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Abstract
Climate change is arguably one of the most critical challenges of our time. For this reason,
countries have committed, under the UN Paris Agreement, to limit global warming well
below 2°C (aiming for 1.5°C) by 2050 Nations [2015]. One of the main models cited in the
literature whose goal is to predict climate change is the DICE Model, developed by William
Nordhaus. An important issue regarding this model arises from the fact that it contains
a critical parameter whose estimation can lead to highly varying values and which has a
huge impact on the model’s outputs: the climate sensitivity. The value of this parameter
determines whether or not the above mentioned commitment is feasible. The goal of this
master’s thesis work is that of expanding the DICE model to add robustness to it with
respect to the climate sensitivity, by considering a whole set of values instead of a single
one. This robust model, combined with previous results aimed at making said model more
realistic, will then be used in a model-based predictive control setting, to devise optimal
control strategies aimed at reaching the goals stated in the UN Paris Agreement. In order
to consider the climate sensitivity in a robust way, we will solve the original optimization
problem behind the DICE model in a worst-case scenario, where the worst case comes
from an "adversary agent" who tries to maximize the climate sensitivity while we try to
keep the atmospheric temperature as low as possible. In this study, we will show that the
objectives of the UN Paris Agreement are feasible under some conditions but also that
reaching said objectives requires a strong and fast abatement effort. The impact that the
value of the equilibrium climate sensitivity has on the results will also be analyzed, in order
to determine how important it is to add robustness to the model when trying to comply
with the UN Paris Agreement’s goals.

Keywords: climate change, model predictive control, robustness, uncertainty, climate
sensitivity, UN Paris Agreement
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List of acronyms and symbols

Below is the list of acronyms and symbols that have been used throughout this thesis listed
in alphabetical order (except for the constants, as they can be found in the Parameters
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section 6):

AT F P Total factor production
AC Abatement costs
C Consumption
D Damages function
E Total emissions
ECS Equilibrium climate sensitivity
ECSrate Rate of ECS at a time instant
ELAND Emissions due to land use change
FEX External forcings
GtC Gigatonne of carbon
J Social welfare
K Capital
L Population
MAT Mass of carbon in the atmosphere
MLO Mass of carbon in the lower ocean
MUP Mass of carbon in the upper ocean
Q Net economic output
RF Radiative forcing
s Savings rate
t Time index
TAT Atmospheric temperature
TLO Lower ocean temperature
Y Gross economic output

θ1 Cost of mitigation efforts
µ Abatement rate
µgrowth Growth of µ at a time instant
µrate Rate of µ at a time instant
σ Carbon emission intensity due to economic activity
ΦM Carbon mass transition matrix
ΦT Temperature transition matrix
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Chapter 1

Introduction

1.1 The DICE model
The DICE model is a model developed by William Nordhaus, who was awarded the Nobel
Prize precisely thanks to this work. The name "DICE" stands for "Dynamic-Integrated
Climate Economy" and, as the name suggests, it’s a model that links

• society (e.g., population, population growth)

• economy (e.g., capital, investments)

• environment (e.g., temperatures, carbon masses)

Its ability to link these three big boxes together in such a way that they are all connected
and dependent with each other is the reason why it is one of the most used models when
it comes to climate change prediction. This master’s thesis not only uses this model but
it updates it to make it more robust and more accurate, so that the predictions obtained
from it are more reliable and more useful. The need of updating the DICE model comes
from the fact that it is one of the most used models among modellers, policy makers and
economists Azar and Johansson [2021]. It is therefore important to have it as accurate as
possible.
The DICE model is quite complex, as it contains many state variables and numerous
parameters. However, one parameter is of particular importance: the climate sensitivity.

1.2 Climate sensitivity
The climate sensitivity refers to the amount of global surface warming that will occur
in response to a doubling of atmospheric CO2 concentrations compared to pre-industrial
levels. In other words, it is a measure of how much the environment reacts to our emissions:
if it is high, it means that our emissions will have a larger impact on the environment and
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this, of course, is a bad thing. This is one of the problematic parameters of the DICE
model, since we do not know its exact value. What we have is a range of possible values
that remains stubbornly wide despite the efforts in reducing it Hausfather [2018]. This
issue calls for either a better estimation or, from a control perspective, a robust control
strategy that is able to consider all the possible values of this parameter. The DICE model
is formulated as a nonlinear dynamic model subject to many constraints. Considering this
and also the fact that we want to act quickly, it seems natural to employ a nonlinear model
predictive control strategy to obtain optimal control policies Kellett et al. [2019]. The
reason why this parameter is so important is that, in its range of possible values, there
exist values for which the UN Paris Agreement’s goals are feasible and other for which they
are not. More precisely, if the climate sensitivity is too high, we will not be able to comply
with the UN Paris Agreement but if it is low enough then it is possible.

1.3 Aim
This master’s thesis will develop a robust version of the DICE Model such that it is able
to properly handle the uncertainty behind the climate sensitivity. This robust model will
then be used to employ a nonlinear robust model predictive control strategy whose aim is
that of reaching the goals set by the UN Paris Agreement. More precisely,

• Expand the DICE Model to properly take into account climate sensitivity in a robust
way.

• Modify the model, according to the literature, in order to make it more realistic.

• Use the obtained model to analyse the possibility of achieving the goals of the UN
Paris Agreement.

• Design a robust model predictive controller to develop control strategies to achieve
said goals.

• Analyse the obtained results and their feasibility.

• Analyse the impact of considering the climate sensitivity in a robust manner.

1.4 Limitations
In the context of the DICE model, the following limitations apply to this thesis:

• The DICE Model aims at modeling a very complex system covering both environ-
mental and economic aspects. Therefore, it is important to notice that the model
makes some important assumptions in the way it models both the climate and the
economy. Given that this thesis uses this model, such assumptions also apply to this
work.
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• It’s also important to notice that the DICE model is global, which means that all the
"local" properties are approximated and assimilated into single global ones.

• The impossibility to actually test in reality such a scenario means that everything
that will be shown here is the result of simulations.

1.5 Main research questions
With this thesis work we intend to answer the following research questions:

• How to expand the model such that the equilibrium climate sensitivity is treated in
a robust way?

• How to update the model according to recent literature in order to make it more
realistic?

• How will the choice of such a model affect the possibility of reaching the goals stated
in the UN Paris Agreement?

• Is it possible to obtain feasible control strategies by employing robust model predictive
control?

• Under what circumstances can the goals of the UN Paris Agreement be achieved?

• Is it meaningful to consider the equilibrium climate sensitivity in a robust way?

• Do we have time to wait before starting to act against climate change?

• Can the fight against climate change still come second to short-term economical
profit?

13



Chapter 2

The DICE model

The model used in this thesis is an extension of Kellett et al. [2019], which is, in turn, a
reformulation of Nordhaus’ DICE2016R model Nordhaus [2017]. We also integrate in the
model some updates taken from Grubb et al. [2021] and some additions original to this
thesis. The model starts from the year 2015 and has a time step ∆ of 5 years. It is a
highly nonlinear model consisting of 21 state variables (the model in Kellett et al. [2019]
only has 17, the additional 4 state variables were added in this thesis and they are the last
4 variables in 2.1), most of which having a corresponding dynamic equation. Two of these
21 states are the control inputs: µ (the abatement rate) and s (the savings rate); while one
is, instead, the equilibrium climate sensitivity mentioned in the introduction (chapter 1).
The state vector is defined as follows:
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x :=



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21



:=



t
TAT

TLO

MAT

MUP

MLO

K
σ
L

AT F P

ELAND

FEX

E
C
µ
s
J

µrate

µgrowth

ECS
ECSrate



(2.1)

Among these states, as mentioned in the introduction, the equilibrium climate sensi-
tivity (ECS), is particularly important:

• The improvement in robustness that this thesis aims to achieve is centered around
the ECS due to its difficult estimation.

• It is treated as the only control input when solving the adversarial problem (more on
that in chapter 3).

Now, we consider each state in detail, mentioning the respective dynamic equation. All
the initial conditions for each state can be found in the Appendix at the end of the thesis
(6.2).

2.1 Iteration index: t

The first state is simply the iteration index used in the optimization. As such, the dynamic
equation is extremely simple:

t(i + 1) = t(i) + 1 (2.2)
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Later on, in the Optimization chapter (3), it will be useful to have these state equations
as functions of the states. So, we can rewrite the dynamic equation of the time index as a
function of the states in the following way:

x1(i + 1) = x1(i) + 1 (2.3)

This is purely a notation matter and does not change the meaning of the state equation.
Its only purpose is to explicitly specify which states are involved in the equation, since the
state vector is quite large.

2.2 Temperature: T

The model for the temperature is divided into two components: the atmospheric temper-
ature (TAT , which is actually the combination of three contributions: atmosphere, land
surface and upper ocean) and the lower ocean temperature (TLO). The zero reference for
such temperatures is taken as the temperature in the year 1750 (considered as the end
of the pre-industrial era). The combined dynamic equation, in matrix form, for both the
components, is as follows:

T (i + 1) :=
[

TAT (i + 1)
TLO(i + 1)

]
= ϕT T (i) +

[
RF (i)

0

]
(2.4)

Where ϕT and RF are, respectively, the temperature transition matrix and the radiative
forcing at the top of atmosphere due to the enhanced greenhouse effect (both analyzed more
in details below). It’s interesting to notice that the atmospheric temperature depends on
the radiative forcing, i.e. on the greenhouse effect.

