacher and the experiments of the student.

4.3.1 Static pruning

As previously mentioned, the static pruning experiments follow an approach in which

the same percentage of modules of all the layers of a model are pruned gradually along

the epochs. Next, we explain the settings and results obtained from the static pruning

experiments performed on both the Teacher and Student models.

4.3.1.1 Teacher settings

In the static experiment of the Teacher model, our final aim was to prune a 45% of the

parameters at the end of the training-pruning process. To do so, we trained the model

for 10 epochs without pruning and then, we trained it while pruning a 3% of the modules

of each layer every epoch for another 10 epochs. Thank to the equation 3.1, it can be

checked that the final percentage of pruned modules of each layer is the 26.25%, and thus,

the final percentage of pruned parameters is the 45.6%.

4.3.1.2 Teacher results

In the complexity graph of the Figure 3.15 it can be observed that, when the pruning

is accomplished, the model starts to behave badly, increasing the training and validation

losses and decreasing the validation accuracy. On the other hand, in the Figure 3.16

is shown that the training time decreases when the model is pruned, as it is expected.

However, an anomaly occurs at epochs 11, 12, 13 and 14, when the training time increases

despite the fact that the model is getting pruned. This can happen because the VGG16

structure is originally optimized to be processed in the most effective way. The number

of nodes and filters of all the VGG16 layers is always a power of two, what optimizes

the binary computations in hardware. If we remove a certain number of modules from

these layers, the computations performed tend to be more complex and therefore, take a

longer time. However, if we remove a sufficient number of modules from the layers, the

computation time in the end is reduced. This explains the graphic shown in the Figure

3.16, in which the training time increases at the first pruning epochs and then, decreases.

77

CHAPTER 4. RESULTS

4.3.1.3 Student settings

In the static experiment of the Student model, firstly, we trained the model for 200 epochs

without pruning and afterwards, we pruned a 20% of the modules of each layer along the

100 last epochs, what means a final pruning of the 36% of the parameters. To do this, we

pruned a 2% of the modules of each layer every epoch that is higher than 200, multiple of

7 and lower than 280, what involves that we pruned a 2% of the modules of each layer in

11 different epochs. Using the equation 3.1 and having the n (number of pruning epochs)

and x (percentage of pruned modules in each epoch per layer) it is proved that we achieve

a final pruning percentage of 20%.

4.3.1.4 Student results

The complexity graph of this experiment, which is shown in the Figure 3.17, exposes a

good response to the training-pruning process. The training and validation losses have

a tendency to descend and the validation accuracy grows until converge on a maximum,

which is approximately a 60%. However, compared to the non-pruned student model,

the validation accuracy is reduced by a 7%, which involves an important decrease. Re-

garding the computing time along the training-pruning process, there is no evidence that

the pruned Student model is trained faster when its size is reduced. This result can be

explained by the fact that the Teacher model needs to be loaded into the GPU memory

in order to train the Student model. Since the Teacher model has a huge size compared

to the student, this can slow down the whole training process.

4.3.2 Dynamic pruning

In this section it is reviewed the dynamic pruning experiment of the Teacher model and the

three experiments fulfilled for the Student model, which test the performance of dynamic

pruning, starting in an early, middle or late stage of the training-pruning process.

4.3.2.1 Teacher settings

In the dynamic experiment of the Teacher model, we estimated the final percentage of

pruned nodes or filters in each layer using as a reference the results obtained by the one-

shot unstructured global pruning experiment accomplished on the Student model. We did

this because, in our case, the Teacher and Student models share a similar structure and

78

CHAPTER 4. RESULTS

therefore, it is acceptable to think that they also share a similar distribution of redundant

parameters. The estimated final percentages of pruned nodes and filters of each layer are

shown in the Table 3.1. To apply this pruning percentages we followed a strategy in which

firstly, we trained the model for 10 epochs without pruning it and for the last 10 epochs

we performed a training-pruning process.

Throughout this training-pruning process, all the layers that had a final pruning percentage

of the 4% of their filters were pruned twice on epochs 12 and 14 a 2% of their modules.

The layer feature21, which had a final pruning aim of the 6% of its filters was pruned a

2% on epochs 12, 14 and 16. The layer feature24 aimed a 8% of pruned nodes at the

end of the process and thus, a 2% of its filters were pruned on epochs 12, 14, 16 and 18.

