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Abstract

The analysis of data characterized by spatial and temporal information of events
presents several challenges. These challenges are related to finding meaningful
representations of the data and being able to process them in massive quantities.
When dealing with classification of spatio-temporal data, another open issue is
the capability of identifying and predicting rare critical events. The objective of
this thesis is to present a novel associative classifier to tackle all these previously
mentioned problems.
The classifier was trained and tested on a public bike sharing dataset of the city
of San Francisco Bay Area in a two-years long period. The model was built with
Python and Spark. Moreover, we compared the performances of the proposed
approach with three different classifiers. The results show superior performances in
terms of precision, and a better resilience to missing values. The results highlight
the importance of an effective data representation of the spatio-temporal events,
and that interpretable models can provide good insights to enhance the performance
of prediction algorithms, even in cases where the interpretability has not a crucial
importance.
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Chapter 1

Introduction

1.1 Background
Bike sharing is a green and sustainable mobility solution. It is a very common and
widespread transportation system nowadays. The principle of bike sharing consists
in the possibility of using high numbers of bicycles located in a given area, usually
a city. Bike sharing systems can be classified into station-based and free-floating
services, depending on the flexibility of the implemented solution. The latter allows
users to drop a bike at any location, whereas the first requires the users to drop
the rented bike at the designated stations.
The most important qualities of this kind of transportation are its sustainability,
contributing to the reduction of air pollution, and the health benefits it gives to
the users if they include it in their lifestyle. In addition, it is a good solution to
reduce the number of cars in cities, decreasing the problems in the transportation
related to traffic.
The typical usage of this kind of mobility is for short trips. For this reason bike
sharing has the majority of its applications in big cities and urban areas.

1.2 Goals
The main goal of this thesis is to assess whether an associative classifier is a suitable
solution to tackle the analysis of data characterized by spatial and temporal
information, and to predict the advent of rare events. In our context, the goal of
the classification is to predict critical events, such as if a station is going to be empty
or full in the next minutes. This kind of information has a crucial importance,
because it can lead to the unavailability of the system to users. Managers of the
bike sharing system may use such information to dynamically balance the number
of bicycles in each station, and potentially to optimize the number of interventions
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on the system. On a customer’s perspective, this can lead to a better quality of
service, but managers may also benefit of the extracted knowledge to reduce the
expenses in the balancing operations.
The main advantages of an associative classifier are its interpretability and its
capability to give insights into the relations between the events that occur in the
analysed data. This work was structured into 4 phases:

1. Data exploration on the available dataset;

2. Transforming the data in suitable formats for the extraction of association
rules and sequences;

3. Analysis of the results and training of the associative classifier;

4. Testing the classifier, also comparing its results with other applied classification
models;

1.3 Structure
This work is structured in 5 main chapters:

• Chapter 1: introduction to the work

• Chapter 2: presentation of the necessary theory and concepts used in this
thesis (Big Data, Association Rules, Classification)

• Chapter 3: detailed analysis of the available data

• Chapter 4: presentation of the experiments conducted with the associative
classifier and the considered competitors, with their corresponding results

• Chapter 5: final analysis of the results, conclusions and possible future works

2



Chapter 2

Related Works

In this chapter, we discuss the main theoretical concepts and technologies that
were used in this work. First, we define the concept of Big Data and introduce
Apache Spark, the main framework adopted in this thesis. Then, we present what
Association Rules are, and how we can extract them. Finally, we discuss what is
classification, how association rules can be used for this purpose and the other
classifiers used in order to compare the classification results.

2.1 Big Data
Several definitions of Big Data exist. In general, with these words we refer to
data whose size can not be handled by normal computers, that are generated at a
very fast rate, and have various and different formats [1]. Big data are typically
characterized by the following 5 attributes:

• Volume: its size grows at very high rates over time;

• Variety: data is encoded in various formats, including numbers, images,
videos, signals, plain text;

• Velocity: data is generated at high rates;

• Veracity: it contains information that can be exploited if correctly understood;

• Value: intrinsic economic value associated with the data itself;

The amount of data analyzed in this work did not necessarily require the use of
architectures specifically designed for Big Data, however this approach was used
for better generalization and extensibility to other domains. Moreover, this kind of
datasets can easily reach high volumes.
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In this context, we used the Apache Spark™ software together with the Python
language. Apache Spark™ is an engine that allows the processing of big data
volumes through a distributed architecture [2]. It supports the Python programming
language.

2.2 Association rules
The extraction of Association Rules is a common exploratory technique in Data
Science [3]. Given a dataset where each row contains a certain number of items, an
association rule is a rule written in the format:

⟨itemA⟩ ⇒ ⟨itemB⟩ (2.1)

Where the ⇒ symbol indicates co-occurrence. This means that when one or more
of the items on the left are present, the items on the right are present with a certain
probability. In this kind of representation, the items on the left side are called body,
whereas the items on the right side are called head of the rule.

2.2.1 Definitions
Given a transactional database D, we need to provide the following definitions
which are preparatory for the next chapters:

• Transaction: the set of items in a row of a database D;

• Itemset: set of one or more items;

• Support: fraction of transactions that contain an itemset. Given an itemset
I, it corresponds to the ratio

Sup(I) = n

T
(2.2)

where n is the number of transactions containing the itemset and T is the
number of total transactions in the database D.

• Confidence: the frequency of an itemset A in all the transactions containing
another itemset B, where A is in the head and B in the body.

Conf = Sup(A t
B)

Sup(B) (2.3)

4
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2.2.2 Extraction
Given a database of transactions, the task consists in extracting all the rules
that have a higher support than a pre-defined minimum threshold. The choice of
the minimum threshold needs to take into account a trade-off: a very low value
will lead to very high or unfeasible computational costs, but a too high one may
lead to loose rare but relevant itemsets. Mining the association rules is not a
trivial problem, given the unfeasible computational cost of the generation of all the
possible permutations O

1
wT2d

2
[3], where T is the number of transactions, d the

number of items and w is the maximum transaction length. The most common
solutions to extract association rules are the apriori and the FP-growth [4].

2.3 Sequence mining
In some cases the transactions contain information about time. We may want to
exploit this information to link each other the events that regard a specific situation
[5].
A sequence is an ordered list of elements:

s = ⟨e1e2e3...⟩ (2.4)

Every element is made of a series of events:

ei = {i1, i2, ..., ik} (2.5)

A subsequence is a sequence containing a subset of the elements present in another
sequence with the same temporal order between elements.
The support of a subsequence is represented by the number of sequences that
contain a specific subsequence.
We call sequence mining the extraction of all the subsequences above a given
minimum support threshold.

2.3.1 Extraction
To tackle this problem we used the PrefixSpan [6] algorithm in its implementation in
the Spark MLlib library. The main idea of this algorithm is, instead of considering
all the possible occurrences of the frequent sub-sequences, to consider only the
sequences that can be obtained from a frequent prefix [6]. Given a sequence
α = ⟨e1, e2, ...en⟩, a sequence β = ⟨e′

1, e′
2, ...e′

m⟩, (m ≤ n) is called a prefix of α if
and only if (from [6]):

• e′
i = ei, ∀i ≤ m − 1

5
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• e′
m ⊆ em

• all the items in (em − e′
m) are alphabetically ordered after those in e′

m

This can be done because all frequent sub-sequences can be found starting from a
frequent prefix.

2.4 Classification
The Classification task is a very well known supervised learning problem in the
Machine Learning field. Its goal, given a vector of features X, and a qualitative
response Y, is to build a function that takes X as input and predicts a value for
Y [7]. The classification is called binary if its objective is predicting the presence
of absence of a given attribute. Usually, in this kind of operations the dataset
is divided into 2 portions: one, generally of bigger size, is called train set and is
used for building the classifier. The second one, called test set, is used to evaluate
the performance of the model. In the next sections we are going to introduce the
classifiers, also called predictors, used in this work and the metrics adopted for
assessing their performance.

2.4.1 Associative classifier
An associative classifier predicts the class labels according to previously extracted
rules, where the rules are expressed in the format [8]:

⟨X⟩ ⇒ y (2.6)

where the condition is the body of the rule and y is the class label. The body is
made of a set of conditions feature = value. The association rules can be extracted
in different ways as discussed in 2.2. Once we have extracted the association rules,
we iterate over the test set and check if the test data satisfy the condition. In
the positive case, we say that the rule matches and the predicted class is y. Some
variants of this kind of classifier may require more than a rule to match to make
a positive prediction. If no rules match, the default class will be the result of
the prediction. The rules list is usually ordered. In our case they are ordered by
decreasing confidence.

