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CHAPTER 1

Abstract

The advent of quantum computers and their increasing computing performance threat-

ens the use of current cryptographic protocols as a way to ensure protection against

cyberthreats. For this reason, in 2016, the American National Institute of Standards

and Technology started a post-quantum cryptography standardization process for find-

ing new quantum-resistant cryptographic protocols for both key encapsulation mecha-

nisms and digital signatures. Saber is one of the four finalists, it relies on the Module-

Learning-with-Rounding problem which is a lattice-based problem and it is believed to

be quantum-resistant. The main implementation bottleneck of this protocol is the sig-

nificant time spent in computing polynomial multiplications in polynomial rings with

power of two moduli. This work aims at implementing a hardware architecture that

can manage all the arithmetic operations contained in key generation, encryption and

decryption functions of the Saber public key encryption protocol, for each of its ver-

sions. This is achieved using a schoolbook-based polynomial multiplication accelerator

with different optimizations, that rely on centralized multiplication and the smallness

of operand polynomials. Results from the design synthesis demonstrate good operating

performance and low power dissipation values.

2



CHAPTER 2

Introduction

In the early 1980s, when Paul Benioff proposed a quantum mechanical model of the Tur-

ing machine [1], some scientists, including the theoretical physicist Richard Feynman,

predicted that the computing power of quantum computers would lead to simulating

things that a classic computer could not feasibly do [2]. Although there were some

small realization of quantum computers with computing capabilities in the late 1990s,

many researchers considered the feasibility of a powerful quantum computer a distant

dream [3] until, in recent years, research investments [4][5] on these computers have

had exponential growth.

In October 2019, Google AI, in partnership with U.S. National Aeronautics and Space

Administration (NASA), realized a 54-qubit quantum processor able to perform a com-

plete task, using quantum computation, in 200 seconds that would be the equivalent

to 10,000 years of computational time using a classical supercomputer [6].

A notable application for quantum computers is the attack of cryptographic systems,

thus breaking the security of the current public-key cryptographic protocols, such as

the RSA and elliptic curve Diffie-Hellman algorithms. In particular, the RSA algorithm

relies on the difficulty, for classical computers, of factorizing the product of two prime

numbers used to generate the keys in the cryptographic protocol, because it would

require too much time.

By comparison, a powerful quantum computer could efficiently solve this problem us-

ing Shor’s algorithm. It was developed in 1994 by Peter Shor and it could be used

for solving integer factorization problems, resulting in the capability of decrypting

RSA-encrypted communications [9]. Fortunately, scientists estimate that a quantum

computer powerful enough to run this algorithm and break current cryptographic sys-

tems, could be feasible in the next 15 to 20 years [7].

Post-Quantum Cryptography [8] is a field of cryptography that is focused on designing

quantum-resistant public-key primitives based on problems that are presumed to be

computationally infeasible for both classic and quantum computers. In 2016, the Amer-

ican National Institute of Standards and Technology started a post-quantum cryptog-

raphy standardization process for finding new quantum-resistant cryptographic proto-

3



Introduction 4

cols for both key encapsulation mechanisms and digital signatures. At the end of the

Round 3 of this challenge, the finalists are four: Classic McEliece[12], CRYSTALS-

KYBER[14], NTRU[13] and SABER[11]. Most of them are based on hard problems

from lattice theory, that are presumed to be computationally infeasible even for quan-

tum computers. The Round 4 submission [26] of the NIST challenge started on July

2022, after the end of the work presented in this thesis.

The focus of this work is Saber, which is a Chosen-Ciphertext Attack (CCA) resistant

key encapsulation mechanism based on module lattices. Saber is based on the Module-

Learning-With-Rounding problem [15]. It works with data represented as polynomials

belonging to a polynomial ring with power of two moduli. The main implementation

bottleneck of this protocol is the polynomial multiplication.

In the state of the art there are several types of algorithms that have been used to

implement polynomial multipliers for accelerating the Saber scheme.

Zhu et al. [21] proposed an energy-efficient configurable crypto-processor supporting

Saber multi-security-level key encapsulation mechanism. The polynomial multiplier is

based on the Karatsuba algorithm [17], using an 8-level hierarchical structure. They

designed a hardware efficient Karatsuba scheduling strategy and an optimized pre/post-

processing structure to reduce the area overhead of the scheduling strategy. As a last

optimization, they proposed a task-rescheduling-based pipeline strategy and truncated

multipliers to enable fine-grained processing.

Bermudo Mera et al. [19] conceived a Took-Cook based polynomial multiplication im-

plementation [18], introducing two optimizations in the algorithm itself, such as the

evaluation and the interpolation steps, achieving a significant speed-up compared to

the SW only implementation of the algorithm.

Wang et al. [23] proposed a HW/SW codesign solution for improving the polynomial

multiplication on Espressif Systems 32 (ESP32) embedded microprocessor with low

software overhead. Karatsuba and Toom-Cook algorithms are used in this implemen-

tation by applying the Kronecker substitution.

Roy et al. [20] proposed an instruction set coprocessor architecture for implement-

ing the module lattice-based post-quantum key encapsulation mechanism Saber. They

devised a parallel polynomial multiplier architecture, schoolbook-based algorithm, by

exploiting some optimizations to reduce the latency imposed by the algorithm itself

and the area on the Xilinx UltraScale+ FPGA.

Imran et al. [24] investigated how lattice-based algorithms work when implemented

in hardware, using a polynomial multiplier based on the schoolbook architecture.

The experiment is done by assuming that the algorithms will be implemented in an

application-specific integrated circuit (ASIC) using a 65nm technology.

Another algorithm used to implement polynomial multiplication requires the use of the

Number Theoretic Transform (NTT), which is the integer version of the Fast Fourier

Transform (FFT). This algorithm is mainly used for CRYSTAL-KYBER implemen-

tations, being based on polynomial rings defined over finite fields with prime moduli.
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Saber was conceived with the idea of making modular reductions as simple as possible,

this is why it was chosen to use finite fields with powers of two as integer moduli. By

implementing Saber using NTT, it would add a much higher latency cost and dissi-

pated power [22] than the implementations of the same protocol using the polynomial

multiplication algorithms mentioned above.

For these reasons, this work focuses on [20] to implement a HW architecture capable of

handling all the arithmetic operations contained inside the Saber public key encryption

function, for each of its security levels. To do this, a polynomial multiplier is imple-

mented based on the schoolbook method. In the following it is reported the structure of

this these. In Chapter 3 is introduced the relevant mathematical background, including

a summary of the Saber PKE protocol. Chapter 4 discusses the polynomial multiplier

operation, its optimization techniques and the design decisions that lead this proposed

high-speed architecture. Chapter 5 illustrates how the architecture works during the

three operating modes provided by the PKE functions. Chapter 6 explains the de-

sign verification of the devised architecture. Chapter 7 presents the implementation

results and compares them with state-of-the-art solutions. The final chapter includes

concluding remarks.



CHAPTER 3

Preliminaries

In this chapter, the notation used in the definition of the public key encryption (PKE)

functions is firstly introduced.

The second section contains tables with all the constant values used during the exe-

cution of the arithmetic operations. This is useful especially during the design phase

because they help to evaluate the complexity of the component. It shows also a first

approach of the three possible security levels of Saber by mentioning both their pa-

rameter and constant values.

The third and fourth section provide a general description of Saber and its PKE func-

tions, some pictures are shown for two reasons:

• Describe the three general types of arithmetic operations to be performed along

the three PKE functions

• Give a simple overview of the steps to be followed to well-perform the operations,

by covering all Saber protocol versions

3.1 Notation

Let p and q be two powers of 2, i.e. p = 2εp and q = 2εq . Let define Zp the ring of

integers modulo p and let z mod p (z | p) be the reduction of z in [0,p). A ring of

polynomials, denoted as Rp = Zp[x]

xN+1
, could be seen as a set of polynomials of degree N,

whose coefficients belong to Zp.
Let l be an integer number, two further notations can be introduced: Rlx1

p and Rlxl
p

are the array, represented in bold (i.e. b), and the matrix, represented in upper case

bold (i.e. A), containing respectively l and lxl polynomials, each of these in Rp. This

l parameter is useful because it identifies the rank of the lattice problem to be solved.

In the following section l parameter will be also defined as the Saber version and it is

correlated with its security level.

Every notation seen so far could be introduced by using another interger modulo q, that

is the other power of two cited at the beginning of this section. Let v be a polynomial

6
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in Rp, a left shift operation of k position can be defined using the symbol v � k. This

is a coefficient-wise operation, it means that it is applied to all polynomial coefficients

in the same way. It is also possible to define the right shift operation of k position on

v denoted as v � k.

Let v, u be two polynomials in Rp, it is possible to perform coefficient-wise addition

operation, so each i-th polynomial coefficient of v and u are added together. Finally

let b be a polynomial array in Rlx1
p , the transposed operation, denoted as bT , is the

operation having as result the same polynomial array belonging in R1xl
p .

3.2 Parameters and Constants

The parameters for Saber are:

• N : it represents the degree of the polynomial ring Rp = Zp[x]

xN+1
which is the number

of polynomial coefficients belonging to the ring. In Saber, N = 256 for all its

versions.

• l : it determines the Saber version. The product N * l is used to underlying the

dimension of the lattice problem involved in the chosen protocol. An increase in

the value of l leads to an increase in the size of the lattice problem to be solved

and therefore to greater security.