Layers features26 and classifier3 aimed a 10% of pruned nodes at the end of the process,

so a 1% of its modules were pruned along the ten last epochs of the training process. The

layer feature28, which aimed a 26% of pruned nodes at the end of the training process,

was pruned a 3% of its filters for the last 10 epochs. Finally, the layer classifier0, which

aimed a 40% of pruned nodes at the end of the training process, was pruned a 5% every

epoch for the last 10 epochs.

4.3.2.2 Teacher results

The complexity graph of this experiment, which is presented in the Figure 3.19, shows

that the training and validation losses do not increase with the training-pruning process,

and the validation accuracy is maintained approximately around the 84%. Therefore, we

can conclude that the performance of this experiment fairly improves the results of the

model with respect to the results obtained with the static pruning.

4.3.2.3 Student settings

As explained previously, the dynamic pruning of the Student model was tested in three

different experiments, which correspond to an early pruning experiment, in which the

model is pruned from the beginning of the training process, a middle pruning experiment,

in which pruning is performed from epoch 100 and a late pruning experiment, in which

the model is pruned from epoch 200.

All these three strategies share the same percentage of pruning modules in each epoch,

but it is done in different epochs.

Layers conv4, conv5 and fc2 were pruned a 2% of their modules on two epochs. In the

79

CHAPTER 4. RESULTS

early strategy these epochs were the 50 and 150, in the middle strategy these epochs were

the 101 and the 201, and in the late strategy the epochs were the 210 and 220. Layers

conv3, fc2 1 and fc3 were pruned a 2% on four different epochs. In the early strategy

these epochs were the 60, 120, 180 and 240, in the middle strategy these epochs were

the 120, 160, 200 and 240, and in the late strategy the epochs were the 210, 230, 250

and 270. The layer conv4 1 was pruned a 2% on five different epochs; in the case of the

early strategy, these epochs were the 50, 100, 150, 200 and 250; in the case of the middle

pruning strategy the epochs were the 110, 140, 170, 200 and 230; and in the case of the

late strategy, the epochs were the 220, 230, 240, 250 and 260. For layers conv5 1 and fc1

the objective was to prune a 2% of the modules 20 times. To do so, in the early strategy

they were pruned every epoch that is multiple of 10, higher than 10 and lower than 220;

in the middle strategy they were pruned every epoch that is multiple of 10 and higher

than 100; and in the late strategy they were pruned every epoch that is multiple of 5 and

higher than 200.

4.3.2.4 Student results

In this case, the results of the three experiments will be divided into three different para-

graphs.

Early pruning strategy

The dynamic structured training-pruning along with an early pruning strategy shows a

very effective performance. Since the model gets pruned from early epochs, using the early

stopping technique it is possible to achieve a significant reduction in the size of the model.

Besides, this experiment shows that the accuracy of the model is very slightly affected,

keeping a percentage of the 65%. The training and validation losses, on the other hand,

are not affected by the pruning, keeping similar values as the non-pruned training.

Middle pruning strategy

Compared to the early strategy, the middle pruning strategy performs worse. At the end

of the training process, it only achieves a maximum of the 57.5% of validation accuracy,

what means a great reduction in accuracy with respect to the non-pruned model.

Furthermore, the complexity graph of this experiment presents a very sharp increase in

the validation accuracy when the model starts getting pruned. This can be caused because

the error function reaches a local minimum before the beginning of the pruning process,

and when it starts, it creates and alteration that makes it possible to achieve a new and

80

CHAPTER 4. RESULTS

better minimum.

Late pruning strategy

The complexity graph obtained with this experiment shows the same fact that in the

middle strategy. When the model starts getting pruned, it experiences a sharp increase

in the validation accuracy and a reduction in the training and validation losses. With

this increase, the model achieves a the validation accuracy achieves a maximum value

of approximately the 63%, which means a better performance than the middle pruning

experiment, but still worse than the early pruning.

The results of this work have proven that, in knowledge distillation, it is possible to obtain

a much smaller Student model from a original Teacher model, that mimics its behaviour.

