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Abstract

Blockchain is a technology that allows storing data in a secure and decentralized way.
One of the main reasons why the interest in this technology is growing is because it can
provide trust between untrusted parties without the use of a centralized entity. Hyper-
ledger Fabric is a permissioned blockchain project maintained by The Linux Foundation
meant for environments in which system performance is a key factor. For instance, HF
architecture faces three consecutive phases called Execute, Order and Validate. This be-
havior differs from other blockchain architecture like Bitcoin in which an Order-Execute-
Validate procedure is followed. During the Execution phase, Simulation happens: a
proposal of the transaction, called Endorsement request, is sent to specific peers named
Endorser peers or EPs. EPs execute the received endorsement request and send the ob-
tained output back to the client in a message called Endorsement. This phase is called
Simulation because, while executing the transactions, EPs don’t change the content of the
data they are securely storing. The client needs to receive the Endorsement results from a
combination of the above-mentioned EPs defined by a policy called Endorsement Policy.
This policy is defined in a way that reflects the agreements taken between the partici-
pating organizations. This thesis describes Blockchain technology, HF architecture, and
Fabric SDK, which is a Development Kit that enables the development of applications
that interact with a Fabric network. Afterward, it is presented an optimal procedure
of spreading the endorsement requests across the EPs to reduce the overall latency of
the Endorsement procedure. This is done through an algorithm called OPEN that keeps
track of the endorsement delay history of the network’s EPs. While respecting the En-
dorsement Policy, OPEN chooses the peers that performed better in the past transactions
because they are the most likely to be the fastest in the next one. To keep updated the
response delay history of not selected EPs, OPEN sends endorsement requests to addi-
tional peers. This will facilitate the better making of assumptions about the peers to
endorse during the next transactions. Finally, having verified that the Endorsing Peers
can queue requests when higher loads of transactions are submitted, an evaluation of
OPEN performances in choosing the least congested EPs is carried out in compliance
with other endorsing peer selection algorithms.
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Chapter 1

Introduction

1.1 Blockchain Technology

Blockchain is a technology that enables a network of entities, which do not trust each
other, to maintain a shared secure information that can be modified only if everyone gives
their consent. This consent is reached through the coordinated interaction of the entities
and it makes it possible to not need someone who certifies the legitimacy of every action.
For this reason blockchain can be used in several contexts where typically is needed
someone who certifies the truthfulness of a statement. For example, if Bob wants to send
a quantity of money to his friend Alice, the bank before doing the operation will check if
Bob has enough money in its account to make this operation. If there was not somebody
checking on the legitimacy of the financial movements, it would not be possible to have
a global payment network that works. Cryptocurrencies are the financial declination
of the blockchain as they enable to access financial services without the support of any
bank as the technology in which they lean permits only legit actions. Blockchains can
also be used by a group of cooperating but untrusted companies that want to interact
securely without having to hire a certifying entity that assures that every issued action
is legit. Since company’s data must be maintained confidential there must be a way to
let it access only by authorized person: private blockchains.

1.2 Hyperledger Fabric

Hyperledger Fabric is an open-source software implementing a private blockchain
which offers several building blocks that can be composed depending on the need. HF
was created having in mind other blockchain’s flaws and it changes the way transactions
are handled. In other blockchains all the transactions issued are chronologically ordered
before being executed in order to avoid anybody from spending the same assets more
times. HF instead first executes the transactions in a way that it can remove as soon
as possible the ones that are not considered legit speeding up the whole process. As a
matter of fact Fabric is one of the fastest private blockchains at executing transactions.
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Introduction

1.3 Endorsement
Endorsement is the first step to face for each transaction that has to be inserted inside
the blockchain and consists of a preliminary execution of the transaction. As a matter of
fact who wants to change the data in the blockchain must request to other participants of
the network the endorsement of their transaction. The set of entities that will be asked
to endorse the transaction is defined by a so-called endorsement policy which uniquely
defines if the transaction can be considered legit. Since for a matter of network or service
availability certain entities may require more time to be contacted, selecting the right
combination could improve the overall performance of the transaction flow.

1.4 Goal of the Thesis
The goal of this thesis is to analyze an optimal endorsement selection algorithm called
OPEN that aims at selecting the best entity to ask the endorsement for a transaction
in a way that it can reduce the time needed for the endorsement phase. Choosing the
right entity to ask for approval is not trivial since the way they behave varies with time
making it difficult to predict. OPEN deals with the unpredictability of the endorsement
time by accumulating information about how the entities behaved in the past, which
enables better assumptions about the entities that could be the fastest in responding.

1.5 Content of this thesis
The thesis is structured as follows:

• Chapter 2 describes blockchain technology and its application context

• Chapter 3 introduce Hyperledger fabric architecture, transaction flow and en-
dorsement policy

• Chapter 4 introduce Fabric Node SDK and how it handles endorsement phase

• Chapter 5 analyzes OPEN policy design

• Chapter 6 describes how experiments were conducted and their consequent results.
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Chapter 2

Blockchain Technology

2.1 Definition

Blockchain is a secure ledger shared across multiple untrusted entities in which if any-
body tries to alter maliciously the content of the data stored, the other participants of
the network will notice it. This technology differs in the way it stores the data: as a
matter of fact blockchain takes its name from a unique way of storing it as the data
gets shaped in the form of a chain made from blocks. The domain of the data stored
inside the blocks depends on the specific blockchain: Bitcoin’s blockchain for example
stores transactional data which is nothing more than records that attest the exchange of
a financial asset. The blocks store not only transactions but also a reference to the block
which is preceding on the chain called parent block. It is also thanks to this particular
structure that blockchains can be considered immutable and secure.

2.2 Origin of Blockchain

Blockchain technology was firstly unveiled in 1991 [7] by Stuart Haber and W. Scott
Stornetta. They invented a way of creating timestamped digital documents that could
not be compromised or later modified thanks to the use of cryptography. They later
redesigned their project to work with Merkle trees which enabled to store more documents
inside the block and, consequently, to be more efficient. In 2008 Satoshi Nakamoto
revamped this technology with the whitepaper called "Bitcoin: A Peer-to-Peer Electronic
Cash System" [31]. Nakamoto improved blockchain by removing the need for a trusted
party that certifies timestamps and by shaping the rate of block creation [2].

With Bitcoin, he aimed at creating a financial system that was unlinked to banks
and usable without any geopolitical restrictions. Bitcoin’s software was later released in
2009 officially giving birth to the first of a series of numerous cryptocurrencies that are
nowadays at the center of media attention
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2.3 Blockchain types

Blockchain are classified depending on who can access their services. For instance, they
are called:

• Public or Permissionless blockchain if they are open to anyone (cryptocurren-
cies like Bitcoin or Ethereum are part of this category).

• Permissioned blockchain if they allow only identified entities to access them.
Thus their services may be limited only to the employees of a company. An example
of a permissioned blockchain is Hyperledger Fabric which will be discussed in
the next chapter.

2.4 Data Structure

Blockchain keeps its dataset inside blocks all sequentially linked together through the use
of hash functions.

2.4.1 Hash functions

Figure 2.1: Hash function

A hash function is a deterministic function that looks random. As shown in Figure
2.1, hash functions map an input that belongs to an infinite set of elements into a space of
finite outputs. The output of the hash function is called digest or simply hash value and
it must be impossible to derive the input from which it was generated. As a consequence
if just one bit of the input is modified, the output should look different from the one
returned with the unchanged input in a way that it can not be defined a measure of
distance between the inputs.

Properties

Hash function probability of giving a certain output j is:

8



2.4 – Data Structure

Pr(h(k) = j) = 1/n

which means that it is uniformly distributed and there is not an output that occurs
more than others.

In addition for a pair of not equal inputs k1 and k2:

∀k1 /= k2, P r(h(k1) = h(k2)) = 1/n

it is possible to affirm that there is independence between their output values.

Collision

Hash functions should minimize the possibility of having collision, which happens when
two elements have the same digest value.

2.4.2 Blocks

Figure 2.2: Chain of blocks

blocks are the building pieces of the blockchain’s data structure. A block, as shown
in Figure 2.2, usually contains:

• A set of transactions

• The digest of the block

• The digest of the parent block

• A timestamp

• A nonce, which is a random alphanumeric string needed to maintain the process
secure.

The first block of the chain has particular properties and it is called Genesis block.Figure
2.2 shows the way blocks are linked and what they contain.
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2.4.3 Links

It is by storing the hash of the parent block that the links are created. Having these
links between the blocks makes the blockchain secure.

Supposing that an attacker wants to compromise the ledger’s content by modifying
the value of a block if also just one bit of the ith block’s data changes his digest will
change. Since the ith digest changed, the i+1th block does not store anymore the ith
digest as parent hash. This makes the chain invalid from the i+1th block until its tail.

Fork

Figure 2.3: Fork

When two blocks refer to the same parent there is a so-called fork [13] which means
that inside the network there are two different versions of the same ledger. This way
two blocks may refer to the same parent is shown in Figure 2.3. Even if there is not a
favorite chain, peers will always prefer the one which is the longest since it means that
it took more effort to be calculated and consequently it is less likely to be altered. This
principle, called longest chain rule, enables to maintain the same version of the ledger
across the network’s nodes.

2.4.4 Block time

Blocks, once created, are not directly added to the ledger. A new block can be appended
at the tail of the chain only after a period of wait called Block time. This period lasts
up to 10 minutes for Bitcoin and almost 15 seconds for Ethereum blockchain. Block time
surely reduces the transaction throughput of the network but, together with the longest
chain rule, prevents attackers from tampering blockchain creating a longer alternative
chain.

2.5 Consensus Mechanism
Consensus mechanism is a set of procedures that allows the network’s node to have
the same version of the ledger. Before attaching a block to the chain the majority of the
network needs to agree on its validity. There are different types of Consensus mechanisms:

10



2.5 – Consensus Mechanism

2.5.1 Proof of Work

Blockchain implementing a Proof of Work mechanism requires a proof of having done
an amount of computational work in order to add a new block into the ledger. The nodes
in charge of creating new blocks are called miners.

Figure 2.4: Proof of Work miner’s block creation steps

A miner, as shown in Figure 2.4, must face several steps to create a block and earn a
reward for it:

1. It collects transactions signed through cryptography by the users that want to send
their assets [36]

2. It orders them chronologically. Ordering transactions is a necessary step as it
prevents attacks like Double Spending. [14]

3. It tries every possible combination that could solve a puzzle associated with that
block. Usually, this puzzle consists in finding a digest that satisfies some mathe-
matical rule by using as input the block and by varying a nonce value. In Bitcoin
for example this puzzle requires a digest that starts with a predefined number of
zero called difficulty.

4. If the miner is lucky, it finds the right value of the nonce that generates the expected
digest.

11



Blockchain Technology

5. Having found the solution, it broadcasts the block it created to the whole network
that executes and validates each transaction of the block.

6. If all the transactions are considered legit, the block is inserted into the ledger by
all the peers and the miner receives a reward.

PoW is the first consensus protocol that was adoperated and for this reason, is the
one that was more tested. PoW has been criticized for the waste of energy given by the
mining process since every miner does computations to find the right block to append to
the ledger. However, it is one of the most secure consensus protocol because attackers need
to do unfeasible investments in hardware facilities to alter the content of the ledger. [16]

2.5.2 Proof of Stake

Proof of Stake is a consensus mechanism that does not require heavy hardware com-
putation like PoW but instead asks for financial investments. The actors involved in the
blocks’ creation are no more called miners but validators. Participants to be eligible
as validators must block an amount of tokens as collateral in a process called staking.
In PoS the validator is chosen by an algorithm that prioritizes who staked more tokens
in the blockchain. By being so, PoS does not require every node to be involved in the
validation process but only the ones that are selected by the algorithm making it possible
to reduce the overall computation.