2.2.1 Temperature transition matrix

The matrix ϕT dictates how the temperatures at a time step depend on the temperatures
at the previous time step and is defined as follows:

ϕT :=
[

ϕ11 ϕ12
ϕ21 ϕ22

]
=
[

1 − ξ1( η
ECS(i) + c3) ξ1c3

c4 1 − c4

]
(2.5)

An important thing to notice is that this is the equation in which the ECS appears. This
state is of crucial importance for this master’s thesis work and will be described thoroughly
later (2.17).
Since the ECS is a state, this expression can be rewritten as a function of the states:

ϕT :=
[

ϕ11 ϕ12
ϕ21 ϕ22

]
=
[

1 − ξ1( η
x20(i) + c3) ξ1c3
c4 1 − c4

]
(2.6)
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2.2.2 Radiative forcing

A satisfying definition of radiative Forcing is given by Kerry Emanuel [2020]:

Radiative forcing is what happens when the amount of energy that enters the
Earth’s atmosphere is different from the amount of energy that leaves it. Energy
travels in the form of radiation: solar radiation entering the atmosphere from
the sun, and infrared radiation exiting as heat. If more radiation is entering
Earth than leaving—as is happening today—then the atmosphere will warm
up. This is called radiative forcing because the difference in energy can force
changes in the Earth’s climate.

In Kellett et al. [2019] the radiative forcing is modelled as follows:

RF (i) = ξ1

η
ln( ζ11MAT (i)+ζ12MUP (i)+ξ2E(i)

MAT,1750
)

ln(2) + FEX(i)

 (2.7)

In this equation, no control inputs appear (as stated above, the control inputs are µ and
s). This means that our control action has no direct effect on the radiative forcing. As
stated in Grubb et al. [2021], this is unrealistic and thus they propose the following model,
which is also the one used in this thesis:

RF (i) = ξ1

η
ln( ζ11MAT (i)+ζ12MUP (i)+ξ2E(i)

MAT,1750
)

ln(2) + FEX(i)(1 − afracµ(i))

 (2.8)

The equation is almost the same as before but, in 2.8, FEX is multiplied by an additional
term that decreases the more µ increases. This means that the external forcings (FEX , i.e.
one of the states, expanded in details later (2.9)) get reduced as the emissions get reduced.
The parameter afrac ϵ [0, 1] determines how much of the external forcings can be abated by
the control input µ. This of course raises a tuning problem because we need to determine
the value of this parameter. In Grubb et al. [2021] a value of afrac = 0.6 is used, which
means that our control action can directly reduce by 60% the external forcings. One of
the results in the Results chapter (4.4) shows the effects of changing the value of afrac.
In both models, the radiative forcings depend logarithmically on the mass of CO2 in the
atmosphere (MAT ), which means that the higher the MAT , the higher the RF (i.e. the
higher the greenhouse effect).
We can rewrite the radiative forcings as a function of the states:

RF (i) = ξ1

η
ln( ζ11x4(i)+ζ12x5(i)+ξ2x13(i)

MAT,1750
)

ln(2) + x12(i)(1 − afracx15(i))

 (2.9)
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2.3 Carbon mass: C

The model for the carbon mass is divided into three components: mass of carbon in the
atmosphere (MAT ), mass of carbon in the upper ocean layer (MUP ) and mass of carbon
in the lower ocean layer (MLO). The dynamic equation, in matrix form, that governs all
the three component is the following:

M(i + 1) :=

 MAT (i + 1)
MUP (i + 1)
MLO(i + 1)

 = ϕM M(i) +

 ξ2E(i)
0
0

 (2.10)

Where ϕM is the carbon mass transition matrix. As we can see from this equation, the
mass of carbon in the atmosphere is driven by CO2 emissions due to economic activity
(represented in the model as the state x13(i)=E(i)).

2.3.1 Carbon mass transition matrix

The matrix ϕM dictates how the carbon masses at a time step depend on the carbon masses
at the previous time step and is defined as follows:

ϕM :=

 ζ11 ζ12 0
ζ21 ζ22 ζ23
0 ζ32 ζ33

 (2.11)

All these values can be found in the Appendix (6.4).
This state equation describes the carbon cycle. A satisfying definition of what the carbon
cycle is can be found in Oceanic and Administration [2022]:

The carbon cycle describes the process in which carbon atoms continually travel
from the atmosphere to the Earth and then back into the atmosphere. Since our
planet and its atmosphere form a closed environment, the amount of carbon in
this system does not change. Where the carbon is located — in the atmosphere
or on Earth — is constantly in flux. [...] Humans play a major role in the carbon
cycle through activities such as the burning of fossil fuels or land development.
As a result, the amount of carbon dioxide in the atmosphere is rapidly rising;
it is already considerably greater than at any time in the last 800,000 years.

2.4 Capital: K

The DICE model assumes a single global economic "capital". The evolution of the capital
is described by the following equation:

K(i + 1) = (1 − δK)∆K(i) + ∆Q(i)s(i) (2.12)
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Where Q is the net economic output.
The model above denotes two components of the capital. The first is related to the depre-
ciation of the capital (we talk about "depreciation" because deltaK ϵ [0, 1], which means
that 1−δK is less than 1), while the second is about its replenishment through investments.
The control input s is the savings rate and it tells us which fraction of the net economic
output is reinvested in the economy, thus replenishing the total world capital.

2.4.1 Net economic output, damages and abatement costs

The net economic output Q is obtained from the gross economic output Y by removing:

• the damages to the environment caused by the rising atmospheric temperature;

• the costs that we have to sustain for our emissions abatement efforts.

More precisely, the equation is the following:

Q(i) = D(i)(1 − AC(i))Y (i) (2.13)

Where D and AC are, respectively, the damages function and the abatement costs (both
described in details below). In turn, the gross economic output Y is described as follows:

Y (i) = AT F P (i)K(i)γ
(

L(i)
1000

)1−γ

(2.14)

Or, as a function of the states:

Y (i) = x10(i)x7(i)γ
(

x9(i)
1000

)1−γ

(2.15)

The damages function used in the DICE model depends on the atmospheric temperature
TAT as follows:

D(i) = 1 − a2TAT (i)2

1 + a2TAT (i)2 (2.16)

Which can be expressed as the following function of the states:

D(i) = 1 − a2x2(i)2

1 + a2x2(i)2 (2.17)

The way damages are modelled is still cause for debate in the environmental science com-
munity. According to Kellett et al. [2019]

This stems from the inherent difficulty of modeling in an application where
experimentation is simply not possible and the fact that rising temperatures
will have different local effects.
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This particular choice of damages function is calibrated in a way to yield a loss of 2% at
3°C. In Kellett et al. [2019], there is a remark about this calibration:

It is worthwhile noting that it has been vigorously argued that the above cal-
ibration of 2% loss at 3°C is unreasonably low if it is to be consistent with
currently available climate science.

Which means that other choices of damage functions may be better than this one.
The abatement costs in Kellett et al. [2019] only depend on the control input µ:

AC(i) = θ1(i)µ(i)θ2 (2.18)

So, the costs increase as µ increases (an increase of µ translates to a higher effort in
reducing emissions, so it makes sense that if µ increases, the abatement costs increase with
it). However, this model lacks inertia because not only does the abatement effort µ have a
cost but so does the speed at which we perform said abatement (i.e., µ̇). In Grubb et al.
[2021] the following update to the model is proposed and this is the equation used in this
thesis:

AC(i) = θ1(i)((1 − p)µ(i)θ2 + p
t̂

θ2 + 1 µ̇(i))) (2.19)

Besides the original abatement costs, there’s a new term related to µ̇ which adds inertia
to the costs. This way, the model is more realistic and it also puts a cost to the speed at
which µ changes, which can be translated as a soft constraint on µ̇.
We can also rewrite this one as a function of the states:

AC(i) = θ1(i)((1 − p)x15(i)θ2 + p
t̂

θ2 + 1 ẋ15(i))) (2.20)

In both models, θ1 represents the cost of mitigation efforts and is defined as follows:

θ1(i) = pb

1000θ2
(1 − δP B)i−1σ(i) (2.21)

Here, pb represents the price of a backstop technology (i.e. a technology that can replace
exhaustible resources with unlimited resources, such as solar power with respect to carbon)
that can remove carbon dioxide from the atmosphere. It is worth noting that such a model
embeds the assumption that this backstop price decreases over time (since δP B ϵ [0, 1]) and
increases with σ (i.e. the carbon intensity of economic activity). This means that backstop
technologies are assumed to get cheaper over time but they are also assumed to be more
expensive the higher the carbon intensity of economic activity is. This translates in the
assumption that new technologies get cheaper as the technological progress advances but
that it also costs more to replace old carbon technology when they are heavily involved in
our economic activities.
Once again, this equation can also be rewritten as a function of the states:

θ1(i) = pb

1000θ2
(1 − δP B)x1(i)−1x8(i) (2.22)
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2.5 Emission intensity: σ

The evolution of the carbon intensity due to economic activity is described by the following
equation:

σ(i + 1) = σ(i)e−gσ(1−δσ)∆(i−1)∆ (2.23)
Which can be rewritten as the following function of the states:

x8(i + 1) = x8(i)e−gσ(1−δσ)∆(x1(i)−1)∆ (2.24)

This model represents a decreasing logistic curve, meaning that it is monotonically de-
creasing with a decreasing decrease rate, a shown in the following figure:

Figure 2.1: Evolution of the carbon intensity of economic activity

Regarding the initial value of the emission intensity, the following statement can be
found in Kellett et al. [2019]:
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An estimate for the initial emissions intensity of economic activity σ(1) = σ0
can be calculated as the ratio of global industrial emissions to global economic
output. The estimate of σ0 can be further refined by estimating the mitigation
rate in the base year. In other words, with base year emissions e0, base year
economic output q0, and an estimated base year mitigation rate µ0, we can
estimate σ0 = e0

q0(1−µ0) = 0.3503 GtC/trillions 2010USD.