In comparison with the teacher, the student have a decrease in the accuracy that can be

reduced by selecting a slightly larger and more complex model, adding a certain number

of layers or modules per layer. Regarding neural network pruning, it has been proven that,

for a practical structured pruning procedure, using different targets of pruned parameters

for each layer according to the structure of the model results in a powerful procedure

capable of reducing the size of a model in high percentages while maintaining its accuracy.

81

CHAPTER 4. RESULTS

82

Chapter 5

Conclusions and future work

5.1 Conclusions

At the beginning of this work it was discussed the problem that currently exists regarding

the computation and process of data in small devices and two compression techniques were

chosen to deal with this problem: knowledge distillation and neural network pruning.

Along this project it is proven the effectiveness of these techniques by compressing a

state-of-the-art deep neural network. Each technique is based on a different principle and

therefore, it is possible to combine them in order to obtain a better performance.

The aim of the experiments regarding knowledge distillation have been to achieve a com-

pressed model that shows a suitable performance in a classification problem and under-

stand which parameters or structures should be optimized to improve its accuracy or

reduce its size. The neural network pruning experiments, which start from the model

obtained from the knowledge distillation, deals with the training process and the size of

the model. It has also been proved that adjusting the parameters of these experiments

it is possible to improve its efficiency and therefore, achieve a higher compression and a

better performance of the model.

To conclude, this project proves that it is possible to deploy software compressive op-

timization techniques in order to use reliable deep neural networks in devices with low

computing power.

83

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.2 Future work

The purposed future work is related to the use of the two studied optimization techniques

in an emulation environment.

Distributed learning is an approach of Machine Learning in which a neural network is

trained in different devices. There are different procedures to accomplish this process but

the proposed future work should focus in only one of them.

Using Mininet [Fontes et al., 2015], which is presented in the Appendix A, it is possible

to create a network in which different nodes can run a computing process while they com-

municate. Deploying the knowledge distillation online technique as a complete training

process, it is possible to train the Teacher model in one station of the network while it

communicates with another station, in which the student is trained. This is a Distributed

learning technique, since, understanding the training process of the Teacher and the Stu-

dent models as a whole, the training is fulfilled in two different nodes of a network.

Therefore, the main objective would be to apply the online knowledge distillation to a

teacher and a student which are located in different stations and prune them individually

while training. Then it would be interesting to measure the quality of the communications

between the Teacher and the Student models by using a specialized software such as

SCAPY [Biondi and the Scapy community., 2019] (Appendix B).

84

Appendix A

Mininet

Mininet [Fontes et al., 2015] is a network emulator which allows creating networks using

controllers, switches, hosts and links. These networks can be modularized, since hosts and

switched work independently. It also provides a Python API, which makes it very simple

to create new and customized networks.

Every host included in Mininet run a standard Linux network software, what means they

can also run real code. Every link that connect a host and a switch is based are based on

virtual ethernet pairs. Therefore, it is possible to run network wide-tests in any node.

In order to create a network, there are several parameters that must be adjusted. Then,

Mininet offers a wide range of possibilities to run the network, such as calculating the

ping, running the iperf tool, which allows a multiple variety of opportunities or debugging

the topology.

85

APPENDIX A. MININET

86

Appendix B

SCAPY

SCAPY [Biondi and the Scapy community., 2019] is a powerful interactive packet ma-

nipulation program. It is designed for Python and it allows to manage packages from a

wide number of protocols. With this program is possible to capture, decode and analyse

packets.

It works by performing two tasks: sending packets and receiving answers. Doing this, it

is possible to trace a communication between two or more nodes and analyse its packets.

In fact, SCAPY is a powerful tool to compute throughputs at any layer of a protocol or

latencies which makes it very interesting to test communications.

87

APPENDIX B. SCAPY

88

Appendix C

Definition of the models

Listing C.1: Definition of the VGG16 Teacher model.

c l a s s VGG16 (nn . Module) :

de f i n i t (s e l f) :

super (VGG16 , s e l f) . i n i t ()

s e l f . f e a t u r e s 0 = nn . Conv2d(in channe l s=3 , out channe l s=64 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

5 s e l f . f e a t u r e s 2 = nn . Conv2d(in channe l s=64 , out channe l s=64 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 5 = nn . Conv2d(in channe l s=64 , out channe l s=128 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 7 = nn . Conv2d(in channe l s=128 , out channe l s=128 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