Figure 2.5: Proof of Stake validator’s block creation procedure

A node, as shown in Figure 2.5, must face several steps to create a block and earn a
reward from it:

1. It puts an amount of token in staking to be eligible to be a validator. These staked
assets are blocked and can not be used for a period of time.

12



2.5 – Consensus Mechanism

2. The consensus protocol chooses the node as a Validator.

3. The node validates the content of the block and then broadcasts it through the
network. The rest of the network later agrees with the block’s content and appends
it to the back of the chain.

4. The validator receives the transaction fees of the block.

5. Later the node will receive back the assets it staked and it can decide if stake them
again.

Figure 2.6: Proof of Stake validator’s slashing procedure

The use of collateral discourages attackers from submitting an invalid block. As shown
in Figure 2.6, if an attacker wants to change the ledger’s content:

1. It puts an amount of token in staking to be eligible to be a validator.

2. The consensus protocol chooses the malicious node as a Validator.

3. The validator changes the content of the block in a way that it can profit from it. It
then broadcasts the block to the whole network that executes it and notices how the
transactions do not respect the actual state of the ledger. Since the node submitted
a malicious block the assets it staked are automatically sent to an address that is
not accessible by anyone making them no anymore withdrawable. This process is
called slashing.

For its characteristics, PoS makes it possible to reach a higher throughput and scala-
bility than PoW but it is a new technology that still needs to be tested in bigger networks.
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Not requiring the use of hardware facilities which incentive cost increases quickly, PoS
may phase centralization on the decision process. For this reason, some blockchain selects
the validators randomly.

2.6 Smart Contracts

2.6.1 Definition

Blockchains can run distributed programs called Smart contracts which can be seen as
digital contracts that lean on the reliability and immutability of the blockchain infras-
tructure. Smart contracts are gaining popularity because they can automatize a variety
of processes that otherwise would need a centralized entity super visioning their correct-
ness. It is possible to define a smart contract by writing code that is expressed as set of
conditions that could trigger a modification of the ledger’s state. Ethereum [27] gives the
ability to create Smart Contracts through the use of Solidity language.

2.6.2 Use case

An example of how smart contracts logically work could be the sale of a bike:

Figure 2.7: Successfully finished smart contract

Assume that Bob wants to sell his bike to Alice but he wants to put some conditions on
the sale. Bob requires that Alice sends within 1 month a specific amount of crypto (0.05
BTC and 0.01 ETH) to him in order to have the ownership of the bike. If Alice does not
respect one of these conditions she will not have the bike. They decide to automatize the
sale through the use of a smart contract by expressing through code the agreed conditions
of the exchange. They do not need indeed any intermediary that assures that the right
amount of money is sent or that the bike’s ownership has changed because blockchain will
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do it. If Alice sends the amount of agreed assets, she will have the bike and its ownership
will be immutably written on the blockchain, as happens in Figure 2.7.

Figure 2.8: Unsuccessfully finished smart contract

Otherwise, as shown in Figure 2.8, if Alice does not send the quantity of cryptocur-
rencies within the chosen time frame she will not receive bike ownership.

2.7 Application contexts

One of the main innovative blockchains’ features is that they enable to not rely on a
trusted entity to exchange data securely. In the case of cryptocurrency, it is not needed
an entity like a bank that certifies if everybody is issuing legit transactions. Not depending
on a centralized entity indeed reduces strongly costs and overcomes geopolitical barriers.
It also removes the existence of a single point of failure making it always possible to access
the services. For these reasons there are many contexts where using blockchain could be
beneficial:

2.7.1 Open access to financial services

Cryptocurrencies could help people who live in developing countries to have access to
financial services and to issue financial transactions more quickly and with a lower risk
of fraud or theft. [30]

2.7.2 Tracking food supply chain

Since this technology is not just about financing, blockchain can be used to efficiently
track agricultural products from the moment they are planted until they are served to
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consumers’ tables, allowing to detect any failure inside the food chain and avoid dangerous
food poisoning. [26]

2.7.3 Process automatization

Thanks to smart contracts, blockchain could be a game dealer for industries as it would
reduce overhead given by the bureaucracy of the processes. Smart contracts can be used
by companies to automatically issue a transaction whose price depends on some condition
of the exchange. For example, its price could be related to the time that shipping took
and the quality of the delivered goods.
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Chapter 3

HyperLedger Fabric

3.1 What is Hyperledger fabric

Hyperledger Fabric is one of the leading projects sustained by the Linux Founda-
tion, a no-profit consortium that strongly believes in open source software and aims at
incentivizing technology development. [12] Fabric enables to execute coherently applica-
tions written in commonly used languages over multiple peers as it was in a single global
blockchain. For this reason, Fabric is the first distributed operating system implementing
a permissioned blockchain. Fabric being an open source software can be exploited in
several contexts where trust can not be assured. Fields like food safety, dispute resolution,
or trade logistic could be an example of application contexts.

3.2 Execute-Order architecture limitation

Figure 3.1: Order-Execute architecture

HF was built having in mind blockchain’s (both public and private) typical flaws:

• Blockchains make every peer execute sequentially all the transactions contained
inside a block implementing the so-called Order-execute architecture. This
type of behavior is illustated by Figure 3.1. This architecture could make through-
put performance degrade especially in the case in which computationally expensive
smart contracts are intentionally submitted to the network with the goal of conges-
tion it. Since every peer executes every transaction, the network could be subjected
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to the risk of a Denial Of Service attack. The way Ethereum, a public blockchain,
copes with this weakness is by using gas, a sort of a bill delivered to the submitter
whose cost depends on how many resources were needed to execute the submitted
Smart Contract.

• After having reached consensus, all the transactions executed by the peers must
give a determined output. Otherwise, ledger will fork going against the replica-
tion requirement of the blockchain. This is usually solved by using domain-specific
languages, that by restricting functionalities, make the execution return only de-
termined outputs.

• Blockchains exploit a fixed consensus protocol that defines the rules to validate
a transaction. This is hard coded into the protocol and it does not let define at
application level a specific trust model that could fit the needs. Smart contracts
must stick to the original predefined consensus protocol.

• Permissioned blockchains make all the peers run every smart contract. In certain
contexts, it may be needed to have confidentiality of the ledger state and the
smart contract logic. Public blockchain solves this problem by using cryptographic
techniques but this requires a big overhead on the computation needed to maintain
security properties.

3.3 Key concepts

3.3.1 Ledger

Figure 3.2: Ledger

Ledger stores the data of the blockchains and it is composed of two different but
related parts [11], as shown in Figure 3.2:
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• Blockchain preserves the blocks containing the transactions that have been made,
both valid and invalid. Once written its content is immutable because of blockchain’s
properties.

• World state maintains the actual state of assets deriving it from the blockchain.
This makes the current state of the asset more comprehensible by the application.
Otherwise, the application should traverse the whole transactions log to derive the
value of the current assets. World State usually stores its data in the form of a
key-value tuple.

3.3.2 Chaincode

Smart contract contains the logic with which it is possible to query and modify ledger’s
data. Smart contracts may be written by untrusted developers. For this reason, every
trial of modifying ledger’s data must be validated first. Chaincode envelops one or more
smart contracts and manages how they’re deployed and available to be accessed. [18] For
simplicity, it is also named chaincode the smart contract that is contained.

3.3.3 Channels

Channel enables to create a subchain with a part of the network making it possible to
maintain confidentiality between them. Channel could be used to create private commu-
nication links between parties that do not want their transactions to be visible to every
node of the network. [3]

3.3.4 MSP

Since Fabric is a Permissioned Blockchain, it requires every node to be known from the
other ones. This is carried out by a component called Membership Service Provider
(MSP) that associates each node with its identity.

3.3.5 Peer Gossip

Gossip enables each node to have an updated view of the network through the exchange
of messages by using TLS encrypted tunnels. [6]

3.3.6 Organization

Every network’s node is owned by an organization that can be defined as a group of
entities that trust each other. Organizations can both represent a company or a single
unit.

3.4 Fabric Nodes
Fabric network is composed by several modular components that cohoperates to build
a permissioned blockchain. An example of a network composed by 3 organizations is
illustrated in Figure 3.3.
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Figure 3.3: HyperLedger fabric dummy network composed by 3 organizations

3.4.1 Peer

Peer is the node that holds one or more instances of the ledger. Peer also can have
installed one or more chaincode that can be used to query and modify ledger’s data
systematically. Every peer has a preinstalled system chaincode which provides necessary
functionalities. Chaincode is placed on a separate docker container to keep the peer and
its data isolated. [15]

Figure 3.4: Subdivision of peer’s types

It is possible to list different types of peers depending on the role they are assuming:

• Committing Peer or CP is the peer which stores an instance of ledger. CPs that
do not store any chaincode may be used for keeping data replicated.

20



3.5 – Transaction flow

• Verifier Peer or VP participates in the validation process that occurs before a
new block is added into the ledger.

• Endorsing Peer or EP is a peer that is involved in the endorsement process
where single transactions are executed before being chronologically ordered.

Every peer is a Committing Peer since in order to maintain reliability in the validation
or endorsing process it is needed an updated version of the ledger. The way peers are
partitioned is shown in Figure 3.4.

3.4.2 Orderer

Ordering Service Node (OSN) or Orderer is the node that establishes the global
order of the endorsed transactions in a way that only legit ones can succeed. Orderers do
not have any knowledge about ledger’s state, implementing a modular consensus protocol
that can be easily replaced depending on the needs. All the orderers together create the
so-call Ordering Service.

3.4.3 Client

Client represents the user that communicates with the network through the application.
Clients need to be authenticated by the MSP in order to issue any action inside the
blockchain and they have the responsibility to orchestrate the transaction during part of
its process.

3.5 Transaction flow

Figure 3.5: Execute-Order-Validate architecture

Fabric offers a way of executing transactions before globally ordering them enabling
the parallelization of their execution. This new architecture is called Execute-Order-
Validate and the steps it takes to commit a transaction are shown in Figure 3.5. The
process of executing single transactions is called endorsement and it makes possible
removing as soon as possible any malicious transaction that is not considered legit. In
the EOV architecture every transaction must pass through three different phases to be
inserted inside the ledger:
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3.5.1 Execution

Figure 3.6: Execution phase

At the beginning of the Execution phase, the client signs the transaction proposal
and sends it to a group of Endorser peers specified inside the chaincode.

The proposal is created by packing:

• Client’s identity

• The transaction payload containing the operation that the client wants to do to
the ledger

• Parameters

• Chaincode identifier

• Nonce

• Transaction identifier derived from the nonce and by the client identifier.

Once received the proposal, the EPs execute the submitted transaction in a process
called simulation where peers produce an output not changing the actual content of
their ledger. The output is composed of the writeset, which resumes the state changes
that the operation does, and the readset, which refers to the values that were read
during the execution and their version number. The transaction proposal is serviced by
only accessing the local copy of the ledger. Furthermore, there is not any communication
between peers during the simulation phase. Once finished the execution, the EP signs the
output of the execution and sends back to the client the resulting packet which is called
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endorsement. The transaction will be considered legit only if the outputs produced by
all the simulations are identical. Otherwise, it means that it produces inconsistent states
among the peers and it can not be accepted. The whole procedure is illustrated in Figure
3.6.