2.6 Population: L

The world population evolves according to the following model:

L(i + 1) = L(i)
(

La

L(i)

)lg

(2.25)

The model dictates an initial exponential growth, starting from L0 = 7403 millions people
(world population in 2015) which then saturates to the asymptotic population of La =
11500 millions people, as shown in the following figure:

Figure 2.2: Evolution of the population
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2.7 Total factor productivity: ATFP

The total factor productivity is a measure of technological progress and it evolves according
to the following model:

AT F P (i + 1) = AT F P (i)
1 − gae−δA∆(i−1) (2.26)

This equation describes an increasing logistic curve (i.e. a curve which is monotonically
increasing with a decreasing growth rate), as shown in the following figure:

Figure 2.3: Evolution of the total factor productivity
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2.8 Emissions due to land use changes: ELAND

The emissions due to land use changes evolve over time according to the following model:

ELAND(i + 1) = EL0(1 − δEL)i (2.27)

Which can be expressed as a function of the states as follows:

x11(i + 1) = EL0(1 − δEL)x1(i) (2.28)

2.9 External forcings: FEX

The external forcings are the greenhouse effects caused by gases other than CO2, such as
methane, nitrous oxide, and chloroflourocarbons (the specific effects of each one of these
gases is outside of this thesis’ scope). As shown both in 2.7 and in 2.8, these forcings
contribute to the total radiative forcing. These external forcings evolve according to the
following model:

FEX(i + 1) = f0 + min
(

f1 − f0,
f1 − f0
tforce

i

)
(2.29)

2.10 Emissions: E

This state represents the CO2 emissions due to economic activity and land use. These
emissions evolve according to the following model:

E(i + 1) = ∆(σ(i + 1)(1 − µ(i + 1))Y (i + 1) + ELAND(i + 1)) (2.30)

We can see that these emissions depend on two contributions. The first contribution is
σ(1 − µ)Y and it represents the emissions due to economic activity. In fact, this term
grows when either σ or Y grows, which makes sense since they represent, respectively, the
carbon intensity of economic activity and the gross economic product. Moreover, the term
decreases as µ increases, which reflects the fact that acting on our control input µ (i.e.
the abatement rate) has the direct effect of reducing emissions. The second contribution
is related to the emissions due to land use changes ELAND (another previously mentioned
state).

2.11 Consumption: C

The consumption represents the portion of the net economic output Q that does not get
reinvested in the economy. Since the savings rate s is the one dictating the portion of the
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net economic output Q that gets reinvested in the economy, we have that the consumption
evolves according to the following equation:

C(i + 1) = ∆(1 − s(i + 1))Q(i + 1) (2.31)

By defining the investments I as I(i) = Q(i)s(i), we can define the consumption C as
C(i) = Q(i) − I(i), which precisely means that the consumption is whatever remains of
the net economic output after we reinvest part of it.

2.12 Abatement rate: µ

The abatement rate µ is one of the two control inputs and it represents the rate at which
mitigation of industrial carbon dioxide emissions occur. In other words, the higher µ, the
faster the emissions get reduced.
Since µ is a decision variable of the optimization problem, it does not have a dynamic
equation that describes its evolution.

2.13 Savings rate: s

The savings rate s is the second control input and it represents the fraction of the net
economic output that gets reinvested in the economy. To better understand what this
means, we can imagine a scenario: let us assume we are in a very critical situation regarding
the environment (for instance, we have a quite high atmospheric temperature) and we only
have s as a control input (meaning that we cannot act on µ to reduce emissions). A possible
solution could be to reduce s in order to reduce emissions by directly reducing the economic
activity. In fact, reducing s translates to reducing the investments, which means reducing
the economic activity and, therefore, reducing the emissions caused by it.
Since s is a decision variable for the optimization problem, there is not a dynamic equation
that describes its evolution.

2.14 Negative social welfare: J

The negative social welfare is the objective function that the optimization problem aims
to minimize, while all the other state dynamics act as constraints to the problem. It is
basically just the social welfare changed by sign.
In Kellett et al. [2019] the following model for computing the social welfare is used:

J(i + 1) = J(i) − U(i)
(1 + ρ)∆(i−1) = J(i) − L(i)

(1000
L(i) C(i))1−α − 1

(1 − α)(1 + ρ)∆(i−1) (2.32)
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Where U(i) = L(i)
( 1000

L(i) C(i))1−α−1
(1−α) represents the utility function. So, the negative social

welfare is the discounted sum of the negative utility (ρ > 0 is a prescribed discount rate).
The model for the social welfare used in this thesis is slightly different than the one men-
tioned above. The goal was to try to keep the atmospheric temperature below 2°C (as the
UN Paris Agreement dictates) without putting an explicit upper bound on it (as it was
instead done in Kellett et al. [2019]). The way this was done was by adding a sort of soft
constraint in the objective function such that having TAT > 2°C is considered unfavorable
by the solver. The model used is the following:

J(i + 1) = J(i) − L(i)
(1000

L(i) C(i))1−α − 1
(1 − α)(1 + ρ)∆(i−1) + sw(TAT (i) − TAT,max) (2.33)

The equation is mostly the same with the only addition of the term sw(TAT − TAT,max),
which gets summed to the original social welfare. This additional term increases the objec-
tive function (that we want to minimize) whenever TAT > 2°C and decreases it whenever
TAT < 2°C. This way, we avoid the feasibility problems that may arise from inserting
an explicit upper bound on TAT but we still embed in the problem the will to keep the
temperature as low as possible.

2.15 Abatement speed: µrate

When trying to reduce emissions, it may happen that the optimization problems finds it
optimal to immediately increase µ to values very close to 1 and thus reaching 1 (i.e. a total
elimination of emissions) in a very short period of time. This is obviously not feasible in
reality and so we need to tell the solver that it cannot change µ at whatever speed. This
can be done in two ways and one of these is by adding this state, which symbolizes the
speed at which µ changes, and by putting an upper bound on it. The definition comes
directly from that of an incremental ratio:

µrate(i + 1) = |µ(i + 1) − µ(i)| (2.34)

This is what was also done in Kellett et al. [2019] to avoid having unrealistic trajectories
for µ.

2.16 Abatement growth: µgrowth

The other way to prevent the control input µ to grow arbitrarily fast is to constrain its
growth. This is analogous to constraining its rate but leads to slightly different results, so
having also this state provides the possibility of choosing how to constrain µ. The definition
is some sort of normalized incremental ratio:

µgrowth(i + 1) = µ(i + 1) − µ(i)
µ(i) (2.35)
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Exactly as µrate, also µgrowth was used in Kellett et al. [2019] to avoid unrealistic trajectories
for µ.

2.17 Equilibrium climate sensitivity: ECS

2.17.1 Definition

A satisfying definition of the equilibrium climate sensitivity can be obtained from Johansson
et al. [2015]:

[The ECS is] the eventual increase in global annual average surface temperature
in response to a doubling of atmospheric CO2 concentration.

To explain it in an easier way, we can consider the following chain of implications:
High ECS ⇒ The temperature increases more when we double the atmospheric CO2
concentration ⇒ Bad!
Another definition can be found in Kellett et al. [2019]:

The Equilibrium Climate Sensitivity (ECS) is defined as the steady-state at-
mospheric temperature arising from a doubling of atmospheric carbon.

This definition includes the term "steady-state" which is the reason why it is called equi-
librium climate sensitivity. This is due to the fact that there is not just one type of
climate sensitivity but, in fact, there are more. In Hausfather [2018], three kinds of climate
sensitivity are mentioned:

• Equilibrium climate sensitivity (ECS): defined above. It refers to the increase of
temperature due to the doubling of CO2 concentration in the atmosphere after the
transient processes have reached equilibrium. So, the ECS is the warming that
occurs after the Earth’s climate had the time to adjust to changes in the atmospheric
CO2 concentration. This means that the ECS is more useful in the long term (since
it neglects the transient processes that may be important to consider in the short
term). This climate sensitivity is the one employed in this thesis.