2.4.2 Decision Tree
"A Decision Tree is a predictor that predicts the label associated with an instance
X by traveling from a root node of a tree to a leaf" [9]. In the case of Binary
Classification, at each node on the path from the root to a leaf, the successor child
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is usually chosen based on a splitting of the domain of one of the features of X.
Each leaf contains a specific label.

Figure 2.1: Example of a decision tree, from [9]

Practical decision tree training algorithms are based on heuristics such as a
greedy approach. In this case, the tree is constructed gradually. According to
the greedy approach, locally optimal decisions are made based on some splitting
criterion [9].
The most common splitting criteria are:

GINI =
KØ

k=1
pmk(1 − pmk) (2.7)

ENTROPY = −
KØ

k=1
pmklog(pmk) (2.8)

Where K is the number of classes and pmk represents the proportion of training
observations in the mth region that belong to the kth class.

2.4.3 Random Forest
Random Forest is a predictor that builds several Decision Trees on bootstrapped
training samples [10]. Bootstrap aggregation, or bagging, consists of taking repeated
samples from the training set, generating many different bootstrapped datasets.
This is usually done for reducing the variance of a statistical learning method.
When building the Decision Trees, each time a split in a tree is considered, a
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random selection of m features is chosen to split candidates from the full set of p
features. The split is allowed to use only one of those features. A common choice
is taking m = √

p.
When performing a prediction in classification, Random Forest combines the
predictions of all the obtained trees, usually with majority voting, meaning that
the final prediction will correspond to the class predicted by the majority of the
single trees.

2.4.4 XGBoost
Extreme Gradient Boosting, or XGBoost [11], is a tool based on the Boosting
principle. The difference between Bagging and Boosting consists in the fact that
the former takes bootstrapped training sets to build the predictors, whereas the
latter builds the predictors according to the training data that were not correctly
classified in the previous training rounds.

2.4.5 Evaluation metrics
Several measures of the quality of a classifier exist. Before introducing those used in
this thesis, we need to present some definitions. Considering a Binary Classification
problem, data points predicted by a classifier can be categorized into the 4 following
cases:

• True Positive (TP): the predicted class is Positive and the prediction is
correct;

• True Negative (TN): the predicted class is Negative and the prediction is
correct;

• False Positive (FP): the predicted class is Positive and the prediction is
wrong;

• False Negative (FN): the predicted class is Negative and the prediction is
wrong;

A common representation of these values is with a confusion matrix (Figure
2.2). Given the confusion matrix, we can define the following evaluation metrics:
accuracy, precision, recall and f1-score.

Accuracy

The first metric considered is the accuracy, that is defined as the number of
correctly classified samples over the total size of the test set. A drawback of this
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Figure 2.2: Example of a confusion matrix

metric is that it is not able to provide a good evaluation in presence of high class
imbalance. We call class imbalance a situation where the number of actual positives
is not comparable to the number of actual negatives (e.g. 70% positives and 30%
negatives).

Accuracy = TP + TN

TP + TN + FP + FN
(2.9)

Precision

The aim of the precision is to identify the ability of a model in identifying the
target class. It is calculated as the number of correct positive predictions over the
total number of positive predictions.

Precision = TP

TP + FP
(2.10)

Recall

The goal of the recall is to assess the capability of the model in recognizing the
positive class. It is calculated as the ratio of the correct positive predictions and
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the total positive test samples.

Recall = TP

TP + FN
(2.11)

F1 score

The F1 score is an the harmonic mean of the values of Precision and Recall.

F1 = 2 × Precision × Recall

Precision + Recall
(2.12)
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Chapter 3

Analysis of the
spatio-temporal data

In this chapter, we provide details about the considered datasets. Then, we
present the algorithm for the transactions generation and the extraction of frequent
sequences. Next, we present how they are used for the associative classification.
Finally, we present the considered alternatives to make a performance comparison.

3.1 General overview
The first step was analyzing the datasets considered [12].The dataset contains data
collected over 2 years in the bike sharing system of the San Francisco Bay Area,
covering 5 different cities: San Francisco, San Jose, Palo Alto, Mountain View
and Redwood City. The available data are related to bike sharing stations. The
dataset provides the following information: geographical location and name of each
station, maximal capacity, and the amount of bikes and docks available in each
station, sampled at each minute during the 24 hours of the day. First, we performed
some preliminary analysis. In particular, for each arrival station we considered the
stations that have the highest number of bikes directed to the considered arrival
station, i.e. the top departure station. For each tuple departure-arrival station, we
computed the correlation between the number of bikes. Then, a final evaluation
was performed to assess the consistency of the available dataset and the impact of
eventual re-balancing operations for what concerns the number of bikes.
After this initial phase, the algorithm for the event generation and pattern extraction
was implemented. We developed a Python class in order to consider different
possible events of interest and vary several different parameters, such as the
definition of neighbourhood and the thresholds for defining an event.
Then, the extracted patterns were used for an associative classification pipeline,
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whose objective was to predict the emergence of critical events, corresponding to a
station being almost full or empty. Finally, other classifiers were tested with the
aim of making a comparison of the performance. The considered models are the
Decision Tree, Random Forest and XGBoost. Different types of preprocessing, one
dependent on the specific station id, and one independent, were considered for the
input data in the other classifiers. The performance of our associative classifier are
described in the following chapter and compared with other classification algorithms

3.2 Analysis of the dataset
The analysed data were organized in 3 files:

• Status: this file contains rows with the number of available docks and bikes
for a station, identified by an id, together with a timestamp.

• Trips: this file contains data about all the recorded bike trips. Each row
contains information about the start timestamp, end timestamp, departure
station, arrival station, and the duration of the trip.

• Stations: this file contains the detailed information of each station, including
its name, location, and maximal capacity.

3.2.1 Status analysis
Dataset reliability

The data availability of the status file ranges over a 2-year period (29/08/2013 -
31/8/2015). However, there is no guarantee that the status information is available
for every station starting from 29/08/2013. Analysing the 70 existing stations, we
discovered that most of them (64/70) cover the complete period. The remaining
stations have the first record in a later day, probably because of the deferred
installation of the station itself.
This dataset does not contain any missing or null values, however, even if the
sampling frequency appears to be 1 minute there may be higher gaps between two
consecutive records.
Another relevant observation should be done about this file: the sum of the available
docks and the available bikes in each station should always be constant and coherent
with the nominal value present in the "Stations" file. However, this number presents
oscillations in the period, probably because of little failures in the data gathering
system. The records where the modulus of the difference between the nominal
value and the calculated one is greater than a threshold = 5 have been discarded
because not considered reliable.
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Events analysis

Later, the occurrence of all the critical events was studied. We can define the
following critical events or states:

• Full: the total number of docks available is equal to 0;

• Almost-Full: the total number of docks available is ≤ 2;

• Empty: the total number of bikes available is equal to 0;

• Almost-Empty: the total number of bikes available is ≤ 2;

• Normal: all other cases;

The critical events distribution was calculated for some representative stations.
Results (Figures 3.1, 3.2, 3.3) show that in a single day the station is mostly in the
"Normal" state, and that critical events such as Empty or Full happen rarely.

Figure 3.1: Average time spent by Station 70 (San Francisco, Caltrain) in each
considered state

3.2.2 Trips analysis
Trips duration

This file stores all the anonymized bike trips in the aforementioned 2-year time
period. Initially, the distribution of the trips duration was investigated. Even if
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Figure 3.2: Average time spent by Station 72 (San Francisco, Center BART) in
each considered state

Figure 3.3: Average time spent by Station 34 (Palo Alto, Caltrain Station) in
each considered state

there are some outliers, most of the trips have a duration of between 5 and 20
minutes. Figure 3.4 shows the box plot of the trips duration after the outliers
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removal. The trips duration was also investigated for the two different groups of
possible users (Customers and Subscribers). The results show that the majority of
the users (the subscribers class) takes on average shorter trips than the occasional
users.

Figure 3.4: Average time spent by a user of the bike sharing system on a trip

Graph view of the system

It is clear that this system can be seen as a graph, where the stations are the nodes
and the trips from a station to another represent the links. We may see it both as
a directed or undirected graph, and we can define the weight of each link as the
total number of trips on that link in the considered period.
As we might expect, the graph is connected, but not complete, and the weights
values are not equally distributed, pointing out that some stations and links are
more used than others. Following this observation, the connected components on
the undirected graph have been analysed after removing the links whose weights are
below a threshold close to the first quartile. The graph has 5 connected components
corresponding to the 5 cities. This means that the bike sharing system is mostly
used within the same city, even if trips from one city to another are present.
We can also analyze the directed graph: in this case the number of incoming and
outgoing bicycles, except for some special cases, share similar values. These values
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should ideally be equal, however this is not the case because of the re-balancing
operations that are normally performed on a bike sharing system to tackle the
problem of having completely full or empty stations. In this analysis, the number
of incoming bicycles has been defined as the sum of the weights of the incoming
links, whereas the number of outgoing bicycles has been defined as the sum of the
weights of the outgoing links. All the stations have self-loops, but it is a minority
of the trips in all cases.

