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Abstract

The main aim of my master internship has been the realization of a Z-scan set-up, for the

spectral measurement of the real and imaginary part of the third order nonlinear suscepti-

bility χ(3) in different materials.

In this report, it will be discussed the theoretical background behind the technique, the op-

timization steps needed to improve its performances, plus the analysis of different samples,

ranging from two different kinds of glasses (a NG11 filter and a microscope glass piece),

a polished GaAs sample and some nonlinear colloidal quantum dots clusters provided by

Centre de Recherche Paul Pascal.
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Introduction

In recent years, interest in nonlinear optics has steadily increased. This was possible thanks

to advancements in various fabrication techniques that allow to create material with some

very particular properties. In order to characterize such properties, well established mea-

surement techniques have seen a sudden resurgence; among these, the Z-scan setup allows

to measure in a simple, yet effective way the complex χ(3) of different materials. χ(3) plays

a key role in several nonlinear processes, like the optical Kerr effect, four wave mixing and

third harmonic generation.

The main aim of this report is to outline the working principle of such technique while also

reporting the possible optimization steps.

In Chapter 1, a quick review of some relevant physical notions is provided, including Gaus-

sian beams, linear and nonlinear optics, with a particular focus on the nonlinear index of

refraction and two-photon absorption.

In Chapter 2, an exhaustive overview of the theory behind the Z-scan setup is provided, dis-

cussing the two possible cases that can be measured (purely nonlinear refractive materials

or materials that also show nonlinear absorption) and the limitations of the setup.

In Chapter 3, I reported the main steps needed to optimize the setup, together with the

final setup description and a brief mention of the Knife-edge technique, used to carefully

characterize the laser beam.

Finally, in Chapter 4, I reported a series of calibration measurements performed on two

different glass types and a GaAs sample.

My internship took place at MPQ (Laboratoire Matériaux et Phénomènes Quantiques),

under the DON (Dispositifs Optiques Nonlinéaires). The group research activities lie at

the intersection of nanophotonics, nonlinear integrated optics, optomechanics and quantum

physics. Combining light and semiconductor nanotechnologies, they aim at the emergence of

innovative concepts and devices, at the frontier of scientific and technical knowledge in pho-

tonics. In particular, I worked under the supervision of Giuseppe Leo, whose group focuses

on the study of optical metasurfaces, nonlinear optics, quantum optics and nanophotonics.
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Chapter 1

Theoretical Background

In order to elucidate the working principle of the Z-scan technique, a reminder of some

physical notions is needed.

In this chapter, a quick review of the Gaussian beam properties and of the third order

non-linearity effects (crucial for the Z-scan operation) will be presented.

1.1 Gaussian beams

A large number of problems in optics can be described by using plane waves, i.e., infinitely

extended fields with a constant amplitude and phase in a plane transverse to the propaga-

tion direction. However, in nonlinear optics a great deal of phenomena can not always be

explained using this approximation. This is particularly true for laser beams, since they

have a finite size and vary spatially in the transverse plane. In the theoretical formulation,

the transverse profile of a laser is often described by the TEM00 mode of a circular Gaussian

beam:

Ẽ(r, z, t) = êE0(z, t)
w0

w(z)
exp(− r2

w2(z)
− ikr2

2R(z)
)e−iϕ(z,t) + c.c. (1.1)

where r =
√

x2 + y2 is the radial coordinate and E0(z, t) is the on-axis (for r = 0) amplitude.

The Gaussian beam symmetry is illustrated in Fig.1.1.

3
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Figure 1.1: Schematic illustration of a TEM00 Gaussian beam (a) beam propagation profile. (b) beam
cross section.[2]

The beam cross section is described by radius w(z), defined as the half-width of the Gaussian

curve at point r, where the curve is at 1/e of its maximum value. The radius has a minimum,

defined by w0 (the beam waist), at the plane z = 0. Outside this plane, the waist changes

with z according to:

w(z) = w0

√
1 +

z2

z20
(1.2)

where z0 is the Rayleigh range, which can also be defined as:

z0 =
2π

λ

w2
0

2
. (1.3)

The range |z| < z0 is often called near-field of the Gaussian beam while |z| > z0 is called far

field. The radius of the curvature of the Gaussian wave-front is given by:

R(z) = z(1 +
z20
z2
) (1.4)

The e−iϕ(z,t) term contains all the radially uniform phase variations. In the near-field region,

the phase has practically an infinite radius of curvature and hence the Gaussian beam mimics

a plane wave.

1.2 Linear optics

For the majority of situations considered in optics, it can be assumed that the material

system is non-magnetic and electrically neutral. Under such assumptions the following wave
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equation describes the propagation of light in the medium:

∇2Ẽ− 1

c2
∂2

∂t2
Ẽ =

1

ϵ0c2
∂2

∂t2
P̃ (1.5)

Here, P̃ denotes the polarization vector which represents the response of the material to the

electric field of the electromagnetic wave. Generally, this optical response depends on the

field strength and, as a first approximation, P̃ is linearly related to Ẽ:

P̃i = ϵ0
∑
j

χ
(1)
ij Ẽj (1.6)

where i, j indicate the Cartesian components of the field and χ
(1)
ij are elements of the second-

rank tensor of linear susceptibility.

In general, the material does not respond instantaneously to an applied field, losses occur,

and χ
(1)
ij is both complex and frequency dependent.

