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Abstract

The recent aspirations for a more sustainable energy system and the reduction of
CO2 have started a transformation in the power networks. Traditionally considered
as passive systems, the power grids are undergoing a rapid change with the intro-
duction of more distributed energy resources. Their introduction requires a better
control of the networks to ensure reliability and avoid energy losses. A technical
consequence of these devices is the increased number of network’s problems, like
over voltages of the lines. These problems could damage the devices connected to
the grid, with social and economic consequences.
This thesis intends to investigate some possible solutions when dealing with the
issues introduced by these grid changes. It also suggests different techniques to
address the challenges of network forecast and control. In particular, to test whether
it is possible to predict and respond in time to solve the voltage problems in the
network system, some machine learning models are implemented to forecast and to
control the network’s devices. Two main learning algorithms are used: supervised
learning, for the forecasting part; and reinforcement learning, for the controlling
part.
The thesis focuses on a medium-voltage network and the analysis of one-year time
series measurements of its devices. The time series are built using the SimBench
dataset, and they are adapted to the MV Oberrhein network in order to have a
real network with realistic time series.
The methods’ results revealed that, starting from the network’s devices measure-
ments, it is possible to forecast the over voltage problems with a certain level of
accuracy and in a similar way control these devices to reduce the number of voltage
issues.





Riassunto

Le recenti aspettative di un sistema energetico più sostenibile e la riduzione delle
emissioni di anidride carbonica hanno dato il via a una trasformazione delle reti
elettriche. Tradizionalmente considerate come sistemi passivi, le reti elettriche
stanno subendo un rapido cambiamento con l’introduzione di un numero sempre
maggiore di risorse energetiche rinnovabili. La loro introduzione richiede un migliore
controllo delle reti per garantire la sicurezza ed evitare sprechi di energia. Una
conseguenza tecnica di questi dispositivi è l’aumento di problemi sulla rete elettrica,
come le sovratensioni delle linee elettriche. Questi problemi potrebbero danneggiare
i dispositivi collegati alla rete, con conseguenze sociali ed economiche.
Questa tesi intende studiare alcune possibili soluzioni nell’affrontare i problemi
introdotti da questi cambiamenti all’interno della rete. Suggerisce inoltre diverse
tecniche nell’affrontare le sfide della previsione e del controllo del sistema elettrico.
In particolare, per verificare se sia possibile prevedere e rispondere in tempo
per risolvere i problemi di tensione nella rete, sono stati implementati alcuni
modelli di apprendimento automatico. Vengono utilizzati due principali algoritmi
di apprendimento: l’apprendimento supervisionato, per la parte di previsione, e
l’apprendimento rinforzato, per la parte di controllo.
La tesi si concentra su una rete di media tensione e sull’analisi delle serie temporali
di un anno dei suoi dispositivi. Le serie temporali sono state costruite utilizzando
il dataset SimBench e sono state adattate alla rete MV Oberrhein, in modo da
avere una rete reale con serie temporali realistiche.
I risultati dei due metodi hanno rivelato che, a partire dalle misure dei dispositivi
della rete, è possibile prevedere i problemi di sovratensione con un certo livello
di precisione e, allo stesso modo, controllare i dispositivi per ridurre il numero di
problemi di tensione.
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Chapter 1

Introduction

The last decade has experienced a rapid growth in the world population, and, in
the following years, the number of people it is expected to increase with a rate of
1.1% for year, reaching 9.7 billions by 2050 [1]. As the world population increases,
so the energy demand does. This high energy demand has required an intensive
usage of fossil energy, causing environmental pollution and changes in the climate.
Indeed, the increase of global temperature and the worsening of the air quality are
posing a real problem for the environment. In the last years, some changes have
been observed in Earth’s climate, primarily driven by human activities, particularly
fossil fuel burning.

The biggest disadvantage of fossil fuels is that during the process of combustion
in addition to energy, greenhouse gases (GHG) are emitted [2].
These gases form a cope in the atmosphere, similar to glass in greenhouses, that
traps the heat, increasing the Earth’s temperature.
For around a century, humans have relied on fossil fuels, like oil, natural gas and
coil for everyday tasks: heating, transportation and to produce electricity. For
this reason, the GHG emissions have reached historical peaks and are expected to
increase in the following years [3]: in the year 2020, the concentration of CO2 in
the atmosphere had risen to 48% above its pre-industrial level (before 1750).

In order to improve the situation, the 2015 Paris Agreement set an ambition
to limit global warming to well below 2 °C above pre-industrial levels and pursue
efforts to limit it to 1.5 °C - in part by pursuing net carbon neutrality by 2050. The
substantial reduction of global greenhouse gas emissions (including CO2) would
limit the increase of global temperature [4].
Countries were asked to go through a process of decarbonisation: the reduction of
carbon dioxide emissions through the use of low carbon power sources.
These sources convert the energy coming through naturals elements (sun, wind,
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geothermal heat) in another form of energy, electricity for example, with low or no
waste products such as CO2 or other chemical pollutants.

Annual CO₂ emissions
Carbon dioxide (CO₂) emissions from the burning of fossil fuels for energy and cement produc�on

20201750 1800 1850 1900 1950
0 t

5 billion t

10 billion t

15 billion t

20 billion t

25 billion t

30 billion t

35 billion t

Source: Global Carbon Project OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY

Figure 1.1: World CO2 production over the years [5].

Thanks to this emerging trend of decarbonisation, more and more renewable
power energy devices are introduced in the distribution networks [6]. With the
advantages of inexhaustibility and low impact on the environment, the high pene-
tration of these renewables devices bring in some technical complications for the
transmission and distribution of power in the grids.
The networks, that have been designed around the conventional centralized energy
production, have to adapt to the new generators in the system. The distribution
networks are moving from unidirectional power flow (from the distribution system
to the consumers) to a bidirectional power flow (in this case the consumers are
also producers and the exceed energy can be transported from the consumers to
the distribution system. They are also known as prosumers [7]). This switch from
unidirectional to bidirectional power flow requires a smarter system that can handle
in an efficient way the generation and distribution of energy.

In the literature, this smarter way to control a power grid is known as active
network management (ANM) and it refers to the design of control schemes that
control the distributed energy resources (DERs), the loads, and the distributed
energy storages (DESs), as well as other elements like switches, connected to the
grid.
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Introduction

1.1 Aim of the thesis
The aim of this thesis is to exploit data-driven approaches to forecast and control
the future nodes’ voltage problems based on historical measurements in a medium-
voltage distribution system using machine learning techniques, with a particular
focus on deep artificial neural networks. The objectives of this thesis are to:

I) Build a time series dataset that is used to train the machine learning models.
A real medium-voltage network from the Pandapower python library is used.
This network is fit with time series taken from the SimBench database, a
database generated by the measurements of real loads and generators from
Germany.

II) Predict the voltage fluctuation problems in the network under a supervised
learning framework. The three artificial neural networks used are: a multi layer
perceptron, a convolutional neural network and a recurrent neural network.
Three combinations of network information are tested, and some techniques
for unbalanced datasets are examined as well.
Different combinations are used since the network operator can have access
to a limited amount of data, so the performances for each combination are
reported.

III) Control the active and reactive power of the network’s generators using rein-
forcement learning framework. The model used is a deep deterministic policy
gradient algorithm that allows to work with continuos state and action space.
The agent changes the generators’ output in order to keep the voltage magni-
tude of the network’s buses inside a safe voltage range.

Predicting the contingency problems and controlling the network’s devices would
allow reducing possible consequences related to voltage issues, like for example over
voltages problems.

1.2 Thesis outline
The document is organised into six chapters.

Chapter 2 provides the background information needed to understand this thesis’s
work, in particular in 2.1 it is presented a short description of how power networks
work, an important calculation in power networks: the power flow; and some
observations on voltage problems. In 2.2, it is presented an overview of machine
learning, with emphasis on artificial neural networks. In 2.3 a description of the
concepts of supervised learning, the models and evaluation metrics used in this
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thesis. Moreover, some techniques to handle unbalanced datasets are presented.
In 2.4 a description of the concepts of reinforcement learning, a model and some
evaluation metrics is presented.
After an introduction of the different terms and concepts, the literature review is
proposed in 2.5.

Chapter 3 provides the information about the use case studied. In particular, the
description of the MV Oberrhein network is presented in 3.1, an overview of the
SimBench database in 3.2 and how the time series are selected in 3.3.

Chapter 4 provides the main development of the project. The problem is defined
in a rigorous way in 4.1. In 4.2 the solving methodology is proposed with the
description with the forecast of possible over voltage situations and the control the
network’s devices in order to avoid these situations.

Chapter 5 provides the results of the different combinations of the forecasting
part in 5.1 and of the controlling part in 5.2. A discussion of the values obtained is
presented as well.

The thesis ends with chapter 6 that provides the conclusion and a discussion on
some possible future works.
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Chapter 2

Background

In this chapter an overview of power systems is presented followed by a description
of supervised and reinforcement learning concepts. Finally, the literature review is
proposed.

2.1 Power system
Nowadays, electricity is given for granted and that flipping the switch will turn
the light on instantly and effortless. But electricity performs a long journey before
arriving to houses or where it is consumed. To reach its destination, electricity
circulates in power networks or power systems.

2.1.1 Description of a power system
A power system is a complex infrastructure that produces and distributes electricity
to different consumers. A power network consists of generation, transmission and
distribution system and each of them has a different function.

In the traditional power system, electricity is generated in large, centralised
power plants. The electricity is then transferred to the loads using the transmission
and distribution networks. Transmission substations are located near the power
plants. Their main function is to increase the voltage level to high and extra-high
voltages levels. The reason for power transmission at high and extra-high voltage
levels is to increase efficiency. The lower current that accompanies high-voltage
transmission allows thinner and lighter cables to be used. This reduces the construc-
tion costs of towers and power lines. In Belgium, high and extra-high voltages refer
to voltage magnitudes 36kV ≤ |V | < 380kV for the high voltage and |V | ≥ 380kV
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for the extra high voltage [8].
Large industrial complexes and factories that require a substantial amount of
power often utilise medium supply voltages. The high voltage coming from the
transmission lines is sent to the primary substation, this can supply step-down
power to secondary substations or to single buildings. Secondary substations can
have transformers to further step-down the power, and they are generally located
in areas that can serve one or more buildings. Medium voltages refer to voltage
magnitude 6kV ≤ |V | < 36kV .
Then the medium supply power is step down again to a low voltage and sent to
the domestic household or home appliances power supply. Low voltages refer to
voltage magnitude |V | < 6kV .