Usage analysis

Another relevant information regards the usage of the bikes. All the trips were
grouped according to their start time, and all the instances were counted. The
result in Figure 3.5 shows that the bike sharing system is mostly used in day time,
with two peaks of usage in correspondence of the beginning and the end of the
working day.

Figure 3.5: Percentage of the trips for each hour of the day

Consistency analysis

A final consideration was done regarding the consistency of the data available in
the "Status" and "Trips" files. Starting from the latter, reconstructing the former
should be theoretically possible by counting the bikes arrived and departed, given
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the initial offset of the status of all the stations.
By doing so, we discover that the number of bikes in a station always tends to −∞
or +∞ (Figures 3.6, 3.7).
If we assume that the measurements do not contain enough errors to compromise the
reliability of the dataset, this different result is due to the re-balancing operations.
These operations appear to be applied in little amounts (no more than 10 units)
during the day, when critical events occur. We can see an example of this in Figure
3.8, where the status is reconstructed for a single day only.

Figure 3.6: Status of station 70, reconstructed from the trips data for all the time
recorded in the dataset.

3.2.3 Correlations
The goal of this analysis was to establish how much the number of bikes in a single
station is related to the number of bikes in its neighbours. For each single station,
the neighbourhood was defined as the set of all the stations that have an outgoing
or incoming link to the selected station, regardless the distance. The reason for this
choice is that trips are not, in most cases, between two adjacent stations. First, we
defined a time window of X minutes. For each station within non-overlapping time
windows, we computed the average number of bicycles. Then, for each station we
considered 5 consecutive time windows with their corresponding values to compute
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Figure 3.7: Status of station 56 (Beale at Market, San Francisco), reconstructed
from the trips data for all the time recorded in the dataset.

their correlation between all the neighboring stations. Several values of the intervals
were tested.
A further analysis was conducted after clustering the data in time slots, since the
usage of the bike sharing system is not constant along the day. The time slot values
were chosen according to the analysis in Section 3.2.2.
Some results are shown in the Figures 3.9, 3.10, 3.11, 3.12. In general, the number
of bikes is highly correlated to its value in the preceding intervals, and does shows
only weak relations with the other stations’ values.

3.2.4 Bike variations analysis

A final observation was done on the variation of the number of bikes in each station.
After defining an interval, we calculate the average number of bikes in that interval,
then we calculate the difference with the preceding interval. In this way we obtain
an indicator of the amount of the variations that usually occur (Figure 3.13).
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Figure 3.8: Status of station 70, reconstructed from the trips data for a single
day with daily reset.

3.3 Pattern extraction
The purpose of this section is to present the algorithm for processing the spatio-
temporal data, together with the considered parameters and different options.

3.3.1 Discrete event generation algorithm
The available data are specific for each station and timestamp. The goal of this
extraction is to produce items that do not refer to specific stations or timestamps,
but that are general and have the same structure for any station.
In this process, we will use discrete representations of time and space to encode
the time intervals and the distance between two stations. Given a time threshold t,
we first discretize the temporal axis with non-overlapping time windows of width t.
Thus, we determine for every reading of the considered dataset its corresponding
time window. Consequently, multiple readings of the considered dataset belong
to the same discretised timestamp/time interval. Similarly, we apply spatial
discretization based on distances between two different stations. Given a spatial
threshold s and a reference station, the reference station is at distance 0 from itself,
whereas all the other stations whose distance is between 1 and s are at distance 1
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Figure 3.9: Correlation matrix for station 70 and its neighbors and intervals of
10 minutes.

from the reference, and so on.
The result of the event discretization will be as follows: for each discretized
timestamp (marked as T0, T1, ...), and each station we will extract all the relevant
states for the considered station and its neighbor stations. Then, a sequence of
events is generated for each station in each discretized timestamp, considering all
the events occurring in the station of interest and its neighbors (or likely departing
station). An example of the final result, if we consider only the "Empty" state
(meaning that there are no bikes available in the considered station) and stations
at maximum distance equal to 1 in 3 time intervals, the Station A in Figure 3.14
would generate:

[[Empty_T0_0, Empty_T0_1],
[Empty_T1_0, Empty_T1_1],

[Empty_T2_0]]

This sequence of items is extracted if the considered station and at least a
station at distance 1 are empty for two consecutive intervals and in the subsequent
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Figure 3.10: Correlation matrix for station 70 and its neighbors and intervals of
20 minutes.

interval no stations at distance 1 contain 0 bikes.
This extraction algorithm was implemented in a PySpark application.

3.3.2 Algorithm parameters
The parameters considered in the proposed methodology are:

• Extraction type: the type of events considered as relevant, e.g. Full, Empty,
etc.

• Neighborhood type: the neighbor stations considered may be according to
their distance to the considered station ("distance") or according to the weight
of the incoming or outgoing links ("indegree"). In this case, only the top X
stations are selected, where X is another parameter. In the former case, only
the stations at a discrete distance ≤ Z are considered, where Z is another
parameter;
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Figure 3.11: Correlation matrix for station 70 and its neighbors and intervals of
20 minutes for the time slot 5:00 - 9:59.

• Threshold for increase/decrease states (ID-TH): if we consider the "increase"
or "decrease" states, this threshold corresponds to the minimum variation in
the number of bikes in the number of bikes in a station within a time interval
to generate the "increase"/"decrease" event;

• Extraction target: Full or Empty, it indicates the objective of the event
generation for the reference station;

• Threshold for "almost critical" state (AC-TH): this parameter defines the
maximum value of available bikes/docks to consider a station almost full or
almost empty, according to the specified target;

• Wrap states: boolean parameter. If true, consider the states "almost criti-
cal" and "critical" as the same state, if false, the two events are considered
separately;

• State change: boolean parameter. If true, consider the existence of a critical
state only if in the first timestamp of the time interval it was not critical;
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Figure 3.12: Correlation matrix for station 70 and its neighbors and intervals of
20 minutes for the time slot 15:00 - 20:59.

• Time Window (TW): width of the time window for time discretization (in
minutes);

• Window size: how many consecutive windows are considered when generating
sequences;

• Time zone: consider only some given hours inside the day, e.g. only the events
occurred between 8 and 12 am;

• Negative increase/decrease: boolean parameters. If true, map the state "not
increasing" and "not decreasing";

• #matches: when performing the classification, indicates the minimum number
of rules that need to match for a positive prediction;

• min confidence: when performing the classification, indicates the minimum
threshold for actually using the rule in the set of rules for a prediction;
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Figure 3.13: Example of the variation of the number of bikes in a day for station
70 with interval of 10 minutes.

Figure 3.14: Example of a situation from which we can generate the items

3.3.3 Algorithm steps
Here we explain the general steps of the algorithm:

1. load "Status" data. The input data format is (stationID, #bikes, #docks,
time). For sake of simplicity, we will consider the time in Unix format (number
of seconds from 01/01/1970);

2. filter the rows that contain null or meaningless data;

3. group rows by Station and WindowID. The WindowID is an integer number
obtained with the formula WID = math.floor( time

interval∗60), where the interval
is in minutes. Then for each relevant state map a row (stationID, windowID,
state);

4. group all the couples (stationID, state) by their windowID;
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5. obtain for each windowID the data associated with preceding windowIDs (2
in our example case, the total must be equal to the number of considered time
intervals);

6. for each station in the window, map the obtained data to relative distances to
the considered station;

7. remove the data about stations not belonging to the neighborhood of the
considered station, then remove the label about the specific station and
windowID;

3.4 Associative classification

This section is devoted to discussing how the classification process is handled for
the associative classifier. For this and all the experiments performed, the "Status"
dataset was divided in the same 70/30 train/test split.

3.4.1 Frequent patterns extraction

After generating the events, the most frequent patterns are extracted with the
Prefix Span algorithm. Then, the patterns are filtered by a confidence threshold,
and only those that contain the target state are kept. We refer to the target state as
the item with temporal distance 0 and spatial distance 0, i.e., T0_S0, the reference
station at the first considered discretized timestamp. These are the final association
rules.
Then the items are generated from the test set, in the same way as before, but
considering also the "Normal" state, corresponding to the absence of the target
critical event. For all the generated objects, the rules are compared. In this
comparison, each single item in a rule is compared with the items in the test object.
If all the items in the body of a rule are present, we say that the rule matches with
the object. The number of rules that need to match for making a prediction needs
to be specified as a parameter. If enough rules match with the item, the final state
will be classified as critical, normal otherwise. The workflow is shown in Figure 3.15.
For all these experiments, a baseline was also implemented. This baseline will be
referred to as "Dummy classifier" in the next chapters, and consists in predicting as
the future state the current state. For instance, if a station is currently in "Normal"
state, it will be predicted as "Normal" also in the next interval.
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Figure 3.15: Block diagram of the phases regarding the training and the applica-
tion of the associative classifier

3.5 Other approaches
In this section we discuss the other approaches adopted to tackle the problem and
for comparing the results. Two different strategies for the data manipulation were
evaluated. For each strategy, a Decision Tree, a Random Forest, and a XGBoost
classifier were tuned maximizing their recall, precision and f1 score on the train
set and evaluated on the test set. The same train/test split described in Section
3.4 was used for these experiments. We will now describe the two different data
manipulation strategies adopted.

