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Summary

In the last decades, the growth of the GPS usage in many fields for outdoor
localization has led to a higher demand of systems for indoor human localization
for many fields of application, like home security or safety and healthcare.

Indoor human localization and tracking is difficult due to the typically small
indoor environments, with highly variable conditions like room dimension, ceiling
height, or furniture type and location. Recent improvements in computer vision
given by machine learning algorithms can provide a good solution based on optical
cameras, but they still have many problems, such as privacy, cost, clear line-of-sight
need. For this reason, there exist numerous alternative techniques that use different
typologies of sensors to fulfill the human tracking objective, each one with specific
limitations and capabilities.

An indoor human localization system suitable for retrofitting existing envi-
ronments, that does not rely on tags attached to objects or on wearables is a
challenging research objective. The aim of this work is to investigate the state of the
art in the sensor-based Indoor Human localization techniques, and to implement a
localization system using one of the available methodologies.

In this thesis, I explore the localization via microphone and ultrasonic sensors
and via radar sensors. First, I have conducted a market analysis to compare
existing indoor human localization and tracking techniques, and the capabilities
of the utilized sensors. The analysed techniques can be basically divided into two
categories: those that rely on tag or wearable sensors, and those that do not require
any tags or wearables. The latter is clearly more acceptable from the end-user point
of view, in terms of user-comfort and ease of installation, thus I focused the research
on them, and in particular on radar sensors for human indoor localization and
tracking. The market analysis showed that the best typology of sensor for the indoor
human localization seems to be the radar sensor, due to the sensing capabilities, e.g.,
besides sensing the position of the target(s), depict also the velocity, acceleration,
and the angle of arrival, the moderate price and the multiple-choice of commercial
solutions. For this reason, the choice made has been to explore and study radar
evaluation kits only.
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I tested in various conditions commercial radar sensors, comparing the per-
formance of different radar industrial development kits in identical and relevant
environments: the Infineon Position2Go, a 24 GHz radar board equipped with
an ARM® Cortex™-M4 XMC4700 microcontroller, and the Texas Instruments
IWR6843ISK, a 60 GHz radar board, equipped with an ARM® Cortex™-R4F
microcontroller.

The experimental part of the thesis starts by gathering several measurements
from the two sensors in different environments, evaluating the precision of the
measurements, as well as which radar is best for a given environment.

The chosen experimental areas are of three types:

1. A relatively small room, with ‘environmental clutter’ like chairs, tables, and
cabinets, referred as Laboratory.

2. An empty indoor space with ample space of movement, referred as Corridor.

3. An open space environment referred as Terrace.

In every experiment, the target has walked the same trajectory in front of the
sensors, made of horizontal and vertical straight lines 1.20 m long. The trajectory
is at the minimum distance from the sensors that guarantees that it is centred
to and fully within the Field-of-View of both sensors. The two boards have been
positioned with the same orientation and as close as possible to each other in order
to ensure a fair comparison of the results provided by the devices.

The walked path is composed of straight segments in order to determine the
sensors capability to track straight controlled movements. The horizontal segments
of the trajectory provide a good measure of the precision Angle-of-Arrival estimation
of the sensors, while the vertical segments provide an evaluation of the precision of
the range estimation of the two devices.

Before evaluating the sensor performance, all trajectory curves were removed
because they are highly irregular in the normal movement of a person (different
velocity, acceleration, and posture).

In order to evaluate the quality and errors of the measurement results, the
following criteria have been established:

• Linear regression error : since the trajectory is made of straight lines, for every
measured segment a linear regression is performed to determine the straight
segments that fit best the measured segments. The criterion measures the
error of such estimation.

• Root area error : since the chosen trajectory is repeatedly walked back and
forth by the human target, the result of every experiment is a number of
measured trajectories. The criterion is computed by calculating the average
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of the area in-between every combination of two estimated straight lines
associated with the same part of real trajectory. This criterion evaluates the
self-consistency of the sensor measurements, i.e., how close to each other are
all the trajectories detected by the sensors in constant conditions (environment
and configuration).

• Movement smoothness (acceleration): this criterion represents the sensors
capability to detect the dynamic characteristics of the human body. This
metric computes the change of the measured positions differentiated twice
with respect to time. The criterion evaluates if the sensor measurements
reflect the realistic movements of a human body, which usually keeps a steady
movement on straight paths, with low and smoothly-varying accelerations.

• Relative location error : this criterion evaluates how well the measured trajec-
tory can map on the size and shape of the actual trajectory. The measured
trajectory is translated to minimize the errors between the ground truth and
the sensed trajectory.

The two radars have been tested using four different configurations per radar.
Such configurations have been created in order to understand if the specific config-
urable parameters had an impact on the localization performance of the sensors,
and if such impact were the same in every tested environment. The configurations,
hence, have been obtained using the tools provided by the producers, that gave us
the possibility to modify all the configurable parameters.

For the thesis work, the original producers demo firmwares have been used
for both sensors. Differently from the Texas Instruments IWR6843ISK sensor,
where the output measurements have been directly used without applying any
post-processing algorithm, in the Infineon Position2Go there had been the need to
apply such refinements. First, I applied a moving-average filter to the measurements,
in order to obtain a smooth trajectory path and not the original one where the
walked real straight line were approximated to “zig-zag” movements. After this
filter, the outliers positions have been removed, operation not performed for the
Texas Instruments IWR6843ISK.

The Minimized relative location error of the path-translated measurements is
very low in the Texas Instruments IWR6843ISK sensor, compared with the one
obtained by the Infineon Position2Go sensor. The self-consistency of the Texas
Instruments IWR6843ISK sensor is slightly worse than the Infineon Position2Go
sensor in some configurations, but more or less the same as reported in the Root
area error. The two sensors obtain almost the same Linear regression error, while
the Infineon Position2Go sensor has a better measured Movement smoothness,
since the computed acceleration is very low compared to the Texas Instruments
IWR6843ISK sensor due to the moving-average filter applied to the measurements
of the Infineon sensor.
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Table 1: Position2Go sensor best measurements per environment, where Configu-
ration 1, Configuration 2, Configuration 3, Configuration 4

Location Linear Root Acceleration Relative
regression area location

error error error
(m) (m) (m/s2) (m)

Laboratory 0.053 0.395 0.741 0.731
Corridor 0.083 0.408 0.667 0.816
Garden 0.077 0.358 0.721 0.712

Table 2: IWR6843ISK sensor best measurements per environment, where Configu-
ration 1, Configuration 2, Configuration 3, Configuration 4

Location Linear Root Acceleration Relative
regression area location

error error error
(m) (m) (m/s2) (m)

Laboratory 0.095 0.305 1.685 0.134
Corridor 0.112 0.314 2.027 0.274
Terrace 0.082 0.310 2.089 0.711

The Infineon Position2Go sensor has two preferred configurations: Configura-
tion 2 for Laboratory and Corridor, and Configuration 1 for Garden. Additionally,
Configuration 2 is the second preferred configuration in the Garden environment,
while Configuration 1 is the second preferred configuration in both indoor en-
vironments. Configuration 3 and Configuration 4 can be considered the worst
configurations, since the latter is always ranked third or second, as shown in
Table 1.

The Texas Instruments IWR6843ISK sensor has several preferred configurations:
Configuration 3 for Laboratory, Configuration 4 for Corridor, Configuration 1 for
Terrace. Additionally, Configuration 2 is the second preferred configuration in
Corridor and Terrace environments, while is the third preferred configuration in
Laboratory environment. This results can be seen in the Table 2.

Table 3, and Table 4 show an overview of the preferred configuration selection
criteria for the two sensors.

The preferred indoor configuration for the Infineon Position2Go sensor, would
work well even in outdoor environments, obtaining similar results than the preferred
outdoor configuration. Note that, it is likely that the Linear regression error would
get worse utilizing the configuration for outdoor localization.
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Table 3: Infineon Position2Go preferred configurations per environment using
majority voting (has the lowest error for at least half of the evaluation criteria). In
the Preferred column, the configurations in decreasing order of votes

Location Best Configurations Preferred
Linear Root Acceleration Relative

regression area location

Laboratory 4 2 2 1 2,1,4,3
Corridor 4 2 2 1 2,1,4,3
Garden 1 1 3 2 1,2,3,4

Table 4: Texas Instruments IWR6843ISK preferred configurations per environment
using majority voting (has the lowest error for at least half of the evaluation criteria).
In the Preferred column, the configurations in decreasing order of votes

Location Best Configurations Preferred
Linear Root Acceleration Relative

regression area location

Laboratory 3 3 1 2 3,1,2,4
Corridor 4 4 3 2 4,2,3,1
Terrace 4 2 1 1 1,2,4,3

Unlike the Infineon Position2Go sensor, the Texas Instruments IWR6843ISK
sensor has two preferred indoor configurations, one for the Laboratory and one
for the Corridor environments. Looking at Table 4, we can say that the Corridor
preferred configuration is suitable also for outdoor environments, despite it is likely
to achieve higher evaluation criteria values, except for the Linear regression error.
Following the same assumption, the Laboratory preferred configuration would not
be suited for outdoor environments, despite it is likely to achieve a lower Linear
regression error.

Additionally, it is important to notice that the obtained configurations are not
optimized for the sensors in each environment, hence, by performing a fine tuning
of the configurations, it should be possible to obtain even better results than the
one obtained in this thesis.

Each chosen criteria, except for the Minimized relative location error and the
Acceleration, vary in general in the same ranges for both sensors. That said, if
we consider also the higher need for post-processing algorithms, like the need to
implement a moving-average algorithm on the measured trajectory positions of
the Infineon Position2Go, it is possible to determine that the Texas Instruments
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IWR6843ISK sensor is the best choice for Indoor human localization.
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Chapter 1

Introduction

The objective of this work is to introduce all the existing techniques of Indoor
human localization that utilize sensors as detecting devices, in order to compare
their capabilities and limitations.

The objective of the indoor human localization techniques is to create a live
map of any indoor environment, regardless of the composition of such space, like
the amount of furniture or dimensions of the room, allowing this field to find many
different applications, like security, safety and healthcare, live assistance, retail and
hospitality, internet of things (IoT) smart homes.

The localization techniques can be broadly split into two categories: tags or
wearable localization techniques and tag-less or wearable-less localization techniques,
having the latter as the focus of this thesis work. Currently, sensors like optical
cameras, radars or sound-waves sensors can be used for the tag-less or wearable-less
techniques while sensors that use Bluetooth, Wi-Fi, or radio frequency identification
(RFID) tagging can be used for the tags or wearable counterparts.

Creating an indoor human localization system without the need to change the
current environment, performing actions like attaching tags to the furniture, or
without the need to have the user wear anything is a very interesting possibility
that is worth exploring as much as possible, for this reason, this thesis work focuses
on the localization via radar sensors.

The chapters of the work are organized as follows: Chapter 2 focuses on the
indoor human localization techniques of both aforementioned categories, providing
a description of the working principle of most of the sensor-based systems existing
in the market and as prototypes. Then, a market analysis of a sub-set of sensors
utilized in tag-less and wearable-less techniques is presented, focusing on the
comparison of several radar development kits.

The acoustic analysis technique is presented in Chapter 3, technique that allows
the human localization utilizing sound wave-based sensors, with the distinction
between active systems and passive systems.
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In Chapter 4 a summary of the working principle of radar sensors is presented,
with a focus on the mathematical parameters estimation of the frequency-modulated
continuous wave (FMCW) radars.

In Chapter 5 the two radar development kits utilized in the experimental part of
the work are described, the Infineon Position2Go sensor and the Texas Instruments
IWR6843ISK sensor, with an overview of the hardware that composes the two,
a description of the firmware utilized and of the graphical user interface (GUI)
needed to configure, use and obtain the output data of such sensors.

In Chapter 6 a description of the measurements gathering method is presented,
with the description of the target environments and all the configurations utilized for
the two sensors. Finally, the description of the MATLAB post-processing algorithm
utilized in order to compute the evaluation criteria for them measurements.

Finally, the experimental results are reported in Chapter 7, followed by conclu-
sions and future investigations and developments of this thesis work.
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Chapter 2

Indoor Human Localization

The indoor human localization is a necessity of growing importance in the past few
decades which consists on the capability to detect and track all the humans present
in a unique environment with particular characteristics.

While playing a predominant role in outdoor environments, the global positioning
system (GPS) is pretty inefficient in indoor environments [1], due to phenomenons
like:

1. Inability of GPS signal to penetrate through walls.

2. Multi-path propagation effect generated by the reflections of the signals on
different surfaces [2].

3. Noise interference due to devices such as home appliances.

4. Line-of-sight need for GPS signals.

Due to all these inefficiencies, several indoor human localization systems have been
proposed, which make use of different sensor types.

These sensors can be categorized by the physical quantity that they measure,
like have been done in [3] where the scheme in Figure 2.1 has been proposed.

The principal concern about these sensing techniques is clearly the privacy of
the detected humans along with the ease of installation of the required systems;
the first is often addressed by utilizing sensors with specific characteristics (e.g., in
optical sensing, by using cameras with low resolution), or by discarding a specific
type of sensor in favor of another one (e.g., infrared cameras are often the preferred
one in optical sensing).

For what regards the ease of installation there are different options, for instance,
a localization system could be composed of just a single board connected to a
computer with a cable or could comprise more complex systems that would require
to set up a particular environment, which could represent a difficulty.

3



Indoor Human Localization

Figure 2.1: Sensor categorization scheme based what these devices sense [3]

2.1 Main Localization Techniques
In the following, an overview of the available techniques for localization, which can
be categorized by the interaction that these systems must have with the humans in
order to detect them.

2.1.1 Using Tags, Wearables, or Special Interaction
The systems in this category are not able to directly detect a human being, but
they detect the presence of a particular object, which can be then associated to a
person.