Figure 2.1: Typical Power network distribution [9].

These power networks include many elements and devices that are needed to
generate, transport and assure that there are no problems in a network.
These elements are:

• Generator. These generate electricity starting from a different form of energy.
In general, electricity is produced when a magnet rotates within closed loops
of wire to create a steady flow of electrons.
For this reason, many generators produce energy using turbines: a fluid spins
the generator’s blades, producing electricity. This fluid, either water or air,
can derive from natural sources: hydroelectric, wind or geothermal turbines,
or generated by combustion of some fuel, for example coal, natural gas, oil or
nuclear source.
There are other generators that do not need a turbine to generate electricity,
for example solar panels.

• Lines. These transport the power from where energy is generated to where
it is consumed. These lines have to be long enough to reach any destination.
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One of the main issues about transportation lines is insulation.
There are different types of lines: overhead cables, they use air to insulate the
bare conductors, or underground cables. For latter cables, particular attention
must be taken to insulate them from other conductors and from the earth
(ground). Also, the material used must be resistant to damages, corrosion,
and it must avoid that the water is being absorbed.

• Transformers. Transformers are used to interlink systems operating at dif-
ferent voltages. These can increase the voltage magnitude near a generator
power plant or decrease it near the consumptions facilities.
Changing the voltage magnitude allows reducing the power loss due to trans-
portation. One of the main causes of power loss is the Joule effect: some part
of the energy transmitted is converted in heat generated by the current flowing
through a conductor. This power lost is given by the equation P = RI2,
where R is the resistance and I is the current through a line, so decreasing
the current reduces the energy loss.

• Loads. These are electric components that consume the electric power
generated by power plants. The types of loads can be divided base on the
consumption in:

Domestic loads, the domestic loads mainly consist of lights, fan, refrigera-
tor, air conditioners, mixer, grinder, heater, ovens, small pumping, motor,
etc. The domestic loads consume very little power.
Commercial loads, the commercial loads mainly consist of lightning, fans,
heating, air conditioning and many other electrical appliances used in
establishments such as markets, restaurants, shops. This type of load
consumes energy for more hours during the day as compared to the
domestic load.
Industrial loads, the industrial loads refer from a small-scale industry, to
a heavy industry. Industrial loads may be connected during the whole
day [10].

2.1.2 Power flow
An important procedure in power systems is to perform a numerical analysis to
determine the electrical state of the network, starting from some parameters that
are known. This analysis is called power flow (PF).
The objective of a PF study is to calculate the voltages, magnitude and angle, for a
given bus, load, generation device. After this information is known for all elements,
line flows and losses can be calculated.
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A bus is a node of the network where a line or several lines are connected to.
Loads and generators can be connected to it as well. There are different types of
bus:

• Slack bus. It is taken as a bus reference, where the magnitude and phase angle
of the voltage are specified. Slack bus magnitude considers 1 p.u. and the
phase angle 0 of degrees. This bus provides the additional real and reactive
energy to cover the demand.

• Load bus or PQ bus. At these buses, the real and reactive powers are specified.
The buses’ magnitude and phase angles are unknown until the final solution
is obtained.

• Voltage controlled bus or PV bus. Instead, at these buses, the real power and
voltage magnitude are specified, and the phase angles of the voltages and the
reactive power are known only after the final solution is obtained. The limits
on the value of reactive power are also specified.

Solution techniques

Defining and solving the PF equations are the main tasks in load flow analysis.
The definition of the PF equations is based on Ohm’s Law, which is the relationship
between voltages and currents. For a network, it can be expressed in matrix
notation as follows:

I = Y × V

Where:

• Y is the bus admittance matrix

• V is an array of bus voltages

• I is an array of bus current injections

The PF formulation is based on the application of Kirchhoff’s laws to meshed
electric networks. The concept of the PF calculation is that the sum of all flows
into each node is equal to the sum of flows flowing out.
The flows equations are in complex form, they consist of real and reactive compo-
nents. That means that if there are n nodes, then there are n complex equations.
Solution methods for this system of equations are primarily iterative with the
objective of reducing the sum of flows in all nodes to some acceptably small value
known as the mismatch tolerance.

All these iterative methods follow the same basic concept: they assume starting
values for the dependent variables, primarily voltage at nominal voltage magnitude
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(i.e. 1 p.u.) and zero phase angle; compute new values for those voltages using
the nodal network equation or a numerical approximation and repeat until the
convergence criteria are met.

Convergence

The PF is a non-linear and non-convex numerical analysis, with a large number of
constraints and variables. It is, therefore, a hard problem, whose cost of finding
a solution can increase exponentially, particularly with the increasing size of the
network. Moreover, there is no guarantee to find the global optimum.
When a solution exists, and it is reached, it is said that the network has converged.
The calculation has converged when all nodes have met the mismatch tolerance.
The main PF solution methods are:

• Gauss-Seidel method updates the voltage one node at a time until all nodes
are within the mismatch tolerance.

• Newton-Raphson method uses a first order expansion of the PF equations to
approach convergence. It is generally faster than the Gauss-Seidel method and
able to converge to small tolerances. This method is prone to divergence,
when mismatches increase instead of decrease from iteration to iteration. This
occurs when the solution vector exits outside the feasible solution space at any
point during the algorithm. As soon as the solutions are outside the feasible
space, the gradient tends to further increase mismatches, leading to solutions
that “blow-up” in the numerical sense.
This method requires calculating the first order approximation matrix, known
as the Jacobian.

• Interior-Point Newton method forces the solution inside feasible space to avoid
divergence. The interior point method uses a second order expansion of the PF
equations to find a solution. The method is more computationally intensive
than either the Gauss-Seidel or Newton-Raphson, but is less susceptible to
numerical divergence [11].

Divergence

Divergence is the condition of the power network when the numerical solution can
not be found any more due to some possible issues:

• the power system is going to “blow-up.”

• the power system is in voltage collapse.

• the power system is unstable.
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• the initial conditions defined were bad or poor.

• some issues related to software or input data.

Divergence of the PF solution is usually associated with the singularity of the
Jacobian matrix. Since some methods require an inverse of the Jacobian as part of
its solution algorithm, singularity of the Jacobian means division by zero [12].

2.1.3 Voltage problems in power systems
The power systems are highly secure, but they are far from perfect, and some issues
may arise at any moment, for example voltage problems. Voltage problems arise
when the voltage through a line or a device is more or less than what it is expected.
These cases should be handled correctly. There are two voltage problems that can
raise on a network: under and over voltage problems.
Generally, electronic devices have defined voltage limits to work in safety conditions.
The voltage magnitude in the different parts of a network is not always constant
during time, but it fluctuates. These fluctuations, both positive and negative,
can be large: when negative, the voltage can drop below the device’s minimum
allowed voltage limit, in this case there would be an under voltage problem; or
when positive, the voltage can increase above its maximum, in this case there would
be an over voltage problem.

The voltage control problem has been studied for years, but it only came under
the spotlight in the last years for the increasing number of distributed resources
introduced in the networks.
The introduction of more and more DER devices in the networks increases the
number of voltages problems, in particular over voltage problems. These devices
generate electric power and when this power is greater than the energy consumed,
the extra energy is emitted back in the network.

For this reason, it is important to control the voltage in an electrical power
system for a regular operation of the electrical equipments. It can prevent damages
such as overheating of devices and lines, reduce transmission losses and maintain
the ability of the system to last and avoid voltage collapses. Over voltages other
than shorten the lifetime of equipments have a negative impact on the stable
operation of both supply side devices and demand-side appliances.

A possible way to control and manage the voltage on the network to avoid voltage
problems and to ensure its stability is active network management (ANM). Indeed,
the principle of ANM is to address congestion and voltage issues via short-term
decision making policies [13].
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ANM creates a smarter network infrastructure providing automated control of
various components in the network and provides the information needed to ensure
that every device performs in an optimal manner. This control allows grid companies
to avoid the traditional approach of reinforcing the network with expensive upgrades;
so reducing the costs. For example, in case of energy generation, from the renewable
devices, higher than what a particular line can handle, a grid company, to avoid
congestions and possible overvoltages, has three main options:

• Replace the existing line with a line that can handle a higher voltage. This
usually means replacing the existing line with a cable with a larger cross-
sectional area.

• Add another parallel line.

• Handle the situation with ANM.

The first two solutions require some infrastructure investment that can be expensive
and troublesome, especially in the case of overhead or underground lines.
The solution with ANM does not require construction cost for the grid company;
to keep the network working, in this case, the output of the renewable devices can
be curtailed, or the reactive power modulated to reduce lines’ overloading.

The control voltage problem has some interesting properties:

• It is a combination of local and global problems: the voltage at each node is
influenced by the powers of all other nodes, but the impact depends on the
distance between them.

• It is a constrained optimisation problem with many constraints, for example
to keep the voltage in a given range, and the objective is to minimise the total
power loss.

• Voltage control has a relatively large tolerance, and there are no severe
consequences if the control fails to meet the requirements for short periods of
time. [14]

• It is a hierarchical problem where the information available can be represented
as a pyramid: much information is available at the top of the pyramid
(distribution stations and substations) and it decreases at the base of the
pyramid (houses, factories) mainly due to the absence of many sensors.
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2.2 Machine learning overview
Machine learning is a subset of artificial intelligence that trains a machine to learn.
In particular machine learning is the study of how a computer algorithm improves
its performances at some task through experience or more precisely:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance P, if its performance at tasks in

T, as measured by P, improves with experience E [15].

where generally, in a machine learning problem, T is a task too complex to be
solved with human written algorithms.

Machine learning differs from the traditional computer science methods. In
traditional approaches, algorithms are sets of explicitly programmed instructions, or
rules, used by computers to solve a problem. Machine learning algorithms instead
allow computers to train on data inputs and use statistical analysis in order to
output values or answers.

Traditional
Programming

Rules
Data

Answers

Machine
Learning

Rules

Data

Answers

Figure 2.2: Difference between traditional programming and machine learning
approach.

Figure 2.2 shows the main difference between traditional methods and machine
learning approach: when solving a problem, traditional programming required
someone (usually an expert in the field) to generate some rules that would be used
to get answers from the input data; while in machine learning the model tries to
find some rules that link the input data and the output data (or answers). Machine
learning approach has demonstrated to outperform humans in finding this kind of
rules, moreover no real expert is required.