• Transient climate response (TCR): it refers to the increase of temperature due to
the doubling of CO2 concentration in the atmosphere at the time when CO2 doubles.
So, this measure considers the transient effects that come from doubling the CO2
concentration and is, therefore, more useful in the short term.

• Earth system sensitivity: this measure includes very long-term Earth system feed-
backs, such as changes in ice sheets or changes in the distribution of vegetative cover.
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2.17.2 Estimation

The estimation of the ECS is still an open problem and the best we have so far is a range
of values which still remains quite large. For many years, the values for the ECS that were
considered were between 1.5°C and 4.5°C Hausfather [2018]. However, in Johansson et al.
[2015] it is claimed that this range can be narrowed down to [2°C, 4°C] and this is the range
that will be considered in this thesis. In the most important literature used as a reference
for this work (Kellett et al. [2019], Hänsel et al. [2020] and Grubb et al. [2021]), the value
for the ECS that was used was 3.1°C (which is around the average value in the interval
mentioned above). Since the goal of this thesis is to employ robust control strategies, we
will consider the entire range with a worst-case scenario approach that will be described
in details in the Optimization chapter (3).

2.17.3 State equation

Due to how the problem is structured, the ECS has no state equation. The worst-case
scenario ECS is obtained by solving a MinMax problem in which we can distinguish two
situations for the ECS:

• During the minimization, the ECS is fixed.

• During the maximization, the ECS is a treated as a decision variable which will be
increased.

More details on this can be found in the Optimization chapter (3).

2.18 Equilibrium climate sensitivity rate: ECSrate

During the maximization phases of the MinMax problem, the ECS is the decision variable
and the "adversary player" will try to raise it so as to put us in the worst case scenario
(more details on this in the Optimization chapter (3.3)). For feasibility reasons, it helps
to limit the rate at which the ECS is allowed to vary. Therefore, we added this state as
to put an upper bound on it, so that the "adversary player" cannot change the ECS at an
arbitrary speed. The definition of this state is simply the incremental ratio of the ECS:

ECSrate(i + 1) = |ECS(i + 1) − ECS(i)| (2.36)
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Chapter 3

Optimization

The optimization scenario of this thesis work is a robust version of the one in Kellett et al.
[2019]. The robustness is achieved by having two adversary agents:

• The direct problem (the "good guy"), whose goal is that of minimizing the negative
social welfare J by acting on the control inputs µ and s.

• The adversary problem (the "bad guy"), whose goal is that of maximizing the negative
social welfare J by acting on the equilibrium climate sensitivity ECS (i.e. by raising
it).

The MinMax approach is achieved through these two opposing optimization problems,
which are solved in an iterative manner. These two optimization problems are solved in an
iterative manner. First, the direct problem computes the optimal control inputs µ and s
(for a specific ECS) to minimize the negative social welfare. Then, the adversary problem
computes the optimal ECS to maximize the negative social welfare and so on. This way,
the direct problem will always find itself in the worst-case scenario and will have to try to
compute the best control inputs that counteract the actions of the adversary agent. This
is where the robustness comes from: we are not only considering a constant value for the
ECS (as was done in the literature used for this thesis) but we change it at every iteration,
making things always worse to see what kind of control actions we would need to take in
a situation that is increasingly getting worse.
Before this iterative process, just like in Kellett et al. [2019], some sort of an initialization
problem is solved, whose goal is that of finding feasible starting conditions which are then
used as a starting point for the actual MinMax problem (more on this in section 3.2).
What follows is a detailed description of the three problems (min, max and initialization)
followed by a section that describes how the full MinMax approach was implemented.
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3.1 Minimization: the "direct problem"

As previously stated in the introduction to this section, the direct problem (i.e. the "good
guy") is the one which, at every iteration, computes the best control inputs µ and s given
the specific situation it finds itself in. For the direct problem, the ECS is constant and
decided during the previous iteration.
This problem is defined as follows (Kellett et al. [2019]):

min
µ,s

x17(N + 1)

subject to
x(j + 1) = f(x(j), u(j)), j = 1, ...N

x(1) = x∗(2|i − 1)
g(x, i) ≤ ub

h(x, i) ≥ lb

µ ϵ [0,1]
s ϵ [0,1]

(3.1)

The objective function is, as previously mentioned, the negative social welfare, which is the
17th state, computed at time N + 1, where N is the prediction horizon length (i.e. "how
far in the future we are looking").
In this problem, x(i) ϵ R21 is the state vector at time i, while u(i) = [µ(i + 1), s(i + 1)] is
the shifted input vector.

3.1.1 Equality constraints for the state dynamics

The first set of equality constraints are the state dynamics described in the Model chapter
(2). So, in other words, these are the equations that describe how the states evolve. This
means that there is an equality constraint for every state. These equality constraints are,
thus, the followings:

• Time index (2.3): f1(x(j), u(j)) = x1 + 1

• Temperature: the expression would be too long to write it down entirely but it can
be obtained by plugging 2.6 and 2.9 into 2.4.

• Carbon mass (2.10):

 f4(x(j), u(j))
f5(x(j), u(j))
f6(x(j), u(j))

 = ϕM

 x4
x5
x6

+

 ξ2x13
0
0


• Capital: the expression would be too long to write down but it can be obtained by

plugging 2.13, 2.15, 2.17, 2.20 and 2.22 into 2.12.
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• Emission intensity (2.23): f8(x(j), u(j)) = x8e−gσ(1−δσ)∆(x1−1)∆

• Population (2.25): f9(x(j), u(j)) = x9
(

La
x9

)lg

• Total factor productivity (2.26): f10(x(j), u(j)) = x10
1−gae−δA∆(x1−1)

• Land emissions (2.27): f11(x(j), u(j)) = EL0(1 − δEL)x1

• External forcings (2.29): f12(x(j), u(j)) = f0 + min
(
f1 − f0, f1−f0

tforce
x1
)

• Emissions: the expression would be too long to write down but it can be obtained
by plugging 2.24, 2.15 and 2.28 into 2.30

• Consumption (2.31): f14(x(j), u(j)) = ∆(1 − x16(i + 1))Q(i + 1)

• Abatement rate: f15(x(j), u(j)) = u1(i)

• Savings rate: f16(x(j), u(j)) = u2(i)

• Negative social welfare (2.33):

f17(x(j), u(j)) = x17(i) − x9(i)
( 1000

x9(i) x14(i))1−α−1
(1−α)(1+ρ)∆(i−1) + sw(x2(i) − TAT,max)

• Rate of µ (2.34): f18(x(j), u(j)) = |x15(i + 1) − x15(i)|

• Growth of µ (2.35): f19(x(j), u(j)) = x15(i+1)−x15(i)
x15(i)

• Equilibrium climate sensitivity: f20(x(j), u(j)) = x20(i)

• Rate of ECS (2.36): f21 = |x20(i + 1) − x20(i)|

The equality constraint for the ECS is worth noting because what it tells us is that,
during the minimization phase, the ECS is considered to be constant. This is not the case
during the entire algorithm, as the ECS gets chosen during the maximization phase (and
is, therefore, not constant) but then, once the ECS at a certain step is chosen, it is kept
constant during the minimization.
As stated in the problem definition, these equality constraints are applied for j that goes
from 1 to N , where N is the prediction horizon length. Considering this and considering
the fact that the objective function is evaluated at the time instant N + 1, what we are
doing is basically simulating the system from time 1 to time N with the goal of having an
optimal objective function at the time instant right after the end of the prediction horizon.
In other words, during the prediction horizon the problem computes optimal control inputs
with the goal of optimizing the objective function only at time N +1 but, to do that, it has
of course to simulate the system in the time interval from time instant 1 to time instant
N .
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3.1.2 Equality constraints for the initial conditions

The second equality constraint serves the purpose of setting the initial conditions for the
problem (i.e. setting the value for x(1)). The quantity x∗(2|i − 1) can be seen as the first
step of the solution computed at the previous time step. The sentence "first step of the
solution" refers to the fact that the solution at each time step is a vector and we are taking
only the first value of this vector. Since every value of the vector refers to a specific time
instant, we are taking only the value related to the first time instant, i.e. "the first step".
To give an intuitive idea of what this means, we can consider the following scenario:

1. we solve the problem at time i − 1, obtaining the solution x∗(i − 1);

2. since we apply a receding horizon approach (described more in details below in section
3.4), we only take the first step of this solution, i.e. x∗(2|i − 1) (why the index 2 if it
is the first step? Because x∗(1|i − 1) represents the initial condition for the problem
at time i − 1 and so it is not the first step of the computed solution, but rather the
initial value which the optimization in the previous step started from);

3. we assign this value as an initial condition to the problem to be solved at time i.

This whole procedure is described more in details in the section related to the receding
horizon approach (3.4).

3.1.3 Inequality constraints for the bounds

The inequality constraints represent bounds for the state variables. Here, we will list all the
inequality constraints implemented for the minimization. However, it must be noted that
not all of these constraints are always active (as opposed to the equality constraints that
are always all active). This means that, for a certain execution of the algorithm, the actual
set of the active inequality constraints is a subset of what follows. In the Results chapter
(4), it will be said, for every result, which inequality constraints were active. Regardless, in
the list that follows it will be mentioned if some constraints can be activated or deactivated.