There are multiple systems that can fall under this category, like:

1. RFID, a sensor that utilizes electromagnetic fields to identify particular tags.
An RFID system [4], shown in Figure 2.2 is composed by:

(a) Single or multiple RFID tags, composed of the microchip, responsi-
ble for the signal processing and the storage of the information that a
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Figure 2.2: Basic radio frequency identification (RFID) system composed of
reader, tag(s) and computer database in order to store data [5]

particular tag must transmit to the reader and an antenna for receiving
and transmitting the signal to the reader. The tags can be active, e.g.,
battery-powered, or passive, where the antenna is powered up by the
signal received by the reader.
The passive tags are smaller and cheaper because they do not need a
battery to operate, but in order to work, they require a very high power
from the reader.

(b) Reader, responsible for the reception of the reflected signal of the tag.
There can be active readers, which actively transmit the interrogation
signal to the tags and also receive their replies, or passive readers, which
only receives the signals from the active tags.
The RFID system can be also composed of an active tag and an active
reader, where the reader transmits interrogation signals to the active tag.
In these systems, the distance that separates the reader from the tag can
be very high.

(c) Storage system, needed in order to manage all the data.

The primary advantage of this type of system is for sure the low cost of the tags
(especially the passive ones), in contrast with the cost of the infrastructure
(readers and all cables needed) which can be quite high depending on the
number of readers employed.
The human localization technique utilized in these systems requires the humans
to wear the reader, which will detect the tags attached to fixed locations when
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the humans walk near them, as has been proposed in [6].
Moreover, these systems are often employed in the human activity recognition
(HAR) field, where tags attached to multiple objects are utilized in order to
understand which object is being used by the person monitored like has been
proposed in [7] where the system has been used for elder care.

2. Bluetooth systems, which utilize the ultra-high frequency (UHF) radio
waves to create a personal area network (PAN) between devices, in order to
allow data exchange between them [8].
Bluetooth networks utilize packet-based protocol with a master/slave archi-
tecture, characterized by a dynamic time-division multiple access algorithm
which divides the time in slots used for the transmissions of the two types of
devices (master or slaves) having all the nodes synchronized with the internal
clock of the master.
The big advantage of this localization system is that the Bluetooth radio
modules are very cheap and consume very little energy, allowing the devices
to work for a very long time before having the need to be recharged or having
their batteries changed.
In the work of Kolakowski and Blachucki [9], a system comprising Bluetooth
tags attached to the users, a set of anchors distributed in the localization
area and a system controller has been employed to localize and track persons
affected by dementia.
In this system, whose architecture is shown in Figure 2.3, the tags are always
transmitting packets at a constant rate of ten times per second, which are
then received by the anchors that are in radio visibility of the tag. Finally,
the system controller will process all the received packets of the anchors and
calculate the position of the users by combining all the received measurements.

2.1.2 Without Tags, Wearables, or Explicit Interaction
The sensor systems present in this category are able to detect a human directly,
without using particular infrastructure or the requirement for the human to be
equipped with a wearable.

In the following, a list of the principal sensing techniques able to directly sense
the human being in an area:

1. Optical camera: a very simple human localization technique, which consists of
standard optical cameras mounted in the area to monitor, which use computer
vision techniques in order to detect a human being or distinguish between
moving humans and moving objects.
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Figure 2.3: Kolakowski and Blachucki Bluetooth localization system, composed
of wearable tag (worn by the targets) and bluetooth low energy (BLE) anchors to
detect the tag [9]

The difficulty of this type of system, besides the need for a clear line of sight,
is the development and the optimization of the algorithm utilized for the
computer vision itself, which usually consists of a convolutional neural network
(CNN) [10] or recurrent neural network (RNN) [11].

A CNN, shown in Figure 2.4 is a particular type of neural network, most
commonly used in classification, which implements the so-called convolution
layers, which are layers (hidden layers) that perform a convolution of the input
data that then is passed to the next layers. The result of this operation is an
output abstracted to an activation map, which is then fed to the next layers.

Together with the convolutional layers, in a CNN may also be present the
pooling layers, which have the objective to reduce the dimensions of the
activation maps with a particular pooling operation, which can be considered
equal to the application of a filter, Figure 2.5.

Like the convolutional ones, the pooling layers are hidden layers in a CNN.

It is important to notice that in a CNN every single neuron does not receive its
input from the entire previous layer, like it happens in fully connected neural
networks, but it receives input from only a restricted area of the previous
layer, called the receptive field of the neuron. The final output of a CNN is
an abstract output that allows the network to better understand the class to
which the input belongs.
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Figure 2.4: Convolutional neural network (CNN) network utilized for image clas-
sification, formed by convolutional and pooling layers, connected to fully connected
layers to produce a non-binary classification [12]

Figure 2.5: Max-pooling operation performed by pooling layers in CNN [13]

An RNN is another class of neural networks characterized by a temporal
dynamic behavior.

Differently from the feedforward neural networks [14] shown in Figure 2.6, in
which the connections between different nodes can not form a cycle, hence the
information can only move forward, in the RNNs, Figure 2.7, cycles between
nodes can be present, allowing the neurons to re-process their own output
many times over time.

The main concern about the human localization technique that uses optical
camera along with computer vision algorithms is the privacy: the face of the
detected human beings will be clearly visible from the camera or the cameras
installed in the environment.
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Figure 2.6: Example of a feedforward neural network with one hidden layer [15]

Figure 2.7: Example of a recurrent neural network (RNN) with one unit, x are
the inputs, h are the hidden states, o are the outputs. On the left, the complex
diagram of the network (folded), on the right the extended version (unfolded) [16]

The cost of such a system can be very variable, it all depends on the number
of cameras utilized and of course, their overall technical quality represented in
terms of number of megapixels, lens quality, overall resolution, etc.

2. Infrared (IR) camera: also known as thermal imager [17], this camera sensor,
often micro-electromechanical system (MEMS) devices, shown in Figure 2.8,
is able to create an image by detecting the IR radiation of the environment,
similar to the classic optical cameras that create images by detecting the
visible light.
IR cameras, in fact, are sensible to wavelengths in the range of 1,000 nm to
14,000 nm, in contrast to the range detected by a normal camera which is from
400 nm to 700 nm.
Once the IR camera has captured the thermal image or video, such element
can be analyzed using computer vision methods like the previous sensing
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(a) Micro-electromechanical system (MEMS)
thermal camera [18] (b) Industrial thermal camera [19]

Figure 2.8: Some infrared (IR) cameras

Figure 2.9: Capture of a low resolution thermal imager [20]

technique, with the difference that now the users privacy is respected, since
by using a low-resolution thermal camera, the human faces will not be clearly
visible, like it can be seen in Figure 2.9.

3. Microphone systems: exposed in Chapter 3.

4. Ultrasonic sensors: exposed in Chapter 3.

5. Capacitive proximity sensing: this type of technique is based on the
concept that an electric field is perturbed by the existence of a conductive
object, which in this case is a part of the human body. More specifically,
we apply voltage to only one electrode of the sensor, allowing the latter to
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Figure 2.10: The three operating modes of a capacitive sensor, the Loading mode
utilized to compute the distance between object and electric field, the Shunt mode
where the electric field is weakened by the presence of a body, and the Transmit
mode where the object body acts as a transmitter [21]

generate the electric field.
The capacitive sensing principle can be divided into three operating modes
[21]: loading mode, shunt mode, and transmit mode, as shown in Figure 2.10.

(a) Loading mode: Mostly utilized in order to compute the relative distance
between the object and electric field,

(b) Shunt mode: in this mode, the strength of the electric field is weakened
by the presence of the object.

(c) Transmit mode: The path of the electric field lines is shortened by the
object that acts as a transmitter. This result in an amplification of the
electric field.
In the transmit mode the object is a point source, the electric field will be
dependent by the latter through the formula 1/r2 where r is the distance
between receiver and object while the object is near the field, while the
formula will become 1/r when the distance will increase.

The localization technique which applies capacitive proximity sensing is based
on “smart floors” which embed the capacitive sensors directly in the tiles,
that can be made of any non-conductive material. The tiles will be capable of
detecting and tracking a person, as well as recognizing a person or a moving
object, using the electric field principle aforementioned. These works have
been carried out by Steinhage [22] and Valtonen [23].

6. Resistive pressure sensing: technique that employs mechanical sensors
in order to work [24]. Mechanical sensors are transducers that convert the
pressure applied to them P = F/A, with P = pressure, F = force normal to
contact surface, A = area of contact, in an electric signal. In particular, the
force applied to the sensing surface will deform the latter, the sensor will
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Figure 2.11: A piezoresistive pressure sensor on top, the same piezoresistive
pressure sensor with an external force applied that causes the deformation of the
device due to tensile stress on bottom [25]

produce an electrical signal proportional to the amount of force, which will be
then sampled by an analog to digital converter (ADC).
The localization technique is very similar to the one that employs capacitive
proximity sensors, hence it utilizes “smart floors” where the pressure sensors
are embedded, enabling the environment for a room-scale localization and
detection as well as depicting the poses of the humans in the room with proper
signal processing, like has been done in the GravitySpace project [26].

7. Wi-Fi sensing: based on the radiations, in the form of high-frequency electro-
magnetic waves [27] [28] [29]. According to the 802.11 standard domestic Wi-Fi
operates in the frequency bands of 2.4 GHz when high-range transmission is
needed and 5 GHz for close-range transmissions [30]. Working with the 2.4 GHz
band allows a good solid object penetration, allowing for better coverage.
The sensing technique, shown in Figure 2.12 utilized in Wi-Fi systems is
actually very similar to the one employed by radars; it consists, in comparing
the radiation waves generated by the sensor with the ones reflected back by
objects inside the electromagnetic field of the device. This comparison is made
by analyzing the channel state information (CSI) which describes the Wi-Fi
channel properties. The movement of a human in the Wi-Fi signal covered
area, will cause different phenomena in the signal, like attenuation, frequency
shift and change in propagation path. Exploiting this phenomena, it is possible
to understand the presence of a human in the area [28].

8. Radar sensors: discussed in Chapter 5.
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Figure 2.12: Wi-Fi sensing technique employed in [28], where the Wi-Fi access
point (AP) is able to detect a human body by analyzing the channel state infor-
mation (CSI), which describes the Wi-Fi channel properties. When the signal is
scattered by a human body, the channel state information (CSI) changes accord-
ingly
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2.2 Market Analysis
In order to understand which sensor typology could be the best for the human
localization, a market analysis has been conducted, in order to compare the principal
available sensors. More specifically the sensors that have been compared are:

1. Microphone sensors

2. Ultrasonic sensors

3. Capacitive proximity sensors

4. Radar sensors

In the first part of the analysis, only the sensor modules to be connected to
micro-controller boards have been analyzed.

In Table 2.1, several microphone sensors are compared, considering their working
frequency range, sensing sensitivity, energy consumption, and the dimensions of the
devices. Regarding the directionality, only omnidirectional microphones have been
chosen since, for the localization task, the human can be positioned in any part of
the room taken in consideration. Most of the sensors considered are MEMS devices,
which have the advantage of having small dimensions. Differently from the sensors
considered in the other tables, in Microphone sensors there is no information about
the distance at which the sensor is capable to detect. Such types of sensors must
hence work in a room with little or no noise, in order to have the best measurements
possible.

Shown in Table 2.2, the comparison between different ultrasonic sensor elements.
The reported features of such devices are the electromagnetic wave frequency, the
sensitivity, the maximum range at which the sensor is able to detect the targets,
the area of sight of the sensor, expressed in °, the power consumption, and finally
dimensions and sensor typology. All the compared sensors are Sensor modules
meaning that the devices are sensor kits that usually utilize inter integrated circuit
(I2C) communication protocol in order to send data to the microcontroller unit
(MCU). Considering the task, the most suited ultrasonic sensor should be the
A02YYUW, which present the highest area of sight, and a reasonable maximum
detection distance of about 4.5 m.

In Table 2.3, the comparison between capacitive proximity sensors. The reported
characteristics are the detection range, in mm, the Set distance, which is the
minimum distance at which the sensor is able to detect, the Standard detection
object, the supply needed, the dimensions and finally the typology and some notes
if present. Even if in most of the sensors the detection object indicated is Iron,
such sensors are also able to detect the presence of a non-metal object or body.
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Shown in Table 2.4 the list of all the compared radar sensors. The characteristics
reported are their working frequency, the typical detection range for human targets,
the set distance, e.g., the minimum distance at which the sensors are able to detect
a target, the power consumption and finally the dimensions and the typology. Most
of the sensor present in this table are monolithic microwave IC (MMIC) where IC
stands for IC, which is the chip that operates directly with the frequency, hence
representing the heart of a radar sensor. Most of the sensors shown in the table,
with the exception of RR30.DAO0-IGPI.9VF and the IWR6843ISK, have similar
characteristics, this is because they work with almost the same frequency band,
which starts at 24 GHz.

After comparing all the sensor types and their applications, the sensors chosen
to be tested for the thesis are the radar sensors, due to their better accuracy, more
developed examples and experiments, ability to detect the target(s) without the
need of tags, special wearables or special interactions needed, and finally ease of
installation in different environments (they just need to be placed in a wall or
in the ceiling using simple screws). In order to directly test the abilities of these
sensor types, complete development boards have been chosen for the thesis purpose,
which do not need external micro-controller, or need cheap micro-controllers like
Raspberry, and perform all the signal processing parts directly on the board.

The comparison between the development kits present in the market can be
seen in the Table 2.5, where the sensors have been compared considering their
working frequency, the capability to detect motion, direction, position, distance,
and velocity, the capability to detect single or multiple targets, the typical minimum
and maximum range for human targets, and finally the MMIC utilized by the kits.

After comparing all the development kits, two of them have been selected, which
are the Infineon Position2Go and the Texas Instruments IWR6843ISK, for their
advanced human tracking algorithms and their high accuracy.