In machine learning, tasks are classified into some categories. These categories
are based on how learning is received or how feedback on the learning is given to
the system developed. There are three main types of machine learning algorithms:
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supervised, unsupervised and reinforcement learning.
This thesis focuses on supervised and reinforcement learning.

2.2.1 Artificial neural networks
Nowadays, a popular approach to solve machine learning problems is to use artificial
neural networks (ANNs), whose main elements are the neurons.

ANN is a computational model that consists of several processing elements that
receive inputs and deliver outputs based on their predefined activation functions.
They have been proved to provide a strong approach to approximate functions in
order to solve continuous and discrete problems.

They have been inspired by the biological neural networks that constitute animal
brains. For the first time, in 1943 Walter Pitts and Warren McCulloch published
a paper with the mathematical modelling of a neural network. They thought a
human neuron cell as a threshold logic unit working together with other neurons
to build a complex system: a neuron cell collects multiple signals arriving at the
dendrites, elaborate them and if the accumulated signal exceeds a certain threshold,
an output signal is generated that will be passed on by the axon [16]. So, the idea
behind ANNs is to link many simple units (neurons) to develop a more complex
system (brain).

Figure 2.3: Representation of a biological neuron (left) and its artificial equivalent
(right).

Perceptron

The simple unit in an ANN is called a perceptron. The perceptron is a mathematical
function that takes some inputs, weights them separately, sums them and pass the
sum through a nonlinear function to produce an output.
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This mathematical function can be written as follows:

o(x1, x2, ..., xn−1, xn) = f(
n∑

i=0
wixi + w0) (2.1)

where n is the number of connected neurons, xi is the input from the neuron i,
wi is the weight that determines the contribution of input i, and f is a nonlinear
function. A possible example of the function f is:

f(x) =
1 if x > T

−1 otherwise

with T a real value representing the threshold that x has to surpass for the function
to output 1. In the formula 2.1 the threshold T is given by the value w0.

A single perceptron can be used for binary classification tasks: it builds a
hyperplane that separates the data, and outputs giving a value between -1 and 1
whether a point is on a side of the hyperplane or on the other side. The perceptron
can find a hyperplane in any n-dimensional space as long as this decision boundary
exists; this happens if the data points are linearly separable.

Figure 2.4: Example of linearly separable data. The two lines are some possible
representations of hyperplanes that divide the data [17].

The weights’ values are generally initialised randomly, and their values are
changed during training using the perceptron training rule where each weight wi in
w is changed according to:

w = w + ∆w
∆w = α(t − o)x

(2.2)
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where x are the inputs, o the outputs of the perceptron, t the target outputs and
α is a scaling factor called learning rate, used to reduce the change of the weights
w at each step. Equation 2.2 assures convergence under the specific condition of
the linearly separable training samples.

A better training rule is the delta rule that uses the gradient descent to find
the weights that best fit the training examples. This training rule requires the
definition of a loss function L that has to be differentiable.
This loss function is used to calculate the derivative of the loss w.r.t. to the weights:

∇L(w) =
[

∂L

∂w0
,

∂L

∂w1
, · · · ,

∂L

∂wn−1
,

∂L

∂wn

]
(2.3)

where ∇L(w) is the gradient of L w.r.t. the weights w. Geometrically, ∇L(w) is
a vector in the weights’ space that represents the steepest increase in L. So, the
formula 2.2 is updated as follows:

w = w + ∆w
∆w = −αL(w)

where α is the learning rate and the minus sign is used to move towards the
direction that minimise the loss L.

This gradient descent rule is the base of the backpropagation algorithm com-
monly used when training deep artificial neural networks.

Perceptrons are the basis for more complex models like for example: multi layer
perceptrons, convolutional neural networks and recurrent neural networks.

2.3 Supervised learning
In supervised learning, the goal is to learn a function that maps an input X to an
output Y based on example input-output pairs and applying this learnt function
to predict the output of future unseen data.

2.3.1 Formal definition
In a supervised learning problem, the goal is to find a function f : X → Y , from a
sample data Sn composed by pairs of (input, output) points:

Sn = ((x1, y1), . . . (xn, yn)) ∈ (X × Y )n
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Typically, xi ⊂ Rn and yi ⊂ R for regression problems or yi discrete for classifica-
tion problems, for example yi ∈ {−1,1} for binary problems.

In the statistical learning settings, an important hypothesis is that the training
data is independently and identically distributed (i.i.d.) from a probability dis-
tribution function P (X, Y ). The term i.i.d. means that the random samples are
chosen: independently, the samples are considered as independent events, having
the value of one sample does not give information about the other samples; and
identically distributed so the probability of choosing one sample or another is the
same, all the samples are equally likely to be chosen.
The goal of the learning is to find a mapping function f that can encode the
property of P (X, Y ) between the inputs X and the output Y.

Another important concept is to evaluate how well the function f performs,
calculating the error or loss between the predicted values f(x) and the actual value
y. This error is evaluated with a loss, or cost, function L : Y × Y → R+. There
are many loss functions depending on the problem and requirements, one example
is the mean absolute error (MAE) loss function:

L(f(x), y) = 1
N

N∑
i=0

|f(xi) − yi|

Many supervised learning algorithms consider the minimisation of this loss func-
tion as an optimisation problem to find the best predictor among all the possible
candidate input-output mappings in the solution space B.

With the loss function L(x, y), the definition of risk of the function f , also called
generalisation error, must be introduced:

R(f) =
∫

L(f(x), y)) dP (x, y).

The objective is to find the function f in B that minimises the generalisation
error, R(f). Since it is not possible to solve R(f), because of the joint probability
distribution P (x, y) is unknown, f inferred from available data set Sn.

Given this loss, a way to minimise it, especially with ANN is calculation the
gradient of the loss w.r.t. the weights and then back propagate the gradient to
change the weights’ value.

2.3.2 Models
In this section is reported the main ANNs used for the forecasting part where the
models are trained under a supervised learning framework.
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Multi layer perceptron

As mentioned in 2.2.1, perceptrons can express only linear decision boundaries.
To solve this problem, it is possible to use more perceptrons to represent more
complex decision surfaces.

Multi layer perceptron (MLP) networks are constructed by many perceptrons.
These perceptrons are organised in layers: there are always at least two layers,
input and output layer, and one or more hidden layers; from here the term multi
layer perceptron. Each layer is composed by many neurons and each neuron in one
layer is connected to all the neurons in the next layer, so the information from the
input layer is propagated to hidden layers and then to the output layer. These
models are also known as deep neural networks (DNNs) since the networks’ hidden
layers make the models "deep". The output of a layer, before being propagated
to the next layer, passes through a non-linear activation function, for example
the Rectified Linear Unit (ReLU), the Sigmoid function or the hyperbolic tangent
function (Tanh). The non-linearity of the activation function is needed since it
introduces more complexity to the model; summing operations of many linear layers
is still a linear operation, so, in such case, a deep network would perform similarly
to a single layer network.

The main idea behind stacking many layers is that each layer represents a
boundary region, that it will pass to another layer to represent an even more
complex boundary region. Using many layers, it is possible to represent very
complex decision boundaries. This sequence of operations can be written as follows:

f(x) = f (n)(f (...)(f (1)(x))) (2.4)

where n is the number of hidden layers, f (n)(x) is the boundary representation
at the last hidden layer before the output layer, f (1)(x) is the decision boundary
representation at the first hidden layer after the input layer. The result composition
of all these functions, f(x), is the mapping function that can solve the requested
problem. Equation 2.4 can be viewed as a chain, where the output of the first
decision boundary is propagated to the next decision boundary function up to
the final hidden layer and then to the output layer to get the predictions. This
propagation is known as forward propagation.

The weights in a MLP are updated with formula 2.3. This process in called
backpropagation, since the after calculation of the loss, the gradient of the loss
w.r.t. each weight is propagated back through all layers.
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Convolutional neural network

Convolutional neural networks (CNNs) are a particular type of ANN that process
data with a grid-like topology. These kinds of networks are usually used with
images, considering an image as a 2D matrix of pixels or for with time series,
considering a time series as a 1D structure.

The term convolutional comes from the usage of a mathematical operation
called convolution. Convolution is a linear operation that involves two functions
(or matrices in the discrete case), x and w:

(x ∗ w)(t) def=
∫ ∞

−∞
x(τ) · w(t − τ)dτ (2.5)

where ∗ is the sign for the convolution and · is the sign for the dot product.
The output of this linear operation, given by the input x and the weights w (also
called kernel or filter) is referred to as feature map.

The main idea is to convolve the input, for example an image, with a filter of
size f . The filter is applied to an area of the image, and the dot product between
the that portion of the input image and the filter is computed. Then the filter is
shifted to the next portion of the input image, and this way the dot product is
calculated for the full width and height of the input.
Since the convolution is a linear operation, the output of the convolution must go
through a non-linear activation function, usually ReLU in the case of CNNs.

The output of a convolutional layer is passed to a pooling function. This pooling
function aggregates the output of the convolutional layer at a certain location with
a number that statistically represents their values. This allows to reduce the data
dimensionality, to shorten the training time and to reduce overfitting.
Usually, the most common pooling function are max pooling, which takes the max
value of the window, or average pooling, which averages the values of the window.

With these series of operation, a single convolutional block can extract some
important features from the input data. Generally, many convolutional blocks are
stacked together so that each of the next block can represent more complex and
specific features.
The output of the last block is flatten and passed to one or more fully connected
layers to get the final prediction (in case of a classification task).
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Figure 2.5: Graph representation of a CNN. It is possible to notice some convolu-
tional and pooling layers (left) and the final fully connected layer (right) [18].

CNNs have shown to perform very well on some task, especially image classi-
fication, and their main advantages are lower number of weights compared with
a MLP network and the ability to automatically learn how to extract important
features.

Recurrent neural network

Recurrent neural networks (RNNs) are a particular type of ANN that work well
with time series data or data that can be represented as a sequence. RNNs use
the output of the network units at time t as the input of the other units at time t+1.