• Time index: x1 ≥ 0 (i.e. h1(x, i) = x1(i) and lb,1 = 0)

• Atmospheric temperature: x2 ≥ 0 (i.e. h2(x, i) = x2(i) and lb,2 = 0: we don’t enforce
a specific upper bound on TAT , instead, we embed a soft constraint on it in the
objective function, as described in the Model section (2.14))

• Lower ocean temperature: x3 ≥ 0 (i.e. h3(x, i) = x3(i) and lb,3 = 0)

• Mass of carbon in the atmosphere: x4 ≥ 0 (i.e. h4(x, i) = x4(i) and lb,4 = 0)

• Mass of carbon in the upper ocean: x5 ≥ 0 (i.e. h5(x, i) = x5(i) and lb,5 = 0)
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• Mass of carbon in the lower ocean: x6 ≥ 0 (i.e. h6(x, i) = x6(i) and lb,6 = 0)

• Capital: x7 ≥ 0 (i.e. h7(x, i) = x7(i) and lb,7 = 0)

• Consumption: x14 ≥ 0 (i.e. h8(x, i) = x14(i) and lb,8 = 0)

• Abatement rate: x15 ≥ 0 (i.e. h9(x, i) = x15(i) and lb,9 = 0) and x15 ≤ 1 (i.e.
g1(x, i) = x15(i) and ub,1 = 1)

• Savings rate: x16 ≥ 0 (i.e. h10(x, i) = x16(i) and lb,10 = 0) and x16 ≤ 1 (i.e.
g2(x, i) = x16(i) and ub,2 = 1)

• µrate: x18 ≥ 0 (i.e. h11(x, i) = x18(i) and lb,11 = 0) and, if we activate the upper
bound on µrate, x18 ≤ ∆µ (i.e. g3(x, i) = x18(i) and ub,3 = ∆µ)

• µgrowth: if we don’t constrain µgrowth, x19 ≥ 0 (i.e. h12(x, i) = x19(i) and lb,12 = 0),
otherwise, x19 ≥ −Γµ (i.e. h12(x, i) = x19(i) and lb,12 = −Γµ) and x19 ≤ Γµ (i.e.
g4(x, i) = x19(i) and ub,4 = Γµ)

The constants indicated here are available in the Appendix (6.8).

3.1.4 Issues with the initial conditions

The initial conditions for each state can be obtained by evaluating each state equation for
i = 0. This leads to no problem for most of the states. However, when we do this for the
13th and for the 14th states, i.e. the emissions and the consumption respectively (so, what
we are doing is evaluating 2.31 and 2.30 for i = 0), we get the following for the emissions:

E(1) = ∆
(

x8(1)(1 − x15(1))x10(1)x8(1)γ
(

x9(1)
1000

)1−γ

+ EL0

)
(3.2)

And the following for the consumption:

C(1) = ∆
(

1 − θ1(1)x15(1)θ2

1 + a2x2(1)a1

)
x10(1)x8(1)γ

(
x9(1)
1000

)1−γ

(1 − x16(1)) (3.3)

The details of the two expressions are not relevant at the moment, what is important is
that E(1) depends on x15(1) = µ(1) and that C(1) depends on both x15(1) = µ(1) and
x16(1) = s(1), which are the two control inputs. This means that the optimization has
the constraint of initialising E and C using µ(1) and s(1) but these last two values are
decision variables and so they will be obtained after the problem is solved. This issue was
brought up in Kellett et al. [2019] and the solution suggested there is that of solving first
an initial problem that serves the purpose of properly initialising all the states variables so
that then we are able to proceed with the resolution of the direct and adversary problems.
This initialization problem is described more in details in the section that follows.
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3.2 Initialization problem

As mentioned in the previous section, the goal of this problem is to compute feasible initial
conditions that will serve as a starting point for the MinMax problem previously described.
This problem is formulated as follows:

min
µ,s,ν

x17(N + 1)

subject to
x(j + 1) = f(x(j), u(j)), j = 1, ...N

x(1) = ν

νk = xk(1) kϵ{1, ..., 21} \ {15, 16}
νkϵ[0, 1] k = 15, 16
µ ϵ [0,1]
s ϵ [0,1]

(3.4)

3.2.1 New decision variable: ν

The key differences of this problem, with respect to the minimization problem described
above, are the additional decision variable ν ϵ R21 and the constraints related to it.
From the constraint x(1) = ν, we can see that this ν is used to initialise the state vector
(which was the issue mentioned in the previous section).
The constraint νk = xk(1), k ϵ {1, ..., 21} \ {15, 16} means that all the values of the vector
ν, except for ν15 and ν16, can be obtained by evaluating the state equations for i = 0. Why
are ν15 and ν16 excluded? Because they refer to the 15th and 16th states respectively, i.e.
the two control inputs µ and s, which are decision variables of the problem.
The way ν15 and ν16 are dealt with is described in the constraint νk ϵ [0, 1], k = 15, 16,
which tells us that we are not setting a specific value for ν15 and ν16 but we are actually
just bounding them in a set so that the problem computes feasible values for them.

3.2.2 Equality constraints for the state dynamics

The first set of the equality constraints, i.e. the ones related to the states dynamics, are
exactly the same as the ones described in the section related to the minimization problem
(3.1.1).

3.2.3 Inequality constraints for the bounds

As far as the inequality constraints are concerned, they are, again, the same as the ones
for the minimization problem. However, there is an additional constraint which is needed
to force the initial condition of the control input µ to be the one that we need. So, what
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we have is that x15(1) ϵ [0, µ0]. The reason this is written as an inequality constraint is
that if there is no constraint at all, µ starts immediately from a value which is too high.
This happens because our goal is to reduce emissions and so the problem will tend to pick
higher values for µ instead of lower ones. So, we never have the problem of having an
initial value of µ that is too low but rather the opposite. So, in conclusion, by writing it
this way, we always get that µ(1) = µ0, hence we achieve forcing an initial value for the
control input µ without using a strict equality constraint.

3.3 Maximization: the adversary problem
The so called adversary problem (i.e. the "bad guy") has the previously mentioned goal of
putting the direct problem (i.e. the "good guy"), at every iteration, in the worst possible
situation by increasing the equilibrium climate sensitivity ECS. For this adversary agent,
the control inputs µ and s are constant and decided in the previous iteration.
This problem is defined as follows:

max
ECS

x17(N + 1)

x(j + 1) = f(x(j), u(j)), j = 1, ...N

x(1) = x∗(2|i − 1)
gmin(x, i) ≤ ub

hmin(x, i) ≥ lb

ECS ϵ [ECSmin, ECSmax]

(3.5)

So, the adversary agent aims to maximize the negative social welfare (the opposite of what
we want) by acting on the ECS (i.e. by increasing it). We can see that the decision variable
for this problem (i.e. the ECS) is bounded between ECSmin = 2◦C and ECSmax = 4◦C.
This is according to what has been previously stated in the section related to the estimation
of the ECS (2.17.2).

3.3.1 Equality constraints

The equality constraints are almost exactly the same as the ones for the direct problem
because they define the way states are allowed to evolve over time. The only differences
are related to the fact that the adversary problem has a different decision variable and
considers µ and s to be constant, so:

• The adversary problem does not have the constraint ECS(i + 1) = ECS(i) because
the ECS is the decision variable for the problem and is, therefore, not constant.

• The adversary problem has two additional constraints that force the two control
inputs µ and s to remain constant: µ(i + 1) = µ(i) and s(i + 1) = s(i).
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3.3.2 Inequality constraints

The inequality constraints for the adversary problem are almost the same as the ones for
the direct problem, with just a few differences:

• ECS ϵ [ECSmin, ECSmax], since now the ECS is varying and bounded.

• Allowing the ECS to vary at an arbitrary rate brought up feasibility problems and
so it was necessary to constrain ECSrate. This is, obviously, only necessary in the
adversary problem, since in the direct problem the ECS is constant. So, in the
adversary problem we have that ECSrate ϵ [0, ECSrate,max].

• The adversary problem does not need bounds on µ and s since they are considered
as constants.

3.4 Receding horizon: implementation of the MinMax ap-
proach

The three problems (initialization, direct and adversary) are non-convex infinite-horizon
optimal control problems (Kellett et al. [2019]). This means that they are computationally
and analitically difficult to solve. For this reason, in Kellett et al. [2019] a model-predictive
control (or receding-horizon) strategy was employed, based on the conjecture that

in the case of undiscounted optimal control problems, receding horizon control
likely provides an approximate solution to the infinite horizon optimal control
problem (Kellett et al. [2019]).