3.5.1 Station-specific approach
This approach requires to build a dataset and a classifier specifically for each station.
After defining a time interval, we calculate the average number of docks available
in that interval for each station and all the neighboring stations at a distance lower
than a defined parameter. Then, we generate a column for each station and each
time interval containing the mean bikes/docks available. The label value will be
calculated according to the average number of bikes in the considered station in the
next time interval. A drawback of this approach is that a missing value in a specific
station will cause the deletion of the entire row, thus loosing some potentially useful
data. For example, if we consider the toy dataset in Table 3.1, a time interval of
30 minutes and 2 consecutive intervals, the result will be 3 different datasets with
one row, each one as in Table 3.2.

3.5.2 Station-non-specific approach
With this approach we follow a pre-processing step more similar to the one adopted
with the associative classifier. Here, we build a unique common dataset for all
the stations, hence a classifier for each station is not necessary. After defining
the size of the time interval, the number of intervals to consider, and a maximum
discrete distance D as in Section 3.4, we iterate over all the stations in the distance
range between 0 and D. During this iteration, we check if at least one station is
in one of the relevant states (e.g. "AlmostFull", "Increase" and "Decrease"): in
the positive case, we mark with 1 the column associated to the corresponding
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Timestamp StationID Bikes available Docks available
15:01 1 0 15
15:31 1 1 14
16:01 1 1 14
15:01 2 1 14
15:31 2 1 14
16:01 2 5 10
15:01 3 7 8
15:31 3 7 8
16:01 3 8 7

Table 3.1: Example of training data

B T0_S1 B T1_S1 B T0_S2 B T1_S2 B T0_S3 B T1_S3 D T0_S1 D T1_S1 D T0_S2 D T1_S2 D T0_S3 D T1_S3 Label
0 1 1 1 7 7 15 14 14 14 8 8 AlmostFull
0 1 1 1 7 7 15 14 14 14 8 8 Normal
0 1 1 1 7 7 15 14 14 14 8 8 Normal

Table 3.2: Example of training dataset with station specific approach.

discretized temporal and spatial distance, indicating that at the given temporal
and spatial distance there is at least one critical station. The target label will
correspond to a boolean variable encoding the presence of the critical state in
the next time interval for the station at distance 0 (the considered station). For
example, if we consider the toy dataset in Table 3.1, the events "AlmostFull" and
"Increase", a time interval of 30 minutes and 2 consecutive intervals, maximum
distance as 2, and the distances between the stations are: [1-2: 1, 1-3: 2, 2-3: 1]
the rows generated will be as in Table 3.3.

27



Analysis of the spatio-temporal data

AF_T0_0 I_T0_0 AF_T1_0 I_T1_0 AF_T0_1 I_T0_1 AF_T1_1 I_T1_1 AF_T0_2 I_T0_2 AF_T1_2 I_T1_2 Label
1 Na 1 1 1 Na 1 0 0 Na 0 0 1
1 Na 1 0 1 Na 1 1 0 Na 0 0 0
0 Na 0 0 1 Na 1 0 1 Na 1 1 0

Table 3.3: Example of training dataset with station non-specific approach.
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Chapter 4

Experiments

This chapter is devoted to presenting the experimental part of this thesis and its
results. First, we present with more details the different configurations considered
for the event generation, and we discuss the results. Then, the classification
experiments targeting the "AlmostFull" and the "AlmostEmpty" cases are described,
and finally we present the results of the other considered approaches.

4.1 Pattern Extraction
The event generation algorithm adopted for this and all the following experiments
is the one described in Section 3.3.1. The number of patterns, and their structure
varies according to the specific experiment run. In the following sections we will
present all the necessary details about the parameters used and the impact they
have on the final result. For the evaluation of the extracted rules we will consider
their confidence and support values.

4.1.1 Full-AlmostFull
This is the first experiment considered. With this name, we mean that the param-
eters were set in order to generate only the events "Full" and "AlmostFull". The
experiments were run both for "distance" and "indegree" neighborhood definitions,
and the time window values considered are 15 and 30 minutes. For this experiment
these parameters were used:

• minimum support for PrefixSpan: 0.05;

• discrete distance unit: 500 meters;

• maximum discrete distance in the "distance" case: 3;

• number of likely departing stations in the "indegree" case: 20;
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Neighborhood: Distance, Time Window: 15

In this experiment, there are 225 extracted patterns in total. Their confidence
distribution (Figure 4.1) shows that the rules are mostly distributed in the 0.7 -
0.95 range. Only 62 patterns contain the reference station in the head of the rule.
Among those, the rule with higher confidence is

[′AlmostFull_T0_0, AlmostFull_T0_1′],
[′AlmostFull_T1_0, AlmostFull_T1_1′],

[′AlmostFull_T2_0′]

and has a confidence of 0.860 and a support of 16876.

.
Figure 4.1: Confidence distribution of the patterns extracted in the experiment
"Full-AlmostFull" with Neighborhood Distance and Time Window = 15

Neighborhood: Distance, Time Window: 30

In this experiment, there are 437 extracted patterns in total. Their confidence
distribution (Figure 4.2) shows that the ranges with more patterns are between 0.6
and 0.85. Only 110 patterns contain the reference station in the head of the rule.
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Among those, the rule with the highest confidence is

[′AlmostFull_T0_0′],
[′AlmostFull_T1_0′],
[′AlmostFull_T2_0′]

and has a confidence of 0.812 and a support of 70744. Such rule is also the third
rule by support value. Furthermore, the rule with the highest support is

[′AlmostFull_T0_0′],
[′AlmostFull_T1_0′]

with confidence of 0.799 and support of 87132. This points out the fact that in
many cases the situation tends to be stable.

Figure 4.2: Confidence distribution of the patterns extracted in the experiment
"Full-AlmostFull" with Neighborhood Distance and Time Window = 30.

Neighborhood: Indegree, Time Window: 15

In this experiment, there are 148 extracted patterns in total. Their confidence
distribution (Figure 4.3) shows that almost all the patterns are in the range 0.55 -
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0.9. Only 59 patterns contain the reference station in the head of the rule. Among
those, the rule with the highest confidence is again

[′AlmostFull_T0_0′],
[′AlmostFull_T1_0′],
[′AlmostFull_T2_0′]

and has a confidence of 0.860 and a support of 135859.

Figure 4.3: Confidence distribution of the patterns extracted in the experiment
"Full-AlmostFull" with Neighborhood Indegree and Time Window = 15.

Neighborhood: Indegree, Time Window: 30

In this experiment, there are 274 extracted patterns in total. Their confidence
distribution (Figure 4.4) shows two peaks in the number of patterns in range 0.6-0.7
range and near to 0.8. Only 86 patterns contain the reference station in the head
of the rule. Among those, the rule with the highest confidence is once more

[′AlmostFull_T0_0′],
[′AlmostFull_T1_0′],
[′AlmostFull_T2_0′]

and has a confidence of 0.812 and a support of 70744, exactly as in Section 4.1.1.
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Figure 4.4: Confidence distribution of the patterns extracted in the experiment
"Full-AlmostFull" with Neighborhood Indegree and Time Window = 30.

4.1.2 Full-Decrease
In these experiments, the events considered for the event generation are "Full",
"AlmostFull" and "Increase" for the reference station, and "Decrease" for the neigh-
bors. The purpose of this kind of extraction is to highlight the impact of "Decrease"
events in departure stations on the reference station. The time window values
considered are 15 and 30. Also the threshold for "increase" and "decrease" states
and the minimum support for PrefixSpan values were changed. Different values for
the number of likely departing stations were considered. For this experiment these
fixed values were used for the parameters:

• Neighborhood type: "indegree";

• discrete distance unit: 500 meters;

Here all the tested configurations are listed:

1. #Neighbors: 10, ID-TH: 0, TW: 15, MS: 0.1

2. #Neighbors: 10, ID-TH: 1, TW: 15, MS: 0.1

3. #Neighbors: 10, ID-TH: 1, TW: 15, MS: 0.15
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4. #Neighbors: 10, ID-TH: 2, TW: 15, MS: 0.15

5. #Neighbors: 20, ID-TH: 0, TW: 15, MS: 0.001

6. #Neighbors: 20, ID-TH: 0, TW: 15, MS: 0.1

7. #Neighbors: 20, ID-TH: 0, TW: 30, MS: 0.001

8. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.001

9. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.01

10. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.1

11. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.15

12. #Neighbors: 20, ID-TH: 1, TW: 30, MS: 0.001

13. #Neighbors: 20, ID-TH: 2, TW: 15, MS: 0.001

14. #Neighbors: 20, ID-TH: 2, TW: 15, MS: 0.15

15. #Neighbors: 20, ID-TH: 2, TW: 30, MS: 0.001

The experiments run have some commonalities, and we can identify some general
effects in changing the parameters.