The possible values of this parameter and the name of Saber versions are:

– l = 2 : LightSaber

– l = 3 : Saber

– l = 4 : FireSaber

• q, p, T : they represent the moduli of the ring of integers involved in the scheme

of the protocol. For an easier integer module reduction, these values are chosen

to be powers of 2, in particular q = 2εq , p = 2εp , T = 2εT , with εq > εp > εT . A

higher choice for parameters p and T will result in lower security.
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Below, a table with all the parameters described so far for the different types of

Saber versions is shown:

Parameters LightSaber Saber FireSaber

l 2 3 4

εq 13 13 13

εp 10 10 10

εT 3 4 6

q 213 213 213

p 210 210 210

T 23 24 26

Table 3.1: Parameter and constant values in Saber

The functions that will be described in the following section requires also the usage

of three polynomial constants, two are polynomials and the last one is an array of

polynomials: their values are determined by a mathematical formula involving the

parameters shown in the previous table. These constants are very important during

rounding phase because they are used during the first of the two steps to perform

the operation correctly. A detailed description of how rounding operation works it

is explained in the next section. In the following a table summarizing the constants

described before is shown:

Constants Formula LightSaber Saber FireSaber

h1 ∈ Rq 2εq−εp−1 4 4 4

h2 ∈ Rq 2εp−2 − 2εp−εT−1 + 2εq−εp−1 196 228 252

h ∈ Rlx1
q 2εq−εp−1 4 4 4

Table 3.2: Polynomial constants in Saber

3.3 Saber

Saber is an Indistinguishable under Chosen-Ciphertext Attacks (IND-CCA) secure Key

Encapsulation Mechanism (KEM) based on module lattices, whose security relies on

the hardness of the Module Learning With Rounding (M-LWR) problem, which is

presumed to be computationally infeasible for both classic and quantum computers.

KEM schemes (Key Generation, Encapsulation and Decapsulation) are internally based

on Public Key Encryption primitives (Key Generation, Encryption, Decryption) that

contain the basic functions for the proper functioning of the protocol.

Public-key cryptography, also called asymmetric cryptography, is a system based on
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the use of key pairs. Each pair consists of a public key, accessible to all, and a private

key, which must be kept only by the owner and must not be accessible to anyone else.

The PKE key generation function is responsible for generating this key pair. The use

of the other two functions is established in the communication between a transmitter

T and a receiver R, who wish to exchange information, which will have a pair of keys

each. When T intends to send a message to R, it will use the receiver’s public key to

calculate the ciphertext via the PKE encryption function. The receiver, to read in clear

the message that was sent by T, will use its secret key by applying the PKE decryption

function on the encrypted message received. The security of the system depends on the

secrecy with which the own preserves its secret key. It is precisely on this part that the

operations of generating public and private keys, message encryption and decryption

of ciphertext are focused. These three functions will be described in detail in the next

section, emphasizing the operations that this work intends to optimize.

Saber is flexible, efficient and simple, it has been designed with features that make its

implementation powerful, especially from the point of view of modular reduction. The

flexibility of the cryptographic protocol leads to the need of just one hardware core to

implement its multiple security levels.

Saber works with data represented as polynomials belonging to rings of polynomials

whose integer moduli are powers of two. Modular operations generally have greater

complexity due to the implementation of algorithms, such as Montgomery or Barrett,

which can perform modular reduction on the operation itself. In the Saber protocol this

complexity can be almost neglected since the whole integer moduli are powers of two.

This leads, in hardware implementations, to replace the algorithms mentioned before

with the use of simple arithmetic circuits or even without any additional components

being applied, as in the case of this work.

Furthermore the M-LWR problem brings an advantage in the rounding phase. In Saber,

this part consists in just two straightforward steps: adding constant polynomial values

and performing a left/right shift operation for each polynomial coefficient involved in

the operation. This two parts depend on the type of security level used for performing

the cryptographic protocol and the PKE function where rounding operation has to be

applied.

3.4 Saber PKE functions

The Saber Public Key Encryption (PKE) scheme is composed of three functions;

• Key Generation : it aims at generating a couple of public key and a secret

key useful for a communication public key encryption based. it consists of the

generation of a public matrix of polynomials called A ∈ Rlxl
q and a secret array

of polynomials s ∈ Rlx1
q . An array of polynomials called b is computed by scaling

and rounding the product between A and s. The function combines A and b as
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public key and s as secret key. More precisely, due to the large size of the matrix

A, the seed that generated that matrix itself is returned as part of the public

key.

Figure 3.1: Key Generation PKE function

• Encryption : this function is used for encrypt a message. It receives the public

key generated in the previous function and the message that it is intended to

be encrypted. Matrix A is generated starting from its seed and an array b′ is

computed with a secret key called s′ that is generated specifically for encryption.

A message can be encrypted by adding a scaled array v′ = bT s′, a constant

polynomial h1 and the message shifted and scaled properly. The final ciphertext

cm will be computed by applied shifting operation. The function returns as

wrapped ciphertext c the final ciphertext itself cm and the vector b′ useful during

decryption phase.

Figure 3.2: Encryption PKE function

• Decryption : this function is used to retrieve a message, that has been previously

encrypted, starting from a given ciphertext. It receives the wrapped ciphertext c

generated during encryption and the secret key s generated during key generation

function. The message can be decrypted by recovering an approximation of v
′
.

The new array is obtained as v = b
′T s scaled properly. This array is added with

constant polynomial h2 and a shifted ciphertext cm. The final message m′ is

computed after a further shifting operation.
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Figure 3.3: Decryption PKE function

The three functions seen so far are composed of three different types of arithmetic

operations that this work aims to accelerate and optimize. The picture below shows

these operations underlined with different colors.

Figure 3.4: Arithmetic operation in PKE functions

Red operations are matrix-array multiplications with rounding. Yellow lines in-

dicate the simple array-array multiplication, while in blue are underlined the mes-

sage/ciphertext handling operation. This section will describe each of these types of

arithmetic operation in different subsections by providing schemes and formula for a

right understanding.
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3.4.1 Array-array multiplication

The array-array polynomial multiplication is defined as the sum of the product of each

i-th couple of the two input polynomial arrays.

Given b and s ∈ Rlx1
p , let compute v = bT s ∈ Rp as

v =
l−1∑
i=0

bisi

where l is the Saber security level (see Section 3.2)

3.4.2 Matrix-array multiplication with rounding operation

The matrix-array polynomial multiplication is defined as a consecutive array-array

polynomial multiplication where the i-th polynomial result is obtained by multiplying

the i-th matrix row times the input array polynomial.

Given A ∈ Rlxl
q and s ∈ Rlx1

q , let compute b̂ = AT s ∈ Rlx1
q as

b̂ =
l−1∑
k=0

l−1∑
i=0

akisi

where l is the Saber security level (see Section 3.2)

After the matrix-array polynomial multiplication, the result has to be added with

h constant polynomial array with a final three position shifting operation on each

polynomial coefficient. The described operation above is summed up in the following

flow diagram: In this work, for easier data management, it was decided to perform the

Figure 3.5: Rounding operation after matrix-array polynomial multiplication

rounding operation at the end of each array-array polynomial multiplication , using

the constant SABER h1.
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3.4.3 Message/ciphertext handling operation

The last two possible type of rounding that could be applied on arithmetic operations in

PKE functions deal with message encryption and ciphertext decryption (the functions,

described in Section 3.4 are shown again). Since these operations strictly depend on

the level of security of the protocol, all possible cases for each version of Saber are

schematized.

• Message encryption : The scheme below explains in detail all the steps to be

taken in order to correctly execute line 7 of the PKE encryption function.

Figure 3.6: Encryption PKE function

Figure 3.7: Operation flow for encrypting a message

Each polynomial coefficient of the message is firstly left shifted by nine position

in order to be correctly added with constant polynomial h1 and the v array

previously computed by the function.

At this point, depending on the security level, each polynomial coefficient of the

partial ciphertext will be right shifted by seven positions in case of LightSaber

protocol, six positions for Saber and four positions for FireSaber.
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• Ciphertext decryption : The scheme below explains in detail all the steps to

be taken in order to correctly execute line 2 of the PKE decryption function.

Figure 3.8: Decryption PKE function

Figure 3.9: Operation flow for decrypting a ciphertext

Each polynomial coefficient of the ciphertext is firstly left shifted by a number

of positions depending on the adopted security level. In particular, nine left

positions for LightSaber, six positions four Saber and four positions for FireSaber.

The result obtained after shift operation is added with the constant polynomial

h2 and the v array previously computed by the function.

At this point, each polynomial coefficient of the partial message obtained, will

be right shifted by nine positions to compute the final message as output of the

function.



CHAPTER 4

Architecture design

In this chapter it is firstly given an overview of the architecture design, its fundamental

parts and its input/output ports with their possible values. In the next chapter, these

values will be reported again for showing how they could be used.

The second section lists the internal organization of the datapath and provides a sub-

section for each sub-module, including their input/output signals. The most important

part of this section is the polynomial multiplier. In order to explain how this multi-

plier works, the algorithm at the base of one single multiplication is described. As it

is possible to see later, some technical optimizations are introduced and implemented

in order to increase the design performance and to reduce the occupied area. Finally,

this subsection explains the adopted modifications, inside the polynomial multiplier,

for being able to correctly perform all the arithmetic operations of the algorithm de-

scribed in Section 3.4.

Successively, it is shown how to solve the polynomial data storing problem and their

synchronization by introducing the memory design and the decoder/buffers sizing re-

spectively.

The last section deals with the control part. Specifically, the representation of the

Finite State Machine (FSM) and the explanation of each of its states is shown.

For a better understanding, the FSM scheme is divided according to the colors repre-

senting the different arithmetic operations inside the PKE algorithms.

15



Architecture design 16

4.1 Overview

The architecture is split in two parts:

• Datapath : It contains all the functional units, such as the arithmetic logic unit,

that perform data processing operations. In addition, there are memories with

the task of ensuring the reading of the data used in the execution of the arithmetic

operations and, finally, the writing of the results. Other sequential components,

such as register buffers, are also inserted, having the task of synchronizing and

speeding up the data flow within the datapath.

• Finite State Machine : It is the controller of the component, composed by a

set of states. Each of them drives all the predefined signals to the datapath for

issuing its execution. The FSM provides a set of transitions (the change from one

state to another) that, step by step, make the result generation process successful.