Generally, RNNs are represented as follows:

xt
RNN

ht

yt

Figure 2.6: Graph representation of a RNN.

where x is the input, the RNN rectangle is the recurrent network block and y is
the output of the model. The arrow coming out and back in the RNN block is
what the term recurrent refers to: after receiving an input, at time xt the RNN
computes some operation and a hidden state, ht, is saved and used for the next
input, at time t + 1.
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Mathematically, this process can be represented with the following formula:

ht = fW (ht−1, xt)

where fW is a function that takes as input the hidden state of the previous time
step ht−1 and the input at the current time step xt and it outputs the hidden state
at the current time step ht. At the next time step t + 1, the previous hidden state
ht would be passed with the next input xt+1 to fW and so on until all the input
time steps are consumed.

An important concept to notice is that the function fW depends on some
weights W , and these weights are shared for every time step of the computation.
For example, the function fW can be represented as:

fW = Tanh(Wh · ht−1 + Wx · xt)

where Tanh is the hyperbolic tangent function, Wh is the matrix of weights that
multiplies the hidden state ht−1 and Wx is the matrix of weights that multiplies
the hidden state xt.

Long Short-Term Memory networks

A popular problem with RNN networks is exploding or vanishing gradient. Due to
the recurrent nature of the model, during backpropagation, the partial derivatives
generate chains of matrix multiplications. In case of large derivates, the gradient
increases exponentially, resulting in too large values to be handled by a calculator;
this is often referred to as exploding gradient. In the opposite case, if the gradient
is small, the gradient decreases and the model would stop learning; this is often
referred to as vanishing gradient.

A model that can solve these gradient problems is the Long Short-Term Memory
(LSTM) networks. They were designed to handle the long-time dependency of the
input. The main difference between a simple RNN and a LSTM network is the
complexity of the hidden block: while in a RNN there is only a Tanh function, in a
LSTM there usually is the Tanh function and as well some Sigmoid functions.
This more complex model allows the network to keep in memory (as a hidden state)
or forget some information that are considered as not too relevant [19].

2.3.3 Evaluation metrics
An important part of a machine learning problem is to evaluate whether a model
performs well or not. There are many ways to evaluate a model, these are commonly
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referred to as evaluation metrics.

The evaluation metrics differ from task to task. There are many specific evalua-
tion metrics for classification problems. Some of the most common are presented
in this section.

Some terms have to be introduced. During classification, there are four outcomes
that can occur:

• True positive (TP): when the result of a test tells that a subject belongs to
a particular class (its result is positive), and it actually belongs to that class
(the result is true, correct).

• False negative (FN): when the result of a test tells that a subject does not
belong to a particular class (its result is negative), but it actually belongs to
that class (the result is false, wrong).

• True negative (TN): when the result of a test tells that a subject does not
belong to a particular class, and it actually does not belong to that class.

• False positive (FP): when the result of a test tells that a subject belongs to
a particular class, but it actually does not belong to that class.

When a test is wrong (either FP or FN) a misclassification occurs. The evaluation
metrics try to quantify how well a model performs, elaborating how many miss
classifications were done.

Accuracy

Accuracy measures how often the model classifies correctly. Accuracy is defined
as the ratio between the number of correct classifications and the total number of
predictions.

accuracy = correct predictions
total predictions = TP + TN

TP + TN + FP + FN

Recall

Recall, also called sensitivity or true positive rate, gives the proportion of positive
cases correctly identified by the tests. Recall is defined as the ratio between the
positive subjects correctly identified and the total number of positive subjects.

recall = TP

TP + FN
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Precision

Precision gives the proportion of correct positive tests and the number of all tests
whose result was positive.
Precision is defined as the number of true positives divided by the number of
predicted positives.

precision = TP

TP + FP

Trade-off recall precision

Generally there must be a trade-off between recall and precision, or equivalently
between the number of false negative and false positive, since increasing the recall
(precision) would decrease the precision (recall).

This trade-off is even more important when a misclassification would be worse
than the other: predicting a subject to have an illness, but actually it is sane (FP)
or predicting a subject sane, but actually it has an illness (FN). In this medical
case, FN would be a worse case, since the illness of the subject would not be treated
while FP would have only to take some medications.
In general, the trade-off depends on the task and there is not a specific way to tell
a priori if FP is a better case than FN.

F1-score

There are other situations where having FP or FN does not change much, they are
equally important.
In these cases, it is often convenient to combine recall and precision in a single
evaluation metric. It is defined by the harmonic average of the recall and precision.

F1−score = 2 · precision · recall

precision + recall

2.3.4 Unbalanced dataset
Unbalanced datasets are common in real life classification problem. An unbalanced
dataset is a dataset where a class is unrepresented w.r.t. the other classes; so
the classes’ distribution is not even. As it usually happens, the observations in
the minority class are the most important and the problem is more sensitive to
misclassification of that class: fraud detection, for example.

Generally this is a difficult problem since some models may not generalise well:
the model receiving more observation of a class tends to be more biased towards it
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and fails to understand the patters that separate the classes.
In these cases, it is also important to consider which evaluation metric to use.
Accuracy metric, in general, is not a meaningful metric, since the model predicting
every observation as belonging to the over-represented class would get a high score.
More meaningful metrics are precision, recall or an average of the two, for example
F1-score.

There are few methods to solve or mitigate the unbalanced dataset issue. Some
of them will be reported here:

• Resample the dataset: this can be done, increasing the number of observations
in the minority class (oversampling) or decreasing the observation in the
majority class (undersampling).
The two main methods to resample the dataset are described in the following
part:

– Undersampling: the main idea is to reduce the number of instances in the
majority class to the underrepresented class’ level.
This is usually done with a random downsampling, randomly discarding
samples.

A possible problem with this technique is that it does not care to discrim-
inate importance that the different observations may have.

There are some other more informative techniques like for example nearest
neighbours algorithms that try to include samples from every cluster in
the majority class.

Figure 2.7: Undersampling technique [20].

– Oversampling: opposite to undersampling, its main idea is to increase the
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number of instances in the minority class.
This is usually done generating synthetically observation of the underrep-
resented class base on the available data.
Some popular techniques include Variational Autoencoders (VAE), SMOTE
(Synthetic Minority Oversampling Technique) or MSMOTE (Modified
Synthetic Minority Oversampling Technique).

Figure 2.8: Oversampling technique [20].

In this thesis, the method SMOTE will be used. SMOTE generates
synthetic samples of the minority class. The main idea is to find examples
that are close in the feature space, draw a line between them, and then a
new sample is chosen on that line. In particular, a random sample from
the minority class is chosen, some other k samples are chosen close to it
(usually k=5, and they are chosen using k nearest neighbor algorithm),
among these k, one is selected randomly, and then a synthetic element is
created on the line that links the two selected samples.

• Penalise misclassification: the idea is to penalise misclassification of the
minority class more than the majority class. In this way the model should
put more focus on the underrepresented observation since a penalty in case of
error is larger than the major class error.
These penalties are commonly referred to as weights, and finding the right
weights’ values is usually challenging. Commonly, the weights are calculated
as follows:

wi = total_samples

num_classes · num_samplesi

where wi is the weight for class i, total_samples is the number of total
samples available, num_classes is the number of unique classes (2 in a binary
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classification task), num_samplesi is the number of sample belonging to class
i.

2.4 Reinforcement learning
Reinforcement Learning (RL) is a machine learning technique that tries to solve a
problem in which a decision-maker, agent, can perform some actions inside a world,
called environment. The agent senses the environment through the state and for
each state the agent has to perform an action. These actions have two results: they
change the agent’s state and give him a feedback, the reward. The reward is a
value which indicates if the action performed is good, then the reward is positive,
or it is bad, the reward is negative. Given these rewards, the agent understands
what action to perform in a given state to get a positive reward. This cycle of
state-action-reward is repeated many times. The goal of the agent is to find a
policy such that the actions performed lead to the maximum reward possible.

RL has become popular in the last years thanks to results obtained in some
game environment like, Backgammon ([21]), Atari games ([22]), Go ([23]) but also
robotics ([24]), self-driving cars, finance and other fields ([25])

2.4.1 Formal definition
Reinforcement learning can be formulated as a Markov decision process (MDP),
indeed a MDP express the problem of sequential decision-making, where for each
state s, the decision maker can choose any action a available in that state s. The
process responds by moving with some probability to the state s′ and giving the
decision maker a reward Ra(s, s′).
The MDP is defined as a tuple of 4 elements (S, A, P, R), where:

• S is a set of states, called the state space.

• A is a set of actions, called the action space.

• P is the probability from state s, at time t, of reaching state s′, at time t + 1
with action a:

Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)

• Ra(s, s′) is the immediate reward received after transitioning from state s s to
state s′, due to action a; so the reward at time t, also rt.

The state and action space may be finite or infinite.
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The MDP is controlled by a sequence of discrete time steps that create a
trajectory υ:

s0
a0−→ s1

a1−→ s2
a2−→ s3

a3−→ . . .

where the states follow the state transition Pa(s, s′). The transition function and
the reward function are determined only by the current state, and not from the
previous states. This property is called Markov property, which characterises the
MDP and it means that the process is memoryless and that the future state depends
only on the current one and not on its history.

The goal of the MDP is to find a good policy for the decision maker, that is,
a function π that specifies the action a that will be chosen when in state s. The
policy π found will maximise the cumulative reward over a trajectory υ:

G(υ) =
∞∑

t=0
rt

This return value has the problem that all the rewards contribute in the same weight
and this can create some problems due to the lack of temporal information. A better
return value would be to give more importance to the short-term memories and
giving less importance to the ones far in the future. This is solved by introducing
a discount factor, denoted with γ. Then the corrected formula is:

G(υ) =
∞∑

t=0
γtrt

with value of γ satisfying 0 ≤ γ ≤ 1. When γ is closer to zero, the agent will tend
to consider only immediate rewards whether if γ is closer to one, the agent will
consider future rewards with greater weight, willing to delay the instant reward
in favour of a greater cumulative reward. This new definition of G(υ) is the total
discounted reward.

A simple decomposition of G(υ) is :

Gt(υ) = rt + γGt+1(υ)

so the return value G can be divided in the reward at time t plus the discounted
total reward at time t + 1.

Another important notion in MDP and RL is the value function, known as
V-function. While the return G(υ) gives the reward over a trajectory, it does not
tell much about how good the single states are. The value function does exactly
this: it estimates how good it is for the decision maker to be in a given state. The
notion of "how good" is defined in terms of future rewards that the decision maker
can expect in terms of expected return.
The value function Vπ(s) can be formally defined as:

Vπ(s) = Eπ(G(υ)|s0 = s) = Eπ(
∞∑

t=0
γtrt|s0 = s)
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The expected return when starting at state s and following policy π.