Changing the number of likely departing stations

Changing the number of potential departure station has obviously an impact on
the number of the patterns extracted. As one might expect, selecting a higher
number of neighbors allows to extract more patterns. The reason is surely related
to the fact that generating more events allows considering more patterns. We can
compare for example the experiments #2 and #10. For these configurations the
only difference lies in the different number of likely departing stations (10 and 20).
The number of extracted patterns in the former case is approximately 2/3 of the
latter, having extracted respectively 17 and 29 patterns. However, the number of
patterns containing the reference station in the head of the rule is exactly the same
(11). The "missing" patterns have not the highest values of confidence, but some
still have some interesting values, as we can see in the Figures 4.5 and 4.6. Also,
the couples of experiments #1-#6 and #4-#14 share the same characteristics, with
even higher reductions in the number of extracted patterns. In these cases, when
the number of extracted patterns is higher, also the number of rules that contain
the reference station in the head is decreased for the cases where less neighbors are
considered. This reduction does not necessarily involve only lower-quality patterns,
as we can see in the Figures 4.7 and 4.8.
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Figure 4.5: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease" #2.

Changing the Time Window

Also changing the time window value impacts the number of extracted patterns.
As a consequence, also the confidence of the patterns seems to increase. The results
are summarized in Table 4.1. It is difficult to infer why more patterns are extracted
with larger windows. A possible explanation is that the difference lies in the data
itself.

Experiment number Patterns Patterns with reference station
5 69272 23700
7 101991 29379
8 40320 12601
12 64464 22327
13 13491 3718
15 45142 13870

Table 4.1: Comparison of the pattern extracted with different time window values
for the Full-Decrease experiment.
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Figure 4.6: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease" #10.

Changing the ID-TH value

This is an important parameter, because changing the threshold defining the
increasing or decreasing event affects the definition of the problem itself. Setting it
equal to zero means that all the differences in the number of bikes are considered
an increase/decrease event, meaning that we risk to be too much sensitive to small
variations. On the contrary, too high values may not be able to spot differences
that may impact other stations. Since the threshold for the "Almost Critical" event
was set to 3, values higher than 2 were not tested.
We can see an example of this in the experiments #5, #8, and #13. In these cases,
increasing the parameter’s value leads to a huge decrease in the number of patterns.
The respective values in fact are: 69272, 40320, and 13491. If we consider only the
rules with the reference station in the head, the situation is not different: in this
case the values are 23700, 12601, and 3718

Changing the minimum support for PrefixSpan

As previously discussed, changing this parameter surely affects the number of
extracted patterns by PrefixSpan. Higher values lead to less patterns extracted,
but also a faster computational time. It is a good parameter to decrease for more
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Figure 4.7: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease" #1.

accurate results, as long as the computational time remains acceptable.

4.1.3 Full-Decrease-stateChange
In these experiments, the events considered for the event generation are the same
as the "Full-Decrease" experiment, but the definition of "Full" and "AlmostFull"
states is slightly changed (see State Change parameter in Section 3.3.2). The time
window values considered are 15 and 30. Also, the threshold for "increase" and
"decrease" states values were changed. Different values for the number of likely
departing stations were considered. For this experiment these fixed values were
used for the parameters:

• Neighborhood type: "indegree";

• discrete distance unit: 500 meters;

• minimum support for PrefixSpan: 0.001;

Here all the tested configurations are listed:

1. #Neighbors: 10, ID-TH: 1, TW: 15
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Figure 4.8: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease" #6.

2. #Neighbors: 10, ID-TH: 1, TW: 30

3. #Neighbors: 10, ID-TH: 2, TW: 15

4. #Neighbors: 10, ID-TH: 2, TW: 30

5. #Neighbors: 20, ID-TH: 1, TW: 15

6. #Neighbors: 20, ID-TH: 1, TW: 30

7. #Neighbors: 20, ID-TH: 2, TW: 15

8. #Neighbors: 20, ID-TH: 2, TW: 30

#Neighbors: 10, ID-TH:1 Time Window: 30

In this experiment, there are 33420 extracted patterns in total. Their confidence
distribution (Figure 4.9) shows an important decrease in the number of patterns
in the groups with a confidence value higher than 0,7. 11162 patterns contain
the reference station in the head of the rule, but the majority of them does not
contain the "target" state (they contain the "Increase" state). 7372 patterns contain
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the target state in the head of the rule. Among those, the rule with the highest
confidence is

[′Full_T0_0′],
[′Decrease_T1_4, Decrease_T1_4, Decrease_T1_4′],

[′AlmostFull_T2_0′]

and has a confidence of 0.278 and a support of 413. These very low values will
make the rules generated very difficult to apply for the next classification steps.

Figure 4.9: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 10 neighbors, ID-TH=1, and Time Window = 15.

The parameters used showed to have an impact on the patterns extracted.

Changing the number of likely departing stations

Also in this case, increasing this value allows extracting more patterns. We can
compare the experiment above with the experiment #6. Doubling the number of
stations considered, the number of patterns grows from 33420 to 48944. Also the
number of patterns with the target state in the head of the rule increases to 10137,
but the maximum confidence value of a rule is still very low (0.252). Some of the
patterns excluded in the previous experiment showed interesting confidence ranges,
however they do not contain the target state, as we can see in Figure 4.10.
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Figure 4.10: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 20 neighbors, ID-TH=1, and Time Window = 30.

Changing the ID-TH value

Increasing this parameter from 1 to 2 in all the cases leads to a reduction in the
number of extracted patterns. As an example, we can compare the results of the
experiment #2 with the experiment #4. In this case, the number of extracted
patterns drops from 33420 to 23177, and also the patterns with the target state
for the reference station are reduced. Comparing the patterns distribution, as
we can see in Figure 4.11, there are far less patterns in the ranges with higher
confidence values when the threshold value is 2. Considering that the threshold for
the "AlmostFull" state is 3, probably 2 is not enough to spot the small differences
in the stations that may have an impact on the reference station.

Changing the Time Window

In this set of experiments, changing this parameter shows an increase in the quantity
of patterns extracted when passing from a time window of width 15 to a window of
width 30. The total number of patterns goes from 13518 to 33420 in the experiments
#1 and #2. If we compare the patterns distribution (Figure 4.12), more patterns
are present when the time window is wider.
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Figure 4.11: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 10 neighbors, ID-TH=2, and Time Window = 30.

4.1.4 Full-Decrease-wrapped
In these experiments, the events considered for the event generation are the same
as the "Full-Decrease" experiment, but the events "AlmostFull" and "Full" are
considered as the same event (see Wrap States parameter in Section 3.3.2). This
means that all the cases where the number of docks available is below the specified
threshold, the event is considered as "AlmostFull", even if the actual value is zero.
The time window values considered are 15 and 30. Also the threshold for "increase"
and "decrease" states values were changed.

For this experiment these fixed values were used for the parameters:

• Neighborhood type: "indegree";

• discrete distance unit: 500 meters;

• minimum support for PrefixSpan: 0.001;

Here all the tested configurations are listed:

1. #Neighbors: 20, ID-TH: 0, TW: 15

2. #Neighbors: 20, ID-TH: 0, TW: 30
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Figure 4.12: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 10 neighbors, ID-TH=1, and Time Window = 15.

3. #Neighbors: 20, ID-TH: 1, TW: 15

4. #Neighbors: 20, ID-TH: 1, TW: 30

5. #Neighbors: 20, ID-TH: 2, TW: 15

6. #Neighbors: 20, ID-TH: 2, TW: 30

Changing the ID-TH value

The results obtained by changing this value do not differ too much from the previous
findings. Again, varying the number from 0 to 2 leads to a progressive decrease in
the number of patterns, and especially their quality, as we can see in Figures 4.13,
4.14, and 4.15.