Figure 4.1: Architecture design model
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The component has also some input/output ports.

In the following it is described, for each port, its purpose and its possible values:

• saber version : it represents the Saber version (security level) that the compo-

nent must take into account for its operation. All the possible values have been

summarized in the table below:

Saber version input Description

00 -

01 Light Saber

10 Saber

11 Fire Saber

Table 4.1: Description of the saber version input values

• operating mode : it represents the possible operation modes that the compo-

nent can perform. All the possible values have been summarized in the table

below:

Operation mode input Description

00 Key Generation

01 Encryption

10 Decryption

11 -

Table 4.2: Description of the operating mode input values

• mess ciphertext : it contains the message to be encrypted during Encryption

mode and the ciphertext to be decrypted during Decryption mode.

• start : it is used to start a given operation using a given Saber version. It is

active high.

start input Description

0 Idle

1 Begin operation

Table 4.3: Description of the start input values

• finish : it is the signal that will be raised whenever the component completes an

operation.
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finish output Description

0 Operation not completed

1 Operation completed

Table 4.4: Description of the finish output values

4.2 Datapath

Figure 4.2: Datapath internal representation

The internal composition of the datapath is devised to ensure easy understanding of

its operation. The memories in the upper part of Figure 4.2 have the task of saving the

data to be processed, while the result key memory to save the results once the operation

is finished. The memory buffer is instead positioned to store the next secret polynomial

to be processed at the same time the multiplier is completing the multiplication using

the previous one.

The result buffer is used to store the result at the end of a given operation (usually

after each multiplication between polynomial arrays) and to save it in the memory
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results during the calculation of the successive polynomial multiplications.

The message/ciphertext buffer has the task of saving the message that will be encrypted

or the ciphertext that will be decrypted.

Finally, the decoder, together with the multiplexer, have the task of selecting the right

reading of the public polynomial (specifically only those parts of this polynomial are

read as will be explained in detail later) to be used during the multiplication, between

the two possible memories and to place it in the right place (see the two decoder

outputs) to ensure the continuity of polynomial multiplication.

All these characteristics will be described in detail in the subsections of this chapter

and in the following one.

4.2.1 Polynomial multiplier

Before outlining the internal architecture of the polynomial multiplier, this subsection

illustrates how multiplication between polynomials works.

As explained in Chapter 2, there are many techniques to perform this operation, some

complex and other less. This work utilizes one of the easiest among those mentioned,

i.e., the Schoolbook method. The algorithm, also called grade school algorithm, is

shown below:

Figure 4.3: Schoolbook polynomial multiplication algorithm

The algorithm receives as input a(x) and b(x), two polynomials belonging to Rq,

of degree N = 256. For both polynomials, it is assumed the coefficients of the highest

degree of x in the most significant position and those of the lowest degree of x in the

least significant position.

The algorithm starts computing the multiplication by multiplying each coefficient of

the first polynomial with all the coefficients of the second. The array acc stores the

partial values and provides the final result at the end of the polynomial multiplication.

Before moving to the next coefficient, an operation called negacyclic shift ( instruction

7 of the algorithm ) is executed. This involves the rotation to the left of one position

of the ring of the second polynomial. In practice, the first coefficient is moved to the
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position of the second, the second in the third position and so on. Once the most

significant coefficient is reached, it is moved to the least significant position, changed

sign. Once the negacyclic shift operation is completed, the second coefficient of the first

polynomial will be multiplied with all the coefficients of the second and the negacyclic

shift operation will be applied again. The process continues until the last coefficient

of the first polynomial is reached. Below, a diagram that summarizes the operation of

negacyclic shift is depicted.

Figure 4.4: Negacyclic shift polynomial operation

In Saber protocol, the polynomial multiplication is always performed between a

secret polynomial and a public polynomial. In addition, although secret polynomial is

defined on Rq, the range of its coefficients, taking into account all versions of Saber,

is contained in a small interval [-5, 5]. Keeping in mind these consideration, [20] pro-

posed their first hardware implementation using 256 multiply-and-accumulate (MAC)

in parallel to speed up the execution of the inner loop of the schoolbook algorithm (line

3, 4 and 5) in just one cycle instead of N.

Figure 4.5: Schoolbook polynomial multiplier

Following [20], schoolbook-based polynomial multiplier architecture has four main
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components:

• The public polynomial buffer, that loads the first polynomial and provides one

of its each coefficient at a time. Public polynomial coefficient are saved using 2’s

complements representation. Each public coefficient is 13 bits long, so the total

size of the buffer is 13x256 bits.

• The secret polynomial buffer, that loads the second polynomial and provides

all of its coefficients to be multiplied by the coefficient provided by the buffer

described before. Secret polynomial coefficient are saved using Sign and Module

(SM) representation. This is an advantage during negacyclic shift because only

one bit is flipped to change coefficient sign. Each secret coefficient is 4 bits long,

so the total size of the buffer is 4x256 bits.

• The MAC block, which is composed of a multiplier and a multiplexer. It com-

putes one coefficient-wise multiplication and update the accumulator with the

new result. The coefficient-wise multiplier is implemented using simple shift and

add operations, as shown in Figure 4.6, instead of requiring a true integer mul-

tiplier. The multiplier computes up to times-five multiplication to fully support

all possible secret coefficient positive interval. Secret coefficient module is used

as multiplexer selection signal to select the right result, having performed multi-

plication using the absolute value of the secret coefficient itself. The accumulator

is then updated by adding or subtracting the results depending on the sign-bit

of the secret coefficient.

Figure 4.6: Coefficient-wise shift-and-add multiplier

• The accumulator buffer, that stores the partial values and provides the final

result at the end of the polynomial multiplication. Also in this case, the results

are stored using 2’s complements representation. The buffer size is the 13x256

bits.
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Following [20], a further optimization can be implemented to reduce the area occu-

pied by the component.

In the Schoolbook polynomial multiplier implementation, MACs are instantiated

in parallel to parallelize the inner loop of the algorithm in Figure 4.3, so all MACs will

receive the same public coefficient pi as one input operand; whereas the other operand

(secret coefficient sj) can be different for the parallel MACs.

Based on this observation, the computation of the public coefficient up to absolute

times-five multiplication (0xpi, 1xpi, 2xpi, 3xpi, 4xpi, 5xpi) of its value, can be cen-

tralized for all the parallel MACs. The centralized multiplier forwards the computed

multiplies to the parallel MACs. Next, the MAC instances choose their right multiple

of ai depending on their corresponding absolute value of sj and updates that to the

accumulator depending on the sign-bit of the sj. This approach leads to have just one

centralized multiplication, by replacing all the other coefficient-wise multiplier inside

a MAC with a simple select operation ( e.g. a 6-way multiplexer), thus reducing the

area of the MAC unit significantly.

The architecture with the new centralized multiplier optimization is depicted in Figure

4.7.

Figure 4.7: Optimization of schoolbook polynomial multiplier

The work of this thesis has as starting point the architecture described, shown in

Figure 4.7.

One of the changes made was the use of the Pentium 4 adder [16] inside the MAC

block for its optimized structure that allows you to perform the operation faster than

basic implementations (i.e., Ripple Carry Adder).

The addition for updating the value of the accumulator register is on 13 bits. To make
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sure that it is executed correctly, a Pentium 4 adder based on 12 bits and a full adder,

in the most significant part of the final adder, are employed. Using the implementation

shown in Figure 4.8 then it is possible to guarantee a correct execution of addition or

subtraction based on value on 13 bits in 2’s complements representation.

Figure 4.8: Implementation of the adder inside MAC block

The need to perform rounding and multiplication operations based on array or

polynomial matrices, requires the modification of the architecture mainly on two blocks,

as shown in Figure 4.9.

• MACs : Two multiplexers are devised into this element, having two selection

signals driven from the FSM controller, to handle the rounding operation. The

first multiplexer performs only left shift operations and it is used for adjusting

the coefficient mi of the message polynomial to be encrypted and for the correct

representation, depending on the version of saber used, of the coefficient ci of

the ciphertext polynomial to be decrypted. In addition, it is used during the

addition of a polynomial constant, which depends on the security level chosen.

The second multiplexer instead manages all the final right shift operations for a

correct calculation of the final result.
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Figure 4.9: Modifications in polynomial multiplier architecture

Figure 4.10: Constant representation for each polynomial coefficient

Bits positioning Note

7, 6 1 if decryption operation in all the versions

0 otherwise

5 1 if decryption operation in the Saber version

0 otherwise

4, 3 1 if decryption operation in the Saber or FireSaber versions

0 otherwise

Table 4.5: Bit value of the constant

• Public buffer : It has been reduced from 256 to 9 public coefficients polynomial

to be stored. This scaling is due to the choice with which the polynomials have
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been saved in the memories, in fact it avoids waiting for the entire reading of the

public polynomial before it is utilized during the multiplication operation. This

choice also involves area saving in the polynomial multiplier. As it is possible to

see from the Figure 4.9, the component has two inputs, able to write 8 coefficients

in parallel in the buffer. The input at the bottom is used when the coefficients are

to be immediately processed in the multiplication operation, whereas the second

input (on top) is used to ensure continuity of the execution of the operation when,

in the buffer, only the last coefficient left to be consumed.

4.2.2 Memory design

So far it is described how the multiplication between two polynomials is calculated but,

one of the aspects that affects its performance, is the storage of data to be processed.

In this subsection, it is introduced each of the three memories contained in the datap-

ath, distinguishing their use and the different types of data, including their organiza-

tion, stored inside. All three memories are designed to work with each of the different

versions of Saber. Therefore, for an exhaustive representation, it will be considered the

FireSaber version ( l = 4 ) for the description of the memories.

As it is possible to see later, there will be a memory that is reused for saving data that

will later be consumed in polynomial multiplication. Finally this memory space will

be overwritten to contain the designated result in the memory design itself.