The two sensors have been selected in order to test the capabilities of the radars
which operate at different frequency bands, having the Position2Go most suitable
for, but not limited to, outdoor environments, and the IWR6843ISK most suitable
for, but not limited to, indoor environments.
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Table 2.1: Microphone sensors comparison
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Table 2.2: Ultrasonic sensors comparison
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Table 2.3: Capacitive proximity sensors comparison
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Table 2.4: Radar sensors comparison
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Table 2.5: Radar development kit comparison

Name Frequency Motion Direction Position Distance
detection detection detection detection

(GHz)

DEMO
Distance2GOL [64] 24–24.25 Yes Yes No Yes

DEMO
Sense2GOL pulse [65] 24–24.25 Yes Yes No No

DEMO
Position2GO [66] 24–24.25 Yes Yes Position

tracking Yes

Grove
doppler radar [67] 24–24.25 Yes Yes No No

DEMO
BGT60LTR11AIP Kit [68][69] 60–61.5 Yes Yes No No

Acconeer
XC112-XR112 Kit1 [70][71][72] 60–64 PCR2 Yes Yes Position

tracking Yes

OPS243-C-FC-RP [73] 24–24.25 Yes Yes No Yes

MM5D91E00 [74] 61–61.5 Detects
presence No No No

IWR6843ISK [63] 60–64 Yes Yes Yes Yes
IWR1843BOOST [75][76] 76–81 Yes Yes Yes Yes

Name Velocity Target Min Max MMIC
detection range range chip

(m) (m)

DEMO
Distance2GOL [64] Yes Single 0.5 15–20 BGT24LTR11

DEMO
Sense2GOL pulse [65] Yes Single 0.5 18 m BGT24LTR11

DEMO
Position2GO [66] Yes Multiple 0.6 20 BGT24MTR12

Grove
doppler radar [67] Yes Single 0.5 10 BGT24LTR11

DEMO
BGT60LTR11AIP Kit [68][69] No Single human 0.5 7 BGT60LTR11AIP

Acconeer
XC112-XR112 Kit1 [70][71][72] Yes Single human 0.2 2 AC111

OPS243-C-FC-RP [73] Yes Multiple 1 15 Not specified
MM5D91E00 [74] No Single 0 10 Not specified

IWR6843ISK [63][77] Yes Multiple 0.2 10 IWR6843
IWR1843BOOST [75][76] Yes Multiple 0.5 37 IWR1843
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Chapter 3

Acoustic Analysis

Acoustic analysis is a technique that allows to detect the position of objects utilizing
sound waves. The technique can be expanded in order to detect humans in an
environment, as well as, by using particular machine learning (ML) algorithms, to
detect the activity performed by humans.

Acoustic localization systems can be divided in active systems, which are able
to localize the objects by first producing a sound wave and then by analyzing the
received echo, a working principle similar to the one employed in radar systems,
and passive systems which analyze the sound or the vibrations produced by the
object to detect it, mimicking the localization ability of the human ears.

Both the active and passive systems, when used in water, are referred to as
sound navigation and ranging (SONAR), mostly used in submarine navigation
[78].

Before the development of the radar systems, the SONAR technology was also
used in order to implement acoustic location in air for atmospheric investigation
purposes. These systems, known as sonic detection and ranging (SODAR),
are used as wind profilers, in order to measure the wind speed at various height
operating using the Doppler effect.

3.1 State of the Art
The acoustic analysis techniques are mostly utilized when dealing with industrial
and production machinery that are prone to produce a high density of acoustic noise
and vibrations, which are perceived as disturbs. These sound emissions represent
a great danger for the workers that operate such machines, since could lead to
long-term hearing damages, if not hearing loss in the worst case scenarios. Hence,
the need to reduce, or when possible suppress, such noises is of primary importance.
The main challenge of noise suppression is the need to know the exact position
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of the acoustic emissions, making the sound localization techniques of upmost
importance.

In the last years, sound source localization, which mainly utilizes sensors like
acoustic camera microphone arrays, achieved significant improvements, which,
however, still suffer some challenges, like when dealing with moving sound source
localization [79].

The sound source localization finds also application in the field of robotics. This
functionality in fact, can be useful in many tasks, like the localization of a human
speaker, rescue scenario with no visual contact, or the mapping task of an unknown
acoustic environments [80].

3.2 Active Systems
The active sound source localization systems are composed of a device responsible
for the sound signal generation and a device responsible for the reception of the
reflected echo of this transmitted sound, in order to detect the objects in which the
signal has reflected.

As previously stated, this working principle is the same employed in radar
systems, with the difference that the signal analysis is different in this type of
systems.

The principal active locators are:

1. Active SONAR: composed of a sound transmitter and a receiver, this sensor
is operated in the so called monostatic operation if transmitter and receiver
are present in the same place, and in bistatic operation if otherwise. Moreover,
if more spatially distanced transmitters are present, the operation mode is
called multistatic operation [81].
The transmitted sound wave is usually electronically generated, but other
methods can be used, like using chemical explosives, or plasma sound sources.
The generated pulse of sound, the “ping” will be reflected back to the receiver
if an object is present in its trajectory, and in order to measure the distance
between the object and the SONAR, the time measured between transmission
and reception will be utilized, with the knowledge, of course, of the speed of
sound, Figure 3.1

2. Time-of-arrival (TOA) localization: localization method that utilizes sys-
tems composed of speakers for signal transmission and microphones for signal
reception or ultrasonic sensors [83], shown in Figure 3.2 for the localization of
objects [84].
The difference between the two sensors is basically the frequency of the
transmitted signal, having a frequency range between 20 Hz to 20 kHz for the
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Figure 3.1: Active sound navigation and ranging (SONAR) system working
principle. By comparing the Original wave with the Reflected wave the sensor is
able to detect an object [82]

Figure 3.2: The HC-SR04, an ultrasonic sensor module that can be used for the
human localization [42]

speaker-microphone system and a range between 25 kHz to 200 kHz for the
ultrasonic sensors, meaning that the transmitted audio signal can not be heard
by human ears.

The advantages of these systems are various: these systems are independent
from most of the environment characteristics, such as light, smoke, dust, etc.
while having the principal disadvantage of being incapable of detecting objects
that are not in their line-of-sight, e.g., the target must be inside the area in
which the sound waves propagates.

3.3 Passive Systems
The principal passive sound source localization systems involve the usage of micro-
phone sensors, more precisely of microphone arrays, shown in Figure 3.3, which
are any number of microphone sensors working in tandem. The sensors utilized
are usually omnidirectional, but it is also possible to find array of directional
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(a) ReSpeaker microphone array, a
microphone sensor that can be used
for the human localization [85]

(b) Acoustic camera microphone ar-
ray, sensor usually utilized for the
sound localization in industrial ma-
chinery, in order to prevent the high
emission of noise [86]

Figure 3.3: Microphone sensor arrays

microphones or formed by a mix of omnidirectional and directional ones.
A microphone is a transducer able to convert the sound in an electrical signal,

by first converting the sound into mechanical motion using a diaphragm, and then
converting this motion into electricity.

The objective of these systems is to localize the source of the sound, which in the
field of human localization, is a person that produces sound, for instance walking
in a particular type of terrain.

The sound source localization techniques are based on the 3D sound localization
capability of the humans hearing system, that is able to locate a sound depending
by its physical parameters: time, level (intensity) and spectral shape like it has
been shown in the work of Risoud and colleagues [87].

The azimuth of the sound is determined by binaural factors, hence utilizing
both hears to compute the interaural time and level differentials [87].

The height and depth distance are determined by monaural factors, hence
utilizing just one hear. In the monaural hearing the brain computes changes in
incident spectral shape [87].

Having information about the azimuth, elevation and distance of the sound, we
are capable to estimate the sound source location, Figure 3.4.

Below, a list of all existing methods for sound source localization, proposed in
[88]:

1. Energy-Based localization: utilized mostly in the wireless acoustic sensor
network (WASN), the basic concept of this technique is to utilize the energy
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Figure 3.4: 3D system in polar coordinates centered on the hearer used to locate
sound sources [87]

ratios of the sensors, restricting the sound source to a hypersphere. By increas-
ing the number of sensors, the target will be at the intersection point of the
hyperspheres [88].

2. TOA: defined as the time instant at which the microphones detect the source
signal. This method is based on the time-of-flight (TOF) of the signal, which
allows to understand the distance between the sensor and the target. The latter
is calculated by depicting the time needed by the source signal to reach the
microphone. By using different microphones it is possible to form equations,
using the method of trilateration, which solution gives the intersection point
that will be the position of the target [88].

3. Time difference of arrival (TDOA): technique focused on the time differ-
ence between signals, also based on the TOF. In order to utilize this technique
we need the measurements of time difference between TOA found by different
microphones. This technique is strongly dependent by the synchronization
between the different sensors, which can be achieved by choosing an optimal
reference noise which also nullifies the noise factors. Moreover, like in the TOA
method, the position of all the microphones must be known [88].
An important assumption to be made in TOA and TDOA is that the sound
signal travels from the target to the microphones along the shortest path. If
this does not happen, e.g., the shortest path is blocked by an obstacle, the
signal will take a longer path, resulting in an error of the estimated position.
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4. Direction of arrival (DOA): localization method aimed at estimating the
direction of arrival of the sound signal, hence the angle of the sound wave
with respect to the sensors array [88].

The most widely method to determine the DOA is by using the Delay-and-
sum beamforming techniques, both in time and in frequency domain.

(a) Time domain delay-and-sum beamforming [89], which is based on the
principle that the same sound will employ different amount of time to
reach every different microphone of the array, which will result in a
difference of delay and phases in the output measurement signals of each
microphone. The delays can be computed considering the speed of sound
and the distance between each microphone. By shifting the signal of each
microphone by its proper delay, and then summing together all the signals
which will now be in phase, it is possible to obtain a signal from which it
is possible to estimate the DOA [90], Figure 3.5.

(b) Frequency domain delay-and-sum beamforming [89], based on the same
principles as in the time domain case, with the difference that now the
signals will be mathematically manipulated considering their Fourier
transform, which will let us work in the frequency domain instead of the
time domain, Figure 3.6.

5. Steered response power (SRP): this algorithm can be interpreted as a an
approach based on beamforming that tries to search the candidate position
for the sound source by choosing the one position that maximises the output
of a steered delay-and-sum beamformer.

More specifically, the sound source position will be chosen evaluating the
objective function on a grid of possible positions that maps the environment
observed by the sensors [88].

6. Inter-microphone intensity difference (IID): usually implemented using
a 2-microphones array, this method evaluates the difference of energy between
the measurement signals in order to understand if the sound source is at right,
left or in front of the sensor, Figure 3.7.

The resolution of the measurement can be incremented utilizing an array
which has more than two microphones of course.

The signal evaluated by the IID is a time domain signal. Like for the Delay-
and-sum beamforming technique, the signal can also be evaluated in the
frequency domain, considering the spectrum of the signal, hence evaluating a
inter-microphone level difference (ILD) [88].
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Figure 3.5: Delay-and-sum beamforming operation in time domain. In this tech-
nique, several microphones capture the sound which needs to be delayed since it
will employ different time periods to reach each sensor. After delaying it, all the
sound contributes that are now in phase will be summed in order to estimate the
direction of arrival (DOA) of the source. All the operations are performed directly
in the time domain of the signal [91]

In the work of Li [94], a visual tracking of human targets performed by means
of a optical camera has been enhanced with acoustic tracking by performing the
estimation of the DOA of the sound source.

This objective has been achieved by utilizing a system of seven MEMS micro-
phones built in a system composed of field programmable gate arrays (FPGA)
and advanced RISC machine (ARM) processor (where RISC stands for reduced
instruction set computer (RISC)) for all the computations needed, Figure 3.8. The
estimation of the DOA of the sound source will make the optical camera move
towards the target in order to track it in real time, Figure 3.9.
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Figure 3.6: Delay-and-sum beamforming in frequency domain. In this technique,
several microphones capture the sound which needs to be delayed since it will
employ different time periods to reach each sensor. After delaying it, all the sound
contributes that are now in phase will be summed in order to estimate the direction
of arrival (DOA) of the source. All the operations are performed in the frequency
domain by performing a fast-Fourier transform (FFT) operation [92]

Figure 3.7: Inter-microphone intensity difference (IID) technique, in which the
sound intensity of the two hears of the hearer is compared in order to localize the
sound [93]
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Figure 3.8: System set-up of acoustic enhanced camera tracking employed in
[94] composed of a microphone array that is able to estimate the direction of
arrival (DOA), estimate that is then used to move a pan-tilt camera in order to
follow the “heard” target. To achieve this, the output of the array is fed to a field
programmable gate arrays (FPGA) system that controls the camera.

29



Acoustic Analysis

Figure 3.9: Results obtained in Li’s experiments [94]. On the top part all the audio
data of the located target extracted from the microphone array. In the bottom
part, the human tracking performed by turning of the camera
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Chapter 4

RADAR

4.1 RADAR Fundamentals
RADAR [95], acronym for “Radio Detection And Ranging”, is a radio waves-based
detection system, which is able to determine the distance, angle, and velocity of
objects in its detection range.

A radar system, shown in Figure 4.1 is composed of a transmitter that produces
radio waves and a receiver, which receives the echoes of the initial waves. Finally, a
processor will be responsible for the elaboration of the received signal in order to
depict the information needed.

The transmitted (TX) radio waves, upon hitting an object, will be absorbed
by it, or will be reflected or scattered in many directions; those waves which will
be reflected back to the receiver are the ones that will be analyzed by the sensor.
Materials with high electrical conductivity, such as metals, will reflect better the
radio waves.

Radar sensors can be classified into two types, based on the radio wave that is
transmitted by it [95]:

1. Pulse radar, usually characterized by the presence of a single antenna, that
will work in transmitting or receiving mode, regulated by a duplexer, which
will alternate the two operating modes on a periodic basis. The antenna will
transmit a pulse every clock pulse, after that, the duplexer will switch to
receiving mode, in order to receive the echo signal at the next clock pulse.