In the linear regime, the wave equation in Eq. 1.5 has homogeneous nature. To simplify the

problem, the equation is rewritten in terms of the Fourier transform of the electric field, as

a time-independent differential equation:

∇2E(r, ω)− ϵr
ω2

c2
E(r, ω) = 0 (1.7)

where, ϵr = δij + χ
(1)
ij is the linear dielectric tensor. For simplicity, let us consider a plane

wave in an isotropic medium where the linear susceptibility becomes a scalar quantity. The

latter is, in general, a complex function of the frequency: χ(1)(ω) = χ
(1)
R (ω) + iχ

(1)
I (ω).

Therefore, the dielectric constant is also complex, but when χ
(1)
I (ω) ≪ χ

(1)
R (ω) one can write

(see Appendix A.1 for derivation):

√
ϵr(ω) ≈ n0(ω) + i

c

2ω
α(ω) (1.8)

the real part n0 is the conventional refractive index while the imaginary part κ = cα/2ω

is known as the extinction coefficient. The latter describes the attenuation of the electric

field in the medium. The linear refractive index is related to the real part of the linear

susceptibility, while the absorption coefficient is proportional to its imaginary part:

n0 =

√
1 + χ

(1)
R (1.9)
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α =
ω

n0c
χ
(1)
I (1.10)

In these conditions, the plane-wave solution of the linear wave equation in an isotropic

medium is:

Ẽ(z, t) = êE0exp(−
1

2
αz)exp[i(k′z − ωt)] + c.c. (1.11)

where E0 is the amplitude of the wave at z = 0. The dispersive dependence of the refractive

index is included in the wave number: k′ = kn0(ω) = n0(ω)2π/λ = n0(ω)ω/c.

1.3 Nonlinear optics

The linear dependence between polarization and electric field implies that the optical prop-

erties of matter such as refraction or absorption are constant quantities whose values are

determined only by intrinsic features of the material and the optical frequency of the field.

However, in the presence of high intensity irradiation provided by a laser light, the linear

approximation doesn’t hold anymore.

When the light intensity is sufficiently high, a small additional polarization term appears,

so that the total polarization can be written as:

P̃ = P̃L + P̃NL (1.12)

where P̃NL denotes the nonlinear part of the polarization.

Using the definition of polarization provided in Eq. 1.12, the propagation of the light inside

the nonlinear medium is described by:

∇2Ẽ− 1

c2
∂2

∂t2
Ẽ− 1

ϵ0c2
∂2

∂t2
P̃L =

1

ϵ0c2
∂2

∂t2
P̃NL (1.13)

This relation has the form of a driven (i.e. inhomogeneous) wave equation where the nonlin-

ear response of the medium acts as a source term which appears on the right -hand side of

this equation. For a lossless and dispersionless medium this dependence is usually written

in the following way:

P̃i = P̃L(i) + ϵ0
∑
jk

χ
(2)
ijkẼjẼk + ϵ0

∑
jkl

χ
(3)
ijklẼjẼkẼl + ... = P̃L(i) + P̃

(2)
i + P̃

(3)
i + ... (1.14)
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Here, the indices i, j, k, l refer to the Cartesian components of the field, χ
(2)
ijk and χ

(3)
ijkl are the

third- and fourth-rank tensors of second- and third-order susceptibilities, respectively. Hence,

P̃(2)(r, t) = ϵ0χ
(2) : Ẽ(2)(r, t) is the second-order polarization, P̃(3)(r, t) = ϵ0χ

(3) : Ẽ(3)(r, t)

is the third-order polarization, and so on.

The occurrence of nonlinear interactions is also related to the symmetry of the nonlinear

medium. For example, the second order effects (and all higher order effects with even order)

are observed only in the non-centrosymmetric crystals, that is in crystals that do not display

inversion symmetry. All elements of χ(2) vanish in centrosymmetric media; on the other

hand, χ(3) has always non-zero elements in all type of media.

In general, all materials are lossy and dispersive: hence, the nonlinear optical suscep-

tibilities become complex quantities. Moreover, if the electric vector of the optical field is

composed by a few discrete frequency components, then the total induced polarization vector

is given by:

P̃(r, t) =
∑
m

P(ωm)exp(−iωmt) (1.15)

where m denotes the number of frequencies involved. Here P(ωm) = P(r, t)exp(ikmr) is the

complex amplitude assigned to the component with frequency ωm.

1.4 Nonlinear index of refraction

Under the action of intense coherent light, the contribution of the nonlinear polarization to

the refractive index can no longer be neglected. To introduce the phenomenon let us consider

an isotropic medium (χ(2) = 0), where only the third-order effects are present and a linearly

polarized plane wave of frequency ω is propagating in the z direction. Then the third order

polarization is given by:

P (3)(ω) = 3ϵ0χ
(3)(ω;ω, ω − ω)E(ω)E(ω)E∗(ω) (1.16)

where E∗(ω) = E(−ω). For simplicity, vector and tensor indices are suppressed (e.g. here:

χ(3) = χ
(3)
xxxx). Hence the total polarization of the material system is described by Eq. 1.6+

Eq. 1.16:

P (ω) = ϵ0χeffE(ω) (1.17)

where χeff = χ(1) + 3χ(3)|E(ω)|2 is the effective susceptibility. Assuming that the nonlinear

contribution to χeff is much smaller than the linear one, the general expression for a refractive
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index can be expressed as (see Appendix A.2 for calculations):

n =
√

1 +Re{χeff} ≈ n0 +
3

2n0

χ
(3)
R |E(ω)|2 (1.18)

Taking into account the time averaged intensity of the optical field, the nonlinear part of the

refractive index is described by (see Appendix A.2 for calculations):

n2 =
3

4n2
0ϵ0c

χ
(3)
R (1.19)

From Eqs. 1.18 and 1.19 it is clearly seen that for weak incident beams, the refractive

index of a medium remains constant (independent of the incident light intensity) since the

contribution of ∆n is negligible. However, when the incident light is intense enough, the

refractive is no more constant but depends noticeably of the incident optical wave.