Memory are described in the following:

• Secret key memory : it has the task of memorizing the array of the secret

polynomials s. It is chosen as static RAM (SRAM) memory where the reading

address is driven by a 6-bit output counter carefully managed by the component

controller. Let consider this array structured as

s =
[
s1 s2 s3 s4

]
each of its secret polynomials is stored, in little endian notation, as blocks of 16

polynomial coefficients, 4 bit long, on 16 consecutive memory addresses. The

total length of each row is 64 bits.
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Figure 4.11: Secret key memory

• Public key memory : it has the task of memorizing the matrix of the public

polynomials A. It is chosen as SRAM memory where the reading address is driven

by a 9-bit output counter carefully managed by the component controller. Let

consider this matrix structured as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


each of its secret polynomials is stored, in little endian notation, as blocks of 8

polynomial coefficients, 13 bit long, on 32 consecutive memory addresses. The

total length of each row is 104 bits.
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Figure 4.12: Public key memory

• Result key memory : it is a SRAM memory and it has the task of memorizing

the results of each public key encryption functions, in particular the public poly-

nomial vector b, as result of both Key Generation and Encryption functions, the

encrypted message of Encryption function and the decrypted ciphertext of De-

cryption one. The last two results are devised to be stored at the same memory

position. Although the dimensions of the coefficients of the latter vary depending

on the Saber protocol used, their storage is still on 10 bits.

In addition, the memory space reserved for saving the result array b is used for

storing the same array received as input in both encryption and decryption func-

tions. This reuse leads to a saving of space in the sizing of the memory described

in the previous point, as it should be the memory containing all public polyno-

mials to be involved during the processing of arithmetic operations.

For this reason, it is chosen as read/write memory where both the reading and

writing address are driven by a 8-bit output counter carefully managed by the

component controller.
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Let consider this matrix structured as

b =
[
b1 b2 b3 b4

]
each of its public polynomials is stored, in little endian notation, as blocks of 8

polynomial coefficients, 10 bit long, on 32 consecutive memory addresses. The

total length of each row is 80 bits.

Figure 4.13: Result key memory

4.2.3 Decoder

As described in the previous subsection, the blocks of public polynomial coefficients to

be used for computing polynomial multiplication can be read either from public key

memory, in the case of the matrix A, or from the result key memory, in the case of array

b. Moreover, the latter has its coefficients on 10 bits, this is a problem because during

the operation a length of these coefficients of 13 bits is required. This problem is solved

by adding 3 zeros padding in the most significant part of the individual coefficients,

adapting them to have the same length of the first input of the multiplexer. It will then

select the next octet of public coefficients to be sent to the polynomial multiplier for

being processed. This choice depends on the PKE function wished to run. The decoder

instead deals with positioning the block of public coefficients in two possible positions

inside the public buffer of the polynomial multiplier. The output at the bottom is used
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when you want to start the multiplication operation, that is to load the first block of

coefficients, while the top output deals with placing the next blocks of coefficients at

the highest part of the public buffer at the moment when the last coefficient of the

previously loaded block is going to be processed. This latter operation is essential to

ensure the correct continuity with which public coefficients are consumed within the

multiplier. The choice of decoder and multiplexer output is driven by signals sent by

the controller.

Figure 4.14: Decoder component

4.2.4 Buffers

These memory buffers, composed of registers whose values can be shifted, are fun-

damental to speed up the operations of reading the polynomials stored by the secret

memory and the operations of writing the results, calculated by the polynomial mul-

tiplier, in result key memory. There are two buffers in the datapath that have this

specific use:

• Memory buffer : it is tasked with receiving a block of 16 secret coefficients at a

time as input. This operation, if repeated 16 times will lead to the memorization

of a complete secret polynomial. The output of this buffer consists of a single

port with a length of 1024 bits. They are directly connected to the secret buffer

inputs inside the polynomial multiplier to write, before the start of the operation,

each secret coefficient of length 4 bits that makes up the secret polynomial itself.
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Figure 4.15: Memory buffer structure

• Result buffer : it receives as input all the coefficients of the polynomial, calcu-

lated within the polynomial multiplier, in blocks composed of eight coefficients

each. Moreover, being a sliding buffer, it can be used, during the calculation

of the next multiplication, for storing the single block in memory results. The

resulting polynomial will be fully saved after 32 writes in memory. This buffer

is fundamental because it avoids the introduction of latency times in the storage

of the result before it can start to execute the next polynomial multiplication

foreseen in the arithmetic operation.

Figure 4.16: Result buffer structure

The last buffer in the datapath, positioned centrally at the top, has the task of

containing the message to be encrypted or the cithertext to be decrypted. It consists

of an entire 1536 bit long register. It can be seen as a polynomial having 256 coefficients,

6 bit long each. This length is oversized and represents the size of the coefficients of

the ciphertext polynomial in the FireSaber version of the protocol.
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4.3 Finite State Machine

Most of the complex digital design require an accurate engine to synchronize data con-

sumed inside the Datapath, this task is done by using a controller programmed from

a Finite State Machine.

This work provides an implementation of a Moore FSM, shown in Figure 4.17, contain-

ing 39 states able to manage all the security level of the Saber protocol. In addition,

it is optimized in order to perform as many operations as possible inside each state.

The controller shown in the figure has different colors associated with different op-

erations carried out within the datapath. The states in blue represent the beginning

and the end of the Finite State Machine where no operation is performed, while the

states in red are responsible of recognizing the type of operation and the version of

Saber to be used. They also have the task of loading the first secret polynomial,

into the memory buffer, and the first public coefficient octet ready to be loaded into

the polynomial multiplier for its processing. The states in green are responsible for

reading and loading the coefficients of public polynomials and secret polynomial to be

processed. These states are also designed to save the polynomial results in the result

key memory during the processing of subsequent polynomial multiplication. The blank

state recognizes the type of rounding operation to be performed, specifically the gray

states perform this operation in the Key Generation/Encryption operating mode (when

matrix-array multiplication is involved), those in yellow for the Encryption and, finally,

those orange for the Decryption. The last state in dark green saves the last result of

the polynomial multiplication on which the rounding operation was performed.
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Figure 4.17: FSM controller

In the explanation of the controller operation it is supposed that all the memories

are loaded with the polynomial structures useful for the correct execution of the PKE

functions that it is wanted to execute. A description of the operations that each state

performs on the datapath is provided in the Appendix.



CHAPTER 5

Operating mode

This chapter aims to explain, by using some figures, how the PKE functions are ex-

ecuted by the component described in this work. Also, for space reasons, operations

will be only illustrated for the Saber version, l = 3, of the protocol.

Moreover, it is assumed that the polynomials involved in each of the functions, de-

scribed below, are already stored into the correct memories and that thus the compo-

nent can immediately begin operations processing and subsequent calculation of the

results.

5.1 Key Generation

This function has to perform a matrix-array polynomial multiplication of transposed

public polynomial matrix AT , stored inside public key memory, and a secret polynomial

array s, stored inside secret key memory, in order to compute the public array b that

will be stored inside result key memory. Before illustrating steps to achieve the desired

result, in this section it is briefly revised how matrix-array polynomial multiplication

is computed for Saber version of the protocol. Let define AT and s as:

AT =

a11 a12 a13
a21 a22 a23
a31 a32 a33



s =

s1s2
s3


The result b, ignoring rounding operation, is computed as:

b =

b1b2
b3

 =

a11s1 + a12s2 + a13s3
a21s1 + a22s2 + a23s3
a31s1 + a32s2 + a33s3
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Now it is time to illustrate how the key generation function is performed in Saber

version.

In the idle state the architectural buffers are initially empty, as shown in Figure 5.1.

Figure 5.1: Key generation function : architecture buffers empty

The controller recognizes the Key Generation function as a function to execute (S1

state), reads the first secret polynomial s1 in blocks of 16 coefficients at a time, by

updating the secret counter of secret key memory after each read operation, and writes

it into the memory buffer (S2 and S3 states). It then reads the first octet oct1 of

coefficients of the public polynomial a11 from the public key memory and loads both

the newly read octet and the secret polynomial (state s4) into the polynomial multiplier

buffers. In this situation, shown in Figure 5.2, the polynomial multiplier is ready to

perform the first multiplication.
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Figure 5.2: Key generation function : starting first polynomial multiplication

At this point the controller begins the execution of the multiplication by multiplying

each public coefficient by all the secret coefficients present in the secret buffer. At the

end of this operation, the negacyclic shift operation is applied and the public buffer is

shifted to allow to the next public coefficient, contained in the buffer, to be executed.

The partial result of this operation is accumulated in the internal MAC registers of

the polynomial multiplier. This operation is performed four times (state S5) and then

the next octet of public coefficients from the public key memory is loaded (S6, S7, S8

states), as shown in Figure 5.3.
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Figure 5.3: Key generation function : loading of second public coefficients octet

The subsequent octets of coefficients are loaded and consumed in the same way as

shown in the figure above. The completion of a single polynomial multiplication occurs

using 32 of these octets. However, since the component will have to perform the next

polynomial multiplication between the second secret polynomial and the second public

polynomial, a12s2, during the loading of the last 16 octets of the public coefficients,

the controller starts loading the following blocks of 16 secret coefficients in the memory

buffer (S9, S10, S8 states). This means that reading overhead costs can be reduced as

soon as the multiplier has completed the first multiplication; it may immediately begin

to calculate the result of the next operation. Multiplication results between arrays are

all accumulated in internal MAC registers. The described situation is illustrated in

Figure 5.4.
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Figure 5.4: Key generation function : loading second secret polynomial during the use

of the last 16 octets of the public coefficients

The second polynomial multiplication a12s2 is performed in the same way as the

first one. The third secret polynomial s3 involved in arrays multiplication is loaded

into the memory buffer during the use of the last 16 octets of public coefficients in the

polynomial multiplier. At the end of the second polynomial multiplication however,

the controller resets the secret counter (S10, S17, S14 states) to reload the first secret

polynomial s1 that will be consumed in the first multiplication of the second arrays

multiplication. This operation is done during the execution of the third multiplication

a13s3. Once this last multiplication is completed, the controller will proceed with

the rounding of the result coefficients contained in the MAC registers (S12, S21, S22

states). The rounded result polynomial b1 will be loaded in the result buffer and the

controller will proceed with the execution of the next arrays multiplication to calculate

b2, starting from a21s1 polynomials already loaded inside polynomial multiplier buffers.