2. Continuous wave (CW) radar, characterized by the presence of two
antennas, one for the transmission and the other for the reception. These
radars work with a continuous transmission of the radio signal, hence the
differentiation of transmitter and receiver. The transmitted wave can be
unmodulated or modulated.
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Figure 4.1: Radar basic working principle: The object is detected by comparing
the transmitted (TX) and the received (RX) electromagnetic wave [96]

(a) Unmodulated CW: These radars transmit a radio wave which is not
modulated and will exploit the Doppler effect, which is the change in
frequency of the received echo wave when a moving object have been
encountered by the latter, Figure 4.2.
The Doppler frequency change depends on the speed of light in the air c′

and the speed of the target v and is equal to (4.1):

fr = ft
(1 + v/c′)
(1 − v/c′) (4.1)

where fr is the observed frequency and ft is the original emitted frequency.
These type of radars hence, also called Doppler radars, can not detect
stationary targets because they will not trigger the Doppler effect and,
moreover, are not able to depict the distance of the non-stationary objects
detected. The Doppler radars are only able to detect the velocity of the
detected non-stationary objects, in fact, they are typically employed in
competition sports like golf, car racing, baseball, etc.

(b) Modulated CW: explained in the next section.

4.2 Frequency-Modulated Continuous Wave Radar
FMCW radars are a type of modulated CW sensors that, differently from the
unmodulated ones are able to depict the distance of the detected object with a
fairly high accuracy [98] [99].

Often used as altimeters in air-crafts to measure the height during the landing
process, these radars transmit a modulated signal, which consists of a continuous
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Figure 4.2: Radio wave signal which changes frequency due to Doppler effect
caused by the movements of the detect objects [97]

Figure 4.3: Working principle of frequency-modulated continuous wave (FMCW)
radars. ∆t is the time difference, ∆f is the frequency difference between transmitted
(TX) and received (RX) signal, and fD is the frequency shift due to Doppler effect
[100]

wave of a known stable frequency which increases and decreases over a fixed period
of time. By computing the difference between the received (RX) and the TX signal
it is possible to compute the range between the sensor and the detected objects.

If the detected object is moving with respect to the radar, like in CW radars,
the Doppler effect will take place, causing a frequency shift in the received signal
proportional to the radial speed of the target, which will show a higher frequency
if the target is approaching the radar and lower frequency in the opposite case.

The working principle of FMCW radars is shown in Figure 4.3, where ∆t is the
time difference between received and TX signals, ∆f is the frequency difference
and fD is the frequency shift caused by the Doppler effect.
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Figure 4.4: Basic chirp signal with frequency as function of time, with starting
frequency of 77 GHz and ending frequency of 81 GHz. S is the slope of the signal
[98]

Figure 4.5: Chirp signal of a generic radar with frequency as function of time
[101]

The basic radar signal is called “chirp”, shown in Figure 4.4, having S as the
slope that indicates the rate of change of frequency, that represents the sinusoidal
wave with a frequency that is increased within a time window Tc.

The signal of the radar will be formed by a repetition of chirps with always the
same starting and ending frequencies Figure 4.5.

The basic system of an FMCW is presented in Figure 4.6 where:

1. Represents the synthesizer, which is responsible for the chirp generation
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Figure 4.6: Block diagram of a frequency-modulated continuous wave (FMCW)
radar. The synthetizer is responsible for the chirp generation, the mixer mixes
received (RX) and transmitted (TX) obtaining in output the intermediate frequency
(IF) signal, which is analyzed to find target(s) [98]

2. Is the transmitter antenna, which transmits the chirp signal

3. Is the receiving antenna, which captures the reflected chirp

4. Is the mixer, which combines the TX and RX signal in order to obtain the
sensor output

The result of the mixer will be an intermediate frequency (IF) signal, whose
Fourier transform results in a beat signal. The frequency of this signal, which is
constant and equal to S ∗ τ , with τ being the time delay between TX and RX signal,
as can be seen in Figure 4.7, is the one utilized in order to depict the range of the
detected target. If more than one target is detected, the IF signal will comprise
multiple sinusoids with different frequencies, each one corresponding to a particular
target, Figure 4.8 [99].

The range of the targets [99] detected by the sensor is depicted using (4.2):

R = (C · Tc · fb)
(2 · B) (4.2)

where R = target distance, C = speed of light of vacuum, Tc = up-chirp time,
fb = beat frequency corresponding to the target, B = bandwidth of the signal.

The Doppler effect will produce a change in the phase of the IF output signal
from one chirp to another, which is proportional to the radial velocity vr of the
target and can be computed using (4.3) [98].

∆w = (4 · π · vr · Tc)
λ

(4.3)

where λ = wavelength (m)

35



RADAR

Figure 4.7: Intermediate frequency (IF) resulting from the mixer output, a signal
with constant frequency [98]

From (4.3) it is possible to compute the radial velocity [98] of the target which
can be computed using (4.4).

vr = ∆w · λ

(4 · π · Tc)
(4.4)

When measuring the velocity of the detected target, it could happen that the
phase difference between difference chirps do not respect the constraint |∆w| < π,
causing the radar not being able to understand the velocity. This happens because
the phase difference is periodic of 2π. This means that every radar has an upper
bound for the detectable velocity, meaning that if the ∆w = π the maximum
velocity manageable [98] is (4.5):

vmax = λ

(4 · Tc)
(4.5)

The maximum velocity limit can be increased by having closer chirps, hence
decreasing Tc.

As previously stated, the signal transmitted by radar is composed of multiple
chirps, N called frame window.

When dealing with multiple targets the radar will be able to distinguish between
them, hence the Fourier transform of the IF signal will present two separated peaks
at different frequencies, if the resolution [98] (4.6) is respected.

∆v = λ

(2 · N · Tc)
(4.6)
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Figure 4.8: Receiver output of a radar sensor, showing the beat frequency from
which it is possible to extract the target range [99]

The resolution in (4.6) represents the minimum velocity difference between two
objects that the radar is able to sense.

The last information that these radars are able to depict is the angle of arrival
(AoA) of the received signal, with the note that this information can only be
obtained if multiple antennas are present, hence the sensor must be a multiple input
multiple output (MIMO) radar, Figure 4.9. From the latter statement, we observe
that the sensor must have at least two receiving antenna in order to determine the
angle.

Supposing that only one target is present in front of the radar, it is possible to
use the phase difference of the RX signal of the different antennas to compute the
angle of the detected object.

More specifically, the different receiving antennas will receive the same copy of
the reflected signal, but due to the distance d between the antennas, the copies will
have a phase difference [98]. By mixing the TX signal and the different copies of
the RX signal and by operating the Fourier Transform of the IF signal, the output
signals will be composed of the peaks in the same position, but with a difference in
phase, which is (4.7).

w = 2 · π · d · sin(θ)
λ

(4.7)

by inverting (4.7) we are able to estimate the angle of the detected object [98],
which is (4.8).
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Figure 4.9: Multiple input multiple output (MIMO) radar sensor [102], able to
detect the angle of arrival (AoA) of the target(s) due to the presence of more than
one transmitted (TX) and received (RX) antennas

θ = sin−1
A

λ · w

2 · π · d

B
(4.8)

Like in the velocity case, there is an upper limit in the detectable angle of arrival
of the target [98], which is when w = π, which is (4.9).

θmax = sin−1
A

λ

2 · d

B
(4.9)
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Chapter 5

Human Localization via
Radar Sensors

5.1 Infineon Radar Demo Position2Go
The Demo Position2Go, Figure 5.1, is a complete sensor evaluation board made by
Infineon, which is essentially based on the 24 GHz transceiver chipset BGT24MTR12
and by the 32-bit ARM® Cortex™-M4 XMC4700 microcontroller [66][99][104].

The demo kit is complete with a demonstration firmware to be flashed in the
sensor, which can be modified using the DAVE™ toolchain, and a GUI, which can
be used in order to display the detected targets in real time, as well as modify the
radar transmitted signal (bandwidth, up-chirp time, transmission and reception
power levels, etc).

The core of the sensor is the transceiver chip, a radar that operates in the
24 GHz bandwidth. All the technical information of such chip has been exposed in
the Table 2.4.

The evaluation kit, equipped with one TX antenna and two RX antennas, is
capable to detect the position, angle, distance, and velocity of moving and not-
moving targets, up to five targets at the same time. It also includes target-tracking
capability implemented via algorithms running directly on the on-board MCU.

The measured and processed data can be sent via universal serial bus (USB)
cable directly to a computer, also responsible for the power supply, which will be
then in charge of only visualizing those results using the GUI.

Below, the full list of the embedded components in the Position2Go sensor [99]:

1. BGT24MTR12, 24 GHz transceiver

2. XMC4700 MCU
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Figure 5.1: Top view of Demo Position2Go, with highlighted monolithic microwave
IC (MMIC), microcontroller unit (MCU) and the universal serial bus (USB) cable
connector, needed to let the sensor communicate with the host computer. On the
left part of the sensor, the breakable debugger, that must be connected when the
sensor needs to be flashed [103]

3. LMX2491, Phased locked loop (PLL)

4. PGA112, Programmable gain amplifier (PGA)

In order to enable communication with these components, the firmware configures
the following peripherals [99]:

1. ADC

2. Direct memory access (DMA)

3. General-purpose input output (GPIO)

4. Capture and compare unit (CCU)

5. Hardware/Software interrupts

6. USB interface

40



Human Localization via Radar Sensors

Figure 5.2: Position2Go components block diagram, where, besides the basic
components of the microcontroller unit (MCU) are visible, the programmable gain
amplifiers (PGAs) that amplify the intermediate frequency (IF) signals that are
then sampled by the analog to digital converter (ADC) are shown. Also, the phased
locked loop (PLL) which starts the chirp generation and the monolithic microwave
IC (MMIC) can be seen. [99]

Figure 5.2 shows all the embedded components of the sensor considering also
the communication protocols.

Position2Go firmware is characterized by repetitive and non-repetitive actions,
shown in Figure 5.3. The core of the flow diagram is the main loop, that the
program leaves only when a frame timer interrupt or a GUI request is received,
which will cause some specific actions depending on what has been received, only
to have the execution returns to the loop after those actions have been completed.

More specifically, the steps shown in Figure 5.3 are [99]:

• Device initialization: First task executed by the device only at the start of
the latter. In this step, all the MCU peripherals are initialized.

• Frame timer interrupts: Internal trigger of the chirp generation phase over
PLL

• Raw data acquisition: Start of the collection of raw data from the radar

• Radar algorithm: Computation of the parameters of the detected target(s)
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Figure 5.3: Position2Go firmware flow diagram, where the principal tasks per-
formed by the microcontroller unit (MCU) are shown [99]

Figure 5.4: Position2Go data acquisition flow diagram [99]

5.1.1 Raw Data Acquisition
As shown in Figure 5.4 the raw data acquisition task can be further divided into
two tasks

• Chirp generation: this process is triggered by an internal frame timer,
enabling the generation of the chirps over PLL.
The whole process can be depicted in Figure 5.5.
Below a description of the blocks present in Figure 5.5 [99]:

– Configure and enable DMA: set-up of the DMA source/destination
addresses, more specifically, four DMA channels are configured for the
two RX complex data samples Q1, I1, Q2, I2.

– Trigger PLL high: rising edge of the signal which controls the PLL,
which will start the PLL ramping.

– Start ADC timer: started by the rising edge of PLL controlling signal,
this timer is used in order to have equidistant ADC samples.

– Trigger PLL low: falling edge of the PLL controlling signal.
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Figure 5.5: Position2Go chirp generation flow diagram, having on the left the
microcontroller unit (MCU) and on the right the phased locked loop (PLL) [99]

The result of the generation task will be the chirp signal shown in Figure 5.6.

• Data sampling: at the same moment of the PLL start of the generation of
chirps, the ADC is triggered to start sampling the data from the RX antennas.
As previously stated, the sampled complex data will be moved by the DMA
using four different channels until the number Ns of required samples is reached,
causing the stop of the DMA transfer. The whole data sampling process can
be seen in Figure 5.7.
Each IF signal received by the antennas is digitized by the ADC to a complex
I/Q signal, with I being the In-phase signal and Q being the Quadrature
signal.

5.1.2 Radar Algorithm
The radar algorithm can be divided into different blocks, Figure 5.8. The algorithm
takes the raw data measured by the radar and produce as output the target(s)
parameters. More specifically, the basic steps of the software are [99]:

1. Raw data acquisition: raw data are collected in a 2D matrix containing
slow and fast time samples.
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Figure 5.6: Position2Go chirp generation resulting signal, showing the chirp times,
namely Down-chirp time, Standby time, Up-chirp time [99]

2. Window Across Range: first step of the algorithm consists of the application
of a Blackman window across the range dimension (fast time samples). This
results in an enhancement of the signal-to-noise ratio (SNR) and in the removal
of the side lobes of the signals.

3. Zero padding: technique in which a sequence of zeros is added to the end of
the input sequence in order to have the output sequence size equal to a power
of two. This technique improves the input signal characteristic.

4. Range fast-Fourier transform (FFT): generation of an FFT range image
by performing the FFT of the signal.

5. Target detection: in this step the algorithm searches for peaks in the range
FFT image in order to depict the target(s) range.

6. Doppler FFT: this step involves the same steps performed for the fast time
samples in order to depict the target(s) range. More specifically, the doppler
dimension is represented by the slow time samples.
First, a Chebyshev window is applied to these time samples in order to improve
SNR. Then the zero-padding operation is performed and finally, the FFT is
computed in order to obtain the complete range Doppler map.

7. Angle estimation: since the Position2Go comprises more than one RX
antenna, the AoA of the target(s) can be computed.
In order to do so, the phase difference of the range Doppler maps obtained
from the two receivers is computed, which is then used to compute the target
angle using (4.8). The whole angle estimation process is shown in Figure 5.9.
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Figure 5.7: Position2Go full data acquisition and sampling process where the four
intermediate frequency (IF) signals can be seen [99]

8. Target tracking: at the end of the above-mentioned processing steps, the
algorithm obtains the range Doppler and angle parameters of the target(s)
that have been detected for each frame. Then, a strongest nearest neighbor
(SNN) approach is applied to associate the obtained measurements with the
different tracks following the principle that the most similar measurements
must be associated with the same track.

Finally, in order to track in real-time the moving targets, an Alpha-Beta
tracker is implemented, which is a filter really close to Kalman Filters that
estimates the future location of the target(s).