3.5.2 Ordering

Figure 3.7: Ordering phase

After that the client collected enough endorsements from the EPs, it packs them
in a transaction together with the transaction payload and metadata. Client sends it
directly to the Ordering Service which has the only role to establish the global order
among every transaction received. As a matter of fact orderers, for the modularity of
HF, do not have any information about the ledger state and can not consequently affirm
the legitimacy of the transactions. This enables the consensus to be separated from
execution and validation. The transactions received are later grouped into blocks whose
size is determined by a predefined parameter or by a timeout. Packing the transactions
into blocks makes the blockchain’s throughput higher. The whole procedure is illustrated
in Figure 3.7.
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3.5.3 Validation

Figure 3.8: Validation phase

Once the VPs have received the transactions1 that were previously grouped by the Orderer
into a block, it is their role to:

1. Check in parallel for each transaction if the endorsement policy was satisfied

2. Search sequentially read-write conflicts for each transaction by comparing if the
version of the readset is the same that is locally stored inside the peer. This makes
possible detecting double-spending attacks and consequently considering the trans-
actions invalid.

If any of these two steps end unsuccessfully the transaction is considered invalid and
marked as so. Saving also invalid transactions enables to recognize quickly any identified
entity that tries to do a Denial of Service attack. At the end of the validation process,
each peer attaches the block into the locally stored ledger, changes the state by following
the writeset, and updates the readset values. The whole procedure is illustrated in Figure
3.8.

1Peers can receive blocks from the ordering service or through Gossip messages received by the other
participants of the network.
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3.6 Endorsement Policy

3.6.1 Definition

Endorsement Policy sets constraints on the set of endorsers that are required to give
an equivalent response to the invocation of a smart contract. Only if the EP is satisfied
the transaction can be considered valid by the whole network. Endorsement Policies
specify which organizations and how many peers inside of them must give their approval.
These policies reflect the agreements taken between the organizations that co-operate
inside the network and can not be chosen or changed by anyone that is not the system
administrator. [33] [25] [20]

3.6.2 Endorsement Policies types

Hyperledger fabric makes possible defining Endorsement Policies at different levels of
granularity. [4]

Chaincode Level

Every chaincode has a bounded endorsement policy which is applied to all the assets of
the channel. These types of EPs are linked to the lifecycle of the chaincode and can not
be changed unless a newer version of the chaincode is instantiated into the network.

Key level

Hyperledger Fabric lets also specify key-level endorsement policies referring to only an
asset of the ledger. This type of policy is prioritized with respect to the chaincode EP.
Key level EPs can be used in contexts where different EPs are needed for some assets of
the ledger. For example critical assets may require more stringent EPs like the approval
from every organization participating in the channel. Key-level EPs definition is stored
in the write set of the transaction and can be changed through a transaction proposal.

3.6.3 Fabric EP language

Fabric offers a domain-specific language with which it is possible to define endorsement
policies. This language consists of three logic operators:

• AND which requires every expression contained to be true

• OR which requires at least one expression contained to be true

• Out-of-N that is true only if at least k of the N conditions are satisfied

In this specific case, the expressions to be satisfied inside of the operators are the
successful endorsement from an organization.
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3.6.4 Real life example

Endorsement policies are expressive enough to be used for describing real-life scenarios.
For example, whenever a person wants to sell his car to a buyer they must first agree on
every detail of the agreement. The approval needed from both of them can be expressed
with the Endorsement policy language:

AND(′Seller′,′Buyer′)

since this expression will return true only if both of the parties give their consent.
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Chapter 4

JS application architecture

This chapter will introduce Fabric SDK’s architecture and transaction flow. Later it
was studied how the Fabric Node SDK implementation faces the Endorsement phase.

4.1 Fabric SDK

Sometimes having a secure distributed ledger is not enough to fit companies’ requirements.
For instance companies might need a way to create more complex applications capable of
interacting with the blockchain and that inherit its immutability and security properties.
Fabric offers an SDK which enables to create applications that can communicate with a
Fabric network. These SDKs are available for multiple programming languages such as
Java, Node.js, and Go.

Figure 4.1: Application interaction with Fabric
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4.2 Fabric Node SDK

Fabric SDK enables applications to interact with a Fabric network by offering several
APIs that orchestrate the communication flow with the blockchain. Fabric SDK translates
the invocation of its API into the execution of the corresponding smart contract’s function
by the peers of the network, as illustrated in Figure 4.1. Fabric SDK for Node.js offers
several packages which can be used inside a node application: [10] [21]

• fabric-ca-client is an optional component for Fabric that enrolls peers and appli-
cation users to enable them to be identified and access the network.

• fabric-common encapsulates the base code used by all the fabric-SDK-node pack-
ages. It provides low-level actions to the fabric network making it able to invoke
transactions.

• fabric-network offers the API to connect to the fabric network. It gives the ability
to query and modify the ledger content at a higher level than fabric-common does.
Differently from fabric-common, it can not be used for installing, starting smart
contracts or other administrative actions. [9]

• fabric-protos contains the necessary data structure to make gRPC communica-
tions possible. gRPC is a framework for reliable data communication between
fabric network and client application.

4.3 Key concepts

In order to make an application communicate with a fabric network there are some classes
belonging to the fabric-common package needed to be initialized.

4.3.1 Wallet

A wallet stores a set of user identities that provides access to a Fabric network. [22]
These certificates together with the MSP associate to each client an identity and the role
it assumes inside the network. As shown in Figure 4.2, identities are composed of:

• A X.509 certificate

• A descriptive ID label

• A public key

• A private key

• Fabric specific metadata

Wallets can store multiple certificates issued by different Certification Authorities.

28



4.3 – Key concepts

Figure 4.2: Wallet composition

4.3.2 Gateway

Gateways are used to manage the interaction with the Fabric network. [5] In order to
work they need to be configured by inferring a partial or full description of the network
topology. This configuration can be of two types:

• Static when the entire configuration is described in a connection profile. The
SDK uses this statically encoded file to carry on the transaction proposals and the
notification process. The inferred configuration must be complete in a way that the
gateway can communicate with the network and have its transaction submitted.
These network configurations need to be statically created by an administrator
who understands the network’s topology. Static configuration struggles to adapt to
network changes that require the profile to be adjusted like when a new organization
joins the network and the endorsement policy must be updated. The client may
also have configured a profile with a peer that does not have the most updated
version of the ledger and its transactions are a priori rejected because they do not
respect the current value of the asset.

• Dynamic when the application uses the Service Discovery which automatically
gathers data from the nodes and presents it to the SDK in a consumable way. [17]
Service Discovery is installed inside the peers that by inspecting gossip communi-
cation layer messages indicates which nodes are online and how to contact them.
Service Discovery can also be used to acknowledge the smart contract endorsement
policy. The gateway still needs an entry point to be statically configured that can
communicate and gather network information. Usually, it is inserted the profile of a
peer that belongs to the same organization so that the data sent can be considered
as trusted. A connection option configuration can be used to specify how the
transaction process should be handled by the SDK.
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4.3.3 Contract

Figure 4.3: Fabric SDK interaction with EPs’ smart contract

Contract class lets the application interact with a smart contract by offering two
APIs [8]:

• submitTransaction API which enables to submit a transaction that aims to
modify the ledger’s content. Its parameters will be handled by the SDK in a way
that the proper smart contract function will be called from the peers. The prototype
of this API is:

submitTransaction(name, [args])

where

– name is the name of the smart contract function that the client wants to
execute. One example could be insertAsset or deleteAsset.

– [args] are the argument of the smart contract and can be more than one. For
example they can be the name of the asset and numeric values related to it.

The function itself will return to the application the outcome of the transaction
after the committing phase has finished.

• evaluateTransaction API does not send the received endorsements to the order-
ing service in a way that it does not change the content of the ledger. This API is
used to query the world state of the blockchain. The prototype is equivalent to the
submitting version:

evaluateTransaction(name, [args])

Figure 4.3 shows how the API offered by the Contract class are later translated
through the use of the SDK into chaincode function invocations.
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4.4 Application transaction flow

This section summarizes how an application submits a transaction and how the SDK acts
as an interpreter between the application and the network.

4.4.1 Pre-requisites

Before the application can run it is required that

• Peers have installed the chaincode

• The channel is already created

• The smart contract has its endorsement policy configured

In addition the application, before submitting transactions, needs to set up some
objects offered by the Fabric SDK.

4.4.2 Fabric SDK initialization

When booting up the application needs to: [1] [23]

1. Have a Wallet that holds one or more X.509 certificates. Through them the MSP
can identify the application and its right to read or modify the assets of the ledger.
Only if the application user is correctly registered and enrolled by a CA of the
organization, it can be authenticated into the network.

2. Define a Gateway to be able to communicate with the network.

3. Since the peers described in the gateway connection profile configuration can be
part of multiple networks, the application has to select a specific Network with
which it will interact.

4. From the network later the application can choose the selected smart contract
through the Contract object.

4.4.3 Transaction execution

The user application can now communicate with the blockchain and issue a transaction.
It is now described the interaction between the application and the blockchain when a
new transaction is issued: [19]

1. The client retrieves the identity from a wallet and invokes the submitTransaction
API which submits the request to the Gateway, as shown in steps 1 and 2 of Figure
4.4.
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Figure 4.4: Application transaction flow

2. The Gateway acts as a shim that formats the inputs passed to the API, signs the
endorsement request with the user’s cryptographic credentials, and sends it to the
right peers of the network. The endorsing peers check the correctness of the received
request by inspecting its format if it has already been proposed (reply-attack), if the
signature is valid and if the submitter has the right to modify or query the ledger.
If everything is correct, the EPs execute the chaincode with the client’s submitted
inputs and return back to the Gateway the output containing the read-write set.
This is shown in step 3 of Figure 4.4.

3. Having checked that the signature of the endorsing peers are legit, the SDK pro-
ceed to inspect if the output of the executions are equivalent. If the client wants
its modification to be appended to the ledger, it must be sure to have enough en-
dorsements to respect the endorsement policy. The Gateway creates a transaction
message containing all the endorsements and broadcasts it to the ordering service
that chronologically orders all the received transactions. This is represented by step
4 of Figure 4.4.

4. The ordering service delivers the assembled block to all the peers that verify if the
endorsement policy is respected and if there is another attempt of modifying the
ledger. If everything is correct the block gets added by the peers of the channel, as
shown in step 5 of Figure 4.4.

5. When the execution is completed the Gateway is notified about the request finishing
status. Finally, it parses the response payload in a comprehensible way for the
application that is informed about the end of the transaction proposal. This is
denoted by steps 6 and 7 of Figure 4.4.
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4.5 Endorsers selection procedure

Having seen how the transaction flow proceeds, it is now discussed how the Fabric Node
SDK implementation handles the endorsement phase and in particular how the endors-
ing peers are selected before sending the endorsement requests. The next sections will
illustrate the data structure and functions involved in the endorsement phase carried by
the SDK.

4.5.1 Layout

Layout is a data structure used by Fabric for representing a configuration of organiza-
tions that satisfy the endorsement policy. A layout associates to each specified group
(organization) a number of peers belonging to it that must give the approval to satisfy
the endorsement policy.

For example, if the layout of an endorsing procedure is:

[G0 : 1, G3 : 1, G4 : 2]

it means that 1 peer from G0, 1 peer from G3, and 2 peers from G4 must respond
positively in order to endorse the transaction.

4.5.2 ProposalSendRequest

Figure 4.5: Example of a ProposalSendRequest object with a Dynamic configuration

ProposalSendRequest is an object that wraps the transaction request and packs
details about how the endorsement phase has to be carried by the SDK. It can contain
different attributes depending on the inferred configuration:

• Request timeout that indicates how much the SDK should wait for peers’ re-
sponses before giving an error

• Targets, is an optional argument that statically identifies the target peers for the
endorsement procedure

• Discovery service Handler is an optional argument and is typical of a dynamic
configuration. Passing the handler of the discovery service is needed to make the
SDK interact with it.
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• Peer selection criteria is an optional argument where it is possible to define con-
straints on the peer endorsement selection process: some of them may be excluded,
required, or preferred for certain characteristics.