The situation is shown in Figure 5.5.
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Figure 5.5: Key generation function : completed first arrays polynomial multiplication

with rounding operation

At this point the second polynomial multiplication between arrays a2 and s is

performed. This operation is managed in the same way as the first multiplication

a1s explained so far. Compared to the previous case, the result buffer is full, in fact it

contains the previous result of the vector polynomial multiplication b1 already rounded.

The controller, in this case, besides reading the blocks of the secret coefficients during

the execution of the polynomial multiplication, must also save the 32 blocks contained

in the memory buffer in the result key memory. This operation is accomplished during

the last polynomial multiplication a23s3 of the arrays multiplication a2s. At every

public coefficients octet reading from the public key memory, the controller performs

a writing of a block in the buffer result, starting from the address indicated in the

counter result of the previous Figure 5.5 (S16 state). Moreover, in the last 16 octet

readings, the controller, in addition to writing the blocks in the result buffer, reads the

first secret polynomial (S13 state) ready to be used in the last arrays multiplication

a3s that will be executed later. At the end of the last polynomial multiplication a23s3,

the rounding operation is handled and the new final result b2 is loaded into the result

buffer. The provided description is referred to Figure 5.6.



Operation mode 39

Figure 5.6: Key generation function : completed second arrays polynomial multiplica-

tion with rounding operation, previous result are stored inside result key memory

To complete the correct execution of the key generation function, the polynomial

arrays multiplication a3s is performed in the same way as described in the previous

page. After the end of the last polynomial multiplication a33s3 and its rounding op-

eration, the final polynomial result b3 is saved in the memory buffer. The controller

will manage its write to the result key memory through the S23 state, executing 32

consecutive writes of the blocks contained in the memory buffer to the corresponding

address in the result counter. At the end, as shown in Figure 5.7, the polynomial array

b is completely stored in memory. The controller cleans all the registers and buffers of

the component and returns to the situation shown in Figure 5.1.
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Figure 5.7: Key generation function : completed last arrays polynomial multiplication

with rounding operation, polynomial results are stored inside result key memory

5.2 Encryption

This function has to perform firstly a matrix-array polynomial multiplication between a

public polynomial matrix A, stored inside public key memory, and a secret polynomial

array s, stored inside secret key memory, in order to compute the public array b’

that will be stored inside result key memory. Finally the function has to compute the

polynomial multiplication between a public transposed polynomial array bT , stored

inside result key memory, and the same secret polynomial array s used for the first

operation. Before illustrating steps to achieve the desired result, in this section it is

briefly revised how array-array polynomial multiplication is computed for Saber version

of the protocol. Let define bT and s as:

bT =
[
b1 b2 b3

]

s =

s1s2
s3
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The result v, ignoring rounding operation, is computed as:

v = b1s1 + b2s2 + b3s3

In order to facilitate the design of the controller, the following PKE function has been

chosen to calculate as the first operation the array polynomial multiplication between

the public polynomial bT and s, then polynomial multiplication where the matrix of

public polynomials A is involved.

Now it is time to illustrate how the encryption function is performed in Saber ver-

sion.

In the idle state the architectural buffers are initially empty. The starting of the op-

eration is also denoted by the introduction of the message to be encrypted in the

message/ciphertext buffer, as shown in Figure 5.8.

Figure 5.8: Encryption function : Memory and buffer contents before the execution

starting

Polynomial multiplication arrays occurs in the same way as in the key generation

function for the first row a1 of the matrix AT and the secret polynomial array s. In this

case, however, the polynomials of the public array are saved in the result key memory
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and not in the public one, so the public coefficients octet loading must be handled

differently by the controller. When performing a single polynomial multiplication con-

tained in the resulting polynomial v, the controller loads the new octets to public

coefficients using the S20, S7 and S18 states, while loading the next secret polynomial,

during the execution of the operation itself, it occurs through the use of the S19, S8

and S18 states. Having clarified these slight changes, Figure 5.9 shows the loading of

the coefficients of the polynomials involved in the first polynomial multiplication b1s1.

Figure 5.9: Encryption function : beginning of the first polynomial multiplication

The polynomial multiplications b2s2 and b3s3 are performed according to the guide-

lines described in the previous section and the variations in the reading flow of the

octets of public coefficients mentioned above. At the end of the three polynomial mul-

tiplications, the result is contained in the registers inside the MACs in the polynomial

multiplier. The rounding phase, in the case of the Saber version, is done by adding the

coefficients of the result itself with the polynomial constant h1, S30 state, and subtract-

ing the coefficients of the message, contained in the message buffer/ciphertext, shifted

nine positions to the left, S32 state. The polynomial obtained after this operation

is saved in the memory buffer, the resulting counter will be updated with the value

to which the controller will have to write the resulting polynomial contained in the

memory buffer. Figure 5.10 shows the situation just described for easy understanding.
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Figure 5.10: Encryption function : end of the array polynomial multiplication with

rounding operation and result polynomial inside resutl buffer

At this point, the controller proceeds with the execution of the multiplication be-

tween the matrix of public polynomials A and the secret array of polynomials s. Also

here, the procedure for the execution of this operation to be followed is identical to that

seen in the previous section with two main changes. The first concerns the writing of the

32 blocks of the coefficients of the result, that in Figure 5.11 will be called ciphertext,

in the result key memory beginning from the address indicated in the counter result of

Figure 5.10. The writing of these blocks will be done during the entire execution of the

first polynomial multiplication a11s1 by using S13 and S16 state. The second concerns

the zero resetting of the result counter at the end of the polynomial multiplication

a11s1 itself, in the S34 state, to ensure that the polynomial results calculated from now

on are saved from the correct memory address in the result key memory.
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Figure 5.11: Encryption function : end of executing function with all the results written

inside result key memory

5.3 Decryption

This function has to perform a array-array polynomial multiplication between a public

transposed polynomial array b, stored inside result key memory, and a secret polyno-

mial array s, stored inside secret key memory, in order to compute the public array v

that will be stored inside result key memory after the rounding operation.

Now it is time to illustrate how the decryption function is performed in Saber

version.

In the idle state the architectural buffers are initially empty. The starting of the

operation is also denoted by the introduction of the ciphertext to be decrypted in the

message/ciphertext buffer, as shown in Figure 5.12.
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Figure 5.12: Decryption function : Memory and buffer contents before the execution

starting

The execution of the polynomial multiplication occurs exactly as that seen during

the encryption function, both the polynomials to be loaded and the octet flow of the

public coefficients correspond exactly. The only variation is in how the rounding oper-

ation, in the Saber version of the protocol, is performed. Once the arrays polynomial

multiplication is finished, the result coefficients are subtracted with ciphertext coeffi-

cients, in input, shifted by six positions to the left, S26 state. The resulting polynomial

is also summed with the polynomial constant h2 in the S28 state. The final result is

loaded in the result buffer, S29 state, and then saved in the result key memory starting

from the address 128. These last operations are controlled by the controller in S29

state.
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Figure 5.13: Decryption function : end of executing function with message result

written inside result key memory



CHAPTER 6

Verification

Design verification is the most important aspect of the product development process

and its intent is to verify that the design meets the system requirements and specifica-

tions. The approach for this phase involves generating test vectors to be used as input

values of the component described in this work. The produced results will be checked

through a golden model stimulated using the same test vectors.

In this chapter is firstly introduced the golden model used during the verification phase

of this work. Then it is given a brief description of its implementation and finally are

described the changes made so that it can be adapted to the correct implementation

of this phase.

In the second section, it is described the implemented toolchain aiming at verifying the

consistency of the results produced by the golden model and the component described

in this work. It is also explained how test vectors are generated and the method used

to estimate the design verification coverage.

6.1 Golden model

The golden model [25] chosen for the verification part is a SW implementation of the

KEM Saber protocol functions. It relies on Toom Cook’s algorithm for performing poly-

nomial multiplication. It also presents libraries for both the generation of polynomial

structures and the packaging of data that are widely exploited during the execution of

KEM functions.

However, some changes are made to ensure proper use by the toolchain :

• KEM functions organization : KEM functions have been transformed into

PKE ones, based on the right generation of polynomials involved in each of them.

• Polynomial structures generation : the generation of both matrix and arrays

polynomials takes place through initial seeds, 32 bytes long, saved in rows, one

for each PKE function.

47



Verification 48

– seed KeyGen.txt : it contains the seeds for the generation of the correspond-

ing matrix of public polynomials A and array of secret polynomials s.

– seed Encr.txt : it contains the seeds for the generation of the corresponding

matrix of public polynomials A, array of secret polynomials s, array of public

polynomials b and polynomial message m to be encrypted.

– seed decr.txt : it contains the seeds for the generation of the corresponding

matrix of public polynomials A, array of secret polynomials s and polyno-

mial ciphertext cm to be decrypted.

• Polynomial structures writing : a library is designed to write all polyno-

mial structures generated and the computed results, inside the PKE function, in

files. In particular, they are written according to the memory format explained

in section 2.2 of chapter 4. As a result of this operation, two different files are

produced for each polynomial structure: the first contains the polynomial coef-

ficients in the classical decimal form, the second instead writes their values in

binary, using either notation in 2’complement or in module and sign. For more

details on representative coefficient choices, see subsection 4.2.1.