5.1.3 Power Saving

In order to decrease the overall power consumption and the thermal dissipation of
the sensor, there is the possibility to operate the BGT24MTR12 in a duty-cycle
mode.

When the duty-cycle mode is enabled, the BGT module and the PLL module will
be the ones to be activated/de-activated, following pre-determined delays specified
in the firmware.
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Figure 5.8: Position2Go radar algorithm block diagram [99]

5.2 Infineon Position2Go Graphical User Inter-
face

The Position2Go sensor, as previously stated, is operated utilizing the software
provided by Infineon, the Radar GUI, Figure 5.10.

The GUI shows in real-time a “Radar-like” plot, which gives us real-time
information of all the targets being detected at that moment, providing all the
measured parameters, hence the distance, angle, velocity, and FFT magnitude of
the peak that represents the specific target. It also gives an insight of the TX and
RX signals in frequency and time domain.

The software also offers the possibility to modify the working parameters of the
radar sensor while the latter is operating. The modifiable parameters affect the
radar sensing capabilities, for instance, it is possible to modify the up-chirp time
and the bandwidth in order to change the maximum detectable target distance, the
TX antenna power level, etc. Besides the sensor parameters, it is also possible to
modify the maximum and minimum range and velocity admissible in the detected
targets, minimum velocity, and range threshold.

There is also the possibility to enable/disable the duty cycle mode, the moving
target indication (MTI) filter, which will filter out static objects from the detected
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Figure 5.9: Position2Go angle estimation process, focused on the computation of
the phase difference φ between the signals of the two receivers [99]

targets, and the tracking algorithms for moving targets.
The GUI offers also the possibility to re-calibrate the sensor, a very important

task to perform every time the TX power level or the RX PGA level is modified or
when the environment temperature changes, since the measurement are dependent
by the latter. There are two types of sensor calibration data, which are stored in the
appropriate target memories, e.g., FLASH memory or static random access memory
(SRAM) memory of the sensor, which are ADC calibration data and algorithm
calibration data. In the first one, the ADC raw data for RX1 and RX2 antennas are
used in order to calibrate the first chirp of the sensor, while in the second one, the
calibration is done by means of a range or angle offset added to the measurements.

The last feature of the tool is the capability to record and export all the data of
the measurements by pressing the Recording/Stop button, in order to process these
data with an external software such as MATLAB. The exported data can also be
processed and visualized again by the Infineon software in order, for instance, to
verify the accuracy of the same raw data elaborated by external software.

5.3 Texas Instruments Radar IWR6843ISK
The IWR6843ISK in Figure 5.11, is a complete sensor evaluation board based on
the IWR6843 60 GHz to 64 GHz band FMCW radar [63][106][107][108][109][77].
The kit comes with several firmwares in order to test the various capabilities of the
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Figure 5.10: Position2Go Infineon Radar graphical user interface (GUI) software,
having at the left part all the configurable parameters, on top the received (RX)
chirp 1, and in the bottom the radar view of the targets

sensor, as well as visualization programs complete with GUI and software utilities
needed to test and select the best configurations in terms of radar TX signal. All
the technical information of the transceiver chip which operates in the band of
60 GHz is exposed in Table 2.4.

The evaluation kit, whose functional block diagram is shown in Figure 5.12,
presents three TX and four RX antennas, resulting in an FoV of 120° in azimuth
and 30° in elevation.

The hardware of the development kit can be divided into sub-systems, which
are [63]:

1. Radio frequency (RF) and analog sub-system including the RF and the
analog circuitry which is formed by the ADC, the synthesizer, the mixer IF,
the power amplifier (PA), the low noise amplifier (LNA) [63].

2. Clock sub-system, which is responsible for the generation of the input
reference for the 60 GHz to 64 GHz signal to transmit. The input is in fact
generated by an oscillator circuit that produces a 40 MHz signal, which then
passes by a X3 multiplier in order to obtain the required frequency. Moreover,
in this sub-system is also present a PLL that provides to the host processor a
reference clock after the system wake-up [63].

3. Transmit sub-system, made by three independent amplitude and phase
control parallel transmit chains. The sensor can support 6-bit linear phase
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Figure 5.11: Top view of IWR6843ISK, with highlighted monolithic microwave
IC (MMIC), onboard antennas, and the universal serial bus (USB) cable connector,
needed to let the sensor communicate with the host computer [105]

modulation for MIMO radar, interference mitigation and TX beamforming
applications [63].

4. Receive sub-system, consisting of four parallel channels that can be oper-
ated at the same time, each one formed by LNA, mixer, IF filtering, ADC,
decimation. The receiving system of the sensor is operated in a complex
baseband architecture, meaning that each receiver provides I and Q signals as
output [63].

5. Processor sub-system, that at high level can be divided in two customer
programmable sub-systems, where the first one is the digital signal process-
ing (DSP) sub-system containing the high-performance C674X DSP, high-
bandwidth interconnect, hardware accelerator and associated peripherals, and
the second one is the main sub-system, which controls all the sensor peripherals
and all the activities carried out by the sensor. The latter is composed by the
ARM® Cortex™-R4F processor and the associated peripherals like the DMA,
universal asynchronous receiver-transmitter (UART), pulse-width modulation
(PWM), etc [63].

6. Host interface, which can be provided through serial peripheral interface
(SPI), UART or controller area network flexible data-rate (CAN-FD) interface
[63].

7. Hardware accelerator, an instruction pointer (IP) that softens the com-
putational load of the main processor by executing certain frequently used
computations in FMCW radar signal processing, which consists of FFT and
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Figure 5.12: Functional block diagram of IWR6843ISK sensor, where the Radio
frequency and analogue sub-system, Radio processor sub-system, Main sub-system,
digital signal processing (DSP) sub system can be seen [63]

log-magnitude computations to obtain all the radar information from the
measurements [63].

IWR6843ISK utilized firmware, called 3D People counting demo [106], which
can be schematized like in Figure 5.13.

From the sensor point of view, the firmware can be divided into two layers,
Detection layer [107], and Tracking layer [109], with the first one being implemented
in the hardware accelerator and the second one being handled by the processor. The
focus of the detection layer is to generate the point cloud, which is the collection
of points, with each one having spherical coordinates, radial velocity, and SNR,
where every single point represents a detected reflection. This point cloud is then
fed to the Tracking layer which will be responsible for the association of a point
cluster to a target (a person) when the characteristics of such cluster meets the
requirements. Every target will then be tracked in time, obtaining the output of
the Tracking layer which consists of a target list, where each one has Cartesian
coordinates and linear speed. The outputs of the two layer will then be send to the
host computer via UART.
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Figure 5.13: 3D people counting demo firmware setup, showing all the communi-
cations between host computer (using the graphical user interface (GUI)) and the
sensor. Also, the two principal layers of the firmware, namely the Detection layer
and the Tracking layer can be seen [106]

5.3.1 Detection Layer
Consisting of low level signal processing, this layer comprises two separate signal
processing chains, one optimized for the wall mount of the sensor and the other for
the ceiling mount. The processing chain is the following [107]:

• Range processing done for each antenna, detects the range of the objects
following the basic radar working principle. Then, a window filter to the IF
signal and the FFT transform is applied are applied in order to obtain the
range spectrum.

• Static clutter removal, step which consists in the removal of all the static
objects in the scene, like chairs or tables, letting the software focus only on
the moving objects that are considered humans.

• Capon Beamforming, which output of this step will be a 2D range-azimuth
spectrum matrix (heatmap) for the wall mount and a 3D range-azimuth-
elevation heatmap for the ceil mount.
More specifically, the heatmap is created by estimating the AoA of the detected
objects, in terms of only azimuth or azimuth and elevation. Figure 5.14
illustrates the system geometry, having the azimuth (φ) defined as the angle
between the y-axis and the orthogonal projection of the position vector on
the xy-plane, while the elevation (θ)) is the angle between the projection onto
the xy-plane and the vector position.

• Constant false alarm rate (CFAR) detection algorithm, applied to the
2D heatmap (3D for the ceiling mount). This step has the objective to define
the power threshold needed to classify the returning radar wave as reflected
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Figure 5.14: IWR6843ISK point cloud 3D coordinate system, with the sensor
being at the origin of the axes and a target standing in front of the sensor [108]

by an object or not. The received waves, in fact, will present different levels
of power depending by many factors, like for instance the environment, or
the path that they travelled. The threshold value is very important in the
operation, it can not be too high, because that would cause many tracks to
not being classified as targets even if there would be a lot less of false alarms,
which are interference or noise classified as objects; conversely, it can not be
too low, because more tracks would be classified as targets, but there would
be too many false alarms. In order to solve the threshold problem, the sensor
uses a CFAR-Cell averaging small of (CASO), which sets as a threshold the
smallest average of the left and right reference windows.
For the CFAR step, a 2-pass CFAR-CASO is used, the first pass works on
the range domain, while the second pass confirms the detected objects in the
azimuth domain for the wall mount. In the ceiling mount, the operation is

52



Human Localization via Radar Sensors

similar, with the only difference that the azimuth-elevation angles are put
together in one dimension, using (5.1):

(azimuth φ, elevation θ) → (φ + θ · φ) (5.1)

• Elevation estimation (for the wall mount), a step in which the Capon
Beamformer is applied again to the result of the CFAR algorithm in order to
depict the elevation angle from the heatmap. This step is only performed in
the wall mount configuration.

• Fine Azimuth/Elevation estimation (for ceiling mount), after the
CFAR step the Capon Beamformer algorithms are applied to generate a
zoomed-in 2D azimuth-elevation angle spectrums for fine angle estimation.
This step is only performed in the ceiling mount configuration.

• Radial velocity estimation, the last step of the detection layer, in which
the Doppler spectrum is estimated over the consecutive chirps by applying to
the virtual antenna array a capon beamformer which points to the azimuth-
elevation angle.
The virtual antenna array is a way to generalize a MIMO radar. For every
transmitter, in fact, all four receiver antennas will receive the reflected signal
shifted in phase. Since in the IWR6843ISK three transmit antennas are present,
this concept can be generalized considering a virtual antenna array of one
transmitter and 12 receivers (the number of receivers of the virtual antenna is
given by the relation NTX · NRX.

5.3.2 Tracking Layer
This layer is responsible for the localization and tracking of the targets, which are
nothing more than clusters of points of the point cloud coming from the Detection
layer. The Tracking layer [108] [109], which can be also referred to as Group tracker
module, can be summarized in a series of basic building blocks, represented in 5.15.

• Point cloud tagging: step which consists of the selection of points to process.
In the configuration file sent to the sensor and also via GUI, it is possible to
determine the boundaries to consider while detecting targets. All the points
of the point cloud outside these user-chosen boundaries are not considered in
the next steps [109].

• Predict: implementation of the standard prediction equations of the Kalman
filter. This step, which requires in input the state vector formed by position,
velocity, and acceleration of the tagged tracked targets and their respective

53



Human Localization via Radar Sensors

Figure 5.15: Block diagram of Tracker layer (Group Tracker) showing the principal
operations performed sequentially by the layer. The operations work with the point
cloud in input in order to produce the target list in output [108]

state covariance matrix, where the latter is the result of the Capon beamform-
ing step of the detection layer needed to estimate the range-azimuth heatmap
(or range-azimuth-elevation heatmap). Once solved the prediction equations,
the output of this step will be the new state vector of the tracked targets as
well as the new covariance matrix [109].

• Associate, step where each track will have a gate created around itself, then,
for each point, the Mahalanobis distance between point and track is computed.
If the latter falls within the gate of a track, a bidding score is assigned to the
point. Finally, the point will be associated to the track (each point can be
associated with only one track) which has the highest bidding score [109].

• Allocate, step conceptually very similar to the clustering technique. All the
points of the point cloud that are not associated with one of the existing tracks
can be chosen for initializing a new cluster/candidate set, which can become
a new track. Firstly, the measurements points need to pass the configurable
velocity and range thresholds in order to be added to a cluster, then, the
centroid of such cluster will be re-calculated. Once all points have been
evaluated, the new clusters are evaluated in terms of minimum number of
points threshold, mean velocity of the points threshold and required combined
SNR of all points in the cluster. If all the thresholds/requirements are satisfied,
the cluster will become a new track, otherwise, such cluster with all the relative
measurement points will be ignored [109].

• Update: step which foresees the update of the track centroid and the covari-
ance matrix for such track when new points are assigned to the latter in the
previous steps. Also, in this step the group track dispersion matrix and the
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group covariance matrix, where the latter is used to create the gate around
each track, are computed [109].

• Presence: check of the presence boundary box, which like the boundary box
of the Point cloud tagging step can be modified in the configuration file or in
the GUI. The focus of the check is to see if the targets exist in the presence
boundary box. In addition, the clusters obtained in the allocate step are
checked again and, if the number of points forming the cluster and the mean
velocity exceed the set thresholds, the cluster will be considered valid [109].

• Maintenance: last step, which focuses on the track states [109]. A target/track
in fact, can be in the DETECT, ACTIVE or FREE state. In this step the states
can be changed or de-allocated. A track may change state if the thresholds set
in the state transition parameters are met. A track that is currently allocated
will start with the DETECT state. Every time instant, the track can get a HIT
or a MISS event, with the first being the presence of any non-zero point in the
track instance and the latter the absence of points in the tracking instance.
After a configurable number of HIT events, the track can transition from
DETECT to ACTIVE state and after a configurable number of MISS events,
the track can pass from the DETECT to the FREE state. Actually, in the
ACTIVE state, the track can be in Normal, Static, Exit, or Sleep conditions:

– Normal condition: No special condition occurring in the target/track
– Static condition: The target is in the “static zone”. A target is static if its

velocity is close to static (depending on the threshold for a velocity to be
static).

– Exit condition: If the target is not in the “static zone” but its number
of MISS events exceeds the set threshold this means that the target is
exiting the boundaries.

– Sleep condition: A target is declared in this condition if it stays static for
long enough. By putting a target in this state in fact, we can extend the
maximum lifespan of such target in the static zone, allowing the sensor to
continuously track even the steadiest target.