• Sort criteria, that specifies if the endpoints should be sorted following certain
criteria:

– BLOCK_HEIGHT orders depending on the height of the ledger that a peer
is storing. This can be a sign of reliability for the way blockchains are designed.
This is the default value.

– RANDOM, if the peer should be randomly ordered.

An example of an instance of a ProposalSendRequest object in the case of a Dynamic
configuration is provided in Figure 4.5.

4.5.3 Endorsement plan

Figure 4.6: Endorsement plan structure

Endorsement plan is a key object as it maintains data about the network’s topology
and attributes that are used for sending endorsement requests to the right peers. An
endorsement plan is composed of:

• Name of the chaincode with which the transaction wants to interact

• Groups which is the list of organizations beloging to the network. For each orga-
nization it identifies the contained peers specifying their:

– MSPID
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– Endpoint URL
– Name
– Installed Chaincodes
– Height of the ledger

• Layouts which contains a list of possible configurations of groups (organizations)
that can satisfy the endorsement policy.

An endorsement plan can be retrieved by querying the service discovery which creates
a response depending on the dynamically gathered data from the network. It can also
be statically reconstructed by the SDK through the targets that are specified inside a
proposal.

An example of an instance of a Endorsement plan object containing the chaincode
name, groups and layouts is provided in Figure 4.6.

4.5.4 Endorsement phase

The actual endorsement phase starts when the endorse function is invoked. It is now
illustrated the flow of the endorsement phase in the case in which a dynamic configuration
is inferred.

1. Once called, the endorse function creates an endorsement plan by querying the
Service Discovery. This is done by using the handler defined inside the Propos-
alSendRequest object passed as a parameter. For the way the Service Discovery’s
implementation works, a set of layouts composed of the disposition of groups that
satisfy the endorsement policy are taken into account. Having correctly initialized
the endorsement plan structure the _endorse function is called.

2. The _endorse function filters the endorsement plan’s layouts in a way that the
Peer selection criteria stored inside the ProposalSendRequest are respected. The
resulting layouts are then shuffled and a loop through all the layouts begins trying
to successfully endorse one of them.

3. _endorse_layout is called for one of the layouts. The function retrieves for
each group(organization) the number of peers that are required to endorse the
transaction. If the number of peers contained in the organization are less than
the required ones the function returns an error and the flow goes back to step 3.
Otherwise it calls _build_endorse_group_member for each required peer.

4. _build_endorse_group_member is called for every peer that has to endorse
a transaction and it:

• Checks if the peer has already responded to a previous endorsement request for
the same transaction. This can happen because the same peer could have been
in another layout that happened to fail. This makes possible speeding up the
endorsement procedure not requiring an already endorsed peer to re-simulate
the outcome of the transaction.
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• Otherwise the SDK proceeds to connect to the peer through its endpoint URL
and inspect if it is currently involved in other computations. If the peer is
available the SDK connects to it and send finally the created proposal.

• If the outcome is successful the promise returns the response of the endorse-
ment, otherwise the SDK retrieves the peer’s characteristics and returns them
with an error.

5. Having received the responses from every peer of the layout, the _endorse function
checks if the endorsement requests went all successfully and if the responses received
have equal output results. If an error occurred in one of the proposals the flow
goes back to step 3. Otherwise, the function returns the endorsements and the
endorsement phase is completed.

4.5.5 Layout dimension

Fabric Peer binary (version 1.4.9) makes the Service Discovery create and return layouts
containing a fixed number of groups equal to:

NumGroupsInLayout = |NUM_ORG|
2 + 1 (4.1)

which are composed in a way that they can satisfy the chaincode’s endorsement policy.
For example, if there are 6 organizations inside the network, the layouts will be

composed of 4 different groups.
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Chapter 5

OPEN

In this chapter it will be discussed what is OPEN and how it works. Later it will be
illustrated how OPEN can be implemented inside a Fabric Node Application. OPEN
algorithm was designed by Doctor Lotfimahyari Iman in the "Optimal endorsement for
network-wide distributed blockchains" paper.

5.1 Endorser peer selection algorithm
For instance, it is defined as Endorsing peer selection algorithm the procedure that
selects while respecting the endorsing policy the endorsing peers to which the transaction
proposal will be sent. In most of the cases it is possible to find multiple sets of peers
that satisfy the endorsement policy and for this reason selecting one set rather than
another could positively impact on the time experienced to finish the whole endorsement
procedure. Choosing the best EPs is not trivial as their behavior together with the
one of the network is not deterministic as it varies with the time and depends on many
non-predictable factors.

5.1.1 Endorsing Time

Endorsing time can be defined as the time that the client waits from when it creates
a transaction request to when it has received enough endorsements to be able to satisfy
the endorsement policy.

The endorsing time experienced by the client is mainly influenced by two factors:

• Network time which is due to the fact that the endorsement request has to be
sent to the EPs through the network. This delay is composed of the time needed
for the actual propagation of the request from the sender to the receiver and by the
additional time caused by the congestion of the network.

NetworkT ime = PropagationT ime + CongestionT ime (5.1)

• Waiting time which is the time required from when the EPs receive the endorse-
ment request to when they simulate the transaction and provide the outcome of
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the transaction. This delay is not fixed as it depends on many variables like the
computing capabilities of the peers (that set a limit on the number of instructions
that can be executed) or the received requests that are queued inside the peers
(that shifts the execution of a newly received request).

Waitingtime = QueuingT ime + ExecutionT ime (5.2)

For this reason endorsing time can be considered as sum the contribution:

Endorsingtime = Networktime + Waitingtime (5.3)

given by the number of EPs that are requested to endorse a transaction.

Figure 5.1: Endorsing time graph with a 2-out-of-N policy

Figure 5.1 illustrates how the endorsing time is measured in the scenario of a config-
ured 2-out-of-N policy. In this case the endorsing time would be the time needed to receive
at least 2 endorsements by taking into account the contributions given by the network
time and the waiting time of the second fastest EP of the ones that were contacted.

5.2 OPEN

5.2.1 Definition

OPEN is a state-based endorsing peer selection algorithm that aims to minimize the
endorsing time by selecting the EPs depending on how they behaved in the previous
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transactions.

5.2.2 Functioning

OPEN exploits response delay data from previous transactions to decide which EPs are
more suitable to be chosen. Because of the queuing that happens on the network and EPs,
it can be experienced high correlation between the times that it takes to receive a response
from an EP. This correlation can only be assumed only for EPs that were recently selected
otherwise the information given by the response time should be considered obsolete. For
instance, an EP that was not recently selected because highly loaded could be the one with
the least number of pending requests when a new endorsement procedure is started since
it was not selected anymore. To address this issue OPEN sends redundant endorsement
requests to EPs that are not strictly required for satisfying the policy in order to gather
data about their occupation status. 1 Furthermore, redundant requests are still considered
in the evaluation of the endorsement policy. Finally, OPEN labels pending requests as a
sign of the congestion of an EP that will not be considered in the decision process once
another transaction is started.

5.2.3 Pseudo code OPEN

The pseudocode of OPEN is provided in Figure 5.2. Let TXn be the nth transaction
locally for a client. Let BEST_N the number of selected EPs by OPEN. Let Xn

p be the
measured response delays of TXn for any EP p ∈ P . Let P n

e be the set of selected EPs
for TXn. Finally let T be the sampling period which is measured in terms of transaction
numbers.
1: procedure OPEN(n) ▷ Process TXn

2: en
p ← true, ∀p ∈ P ▷ Init the eligibility vector for TX(n)

3: if n = 1 then ▷ Just for the first transaction
4: for p ∈ P do
5: x0

p ← x1
p ← −1 ▷ Init the response delay history

6: P1
e ← P ▷ Select all the available peers

7: else ▷ Consider a generic transaction
8: for p ∈ P do
9: xn

p ← −1 ▷ Init the measured delays for TX(n)

10: Pn
e ← Select-Endorsers()

11: if (n mod T = 0) then ▷ Check if it is the time for a probe
12: p←Random-peer(P \ Pe) ▷ Select random peer /∈ Pe

13: Pn
e ← Pn

e ∪ {p} ▷ Augment selected EPs with the probe
14: Send-Endorsement-Requests(TXn, P n

e )
15: Xn ←Update-Response-Delays()

Figure 5.2: Pseudocode of the OPEN algorithm for TXn which was transcripted from
"Optimal endorsement for network-wide distributed blockchains" paper

1Redundancy could reduce the response time and mitigate server-side variability as it samples more
frequently nodes that may be temporarily slow because of garbage collection, background load or network
interrupts. [32] [35] [34] [28]
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1. In each transaction all the peers are firstly marked as eligible to be selected (line
2).

2. Just for the first transaction OPEN initialize the delay structure with dummy values
and selects all the peers (line 3-6). Otherwise for every other transaction it just
initializes the response delay with a nonsignificant value (lines 8-9).

3. It select the EP for the nT H by following the SelectEndorsers procedure (line 10).

4. Every T transaction a random EP is added inside the set of endorsers(lines 11-13).

5. OPEN sends to the selected EPs the endorsement requests of TXn (line 14) and
stores the measured delays when a response from each EP is recorded (line 15).

SelectEndorsers function selects BEST_N EPs prioritizing the ones that responded
faster during the TXn−1 transaction. In the case in which in TXn−1 one or more EPs did
not respond, the selection becomes harder since the EPs that are considered congested
are not selected by the OPEN algorithm.

1: procedure SelectEndorsers( )
2: dmax = max

p∈Pn−1
e
{xn−1

p } ▷ Max measured delay for TXn−1

3: for p ∈ Pn−1
e do ▷ For EPs used for TXn−1

4: if xn−1
p = −1 then ▷ Not yet response from EP p

5: en
p ← false ▷ Make the EP Not-eligible for TXn

6: if dmax = −1 then ▷ No delay measured for TXn−1

7: xn−1
p ← xn−2

p ▷ Use past delays
8: else
9: xn−1

p ← dmax + ϵ ▷ Speculate the delay
10: for p ∈ P \ Pn−1

e do ▷ For EPs not used for TXn−1

11: xn−1
p ← xn−2

p ▷ Use past delays
12: p ← Select-Eligibile-EPs-min-delay(BESTN ,Xn−1) ▷ Selects BESTN EPs
13: if |p| < BESTN then ▷ If the number of EPs selected is lower than BESTN

14: for i ∈ range(0, BESTN − |p|) do ▷ For every missing EP
15: p←Random-peer(P \ p) ▷ Select random peer /∈ p

16: return temp

Figure 5.3: Pseudocode for SelectEndorsers which was partially transcripted from "Op-
timal endorsement for network-wide distributed blockchains" paper

The pseudocode of the procedure is provided in Figure 5.3.

1. At first SelectEndorsers calculates the maximum delay dMAX that was measured
during TXn−1 transaction. (line 2)

2. Every peer that was selected as EP during the previous transaction and that did
not respond to the request is marked as not eligible. (lines 3-5)

3. From now on the procedure speculates the value of the delay of each EP for which
it is not available:

• If no responses were recorded during the previous transactions the algorithm
speculates delays value by copying the values that were recorded during the
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TXn−2 (line 6-7). In this case the other |P |−BESTN peers would be selected
as none of the previous BESTN EP responded.