6.2 Toolchain

The toolchain is a simply shell script, written in Bash command language, that coor-

dinates all the operations useful for a correct execution of the verification phase. the

script, to run correctly, must receive three inputs:

• Operating mode

Operating mode input Description

KG Key Generation

E Encryption

D Decryption

Table 6.1: Toolchain script : operating mode input

• Saber version

Saber version input Description

LS LightSaber

S Saber

FS FireSaber

Table 6.2: Toolchain script : Saber version input
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• N value : it represents the number of tests to be performed during the verification

phase.

Figure 6.1: Verification scheme for each PKE function

Before running the toolchain, the seed file corresponding to the operation to be

performed must be written. Once the command line input parameters are defined, the

toolchain perform some operation described below.

As a first step, the user writes the initial seeds value to be used in the operating mode

it is wanted to verify. The script initially creates folders where the files described in

”Polynomial structures writing” item must be created. The component source files are

compiled and the same thing is done for the golden model. First of all the execution

of the golden model is launched, which will generate both the input files, to be loaded

in the testbench, and the output files useful for the final comparison of the results

obtained. Input test vectors are generated by using a software function implementation

of Shake128, which is an algorithm to generate unique hash value starting from an

input value. This function receives as input the seed file corresponding to the selected

operating mode and, for each of the seed value contained in the file, it generates the

polynomial structures involved in the operation. Then the simulation of the component

is also launched, by choosing the test bench written specifically to run both the Saber

version and the operating mode set in input. Depending on the operating mode to be

performed, files containing polynomial structures are loaded into the memories of the

component. At the end of the simulation, the test bench will have generated one or

more output files containing the results just calculated. At this point the results are

compared; the successful outcome of this operation will allow the script to continue

with the next test. Before doing that, the increments of the seeds used for the selected

operating mode, is performed using a C program written with this specific reason.

This increase allows to generate different polynomial structures at each test, making
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the verification phase more efficient. Once all the tests are finished, a log file will

appear. It contains all the tests carried out with the relative results of comparison. A

brief illustration of the operations of the toolchain is schematized in Figure 6.1.

6.2.1 Verification result

As described before, input seeds are 32 byte long and each operating mode requires

more than one seed to generate the proper polynomial structures for well verifying

the component functionality. This approach leads to the difficulty of performing an

exhaustive component verification for each protocol version and operating mode. In

fact, the number of combinations of test vectors is so high that it would take weeks

or even months to run all of them. Unfortunately, since the development time of this

work was limited, it was decided not to follow this approach for design verification.

Given the difficulties described above, it was decided to run a number of tests equal

to N=200,000 for each of the available operating modes, using each security level of

the Saber protocol. Seed values, inside files, are initialized all to zero and incremented

by one at the end of each individual run of the selected operating mode. The total

execution time was 48 hours and verification results reports a success of all test vectors

generated, although these are not sufficient to ensure the full functioning coverage of

this work.

1 #!/bin/bash

2

3 N=200000

4

5 ./ toolchain_verif.sh KG LS $N
6 ./ toolchain_verif.sh KG S $N
7 ./ toolchain_verif.sh KG FS $N
8

9 ./ toolchain_verif.sh E LS $N
10 ./ toolchain_verif.sh E S $N
11 ./ toolchain_verif.sh E FS $N
12

13 ./ toolchain_verif.sh D LS $N
14 ./ toolchain_verif.sh D S $N
15 ./ toolchain_verif.sh D FS $N
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Results

The hardware design architecture of this work is written using the VHDL description

language. The compilation and simulation of the component is performed by the

Electronic Design Automation (EDA) tool QuestaSim multi-language environment.

Finally, the proposed architecture is synthesized using a 22nm library from Global

Foundaries (GF) based on the planar process of Fully-Depleted-Silicon-On-Insulator

technology (FD-SOI). The library is called GF22FDSOI and the synthesis phase is

repeated using different clock periods in order to find maximum working frequency.

This chapter is split in two sections where different results are described. The first one

aims at showing the performance and power consuming of the polynomial multiplier

building block by performing a single polynomial multiplication, while the last one

concerns the complete working architecture. At the end of each section, results are

compared with existing state-of-the-art implementations by differentiating hardware,

software and HW/SW codesign solutions.

The evaluation of the results is based on two different metrics:

• Timing performance : it represents the number of clock cycles needed to

perform either a single polynomial multiplication or a given PKE function. This

parameter is retrieved from QuestaSim during simulation phase.

• Power dissipation : it represents the power dissipated during the execution of

a given Saber operating mode or a single polynomial multiplication. These values

are taken from synthesis reports.
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7.1 Single polynomial multiplication

The first analysis of performance and power consumption is executed on the single

polynomial multiplication, by isolating the polynomial multiplier building block con-

tained in the component architecture. The synthesis phase is performed with different

clock periods. The results lead a maximum operating frequency of 768 MHz and a

power consumption of 24,1 µW/MHz.

Some state-of-the-art implementations are used as comparison with this work in Table

7.1 and, for each of them, results are shown referring as the same working frequency

for a better comparison analysis.

Technology Frequency # of Execution Power

[MHz] cycles time [µs] dissipation

Reference [24] HLS 65nm 500 - - 66.4mW

This work GF22FDSOI 500 256 0.51 10.93mW

Reference [21] 40nm CLN40G 400 - - 1.15mW

This work GF22FDSOI 400 256 0.64 8.82mW

Reference [22] 40nm CMOS 300 380 1.26 176.7mW

This work GF22FDSOI 333 256 0.77 7.40mW

Table 7.1: Result comparison for one single polynomial multiplication

This work leads an 83% of power consumption saving compared with [24], which

uses schoolbook algorithm to implement polynomial multiplication. It computes its

result using a synthesizer in high-effort mode, 65nm technology based. The selected

effort makes the synthesis process longer but it allows to find better results

Instead, an increase of 86% of power consumption is shown respect the HW implemen-

tation of [21] which saves 90% of multiplication by applying an efficient optimization

on Karatsuba algorithm. The comparison result used for [21] is estimated taking into

account the reported 39mW average of power consumption during the execution of

PKE functions. For the Saber version (l=3) of the protocol, only 35.5% of this power

is deployed for the total four array polynomial multiplication operations in the Encryp-

tion function. So, a value of 1.15 mW of power consumption is estimated in the cited

work for a single polynomial multiplication.

The third comparison is done with an HW implementation of Rounding-Learning-

With-Error, based on the NTT. Using this approach, input polynomials need an NTT

transform before the execution of a coefficient-wise multiplication, and an INTT trans-

form to bring the result in the starting polynomial domain. As reported in [22], the

NTT transform is performed in 160 clock cycles (cc) with a power consumption of

58.9mW. Multiplication takes only 20 cc and the final INTT transform is done in 200

cc. Considering all these values and an equal power consumption for both transfor-

mations, the computed results of power dissipation and execution time are reported in
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Table 7.1. This work leads to advantages from both the two metrics used for the results

evaluation. A single polynomial multiplication is performed using a 33% reduction of

clock cycles. Considering the use of all transformation, the power consumption saving

is 95% with the execution time reduced of 39%.

7.2 PKE functions

Although the previous section described the performance and power consumption of

polynomial multiplication alone, the most relevant results derive from the synthesis

of the complete architecture of this work. The produced reports illustrates a maxi-

mum working frequency of 430 MHz with a power consumption of 4.28mW. Given the

difficulty of finding power consumption data in state-of-the-art implementations, the

widely used comparison parameter in this section is the performance time, expressed

in clock cycles, for the completion of each of the PKE functions for each version of the

Saber protocol. Following, the section firstly introduced comparison with a software

implementation of PKE functions and finally, the same thing will be done for some of

the most relevant hybrid HW/SW solutions.

Protocol Key Generation Encryption Decryption

version cycles cycles cycles

Reference [23] Saber 695,547 875,874 180,327

This work

LightSaber 1083 1600 567

Saber 2371 3145 824

FireSaber 4173 5204 1081

Table 7.2: Results : comparison with software implementations of PKE functions

In Table 7.2, it is clear how a HW polynomial multiplier accelerator can signifi-

cantly speed up the execution of PKE functions, in fact this work is 100x faster than

the solution proposed in [23].
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In Table 7.3 are instead shown result comparisons having the same order of magni-

tude. Although this work is initially inspired by [20], their results comparison lead to

a maximum improvement of timing performance of 12% for Saber version of the pro-

tocol. The Saber version results of [20], do not take into account rounding operations

and polynomial multiplication storing. Furthermore, by looking at the execution time

results, there is an even more remarkable improvement of every PKE functions, up to

45% for Encryption of Saber version. This is due to the different maximum working

frequency of the works involved in the comparison.

As in the case of single polynomial multiplier analysis, [21] counts a lower numbers

of clock cycles necessary to complete functions, up to 65% of clock cycles overhead

during the Encryption execution of the FireSaber security level. On the other hand, in

the last section it is reported that the 35.5% of average 39mW power consumption is

employed for array polynomial multiplications. In this work, even if power results are

not so reliable, the average working power consumption is only 4.28mW.