Changing the Time Window

Also in this case, the results are not different from the previous experiments,
showing that the number of extracted rules grows when dealing with wider time
windows. This growth can have quite big factors. For instance, in the experiments
#5 and #6, we have an increase from 7163 to 24362 (more than 3 times).
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Figure 4.13: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 20 neighbors, ID-TH=0, and Time Window = 15.

4.1.5 Empty-AlmostEmpty
In these experiments, the events considered for the event generation are "Empty"
and "AlmostEmpty" only. The target of this and the following event generation in
this section is the "Empty" state. The experiments were run both for "distance"
and "indegree" neighborhood definitions, and the time window values considered
are 15 and 30 For this experiment these values were used for the parameters:

• minimum support for PrefixSpan: 0.05;

• discrete distance unit: 500 meters;

• maximum discrete distance in the "distance" case: 3;

• number of likely departing stations in the "indegree" case: 20;

Neighborhood: Distance, Time Window: 15

In this experiment, there are 1819 extracted patterns in total. Their confidence
distribution (Figure 4.16) shows that the rules are mostly uniformly distributed
with some peaks around 0,6 and 0,8. Only 265 patterns contain the reference
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Figure 4.14: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 20 neighbors, ID-TH=1, and Time Window = 15.

station in the head of the rule. Among those, the rule with the highest confidence
is

[′AlmostEmpty_T0_0′],
[′AlmostEmpty_T1_0′],
[′AlmostEmpty_T2_0′]

and has a confidence of 0.857 and a support of 180045.

Neighborhood: Distance, Time Window: 30

In this experiment, there are 4734 extracted patterns in total. Their confidence
distribution (Figure 4.17) shows a decreasing number of patterns when the confi-
dence increases, with the exceptions of the ranges 0.6 - 0.7 and 0.8 - 0.9. Only 552
patterns contain the reference station in the head of the rule. Among those, the
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Figure 4.15: Confidence distribution of the patterns extracted in the experiment
"Full-Decrease-wrapped" with 20 neighbors, ID-TH=2, and Time Window = 15.

rule with higher confidence is again

[′AlmostEmpty_T0_0′],
[′AlmostEmpty_T1_0′],
[′AlmostEmpty_T2_0′]

and has a confidence of 0.783 and a support of 92369.

Neighborhood: Indegree, Time Window: 15

In this experiment, there are 612 extracted patterns in total. Their confidence
distribution (Figure 4.18) shows that the majority of the patterns are in the range
0.6 - 0.85. Only 129 patterns contain the reference station in the head of the rule.
Among those, the rule with higher confidence is

[′AlmostEmpty_T0_0, AlmostEmpty_T0_1′],
[′AlmostEmpty_T1_0, AlmostEmpty_T1_1′],

[′AlmostEmpty_T2_0′]

and has a confidence of 0.861 and a support of 16338.
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Figure 4.16: Confidence distribution of the patterns extracted in the experiment
"Empty-AlmostEmpty" with Neighborhood Distance and Time Window = 15.

Neighborhood: Indegree, Time Window: 30

In this experiment, there are 1796 extracted patterns in total. Their confidence
distribution (Figure 4.19) shows the higher group of patterns near to 0.8. Only 294
patterns contain the reference station in the head of the rule. Among those, the
rule with higher confidence is once more

[′AlmostEmpty_T0_0′],
[′AlmostEmpty_T1_0′],
[′AlmostEmpty_T2_0′]

and has a confidence of 0.783 and a support of 92369, as in Section 4.1.5.

4.1.6 Empty-Increase
In these experiments, the events considered for the event generation are "Empty",
"AlmostEmpty" and "Decrease" for the reference station, and "Increase" for the
neighbors. The purpose of this kind of extraction is to highlight the impact of
"Increase" events in the departing stations on the reference station. It corresponds
to the opposite of the "Full-Decrease" case. The time window values considered are
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Figure 4.17: Confidence distribution of the patterns extracted in the experiment
"Empty-AlmostEmpty" with Neighborhood Distance and Time Window = 30.

15 and 30. Also the threshold for "increase" and "decrease" states and the minimum
support for PrefixSpan values were changed. Different values for the number of
likely arriving stations were considered. For this experiment these fixed values were
used for the parameters:

• Neighborhood type: "indegree;

• discrete distance unit: 500 meters;

Here all the tested configurations are listed:

1. #Neighbors: 10, ID-TH: 0, TW: 15, MS: 0.1

2. #Neighbors: 10, ID-TH: 1, TW: 15, MS: 0.1

3. #Neighbors: 10, ID-TH: 1, TW: 15, MS: 0.15

4. #Neighbors: 10, ID-TH: 2, TW: 15, MS: 0.15

5. #Neighbors: 20, ID-TH: 0, TW: 15, MS: 0.001

6. #Neighbors: 20, ID-TH: 0, TW: 15, MS: 0.1
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Figure 4.18: Confidence distribution of the patterns extracted in the experiment
"Empty-AlmostEmpty" with Neighborhood Indegree and Time Window = 15.

7. #Neighbors: 20, ID-TH: 0, TW: 30, MS: 0.001

8. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.001

9. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.1

10. #Neighbors: 20, ID-TH: 1, TW: 15, MS: 0.15

11. #Neighbors: 20, ID-TH: 1, TW: 30, MS: 0.001

12. #Neighbors: 20, ID-TH: 2, TW: 15, MS: 0.001

13. #Neighbors: 20, ID-TH: 2, TW: 15, MS: 0.15

14. #Neighbors: 20, ID-TH: 2, TW: 30, MS: 0.001

The considered experiments have some aspects in common, and we can identify
some general effects in changing the parameters.

Changing the number of likely departing stations

Changing the number of potentially departing station has obviously an impact on
the number of the patterns extracted. Similarly to what we saw in the experiments
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Figure 4.19: Confidence distribution of the patterns extracted in the experiment
"Empty-AlmostEmpty" with Neighborhood Indegree and Time Window = 30

targeting the "Full" state, selecting a higher number of neighbors allows to extract
more patterns. The reason is surely related to the fact that generating more events
allows considering more patterns. We can compare for example the experiments #2
and #9. For these configurations, the only difference lies in the different number
of likely departing stations (10 and 20). The number of extracted patterns in
the former case is lower than the latter, having extracted respectively 45 and 77
patterns. However, the gap in the number of patterns containing the reference
station in the head of the rule is lower (31 vs 40). The "missing" patterns have not
the highest values of the confidence, but some still have some interesting values, as
we can see in the Figures 4.20 and 4.21. Also the couples of experiments #1-#6 and
#4-#13 share the same characteristics, with even higher reductions in the number
of extracted patterns. In these cases, when the number of extracted patterns is
higher, also the number of rules that contain the reference station in the head is
decreased for the cases where less neighbors are considered. This reduction does
not necessarily involve only lower-quality patterns, as we already noticed many
times.
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Figure 4.20: Confidence distribution of the patterns extracted in the experiment
"Empty-Increase" #2.

Changing the Time Window

Also changing the time window value impacts the number of extracted patterns.
As a consequence, also the confidence of some patterns seems to increase. The
results are summarized in Table 4.2. It is difficult to infer why more patterns are
extracted with larger windows. As already mentioned, a possible explanation is
that the difference lies in the data itself.

Experiment number Patterns Patterns with reference station
5 95723 31090
7 130551 35527
8 69517 18782
11 89516 28341
12 26713 6559
14 74397 19938

Table 4.2: Comparison of the pattern extracted with different time window values
for the Empty-Increase experiment.
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Figure 4.21: Confidence distribution of the patterns extracted in the experiment
"Empty-Increase" #9.

Changing the ID-TH value

Changing this value, similarly to what we saw in Section 4.1.2, has a great impact
on the number of patterns extracted, and consequently on their quality. Setting
it equal to zero allows to extract the higher number of patterns. As we increase
this value, the number of patterns extracted decreases. Since the threshold for the
"Almost Critical" event was set to 3, values higher than 2 were not tested.
We can see an example of this in the experiments #5, #8, and #12. In these cases,
increasing the parameter’s value leads to a huge decrease in the number of patterns.
The respective values in fact are: 95723, 69517, and 26713. If we consider only the
rules with the reference station in the head, the situation is not different: in this
case the values are 31090, 18782, and 6559.