1.5 Two-photon absorption

Nonlinear absorption effects are resonant phenomena which refer to the change in the trans-

mittance of a material as a function of the intensity. Among this class of effects, we can

generally distinguish excited state absorption (including saturable absorption and free-carrier

absorption) or multi-photon absorption. The latter one is of particular importance because

it often accompanies a change of the refraction due to non-resonant electronic response. At

sufficiently high intensities, the probability of a material absorbing more than one photon

before relaxing to the ground state is greatly enhanced. Particularly, the simultaneous tran-

sition of two photons is a very well-known and a frequently observed phenomenon.

In the most general case, two optical fields at frequencies ω and ω′ are present, and one

photon from each field is absorbed making an overall transition approximately at ω + ω′. If

ω = ω′, the linear Lambert-Beer law is generalized in the following way:

dI

dz
= −αI − βI2 (1.20)

where β is the TPA coefficient (expressed in m/W in SI units). This quantity is directly

related to the imaginary part of the third order susceptibility (see Appendix A.3 for calcu-

lations):

β =
3π

n2
0ϵ0cλ

χ
(3)
I . (1.21)



Chapter 2

Z-scan measurement theory

In order to correctly interpret the results obtained from the Z-scan technique and to optimize

the setup, a comprehensive theory of the Z-scan setup must be taken into account. This

chapter is dedicated to provide such knowledge.

2.1 Z-scan technique Overview

Using a single tightly focused Gaussian laser beam, as depicted in Fig. 2.1, we measure the

transmittance of a nonlinear medium through a finite aperture in the far field as a func-

tion of the sample position z with respect to the focal plane. The following example will

qualitatively elucidate how such a trace (Z-scan) is related to the nonlinear refraction of the

sample.[1]

Assume, for instance, a material with a negative nonlinear refractive index and a thickness

smaller than the diffraction length of the focused beam (a thin medium). This can be re-

garded as a thin diverging lens with intensity-dependent focal length. Starting the scan from

a distance far away from the focus (negative z), the beam irradiance is low and negligible

nonlinear refraction occurs; hence, the transmittance (D2/D1 in Fig. 2.1) remains relatively

constant. As the sample is brought closer to focus, the beam irradiance increases, leading

to self-lensing in the sample. A negative self-lensing prior to focus will tend to collimate

the beam, causing a beam narrowing at the aperture which results in an increase in the

measured transmittance. As the scan in z continues and the sample passes the focal plane

to the right (positive z), the same self-defocusing increases the beam divergence, leading to

beam broadening at the aperture, and thus a decrease in transmittance. This suggests that

there is a null as the sample crosses the focal plane. This is analogous to placing a thin

9
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Figure 2.1: The Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the
sample position z.[1]

lens at or near the focus, resulting in a minimal change of the far-field pattern of the beam.

The Z-scan is completed as the sample is moved away from focus (positive z) such that the

transmittance becomes linear since the irradiance is again low.

A prefocal transmittance maximum (peak) followed by the Z-scan is a signature of a

negative refractive nonlinearity. Positive nonlinear refraction, following the same analogy,

gives rise to an opposite valley-peak configuration, as shown in Fig. 2.2.

It is an extremely useful feature of the Z-scan method that the sign of the nonlinear index

is immediately obvious from the data, and as we will show in the following section, the

magnitude can also be easily estimated using a simple analysis for a thin medium.

In the above Z-scan picture, a purely refractive nonlinearity was considered, assuming

that no absorptive nonlinearities (such as multiphoton absorption or absorption saturation)

are present. Qualitatively, multiphoton absorption suppresses the peak and enhances the

valley, while absorption saturation produces the opposite effect. The sensitivity to nonlinear

refraction is entirely due to the aperture, and removal of the aperture completely eliminates

the effect. The open aperture measurement yields the curve in Fig. 2.3.
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Figure 2.2: Example of nonlinear refraction in a z-scan experiment. The red curve corresponds to a positive
phase shift (self-focusing) while the black curve corresponds to a negative phase shift (self-defocusing).[3]

2.2 Z-scan technique: pure nonlinear diffraction

(β = 0) [1]

Recalling Section 1.1 for the notation, since we are concerned with calculating the radial

phase variations δΦ(r), the slowly varying envelope approximation (SVEA) applies, and all

other phase changes that are uniform in r are ignored.

If the sample thickness is so small that one can neglect changes in the beam diameter

within the sample due to either diffraction or nonlinear refraction, the medium is regarded

as “thin” and the self-refraction process is referred to as “external self-action” [4]. For

linear diffraction, this implies that L << z0, while for nonlinear refraction, L << z0/∆Φ(0),

where ∆Φ(0) = k∆n0L. In most Z-scan experiments, we find that the second criterion is

automatically met since ∆Φ(0) is small. Additionally, we have found that the first criterion

for linear diffraction is too restrictive, and it is sufficient to replace it with L < z0.