10 s e l f . f e a t u r e s 10 = nn . Conv2d(in channe l s=128 , out channe l s=256 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 12 = nn . Conv2d(in channe l s=256 , out channe l s=256 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 14 = nn . Conv2d(in channe l s=256 , out channe l s=256 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 17 = nn . Conv2d(in channe l s=256 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

15 s e l f . f e a t u r e s 19 = nn . Conv2d(in channe l s=512 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 21= nn . Conv2d(in channe l s=512 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . f e a t u r e s 24 = nn . Conv2d(in channe l s=512 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

89

APPENDIX C. DEFINITION OF THE MODELS

s e l f . f e a t u r e s 26 = nn . Conv2d(in channe l s=512 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

20 s e l f . f e a t u r e s 28 = nn . Conv2d(in channe l s=512 , out channe l s=512 ,

k e r n e l s i z e=3 , padding=1 , b i a s=False)

s e l f . maxpool = nn .MaxPool2d(k e r n e l s i z e=2 , s t r i d e=2)

s e l f . avgpool = nn . AdaptiveAvgPool2d ((7 , 7))

25 s e l f . c l a s s i f i e r 0 = nn . Linear (25088 , 4096 , b i a s=False)

s e l f . c l a s s i f i e r 3 = nn . Linear (4096 , 4096 , b i a s=False)

s e l f . c l a s s i f i e r 6 = nn . Linear (4096 , 10 , b i a s=False)

de f forward (s e l f , x) :

30 x = F. r e l u (s e l f . f e a t u r e s 0 (x))

x = F. r e l u (s e l f . f e a t u r e s 2 (x))

x = s e l f . maxpool (x)

x = F. r e l u (s e l f . f e a t u r e s 5 (x))

x = F. r e l u (s e l f . f e a t u r e s 7 (x))

35 x = s e l f . maxpool (x)

x = F. r e l u (s e l f . f e a t u r e s 10 (x))

x = F. r e l u (s e l f . f e a t u r e s 12 (x))

x = F. r e l u (s e l f . f e a t u r e s 14 (x))

x = s e l f . maxpool (x)

40 x = F. r e l u (s e l f . f e a t u r e s 17 (x))

x = F. r e l u (s e l f . f e a t u r e s 19 (x))

x = F. r e l u (s e l f . f e a t u r e s 21 (x))

x = s e l f . maxpool (x)

x = F. r e l u (s e l f . f e a t u r e s 24 (x))

45 x = F. r e l u (s e l f . f e a t u r e s 26 (x))

x = F. r e l u (s e l f . f e a t u r e s 28 (x))

x = s e l f . maxpool (x)

x = s e l f . avgpool (x)

x = torch . f l a t t e n (x , 1)

50 x = F. r e l u (s e l f . c l a s s i f i e r 0 (x))

x = F. dropout (x , 0 . 55)

x = F. r e l u (s e l f . c l a s s i f i e r 3 (x))

x = F. dropout (x , 0 . 55)

x = s e l f . c l a s s i f i e r 6 (x)

55 re turn x

90

APPENDIX C. DEFINITION OF THE MODELS

Listing C.2: Definitioon of the Student model.

c l a s s StudentNet (nn . Module) :

de f i n i t (s e l f) :

super (StudentNet , s e l f) . i n i t ()

s e l f . conv1=nn . Conv2d(in channe l s=3 , out channe l s=8 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

5 s e l f . conv2=nn . Conv2d(in channe l s=8 , out channe l s=16 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

s e l f . conv3=nn . Conv2d(in channe l s=16 , out channe l s=32 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

s e l f . conv4=nn . Conv2d(in channe l s=32 , out channe l s=64 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

s e l f . conv4 1=nn . Conv2d(in channe l s=64 , out channe l s=64 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

s e l f . conv5=nn . Conv2d(in channe l s=64 , out channe l s=128 , k e r n e l s i z e=3 ,

padding=1 , s t r i d e=1 , b i a s=False)

10 s e l f . conv5 1=nn . Conv2d(in channe l s=128 , out channe l s=128 , k e r n e l s i z e=

3 , padding=1 , s t r i d e=1 , b i a s=False)

s e l f . avgpool = nn . AdaptiveAvgPool2d ((7 , 7))

s e l f . pool = nn .MaxPool2d(k e r n e l s i z e=2 , s t r i d e=2)