In Figure 5.16 the states transitions diagram with the aforementioned thresh-
olds.

5.4 mmWAVE Visualizer
The software utilized in order to visualize in real-time all the tracks detected by the
IWR6843ISK is the mmWave People Counting software, Figure 5.17. This open-
source GUI, written in Python, allows the users to select the desired configuration
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Figure 5.16: Tracker layer states transitions diagram, showing all the states that
a track can have, as well as the state transitions [108]

file, which includes all the parameters needed for the detection and the tracking
layers. Once the sensor is connected, by means of the selection of the two commu-
nication port (COM)s ports, and the configuration file has been selected, all the
sensor parameters, e.g., maximum range, range resolution, maximum velocity, and
velocity resolution, will be displayed in the GUI, as well as the detection boundaries
in which the sensor searches for targets. While the detection layer parameters can
not be modified in the GUI, the detection boundaries, the orientation, and the
position of the sensor, can be configured in real-time.

Finally, directly by modifying the code of the .py files that creates the GUI, it
is possible to produce an output .bin or .csv file containing all the data coming
from the detection and tracking layers, e.g., the point cloud spherical coordinates
and the tracks Cartesian coordinates, together with their respective velocities.
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Figure 5.17: IWR6843ISK people counting graphical user interface (GUI) software,
where on the left side there are all the configuration parameters, the configurable
detection boundaries and the sensor physical set-up (azimuth, elevation and height)
are shown, while on the right side the 3D live map of the detected area is shown
[110]

57



Chapter 6

Sensor measurements

This chapter focuses on the measurements that have been performed using the two
development kits chosen, the Position2Go and the IWR6843ISK. The principal
objectives of the measurements are:

1. Analyze the sensors capability to detect a person inside their line of sight,
studying their tracking capabilities.

2. Analyze the consistency of the results, focusing on the differences between the
repeated measurements that consider the same target with the same conditions,
e.g., same position, same configuration, but in different time instants.

3. Analyze the dynamic data the detected target in the measurements, such as
velocity or acceleration.

4. Analyze the precision of the measurements in terms of differences between
measured trajectory and real trajectory

5. Optimize the measurements in post-processing in order to reduce the distance
between measured trajectory and real trajectory

6. Compare the obtained measurements from the two sensors

Perform all the analyses considering different sensors configurations, in order to
understand which one is the best in that particular environment.

6.1 Environments
All the experiments have been performed in three different environments, consisting
of two indoor environments, Figure 6.1, where the difference between the two is
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the number of “clutter” present, represented by furniture of particular materials
(wood, metal, plastic), and one outdoor environment shown in Figure 6.2.

The first environment is a common electronics laboratory, referred to as Lab,
where the measurement area is empty but surrounded by furniture like tables,
chairs or tool cabinets. The goal of the measurements in this environment is to
understand if the sensors are able to localize and track a human target in a small
indoor environment full of “clutter”.

The second environment, referred to as Corridor consists of an empty large area
located in the corridor of the university building. The goal of the measurements
in this environment is to understand if the sensors are able to localize and track
a human target in a large indoor environment, where the sensors are placed at a
higher distance with respect to the walked path, in contrast to the Lab environment.

Finally, the third environment, referred to as Terrace, is an empty terrace
located at the top of the university building, where the only walls are railings and a
metal structure is present near the left-most part of the trajectory. The goal of the
measurements in this environment is to understand if the sensors behave differently
in an outdoor environment.

6.2 Sensors Configurations
In both sensors, for every single environment, several configurations have been tested,
in order to compare them to find which one is the best suited for that particular
area, more specifically, for the Position2Go sensor the tested configurations are
shown in Table 6.1.

For every configuration, the minimum and maximum range were configurable in
an independent way, this means that all the detected targets that are below the
minimum distance or beyond the maximum distance are excluded by the radar
algorithm.

In addition, the PGA power level depends on the environment: setting the level
to 4 in the indoor measurements would result in very disturbed measurements,
while setting it to three in outdoor environments would result in a very difficult
acquisition of the target, obtaining empty measurements.

The Samples per chirp, which can assume values [32, 64, 128, 256], and the
Chirp per frame, which can assume values in the range 1–64 are the same for every
configuration, this is because the parameters are set to their default values that
are, indeed, the best ones. Setting the parameters to different values would have
resulted in worst performances. The Chirp duration, which can assume values in
the range 50 µs to 3,000 µs is the parameter that changes in every configuration,
varying from a minimum value of 120 µs to a maximum value of 250 µs. Since the
Samples per chirp is set to 64, the Chirp duration value can not be lower than
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(a) Lab environment (indoor) where the sensors can be seen in the top part, while in the
bottom part the area where the target walked can be seen. This environment is full of
“clutter” represented by furniture all around the experiment area

(b) Corridor environment (indoor) where the sensors can be seen in the top part, while
in the bottom part the area where the target walked can be seen. This environment
is empty and no “clutter” is present. The walls are made of the same material of the
laboratory walls

Figure 6.1: Indoor measurement environments

100 µs, because, otherwise, a supported sampling rate would not be ensured [99]. In
addition, values higher than 250 µs would always result in worse performances in
terms of target localization. Finally, the Pulse repetition time is a non-configurable
value, which will always be equal to the Chirp time plus 200 µs.

The tested configuration for the Texas Instruments sensor is shown in Table 6.2.
In all the configurations, there are two different maximum range parameters: the

Maximum range, that is the maximum distance at which the sensor can possibly
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Figure 6.2: Terrace environment (outdoor) where the sensors can be seen in the
top part, while in the bottom part the area where the target walked can be seen.
Differently from the indoor environments, no walls are present except for the metal
structure on the left and the railings on the right. Like in the Corridor environment,
no “clutter”, represented by furniture, is present

detect targets, while the Maximum boundary range is similar to the maximum
range of the Position2Go sensor: setting this parameter will make the firmware
algorithms ignore the detected targets at a range beyond this boundary. For every
configuration, this parameter is set to 4 m.

The objective of the different Configurations was to obtain different Range
resolutions besides the one obtained with the standard configuration, e.g., Configu-
ration 2. Besides increasing the bandwidth, modifying the starting frequency from
60.75 GHz to 60 GHz in all the configurations and delaying the Ramp end time,
modifying this value from the standard 59.10 µs to 72.73 µs, the resolution change
has been obtained by modifying the number of ADC samples and Chirp per frame,
in particular, the decrement of the first together with the increment of the second
parameter will cause an increment in the range resolution of the sensor.

Table 6.1: Position2Go configurations

Conf. Samples Chirps Chirp Pulse Min Max Acq. PGA
per chirp per frame duration repetition range range period level

(µs) (µs) (cm) (cm) (ms)
1 64 16 150 350 90 600 150 3 in, 4 out
2 64 16 120 320 90 600 150 3 in, 4 out
3 64 16 200 400 90 600 150 3 in, 4 out
4 64 16 250 450 90 600 150 3 in, 4 out
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All the aforementioned parameters have been obtained using the tool mmWave
sensing estimator [111], which provided a starting point for the tuning step that
has been then performed following the indications in [107].

As aforementioned, the configurations for both sensors have been created using
the tools given by the producers of the latters. The objective of the configurations
is to understand if the change of the configurable parameters have an impact on
the performance of the two sensors, and if this impact changes with the change
of the environment. As a matter of fact, the obtained configurations are not the
best possible ones for the sensors, since no fine tuning have been performed on the
configurations in order to obtain the best performance.

6.3 Method
The followed method is always the same: the same specific trajectory has been
set, consisting of movements performed in straight segments of always the same
distance, 1.2 m. The sensors have been positioned in the exact center with respect
to the trajectory (at different heights), at a specific distance which guarantees that
all the walked trajectory is inside the field-of-view (FoV) of the two sensors. The
minimum distance between the two sensors and a straight line of trajectory, given
that the sensors are always in the middle line of trajectory, must be of 1.8 m.

To get a reference for the position, a 2D reference system has been set as shown
in Figure 6.3.

All the measurements start at the Start point and consist of several movements
going from the Start point to the End point and vice versa. As stated before, the
sensors are always positioned at x = 1.8 m and y > 3.6 m.

In order to analyze the results of the measurements two MATLAB scripts have
been created, which take as input the target data of the two sensors and produce
in output the metrics needed to evaluate the sensors performances. An overview of
the structure of such scripts can be seen in Figure 6.4.

More specifically the steps followed by the scripts are:

Table 6.2: IWR6843ISK configurations

Conf. Start Idle ADC Ramp Freq. ADC Chirps Frame Max Range
freq. time start end slope samples per period range resolution

(GHz) (µs) (µs) (µs) (MHz/µs) frame (ms) (m) (m)
1 60.00 30 25 72.73 54.71 120 16 55 7.279 0.067
2 60.75 30 25 59.10 54.71 96 48 55 7.279 0.084
3 60.00 30 25 72.73 54.71 50 64 55 7.279 0.161
4 60.00 30 25 72.73 54.71 35 76 55 7.279 0.231
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Figure 6.3: Real trajectory walked by the target in every environment for every
configuration. The experiments always start at the Start point and, once arrived at
the End point, the whole path is repeated again the other way round, e.g., from
End to Start point. The process is repeated many times for every measurement

• Load sensor data: the first step of the script, the sensor output file consists
in a comma-separated value (CSV) for the IWR6843ISK, consisting of all
the point cloud and target measurements data (only the target data have
been considered) for every time instant, and a .trg file for the Position2Go,
consisting of all the target measurement data.

• Convert coordinates: conversion of the coordinates of the target data for
either sensor. The IWR6843ISK reports the coordinates in cartesian form, so
the only operation to do is to change the reference system, the Position2Go, on
the other hand, reports the coordinates in spherical form, so first a spherical to
cartesian coordinates conversion must be performed, then, those coordinates
can be changed of reference system.

• Plot full trajectory: plot of the trajectory data obtained after the conversion.
This step is needed in order to determine the cutting coordinate points.
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• Cut the trajectory in segments: after the cutting points (which depend on
the measurements) have been determined, the measured trajectory is divided
in several segments, which start from the minimum boundary and end in the
maximum boundary.
The result of this operation is the creation of five cell arrays, given the fact
that the real trajectory contains five straight segments, three vertical and two
horizontal.

• Linear regression of segments: for every single segment, the coefficients
of a linear first-degree equation are estimated using the x and y coordinates.
Such equation will be used to estimate the y coordinate using the x one
in order to determine the straight line that fits best every single trajectory
segment. Moreover, in this step, the estimation error is given by the MATLAB
estimation function, which is used as an evaluation metric. Once all the straight
segments are estimated, an average of all the estimation errors of the straight
segments associated with a real trajectory segment will be computed, obtaining
five mean regression errors, each one for a real trajectory segment.
Since the obtained straight segments may show different lengths, they are
finally cut or stretched using the same equation needed to estimate them.
The minimum and maximum coordinate (y for vertical segments and x for
horizontal segments) will be equal to the cutting points of every trajectory
part.

• Area computation: in this step the area between all the possible combinations
of straight segments of the same trajectory part is computed. If two straight
segments intersect themselves, the area will be the sum of the areas of the
two triangles described by such segments, otherwise, the area will be the
difference between the area of two trapezoids formed by each segment and
a straight imaginary segment at a distance of 50 m or more. Once the areas
of all the combinations of the straight segments associated with the same
real trajectory segment are computed, the average of such areas is computed.
The result will be five area values, each one associated with a real trajectory
segment, normalized by dividing by each straight segment distance. Lastly,
the square root of the area error values are computed, in order to obtain a
better comparison between this error and the other errors (except for the
Acceleration error) which all are expressed in meters.

• Acceleration computation: in this step the average acceleration of every
measured trajectory segment is computed, performing the double derivative of
the positions comprised in the considered segment over the Frame periodicity
time interval squared for the IWR6843ISK case, or the Acquisition frame period
squared for the Position2Go case, since in both cases the position estimation
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is performed at the end of every transmitted frame. It is important to notice a
moving average has been applied to the positions before the double derivative
operation, in order to improve the results reducing the noise. This moving
average has a window size comparable with the time instants considered, of
about seven samples.

• Relative location error computation: step in which the relative location
error is computed. First, the minimum distance between the real trajectory
segment and respective measured segments is computed, with the following
rules:

– Vertical segments: when the vertical segments of the trajectory are consid-
ered, the minimum distances in the x-axis only are computed, by creating
for every measured trajectory segment an imaginary real trajectory seg-
ment with the x-coordinates of the real path (e.g., for the first vertical
segment, x = 0.6 m, and the y-coordinate of the considered measured
segment. In such a way, the y-coordinates will always be aligned, and the
distance will only be in the x axes.

– Horizontal segments: when the horizontal segments of the trajectory are
considered, the minimum distances in the y-axis only are computed,
by creating for every measured trajectory segment an imaginary real
trajectory segment with the y-coordinates of the real path (e.g., for the
first horizontal segment, y = 1.8 m, and the x-coordinate of the considered
measured segment. In such a way, the x-coordinates will always be aligned,
and the distance will only be in the y axes.