Such an assumption simplifies the problem considerably, and the amplitude and phase

Φ of the electric field as a function of z′ are now governed in the SVEA by a pair of simple

equations:
d∆Φ

dz′
= ∆n(I)k (2.1)

dI

dz′
= −α(I)I (2.2)
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Figure 2.3: Example of nonlinear absorption in a z-scan experiment. The curve reveals an increase of the
absorption of the material with an increase in the light intensity.[3]

where z′ is the propagation depth in the sample and α(I), in general, includes linear and

nonlinear absorption terms. Note that z′ should not be confused with the sample position

z. In the case of a cubic nonlinearity and negligible nonlinear absorption, Eqs. 2.1 and 2.2

are solved to give the phase shift ∆Φ at the exit surface of the sample, which simply follows

the radial variation of the incident irradiance at a given position of the sample z. Thus,

∆Φ(z, r, t) = ∆Φ0(z, t)exp

(
− 2r2

w2(z)

)
(2.3)

with: ∆Φ0(z, t) =
∆Φ0(t)

1+z2/z20
. ∆Φ0(t), the on-axis phase shift at the focus, is defined as

∆Φ0(t) = k∆n0(t)Leff (2.4)

where Leff = (1−e−αL)/α, with L the sample thickness and α the linear absorption coefficient.

Here, ∆n0(t) = n2I0(t) with I0(t) being the on-axis irradiance at focus (z = 0).

In this case the complex electric field Ee exiting the sample, contains the nonlinear phase

distortion:

Ee(r, z, t) = E(r, z, t)e−αL/2ei∆Φ(r,z,t). (2.5)

While in general the far-field pattern of the beam at the aperture plane is given by Huygen’s

principle, a more convenient treatment called the ”Gaussian decomposition” (GD) method

given by Weaire et al.[4] allows to perform the same kind of calculation more efficiently.
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With this method, the complex electric field at the exit plane of the sample is decomposed

into a sum of Gaussian beams through a Taylor series expansion of the nonlinear phase term

ei∆Φ(r,z,t) in Eq. 2.5:

ei∆Φ(r,z,t) =
∞∑

m=0

[i∆Φ0(z, t)]
m

m!
e−2mr2/w2(z). (2.6)

Each Gaussian beam can now be simply propagated to the aperture plane where they will

be re-summed to reconstruct the beam. When including the initial beam curvature for the

focused beam, the resultant electric field pattern at the aperture can be derived as [4]:

Ea(r, t) = E(z, r = 0, t)e−αL/2

∞∑
m=0

[i∆Φ0(z, t)]
m

m!

wm0

wm

exp

(
− r2

w2
m

− ikr2

2Rm

+ iθm

)
. (2.7)

Defining d as the propagation distance in free space from the sample to the aperture plane

and g = 1 + d/R(z), the remaining parameters in Eq. 2.7 are expressed as:

w2
m0 =

w2(z)

2m+ 1

dm =
kw2

m0

2

w2
m = w2

m0

[
g2 +

d2

d2m

]

Rm = d

[
1− g

g2 + d2/d2m

]−1

θm = tan−1

[
d/dm
g

]
.

Eq. 2.7 is a general case derived by Weaire et al. [4] where they considered a collimated

beam (R = ∞) for which g = 1. This Gaussian Decomposition (GD) method is very useful

for the small phase distortion detected with the Z-scan method, since it requires only a few

terms of the sum in Eq. 2.7.

The transmitted power through the aperture is obtained by spatially integrating |Ea(r, t)|2

up to the aperture radius ra, giving:

PT (∆Φ0(t)) = cϵ0n0π

∫ ra

0

|Ea(r, t)|2rdr (2.8)
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Including the pulse temporal variation, the normalized Z-scan transmittance T (z) can be

calculated as:

T (z) =

∫∞
−∞ PT (∆Φ0(t))dt

S
∫∞
−∞ Pi(t)dt

(2.9)

where Pi(t) = πw2
0I0(t)/2 is the instantaneous input power (within the sample) and S =

1 − exp(−2r2a/w
2
a) is the aperture linear transmittance, with wa denoting the beam radius

at the aperture in the linear regime.

First, let us consider an instantaneous nonlinearity and a temporally square pulse to

illustrate the general features of the Z-scan. This is equivalent to assuming that radiation

is Continuous Wave and the nonlinearity has reached the steady state. The normalized

transmittances in the far field are shown in Fig. 2.4, for ∆Φ0 = ±0.25 and a small aperture

(S = 0.01).

Figure 2.4: Calculated Z-scan transmittance curves for a cubic nonlinearity with either polarity and a
small aperture (S = 0.01).

They exhibit the expected features, namely, a valley-peak (v−p) for the positive nonlinearity

and a peak-valley (p− v) for the negative one. For a given ∆Φ0, the magnitude and shape

of T (z) do not depend on the wavelength or geometry as long as the far-field condition for

the aperture plane (d >> z0) is satisfied. The aperture size S, however, is an important

parameter since a large aperture reduces the variations in T (z). This reduction is more

prominent in the peak where beam narrowing occurs and can result in a peak transmittance

which cannot exceed (1−S). Needless to say, for very large aperture or no aperture (S = 1),

the effect vanishes and T (z) = 1 for all z and ∆Φ0. An easily measurable quantity, ∆Tp−v

can be defined as the difference between the normalized peak and valley transmittance:
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Tp − Tv. In order to derive the relation between ∆Tp−v and ∆Φ0, let us first assume that

the on-axis electric field at the aperture plane can be obtained by letting r = 0 in Eq. 2.7.