• The other case is the one in which at least a response was recorded during
TXn−1 (line 8). For the previously selected EPs that did not respond the
speculated delay is equal to the maximum delay recorded dMAX summed to
a constant ϵ that is small enough to be negligible with respect to the average
network and processing delays. By doing this the algorithm assigns a value
strictly larger than dMAX for the EPs whose delay is unknown. Finally for all
the other EPs that were not selected for TXn−1 their delays are speculated to
be equal to Xn−2 (lines 10-11).

4. BEST_N EPs are chosen among the eligible ones with the minimum measured or
speculated delay, if available.

5. If not enough eligible EPs are available, OPEN randomly selects the remaining EPs
(lines 13 - 15)

5.3 OPEN implementation into the application

5.3.1 Introduction

This section will show how OPEN policy can be implemented inside Fabric Node SDK
architecture. OptimalEndorsementPolicy is a class that by following OPEN policy
creates dynamically layouts containing the EPs to which ask to endorse a transaction.

5.3.2 Attributes

OptimalEndorsementModule attributes are:

• peers attribute keeps memory about the EP selected for the endorsement phase.
It is a matrix having 2 rows one representing the EP for TXn−1 and the other one
the EPs for TXn−2. There is a column for each peer of the network and the value
of each cell represents if that specific peer was selected for that transaction. Cell
value is -1 if that EP was not selected. Otherwise, the value can range from 0 to
|P | and it represents the priority with which that EP was contacted (0 means max
priority). Keeping memory of the past peer’s selection is required as it is used as a
selection criteria by the OPEN process.

• delays stores the measured/speculated delays for every peer and it has the same
dimension of peers’ data structure. This matrix will be used to decide which peers
responded faster and consequently who will be the one to endorse.

• eligibility vector indicates if a peer is eligible for being selected as an endorser.
The value depends on how it behaved in the previous transaction: if it did not
respond its value will be False as it means that it should not be contacted for the
next transaction because probably occupied by other computations.
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5.3.3 Methods

OptimalEndorsementModule most relevant methods are:

• GetLayout() is a function offered from the module to retrieve the layout contain-
ing the peers to contact depending on the selection criteria. In order to gather data
about the response delays, this function for the first INITIAL_DELAY_ACQUIRING
steps sends the endorsement requests to all the peers. After these initializing steps,
GetLayout() will compute the layout following the OPEN policy (or another, if
specified).

• SetEndorsementDelays(delay_data) is a function that prepares and fills the
delays structure with the response delays experienced in the current transactions.
These values will be later used to decide which EPs will be asked to endorse.

5.3.4 Modifications of the SDK

In order to integrate OptimalEndorsementModule inside SDK architecture, there are
three main parts to be modified:

• Generation of the endorsement plan that, as shown on section 4.5.4, happens
during the endorse function. A statically created endorsement plan is used as it
enables to have a fixed mapping between the groups and the organizations that oth-
erwise would not be respected since the Service Discovery reconstructs the topology
of the network through the gossip message system every time it is asked. Having a
fixed mapping is necessary to associate an EP with its history of delays.

• The generation of the layout as it that will not be retrieved anymore from the re-
sponse of the Service Discovery. A layout will be created by invoking GetLayout()
each time the endorse_layout function is called. With OptimalEndorsementModule
the layout is created each time endorse_layout function is invoked depending on
how it behaved during the previous invocation. As a matter of fact, if in the previ-
ous layout a specific peer did not respond, it will not be considered as an endorser
for the new transaction. This does not happen with the standard implementation
as all the layouts are statically created and then iterated until one of them succeeds.

• The registration of the delays, once the requests are sent to the peers selected
by the OptimalEndorsementModule, for each of them the time needed for the peers
to respond is registered. Once the invocation of endorse_layout has finished, the
value of the delays are stored inside OptimalEndorsementModule through the use
of the SetEndorsementDelays function which facilitates the interaction with the
module.

5.3.5 Additional features

• OptimalEndorsementPolicy supports the modular implementation of multiple En-
dorsers peer selection algorithms like RND_2.
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• It implements the Singleton pattern in a way that only one instance of the class
can be defined, reducing the possibility of conflicting code.
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Chapter 6

Experimental validation

In this chapter it will be described the experimental scenario, methodologies and results
of the experiments made to evaluate OPEN performances.

6.1 Experimental scenario
The machine that was used is a laptop with this configuration:

• Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 4-Core Processor, 8 Threads

• 8 Gb DDR4 Ram

• GTX 1050ti GPU

• Host OS: Windows 11

• SSD 64GB

All the experiments were run inside a virtualized operating system through the
use of Oracle VM VirtualBox (6.1.16 r140961 (Qt5.6.2)):

• Ubuntu 21.04 64bit

• 6 Threads

• 5 Gb Ram

• 150 Mb of GPU

The fabric network that was used for these experiments was configured with:

• Hyperledger Fabric version 2.2.2

• Fabric CA version 1.4.9

• 8 organizations, each one containing a peer

• 1 orderer
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• 8 CA, one for each organization

• 1-outOf-N endorsement policy

• Max CPU usable for a single peer = 10%
The libraries required for booting up Fabric network are:

• Docker version 20.10.7, build 20.10.7-0ubuntu5 21.04.2

• docker-compose version 1.29.2

• git version 2.30.2

• curl 7.83.1 (x86_64-pc-linux-gnu)
The programming languages used for developing the application and the programs

for conducting the experiments are:
• Javascript Node.js v12.21.0

• Python 3.9

• Bash
In order to function, it was necessary to configure properly Fabric SDK in a way

that the application could wait for the EPs’ response before exiting giving a timeout. As
a matter of fact it was set:

• Request timeout = 36000 ms

6.1.1 App limitations

There are two ways of issuing transactions to the Fabric network: through the CLI (by
using a bash command) and by using an application (in this case a Node.js one). These
two methods differ in the way they behave:

• CLI: thanks to the peer chaincode command the administrators can perform
operations on the chaincode like installing it, querying it, or submitting transactions
to it. CLI is fast as it communicates directly through a so-called issuer peer which
takes care of doing the request action. By using the CLI the client can only select
the endorsing peers and wait for the response of the execution. As a matter of
fact, since the entire communication with Fabric is handled by the issuer peer, it is
impossible to distinguish the delays of each endorsing peer. Consequently it is not
possible to implement OPEN policy by using the CLI method.

• Application: as previously discussed the application exploits an SDK that handles
the interaction with the Fabric network. With the application, modifying the SDK
code, it is possible to map every endorsing response to the associated EP and this
enables to implement custom endorsers selection algorithms like OPEN. In contrast,
the overhead given by the use of the application (and the use of the CAs) and by the
inefficiency of its code does not let reach a high rate of transactions. The application
can only issue a transaction every 4 seconds (throughput 0.25).
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6.1.2 Experiments

The next sections will be divided in two main parts:

1. The first one called Load of the system will inspect endorsing peers’ behavior
when they’re put under stress. Different analysis will be provided in order to better
understand if EPs can be brought in a status where they struggle with the execu-
tion of the endorsement requests. This study is necessary as it validates OPEN’s
assumptions about the queuing that happens in the network and in the EPs. As
a matter of fact, because of the experienced queuing, some EPs may be slower in
returning the endorsement back to the client making the endorsing time grow. For
this reason if queueing is proven a state-based selection can benefit of the data gath-
ered from recent transactions. Otherwise, if queuing can not be proven, selecting
EPs depending on how they responded previously would be worthless as correlation
between the times of consecutive requests can not be assumed.

2. The second part instead is called OPEN performance evaluation and will in-
spect how OPEN algorithm performs with respect to other endorsing selection al-
gorithms.

6.2 Methodology - Load of the system

A focus on understanding how EPs behave in different stress scenarios is provided. CLI
method will be used to be able to issue a high rate of transactions making the EPs struggle
with executing endorsement requests.

6.2.1 EP’s log

It is defined as Waiting Time the time that it takes to a peer from when it receives a
transaction to when it completes the endorsement procedure. This time includes both the
time that an endorsement request has to wait before being executed, which for instance
is called Queueing time and the time for executing the transactions, which for instance
is called Execution time.

WaitingT ime = QueueingT ime + ExecutionT ime (6.1)

This value can be accessed by each of the peers by issuing the command:

docker logs peer{NUM_PEER}.org{NUM_ORG}.example.com

which returns the online log of the peer where several useful information is written.
This is an example of the returned log:

2022-06-09 20:13:34.595 UTC [endorser] callChaincode -> INFO bfd finished
chaincode: basic duration: 2ms channel=mychannel txID=dddc8023
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2022-06-09 20:13:34.596 UTC [comm.grpc.server] 1 -> INFO bfe unary call
completed grpc.service=protos.Endorser grpc.method=ProcessProposal
grpc.peer_address=172.18.0.1:60644 grpc.code=OK grpc.call_duration=4.414606ms

2022-06-09 20:13:34.785 UTC [gossip.privdata] StoreBlock -> INFO bff Received
block [180] from buffer channel=mychannel

2022-06-09 20:13:34.794 UTC [committer.txvalidator] Validate -> INFO c00
[mychannel] Validated block [180] in 8ms

and each line is meaningful as it affirms that a specific event has been completed from
that EP.

1. The first line indicates that the execution of the chaincode associated with a tx
request has been completed. The txID is specified and in this case is dddc8023.

2. The second line instead tells that the entire endorsing procedure has been completed
from the EP. From the gprc.call_duration it is possible to understand how much
it took for that EP from when it received the request to when it completed the
procedure. This is what was defined as Waiting Time previously and it gives a
hint about EP’s occupation. In this case, the Waiting Time equals 4.4146606ms.
Here the txID is not specified and this does not let acknowledge the endorsing time
since it is not possible to link the Waiting Time from the different peers to the
transaction they belong.

3. The third line indicates that a new block has been received from the EP. Each block
is associated with an ID (180 in this specific example).

4. The last line indicates that the received block has been validated and its content is
immutably inserted into the locally stored blockchain of the EP.

6.2.2 Generator

The transactions are generated by a python program that for instance will be called
Generator. The generator sends transactions following a periodic distribution which
depends on the value of the desired rate R. Once started, the generator will issue a
transaction to Fabric each 1/R second. The transactions are issued by creating a thread
that will use the CLI commands to insert a unique asset inside the blockchain. Figure 6.1
shows how the generator interacts with the Fabric network by creating multiple threads
that issue each one a transaction.

6.2.3 Experiment 1 - Metrics analysis

Introduction

For instance, it is necessary to define some metrics that will be used to evaluate both the
Generator and the Fabric network. Let tGi the time in which the Generator asks for the
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Figure 6.1: Generator logic

creation of iT H thread. Let tSi the time in which the iT H thread starts running. Finally,
let tEi the time in which the iT H thread has correctly finished its task.

For instance:

• Set Rate [tx/s ], is the value of the desired transaction rate given to the generator
as input. For obvious machine limitations it is possible to issue a limited number
of concurrent transactions.

• Offered Load [tx/s] is the actual number of concurrent transactions per second
that are issued by the generator. The offered load is calculated as

OL = N

tG(N−1) − tG0
(6.2)

and depends from the time needed for the Generator to spawn N threads.
Python threads are not executed in parallel but there is a single process that
switches the execution between simpler tasks implementing the so-called Concur-
rency. A decrease of the offered load value means that between two spawning of
a thread, a period longer than 1/R seconds passes. This happens when the tasks
belonging to the previously generated threads are so many to unable the generator
to create other threads.
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• CPU occupation [%] indicates how much CPU is utilized by the system and its
value ideally could be seen as the sum of two components:

– The transaction Generator as higher values of offered load inevitably bring
higher value of CPU occupation. More threads are generated per second and
consequently the number of tasks to execute.

– The fabric network since the occupation grows also if there is a higher num-
ber of EPs asked to endorse since they all must execute the requests and ask
for CPU resources.