15 s e l f . f c 1=nn . Linear (7✯7✯128 , 100 , b i a s=False)

s e l f . f c 2=nn . Linear (100 , 100 , b i a s=False)

s e l f . f c 2 1=nn . Linear (100 , 100 , b i a s=False)

s e l f . f c 3=nn . Linear (100 , 50 , b i a s=False)

s e l f . f c 4=nn . Linear (50 , 10 , b i a s=False)

20

de f forward (s e l f , x) :

x=s e l f . pool (F . r e l u (s e l f . conv1 (x)))

x=s e l f . pool (F . r e l u (s e l f . conv2 (x)))

x=s e l f . pool (F . r e l u (s e l f . conv3 (x)))

25 x=F. r e l u (s e l f . conv4 (x))

x=s e l f . pool (F . r e l u (s e l f . conv4 1 (x)))

x=F. r e l u (s e l f . conv5 (x))

x=s e l f . pool (F . r e l u (s e l f . conv5 1 (x)))

x = s e l f . avgpool (x)

30 x = torch . f l a t t e n (x , 1)

x=F. r e l u (s e l f . f c 1 (x))

x = F. dropout (x , 0 . 5)

x=F. r e l u (s e l f . f c 2 (x))

x = F. dropout (x , 0 . 5)

35 x=F. r e l u (s e l f . f c 2 1 (x))

x = F. dropout (x , 0 . 5)

x=F. r e l u (s e l f . f c 3 (x))

x = F. dropout (x , 0 . 5)

x=s e l f . f c 4 (x)

40 re turn x

91

APPENDIX C. DEFINITION OF THE MODELS

92

Appendix D

Main code relating the Teacher model

Listing D.1: Tranfer learning of the VGG16 model.

b ia s t eache r mode l = models . vgg16 (p r e t ra ined=True)

no b ia s t eache r mode l = VGG16 ()

#We adjus t the f i n a l l a y e r o f the vgg16 pr e t r a ined model

5 i n p u t l a s t l a y e r = b ia s t eache r mode l . c l a s s i f i e r [6] . i n f e a t u r e s

b ia s t eache r mode l . c l a s s i f i e r [6] = nn . Linear (i n pu t l a s t l a y e r , 10)

#We copy the s t a t e d i c t i ona ry o f the o r i g i n a l model .

b i a s s t a t e d i c t = copy . deepcopy (b ia s t eache r mode l . s t a t e d i c t ())

10 n o b i a s s t a t e d i c t = {}

#We need to tune the name o f the modules in order to copy the s t a t e

d i c t i ona ry without b i a s e s i n to the new VGG16 model

f o r key , va lue in b i a s s t a t e d i c t . i tems () :

i f ’ b i a s ’ not in key :

15 i f ’ f e a t u r e s ’ in key :

n o b i a s s t a t e d i c t [key . r ep l a c e (”s . ” , ”s ”)] = value

e l i f ’ c l a s s i f i e r ’ in key :

n o b i a s s t a t e d i c t [key . r ep l a c e (”r . ” , ”r ”)] = value

20 no b ia s t eache r mode l . l o a d s t a t e d i c t (n o b i a s s t a t e d i c t)

#Fina l ly , here we have the VGG16 teacher model without b i a s e s

teacher model = no b ia s t eache r mode l

25 de l b i a s t eache r mode l

de l b i a s s t a t e d i c t

93

APPENDIX D. MAIN CODE RELATING THE TEACHER MODEL

Listing D.2: Structured pruning loop using the percentage of pruned nodes obtained from the

unstructured pruning experiment.

i f epoch > 10 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

i f name == ’ f e a t u r e s 28 ’ :

5 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 03 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

e l i f name == ’ f e a t u r e s 26 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 01 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

10 e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ c l a s s i f i e r 0 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 05 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

e l i f name == ’ c l a s s i f i e r 3 ’ :

15 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 01 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

i f epoch % 2 == 0 :

i f i s i n s t a n c e (module , nn . Conv2d) :

i f epoch < 20 :

20 i f name == ’ f e a t u r e s 24 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 .

02 , n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch < 18 :

i f name == ’ f e a t u r e s 21 ’ :

25 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 .