Similarly, it is possible to define the action-value function, also known as Q-function
as the expected return from state s with an initial action a:

Qπ(s, a) = Eπ(G(υ)|s0 = s, a0 = a) = Eπ(
∞∑

t=0
γtrt|s0 = s, a0 = a)

Furthermore, the value function and the action-value function are related and
satisfy a particular relationship, used in many RL contests, that for any policy π
and state s, the following condition holds:

Vπ(s) = Eπ(Qπ(s, a))

Knowing the optimal Q-function (Q⋆), to maximise the V-function (V ⋆), the
action best has to be found. This is found with:

a⋆(s) = argmaxaQ⋆(s, a) (2.6)

That is: the best action is the one that maximises the Q-function. Moreover, the
V-function can be decomposed in two terms:

Vπ(s) = Eπ(G(υ)|s0 = s) = Eπ(rt + γVπ(st+1)|st = s) (2.7)

where rt is the reward at time t and γVπ(st+1)
the discounted total reward of the next state.

The equation in 2.7 is the Bellman Equation that defines the value function
recursively, enabling the estimations of the next states.
Similarly, it is possible to write the Bellman equation for the Q-function:

Qπ(s, a) = Eπ(G(υ)|s0 = s, a0 = a) = Eπ(rt + γQπ(st+1, at+1)|st = s, at = a)

In this way the V-function and the Q-function are updated with the values of the
successive states without the need to know the trajectory till the end.

2.4.2 Model
In this section is being reported the main ANNs used for the controlling part.

Deep deterministic policy gradient

As state in equation 2.6, it is possible to see that the best action is chosen in order
to maximise the Q-function among all the possible actions.
This works in the case of a discrete action space, where it is possible to easily
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compute the argmaxa operation, just comparing the Q-values of each action. This
is not obvious for a continuous case.

The deterministic policy gradient (DPG) implementation tries to solve this
problem. The idea behind DPG is to learn a deterministic function µϕ(s) that can
approximate the argmaxaQ(s, a) operation.
One possible way to find this deterministic function is using ANN and in particular
deep neural networks. So, the term deep deterministic policy gradient merges the
DPG idea with the use of ANN.

In particular, the DDPG is an actor-critic algorithm, and it uses two neural
networks. The actor (characterised by weight parameters ϕ) decides the action
to perform in a given state, and the critic (characterised by weight parameters θ)
evaluates the action chosen by the actor.

Figure 2.9: Actor-critic model architecture of the DDPG agent [26].

During exploration, give the state st the agent performs some action at, moving
to the next state st+1, obtaining a reward rt. This information, with a boolean
flag stating if the game ended (dt) or not, is stored in a replay memory as a tuple
(st, at, rt, st+1, dt). This replay memory is then used during training: a batch B is
randomly chosen, and the agent is trained on it.
Both networks are trained, updating the weights ϕ and θ, in particular, the weight
from the critic are update with gradient descent and following loss:

L(θ) =
∑
B

 Qθ(st, at)︸ ︷︷ ︸
i

−
(

rt + (1 − dt)γQθ

(
st+1, µϕ(st+1)

)
︸ ︷︷ ︸

ii

)2

(2.8)

At the same time, the actor network’s weights ϕ are updated maximising the
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following loss function with gradient ascent:

L(ϕ) =
∑
B

Qθ

(
st, µϕ(st)

)
(2.9)

The goal is to update the weights such that the action chosen by the actor (µϕ(st))
maximises the Q-value (Qθ(st, at)).

Given equation 2.8 it is possible to see that both the predicted value i and the
target value ii are calculated with the same network Qθ, this makes the training
unstable. A solution to this problem is to use two other target networks ϕtarget and
θtarget. So the equation 2.8 becomes:

L(θ) =
∑
B

Qθ(st, at) −
(

rt + (1 − dt)γQθtarget

(
st+1, µϕtarget(st+1)

))2

While the equation 2.9 does not change.

The target networks weights are updated after a fixed number of steps, suing
the Polyak averaging:

ϕtarget = ρϕ + (1 − ρ)ϕtarget (2.10)

where ρ is a scaling factor usually very small.
In a similar way, equation 2.10 is used when updating the critic target network.

2.4.3 Evaluation metrics
Generally, the evaluation metrics for RL are different from the ones of supervised
learning.
Moreover, in a RL framework there are no standard metrics, but it depends on the
task that it is trying to solve.

A popular evaluation of the agent’s choices is looking at the reward over each
step, or the cumulative reward over each episode. If the agent is learning well, the
reward will increase over time.

For this specific task some other statistics about the agent performance are
reported, in particular an analysis of when the agent choses an action is reported
in the results chapter. These statistics refer to the usage of the active and reactive
power and if the action chosen was needed to solve the critical voltage situation or
not.
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2.5 Literature review

The interest in power networks has increased in the last years, especially for the
introduction of distributed energy resources and the progress in the field of artificial
intelligence. Particular attention is paid to the dispatching of the required power,
as it is important for a utility company to predict the load consumed in order
to avoid losses. Predicting the power demand is important because the energy
generation must balance the consumption, since there are no efficient ways to store
the surplus energy at a reasonable cost. Some papers have tried to forecast the load
requests with different techniques: support vector machine [27], wavelet transform
[28], some exponential smoothing methods [29], artificial neural network [30]. The
authors in [31] use an interesting approach with a recurrent gradient boosting
regression model to predict the future load consumption and detect power theft.
Similarly, some papers deal with the forecasting of the wind generators’ output
using radial basis function [32], support vector machine [33] and recurrent neural
network [34].
A lot of concern is placed in forecasting devices’ critical situations in the network.
The authors in [35] perform a deep analysis of a network using classification methods
to predict critical loading situations and regression models to predict the bus voltage
magnitudes; the tests are limited to only multi layer perceptron as deep models.
The authors in [36] predict the over voltage instabilities using a recurrent neural
network in a low voltage distribution network. The authors forecast buses critical
situations considering the voltage’s phase angles information of consecutive buses
instead of the voltage magnitudes; the tests are limited to a small network and
time series are not taken in consideration. In [37], authors perform voltage security
monitoring, with particular attention to blackouts, using different machine learning
models; among which multi layer perceptron models.
Some possible ways are proposed to reduce the number of contingencies in the
power networks. The authors in [38] use optimal power flow calculation to control
generators’ active and reactive power in a small distribution network, in [39] the
authors propose a droop-based reactive power compensation.
Thanks to its increasing popularity in many fields; when solving voltage problems,
some solutions have been proposed with reinforcement learning algorithms: in [40]
the authors developed some reinforcement learning environment playgrounds where
they tested proximal policy optimisation and soft actor-critic algorithms; in [41]
the authors used a deep deterministic policy gradient algorithm to change active
and reactive power of the generators; in [42] authors used multi deep reinforcement
learning framework to control static var compensators and batteries to balance
the voltage magnitude in a network; for a similar task, the same authors, in [43]
control generators’ reactive power; in [44] authors control batteries and heat pumps
to maximise energy consumption and reduce losses.
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The mentioned works either: a) consider only small test networks, b) do not deal
with unbalanced datasets, and c) have high values of active curtailment. These
are some limitations since: a) small networks may result in a not realistic analysis,
b) power grids are highly secure, so the number of voltage problems is small with
respect to the number of non-critical situations, c) the goal is to minimise losses,
so the generators’ active power curtailment should be reduced to low values or
avoided.
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Chapter 3

Case study

This chapter provides the information about the use case studied. In particular, the
description of the MV Oberrhein network, an overview of the SimBench database
and how the time series are selected.

3.1 MV Oberrhein network
The thesis is developed in Pandapower, an open-source and popular Python library
that makes it easy when working with power networks.
Pandapower has many features, some of them are reported here:

• Every element in Pandapower (load, generator, ...) is considered as a Pandas’
data frame that holds all parameters for a specific component. This imple-
mentation makes it possible to add custom columns without influencing the
Pandapower functionality.

• It allows calculating in an easy and fast way the PF, essential for network
analysis. Its PF solver is based on the Newton-Raphson method.
After the PF computation, the results are store in another Pandas’data frame.

• It allows running time series simulations.

• It has many predefined power networks.

Among all the power networks available in the Pandapower library, the one used
for these experiments is the MV Oberrhein network. MV Oberrhein is a real distri-
bution located at Upper Rhine (in German: Oberrhein), Germany. This network
is a generic 20 kV power system serviced by two 25 MVA HV/MV transformer
stations. The network supplies 141 HV/MV substations and 6 MV loads through
four MV feeders. The network layout is meshed, but the network operates as a
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radial network with some open sectioning points, i.e., redundant lines/cables. This
is common in real networks: they are usually meshed, but they operate in a radial
way.
The grid also includes geographical information of lines and buses and is assembled
from openly available data [45, 46].

The representation of the network is presented in 3.1. The blue dots represent
the buses where load and/or generators are connected to, and the yellow squares
represent the HV/MV substations.

Figure 3.1: MV Oberrhein network from Pandapower. Representation plot on
the left and geographical plot on the right.

To simplify the situation, the network can be divided in 2 independent parts:

(a) (b)

Figure 3.2: MV Oberrhein network division in the two parts, each with its own
external grid.
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The network used in this thesis is the one showed in figure 3.2b. The network
consists of: one external grid, one transformer, 70 buses, 61 loads and 60 generators.

3.2 SimBench database
The time series used is taken from the SimBench database. This database refers to
some real distribution networks in Germany of the year 2016. SimBench includes
multiple time series for one year with 15 min resolution for loads, generators
and storage units. The time series were grouped by element type, reducing the
total number of required time series to a reasonable number, while retaining the
possibility to model individual nominal power [47]. All active power values are
normalised to the maximum active power value.

Power utilities commonly use generic load profiles to group commercial cus-
tomers with similar load shapes into categories or standard load profiles (SLPs).
The most commonly used profile sets are developed by the German Association
of Energy and Water Industries (BDEW). It comprises eleven aggregated profiles,
one for residential consumers, three for agricultural, and seven for commercial
consumers with different opening hours. They are differentiated into workdays,
Saturdays and Sundays as well as three seasonal categories winter, summer, and
transitional. The set also includes two profiles for street lightning and band load.
The generation time series for photovoltaics (PVs) and wind energy dataset are gen-
erated using an agent-based simulation tool for optimised grid expansion planning:
SIMONA. SIMONA’s power plant models receive real weather data of Germany
from the German Weather Service in 2011 for Wind and 2012 for PV time series
as input data.
For 2011 and 2012 generation data, the time axis is adjusted to 2016 by shifting
days so that they correspond to the nearest weekday[48].