Then, the root of the sum of the squares of such minimum distance is computed,
for instance, if the first real trajectory segment of the path has three measured
trajectory segments associated, the root of the sum of squares is (6.1).

distError =
ñ

(minDistance1)2 + (minDistance2)2 + (minDistance3)2 (6.1)

The result of the operation of (6.1) will be five distErrors, each one associated
with a real trajectory segment. Finally, the relative location error is given by
the root of the sum of squares of those five distErrors (6.2).

locError = [(distError1 )2 + (distError2 )2 + (distError3 )2

+(distError4 )2 + (distError5 )2] 1
2

(6.2)

• Path optimization: in this step, the translation values for the measured
path are computed. The path will be translated in the x axis of a value of
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(6.3) and in the y axis of a value of (6.4), in order to try to minimize the
relative location error. The direction of such translations is decided by visual
inspection of the measured trajectory and the real trajectory for every single
measurement.

translationx = mean(distError1 , distError3 , distError5 ) (6.3)
translationy = mean(distError2 , distError4 ) (6.4)

This translation is not guaranteed to obtain a smaller relative location error
than the original one. If this happens, the path will be translated of values
chosen by visual inspection, following a trial-and-error method.
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Figure 6.4: MATLAB post-processing script applied to all the measurements
obtained in order to calculate the evaluation criteria chosen, Regression error, Area
error, Acceleration error, Relative location error
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Chapter 7

Experimental Results

This chapter reports all the measurement results obtained from the various experi-
ments divided by environment and divided by configuration utilized, for a total of
12 different experiments per sensor (four experiments per environment per sensor).
It is important to notice that in all the experiments the original firmwares provided
by the producers of the sensors have been utilized. In all the experiments, the
sensors were placed one on top of the other, in order to have them positioned on the
same x and y coordinate of the reference system. This means that the Position2Go
has z = 1.30 m and the IWR6843ISK has z = 1.48 m.

The chapter is organized in three sub-sections: Position2Go measurements,
divided by environments, IWR6843ISK measurements, divided by environments,
the comparison of the results of the two boards. For every environment, first, the
physical set-up for the experiments is shown, then, the measured trajectory vs. the
real trajectory plots for every configuration are presented.

In the last section of the chapter, the graphs of all the selected evaluation
criteria for the two boards are shown. The graphs, divided by type of criteria
and having all the environment criteria in the same type of graph, report in the
x-axis all the different configurations. Moreover, in the linear regression error,
root area error, and acceleration, the mean value and the standard deviation of
the errors are presented, since they have been computed divided for trajectory
segments, e.g., for every configuration and for every environment, the evaluation
of the measurements resulted in five linear regression errors, five root area errors
and five acceleration, each one associated to one of the trajectory segment. To
have better graph readability, the standard deviation of the linear regression error,
root area error, and acceleration has been drawn using a semi-transparent area
that surrounds the average error value, with the same color as the latter. The
minimized location error is computed as the square root of the sum of squares of
all the location errors of the measured trajectory segments, hence it does not have
a standard deviation. Also, the tables with the evaluation criteria numerical values
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Figure 7.1: Position2Go set-up for Laboratory measurements. The orange dot
represents the sensor position, while the blue path is the real trajectory

are reported.

7.1 Infineon Sensor Position2Go

The results of the measurements of the Position2Go board are presented in this
sub-chapter. All the measured trajectory plots are the result of a moving mean
window of size five applied to the measured positions, since the sensor tracking
ability is not as good as the IWR6843ISK sensor. Without the moving mean, the
plots were very chaotic, having the target “jumping” in a radius of about 20 cm
of the actual position. In addition, the measured positions, except for the Garden
measurements, have been filtered to remove spurious Reflections due to the wall in
front of the sensor. The positions of the reflections had large negative y coordinates
in the reference system in Figure 7.1 and Figure 7.2.
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Figure 7.2: Position2Go set-up for Corridor measurements. The orange dot
represents the sensor position, while the blue path is the real trajectory

7.1.1 Environment: Lab
The set-up utilized for this experiment is shown in Figure 7.1 and is the same for
all the configurations.

The measurements in the Lab environment led to the results shown in Figure 7.3,
where the measured trajectory for every configuration can be seen.

As can be seen in the measured trajectory plots, the sensor is able to track the
target in almost all the utilized configurations, obtaining the best precision in the
center and the right vertical segments, when the person is approaching or leaving
the sensor. In the center segment trajectory lower curve, although, the sensor places
the target at a higher distance than the real one. For what regards the horizontal
segments, the best precision is obtained at the segment with y = 1.8 m.

7.1.2 Environment: Corridor
The original set-up for this set of experiments was the same as the one utilized for
the Corridor experiments performed with IWR6843ISK, but the sensor has not
been able to capture good data and the measurements have been repeated many
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(a) Lab measure: Configuration 1 (b) Lab measure: Configuration 2

(c) Lab measure: Configuration 3 (d) Lab measure: Configuration 4

Figure 7.3: Position2Go Laboratory measured trajectories (in blue) vs. real
trajectories (in black)

times. To solve this problem, the sensor and the walked path have been translated
by 0.60 m along the y direction in order to obtain good measurements.

The set-up can be seen in Figure 7.2, while the measured trajectories can be
seen in Figure 7.4.

This environment has been the most difficult one for the Position2Go measure-
ments, since the measurements had to be repeated many times in order to obtain
data not too corrupted by noise. In all configurations, the higher precision has been
obtained in the central vertical trajectory segment, followed by the left vertical
segment, with x = 0.6 m. The right-most horizontal segment, with y = 0.6 m is
the worst one in terms of precision, having oblique segments, most noticeable in
the Configuration 4 measurement, or segments with a totally wrong y coordinate,
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(a) Corridor measure: Configuration 1 (b) Corridor measure: Configuration 2

(c) Corridor measure: Configuration 3 (d) Corridor measure: Configuration 4

Figure 7.4: Position2Go Corridor measured trajectories (in blue) vs. real trajecto-
ries (in black)

most noticeable in the Configuration 3 measurement.
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Figure 7.5: Position2Go set-up for Garden measurements. The orange dot repre-
sents the sensor position, while the blue path is the real trajectory

7.1.3 Environment: Garden

The set-up for these experiments can be seen in Figure 7.5, while all the measured
trajectories can be seen in Figure 7.6.

Differently from the IWR6843ISK outdoor measures, these experiments have
been performed on the University garden, since the experiments on the Terrace
resulted highly disturbed and not usable for the work. This problem led to the need
to perform the experiments in another outdoor environment, comparable with the
Terrace environment utilized for the Texas Instruments evaluation board. Hence,
the choice of the Garden environment, shown in Figure 7.7. The principal difference
between environments is that the ground material is different, having concrete in
the Terrace and garden soil in the Garden, and there are no building nearby the
measurement area in the Garden environment, just the university building behind
the sensor, and another building at the left of the sensor, at a high distance.

The measured vs. real trajectory plots for all the configurations can be seen in
Figure 7.6.

The measurements in this environment are the most precise ones, obtaining the
best results among all the environments in all the trajectory segments. Differently
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(a) Garden measure: Configuration 1 (b) Garden measure: Configuration 2

(c) Garden measure: Configuration 3 (d) Garden measure: Configuration 4

Figure 7.6: Position2Go Garden measured trajectories (in blue) vs. real trajectories
(in black)

from the measurements in the other environments, in all Configurations the positions
associated with the central vertical segment, even if describing straight lines, present
a horizontal offset of about 20 cm in the positive x direction. In addition, the left-
most vertical segment shows measurements with a very high offset of about 40 cm in
the positive x direction. Finally, the right-most vertical segment shows the highest
accuracy.

For what regards the horizontal segments, the one with y = 1.8 m is the most
precise horizontal trajectory segment in all Configurations, while the one with
y = 0.6 m shows positions of the target much more distant than the actual position,
having points with y coordinate equal to 0.1 m or very near to 0 m, showing an
offset of almost 0.6 cm in the worst case.
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Figure 7.7: Garden environment (outdoor) where the Position2Go sensor can be
seen in the top part, while in the bottom part the area where the target walked
can be seen. No walls nearby the experiment area is present, only the university
building behind the sensor, and another building at the left of the sensor at a
high distance, differently from the Terrace environment, where the measurements
resulted very disturbed and not exploitable for the thesis work. In addition, the
ground material is not concrete but garden soil
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Figure 7.8: IWR6843ISK set-up for Laboratory measurements. The orange dot
represents the sensor position, while the blue path is the real trajectory

7.2 Texas Instruments Sensor IWR6843ISK
The results the measurements of the IWR6843ISK board are presented in this
sub-chapter. Differently from the PositionGO board, in the following results the
moving mean has not been applied, since the measurements were much more stable
than those of the Infineon PositionGo board. In addition, no filtering operation
have been performed, since no reflection have been detected as “ghost” targets.

7.2.1 Environment: Lab
The set-up utilized in these experiments is shown in Figure 7.8, while the measured
vs. real trajectories for all the configurations are visible in Figure 7.9.

The segment with the highest accuracy is the central vertical one, e.g., the
segment right in front of the sensor. The other two vertical segments show a
negative x direction offset, with the highest one present in the left-most vertical
segment, especially in Configuration 1 and Configuration 2.

For what regards the horizontal segments, the most accurate one is the segment
with y = 0.6 m coordinate, while the other one experience in all Configurations
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(a) Lab measure: Configuration 1 (b) Lab measure: Configuration 2

(c) Lab measure: Configuration 3 (d) Lab measure: Configuration 4

Figure 7.9: IWR6843ISK Laboratory measured trajectories (in blue) vs. real
trajectories (in black)

a very high positive y offset nearby the curve that leads to the left-most vertical
segment.

7.2.2 Environment: Corridor
The set-up utilized in these experiments is shown in Figure 7.10 while the measured
vs. real trajectories for all the configurations are visible in Figure 7.11.

In this environment, all the vertical segments present a negative x direction
offset, which is the lowest in the central segment and higher in the left-most
segment. Differently from the Laboratory measurements, the horizontal measured
segment at y = 1.8 m presents a lower positive y offset nearby the left-most vertical
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Figure 7.10: IWR6843ISK set-up for Corridor measurements. The orange dot
represents the sensor position, while the blue path is the real trajectory

segment in Configuration 1, while presents no positive y offset in all the other 3
Configurations. Lastly, the lower horizontal segment present a good accuracy in all
the Configurations.

7.2.3 Environment: Terrace
The set-up utilized in these experiments is shown in Figure 7.12 while the measured
vs. real trajectories for all the configurations are visible in Figure 7.13.

In all the Configurations, the whole measured trajectory is shifted in the negative
x direction with respect to the real trajectory, with the highest offset in the left-most
vertical segment. Nevertheless, the central vertical segment presents the lowest offset
among the vertical segments. In all Configurations, similarly to the measurements
performed in the Laboratory, in the horizontal segment at y = 1.8 m there is a
high offset in the positive y direction nearby the left-most vertical segment. Lastly,
all Configurations show a positive y offset in the lower horizontal segment, which
is lower in Configuration 2 and higher in Configuration 4.
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(a) Corridor measure: Configuration 1 (b) Corridor measure: Configuration 2

(c) Corridor measure: Configuration 3 (d) Corridor measure: Configuration 4

Figure 7.11: IWR6843ISK Corridor measured trajectories (in blue) vs. real
trajectories (in black)
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Figure 7.12: IWR6843ISK set-up for Terrace measurements. The orange dot
represents the sensor position, while the blue path is the real trajectory
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(a) Terrace measure: Configuration 1 (b) Terrace measure: Configuration 2

(c) Terrace measure: Configuration 3 (d) Terrace measure: Configuration 4

Figure 7.13: IWR6843ISK Terrace measured trajectories (in blue) vs. real trajec-
tories (in black)
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Table 7.1: Position2Go and IWR6843ISK sensors linear regression, where the
green highlighted entries are the configurations with the lowest linear regression
errors

Location Config. Position2Go IWR6843ISK
Mean Standard Mean Standard
error deviation error deviation
(m) (m) (m) (m)

Laboratory

1 0.100 0.095 0.108 0.081
2 0.085 0.051 0.148 0.118
3 0.121 0.075 0.095 0.066
4 0.053 0.023 0.110 0.091

Corridor

1 0.088 0.047 0.122 0.092
2 0.101 0.100 0.142 0.108
3 0.097 0.055 0.121 0.088
4 0.083 0.067 0.112 0.091

Outdoor

1 0.077 0.060 0.140 0.824
2 0.132 0.114 0.109 0.081
3 0.100 0.067 0.092 0.066
4 0.081 0.074 0.082 0.069

7.3 Sensor Result Comparison
In the following section, the error graphs of the two boards are presented, allowing
us to evaluate and compare the results obtained, in order to understand which
configuration is the best in every environment, and which sensor is the one with
the best performances in the localization and tracking task.

As stated in Chapter 6, four types of evaluation criteria have been chosen in
order to evaluate the sensors performances, with the last one being the relative
location error computed after the minimization.

• Linear regression error : shown in Figure 7.14 the linear regression errors of the
two sensors in all environments divided by configuration. Table 7.1 shows the
numerical values of the Position2Go and IWR6843ISK sensors linear regression
errors.
The Position2Go sensor shows the lowest linear regression error in the Labo-
ratory environment (Configuration 4), while the highest error is reached in
the Garden area (Configuration 2). The IWR6843ISK sensor, which linear
regression errors are slightly higher than the one of the Position2Go sensor,
presents the lowest error in Terrace (Configuration 4) and the highest one in
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(a) Position2Go linear regression errors

(b) IWR6843ISK linear regression errors

Figure 7.14: Environments linear regression errors for the two sensors for all
sensor configurations. The continuous line is the mean linear regression error of the
configuration, while the semi-transparent area is the standard deviation of such
value

the Laboratory environment (Configuration 2).

• Root area error : shown in Figure 7.15 the root area errors of the two sensors
in all environments divided by configuration. In Table 7.2 the numerical values
of the Position2Go and IWR6843ISK sensors root area errors.

The Position2Go sensor shows both the lowest and the highest area error in
the Garden environment with the lowest error in Configuration 1 and the
highest in Configuration 3. The IWR6843ISK reaches both the lowest and the
highest area error in the Laboratory environment, with the lowest one being
in Configuration 3 and the highest in Configuration 1.
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(a) Position2Go root area errors

(b) IWR6843ISK root area errors

Figure 7.15: Environments root area errors for the two sensors for all sensor
configurations. The continuous line is the mean root area error of the configuration,
while the semi-transparent area is the standard deviation of such value

The area error falls within the same range for both sensors.

• Acceleration: shown in Figure 7.16 the acceleration of the two sensors in all
environments divided by configuration. In these plots the scale on the y axis is
not the same for the two sensors, since if otherwise the Position2Go plot would
have resulted not readable, due to the very low values of the acceleration. In
Table 7.3 the numerical values of the Position2Go and IWR6843ISK sensors
accelerations.