02 , n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch < 16 :

i f name == ’ f e a t u r e s 19 ’ or name == ’ f e a t u r e s 17 ’ or name

== ’ f e a t u r e s 14 ’ or name == ’ f e a t u r e s 12 ’ or name == ’ f e a t u r e s 10 ’ or name

== ’ f e a t u r e s 7 ’ or name == ’ f e a t u r e s 5 ’ or name == ’ f e a t u r e s 2 ’ or name == ’

f e a t u r e s 0 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 .

02 , n=1 , dim=0)

30 prune . remove (module , ’ weight ’)

94

Appendix E

Main code relating the Student model.

Listing E.1: Distillation loss function of the Student model.

de f d i s t i l l a t i o n l o s s (s core s , t a rge t s ,T=5) :

s o f t p r ed=F. softmax (s c o r e s /T, dim=1)

s o f t t a r g e t s=F. softmax (t a r g e t s /T, dim=1)

l o s s=F. mse lo s s (so f t p r ed , s o f t t a r g e t s)

5 re turn l o s s

Listing E.2: Structured pruning of the Student model following the static approach.

i f epoch > 200 and epoch < 280 :

i f epoch % 7 == 0 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

5 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0) #be fo r e 0 . 014

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name != ’ f c 4 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

10 prune . remove (module , ’ weight ’)

95

APPENDIX E. MAIN CODE RELATING THE STUDENT MODEL.

Listing E.3: Early pruning strategy followed in the dynamic structured pruning approach.

i f epoch > 10 and epoch < 220 :

i f epoch % 10 == 0 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

5 i f name == ’ conv5 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 1 ’ :

10 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 50 or epoch == 150 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

15 i f name == ’ conv4 ’ or name == ’ conv5 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 ’ :

20 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 60 or epoch == 120 or epoch == 180 or epoch == 240 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

25 i f name == ’ conv3 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 1 ’ or name == ’ f c 3 ’ :

30 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 50 or epoch == 100 or epoch == 150 or epoch == 200 or epoch == 2

50 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

35 i f name == ’ conv4 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 , n=1 ,

dim=0)

prune . remove (module , ’ weight ’)

96

APPENDIX E. MAIN CODE RELATING THE STUDENT MODEL.

Listing E.4: Middle pruning strategy followed in the dynamic structured pruning approach.

i f epoch > 100 :

i f epoch % 10 == 0 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

5 i f name == ’ conv5 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 1 ’ :

10 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 101 or epoch == 201 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

15 i f name == ’ conv4 ’ or name == ’ conv5 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 ’ :

20 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 120 or epoch == 160 or epoch == 200 or epoch == 240 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

25 i f name == ’ conv3 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 1 ’ or name == ’ f c 3 ’ :

30 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 110 or epoch == 140 or epoch == 170 or epoch == 200 or epoch

== 230 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

35 i f name == ’ conv4 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

97

APPENDIX E. MAIN CODE RELATING THE STUDENT MODEL.

Listing E.5: Late pruning strategy followed in the dynamic structured pruning approach.

i f epoch > 200 :

i f epoch % 5 == 0 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

5 i f name == ’ conv5 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 1 ’ :

10 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 210 or epoch == 220 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

15 i f name == ’ conv4 ’ or name == ’ conv5 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 ’ :

20 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 210 or epoch == 230 or epoch == 250 or epoch == 270 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

25 i f name == ’ conv3 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

e l i f i s i n s t a n c e (module , nn . Linear) :

i f name == ’ f c 2 1 ’ or name == ’ f c 3 ’ :

30 prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

i f epoch == 220 or epoch == 230 or epoch == 240 or epoch == 250 or epoch

== 260 :

f o r name , module in model . named modules () :

i f i s i n s t a n c e (module , nn . Conv2d) :

35 i f name == ’ conv4 1 ’ :

prune . l n s t r u c tu r ed (module , name=”weight ” , amount=0 . 02 ,

n=1 , dim=0)

prune . remove (module , ’ weight ’)

98

Bibliography

S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep convolutional neural

networks, 2015. URL https://arxiv.org/abs/1512.08571.

P. Biondi and the Scapy community. Scapy. https://scapy.readthedocs.io/en/

latest/introduction.html, 2019. [Online; accessed 14-dec-2021].