Figure 3.3: Overview of the SimBench time series type.

The load time series were distinguished between real measured accumulated,
highlighted with a dash, and simulated individual consumers, marked with a solid
frame in figure 3.3.
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3.3 Time series selection
Some time series from the SimBench database are taken to adapt to the number of
loads and DERs of the MV Oberrhein network in consideration.

As said, each element (load or generator) falls under a specific profile type that
represents the consumption or generation over time.

Figure 3.4: Loads and generations standard profiles.

In this case, the profile’s types for loads and DERs are chosen, such that every
profile type is present, to have a network as close as possible to a real network.
The profiles’ distribution in the Pandapower network is as follows:

Load elements by type: {"G0-A": 4, "G0-M": 4, "G1-A": 3, "G1-B": 3, "G1-C": 3,
"G2-A": 3, "G3-A": 4, "G3-M": 3, "G4-A": 3, "G4-B": 3, "G5-A": 3, "G6-A": 3,
"H0-A": 3, "H0-B": 3, "H0-C": 4, "L0-A": 3, "L1-A": 3, "L2-A": 3, "L2-M": 3}

DER elements by type: {"PV1": 7, "PV3": 7, "PV4": 7, "PV5": 8, "PV6": 8, "PV7":
8, "WP4": 7, "WP7": 8}

where the letters stand for: commercial enterprises (G), households (H) and agri-
cultural holdings (L); with last letters -A to -C indicating low consumption and
-M medium consumption customers.
For the DER devices there are photovoltaics PVs and wind parks WPs. It is
possible to notice a bigger presence of PVs over WPs.

The loads and DERs are chosen so that different profile types are present.
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(a) load profiles

(b) generator profiles

Figure 3.5: Violin plots of loads and generators for each profile type.

From plots in figure 3.5 it is possible to see the distribution of consumptions and
generation of the different profiles.

Since the profiles are similar for every element of the same type, some noise is
added to increase randomness. In particular, the noise added is a scaling factor in
the range [0.85,1.15]. The scaling factor allows avoiding negative values in case of a
value lower than 1; subtraction may result in a negative value of active or reactive
power for a particular device, either load or generator.

It is possible to use some scaling factors to easily generate different case that
can fit with the network considered. The scaling factors, chosen in this case, are:

scale_factor_load = 0.8
scale_factor_der = 1.2
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These values are chosen to be close to the load and generation peak capacity of
the MV Oberrhein network.

Figure 3.6: Sum of load energy consumption and DER energy generation over
the considered year.

The load consumption values are as a typical MV network ([49]), while the
generation is higher. This case can represent a future power network when the
number and the performance of DER devices increase, so to have a generation of
power higher than the demand; especially during the summer period when the
consumption is lower and the generation is higher.
Such situations are critical for a network since the surplus energy increases the
voltages at the buses that may experience voltage problems.

In this thesis, the network situation, in a given time step t, is considered critical
if the voltage of at least one of the buses is out of the boundaries Vt < vmin (under
voltage) or Vt > vmax (over voltage), where vmin is the minimum acceptable voltage,
0.95 p.u., and vmax is the maximum one, 1.05 p.u.

Figure 3.7: Network’s over and under voltage critical situations. The two
horizontal lines correspond to vmax and vmin.
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In figure 3.7, it is possible to see that the number of over voltages situations is
low compared to the normal situations. It is possible to see that there are also few
under voltage situations.

This concludes the part relative to aim I) to adapt to a real power network
some realistic time series.
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Chapter 4

Problem statement and
solving methodology

This chapter describes the elements and methodology used to solve the forecasting
and control problems.

4.1 Problem statement
This thesis focuses on ANM and the problem faced by a DSO to maintain the
network within its operational limits. In particular, the system operator evaluates
whether at a given moment there will be a voltage problem. In this way, the DSO
can proceed with some actions, like applying curtailment to generator devices or
control their reactive power, to maintain the voltage inside a safe range.

For this problem, we assume that the DSO knows the following information:

• The network topology: the number of buses, loads and generators, the lines’
length, the distance between the connected buses, and the distance between
each load and generator from the bus they are connected to. Moreover, the
impedance of the lines is known.

• The active and reactive power of some loads at each time step.
In a real case it would be possible that some values may not available mainly
for two reasons: a) for that particular load there are no measurements at all
for the lack of sensors or for privacy reasons; or b) communication problem,
so the sensor recording was lost. These cases are not considered in this thesis,
so all the information is available.

• The type of DER device connected to each bus. If the DER device is directly
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connected to the medium voltage grid, the active power and reactive power
are considered known.

This data is used to calculate the power flow of the network and obtain more
information like the voltage magnitude at each bus, lines’ loading and other values.
This calculation can be performed with any power system analysis tool, like for
example Pandapower.

A power network can be represented as a direct graph G(N , E), where N is a set
of nodes, also called buses (B), in the network; E ⊆ N × N is the set of directed
edges linking two buses together, also called lines. The notation eij ∈ E refers
to the directed edge with sending bus i and receiving bus j. Each bus might be
connected to several devices, which may inject or withdraw power from the grid.
The set of all devices is denoted by D that can be either loads L or generators G.
Let’s also define T as the set of transformers.

The DSO considers the behaviour of the network over a set of discrete time
steps t ∈ {1,2, ..., T − 1, T} of length ∆t, with, T ∈ N, the last time step of the
time series’ horizon. A time step is considered as a snapshot of the system at one
particular point in time.

The DSO can have access to some information, let’s define I as the information
domain. This information can be divided in static information like the network
topology, and the observation Ot collected at every time step t like the loads and
generators’ active and reactive power and the buses’ voltage magnitude and lines’
loading. The information at time step It can be defined as:

It ∈ I, with t ∈ {1,2, ..., T − 1, T}
It = [static information, Ot]

In general power networks are not static, since the operators can modify their
topology, for example changing the connections due to some incidents on the lines.
In this thesis, the network topology is considered as static, so that no changes are
applied on the network during the whole time series’ horizon.

An instance of the observation Ot can be:

Ot = [Lp
t , Lq

t , Gp
t , . . . ]

where Lp
t and Lq

t are active and reactive power of loads L at timestamp t; Gp
t is the

active power of the generators G at time t; some other variables can be included
in the observation Ot for example the buses’ voltage magnitudes or the loading
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percentage of each line, etc.

For the forecasting part, the operator predicts if the system, at some given t + n
future time steps, will be in a critical condition. As mentioned in 3.3, the network
is considered in a critical condition if any of its elements is in an unsafe situation,
for example an over voltage condition. Let define C as the list of critical situations
and Ct the critical situation at time step t, with Ct ∈ {0,1}.
For predicting whether the system will be in a critical situation or not, the DSO
considers the history of the system only for h preceding steps, with h ∈ N+.

4.2 Solving methodology

4.2.1 Forecasting
The goal of this section regards the explanation of the solving methodology for aim
II), that is, to train a classifier that can forecast whether in the future there will
be some over voltage problems.

As a supervised task, the time series are separated in training and testing
dataset; in particular, the data is divided in windows of length, h for the inputs x
and length n for the outputs y.

There are many ways and combinations of how to choose the information used
for the input xs. In this thesis, three combinations are tested:

i) Considering only the voltage information at each bus.

x = [BV
t−h+1, BV

t−h+2, . . . , BV
t−1, BV

t ] (4.1)

where BV
t is the voltage level V of every bus B at timestamp t. It can be

represented as a matrix, as follows:

x =



BV
t−h+1,1 BV

t−h+2,1 · · · BV
t−1,1 BV

t,1

BV
t−h+1,2 BV

t−h+2,2 · · · BV
t−1,2 BV

t,2

... ... . . . ... ...

BV
t−h+1,|B|−1 BV

t−h+2,|B|−1 · · · BV
t−1,|B|−1 BV

t,|B|−1

BV
t−h+1,|B| BV

t−h+2,|B| · · · BV
t−1,|B| BV

t,|B|
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where BV
t,i is the voltage level V of a single bus i at timestamp t.

ii) Considering active and reactive power of loads and active power of generators.

x = [Lp
t−h+1, Lq

t−h+1, Gp
t−h+1, . . . , Lp

t , Lq
t , Gp

t ] (4.2)

where Lp
t and Lq

t are, respectively, the active and reactive power of all loads L
at timestamp t and Gp

t is the active power of each generator G at timestamp
t. Similarly to the first case i), a matrix can be written, but it is omitted.

iii) Considering active power of generators and the active and reactive power at
the transformer on the HV/MV substation.

x = [Gp
t−h+1T p

t−h+1, T q
t−h+1, . . . , Gp

t , T p
t , T q

t ] (4.3)

where T p
t and T q

t are, respectively, the active and reactive power of the
transformer at timestamp t.

iv) Since the considered dataset is unbalanced, some techniques usually used when
dealing with these kinds of datasets are employed. The techniques are, as
mentioned in 2.3.4, over and under sampling and set weights for each class.
These techniques are tested on the best and worst performing models of all
the aforementioned combinations.

Different combinations are considered because it is interesting to check how the
model performs with different kinds of data; moreover, the information a DSO
can have access to can be limited, so some cases are more realistic than others.
In particular, DSO usually has access to only a limited amount of data: for small
loads (households, ...) the active and reactive powers are not available at every
instant (they are only after some period of time, after the bill is issued), in general
the more a device is close to the transformer, the more information a DSO has
access to, so the combination iii) would be the most appropriate for a MV network.

For the labels, y can be defined as:

y = [Ct+1, Ct+2, . . . , Ct+n−1, Ct+n] (4.4)

where Ct is the condition of the system at timestamp t, with Ct = 1 if the network
is in a critical situation or Ct = 0 if it is in a normal situation and n is the number
of future time steps considered, with n ∈ N+.