Furthermore, in the limit of small nonlinear phase change (|∆Φ0| << 1) ), only two terms of

the sum in Eq. 2.7 need be retained. Following such simplifications, the normalized Z-scan

transmittance can be written as:

T (z,∆Φ0) =
|Ea(z, r = 0,∆Φ0)|2

|Ea(z, r = 0,∆Φ0 = 0)|2
=

|(g + id/d0)
−1 + i∆Φ0(g + id/d1)

−1|2

|(g + id/d0)−1|2
(2.10)

The far-field condition d >> z0 can be used to further simplify Eq. 2.10 to give a geometry-

independent normalized transmittance as:

T (z,∆Φ0) ≈ 1− 4∆Φ0x

(x2 + 9)(x2 + 1)
(2.11)

where x = z/z0. The extrema (peak and valley) of the Z-scan transmittance can be calculated

by solving the equation dT (z,∆Φ0)/dz = 0. Solutions to this equation yield:

xp,v = ±

√√
52− 5

3
≈ ±0.858. (2.12)

Therefore, the peak-valley separation can be written as:

∆Zp−v ≈ 1.7z0 (2.13)

Also, inserting the x values from Eq. 2.12 into Eq. 2.11, the peak-valley transmittance

change is:

∆Tp−v =
8|xp,v|

(x2
p,v + 9)(x2

p,v + 1)
∆Φ0 = 0.406∆Φ0. (2.14)
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Figure 2.5: Calculated ∆Tp−v, as a function of the phase shift at the focus |∆Φ0|. The sensitivity, as
indicated by the slope of the curves, decreases slowly for larger aperture sizes (S > 0).

Numerical calculations performed by Sheik-Bahae in [1] show that this relation is accurate to

within 0.5% for |∆Φ0| ≤ π. As shown in Fig. 2.5, for larger apertures, the linear coefficient

0.406 decreases to about 0.34 for S = 0.5,and about 0.29 for S = 0.7. Based on a numerical

fitting, the following relationship can be used to include such variations within±2% accuracy:

∆Tp−v ≈ 0.406(1− S)0.25|∆Φ0|, for |∆Φ0| ≤ π. (2.15)
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2.3 Z-scan technique: nonlinear absorption (β ̸= 0) [1]

In the presence of nonlinear absorption, the closed-aperture characteristic of Fig. 2.2 can no

longer be obtained and one finds instead the curve of Fig. 2.6.

Figure 2.6: Closed-aperture scan in the presence of both nonlinear refraction and nonlinear absorption.

Even with nonlinear absorption, a Z-scan with a fully open aperture (S = 1) is insensitive to

nonlinear refraction (thin sample approximation). Such Z-scan traces with no aperture are

expected to be symmetric with respect to the focus (z = 0), where they have a minimum

transmittance (e.g., multiphoton absorption, showed in Fig. 2.3) or maximum transmittance

(e.g., saturation of absorption). In fact, the coefficients of nonlinear absorption can be

easily calculated from such transmittance curves. By considering only two-photon absorption

processes (for which Eg/2 < ℏω < Eg) and recalling the relations used in Sections 1.4 and

1.5, this yields the irradiance distribution and phase shift of the beam at the exit surface of

the sample as:

Ie(z, r, t) =
I(z, r, t)e−αL

1 + q(z, r, t)
(2.16)

and:

∆Φ(z, r, t) =
kn2

β
ln[1 + q(z, r, t)] (2.17)

where q(z, r, t) = βI(z, r, t)Leff (again, z is the sample position).

Combining Eqs. 2.16 and 2.17, the following complex electric field at the exit surface of the
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sample is obtained:

Ee = E(z, r, t)e−αL/2[1 + q(z, r, t)](ikn2/β−1/2) (2.18)

Eq. 2.18 reduces to Eq. 2.5 in the limit of no two-photon absorption. For |q| < 1, following

a binomial series expansion in powers of q, Eq. 2.18 can be expressed as an infinite sum of

Gaussian beams similar to the purely refractive case:

Ee = E(z, r, t)e−αL/2

∞∑
m=0

q(z, r, t)m

m!

∏
n=0

(ikn2/β − 1/2− n+ 1) (2.19)

where the Gaussian spatial profiles are implicit in q(z, r, t) and E(z, r, t). The complex field

pattern on the aperture plane can be obtained in the same manner as before. The result can

again be represented by Eq. 2.7 if we substitute the [i∆Φ0(z, t))]
m/m! terms in the sum by:

fm =
[i∆Φ0(z, t)]

m

m!

m∏
n=0

[
1 + i(2n− 1)

β

2kn2

]
(2.20)

with f0 = 1.

The Z-scan transmittance variations can be calculated following the previous procedure.

As is evident from Eq. 2.20, the absorptive and refractive contributions to the far-field

beam profile, and hence to the Z-scan transmittance, are coupled. When the aperture is

removed, however, the Z-scan transmittance is insensitive to beam distortion and is only

a function of the nonlinear absorption. In that case (S = 1) the total transmitted fluence

can be obtained by spatially integrating Eq. 2.16 without having to include the free-space

propagation process. Integrating Eq. 2.16 over r at z, we obtain the transmitted power

P (z, t):

P (z, t) = Pi(t)e
−αL ln[1 + q0(z, t)]

q0(z, t)
(2.21)

with q0(z, t) = βI0(t)Leff/(1+z2/z20) and Pi(t) defined in Eq. 2.9. For a temporally Gaussian

pulse, Eq. 2.21 can be time integrated to give the normalized energy transmittance:

T (z, S = 1) =
1√

πq0(z, 0)

∫ ∞

−∞
ln[1 + q0(z, 0)e

−t2 ]dt (2.22)
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Figure 2.7: Simulated z-scan signal in the presence
of both nonlinear refraction and nonlinear absorption.
The top curve (A) is the result of the closed aperture
scan. The middle curve (B) is the result of the open
aperture scan. The bottom curve (C) estimates the
closed aperture result in the absence of NLA, and is
obtained by dividing the actual closed aperture mea-
surement (A) by the open aperture measurement (B).