4.1.7 Empty-Increase-stateChange
In these experiments, the events considered for the event generation are the same as
the "Empty-Increase" experiment, but the definition of "Empty" and "AlmostEmpty"
states is slightly changed (see State Change parameter in Section 3.3.2). The time
window values considered are 15 and 30. Also the threshold for "increase" and
"decrease" states values were changed. Different values for the number of likely
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arriving stations were considered. For this experiment these fixed values were used
for the parameters:

• Neighborhood type: "indegree";

• discrete distance unit: 500 meters;

• minimum support for PrefixSpan: 0.001;

Here all the tested configurations are listed:

1. #Neighbors: 10, ID-TH: 1, TW: 15

2. #Neighbors: 10, ID-TH: 1, TW: 30

3. #Neighbors: 10, ID-TH: 2, TW: 15

4. #Neighbors: 10, ID-TH: 2, TW: 30

5. #Neighbors: 20, ID-TH: 1, TW: 15

6. #Neighbors: 20, ID-TH: 1, TW: 30

7. #Neighbors: 20, ID-TH: 2, TW: 15

8. #Neighbors: 20, ID-TH: 2, TW: 30

The results of these experiments, in general show a similar behaviour to their
counterparts in the "Full" case. Also, the patterns extracted have similar effects
on the extraction. To avoid repetitions, the specific results are not reported here,
since they were already discussed in the previous sections. The pattern with the
highest confidence having the reference station and the target state in the head of
the rule is

[′AlmostEmpty_T0_0, Empty_T0_0′],
[′Decrease_T1_0, Increase_T1_7′],

[′Empty_T2_0′]

and has a confidence of 0.396 and a support of 501. This means that using this
kind of event generation will generate low quality rules for the classification.
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4.1.8 Empty-Increase-wrapped
In these experiments, the events considered for the event generation are the same as
the "Empty-Increase" experiment, but the events "AlmostEmpty" and "Empty" are
considered as the same event, similarly to the "Full-Decrease-Wrapped" experiments.
The time window values considered are 15 and 30. Also, the threshold for "increase"
and "decrease" states values were changed. For this experiment these fixed values
were used for the parameters:

• Neighborhood type: "indegree";

• discrete distance unit: 500 meters;

• minimum support for PrefixSpan: 0.001;

• number of likely arriving stations: 20;

Here all the tested configurations are listed:

1. #Neighbors: 20, ID-TH: 0, TW: 15

2. #Neighbors: 20, ID-TH: 0, TW: 30

3. #Neighbors: 20, ID-TH: 1, TW: 15

4. #Neighbors: 20, ID-TH: 1, TW: 30

5. #Neighbors: 20, ID-TH: 2, TW: 15

6. #Neighbors: 20, ID-TH: 2, TW: 30

The results of these experiments, in general show a similar behaviour to their
counterparts in the "Full" case. Also the patterns extracted have similar effects
on the extraction. To avoid repetitions, the specific results are not reported here,
since they were already discussed in the previous sections.

4.1.9 Overall comments
There are some general differences and similarities in the various experiments
performed. The most important difference is in the number of frequent patterns
extracted. The experiments targeting the "Full" case constantly show a lower number
of patterns than in those with target the "Empty" case, in all the cases seen. A
common fact instead is the frequency of the "constant" cases. In fact, patterns with
the form [AlmostCritical_T0_0], [AlmostCritical_T1_0], [AlmostCritical_T2_0]
have high confidence and support values for both the critical target states. There
are cases where the confidence has values higher than 0.8, meaning that in the
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dataset the critical events tend to remain constant in time, e.g. when a station has
been in the "AlmostFull" state for 2 consecutive time periods, in most cases it will
remain in the same state also in the next one.

4.2 Associative classification
In this section we present in detail all the experiments conducted with the associative
classifier, all the different parameters considered, and the results. Before proceeding
with the results, there are a few things that have to be clarified. First, the associative
classifier is more resilient to missing data than the station-specific approach, that
will be presented in the next section. In order to make all the results comparable, an
additional pre-processing was performed. More specifically, at testing phase, all the
patterns that were generated in a time period where at least one of all the stations
did not contain any records were discarded. Second, in all the following tables, the
column "Extraction Type" identifies a specific combination of parameters. To have
a clearer representation, the meaning of these parameters is presented here:

• Full-AlmostFull: it is the experiment presented in Section 4.1.1;

• Full-Decrease: it is the experiment presented in Section 4.1.2;

• Full-Increase: in this kind of experiment, we generate only the events "Full",
"AlmostFull" and "Increase" for all the stations;

• Empty-AlmostEmpty: it is the experiment presented in Section 4.1.5;

• Empty-Increase: it is the experiment presented in Section 4.1.6;

• Empty-Decrease: in this kind of experiment, we generate only the events
"Empty", "AlmostEmpty" and "Decrease" for all the stations;

• _wrapped suffix: the "Critical" and the "AlmostCritical" states are considered
as the same state. All the experiments done have this suffix;

• _neg suffix: when performing the event generation, generate also the "Not
increasing" and "Not decreasing" events;

• Dummy: it consists in a classifier that predicts the next state as the current
state. Basically, it always classifies the situation as stable. It constitutes the
baseline of each experiment;
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4.2.1 Results AlmostFull
Here, the experiments where the target is the "AlmostFull" state are presented.
The class labels can contain two values, that represent the states "Normal" and
"AlmostFull". We can group these experiments in some categories.

Experiments with different time intervals

In this case, the experiments were run with the following parameters setting:
• Support for PrefixSpan: 0.001;

• Spatial unit: 500 m;

• Window size: 3;

• AC-TH: 3;

• ID-TH: 1;

• #Neighbors when considering "indegree" distance (X): 10;

• Maximum distance in the other case of distance definition (Z): 3;

• State change: False;

• Wrap states: True;

• Time zone: whole day;
Time interval = 15
In this case all the tested configurations reach high values of precision, recall, and f1
score. However, they do not manage to overcome the value of the baseline, that has
very high values of precision and recall (0.861). All the results are shown in Table
4.3. This is due to the fact that with these configurations, the rule constituting
the baseline is extracted, and in many cases other rules extend the baseline rule
by adding more contextual information related to neighbouring station. We can
take as an example the rule with highest confidence in the Full-Increase event
generation:

[′AlmostFull_T0_0, AlmostFull_T0_3, AlmostFull_T0_2, AlmostFull_T0_4′],
[′AlmostFull_T1_0′]

This rule has a 0.945 confidence, but a support of only 261, and is only a special
case of the Baseline rule:

[′AlmostFull_T0_0, ],
[′AlmostFull_T1_0′]
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.5 1 0.982224 0.815249 0.869150 0.841337
Full-AlmostFull_wrapped 10 0.5 5 0.961428 0.839290 0.357033 0.500958
Full-AlmostFull_wrapped 10 0.5 10 0.959953 0.853235 0.315795 0.460975
Full-AlmostFull_wrapped 10 0.8 1 0.983097 0.829122 0.866965 0.847621
Full-AlmostFull_wrapped 10 0.8 5 0.960860 0.851401 0.337008 0.482879
Full-AlmostFull_wrapped 10 0.8 10 0.949599 0.844535 0.086430 0.156811
Full-AlmostFull_wrapped 10 0.9 1 0.953792 0.880040 0.171188 0.286621
Full-AlmostFull_wrapped Dist 0.5 1 0.981255 0.800810 0.870950 0.834409
Full-AlmostFull_wrapped Dist 0.5 5 0.967110 0.823750 0.500546 0.622708
Full-AlmostFull_wrapped Dist 0.5 10 0.965426 0.832851 0.453394 0.587151
Full-AlmostFull_wrapped Dist 0.8 1 0.983754 0.840665 0.864200 0.852270
Full-AlmostFull_wrapped Dist 0.8 5 0.966533 0.844578 0.469144 0.603215
Full-Decrease_wrapped 10 0.5 1 0.985002 0.861674 0.861758 0.861716
Full-Decrease_wrapped 10 0.5 5 0.959460 0.733191 0.396760 0.514891
Full-Decrease_wrapped 10 0.7 1 0.985002 0.861674 0.861758 0.861716
Full-Decrease_wrapped 10 0.7 5 0.961602 0.798973 0.390010 0.524158
Full-Decrease_wrapped 10 0.8 1 0.985002 0.861674 0.861758 0.861716
Full-Decrease_wrapped 10 0.8 5 0.949025 0.834110 0.074826 0.137333
Full-Decrease_wrapped Dist 0.5 1 0.980669 0.792457 0.871850 0.830260
Full-Decrease_wrapped Dist 0.5 5 0.960515 0.732655 0.428002 0.540345
Full-Decrease_wrapped Dist 0.7 1 0.985002 0.861674 0.861758 0.861716
Full-Decrease_wrapped Dist 0.7 5 0.962948 0.801002 0.421381 0.552244
Full-Decrease_wrapped Dist 0.8 1 0.985002 0.861674 0.861758 0.861716
Full-Decrease_wrapped Dist 0.8 5 0.949198 0.834925 0.078683 0.143814
Full-Increase_wrapped 10 0.5 1 0.980033 0.783375 0.873264 0.825881
Full-Increase_wrapped 10 0.5 5 0.967727 0.760496 0.590930 0.665075
Full-Increase_wrapped 10 0.7 1 0.982167 0.814363 0.869279 0.840925
Full-Increase_wrapped 10 0.7 5 0.970510 0.819726 0.584758 0.682587
Full-Increase_wrapped 10 0.8 1 0.982967 0.826954 0.867382 0.846686
Full-Increase_wrapped 10 0.8 5 0.964096 0.842678 0.415435 0.556512
Full-Increase_wrapped 0 0.5 1 0.984453 0.850962 0.864747 0.857799
Full-Increase_wrapped 0 0.5 5 0.950951 0.784047 0.131750 0.225592
Full-Increase_wrapped 0 0.7 1 0.985002 0.861674 0.861758 0.861716
Full-Increase_wrapped 0 0.7 5 0.950951 0.784047 0.131750 0.225592
Full-Increase_wrapped 0 0.8 1 0.985002 0.861674 0.861758 0.861716
Full-Increase_wrapped 0 0.8 5 0.946383 0.807760 0.014721 0.028915
Full-Increase_wrapped Dist 0.5 1 0.979735 0.778843 0.874646 0.823969
Full-Increase_wrapped Dist 0.5 5 0.970824 0.762339 0.671188 0.713866
Full-Increase_wrapped Dist 0.7 1 0.981182 0.799675 0.871207 0.833910
Full-Increase_wrapped Dist 0.7 5 0.973299 0.807932 0.665885 0.730063
Full-Increase_wrapped Dist 0.8 1 0.983282 0.832818 0.865422 0.848807
Full-Increase_wrapped Dist 0.8 5 0.969649 0.840374 0.543520 0.660109
Dummy 0 0.0 1 0.985002 0.861674 0.861758 0.861716