For what concerns h, the number of history step considered and n, the number
of future steps to forecast, these are not hyperparameter to be optimised, but are
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values that depend on the problem and the task that a DSO is trying to solve. In
particular, choosing a value of h depends on the amount of data the DSO can access
to, the computation cost and the time to get an answer; while n, depends on the
kind of forecasting the DSO wants to apply, either short planning (from minutes to
hours), medium-term planning (from hours to days) or long-term planning (many
days). It has also to be noted that it is expected that higher values of n would get
less accurate forecasting.

The couples {x, y} are divided in training, validation and test set, with the
following ratios: 0.7, 0.2, 0.1.

Figure 4.1: Division of the time series in windows of length h as past information
and length n as forecasting values.

Figure 4.1 shows how the time series are separated in input and output lists: the
input x is generated taking the raw information of size h (x is different for each
combination used), and the output y is generated taking the information about
the buses’ voltage magnitudes of length n and converted to a binary value that
represent whether the system is in a critical situation or not as mentioned in 3.3
(y is the same for each combination considered).

For the forecasting part, only over voltage situations are considered.
The followings are the critical states’ distribution in training, validation and test
sets.

Number of over voltage situations: 1229, over 35040 time steps, ratio: 3.5%

Number of over voltage situations in Training set: 835, ratio: 3.4%
Number of over voltage situations in Validation set: 211, ratio: 3.0%
Number of over voltage situations in Testing set: 183, ratio: 5.2%

The data is normalised using the formula:

x̄ = x − µ

(σ + ϵ)
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where x is the data to be normalised, µ is the mean of the training data, σ the
standard deviation of the training data and ϵ a small number to avoid dividing by
zero.
Only the training data is used to calculate the mean and standard deviation, and
these values are then used to normalise training, validation and test set.

Three different ANNs are tested:

• a MLP with three hidden layers, composed by 256, 128 and 128 neurons.

• a CNN with one 1-D convolution hidden layer 128 filters followed by two FC
layers with 128 neurons each.

• a RNN with one LSTM unit followed by two FC layers with 128 neurons each.

Each FC layer presents a batch normalisation and a dropout layer to improve the
score.

The trained model predicts the critical condition of the system at some future
time steps n. Let’s define ŷ = Ĉ as the forecasted values of the system given
the information x ∈ I. A single instance Ĉt+i (Ĉt+i ∈ {0,1}) states if the sys-
tem is critical (Ĉt+i = 1) or not (Ĉt+i = 0), with i ∈ {1,2, . . . , n−1, n} and n ∈ N+.

The main goal of the model is predicting the future values such that the actual
critical values C and forecasted values Ĉ are as close as possible. The performances
of the models are evaluated with the metrics defined in 2.3.3.

4.2.2 Active control
The goal of this section regards the explanation of the solving methodology for
aim III), that is, to train an agent that can take some action to solve the voltage
problems.

The agent is trained within a reinforcement learning context.
Let’s define the main RL elements:

• Environment. The environment is the entire grid, so the MV Oberrhein
network.

• State. The state is the information the agent can have access to. In this case,
active and reactive power of loads and active power of generators at time step t.

st = [Lp
t , Lq

t , Gp
t ]
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where, similarly to the forecast part ii), Lp
t and Lq

t are, respectively, the active
and reactive power of all loads L at timestamp t and Gp

t is the active power
of each generator G at timestamp t.
So the state is a list of continuos variables of size 182 (|L| + |L| + |G| =
61 + 61 + 60).

• Action. The agent can control active and reactive power of the generators, in
particular:

at = [ap
t , aq

t ]

with ap
t an array with the active power reducing factors at time step t

(ap
t,i ∈ [0,1] and i ∈ 1, ..., |G|) and aq

t an array with reactive powers val-
ues (aq

t,i ∈ [−0.25,0.25]). So the state is a list of continuos variables of size 120
(2 · |G|).

These values are used to change active and reactive power of the generators
at the time step t + 1.
ap

t represents the proportion of the quantity of energy curtailment decided by
the agent. In formula:

final_powert+1 = initial_powert+1 · (1 − ap
t )

with initial_powert+1 the initial power the generator was about to output
at time step t + 1 (same as Gp

t+1. The notation initial_power is used for a
clearer understanding of what happens before and after the agent’s action);
final_powert+1 the curtailed power, actual power output. Moreover

initial_powert+1 · ap
t

is the total energy loss.

For the reactive power, aq
t represents the quantity of reactive power absorbed

or injected in the network by each generator.

• Reward function. The reward function consists of four terms:

– A reward regarding the active power. The agent is punished to choose
too high values of active power curtailment, the higher the curtailment,
the higher the punishment.

reward_pt = −
|G|∑
i=0

ap
t,i
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– A reward for the reactive power. The agent is punished proportionally to
the change in the values of reactive power.

reward_qt = −
|G|∑
i=0

|aq
t,i|

the | · | is needed, since aq
t may contain both positive and negative values.

– A reward regarding voltage violation. The agent is punished if the voltage
magnitude of the buses is away from 1 p.u. The punishment value is
chosen with the following a punishment function f :

Figure 4.2: Shape of the voltage violation function centred in 1 p.u.

The idea is to punish the agent by a low value when the voltage bus is in
the range [0.95,1.05] and to punish it more when the voltage bus is more
far away from 1 p.u.

reward_vvt = −
|B|∑
i=0

f(BV
t+1,i)

– A reward for the critical situation solved. The agent is given a positive or
negative reward whether it was able to solve the critical situation or not.
In particular:

reward_cst = Ct+1 − 4 · network_statust+1

with Ct+1 the critical status of the network as stated in the forecasting
section (expression 4.4) at time step t + 1, and network_statust+1 a
boolean value stating if the system at time step t + 1, after the agent’s
action and the PF calculation, is critical or not.
The main idea is to make the agent understand if the chosen action was
helpful and solved the critical situation of the network. In particular,
there are four possible cases:
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case 1) 0 - 0: no critical situation before and after the agent’s action
(good case, 0 reward).

case 2) 0 - 1: no critical situation before, but it was introduced by the
agent’s action (the worst case, −4 reward).

case 3) 1 - 0: critical situation before and it was solved by the agent’s
action (the best case, +1 reward).

case 4) 1 - 1: critical situation before and after the agent’s action (not
good case, −3 reward).

The total reward is given by the algebraic sum of all the previous terms
multiplied by a scaling factor:

rewardt = αp · reward_pt+
+ αq · reward_qt+
+ β · reward_vvt+
+ γ · reward_cst

(4.5)

with αp = 4, αq = 2, β = 100 and γ = 20. These values are chosen to balance
the rewards get by the agent.
With such articulate reward expressed in 4.5, the agent’s goal is to reduce
the number of over voltage situation without introducing new under voltage
situations.

• Agent. The agent model chosen is the DDPG algorithm. As mentioned in
2.4.2, this algorithm can handle continuous state and action spaces, so it is
suitable for this task.

Both actor and critic networks are MLPs composed by three hidden layers with
256, 128, 128 neurons. The weights are initialised with a standard distribution
with mean 0 and standard deviation 0.08 so that most of the weights are
concentrated between [−0.1,0.1]. This is important since with a larger initial
standard deviation, the model tended to saturate the output.

To control both the active and reactive power of the generators, the final
hidden layer of the actor networks is sent to two different branches: one for
ap with a Sigmoid function as activation function, and the other branch for
aq with Tanh as activation function and a scaling factor of 0.25.
Some other hyperparameters are:

– α, the learning rate for the actor networks, set to 10−4.
– β, the learning rate for the critic networks, set to 10−3.
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– τ , the scaling factor for updating the weights with equation 2.10, set to
10−3.

– The weights of the critic networks are updated every 3000 time steps.
– The agent is trained every 3 time steps.
– To the action is added some noise, initially set to 0.1, and it decreases

every 100 time steps of a factor of 0.995. The noise minimum is set to
10−5, below this value the noise is not decreased any more.

– For all the networks, an Adam optimiser is used.
– The replay memory is set to 106. After the memory is full, the past

experiences are overwritten with the new ones.

The agent is trained using 40%, 14016 time steps, of the data and tested on the
remaining 60%, 21024 time steps. The training is repeated for 4 time for a total of
56064 time steps.

Algorithm 1 Pseudo-algorithm for the control of the network’s devices
Initialise the network
Extract time series for each time step from Simbench database
Calculate PF for each time step and evaluate when the system is in a critical
situation, obtaining C
Initialise agent with actor and critic networks: ϕ, θ, ϕtarget and θtarget

for each episode p do
for each time step t ∈ {1,2, . . . , T − 2, T − 1} do

Get state st from the network
Choose the action at with at = ϕ(st)
Get active power of the generators at time step t + 1: initial_powert+1
Apply the action at: change active power with the final_powert+1 and
reactive power with aq

t of the generators at time step t + 1
Calculate the PF at the time step t + 1
Calculate the reward rt, as mentioned in 4.2.2
Check the status of the environment: dt

Get new state st+1
Store the experience (st, at, rt, st+1, dt)
Train the agent

end for
end for

It is worth mentioning that Pandapower allows performing time series analysis,
but training the RL agent required a custom control of the time series execution.
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For this reason, the open-source code of Pandapower is modified to allow a finer
control of the different steps of the runs.
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Chapter 5

Results and analysis

In this chapter, the results of the different methods will be reported.

The results are run on two main machines: Google Colab ([50]) for the forecasting
part and my personal laptop for the controlling part.
Two systems are used for two main reasons: the possibility to run both forecasting
and controlling tests at the same time and to reduce the training time (especially
for the forecasting part) thanks to the powerful hardware from Google.
The laptop used is a Xiaomi Mi Laptop Air 13.3 (2017) with an Intel Core i5 6200U
2.30GHz CPU, a 8GB 1064MHz RAM and an NVIDIA GeForce 940MX 1023MB
GPU.

5.1 Forecast results
In this section, the results obtained when solving the aim II) are reported.

For the forecasting task, some evaluation metrics are used to test the perfor-
mance of the ANN. These metrics are: accuracy, recall, precision and F1-score.
During training, the F1-score on the validation set of the model is monitored, and
the best weights configuration is stored. The score reported in the following tables,
are obtained testing the model on the test set, with the most performing saved
model.
It is worth mentioning that, at the time of this thesis development, the core Ten-
sorFlow library allows monitoring only the accuracy, recall, precision but not the
F1-score; this can take to misleading, and it can lead to suboptimal results. For
this reason, a custom monitor of the F1-score is developed.