For |q0| < 1, this transmittance can be ex-

pressed in terms of the peak irradiance in a

summation form more suitable for numerical

evaluation [1]:

T (z, S = 1) =
∞∑

m=0

[−q0(z, 0)]
m

(m+ 1)3/2
(2.23)

Thus, once an open-aperture (S = 1) Z-scan

is performed, the nonlinear absorption co-

efficient β can be unambiguously deduced.

With β known, the Z-scan with aperture in

place (S < 1) can be used to extract the

remaining unknown, namely, the coefficient

n2.

As was done in the case of a purely re-

fractive effect, it is desirable to estimate n2

and β without having to perform a detailed

fitting of the experimental data. The sepa-

ration and evaluation process of n2 is simple:

divide the closed aperture (S < 1) normal-

ized Z-scan (with background subtracted) by

the one with open aperture (S = 1). The re-

sult is a new Z-scan where ∆Tp−v agrees to

within ±10% of that obtained from a purely

refractive Z-scan. This procedure is shown in Fig. 2.7. A thorough numerical evaluation

of the theoretical results obtained by Sheik-Bahae [1] indicates that within less than 10%

uncertainty, such a procedure is possible provided that q0(0, 0) ≤ 1 and β/2kn2 ≤ 1. The

first condition can be met by adjusting the irradiance. The second condition is an intrinsic

property of the material implying that the Im(χ(3)) should not be larger than the Re(χ(3)).



Chapter 3

Z-scan setup: optimization and

calibration

In this chapter, I will outline the role of relevant parameters in the optimization of the mea-

surements, along with the description of my setup and a comprehensive list of the components

used.

3.1 Critical parameters

For the Z-scan setup to work correctly, let us recall again the conditions that must be

satisfied:

• a Gaussian impinging beam;

• z0 >> L, with L the sample thickness and z0 the Rayleigh range;

• z0 >> L∆Φ(0), with ∆Φ(0) the induced phase variation when the sample is placed in

the focus.

Hence, the sample thickness acts as the bottleneck of our setup. Another critical parameter

is the beam waist w0 (see Section 1.1): a small w0 ensures a high peak intensity Î on the

sample in the focus, as in a pulsed laser these two quantities are related by the following

formula:

Î =
P

frepτA
(3.1)

where P represents the time-averaged power of the laser (easily measured with a high-power

photodiode), frep is the repetition rate of the laser, τ the pulse width, and A = πw2
0 the area

20
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where the maximum power of the Gaussian beam is concentrated. However, z0 and w0 are

not independent quantities as z0 =
π
λ
w2

0. Luckily, w0 can be easily controlled by choosing a

lens with a suitable focal distance. Assuming that the beam impinging of the focusing lens

is perfectly collimated, w0 and the incident beam diameter D are related via the following

equation [5]:

w0 =
2λ

π

f

D
(3.2)

This formula also shows the dependence of w0 on λ of the setup. Fig. 3.1, reports the

calculated values of w0 and z0 as a function of λ, for an incident beam diameter of ≈ 3.5

mm (a rough estimate of the laser beam after the collimation step, done with a fluorescent

card) and different values of the focal distance of the focusing lens. By doing so, the optimal

choice for the focusing lens is f = 20 cm, as it allows to satisfy the condition z0 > L for a

very large band (λ ∈ [1000, 1500] nm).

Figure 3.1: Calculated waist and Rayleigh range vs. wavelength for different focal distances f . The black
line represents the maximum thickness of our samples (2 mm).
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3.2 Final setup

Figure 3.2: My final Z-scan setup. The red numbers mark the components on the main arm of the setup;
the blue numbers mark the components of the reference arm.

My Z-scan setup includes two parts: the main arm, on which the sample is placed, and the

reference arm, responsible for checking the laser stability. The main arm (red numbers in

Fig. 3.2) hosts the following components:

1) BSN11 (a 90/10 beam-splitter)

2) LA1708-B (f = 200 mm lens)

3) M-UTM150PP1HL (motorized stage)

4) NE60AB (optical density)

5) ID25 (aperture)

6) LA1608-C-ML (f = 75 mm lens)

7) NE30AB (optical density)

8) 818IG (InGaAs photodiode)

The reference arm (blue numbers in Fig. 3.2) hosts the following components:

1) NE40AB (optical density)

2) LB1761-B (f = 25.4 mm lens)

3) 818IR (Ge photodiode)
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Other components that do not appear in Fig. 3.2 are:

• MM4006 (motion controller)

• power meter

• SATSUMA (Femtosecond fiber laser)

• MANGO (OPA, see Appendix B for more information)

3.3 Knife-edge technique

In order to have a precise estimation of n2, a sound characterization of the TEM00 Gaussian

beam profile is needed. To this end, we resort to a measurement of the beam waist via the

knife-edge technique [6]. As shown in Fig. 3.3, this is performed by placing a sharp blade

on the path of the laser beam and a photodiode after it. As the blade is translated along x,

the photodiode measures the power of the portion of the beam that is not shielded by the

blade.

Figure 3.3: Knife-edge technique schematic.