Technology Frequency Protocol KeyGen Encr Decr

[MHz] version cc/µs cc/µs cc/µs

Ref [20] UltraScale+ 250 Saber 2645/ 3592/ 892/

FPGA 6.58 13.37 3.37

Ref [21]

UltraScale+ LightSaber 519/5.19 664/6.64 326/3.26

FPGA 100 Saber 943/9.43 1156/11.56 408/4.08

FireSaber 1531/15.31 1811/18.11 490/4.90

This work

LightSaber 1083/2.52 1600/3.72 567/1.32

GF22FDSOI 430 Saber 2371/5.51 3145/7.31 824/1.92

FireSaber 4173/9.70 5204/12.10 1081/2.51

Table 7.3: Results : hardware and HW/SW comparisons with PKE functions
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Conclusion

In this work, a high-performance and flexible component architecture for lattice-based

public-key cryptography is proposed, with Saber PKE as a case study. The component

was designed to manage all the arithmetic operations involved in the PKE functions, in

particular polynomial multiplications and rounding operations. The flexibility of the

component derives from the possibility to perform all PKE operations for LightSaber,

Saber and FireSaber. The core of this architecture is the polynomial multiplier. Fol-

lowing [20], it uses the schoolbook multiplication algorithm with some optimizations

employed for achieving high speeds, while remaining simple and highly scalable. A sin-

gle polynomial multiplication is performed in only 256 cycles. Some memory buffers are

introduced to speed up the loading of polynomials to be consumed in the polynomial

multiplier, to synchronize the readings of the new polynomials from the memories and

the writing of the multiplier results in the memory. Synthesis results show a working

frequency of 430 MHz and some advantages in timing performance and power con-

sumption with respect to other state-of-the-art implementations. On the other hand,

there is an implementation solution [21] in which the use of Karatsuba polynomial

multiplication algorithm, with some optimizations, lead to more performing results.

This information is however useful to understand that the characteristics with which

the Saber protocol has been designed (i.e., modular structure and powers of two mod-

uli) allow to find more and more solutions that simplify the architecture and improve

performance.
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CHAPTER 9

Appendix

9.1 FSM states

• IDLE (idle state) : in this state the controller disables datapath buffers,

except the one containing the message/ciphertext, cleans the contents of the

registers, including address counters, inside the polynomial multiplier and waits

until input start is raised for to launch a PKE function execution.

• RECOGNIZE OP MODE (S1 state) : in this state the controller recog-

nizes the PKE function to execute and enables the secret key memory.

• LOAD FIRST SECR POLYN (S2 state) : in this state the controller

sends the signals to perform a secret key memory reading to the address in-

dicated in the corresponding address counter. The secret counter will then be

incremented. The polynomial coefficients read are written in the memory buffer.

These operations are performed 16 times in order to have the first secret polyno-

mial read entirely.

• FIRST PUB OCTET (S3 state) : in this state, the controller checks

whether the first octet of public coefficients is to be read from the public key

memory, containing the matrix A, or from the result key memory, containing the

array b, during the encryption operation.

• LOAD OCTET PUBMEM PUB BUFF (S4 state) : in this state the

controller reads the first octet of public polynomials from the public key mem-

ory and loads it into the lowest part of the public buffer inside the polynomial

multiplier while, in the secret buffer is loaded the secret polynomial, read in S2,

contained in the memory buffer.

• MANAGE MULT OP (S5 state) : in this state the multiplication between

the public coefficient and the secret polynomial is performed, the result is saved

in the MACs registers of the polynomial multiplier. Then the secret buffer will
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be rotated to apply the negacyclic shift operation and the public buffer will be

shifted to allow the next public coefficient to be processed. These operations are

repeated four times. In the next states other operations may be performed in

parallel with the loading of the new octet of public coefficients to be consumed.

• NEXT OCTET PUB MEM NO OP (S6 state) : in this state the con-

troller recognizes that will read the new octet of public coefficients from the

public key memory, before doing this the public counter is increased so that it is

read in the right location in the memory. Meanwhile, the polynomial multiplier

continues its execution, by consuming the fourth last public coefficient in public

buffer, following the operations described in S5. This state is used during the

execution of the array-array polynomial multiplication involving the matrix A.

• CHOOSE OCTET POLYN MULT (S7 state) : in this state the con-

troller continues performing polynomial multiplication by consuming the third

last public coefficient in public buffer. The new octet of public coefficients is

read.

• OCTET PUBMEM PUBBUF (S8 state) : in this state the controller

continues the execution of the polynomial multiplication consuming the penul-

timate public coefficient left in the buffer. It also takes care of loading the new

octet, read from the public key memory, in the upper part of the public buffer

in order to guarantee continuity to the multiplication in the successive states.

The controller also checks if 32 octets have already been read (256 coefficients in

total), if this has not happened it returns to S5 to start consuming the coefficients

of the new octet. It also checks whether the last octet of public coefficients of a

array-array polynomial multiplication has been consumed, If this is the case, a

new state will be created to use the last coefficient in the public buffer and then

proceed with the rounding operation.

• NEXT OCTET PUB MEM SECR LOAD OP (S9 state) : in this state

the controller recognizes that will read the new octet of public coefficients from

the public key memory, before doing this the public counter is increased so that it

is read in the right location in the memory. The controller also checks the number

of octets that have already been read. In case the FSM has read at least 16 of

them and there are successive polynomial multiplications to be performed (for

example, it is not reached the end of an array-array or matrix-array polynomial

multiplication), the secret counter is incremented and the secret buffer is enabled.

This will allow, in the next state, the reading of a block of 16 secret coefficients

to be stored in the secret buffer. In subsequent uploads of the octets of public

coefficients (16 times in total) will be read the blocks of the secret coefficients

until it will be stored the next secret polynomial fully loaded in the secret buffer.

Meanwhile, the polynomial multiplier continues its execution, by consuming the
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fourth last public coefficient in public buffer, following the operations described

in S5. This state is used during the execution of the array-array polynomial

multiplication involving the matrix A.

• END SINGLE POLYN MULT (S10 state) : in this state the controller

checks the end of a single polynomial multiplication between your polynomials

by checking if 32 blocks of public coefficients have been read. If not, check the

memory from where to load the next octet of public coefficients returning to the

states s8 (public key memory) and S18 (result key memory). Meanwhile, the

polynomial multiplier continues its execution, by consuming the third last public

coefficient in public buffer, following the operations described in S5.

• END SINGLE POLYN MULT PUBMEM 8 (S11 state) : in this state

the controller loads the secret polynomial and the new octet of public coefficients.

The first, contained in the memory buffer, is loaded inside the secret buffer while

the last, which has been read from the public key memory, is loaded at the bottom

of the public buffer of the polynomial multiplier. If the current single polynomial

multiplication concerned the last multiplication between polynomial arrays, then

the controller will continue with the rounding operation in subsequent states,

otherwise it will resume the execution of the multiplication operation. Meanwhile,

the polynomial multiplier continues its execution, by consuming the last public

coefficient in public buffer, following the operations described in S5.

• CHOOSE ROUNDING OP (S12 state) : in this state, the controller

disables the update of the registers inside MACs, so that they keep the result

calculated by the polynomial multiplier. Also decides the rounding operation

to be performed on this result, taking into account the PKE function and the

polynomial structures that it is performing.

• NEXT OCTET PUB MEM LOADSECR STORERES OP (S13 state)

: this state is used during the matrix-array polynomial multiplication, specifically

in the case when the first multiplication between the first row of the matrix and

the vector has already been performed. In addition, the controller puts itself

in the condition in which, in successive multiplication between arrays, the last

polynomial multiplication is being performed. In this case the controller recog-

nizes that it lasts at least 16 public coefficient blocks to complete polynomial

multiplication so, it increases the public counter (new public coefficients octet

will be read from public key memory), secret counter and the result counter. It

also enables the result buffer and the write signal in the result key memory, since

in subsequent states it will save the result of the previous polynomial multipli-

cation calculated in the specified memory. The controller will be also in charge

of loading new secret coefficients blocks. Meanwhile, the polynomial multiplier
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continues its execution, by consuming the fourth last public coefficient in public

buffer, following the operations described in S5.

• END SINGLE PMULT PUBMEM 8 RSTSECRCNT (S14 state) : in

this state the controller loads the secret polynomial and the new octet of public

coefficients. The first, contained in the memory buffer, is loaded inside the se-

cret buffer while the last, which has been read from the public key memory, is

loaded at the bottom of the public buffer of the polynomial multiplier. The con-

troller recognizes that the current single polynomial multiplication concerned the

second last multiplication between polynomial arrays, then the controller resets

secret counter of secret key memory. This is due to the fact that, during the last

polynomial multiplication involved in the arrays polynomial multiplication, the

first secret polynomial will be loaded ready to be used during the next multipli-

cation between arrays. At the end, the controller will resume the execution by

proceeding with the last the multiplication operation. Meanwhile, the polyno-

mial multiplier continues its execution, by consuming the last public coefficient

in public buffer, following the operations described in S5.

• LAST MULT ARRAY MULT (S15 state) : in this state the controller

consumes the last public coefficient contained in the public buffer, thus ending

the polynomial multiplication.

• NEXT OCTET PUB MEM SECR STORERES OP (S16 state) : this

state is used during the matrix-array polynomial multiplication, specifically in

the case when the first multiplication between the first row of the matrix and

the vector has already been performed. In addition, the controller puts itself in

the condition in which, in successive multiplication between arrays, the last poly-

nomial multiplication is being performed. In this case the controller, increases

the public counter (new public coefficients octet will be read from public key

memory) and the result counter, enables the result buffer and the write signal

in the result key memory, since in subsequent states it will save the result of the

previous polynomial multiplication calculated in the specified memory. The oper-

ation will be completed by storing the 32 blocks contained in the memory buffer.

Meanwhile, the polynomial multiplier continues its execution, by consuming the

fourth last public coefficient in public buffer, following the operations described

in S5.

• BEFORE LOAD OCTET LOW PART (S17 state) : in this state the

controller, at the end of a single polynomial multiplication, can decide several

states. It can choose to reset the result counter if the multiplication between the

first row of the matrix and the array in PKE encryption has been completed. This

is due to the fact that the result of this multiplication must be overwritten where

previously the array b was saved. If it is reached the penultimate polynomial



Results 63

multiplication between arrays, the secret counter is reset, so that during the

execution of the next polynomial multiplication the first secret polynomial in the

secret key memory is loaded. In addition, the controller chooses the next octet of

public coefficients increasing the counter of the memory from which it will be read.