In this thesis, three values of h are used: 2, 4 and 16 corresponding to have the
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past information of the system of 30 minutes, 1 hour and 4 hours. For the n, only
one value is used: 1, corresponding to a short planning time of 15 minutes ahead.

The three combinations are tested, and the results are reported as an average of
5 runs. The models are trained for 100 epochs on the training set, for each epoch
the neural network is evaluated on the validation set and the best performing model
is used to get the score on the testing set.
The batch size is 512. This is important since the dataset is unbalanced; in this
way there is a high chance that each batch contains a decent amount of voltage
problems to learn from.

• Results of the first combination i):

h Models Accuracy Precision Recall F1-score Time (s)

2
MLP 0.979 0.786 0.833 0.804 73
CNN 0.981 0.793 0.862 0.825 67
RNN 0.981 0.798 0.858 0.826 121

4
MLP 0.979 0.817 0.777 0.792 74
CNN 0.980 0.795 0.851 0.820 70
RNN 0.981 0.796 0.860 0.827 205

16
MLP 0.978 0.800 0.797 0.796 77
CNN 0.798 0.798 0.822 0.810 81
RNN 0.980 0.786 0.866 0.823 441

Table 5.1: Results using as input the voltage information at each bus.

This task is the simplest case, since the goal is to predict the future of a
particular quantity (voltage) given the past information of the same quantity.
From table 5.1, It is possible to see that the RNN model performs better
than the other models, since usually RNN handles better time series data.
Moreover, it would be expected that the more data the ANNs receive as input
(value of h), the higher the score it gets, but for this task, results look like are
independent of the value of h.

• Results of the second combination ii):
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h Models Accuracy Precision Recall F1-score Time (s)

2
MLP 0.961 0.960 0.263 0.399 72
CNN 0.969 0.948 0.429 0.570 66
RNN 0.969 0.907 0.451 0.591 122

4
MLP 0.963 0.962 0.308 0.454 76
CNN 0.965 0.945 0.359 0.510 71
RNN 0.963 0.955 0.325 0.473 211

16
MLP 0.969 0.815 0.542 0.623 109
CNN 0.971 0.843 0.580 0.665 112
RNN 0.969 0.912 0.467 0.603 444

Table 5.2: Results using as input the active and reactive power of each load and
active power of each generator.

This combination performs the worst. These results can be explained consider-
ing the complexity and non-linearity of the PF calculation. So the models are
not able to grasp the relationship that maps the loads and generators’ informa-
tion to the buses’ voltage. Moreover, the ANNs are missing all the information
regarding the network, like for example the lines’ resistance, impedance, etc;
essential for the PF calculation. Another possible explanation is a large input
space.

• Results of the third combination iii):

h Models Accuracy Precision Recall F1-score Time (s)

2
MLP 0.974 0.727 0.837 0.774 152
CNN 0.972 0.683 0.897 0.773 109
RNN 0.974 0.692 0.915 0.788 295

4
MLP 0.971 0.683 0.893 0.769 181
CNN 0.966 0.619 0.950 0.748 127
RNN 0.970 0.669 0.910 0.764 468

16
MLP 0.964 0.628 0.887 0.728 236
CNN 0.970 0.679 0.873 0.757 380
RNN 0.973 0.703 0.899 0.782 617

Table 5.3: Results using as input the active each generator and the active and
reactive power of the external grid’s transformer.

This case is the more realistic one, since a DSO has always the information at
the transform on the external grid and the active power of the generators as
well.
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The score is lower than combination i) but better than combination ii).

• Testing some techniques for unbalanced datasets iv).

The process of over sampling and under sampling are performed such that the
ratio between the number of critical situations and the number of total time
steps on the training set is around 20%.
Instead, the weights are calculated as mentioned in 2.3.4 and their numerical
values are:

Weight for class 0: 0.52
Weight for class 1: 14.69

In the following tables are reported the results for the worst performing
model (combination ii, h=2, model=MLP) and the best performing model
(combination i, h=4, model=RNN).

Method h Model Accuracy Precision Recall F1-score Time (s)
Reference

.
2 MLP

0.960
(0.005)

0.959
(0.021)

0.263
(0.107)

0.399
(0.147)

72.38
(3.93)

Over
sampling

0.973
(0.005)

0.912
(0.046)

0.555
(0.149)

0.673
(0.106)

355.50
(120.18)

Under
sampling

0.953
(0.003)

0.625
(0.093)

0.422
(0.307)

0.420
(0.215)

67.08
(0.99)

Classes
weights

0.971
(0.003)

0.854
(0.083)

0.5710
(0.134)

0.667
(0.073)

215
(3.82)

Table 5.4: Results for the worst performing model using as input the active of
each generator and the active and reactive power of the external grid’s transformer.
The value between brackets is the standard deviation.

It is possible to see that the score increases in all the cases, with the highest
improvement with the over sampling method. While the lowest improvement
is obtained with the under sampling techniques. A possible explanation is
that during this operation, it may remove useful data that can be essential for
the models.
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Method h Model Accuracy Precision Recall F1-score Time (s)
Reference

.
4 RNN

0.981
(0.0004)

0.798
(0.014)

0.858
(0.013)

0.826
(0.001)

120.58
(1.12)

Over
sampling

0.980
(0.0006)

0.790
(0.167)

0.857
(0.014)

0.822
(0.003)

619.64
(75.95)

Under
sampling

0.976
(0.004)

0.727
(0.054)

0.890
(0.037)

0.798
(0.021)

138.11
(4.42)

Classes
weights

0.979
(0.002)

0.761
(0.032)

0.880
(0.012)

0.815
(0.012)

467.14
(9.09)

Table 5.5: Results for the best performing model using as input the buses’ voltage
magnitudes. The value between brackets is the standard deviation.

It is possible to see that the scores did not increase this time. One possible
explanation is that the score is already high, so these techniques did not add
useful information to the model.

It is worth noting that the training times, in all the combinations, are highly
dependent on the Google Colab’s virtual machine.

5.2 Control results
In this section, the results obtained when solving the aim III) are reported.

The agent was trained for 4 episodes, over 50k times steps.

Figure 5.1: Agent’s rewards over time. The reward is averaged over a rolling
window of 96 time steps. The shadow region is ±2 standard deviations calculated
over 5 runs.

From figure 5.1, it is possible to see that the agent is learning, since the total
reward is increasing over time.

For all the 5 runs, after training, the agent was evaluated on the test set. Here
reported are the results from one of the best run:
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(a)

(b)

Figure 5.2: The buses’ voltage situation before (a) and after (b) the agent’s
actions.

Figure 5.2 shows that the agent was able to solve all the over voltage problems
without introducing under voltages problems, that were solved as well.

Total energy 169187 MW, total curtailed energy: 0.91 MW in 21024 time steps (7
months and 13 days), ratio: 5.3 · 10−6 %

Total reactive power controlled: 287085 MVAR

the percentage of curtailed energy is well below the tolerable values of 4%. Indeed,
curtailment levels have generally been 4% or less of wind energy generation in
regions where curtailment has occurred [51].
While the reactive power corresponds to an average of 0.22 MVAR for device.

Some statistic from figure 5.2 are reported here:

Maximum voltage observed: 1.0494 p.u.
Minimum voltage observed: 0.9533 p.u.

So the agent understood how to control the network minimising the control needed,
since the values are really close to the boundaries (1.05 p.u. and 0.95 p.u.) but
inside the safe voltage condition.
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In all the 5 runs the agent was able to solve the over voltage problems and in
only one run some under voltages conditions were not solved.
It has also must be said that the agent performance is not perfect since the agent
took some actions even it was not needed, it is also possible to see from figure 5.1
is stuck in a local minimum, since the reward is steady around −50.

Here there are some more statistics for the best run:

Active power curtailment:
needed (case 3: 1 - 0): 0.67 MW
Not needed:
case 1 (0 - 0): 0.24 MW
case 2 (0 - 1): 0 MW
case 4 (1 - 1): 0 MW

Reactive power usage:
needed (case 3: 1 - 0): 106341 MVAR
Not needed:
case 1 (0 - 0): 180744 MVAR
case 2 (0 - 1): 0 MVAR
case 4 (1 - 1): 0 MVAR

Cases, as defined in 4.2.2, are reported here to check in which situation the agent
decides to take a particular action.
In particular, the agent is able to understand when it is needed to perform the
action (case 3) and in all those cases it can solve the voltage critical situation
(case 4 situations are 0). Moreover, the agent newer worsened the situation of the
network (case 2 situations are 0) but the agent could perform better since a lot of
activity is done when not really needed (case 1).

The time for training the agent on average is 53 minutes and the inference time
is 13 minutes.
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Chapter 6

Conclusions and further
works

This master’s thesis has investigated the analysis and the use of machine learning
techniques to forecast some possible over voltage problems in a power network and
to carry out some possible active control of its devices to reduce the number of
critical situations.

In particular, for the forecasting part, different combinations of information
were tested, depending on what kind of data a distribution system operator can
have access to. These tests were performed using three values of h: 2, 4, and 16
corresponding to 30 minutes, 1 hour and 4 hours of the past network information
to consider. Moreover, different artificial neural networks were trained and tested
using some evaluation metric to understand their performances.
The results showed that it is possible to forecast the network’s critical situation,
in particular the most performing model is the recurrent neural network with 30
minutes of past buses’ voltage information, obtaining an accuracy of 0.981 and a
F1-score of 0.826.
Some techniques for unbalanced databased were applied as well, improving the
score of the least performing model and keeping them unchanged for the best
performing one.

For the controlling part, a reinforcement learning training method was used
to train an agent to avoid over voltages problems. The model used was a deep
deterministic policy gradient algorithm. This algorithm was able, using only 15
minutes of the network’s past information, to solve the critical situations in the
network. In particular, the agent was able to solve 100% of the over voltage
problems and, most of the time, 100% of the under voltage problems as well; with
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a cost for the distribution system operator of few MWs of active power in the entire
time span considered of 7 months and 13 days.

Some future works may examine a) predict more time steps in the future, b)
merge the tasks, forecasting and controlling parts, with a single model, for example
under the reinforcement learning framework that could predict and control at the
same time; c) improve the agent’s performance to get even lower values of active
and reactive power control; d) apply the same procedure to a larger network to
check whether the pipeline is robust; e) study cases where not all the information
about the devices are available due to missing data, lack of sensors and so on.
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