Combining Eq. 1.1 and I = 2ncϵ0|E|2, where I is the intensity profile of a Gaussian beam,

we get [6]:

I(x, y) = I0exp

(
−2

(x+ y)2

w2
0

)
(3.3)

As the blade moves along x, the power measured by the photodiode varies in the following

way:

P (x) =

∫ +∞

x

∫ +∞

−∞
I(x, y)dxdy = P0

1

2

[
1− erf

(√
2
x− x0

w0

)]
= P0

1

2
erfc

(√
2
x− x0

w0

)
(3.4)

By interpolating P (x) with the above expression, w0 can be easily retrieved. In order to

simplify the fitting process, I normalized all the measurements with respect to the maximum



CHAPTER 3. Z-SCAN SETUP: OPTIMIZATION AND CALIBRATION 24

power value. In Fig. 3.4, I show the knife-edge measurement of the unfocused beam. The

measured power profile is well fitted with w0 = 2.8 mm, which is not too different from the

value used in Section 3.1. In Fig. 3.5, I show the knife-edge measurement performed in the

beam focus. While the curve looks rough when compared to the one reported in Fig. 3.4

(mainly due to the finite sharpness of the blade), I was yet able to extract the following

value: w0 = 33 µm. Since Eq. 3.2 provides w0 = 32 µm, the value found by me is very close

to the theoretical one.

Figure 3.4: Knife-edge measurement of the unfocused beam.

Figure 3.5: Knife-edge measurement of the focused beam.
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Calibration measurements

In order to check the correct functionality of my Z-scan setup, I performed a series of mea-

surements on three different samples:

• NG11 sample (2 mm thick)

• a piece of microscope glass (1 mm thick)

• a polished GaAs sample (350 µm thick)

These samples have been chosen due to the possibility to compare the results with a variety

of literature references. All measurements have been performed at

λ = 1000 nm.

4.1 Analysis of the glass samples

First, to check the sensitivity of the sample, the NG11 and the microscope glass sample

have been studied. Due to the very weak nonlinearity of glasses (n2 ≈ 10−20 m2/W [7]),

the measurement have been performed at the maximum power available: P̄ = 130 mW.

The Z-scan characteristic curve is clearly seen in both Fig. (4.1A) and Fig. (4.1B). It is

interesting to notice that, even at this high power, there is little to no nonlinear absorption:

Fig. (4.1A) shows a clear flat signal when the aperture is fully open. It is also interesting to

appreciate the difference between the two signals: the NG11 gives rise to a ∆Tp−v of almost

9% of the normalized transmittance, while the ∆Tp−v of the microscope glass is not larger

than 2% of the normalized transmittance. Since only one measurement has been performed

on the NG11 sample, it was assigned to it the theoretical relative error of ±2%, found in

Section 2.2. For the microscope glass, an absolute error of ±0.1 · 10−20 m2/W was obtained

25
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from the measurements. In the table below are reported the values of n2, evaluated via Eq.

Figure 4.1: (A): Z-scan characteristic of the NG11 sample with both open and closed aperture. (B): 3
consecutive measurements of the microscope glass sample, with closed aperture.

2.15.

Table 4.1: n2 values for glasses

Sample n2 [m2/W]

NG11 (5.42±0.1) · 10−20

Microscope glass (meas. 1) (1.04±0.1) · 10−20

Microscope glass (meas. 2) (1.17±0.1) · 10−20

Microscope glass (meas. 3) (1.14±0.1) · 10−20

4.2 Analysis of the GaAs sample

Unlike glass samples, GaAs is expected to provide much stronger nonlinear responses. For

this reason, the power has been lowered significantly, in order to avoid the case for which

q0 ≥ 1 (see Section 2.3 for more details). Two measurements have been performed: one at

P = 7 mW (Fig. 4.2), both with open and closed aperture, and one at P = 2 mW (Fig. 4.3),

also both with open and closed aperture. It is interesting to notice an important trade-off

of the Z-scan characteristic: for low intensities, the characteristic becomes less defined, but,

when nonlinear absorption is present, high intensities result in a heavily distorted curve.

Hence, some trials are needed to determine the optimal power for a given measurement. For

the open aperture measurements, this problem does not exist, as the characteristic is always

well defined. Interestingly enough, at λ = 1000 nm, n2 < 0. In the table below, are reported

the values of n2 and β for the two different powers and for the literature. The values are

quite close.
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Figure 4.2: (A): Z-scan characteristic of the GaAs sample with both open and closed aperture at PAVG = 7
mW. (B): ratio of the closed- to the open-aperture characteristic at PAVG = 7 mW.

Figure 4.3: (A): Z-scan characteristic of the GaAs sample with both open and closed aperture at P̄ = 2
mW. (B): ratio of the closed- to the open-aperture characteristic at P̄ = 2 mW.

Table 4.2: n2, β values for GaAs

P̄ [mW ] n2 [m2/W] β [m/W]

NG11 -1.06 · 10−20 1.60 · 10−10

7 -1.13 · 10−17 1.30 · 10−10

literature -1.59 · 10−17 [8] 1.51 · 10−10 [9]



Conclusion

The Z-scan setup provides a simple, yet accurate way to characterize both n2 and β in non-

linear materials. Thus, it becomes an important tool for what concerns nonlinear materials

characterization.

For this reason, a collaboration with Alexandre Baron from Centre de Recherche Paul Pascal

is under way: my Z-scan setup will be used to characterize the nonlinear optical response

of a series colloidal plasmonic clusters. In particular, the four samples that will be analyzed

are:

• a sample containing PANI dissolved in THF

• a sample containing PANI dissolved in ethanol

• a sample containing Ag nanoparticles suspended in ethanol

• a sample containing Ag/PANI core-shells in ethanol

where PANI stands polyaniline (a polymer) and THF for tetrahydrofuran (a solvent).