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the state of neural network

pruning?, 2020. URL https://arxiv.org/abs/2003.03033.

A. Bragagnolo and C. A. Barbano. Simplify: A python library for optimizing pruned neural

networks. SoftwareX, 17, 2022. URL https://doi.org/10.1016/j.softx.2021.

100907.

C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model compression. Association for Com-

puting Machinery, 2006. URL https://doi.org/10.1145/1150402.1150464.

T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi, and X. Tu. Only

Train Once: A One-Shot Neural Network Training And Pruning Framework, volume 34.

Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/

2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf.

R. R. Fontes, S. Afzal, S. H. B. Brito, M. Santos, and C. E. Rothenberg. Mininet-

wifi: Emulating software-defined wireless networks. 2nd International Workshop on

Management of SDN and NFV Systems 2015, 2015. URL https://ieeexplore.

ieee.org/document/7367387.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey

of quantization methods for efficient neural network inference, 2021. URL https:

//arxiv.org/abs/2103.13630.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architec-

tures. Neural Computation, 7(2):219–269, 03 1995. ISSN 0899-7667. doi: 10.1162/neco.

1995.7.2.219. URL https://doi.org/10.1162/neco.1995.7.2.219.

99

https://arxiv.org/abs/1512.08571
 https://scapy.readthedocs.io/en/latest/introduction.html
 https://scapy.readthedocs.io/en/latest/introduction.html
https://arxiv.org/abs/2003.03033
https://doi.org/10.1016/j.softx.2021.100907
https://doi.org/10.1016/j.softx.2021.100907
https://doi.org/10.1145/1150402.1150464
https://proceedings.neurips.cc/paper/2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf
https://ieeexplore.ieee.org/document/7367387
https://ieeexplore.ieee.org/document/7367387
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.1162/neco.1995.7.2.219

BIBLIOGRAPHY

J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A

survey. International Journal of Computer Vision, 129(6):1789–1819, mar

2021. doi: 10.1007/s11263-021-01453-z. URL https://doi.org/10.1007/

2Fs11263-021-01453-z.

S. Han, J. Tran, and W. Dally. Learning both weights and connections for efficient neural

networks. Journal of Systems Architecture, 122:357–362, 2022. URL https://doi.

org/10.1016/j.sysarc.2021.102336.

C. Harris, K. Millman, and S. Van der Walt. Array programming with numpy. Nature,

585:357–362, 2020. URL https://doi.org/10.1038/s41586-020-2649-2.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network, 2015.

URL https://doi.org/10.48550/arXiv.1503.02531.

Y. Huang and Y. Chen. Autonomous driving with deep learning: A survey of state-of-art

technologies, 2020. URL https://arxiv.org/abs/2006.06091.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:

541–551, 1989.

X. Li, W. Hu, C. Li, T. Jiang, H. Sun, X. Li, X. Huang, and M. Grzegorzek. A state-of-

the-art survey of artificial neural networks for whole-slide image analysis:from popular

convolutional neural networks to potential visual transformers, 2021. URL https:

//arxiv.org/abs/2104.06243.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der

Laak, B. van Ginneken, and C. I. Sánchez. A survey on deep learning in medical image

analysis. Medical Image Analysis, 42:60–88, dec 2017. doi: 10.1016/j.media.2017.07.005.

URL https://doi.org/10.1016/2Fj.media.2017.07.005.

Y. Matsubara, M. Levorato, and F. Restuccia. Split computing and early exiting for deep

learning applications: Survey and research challenges, 2021. URL https://arxiv.

org/abs/2103.04505.

T. Mitchell. Machine Learning. McGraw Hill, 1997. ISBN 0-07-042807-7.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neu-

ral networks for resource efficient inference, 2016. URL https://arxiv.org/abs/

1611.06440.

M. Paganini and J. Forde. On iterative neural network pruning, reinitialization, and the

similarity of masks, 2020. URL https://arxiv.org/abs/2001.05050.

100

https://doi.org/10.1007/2Fs11263-021-01453-z
https://doi.org/10.1007/2Fs11263-021-01453-z
https://doi.org/10.1016/j.sysarc.2021.102336
https://doi.org/10.1016/j.sysarc.2021.102336
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.1503.02531
https://arxiv.org/abs/2006.06091
https://arxiv.org/abs/2104.06243
https://arxiv.org/abs/2104.06243
https://doi.org/10.1016/2Fj.media.2017.07.005
https://arxiv.org/abs/2103.04505
https://arxiv.org/abs/2103.04505
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/2001.05050

BIBLIOGRAPHY

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killen, and Z. Lin.