• Throughput rate [tx/s] is the rate at which Fabric network services transactions.
The throughput rate is calculated as

TH = N

tD(N−1) − tS0
(6.3)

and depends on how much it takes for Fabric to finish the execution of the submitted
endorsement transactions. Throughput measure enhances how much the generator
is able to put at stress the Fabric network. Lower throughput means fewer requests
serviced per second by Fabric with respect to the ones that were submitted.

• Average Waiting Time [ms] is the average time in which the peers of the network
respond to an endorsing request and it indicates the occupation of the network. The
AWT is calculated as:

AWT =
P∑︂

p=0

∑︁N
i=0 WaitingT ime(i)

N
(6.4)

AWT analysis makes it possible to do assumptions about the behavior of the EPs
during the endorsement phase rather than during the whole transaction. For ex-
ample, if for an offered load equal to 18tx/s the RND_2 algorithm has an AWT of
50ms it means that if this rate of transactions is sustained, the randomly selected
EPs will endorse the transaction in averagely 50ms.

Experiment settings

This experiment will analyze the above-mentioned metrics in order to understand how
both the Generator and Fabric behave if a growing number of transactions per second
is issued. The experiments will be done by using four different endorsing peer selection
algorithms:

• ALL_PEERS, where the request is sent to all the peers of the network

• RND_4, where the request is sent to 4 randomly selected peers

• GEOMETRIC, where the request is sent to the first k peers (starting from
peer0.org1 to peer0.org8) with ki is calculated by using a truncated Geometric
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distribution with average value of N=NUM_PEERS/2. The value that can be re-
turned by this geometric ranges from 1 to 8. Its average value equals to 4 and the
distribution is represented as:

Figure 6.2: Truncated Geometric distribution

Figure 6.2 shows how probabilities are distributed in the truncated Geometric.

• RND_1, where the request is sent to 1 randomly selected peer

The quantity of CPU that each EP can access is limited by a so-called resource usage
limiter to be 10%. The behavior of these utilities is not ideal as it can happen that a
process can in some moments access more resources than the assigned ones. Anyway, it
is possible to affirm that the cpulimit command sets boundaries on the Fabric peers
in a way that they struggle with accessing the resources and "experience" the scenario in
which a big amount of tasks should be executed by the peers but there are not enough
resources to do it immediately. Otherwise, it would not be possible doing this experiment
from the moment in which in an environment where no limitations are set, the EPs would
saturate immediately the resources not making the Generator able to sustain a high rate
of transactions.

Procedure

The pseudocode of the procedure of Metric Analysis is shown in Figure 6.3: for each
endorsing peer selection algorithm, the network was (re)booted, and three measure-
ments were done by issuing for 100 seconds an increasing value of set rate R between
the range from 1tx/s to 20tx/s. For every value of set rate the Generator measured the
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1: procedure METRIC ANALYSIS(n)
2: for algorithm ∈ EndorsingP eerSelectionAlgorithms do ▷ For every endorsing selection algorithm
3: boot_network() ▷ (Re)boot the network
4: for repetition ∈ range(0,3) do ▷ Repeat 3 times
5: for R ∈ range(1,20) do ▷ For every value of set rate between 1 and 20
6: measure_metrics(R, seconds = 100, algorithm) ▷ Measure the metrics
7: sleep(60) ▷ Sleep for 60s between every value of set rate
8: sleep(200) ▷ Sleep for 200s between every repetition

Figure 6.3: Pseudocode of the Metric Analysis procedure

metrics following the procedures mentioned previously. Having finished the iT H value of
set Rate R, the generator cooled down by waiting for 60 seconds in a way that there
was no influence between the experiments.

The shown values were calculated by averaging the results of the three measurements
and by calculating the error through a Student function with 2 degrees of freedom and
with a confidence level of 90%.

6.2.4 Experiment 2 - Execution Time distribution

Introduction

Execution time is the time needed for an EP to purely execute an endorsement request.
Since the EPs give only indication about the waiting time, which contains both the execu-
tion time and the queueing time, it is needed a way to minimize the second component.
To minimize the time that a request has to wait before being executed, a low rate of
transactions can be sent to a single EP making it possible to do assumptions about the
execution time behavior. Together with the average value of the measurements it will be
computed also the so-called coefficient of variation Cv which is defined as:

CV = σ

µ
(6.5)

where µ and σ are respectively the mean and the variance of a set of measurements.
The coefficient of variation provides a measure of the sparsity of the measured points.
If Cv is near or equal to zero, it means that the execution time can be considered as
deterministic. Otherwise Execution time should not be considered as fixed.

Experiment Setting

To understand how EP’s execution times are distributed, it was set an experiment where
1000 transactions were issued to a single EP with a rate of 0.25tx/s.

6.2.5 Experiment 3 - Load of the last k peers

Introduction

The third experiment focuses on the waiting time experienced by every single EP that
belongs to the network. The goal is to differentiate the rate of transactions issued to each
EP in a way that can be observed. If the AWT is affected by the intensive use of the
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CPU rather than the higher transaction rate. If the EPs that receive a higher rate of
transactions require more time to respond, it could mean that there is correlation between
the times that it takes to complete consecutive endorsement requests. Otherwise, if the
AWT does not reflect the rate values, it means that the time of response is independent
from the number of transactions submitted per second, and consequently queueing can
not be assumed.

Uniform

To achieve this type of discrepancy in the transaction rates, it is defined a probability
distribution called Uniform where the probability of selecting a value of k is uniformly
distributed among the range k=[1,8], as shown in Figure 6.4. This range is defined
accordingly to the EPs’ enumeration it is been used until now.

Figure 6.4: Uniform distribution

The output k returned by the Uniform distribution represents the last k EPs that will
be asked to endorse the transaction. For instance, the order of the EPs is defined as:

[EP1, EP2, EP3, EP4, EP5, EP6, EP7, EP8] (6.6)

where EP1 is the first one and EP8 is the last one. For example, if the output k of the
Uniform distribution equals 4, the EPs that will be asked to endorse the transaction will
be EP8, EP7, EP6, and EP5. For the way this distribution is defined, EP8 will be asked
to endorse every transaction and consequently should be the most loaded among the
network. EP1 instead will be selected only in the case in which the k equals 8. Uniform
distribution should make it possible to redistribute the load among all the EPs of the
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network in a way that a growing number of endorsed transactions are observed starting
from EP1 and finishing with EP8.

Mathematical queue model

The Average Waiting time can be estimated for each EP through the use of a mathematical
queue model. These types of models associate to the number of transactions that a server
receives the expected time that a request has to wait to be serviced. To choose the correct
queue mathematical model with which it can be theorized EP’s behavior, it must be
analyzed the characteristic of the system: the discriminators for deciding which model to
use will be the transactions inter-arrival, the EP’s execution time distribution, and the
number of servers. [24]

• The transaction inter-arrival distribution is Poisson distributed since from
EP’s point of view transactions are arriving randomly with an average value equal
to their arrival rate.

• The number of servers equals one as it is studied the AWT from each EP point
of view.

• The execution time, as observed in 6.5.2, can not be considered deterministic
since its coefficient of variation is high. This requires the use of a model that takes
its variability into account.

The Pollaczek-Kinchin formula for M/G/1 queue model [29] can be used to
model systems in which the execution times has high variability. This formula associate
to an arrival rate λ an expected value of the average waiting time which is calculated as:

WT = (1 + 1 + C2
v

2 ∗ ρ

1 − ρ
) ∗ 1

µ
(6.7)

where

• µ is calculated as the inverse of the execution time when the system is not stressed
by a high rate of transactions

• Cv is the coefficient of variation

• λ is the arrival rate and it calculated for each EP as

ArrivalRate = numberOfRequests

experimentDuration
(6.8)

• ρ is the utilization factor, which is defined for each EP as

UtilizationFactor = λ

µ
(6.9)
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Experiment settings

The experiment was made by issuing transactions with a rate of 10 tx/s for 60 minutes
following a Uniform distribution. For each EP it will be analyzed the value of the Arrival
Rate λ and the Average Waiting Time acknowledging if there is any relationship between
these two measures. Later it will be theorized the measured sequence of Average Waiting
Times through the use of the just described mathematical queue model. For each EP
it will be calculated the expected value of average waiting time and it will be confronted
with the measured one to see if it is possible to observe a similar behavior.

6.3 Methodology - OPEN performances

6.3.1 Introduction

This section compares OPEN algorithm average endorsing time with respect to the
original Fabric Endorsing Peer Selection algorithm. In order to create the correct envi-
ronment in which the algorithms can be evaluated, it is necessary to create load inside
the EPs. As a matter of fact if no load is created, the EPs will not be stressed enough
to queue requests and will not vary significantly the time they need to respond to an
endorsement request making it useless to select one EP rather than another. As already
mentioned Fabric Node Application is not able to sustain high rates of transaction mak-
ing it unfeasible to overload EPs through its use. For this reason it is deemed necessary
using an hybrid approach where both the application and the Generator cooperate:
this makes it possible creating load inside the network while benchmarking OPEN.

Figure 6.5: Second experiment

The schema of the experiment is represented by Figure 6.5: while the Generator
creates a load of transactions, the application selects the endorsers for its requests by

55



Experimental validation

following OPEN policy.
The Generator is used in multiple configurations to study how OPEN works in differ-

ent stress scenarios. The load is created through the previously introduced Uniform.
Since both the application and the Generator are run, the rates of transaction achievable
by the Generator are lower than the ones reached in the previous experiments. By using
Uniform the maximum rate achievable by the system is 7 tx/s. Otherwise if a higher
transaction rate is set, the application will not boot.

6.3.2 Experiment setting

For each scenario 5 experiments were conducted in which the application added 1000
assets following the configured algorithm. The inspected metric is the average endorsing
time in the case of an endorsement policy 1-out-Of-8. Also the average time of response
will be indicated and it consists in the average time in which each EP of the layout
responded. The values will be indicated with their associated value of uncertainty that
was calculated through the use of a Student function with a confidence level of 90%.

OPEN configuration

OPEN algorithm was used with this configuration:

• Probing factor T = 10

• eps = 0.001 ms

• BESTN = 5

INITIAL_DELAY_ACQUIRING instead was set to 2.

Scenarios

Different stress scenarios will be analyzed:

• High rate of transactions created by the Generator (7tx/s).

• Low rate of transactions created by the Generator (3tx/s).

• No rate of transactions created by the Generator (0 tx/s).

OPEN performance evaluation

For each scenario it will be analyzed how OPEN performed with respect to the ORIGI-
NAL algorithm computing:

Gain = avgEndT ime(ORIGINAL)
avgEndT ime(OPEN) (6.10)

which indicates how OPEN performed with respect to the ORIGINAL algorithm.
If its value is higher than 1 it means that OPEN outperformed ORIGINAL algorithm.
Otherwise if its value is lower than 1, ORIGINAL was the best.
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Application’s EP selection analysis

A further analysis will be provided about the EPs that were selected by the application
during the experiments. This enables making assumptions about OPEN’s behavior when
choosing the EPs. In the scenarios where the Generator was used, it is also provided
the measurements of the average waiting time for each EP. This enables doing a global
evaluation of the occupation status of the network during the experiments.

6.4 Results - Load of the system

6.4.1 Experiment 1 - Metric analysis

Offered Load Analysis
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Figure 6.6: Offered Load graph with respsect to the Set Rate

Figure 6.6 illustrates the values of Offered Load that the Generator assumed in all
the inspected algorithms depending on the Set Rate.Once the Set rate becomes higher
the way the different algorithms operate changes: RND_1 algorithm is the only one of
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the studied that keeps growing in the inspected range of rates. For the other algorithms,
the value of set load for which the offered load has a decrease of 10% are:

ALL RND4 GEOMETRIC
13 14 15

These values give an indication of how many concurrent transactions the Generator
can issue, depending on the algorithm.