Thanks to the local field enhancement provided by the plasmonic Ag nanoparticles, the non-

linear response of PANI should be greatly enhanced; this enhancement should be measurable

with my Z-scan setup.

The enhancing effect of these nanoparticles could then be used to enhance the nonlinear

response of nonlinear metasurfaces.

28
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Appendix A

Derivation of relevant formulas

A.1 Derivation of 1.8

Starting from the Helmotz equation:

∇2E(r, ω)− ϵr
ω2

c2
E(r, ω) = 0 (A.1)

and recalling that ϵr = 1+ χ(1), with χ(1) = χ
(1)
R + iχ

(1)
I , if we assume a plane wave solution:

E(r, ω) = E0exp(i[kr − ωt]), the Helmotz equation reduces to:

k2 = ϵr
ω2

c2
(A.2)

Taking the square root on both sides:

K =
√
ϵr
ω

c
=

√
1 + χ

(1)
R + iχ

(1)
I

ω

c
(A.3)

Assuming χ
(1)
R (ω) >> χ

(1)
I (ω), we can expand the square root:

√
1 + χ

(1)
R + iχ

(1)
I =

√
1 + χ

(1)
R

√√√√1 + i
χ
(1)
I

1 + χ
(1)
R

≈
√

1 + χ
(1)
R

(
1 + i

χ
(1)
I

2(1 + χ
(1)
R )

)
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Since n0 =

√
1 + χ

(1)
R :

√
1 + χ

(1)
R + iχ

(1)
I ≈ n0

(
1 + i

χ
(1)
I

2n2
0

)
= n0 + i

1

2n0

χ
(1)
I

Substituting back in Eq. A.3:

k = n0
ω

c
+ i

ω

2n0c
χ
(1)
I (A.4)

Usually, k is expressed as: k = k′ + i1
2
α. Hence:

k′ = n0
ω

c
(A.5)

α =
ω

n0c
χ
(1)
I (A.6)

A.2 Derivation of 1.18 and 1.19

Defining χeff = χ(1) + 3χ(3)|E(ω)|2 and ϵr = 1 + χeff, the refractive index becomes:

n =
√
ϵr =

√
1 + χeff =

√
1 + χ(1) + 3χ(3)|E(ω)|2 (A.7)

Assuming χ(3) << χ(1), we can expand Eq. A.7:

√
1 + χ(1) + 3χ(3)|E(ω)|2 =

√
1 + χ(1)

√
1 +

3χ(3)|E(ω)|2
1 + χ(1)

≈
√
1 + χ(1)

(
1 +

3χ(3)|E(ω)|2

2(1 + χ(1))

)

But n0 =
√

1 + χ(1):

n ≈ n0 +
3

2n0

χ(3)|E(ω)|2 (A.8)

When the optical Kerr effect is present, n can be rewritten as:

n = n0 + n2I (A.9)

Recalling that:

I = 2cϵ0n0|E|2 (A.10)
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Eq. A.10 becomes:

n = n0 + 2cϵ0n0n2|E|2 (A.11)

Since Eqs. A.8 and A.11 must be equal:

2cϵ0n0n2|E|2 = 3

2n0

χ(3)|E(ω)|2n2 =
3

4n2
0cϵ0

χ(3)

A.3 Derivation of 1.21

Defining χI,eff = χ
(1)
I + 3χ

(3)
I |E(ω)|2, α becomes:

α =
ω

n0c
χ
(1)
I +

3ω

n0c
χ
(3)
I |E|2 (A.12)

When the optical Kerr effect is present, α can be rewritten as:

α = α0 + βI (A.13)

With α0 =
ω
n0c

χ
(1)
I . Recalling that:

I = 2cϵ0n0|E|2 (A.14)

Eq. A.13 becomes:

α = α0 + 2cϵ0n0β|E|2 (A.15)

But, Eqs. A.12 and A.15 must be equal:

2cϵ0n0β =
3ω

n0c
χ
(3)
I (A.16)

Hence:

β =
3ω

2c2ϵ0n2
0

χ
(3)
I =

3π

2cϵ0n2
0λ

χ
(3)
I (A.17)



Appendix B

OPA Mango

All measurements in this report have been performed with a Mango OPA from Amplitude.

An OPA (Optical Parametric Amplifier) allows for an easy and versatile frequency conver-

sion for a pulsed laser. Optical parametric amplification is the physical process behind the

frequency conversion; the process is shown in Fig. B.1.

Figure B.1: Optical parametric amplification process.

Optical parametric amplification is a stimulated process: a pump photon ℏωp is broken into

two photons: a signal (ℏωs) and an idler (ℏωi). ℏωs stimulates the process; due to energy

conservation: ℏωp = ℏωs + ℏωi. The mango OPA characteristic are the following:
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Table B.1: OPA Mango characteristics

Signal tuning range 630 - 1020 nm
Idler tuning range 1040 – 2600 nm

SHG signal 315 - 510 nm
FHG signal 210 - 255 nm
SHG idler 520 – 630 nm
FHG idler 260 – 315 nm

DFG 2600 – 11000 nm
Pulse duration < 300 fs
Repetition rate Up to 1 MHz

Conversion efficiency >12% at peak (signal + idler)
Bandwidth in cm−1 70 –120 cm−1

Polarization Horizontal
Beam quality TEM00