Pytorch: An imperative style, high-performance deep learning library. Advances in

Neural Information Processing Systems, 32:8024–8035, 2019.

M. Riera, J. Arnau, and A. González. Dnn pruning with principal component analysis

and connection importance estimation. NIPS, pages 357–362, 2015. URL https:

//doi.org/10.1016/j.sysarc.2021.102336.

V. Roger, J. Farinas, and J. Pinquier. Deep neural networks for automatic speech process-

ing: A survey from large corpora to limited data, 2020. URL https://arxiv.org/

abs/2003.04241.

H. Schulz and S. Behnke. Deep learning. KI Kunstliche Intelligenz, pages 357–363, 2012.

URL doi:10.1007/s13218-012-0198-z.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2015.

R. K. Sinha, R. Pandey, and R. Pattnaik. Deep learning for computer vision tasks: A

review, 2018. URL https://arxiv.org/abs/1804.03928.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/

srivastava14a.html.

H. Tessier. Neural network pruning 101: All you need to know not to get

lost. Towards Data Science, 2021. URL https://towardsdatascience.com/

neural-network-pruning-101-af816aaea61.

A. Torfi, R. A. Shirvani, Y. Keneshloo, N. Tavaf, and E. A. Fox. Natural language

processing advancements by deep learning: A survey, 2020. URL https://arxiv.

org/abs/2003.01200.

P. J. Werbos. The Roots of Backpropagation : From Ordered Derivatives to Neural Net-

works and Political Forecasting. John Wiley and Sons, 1994. ISBN 0-471-59897-6.

J. West, D. Ventura, and S. Warnick. Spring research presentation: A theoretical founda-

tion for inductive transfer, 2007.

S. Yang, Y. Wang, and X. Chu. A survey of deep learning techniques for neural machine

translation, 2020. URL https://arxiv.org/abs/2002.07526.

M. Zhang, F. Zhang, N. D. Lane, Y. Shu, X. Zeng, B. Fang, S. Yan, and H. Xu. Deep

learning in the era of edge computing: Challenges and opportunities, 2020. URL https:

//arxiv.org/abs/2010.08861.

101

https://doi.org/10.1016/j.sysarc.2021.102336
https://doi.org/10.1016/j.sysarc.2021.102336
https://arxiv.org/abs/2003.04241
https://arxiv.org/abs/2003.04241
doi:10.1007/s13218-012-0198-z
https://arxiv.org/abs/1804.03928
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://towardsdatascience.com/neural-network-pruning-101-af816aaea61
https://towardsdatascience.com/neural-network-pruning-101-af816aaea61
https://arxiv.org/abs/2003.01200
https://arxiv.org/abs/2003.01200
https://arxiv.org/abs/2002.07526
https://arxiv.org/abs/2010.08861
https://arxiv.org/abs/2010.08861

	Introduction
	State of the Art
	Artificial Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks

	Training process of Neural Networks
	PyTorch
	Transfer Learning
	Knowledge distillation
	Neural Network Pruning
	Pruning structures
	Structured pruning
	Unstructured pruning

	Pruning criteria
	Pruning methods
	One-shot pruning
	Iterative training-pruning method

	Pruning in PyTorch
	The Simplify library

	Compressive optimization of Deep Neural Networks
	Knowledge distillation
	The Teacher model
	The student model

	Neural Network Pruning
	One-shot unstructured global pruning
	Structured local training pruning
	Static structured training pruning
	Dynamic structured training pruning

	Results
	Knowledge distillation
	Settings
	Results

	One-shot unstructured global pruning experiment
	Settings
	Results

	Structured local training-pruning
	Static pruning
	Teacher settings
	Teacher results
	Student settings
	Student results

	Dynamic pruning
	Teacher settings
	Teacher results
	Student settings
	Student results

	Conclusions and future work
	Conclusions
	Future work

	Mininet
	SCAPY
	Definition of the models
	Main code relating the Teacher model
	Main code relating the Student model.
	Bibliography