CPU occupation

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Offered Load [tx/s]

0

20

40

60

80

100

CP
U 

Oc
cu

pa
tio

n 
[%

]

ALL_PEERS
RND1

RND4 GEOMETRIC

Figure 6.7: CPU Occupation[%] with respect to the Offered Load
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Figure 6.7 shows the values of CPU occupation that the system reached in all the
inspected algorithms depending on the Offered Load. It is clear that once more EPs
are asked to endorse a transaction, the way the occupation value changes is different.
It can be observed how in Geometric, RND_4 and ALL_PEERS algorithms the
occupation level peaks when certain values of offered load occur. These peeks happens
concurrently with the saturation of the offered load. This means that the resources were
not enough for both Fabric and the generator that competed for accessing them resulting
in uncertain results. RND1 represents the upper limit of the contribution given by the
Generator as it is the algorithm that requires just one random peer to endorse and so it
minimizes the Fabric network occupation component.

Throughput Rate
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Figure 6.8: Throughput rate with respect to the Offered Load

Figure 6.8 shows the values of throughput that Fabric reached in all the inspected al-
gorithms depending on the Offered Load. Every curve is always under the value of offered

59



Experimental validation

load and this validates the results as it would be incorrect if Fabric solved more transac-
tions than the ones that were actually submitted. The curve representing ALL_PEERS
has the lowest slope as each request took more time to be finished since its delay of
execution depends from the slowest EP.

The value of offered load for which the throughput has a decrease of 5% are:

ALL RND4 GEOMETRIC
5.88 9.55 9.71

Average Waiting Time

Figure 6.9: Average Waiting Time with respect to the Offered Load

Figure 6.9 shows the values of Average Waiting Time that the endorsing peers ex-
perienced in all the inspected algorithms depending on the Offered Load. The value of
offered loads for which the AWT was quadruplicated (4X) are:

ALL RND4 GEOMETRIC RND1
5.87 7.67 9.71 15.21
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It is evident how an increase of the transaction rate makes the average waiting time
rise. In addition the number of EPs that are utilized by the system influences both the
growth factor and the starting point of the curves.

Conclusions

This study proved how the Fabric network requires more time to endorse a request if
a high enough rate of transactions is submitted into the system. The way this growth
happens is related to the number of concurrently used EPs. It is worth noting how also
in states in which the system can not be considered as saturate, the average waiting time
is more than doubled. This means that the bigger AWT is not due to the (extreme) lack
of resources but to the incremental number of requests to serve.

6.4.2 Experiment 2 - Execution time distribution

Figure 6.10: Histogram of the measured waiting times

Figure 6.10 shows how the measurements of the execution time are distributed. The
average value is 6ms and its coefficient of variation equals 3.46. Cv value is far from
being zero meaning that there are many outliers inside the dataset. It happened that the
execution time assumed values higher than 500ms in an almost unused network. This
means that the time that it takes the EP to execute a transaction can not be assumed
to be deterministic as it significantly varies. The average value of the execution time
strongly depends on the number of EPs that are concurrently utilized by the system, as
shown in the first experiment. For this reason it is not possible to uniquely determine the
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execution time of Fabric’s EP since it depends on the studied case. Ultimately this analysis
provided through the study of the coefficient of variation a measure of the variability of
the execution time.

6.4.3 Experiment 3 - Load of the first k peers

Number of requests

Figure 6.11: Number of requests issued to each EP

The experiment lasted 3806 seconds in which averagely 77% of the CPU was occupied.
The distribution of requests received by each EP respects the expected trend as they grow
in number starting from EP1 until EP8, as shown in figure 6.11.

Arrival rate

By confronting the arrival rate λ at each EP:

EP Number of Requests [tx] Arrival rate [tx/s]
EP1 4417 1.16
EP2 8724 2.29
EP3 13225 3.47
EP4 17728 4.66
EP5 22289 5.86
EP6 26899 7.07
EP7 31450 8.26
EP8 35971 9.45
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it can be observed how the arrival rates present a well defined sequence where the
value of λ for an EP equals to the one of the previous EP plus a constant. This constant
is the arrival rate value for EP1 and this happens thanks to how Uniform was defined.
For example EP5 arrival rate is approximately EP4 λ + EP1 λ = 4.66 + 1.16 = 5.82
tx/s, which value differs 0.7% to the measured one.

Average Waiting Time analysis

By confronting for each EP the arrival rate value with the Average Waiting Time mea-
sured:

EP Arrival Rate [tx/s] Average Waiting Time [ms]
EP1 1.16 56
EP2 2.29 85
EP3 3.47 113
EP4 4.66 173
EP5 5.86 223
EP6 7.07 316
EP7 8.26 371
EP8 9.45 422

It can be noticed how there is a coherent trend of growth between this two measured.
However, this growth does not happen with the same factor between the two sequences
and this, as seen during the first experiment, may depend from the fact that significant
variation of waiting times can be observed only when a high enough rate of transactions
is sustained.

For the way Uniform was defined, when EP1 is asked to endorse, all the other EPs
will have to do it too. If the AWT depends just from the higher occupation of the CPU
(which peaks when all the EPs are active), each measurements of the waiting time for
EP1 should be high. Nevertheless EP1’s AWT value equals 56 ms which is 7.5 time
smaller than EP8’s AWT so it can be affirmed that the AWT is influenced by the arrival
rate perceived.

Mathematical queue model

As already mentioned during the second experiment, execution time strongly depends on
the scenario in which it is measured and for this reason, the value that will be used for
the queue model will be approximated with the one measured for the least loaded EP,
which is the first one. EP1 does not experience queuing since it receives 1.16 transactions
per second, value for which, during the first experiment, it was possible seeing how the
AWT did not have appreciable changes.

Figure 6.12 illustrates the theoretical curve measured with the M/G/1 formula and the
measured value for each EP. The values of the theoretical curve are growing monotone as
expected. Both the theoretical and measured curves of the average waiting time present
the same trend of growth. This means that the AWT for each EP can be correctly
associated with the number of transactions per second they are receiving. This finally
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Figure 6.12: M/G/1 model for the waiting time

demonstrates how the rise of the AWT must be due to the fact that EPs, because of
resource shortage, queue not yet serviced requests and consequently lengthen the time
that it requires to execute them.

6.5 Results - OPEN performances

It is now presented the results of the OPEN performance evaluation with respect to the
ORIGINAL algorithm.

6.5.1 High background load

Results

In this scenario the application was running together with the Generator that sustained
a transaction rate of 7 tx/s.

Algorithm AVG(E. time) [ms]
ORIGINAL 115 ± 5

OPEN 94 ± 7

Gain
1.22
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Detailed Analysis
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Figure 6.13: OPEN algorithm experiment

From the graph representing how many requests were averagely sent to each EP by
the algorithm (Figure 6.13 (a)), it is possible to see how OPEN preferred the EPs that
were averagely less loaded. As a matter of fact figure 6.13 (b) shows the AWT experienced
by each EP. Even if the first 2 EPs have similar AWT value, there is still a growth in the
AWT from EP2 to EP8.

1 2 3 4 5 6 7 8
Endorsing Peer

0

100

200

300

400

500

600

Nu
m

be
r o

f i
ss

ue
d 

re
qu

es
ts

 [t
x]

Number of issued requests [tx]

(a) EPs selected for endorsing by the application

1 2 3 4 5 6 7 8
Endorsing Peer

0

50

100

150

200

250

300

Av
er

ag
e 

W
ai

tin
g 

tim
e 

[m
s]

Average Waiting Time [ms]

(b) Average Waiting Time for each EP

Figure 6.14: Original algorithm experiment

The original algorithm issued almost the same number of requests to each EP. This
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reinforces the claim for which ORIGINAL chooses the endorsers for a transaction by
creating a random set of 5 EPs to contact not exploiting past state data.

6.5.2 Low background load

In this scenario the application was running together with the Generator that sustained
a transaction rate of 3 tx/s.

Algorithm AVG(E. time) [ms]
ORIGINAL 26 ± 4

OPEN 22 ± 2

Gain
1.18

Detailed Analysis
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Figure 6.15: OPEN algorithm experiment

In a low background load scenario, there is not a big difference in the AWT measured
for each EP. Despite the low rate it was possible to create a partial correlation on the way
the EPs responded enabling OPEN to select efficiently the EPs. The result obtained by
the Low Background scenario is near to the ones obtained with the High Load Scenario.
However, the uncertainty of the measured values is higher meaning that the results are
less stable and they may depend more on the execution conditions.
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Figure 6.16: Original algorithm experiment

6.5.3 No background load

In this scenario the application was running without the use of the Generator.
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Figure 6.17: Original algorithm experiment

Figure 6.17 illlustrates how many requests were averagely sent to each EP by OPEN
and ORIGINAL algorithms. For this scenario no AWT graph is presented since the
Generator was not used. When no background load was created OPEN performed worse
than the ORIGINAL algorithm. This is probably due to the high variability of the
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Algorithm AVG(E. time) [ms]
ORIGINAL 13 ± 1

OPEN 17 ± 1

Gain
0.76

waiting time. When no queuing is experienced, the information given by the AWT does
not offer any useful data for OPEN to choose a "better" EP for the next transactions.
OPEN did not follow any particular pattern meaning that it switched several times the
EP selection resulting in worse results.

68



Chapter 7

Conclusion

This thesis introduced Blockchain technology and Hyperledger Fabric’s architec-
ture with all the steps that it faces to correctly accept a transaction in its ledger. Later
the study focused on the Endorsement phase and in specific how the Fabric SDK
faces it. Afterward, it was presented an algorithm called OPEN, theorized by Doctor
Lotfimahyari Iman, that proposes a way of reducing the endorsing time experienced by
the Client by selecting efficiently the EPs depending on their past behavior. A a way of
implementing it inside the Fabric Node SDK was presented. Finally, the result chapter
showed the domain of working of the Generator, how much it could put to the stress the
Fabric network and how that influenced the average value of the waiting time. Through
the definition of the Uniform distribution, it was possible to create an environment in
which a strategic analysis of the AWT of each EP could be done. Despite the contribution
given by the high occupation of the system and of the overload for the committing and
validating of the blocks, this study confirmed how higher rates of transaction could in-
fluence the time that it takes to service an endorsement request from when it is received.
The AWT measured for each EP was confronted with the theoretical ones obtained by
using the Pollaczek-Kinchin formula for the M/G/1 queue model, resulting in
similar trends. This enabled to assume that it is possible to create queuing inside the
EPs. Having proven that, the study focused on benchmarking OPEN performances in
different scenarios to understand how it performs in distinct situations. To create those
stress scenarios, the Generator was exploited to issue predetermined values of rate (which
defined the stress levels) while the application was running. For the limitations imposed
by the hybrid approach, it was not possible to create the ideal environment in which to
test OPEN. Anyway, it could be observed how in the high load scenario the graphs of
AWT showed an appreciable growth that follows the distribution of transactions given
by the Uniform. In addition for each scenario, both OPEN and ORIGINAL had sim-
ilar trends in the AWT’s values distribution meaning that the experiments were done
through the same exact condition of the network. OPEN performed up to 22%
better than the ORIGINAL algorithm when a background load was issued into the
network. This means that as long as the EPs respond slower for a matter of network
or resource availability, using a state-based endorsing peer selection algorithm can make
the Client experience a lower endorsing time. However OPEN potentiality can be better
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evaluated in wide distributed networks where more EPs are available with respect to the
dimension of the layout of endorsers created by the Fabric SDK.
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Chapter 8