This means that we will not reach the optimal solution with such a strategy but we will
get close enough to it (the larger the prediction horizon, the closer we get to the infinite-
horizon solution) and, at least, we have a computationally feasible algorithm. So, with
such problems, the options are either to have a sub-optimal solution or to have no solution
at all. Following this, we employed the same strategy for the MinMax problem solved in
this thesis.
From a high level perspective, the algorithm through which we implemented the MinMax
approach goes as follows:

adversary = false;
for k = 1,...,t_f

if k == 1
solve initialization problem (with prediction horizon N)
save the 1st step of the solution

else
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if adversary
use the 1st step of the previous solution as a starting point
solve adversary problem (with prediction horizon N)
save the 1st step of the solution
adversary = false

else
use the 1st step of the previous solution as a starting point
solve direct problem (with prediction horizon N)
save the 1st step of the solution
adversary = true

end
end

end

Here, tf determines how far in the future does the prediction go. For instance, as shown in
the Appendix (6.1), we are using a value of tf = 40. Since the DICE model has a time step
of 5 years, this means that our simulation will predict 40 · 5 = 200 years into the future.
The prediction horizon is given by N . The more we increase N , the closer we get to the
optimal solution given by the infinite-horizon problem. However, this comes at a price, as
the more we increase N , the more computationally demanding the problem becomes.
The algorithm shows that, at every iteration, we compute a solution of length N but then
we only feed the first step of this solution to the next iteration. Such a strategy is known
as 1-step receding horizon. This means that we sample the system at a time k and we
compute the optimal control path in the horizon [k, k + N ]. Then, we only apply the first
step of this optimal control path and we re-iterate the process (sampling, optimization,
application of the first step) for the next time instant. Only applying the first step of the
solution is what makes this algorithm computationally feasible.
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Chapter 4

Results

This chapter lists various scenarios considered as relevant results.

4.1 Monte Carlo analysis of the MinMax approach with nor-
mally distributed ECS

In order to test the robustness of the MinMax approach, we ran the following Monte Carlo
simulation:

1. Solve the MinMax problem once and collect the resulting control inputs (since these
control inputs are obtained by solving the MinMax problem, they will assume an
always increasing ECS, due to the action of the adversary agent).

2. Run a simulation of the system using the previously obtained control inputs but with
a different ECS, sampled randomly from a normal distribution.

3. Repeat step 2 a significant number of times (10000 in our case).

The goal of this Monte Carlo simulation is to test how well the controller performs in
scenarios in which the ECS is different than the one that was assumed.
This process is summed up by the following diagram:
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Figure 4.1: Diagram that sums up the procedure used to perform the Monte Carlo
simulation in a MinMax approach

As previously mentioned, the samples of the ECS are normally distributed with a
mean value of 3◦C and a standard deviation of 0.3◦C (i.e. ECS ∼ N(3, 0.3)). This makes
it possible to have around 99% of the times values of the ECS in the range [2◦C, 4◦C],
which is the range of all plausible values of the ECS (as previously mentioned in 2.17.2).
More precisely, using the properties of the gaussian distribution, we have that the interval
[µ − 3σ, µ + 3σ] = [2.1◦C, 3.9◦C] has a probability of around 99.7%.
After solving the MinMax problem, we get the following control inputs:

39



Figure 4.2: Control inputs obtained by solving the MinMax problem, where the controller
assumes an always increasing ECS

These control inputs will be used for the entire Monte Carlo simulation (at every itera-
tion, the only thing that changes is the ECS, which is sampled from a normal distribution).
By running the Monte Carlo simulation, we get the following trajectories for the atmo-
spheric temperature:
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Figure 4.3: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C]

Every color in Fig. 4.3 is related to a specific sample of the ECS. A color close to green
refers to a lower ECS, while a color close to red refers a higher ECS. Knowing this, the
results are not surprising: we get that having a higher ECS leads to higher atmospheric
temperatures and this is in line with what was said in 2.17. From these simulations, we
get that the final atmospheric temperatures range between around 1.3◦C (with the lowest
ECS) and 2.63◦ (with the highest ECS).
For the Monte Carlo simulation to be meaningful, enough iterations need to be executed,
such that the ECS is distributed in a way that resembles an ideal normal distribution
(because this is the kind of distribution that was used to sample the various values of
the ECS). The following plot shows the probability density function of the samples of the
ECS against an ideal one computed with Matlab with a mean value of 3◦C and a standard
deviation of 0.3◦C:
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Figure 4.4: Comparison between the probability density function computed manually
from the samples of the ECS and the ideal one obtained with Matlab as N ∼ (3, 0.3)

We can see that the probability density function computed manually does resemble the
ideal one obtained with Matlab. Another thing to notice is that, by using such a normal
distribution, we do get more than 99% of the times values contained in the interval [2◦C,
4◦C].
The probability density function shown is Fig. 4.4 was obtained from the cumulative
density function shown in the following figure (plotted against an ideal one computed with
Matlab):
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Figure 4.5: Comparison between the cumulative density function computed manually from
the samples of the ECS and the ideal one obtained with Matlab as N ∼ (3, 0.3)

As a reference, the probability density function and the cumulative density function
have been computed with the following algorithm:

1. sort the values of the ECS

2. count the number of times every value occurs

3. normalize that count such that it sums up to 1

4. take a cumulative sum of these counts to obtain the cdf

5. take the discrete derivative of the cdf to obtain the pdf

Having built such a stochastic setting, it is interesting to see what is the probability of the
atmospheric temperature to rise above 2◦C (as a reminder, this specific value comes from
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the UN Paris Agreement, as mentioned in the abstract). We can do that by collecting the
final values of the atmospheric temperature shown in Fig. 4.3 and apply the previously
described algorithm to obtain a probability density function and a cumulative density
function (we actually only need this second one) for them. The following plots show the
results of such a procedure:

Figure 4.6: Comparison between the probability density function computed manually from
the final values of TAT and the ideal one obtained with Matlab

From Fig. 4.6, we can see that the probability density function of the final values of
the atmospheric temperature is very similar to an ideal gaussian distribution. However, to
compute P [TAT > 2◦C], we need the cumulative density function, which is shown in the
following figure:
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Figure 4.7: Comparison between the cumulative density function computed manually from
the final values of TAT and the ideal one obtained with Matlab

From Fig. 4.7 we, first of all, have the confirmation of the final values of the atmospheric
temperature being very closely distributed like a normal random variable. Secondly, we
can see that:

P [TAT > 2◦C] = 1 − P [TAT ≤ 2◦C] = 1 − 0.512 = 0.488 (4.1)

So, basically, the UN Paris Agreement is violated a little less than half of the times.
Now, this may seem like a good result. After all, we manage to comply with the agreement
for slightly more than half of the times and, even when we do not, the maximum atmo-
spheric temperature that we reach is around 2.63◦. However, we cannot ignore the control
input trajectories shown in Fig. 4.2. Due to the fact that the MinMax approach is very
conservative (we are using it precisely because we want to achieve robustness) and due to
the soft constraint on TAT that encourages the solver to keep the atmospheric temperature
as low as possible, the trajectory for the abatement rate µ is very steep: according to these
results, we should reduce emissions by almost 83% in 2025 and eliminate them completely
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in 2030. This means that, by applying these control inputs, we obtain very good results
in term of the atmospheric temperature but, unfortunately, such control inputs are simply
not feasible in reality.
A way to try to overcome such a problem is by constraining µrate, as described in the
Optimization chapter (3.1.3). This way, we expect to obtain a less steep trajectory for µ
which, in turn, implies worse results for the atmospheric temperature (because we are not
allowing µ to change arbitrarily fast). The upper bound for µrate is the same one used in
Kellett et al. [2019] and can be found in the Appendix (6.8). The results obtained this way
are shown in the following figure:

Figure 4.8: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C], with µrate constrained

We can see that, as expected, the results are way worse than before. Now, the final
value for the atmospheric temperature ranges between around 2.87◦C and 5.79◦C, which
means that the UN Paris Agreement is violated 100% of the times. The corresponding
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abatement rate µ is shown in the following figure (plotted against the previous one in
order to show the difference):

Figure 4.9: Abatement rate µ obtained by solving the MinMax problem with and without
a constraint on µrate

It is clear that now the control action is much more feasible in terms of the abatement
rate µ. Another interesting thing to consider is the other control input, i.e. the savings
rate s:
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Figure 4.10: Savings rate s obtained by solving the MinMax problem with and without a
constraint on µrate

We can see that when we enforce a constraint on µrate the savings rate s tends to be
lower. This is not surprising because, by constraining µrate, we are basically reducing the
capabilities of the abatement rate µ to fulfill our goals. However, our goals remain the
same, and so if one of the two control inputs is less able to fulfill them, then the other one
needs to step in. This is precisely what happens: lower values of the savings rate mean that
we are trying to keep the atmospheric temperature down by directly reducing the economic
activity (as a reminder, the savings rate indicates the fraction of the net economic output
that gets reinvested into the economy (2.13)).
One could argue that imposing a constraint on µrate such that µrate ϵ [0, ∆µ] poses a tuning
problem: how can we determine the value of ∆µ? The value used in this thesis is ∆mu = 0.1
and it comes from Kellett et al. [2019]. Just for testing purposes, we can try to increase
this ∆mu (i.e. to soften the constraint on µrate) to see if we get both feasible control
inputs trajectories and also good performances regarding the atmospheric temperature.
By running the same Monte Carlo simulation as before but with a ∆mu = 0.3, we get the
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following trajectories for the atmospheric temperatures:

Figure 4.11: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C], with µrate constrained more softly

The final value of the atmospheric temperature has the following features:

• ranges in the interval [1.42◦C, 2.97◦C]