Meanwhile, the polynomial multiplier continues its execution, by consuming the

second last public coefficient in public buffer, following the operations described

in S5.

• OCTET RESMEM PUBBUF (S18 state) : in this state the controller

continues the execution of the polynomial multiplication consuming the penul-

timate public coefficient left in the buffer. It also takes care of loading the new

octet, read from the result key memory, in the upper part of the public buffer in

order to guarantee continuity to the multiplication in the successive states. The

controller also checks if 32 octets have already been read (256 coefficients in to-

tal), if this has not happened it returns to S5 to start consuming the coefficients

of the new octet. It also checks whether the last octet of public coefficients of a

array-array polynomial multiplication has been consumed, If this is the case, a

new state will be created to use the last coefficient in the public buffer and then

proceed with the rounding operation.

• NEXT OCTET RES MEM SECR LOAD OP (S19 state) : in this

state the controller recognizes that will read the new octet of public coefficients

from the result key memory, before doing this the result counter is increased so

that it is read in the right location in the memory. The controller also checks the

number of octets that have already been read. In case the FSM has read at least

16 of them and there are successive polynomial multiplications to be performed

(for example, it is not reached the end of an array-array or matrix-array poly-

nomial multiplication), the secret counter is incremented and the secret buffer is

enabled. This will allow, in the next state, the reading of a block of 16 secret

coefficients to be stored in the secret buffer. In subsequent uploads of the octets

of public coefficients (16 times in total) will be read the blocks of the secret coef-

ficients until it will be stored the next secret polynomial fully loaded in the secret

buffer. Meanwhile, the polynomial multiplier continues its execution, by con-

suming the fourth last public coefficient in public buffer, following the operations

described in S5. This state is only used during the execution of the array-array

polynomial multiplication in both Encryption and Decryption functions.

• NEXT OCTET RES MEM NO OP (S20 state) : in this state the con-

troller recognizes that will read the new octet of public coefficients from the

result key memory, before doing this the result counter is increased so that it is

read in the right location in the memory. Meanwhile, the polynomial multiplier

continues its execution, by consuming the fourth last public coefficient in public
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buffer, following the operations described in S5. This state is only used during

the execution of the array-array polynomial multiplication in both Encryption

and Decryption functions.

• ADD K KEYGEN (S21 state) : in this state the controller starts the

rounding operation used in the multiplication between matrix and vector. This

operation is not only contain in the key generation function, but also in the

encryption one. As the first step of rounding, the controller adds the polynomial

constant to the result of the multiplication operation, selecting the corresponding

input of the first multiplexer contained in the MACs.

• SHIFT MATRIX ROUND (S22 state) : in this state the controller ter-

minates the rounding operation used in the multiplication between matrix and

vector. This operation is not only present in the key generation function, but

also in the encryption function. As the final step of rounding, the controller se-

lects the right shift to apply to the result of the multiplication operation, picking

the corresponding input of the second multiplexer contained in the MAC. The

updated result is stored inside result buffer, At the end, the controller returns to

the S5 state if the matrix-array multiplication is not yet finished.

• SAVE FINAL RESULT (S23 state) : in this state the controller starts

saving the contents of the memory buffer in the result key memory, writing a

block contained in the buffer and updating the result counter. This operation is

repeated 32 times to ensure that the entire content of the result buffer is saved.

• END OPERATION (S24 state) : in this state the controller raises the

output signal finish to signal the end of the PKE function, using a specific version

of Saber. All data calculated by the operation are saved in the result key memory.

• FIRST STEP DECR ROUND LS (S25 state) : in this state the con-

troller starts the rounding operation of the PKE decryption function, using the

LightSaber version of the protocol. As the first step of rounding, the controller

subtracts, to the result of the multiplication operation, the correct left shift of

each ciphertext coefficient, picking it from the first multiplexer contained in the

MAC.

• FIRST STEP DECR ROUND S (S26 state) : in this state the controller

starts the rounding operation of the PKE decryption function, using the Saber

version of the protocol. As the first step of rounding, the controller subtracts, to

the result of the multiplication operation, the correct left shift of each ciphertext

coefficient, picking it from the first multiplexer contained in the MAC.

• FIRST STEP DECR ROUND FS (S27 state) : in this state the con-

troller starts the rounding operation of the PKE decryption function, using the
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FireSaber version of the protocol. As the first step of rounding, the controller

subtracts, to the result of the multiplication operation, the correct left shift of

each ciphertext coefficient, picking it from the first multiplexer contained in the

MAC.

• SECOND STEP DECR ROUND (S28 state) : in this state the controller

continues the rounding operation of the PKE decryption function, for each version

of Saber. As the next step of rounding, the controller adds, to the updated result

of the multiplication operation, the polynomial constant by selecting it again

from the first multiplexer contained in the MAC.

• THIRD STEP DECR ROUND (S29 state) : in this state the controller

completes the rounding operation of the PKE decryption function, for each ver-

sion of Saber. As the final step of rounding, the controller selects the correct

shift to the left of the updated result of the multiplication operation, selecting

it from the second multiplexer contained in the MAC. It also loads in the result

counter the memory address of the result key memory which will allow to write

the rounded result in the right location. Finally, it is loaded into the result buffer.

• FIRST STEP ENCR ROUND (S30 state) : in this state the controller

starts the rounding operation of the PKE encryption function for each of Saber

versions. As the first step of rounding, the controller adds, to the result of the

multiplication operation, the correct left shift of each message coefficient, picking

it from the first multiplexer contained in the MAC. Then, the controller choose

next state depending of the Saber version used.

• SECOND STEP ENCR ROUND LS (S31 state) : in this state the con-

troller terminates the rounding operation of encryption PKE function for the

LightSaber version of the protocol. As the final step of rounding, the controller

selects the right shift to apply to the updated result of the multiplication opera-

tion, picking the corresponding input of the second multiplexer contained in the

MAC. The updated result is stored inside result buffer. The controller also loads

in the result counter the memory address of the result key memory which will

allow to write the rounded result in the right location. At the end, the controller

returns to the S4 state to start the matrix-array multiplication contained in the

function.

• SECOND STEP ENCR ROUND LS (S32 state) : in this state the con-

troller terminates the rounding operation of encryption PKE function for the

Saber version of the protocol. As the final step of rounding, the controller se-

lects the right shift to apply to the updated result of the multiplication operation,

picking the corresponding input of the second multiplexer contained in the MAC.

The updated result is stored inside result buffer. The controller also loads in the
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result counter the memory address of the result key memory which will allow to

write the rounded result in the right location. At the end, the controller returns

to the S4 state to start the matrix-array multiplication contained in the function.

• SECOND STEP ENCR ROUND LS (S33 state) : in this state the con-

troller terminates the rounding operation of encryption PKE function for the

FireSaber version of the protocol. As the final step of rounding, the controller

selects the right shift to apply to the updated result of the multiplication opera-

tion, picking the corresponding input of the second multiplexer contained in the

MAC. The updated result is stored inside result buffer. The controller also loads

in the result counter the memory address of the result key memory which will

allow to write the rounded result in the right location. At the end, the controller

returns to the S4 state to start the matrix-array multiplication contained in the

function.

• END SINGLE PMULT PUBMEM 8 RSTRESCNT (S34 state) : in

this state the controller loads the secret polynomial and the new octet of public

coefficients. The first, contained in the memory buffer, is loaded inside the secret

buffer while the last, which has been read from the public key memory, is loaded

at the bottom of the public buffer of the polynomial multiplier. The controller

recognizes that the current single polynomial multiplication concerned the last

multiplication between polynomial arrays (specifically the first matrix-array mul-

tiplication), then the controller resets result counter of result key memory. This

is due to the fact that, when the array-array multiplication will be end, the com-

puted result will start to be loaded at the beginning of this memory. At the end,

the controller will resume the execution by proceeding with the last the multipli-

cation operation. Meanwhile, the polynomial multiplier continues its execution,

by consuming the last public coefficient in public buffer, following the operations

described in S5.

• LOAD OCTET RESMEM PUB BUFF (S35 state) : in this state the

controller reads the first octet of public polynomials from the result key mem-

ory and loads it into the lowest part of the public buffer inside the polynomial

multiplier while, in the secret buffer is loaded the secret polynomial, read in S2,

contained in the memory buffer.

• END SINGLE PMULT RESMEM 8 RSTSECRCNT (S36 state) : in

this state the controller loads the secret polynomial and the new octet of public

coefficients. The first, contained in the memory buffer, is loaded inside the secret

buffer while the last, which has been read from the result key memory, is loaded

at the bottom of the public buffer of the polynomial multiplier. The controller

recognizes that the current single polynomial multiplication concerned the second

last multiplication between polynomial arrays, then the controller resets secret
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counter of secret key memory. This is due to the fact that, during the last poly-

nomial multiplication involved in the arrays polynomial multiplication, the first

secret polynomial will be loaded ready to be used during the next multiplication

between arrays. At the end, the controller will apply the rounding operation

during the next states. Meanwhile, the polynomial multiplier continues its ex-

ecution, by consuming the last public coefficient in public buffer, following the

operations described in S5.

• END SINGLE POLYN MULT RESMEM 8 (S37 state) : in this state

the controller loads the secret polynomial and the new octet of public coefficients.

The first, contained in the memory buffer, is loaded inside the secret buffer while

the last, which has been read from the result key memory, is loaded at the bottom

of the public buffer of the polynomial multiplier. If the current single polynomial

multiplication concerned the last multiplication between polynomial arrays, then

the controller will continue with the rounding operation in subsequent states,

otherwise it will resume the execution of the multiplication operation. Meanwhile,

the polynomial multiplier continues its execution, by consuming the last public

coefficient in public buffer, following the operations described in S5.

• SETUP DECR ROUND (S39 state) : in this state the controller enables

the memory buffer and the result counter, which will be used to store, in the next

state, the contents of the buffer in the result key memory.