Appendix

8.1 optimalEndorsementModule

//#### OPEN PARAMETERS
let T = 10;
const eps = 0.001; /// (1ms)
let count = 0

class optimalEndorsementModule{
// transaction number
n = -1;

// Data structures for OPEN algorithm
peers = [];
delays = [];
eligibility = [];

// parameters
constructor(){

this.initialized = false;
}

isInitialized(){
return this.initialized;

}

/**
* POSSIBLE OPTIONS:
* 1. f("OPEN"), SENDS FOR 2 TXS ENDORSEMENT
TO ALL THE PEERS AND THEN USES OPEN ALGORITHM
* 2. f("RND", NUMBER_OF_RANDOM_PEER(S))
<=== IF NOT SET THE DEFAULT RANDOM PEER 2
*/

bootUp(mode, totalRandom){
console.log("[Bootup phase]: Initializing module");
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// TELLS US IF THE PEER IS ELEGIBLE TO ENDORSE THE NEXT TRANSACTION
this.eligibility = new Array(NUM_ORG)

for (var i = 0; i<this.eligibility.lenght; i++) {
this.eligibility[i] = false

}

this.delays = new Array(2);
this.peers = new Array(2);

for (var i = 0; i<this.peers.length; i++) {
this.delays[i] = new Array(NUM_ORG);
this.peers[i] = new Array(NUM_ORG);

}

// PEER STRUCTURE INITIALIZATION
for (var i = 0; i<this.peers.length; i++) {

for (var j = 0; j<NUM_ORG; j++) {
this.delays[i][j] = -1;
this.peers[i][j] = -1;

}
}

this.n = 1
this.initialized = true;

this.mode = process.argv.slice(2)[0]

if (this.mode!= "RND"){
console.log("[ALGORITMH SELECTED]: " + mode + "." )

}

if(this.mode == "RND"){
if(totalRandom != undefined){

this.totalRandom = totalRandom
this.INITIAL_DELAY_AQUIRING_STEP = 0

} else {
console.log("[BOOTUP] : RND_4 will be used")
this.totalRandom = Math.floor(NUM_ORG/2)

}
console.log("[ALGORITMH SELECTED]: " + mode + "_" + totalRandom + "." )

} else if (this.mode == "OPEN") {
this.INITIAL_DELAY_AQUIRING_STEP = Math.floor(NUM_ORG/2)

}

}

/*##################### GETTERS ###################*/
//#### getLayout() RETURNS THE LAYOUT ACCORDING TO THE CHOSEN POLICY.
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getLayout(){
console.log("----------------------------------->" + this.n);

if ( this.n < this.INITIAL_DELAY_AQUIRING_STEP ){
OEM.selectEndorsers("INITIAL_STEPS")

} else {
OEM.selectEndorsers();

}

this.n = this.n + 1;

let result = []
let i = 0
let a = {}

let dim = Math.max(...this.peers[0])+1

while (i<dim){
for (let j=0; j < NUM_ORG ;j++){

if(this.peers[0][j] == parseInt(i) ){
a["G"+j]=1

i=i+1
break

}
}

}
return a;

}

/* ###################### SETTERS #################### */
//#### setEndorsementDelays() sets the delays that were just measured.
setEndorsementDelays(delay_data){

OEM.prepareDelays()
this.delays[0] = extractDelays(delay_data)

}

/* ####################### UTILS ################### */
/**
* selectEndorsers(MODE) chooses the next endorsement depending on the MODE
* MODE is optional and if not specified uses the MODE chosen at construction time.
* -OPEN
* -SELECT_ALL
* -INITIAL_STEPS
*/

selectEndorsers(ENDORSERS_SELECTION_ALGORITHM){
if (this.n != 1){

OEM.preparePeers()
}
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// IF NO MODE GETS SPECIFIED IT DOES THE ONE IT WAS AT FIRST
//DEFINED ON THE CONSTRUCTOR
if (ENDORSERS_SELECTION_ALGORITHM == undefined){

ENDORSERS_SELECTION_ALGORITHM = this.mode
}

if (ENDORSERS_SELECTION_ALGORITHM == "OPEN"){
// Max delay among endorsements to be used later
let dMax = -1
for (var i = 0; i<NUM_ORG; i++){

if (this.peers[1][i] != -1 && this.delays[0][i] > dMax){
dMax = this.delays[0][i];

}
}

if (dMax == -1){ // no response from TX-1
for (var i = 0; i<NUM_ORG; i++){ // all peers

this.delays[0][i] = this.delays[1][i]; // use previous delays
if (this.peers[1][i] != -1){ // if was endorser

this.elegibility[i] = false; // make it NOT-eligible
}

}
} else { // We have response from TX-1

for (var i = 0; i<NUM_ORG; i++){ // all peers
if (this.peers[1][i] != -1){ // if was endorser

if (this.delays[0][i] == -1){ // if no response
this.delays[0][i] = dMax + eps; // speculate it
this.elegibility[i] = false; // make it NOT-eligible

}
} else { // if was NOT endorser

this.delays[0][i] = this.delays[1][i]; // use previous delays
}

}
}

this.peers[0] = this.selectBestPeers(Math.floor(5),
this.delays[0].slice()).slice();

if (this.n%T == 0){
OEM.endorseRandomPeer();

}

} else if (ENDORSERS_SELECTION_ALGORITHM == "SELECT_ALL"
|| ENDORSERS_SELECTION_ALGORITHM == "INITIAL_STEPS"){
this.peers[0] = [0,1,2,3,4,5,6,7].map(x=>parseInt(x))

} else if (ENDORSERS_SELECTION_ALGORITHM == "RND") {
for (let i = 0 ; i < this.totalRandom ; i ++ ) {

this.endorseRandomPeer()
}

}

74



8.1 – optimalEndorsementModule

}

//#### prepareDelays() shifts this.delays structure.
prepareDelays(){

// INITIALIZING DELAYS VECTOR
this.delays[1] = this.delays[0].slice();
this.delays[0] = this.delays[0].map(x => x = -1);

}

//#### preparePeers() shifts this.peers structure.
preparePeers(){

// Initialize eligibility vector for all peers
this.eligibility = this.eligibility.map(x => x = true);

// INITIALIZING PEERS VECTOR
this.peers[1] = this.peers[0].slice();
this.peers[0] = this.peers[0].map(x => x = -1);

}

//#### selectBestPeers(n,vector) selects n peers with lowest delays in vector
selectBestPeers(n, vector){

// EMPTY STRUCTURE WHICH WILL CONTAIN THE PEER THAT ARE SELECTED
let selectedPeers = new Array(NUM_ORG).fill(-1)

let dMax = Math.max(...vector);
for (var i = 0; i<n; i++){

let dMin = dMax;
let indMin = -1;
// SELECTS THE PEER WITH MINIMUM LATENCY(REAL MEASURED OR ESTIMATED)
//(BEING CAREFUL TO NOT CONSIDER VALUES SMALLER THAN 0 (LIKE -1, WHICH MEANS
//THAT NO RESPONSE WAS RECEIVED.))
for (var j = 0; j<NUM_ORG; j++){

if (vector[j] != -1 && vector[j] <= dMin && selectedPeers[j]==-1){
dMin = vector[j];
indMin = j;

}
}
if (indMin!= -1){

selectedPeers[indMin] = Math.max(...selectedPeers)+1
}

}
return selectedPeers;

}

//#### endorseRandomPeer() adds a random peer in the endorsement
endorseRandomPeer(){

let tmpRndPeers = []
for (var i = 0; i<NUM_ORG; i++){

if (this.peers[0][i] == -1){
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tmpRndPeers.push(i);
}

}
let done = false
if (tmpRndPeers) {

let randomIndex = this.getRandomInt(0,tmpRndPeers.length);
this.peers[0][tmpRndPeers[randomIndex]] = Math.max(...this.peers[0])+1;

}
}

//#### getRandomInt(i) generates a random int value in the [min,max) interval
getRandomInt(min, max) {

min = Math.ceil(min);
max = Math.floor(max);
//The maximum is exclusive and the minimum is inclusive
return Math.floor(Math.random() * (max - min) + min);

}

function extractDelays(delay_data) {
let end_delays = new Array(NUM_ORG).fill(-1);
// let end_delays = {}

for ( let i = 0 ; i < end_delays.lenght; i++ ){
end_delays[i] = -1;

}

for (const key of Object.keys(delay_data[3][0])) {
// console.log("key:" + key)
let peer_num = parseInt(key[1]);

if (delay_data[3][1].hasOwnProperty(key)){
end_delays[peer_num] = parseFloat(delay_data[3][1][key]-delay_data[3][0][key]);

}
}
return end_delays

}

let OEM = new optimalEndorsementModule();

function getOEM(){
if(MODE[0] == "ORIGINAL"){

return undefined;
} else if ( MODE[0] == "OPEN" || MODE[0] == "RND"){

if (OEM.isInitialized() == false){
OEM.bootUp( MODE[0], MODE[1] )

}
return OEM

} else {
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console.log("[ERROR]: You inserted a wrong algorithm. Exiting.")
exit(0)

}
}

8.2 Generator
def generator(R,seconds,SELECTION_ALGORITHM,N):

PRE_JOIN_THREADS = True

NUM_ERROR = 0

Actualtimestamp = timestamp()

y=[]
executionDurations=[]
periodDurations=[]
committedBlocks=[]
txIDs=[]
delays=[]
responses =[]

totalDuration = 0
totalElapsingTime = 0
preJoined = 0
afterJoined = 0
txNumber = int(R*seconds)

threadStartTimes= [None] * (txNumber)

threadFinishTimes=[None] * (txNumber)

#################################### THREAD GENERATION
CPUoccupation = []

averageCPU=0
cpucount=0
txCount = 0

for a in range(0, int(txNumber)):
activeThreads=0
deadThreads=0
start = datetime.datetime.now()
if THREADS:
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if (a==0):
startExperiment = datetime.datetime.now()

x = threading.Thread(target=insertTransactionFunction,
args=(a,SELECTION_ALGORITHM,N))
x.start()

if (a == txNumber - 1):
finishSpawningTime = datetime.datetime.now()

CPUoccupation.append(float(measureCPUoccupation()))

y.append(x)
if PRE_JOIN_THREADS:

if float(R) > 1:
interval = int(R)

elif float(R)< 1:
interval = int(1/float(R))

else:
interval = 10

if (a%interval == 0 and a > 2* interval):
for i in range(a-2*interval, a-interval, 1):

if not y[i].is_alive():
y[i].join()
preJoined = preJoined + 1

else:
insertTransactionFunction(a,R)

timeExecution = (datetime.datetime.now()-start).total_seconds()
remaining = 1/R - timeExecution
if remaining > 0:

time.sleep(remaining)

timePeriod = (datetime.datetime.now()-start).total_seconds()
executionDurations.append(timeExecution)
periodDurations.append(timePeriod)

#################################### METRICS CALCULATION

offeredLoad =
((txNumber)/(finishSpawningTime - startExperiment).total_seconds())

if THREADS:

print("Joining thread....", end="")

for a in range(0,len(y)):
if not y[a].is_alive():
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y[a].join()
afterJoined = afterJoined + 1

print("...finished!")

threadStartTimes = [elm for elm in threadStartTimes
if isinstance(elm, datetime.datetime)]

threadFinishTimes = [elm for elm in threadFinishTimes
if isinstance(elm, datetime.datetime)]

firstStart = min(threadStartTimes)
lastFinish = max(threadFinishTimes)

throughput = (txNumber) / ((lastFinish - firstStart).total_seconds())

measurament = compute_metrics()
return measurament
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