• has a mean value of 2.24◦C

• has a standard deviation of 0.21◦C

Which are slightly worse than the 1st case (where there was no constraint on µrate) but bet-
ter than the 2nd (where the constraint on µrate was stronger). By looking at the cumulative
density function of these values
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Figure 4.12: Comparison between the cumulative density function computed manually from
the final values of TAT and the ideal one obtained with Matlab, with µrate constrained more
softly

We can see that

P [TAT > 2◦C] = 1 − P [TAT ≤ 2◦C] = 1 − 0.123827 = 0.8762 (4.2)

Which means that we do not comply with the UN Paris Agreement in more than 87% of
the cases. Before drawing our conclusions, we should also compare the control inputs of
the two previous cases with the control inputs in this one:
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Figure 4.13: Abatement rate µ obtained by solving the MinMax problem with two different
constraints on µrate and without any constraint

We can see that in this case (the green line) we are in between the first two, which is
not a surprise, since we are considering a more constrained situation with respect to the
first one (black line, where there was no constraint at all on µrate) but not as constrained
as the second one (blue line, where the constraint on µrate was stronger because ∆µ was
lower). This means that the control inputs obtained in this third case are more feasible
that the one obtained in the first and also more effective that the one obtained in the
second. However, it should be kept in mind that this increase from ∆µ = 0.1 to ∆µ = 0.3
was just for testing purposes and we do not have the data to say that such a constraint
is actually applicable in reality or not. In conclusion, if such a control input trajectory is
actually feasible, we would be able to get an atmospheric temperature that most likely will
not comply with the UN Paris Agreement but that will not be too much higher than the
limit of 2◦C imposed by said agreement.
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4.2 Monte Carlo analysis of the pure minimization approach
with normally distributed ECS

It is interesting to compare the results obtained with the MinMax approach (the novelty
of this master’s thesis) and the ones obtained with a pure minimization approach (i.e.
without an adversary agent that tries to make the situation worse). To this end, the
following Monte Carlo analysis (analogous to the one in the previous section (4.1)) is run:

1. Solve the minimization problem, assuming ECS = 3.1◦C (since this is the most
common value found in the literature) and collect the resulting control inputs.

2. Run a simulation of the system using the previously obtained control inputs but with
a different ECS, sampled randomly from a normal distribution.

3. Repeat step 2 a significant number of times.

With this Monte Carlo simulation, we want to test how robust a pure minimization ap-
proach is, when the controller assumes an ECS different than the real one, and how
different the results are compared to when we use a MinMax approach. This process is
summed up by the following diagram:

Figure 4.14: Diagram that sums up the procedure used to perform the Monte Carlo
simulation in a classic approach (i.e. without adversary agent)
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Just like the Monte Carlo simulation that was run to test the MinMax approach, this
Monte Carlo simulation uses, for the same reasons, normally distributed samples of the
ECS with a mean value of 3◦C and a standard deviation of 0.3◦C (i.e. ECS ∼ N(3, 0.3)).
After solving the minimization problem, we get the following control inputs:

Figure 4.15: Control inputs obtained by solving the Min problem

These control inputs are exactly the same as the ones obtained by solving the MinMax
problem (Fig. 4.2). Why does that happen? In both cases, there was a soft constraint
in the objective function that pushed the solver into keeping the atmospheric temperature
below 2◦C (section 2.14) and the fact that the control inputs trajectories are the same in
the two cases tells us that this soft constraint has more impact than the value of the ECS.
In other words, the UN Paris Agreement is so demanding that it does not matter if we
consider a constant ECS equal to 3.1◦C or an increasing one: complying with it is equally
as hard in the two cases. These control inputs will be used for the entire Monte Carlo
simulation, since the only thing that changes in every iteration is the value of the ECS
(just like the previous Monte Carlo simulation (4.1)). Obviously, given that the control
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inputs are the same as the ones obtained by solving the MinMax problem, we expect to
get more or less the same behaviour for the atmospheric temperature in both cases (not
precisely the same because there’s a random sampling involved). In fact, these are the
atmospheric temperature trajectories that we get by running the Monte Carlo simulation:

Figure 4.16: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C]

Again, every color in Fig. 4.16 is related to a specific sample of the ECS, exactly the
same way as Fig. 4.3. The final values of the atmospheric temperatures that we get are
inside the interval [1.27◦C, 2.74◦C], which is not that different from the interval [1.3◦C,
2.63◦C] obtained by performing the Monte Carlo simulation on the MinMax approach. We
can then conclude that the slight differences are due to the fact that the ECS is sampled
randomly and so, even though the control inputs used are the same, it is very unlikely to
get the exact same results.
To verify that the soft constraint has a bigger impact with respect to the value of the ECS,
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the following section will analyse the same two Monte Carlo simulations of sections 4.1 and
4.2 but without said soft constraint.

4.3 Repetition of the two previous Monte Carlo analyses
without a soft constraint on TAT

In this section, we will analyse how the results in sections 4.1 and 4.2 change when we
remove the soft constraint on TAT (i.e. we use 2.32 as an objective function instead of
2.33). This is done to show that the reason the results in those two section are basically
the same is that the effect of the soft constraint is much stronger than the one of the ECS.
Removing this soft constaint means thatwe do not care anymore about complying with the
UN Paris Agreement. So, here we want to show that it does not matter whether we have
a constant ECS = 3.1◦C or an increasing one: complying with the UN Paris Agreement
is so demanding that the results are the same in both cases.
The following two plots show the control inputs obtained by running the same Monte Carlo
simulation of sections 4.1 and 4.2 but without enforcing a soft constraint on TAT :
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Figure 4.17: Control inputs obtained by solving the MinMax problem without soft con-
straint on TAT (Monte Carlo simulation of section 4.1 without soft constraint on TAT )

Fig. 4.17 is what we obtain when we solve the MinMax problem without enforcing a
soft constraint on TAT . To no surprise, removing the soft constraint makes the control
action much less aggressive with respect to what was shown in Fig. 4.2. We can see that
there is no abatement at all until the year 2070 (where emissions get cut by just 20%) and
that a complete elimination of the emissions will not be reached until the year 2110.
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Figure 4.18: Control inputs obtained by solving the minimization problem without soft
constraint on TAT (Monte Carlo simulation of section 4.2 without soft constraint on TAT )

Fig. 4.18 is what we obtain when we solve the minimization problem without enforcing
a soft constraint on TAT . Obviously, here we also have a much less aggressive control
action with respect to what was shown in Fig. 4.15. In fact, abatement action does not
start until the year 2075 and we reach a full elimination of the emissions only in the year
2105. Another thing worth noting is that Fig. 4.18 depicts a much smoother abatement
rate evolution with respect to what is shown in Fig. 4.17. This happens because Fig.
4.18 portrays a scenario where the ECS is considered constant (and equal to 3.1◦C) while
4.17 shows a scenario in which the ECS changes due to the adversary agent that always
increases it. So the "jumps" that happen in Fig. 4.17 are due to increased values of the
ECS.
The following picture shows the result of said Monte Carlo simulation for the MinMax
scenario:
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Figure 4.19: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C] for the MinMax scenario

Exactly as in sections 4.1 and 4.2, each color represent a value of the ECS, where colors
closer to green refer to lower values of the ECS while colors closer to red refer to higher
values of the ECS. The final value of the atmospheric temperature depicted here have the
following properties:

• ranges in the interval [2.75◦C, 5.69◦]

• has a mean value of around 4.25◦C

• has a standard deviation of around 0.4◦C

The results of the Monte Carlo simulation for the minimization scenario are quite similar:
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Figure 4.20: Atmospheric temperature trajectories for different values of the ECS ϵ [2◦C,
4◦C] for the minimization scenario

The final values of the atmospheric temperatures shown here have the following prop-
erties:

• ranges in the interval [2.75◦C, 5.69◦]

• has a mean value of around 4.31◦C

• has a standard deviation of around 0.4◦C

These results are mostly the same as the ones obtained for the MinMax approach, except
for the mean value, which appears to be slightly higher in the minimization scenario,
which makes sense because the minimization scenario leads to less aggressive control inputs
trajectories and so the atmospheric temperature is able to grow a little bit more. But also,
since there is a random sampling involved, we cannot expect the exact same results in the
two simulations.
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So, in conclusion, the only real difference is related to the control inputs, where it is clear
that the MinMax approach leads to a more aggressive control action due to the fact that
it analyses a worse scenario than the one analysed with the minimization approach.