The Position2Go reaches the lowest acceleration in the Corridor environment,
in Configuration 2, while the highest value is reached in the Configuration 1
measurement of the Laboratory area. The Texas Instruments sensor presents
the lowest acceleration in the Configuration 1 utilized in the Laboratory
measurement, while the highest one is reached in the Terrace (Configuration 4).
It is worth noticing that the Position2Go achieves in general a lower acceleration
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Table 7.2: Position2Go and IWR6843ISK sensors root area error, where the green
highlighted entries are the configurations with the lowest root area error

Location Config. Position2Go IWR6843ISK
Mean Standard Mean Standard
error deviation error deviation
(m) (m) (m) (m)

Laboratory

1 0.421 0.142 1.046 1.180
2 0.395 0.033 0.475 0.226
3 0.524 0.208 0.305 0.136
4 0.456 0.205 0.506 0.270

Corridor

1 0.677 0.524 0.433 0.216
2 0.408 0.175 0.478 0.316
3 0.527 0.154 0.693 0.781
4 0.495 0.122 0.314 0.060

Outdoor

1 0.358 0.083 0.319 0.084
2 0.377 0.145 0.310 0.070
3 0.859 1.042 0.336 0.076
4 0.378 0.071 0.321 0.043

Table 7.3: Position2Go and IWR6843ISK sensors acceleration measurements,
where the green highlighted entries are the configurations with the lowest accelera-
tion

Location Config. Position2Go IWR6843ISK
Mean Standard Mean Standard
error deviation error deviation
(m/s2) (m/s2) (m/s2) (m/s2)

Laboratory

1 1.058 0.530 1.685 0.273
2 0.741 0.131 1.937 0.444
3 0.807 0.271 1.761 0.389
4 0.882 0.462 1.945 0.278

Corridor

1 0.816 0.402 2.263 0.141
2 0.667 0.134 2.222 0.259
3 0.840 0.358 2.027 0.192
4 1.011 0.616 2.231 0.472

Outdoor

1 0.775 0.174 2.089 0.346
2 0.780 0.337 2.416 0.616
3 0.721 0.251 2.264 0.559
4 0.821 0.388 2.464 1.007
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(a) Position2Go acceleration

(b) IWR6843ISK acceleration

Figure 7.16: Environments acceleration for the two sensors for all sensor configu-
rations. The continuous line is the mean acceleration of the configuration, while
the semi-transparent area is the standard deviation of such value

in all experiments, due to the application of the moving-average filter.

• Minimized relative location error : shown in Figure 7.17 the minimized relative
location errors of the two sensors in all environments divided by configuration.
As shown in Table 7.4, the relative location errors values of the Position2Go
and IWR6843ISK sensors before and after the minimization. The table shows
the original relative location errors vs. the minimized relative location errors
obtained through path translation.
In general, the location errors of the Position2Go sensor are much greater than
the ones present in the Texas Instruments sensor, this is also reflected in the
relative location error re-calculated after the minimization process, where the
highest reduction of this value is reached by the IWR6843ISK, which shows,
for instance, a reduction of the error of the 79.5 % in the Configuration 4 of
the Laboratory measurement.

In Table 7.5 all the evaluation criteria that obtained the best performances
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(a) Position2Go minimized relative location errors

(b) IWR6843ISK minimized relative location errors

Figure 7.17: Environments minimized relative location errors for the two sensors
for all sensor configurations

for the Position2Go sensor in all environments, while in Table 7.6 all the best
performances measurements for the IWR6843ISK sensor. The tables report the
lowest evaluation criteria in every environment, highlighted with the color associated
to the configuration through which the value has been obtained, in order to
categorize them.

From the error graphs of Figure 7.14, Figure 7.15, Figure 7.16, Figure 7.17, and
from Table 7.5, and Table 7.6 it is possible to determine which configuration is the
best in every environment for every sensor. The preferred configuration selections are
based on the majority of vote of the preferred configuration per evaluation criteria.
Since we have four evaluation criteria, if in a particular environment, a configuration
obtains the lowest error for two or more criteria, then such configuration is the
best one in that particular environment. An overview of the preferred configuration
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Table 7.4: Position2Go and IWR6843ISK sensors original location error vs. min-
imized location error, where the green highlighted entries are the configurations
that achieve the lowest minimized relative location error

Location Config. Position2Go IWR6843ISK
Original Min Original Min

error error error error
(m) (m) (m) (m)

Laboratory

1 1.086 0.731 0.528 0.242
2 1.221 0.842 0.506 0.134
3 2.103 1.862 0.513 0.226
4 1.325 0.902 1.048 0.214

Corridor

1 1.417 0.816 1.356 0.608
2 1.046 0.827 1.013 0.274
3 1.561 1.360 1.167 0.482
4 1.474 1.359 1.151 0.400

Outdoor

1 2.279 1.402 0.711 0.266
2 1.419 0.712 1.305 0.586
3 1.470 0.752 1.173 0.723
4 1.537 1.000 1.213 0.900

Table 7.5: Position2Go sensor best measurements per environment, where Config-
uration 1, Configuration 2, Configuration 3, Configuration 4

Location Linear Root Acceleration Relative
regression area location

error error error
(m) (m) (m/s2) (m)

Laboratory 0.053 0.395 0.741 0.731
Corridor 0.083 0.408 0.667 0.816
Garden 0.077 0.358 0.721 0.712

selections for Position2Go can be seen in Table 7.7, and for the IWR6843ISK in
Table 7.8. In the two tables, the preferred configurations are reported in a decreasing
order of importance, e.g., the first configuration is the one with the highest number
of votes, while the last configurations is the one with the least number, or zero
number, of votes.

From Table 7.7, we can see that the Position2Go sensor have two preferred
configurations: Configuration 2 for Laboratory and Corridor, and Configuration 1
for Garden. Additionally, it can be noticed that the Configuration 2 is the second

88



Experimental Results

Table 7.6: IWR6843ISK sensor best measurements per environment, where Con-
figuration 1, Configuration 2, Configuration 3, Configuration 4

Location Linear Root Acceleration Relative
regression area location

error error error
(m) (m) (m/s2) (m)

Laboratory 0.095 0.305 1.685 0.134
Corridor 0.112 0.314 2.027 0.274
Terrace 0.082 0.310 2.089 0.711

Table 7.7: Position2Go best configurations per environment using majority voting
(has the lowest error for at least half of the evaluation criteria). In the Preferred
column, the configurations in decreasing order of votes

Location Best Configuration Preferred
Linear Root Acceleration Relative

regression area location

Laboratory 4 2 2 1 2,1,4,3
Corridor 4 2 2 1 2,1,4,3
Garden 1 1 3 2 1,2,3,4

preferred configuration in the Garden environment, while Configuration 1 is the
second preferred configuration in both the indoor environments. Configuration 3 and
Configuration 4 can be considered the worst configurations, since the latters appears
always in the third or in the last position of the preferred configurations. On the other
hand, the IWR6843ISK has several preferred configurations: Configuration 3 for
Laboratory, Configuration 4 for Corridor, Configuration 1 for Terrace. Additionally,
Configuration 2 is the second preferred configuration in Corridor and Terrace
environments, while is the third preferred configuration in Laboratory environment.
Differently from the case of the Position2Go, it is not easy to say which configuration
is the worst, since the positions of the latter are very variable.

In comparison to the best outdoor configuration, (Configuration 1), the Po-
sition2Go preferred indoor configuration, is Configuration 2 for both Lab and
Corridor environments. This configuration achieves a significantly higher Linear
regression error, and slightly higher values of both Root area error and Acceleration.
In addition, Configuration 2 achieves the lowest Minimized relative location error
in the outdoor environment. From this results, we can say that this configuration
would work well even in outdoor environments, obtaining similar results than the
preferred outdoor configuration. Note that, it is likely that the Linear regression
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Table 7.8: IWR6843ISK best configurations per environment using majority voting
(has the lowest error for at least half of the evaluation criteria). In the Preferred
column, the configurations in decreasing order of votes

Location Best Configuration Preferred
Linear Root Acceleration Relative

regression area location

Laboratory 3 3 1 2 3,1,2,4
Corridor 4 4 3 2 4,2,3,1
Terrace 4 2 1 1 1,2,4,3

error would get worse.
The IWR6843ISK sensor has two preferred configurations in the chosen indoor

environments. In the Lab environment, Configuration 3 is the preferred overall,
while in the Corridor environment, Configuration 4 is the preferred overall. Making
again the comparison with the preferred outdoor configuration (Configuration 1),
we have:

• The preferred Lab configuration for the IWR6843ISK achieves a slightly lower
Linear regression error, slightly higher Root area error and Acceleration values,
and a remarkably higher Minimized relative location error. This means that
this configuration would work well also in outdoor environments. Despite it is
likely to achieve a lower Linear regression error, this configuration would also
result in a significantly higher Minimized relative location error.

• The preferred Corridor environment configuration achieves the lowest Linear
regression error, a slightly higher Root area error, a higher Acceleration, and
an importantly higher Minimized relative location error. This means that the
configuration is not suitable for outdoor environments, since all the evaluation
criteria, except for the Linear regression error, are worse than the actual best
outdoor configuration.

If, instead, we look only at the positions of the configurations in Table 7.8, it
would result that the preferred Laboratory configuration, Configuration 3, would
not work well in outdoor environments, since the latter is in the last position of the
preferred ones, while the Corridor preferred configuration, Configuration 4, would
work well since it is the third preferred configuration for the Terrace environment.

From the results obtained in this chapter, each evaluation criteria of the two
sensors obtain in general similar values, with the exception of the Minimized relative
location error which is lower in the IWR6843ISK, and the Acceleration, which is
lower in the Position2Go. On the other hand, the Position2Go sensor has a higher
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need for post-processing algorithm, e.g., the application of a moving-average on
the measured positions, hence we can conclude that the IWR6843ISK sensor is the
best choice for indoor human localization.

91



Chapter 8

Conclusion

The objective of this thesis work is to introduce and explore the techniques for
human localization and tracking based on sensors in indoor environments, as
opposed to the human tracking performed by GPS in outdoor environments. The
initial step has been to perform a research on the available techniques, followed by
the market analysis of the sensors with the best performances.

The chosen sensors to investigate are the radar sensors, which allowed us to
select two sensor evaluation boards, the Position2Go and the IWR6843ISK, two
sensors that work at different frequencies, particular that encouraged me to perform
the comparison between the two radars.

The main challenge I faced has been choosing the configurations, which then
led to four different configurations for both sensors. The objective of the different
configurations was to understand if the change of the parameters had an impact on
the localization performance, and if such impact would change with the change of
the environments. Once chosen the configurations, three environments have been
selected for the experiments, two indoor environments, the Laboratory and the
Corridor, and one outdoor environment, the Terrace for the Texas Instruments
sensor, and the Garden for the Infineon sensor. The outdoor environment in which
the experiments have been performed is different due to interference problems
faced by the Position2Go sensor in the Terrace environment, a phenomenon that
did not affect the IWR6843ISK measurements. The different outdoor environment,
however, still allows the results comparison, since the characteristics of the outdoor
environments are basically the same: large area without the presence of walls or
ceiling.

All the experiments, have been performed utilizing the original demo firmwares
provided by the producers for both sensors. Differently from the IWR6843ISK,
where the raw measurements data have been utilized, the Position2Go sensor
needed a filtering operation through a moving-average filter of window size five and
an outlier removal step.
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After all the data have been collected, four criteria have been chosen for the
evaluation of those measurements: Linear regression error, Root area error, Acceler-
ation, and Relative location error, where the latter has been then minimized with a
path optimization procedure, which consists of the translation of the full measured
path.

From the evaluation, it was found out that the Position2Go has one preferred
indoor configuration and one preferred outdoor configuration, chosen in terms
of performances of the criteria. In particular, the preferred indoor configuration
results to be the second-preferred outdoor configuration, while the preferred outdoor
configuration results to be the second-preferred indoor configuration. From this
result we can say that the preferred indoor configuration would work well even in
outdoor environments.

On the other hand, the IWR6843ISK has two preferred indoor configurations,
one for the Laboratory and the other one for the Corridor, chosen in terms of
performances of the criteria. If we look only at the votes for the preferred configura-
tions, e.g., in how many evaluation criteria such configuration achieved the lowest
value, it would result that the preferred configuration in the Corridor environment
would work well even in outdoor environments, since this configuration is the
third-preferred one for the Terrace environment.

The Relative location error of the original measurements, is very low in the
IWR6843ISK sensor, compared with the one obtained by the Position2Go sensor.
The self-consistency of the IWR6843ISK sensor is slightly worse than the Posi-
tion2Go sensor in some of the configurations, but more or less the same, from
what is reported in the Root area error. The two sensors obtain the almost same
Linear regression error, while the Position2Go sensor has a better measured Move-
ment smoothness, since the computed acceleration is very low compared to the
IWR6843ISK sensor, due to the moving-average filter application in the data.

From the evaluation performed on the measurements, it results that the two sen-
sors achieve more or less the same performance in the chosen environments, but the
higher need for post-processing algorithms on the measurements of the Position2Go
sensor, e.g., the implementation of a moving-average, make the IWR6843ISK the
best choice between the two sensors. In addition, the results obtained from both
sensors can be improved via post-processing algorithms like the one employed for
this thesis, which translates the measured trajectory depending on the location
error previously computed.

Future developments of this activity could be to perform a fine tuning of the
configurations in order to obtain the best ones for both sensors, to employ more
advanced post-processing algorithms, in order to produce even better results from
the initial data. These algorithms could also include all kinds of techniques related
to the Machine Learning field, like Regression algorithms, Neural Networks or Deep
Networks.
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Another possible development could be to modify the firmware of the sensors,
improving the tracking algorithms employed since the Texas Instruments sensor
shows a more precise software for the tracking task than the Position2Go sensor.
The precision difference between the two sensors has been noticed during the
measurements since the Position2Go radar loses the acquired target more often
than the IWR6843ISK sensor.
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