4.4 Comparison between different fractions of forcings that
can be abated

As mentioned in the section related to the radiative forcings (2.2.2), this thesis uses a
model where the external forcings can be directly abated by acting on the control input µ.
The magnitude of this abatement is determined by the parameter afrac ϵ [0, 1] (the higher
it is, the more we can abate forcings by acting on µ), which in this thesis is assumed to be
equal to 0.6 (according to Grubb et al. [2021]).
Since this parameter poses a tuning problem, it is interesting to see the effects of using
different values for it.
The figure that follows depicts a scenario in which we ran the previously described MinMax
approach (chapter 3). For each plot, the only thing that changes is the value of afrac:
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Figure 4.21: Atmospheric temperature trajectories for different fractions of abatable
forcings

The results are all but surprising: being able to directly abate forcings through the
control input µ is a good thing (since forcings are negative for the environment). Knowing
this, it is not a surprise that lower values of afrac lead to higher atmospheric temperatures.
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Chapter 5

Conclusion

In this thesis, we analysed how feasible the UN Paris Agreement’s goals are by employ-
ing a robust model predictive control approach and how important it is to consider the
equilibrium climate sensitivity in a robust way in order to compensate for the uncertainty
behind its estimation. We also expanded the model both to add robustness and to make
it more realistic, in order to have more reliable conclusions. The results seem to indicate
that, while a higher value of the climate sensitivity does lead to worse results in term of
the atmospheric temperature, the goals of the UN Paris Agreement are so ambitious and
our current situation is so critical that it does not really matter which value of the climate
sensitivity we assume: if we want to comply with said goals, we need to act quickly and
effectively, regardless of the actual value of the climate sensitivity. As stated in Pidcock
[2014]:

We’re emitting carbon dioxide so fast that the difference between a low and a
high value of climate sensitivity is largely irrelevant in climate policy terms.

Which means that whatever the actual value of the climate sensitivity is, an urgent action
in terms of emissions abatement needs to be taken. So, having a more precise estimate of
the climate sensitivity may only be needed to fine-tune the actions to be taken (Hausfather
[2018]) but not to question whether or not this actions need to be taken. In fact, according
to Rogelj et al. [2014], an equilibrium climate sensitivity closer to 2◦C would extend the
deadline of reaching net-zero emissions only by about a decade and, moreover, there is
no real reason to consider low values of the equilibrium climate sensitivity instead of high
ones, since there are just as many studies claiming that it is around the lower end as many
claiming that it is around the higher end Hausfather [2018]). So, the question of "if the
equilibrium climate sensitivity turns out to be on the lower end of the estimation interval,
do we have more time to take actions to reduce emissions?" has an obvious answer of "No,
we do not", the situation is too critical to pretend to have time. Reaching said goals is
theoretically feasible and optimal in the setting analysed by this thesis, but the control
inputs trajectories that we get are not realistically applicable and so these results are more
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of academic interest. However, one must not forget that these results may come from the
limitations that this model has (stated in 1.4).
In conclusion, it does not really matter whether or not we can precisely reach the UN
Paris Agreements. What matters is that we cannot anymore lie to ourselves about having
time to fix the state of things. We do not. Which does not mean that we are doomed,
but rather that no more time needs to be wasted when it comes to taking actions against
climate change. Each one of us has the responsibility of conducting a more sustainable
lifestyle but who can really make the critical difference are policy makers and big economic
actors, who both need to act realising that short-term economic profit should not be put
in front of the long-term well-being of the planet and, consequently, of the entire human
race.
Whether or not the die is cast is up to us.

"The best time to act on climate change was 50 years ago, the second best time
is now." (Sommer Ackerman, 2022)

5.1 Further work
An effort that has begun with the conception of the DICE model and that still continues
is that of updating the model, so that it remains relevant and such that its prediction are
reliable and accurate. This direction of work is always interesting and useful to pursue, so
any new updates to the model can only benefit the predictions obtained in this thesis.
Other research can also be devoted to treating the ECS in a different way than how it was
done in this thesis. For instance, keeping the scope within the control field, the controller
could assume the ECS as a random variable. This way, stochastic control can be employed
and its results may be compared with the ones of this thesis.
Lastly, what has been done in this thesis for the ECS can also be done for other parameters
whose exact value is not known. For instance, such parameters could be the fraction of
abatable external forcings afrac or the pliability of the abatement costs p (both parameters
that have been added from Grubb et al. [2021] and that introduce tuning problems).
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Chapter 6

Appendix: parameters and
constants

The tables that follow list the values of all the parameters contained in the model, as well
as a short description of what the value represents and in which equations does the value
appear (if the unit is not mentioned, it means that the parameter has no unit):

6.1 General parameters

Parameter Value Description Equations
N 60 time steps Horizon length
t0 2015 Initial year
∆ 5 years Time step 2.12, 2.23, 2.24,

2.26, 2.30, 2.31,
2.32

tf 40 Final simulation
time

sw 40 Weight for the soft
constraint on TAT

in the objective
function
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6.2 Initial conditions for the states
Parameter Value Description Equations

i0 1 Initial iteration
index

TAT,0 0.85 °C Initial atmospheric
temperature

TLO,0 0.0068 °C Initial lower ocean
temperature

MAT,0 851 GtC Initial mass of
carbon in the
atmosphere

MUP,0 460 GtC Initial mass of
carbon in the upper

ocean
MLO,0 1740 GtC Initial mass of

carbon in the lower
ocean

K0 223 trillions
2010USD

Initial capital

σ0 0.3503
GtC/trillions

2010USD

Initial emissions
intensity

L0 7403 millions
people

Initial population

A0 5.11 Initial total factor
productivity

EL,0 2.6 GtCO2/yr Initial land
emissions

f0 0.5 W/m2 Initial forcings of
non-CO2 GHGs

2.29

E0 191.7019 Initial emissions 2.27, 2.28
C0 3.89 Initial consumption
µ0 0.03 Initial abatement

rate
s0 0.259 Initial savings rate
J0 0 Initial social

welfare
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µrate,0 0 Initial rate of the
abatement rate

µgrowth,0 0 Initial growth of
the abatement rate

ECS0 3.0 °C Initial equilibrium
climate sensitivity

ECSrate,0 0 Initial rate of the
equilibrium climate

sensitivity

6.3 Climate diffusion parameters

Parameter Value Description Equations
c3 0.088 Model diffusion

parameter
2.5, 2.6

c4 0.025 Model diffusion
parameter

2.5

6.4 Carbon cycle diffusion parameters

Parameter Value Description Equations
ζ11 0.88 Carbon cycle

diffusion parameter
2.7, 2.8, 2.9, 2.11

ζ12 0.196 Carbon cycle
diffusion parameter

2.7, 2.8, 2.9, 2.11

ζ21 0.12 Carbon cycle
diffusion parameter

2.11

ζ22 0.797 Carbon cycle
diffusion parameter

2.11

ζ23 0.001465 Carbon cycle
diffusion parameter

2.7, 2.8, 2.9, 2.11

ζ32 0.007 Carbon cycle
diffusion parameter

2.11

ζ33 0.99853488 Carbon cycle
diffusion parameter

2.11
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6.5 Geophysical parameters

Parameter Value Description Equations
η 3.6813 W/m2 Forcings of

equilibrium CO2
doubling

2.5, 2.6, 2.7, 2.8,
2.9

ξ1 0.1005 Climate equation
coefficient for
upper level

2.5, 2.6, 2.7, 2.8,
2.9

ξ2 0.2727 GtC/GtCO2 Conversion factor
from GtC to

CtCO2

2.10, 2.7, 2.8, 2.9

MAT,1750 588 GtC Carbon
concentration in

the atmosphere in
the year 1750

2.7, 2.8, 2.9

f1 1.0 W/m2 Forcings of
non-CO2 GHGs in

2100

2.29

tforce 17 time steps Slope of non-CO2
GHG forcings

2.29

δEL 0.115 Land use emissions
decrease rate

2.27, 2.28

TAT,max 2◦C Maximum
atmospheric
temperature

according to the
UN Paris

Agreement

2.33
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6.6 Socioeconomic parameters

Parameter Value Description Equations
δK 0.1 Capital

depreciation (5
year)

2.12

γ 0.3 Capital elasticity in
production function

2.14, 2.15

θ2 2.6 Exponent of control
cost function

2.18, 2.19, 2.20,
2.21, 2.22

a2 0.00236 Damage multiplier 2.16, 2.17
a3 2 Damage exponent
α 1.45 Elasticity of

marginal utility of
consumption

2.32

ρ 0.015 Initial rate of social
time preference per

year

2.32

La 11500 millions
people

Asymptotic
population

2.25

lg 0.134 Population growth
rate

2.25

gA 0.076 Initial TFP rate 2.26
δA 0.005 TFP increase rate 2.26
pb 550 2010

USD/tCO2

Initial backstop
price

2.21, 2.22

δP B 0.025 Decline rate of
backstop price

2.21, 2.22

gσ 0.0152 Emissions intensity
base rate

2.23, 2.24

δσ 0.001 Decline rate of
emissions intensity

2.23, 2.24
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6.7 Model updates from Grubb et al. [2021]

Parameter Value Description Equations
afrac 0.6 Fraction of

abatable external
forcings

2.8, 2.9

t̂ 30 years Time scale for
technological
transitions

2.19, 2.20

p 0.75 Pliability of the
abatement costs

2.19, 2.20

6.8 Bounds
Parameter Value Description Equations

∆µ 0.1 Rate bound on
the input µ

Γµ 0.53 Growth bound
on the input µ

ECSmin 2 °C Lower bound
for the

equilibrium
climate

sensitivity
ECSmax 4 °C Upper bound

for the
equilibrium

climate
sensitivity

3.5

ECSrate,max 0.1 Upper bound
on the rate of

the equilibrium
climate

sensitivity

3.5
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