Table 4.3: Results of the experiments with Time interval = 15 with target state
= "AlmostFull".

Time interval = 30
This is the configuration in which more tests were conducted. The results, presented
in Table 4.4, show that the better results, both in terms of precision and f1 score,
are achieved with the extractions that consider also the negative states. This
means that, in addition to the information regarding the increase and decrease
of the number of bicycles in a station, also the complementary information is
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relevant to achieve the best results. The Dummy experiment, that constitutes the
baseline of this configuration, is very difficult to be beaten. The best results of the
configurations that do not consider the "negative" states are only able to reach its
performance. Only one experiment, considering a confidence threshold equal to 0.8
and a number of matches equal to 5, is able to increase the precision. However,
that little increase has a very high cost in terms of recall, leading to a huge drop in
terms of recall. This happens because the confidence of the rules different from the
"Dummy rule" is slightly higher, whereas their support is far lower. This results in
a drop of the number of matches. The confidence threshold parameter is crucial
to obtain satisfactory results: if we choose too low values indeed the recall will
have high values, but negatively affecting the precision. Since the objective of
this classification is to identify critical and rare events, a classifier that performs a
positive prediction too frequently is less valuable than one that makes less positive
predictions, but is more reliable about the quality of the prediction.
Time interval = 60
In this experiment, whose results are shown in table 4.5, the baseline has a lower
value. However, no extracted rule seems to show different behaviour from what
has been already discussed in the previous paragraphs.
In general, changing the size of the time window seems to have an impact on
the difficulty of the problem, but the extracted rules seem to be not enough to
achieve good results. The only event generations able to generate satisfactory
results are those that consider the "negative" states, that demonstrated to hold
useful information for the classification algorithm.

Experiments with different values for AlmostFull and time intervals

The goal of this kind of experiment is to investigate if, by changing the parameters
related to the definition of the almost critical event, we are able to extract better
quality rules and outperform the baseline. The tested configurations are:

• AC-TH = 1, TW = 15;

• AC-TH = 1, TW = 30;

• AC-TH = 2, TW = 15;

• AC-TH = 2, TW = 30;

• AC-TH = 3, TW = 15;

• AC-TH = 3, TW = 30;

The last two experiments were already presented in the previous paragraphs. In
general, changing these parameters is effective for changing the baseline, however
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.50 1 0.968959 0.723582 0.805563 0.762375
Full-AlmostFull_wrapped 10 0.50 5 0.951936 0.739315 0.343565 0.469124
Full-AlmostFull_wrapped 10 0.50 10 0.950635 0.763784 0.291542 0.422003
Full-AlmostFull_wrapped 10 0.70 1 0.971048 0.747817 0.802122 0.774018
Full-AlmostFull_wrapped 10 0.70 5 0.951189 0.769131 0.300570 0.432228
Full-AlmostFull_wrapped Dist 0.50 1 0.967362 0.706207 0.808215 0.753776
Full-AlmostFull_wrapped Dist 0.50 5 0.956480 0.725902 0.475484 0.574594
Full-AlmostFull_wrapped Dist 0.50 10 0.954311 0.735411 0.407437 0.524363
Full-AlmostFull_wrapped Dist 0.70 1 0.972252 0.763162 0.799075 0.780706
Full-AlmostFull_wrapped Dist 0.70 5 0.955479 0.755936 0.413135 0.534277
Full-AlmostFull_wrapped Dist 0.80 1 0.974536 0.793875 0.794279 0.794077
Dummy 0 0.00 1 0.974536 0.793875 0.794279 0.794077
Full-Decrease_wrapped 10 0.50 1 0.965887 0.690565 0.811939 0.746350
Full-Decrease_wrapped 10 0.50 5 0.952550 0.649419 0.504937 0.568136
Full-Decrease_wrapped 10 0.70 1 0.974536 0.793875 0.794279 0.794077
Full-Decrease_wrapped 10 0.70 5 0.949735 0.706036 0.320093 0.440485
Full-Decrease_wrapped 10 0.80 1 0.974536 0.793875 0.794279 0.794077
Full-Decrease_wrapped Dist 0.50 1 0.965423 0.686186 0.811939 0.743785
Full-Decrease_wrapped Dist 0.50 5 0.951475 0.628543 0.525588 0.572473
Full-Decrease_wrapped Dist 0.70 1 0.974536 0.793875 0.794279 0.794077
Full-Decrease_wrapped Dist 0.70 5 0.953414 0.711777 0.413982 0.523492
Full-Decrease_wrapped Dist 0.80 1 0.974536 0.793875 0.794279 0.794077
Full-Increase_wrapped 10 0.50 1 0.965224 0.684116 0.812616 0.742850
Full-Increase_wrapped 10 0.50 5 0.957460 0.662740 0.634881 0.648512
Full-Increase_wrapped 10 0.70 1 0.970968 0.746835 0.802291 0.773571
Full-Increase_wrapped 10 0.70 5 0.959574 0.743063 0.528861 0.617925
Full-Increase_wrapped 10 0.80 1 0.974498 0.793383 0.794279 0.793831
Full-Increase_wrapped 10 0.80 5 0.949466 0.795721 0.245500 0.375232
Full-Increase_wrapped 0 0.50 1 0.972541 0.765642 0.800937 0.782892
Full-Increase_wrapped 0 0.50 5 0.946645 0.708012 0.232861 0.350459
Full-Increase_wrapped 0 0.70 1 0.974536 0.793875 0.794279 0.794077
Full-Increase_wrapped 0 0.70 5 0.939750 0.689189 0.046042 0.086317
Full-Increase_wrapped 0 0.80 1 0.974536 0.793875 0.794279 0.794077
Full-Increase_wrapped_neg 10 0.50 1 0.964331 0.675238 0.814873 0.738513
Full-Increase_wrapped_neg 10 0.50 5 0.964331 0.675238 0.814873 0.738513
Full-Increase_wrapped_neg 10 0.60 1 0.964331 0.675238 0.814873 0.738513
Full-Increase_wrapped_neg 10 0.95 1 0.978693 0.943825 0.696778 0.801701
Full-Increase_wrapped_neg 10 0.90 1 0.977815 0.916008 0.705806 0.797285
Full-Decrease_wrapped_neg Dist 0.50 1 0.964331 0.675238 0.814873 0.738513
Full-Decrease_wrapped_neg Dist 0.70 1 0.965538 0.687071 0.812560 0.744565
Full-Decrease_wrapped_neg Dist 0.90 1 0.977815 0.916008 0.705806 0.797285
Full-Decrease_wrapped_neg Dist 0.95 1 0.977065 0.949295 0.664447 0.781731
Full-Decrease_wrapped_neg 10 0.50 1 0.964331 0.675238 0.814873 0.738513
Full-Decrease_wrapped_neg 10 0.70 1 0.964443 0.676300 0.814704 0.739078
Full-Decrease_wrapped_neg 10 0.90 1 0.977815 0.916008 0.705806 0.797285
Full-Decrease_wrapped_neg 10 0.95 1 0.978620 0.944006 0.695368 0.800832
Full-Increase_wrapped_neg Dist 0.50 1 0.964331 0.675238 0.814873 0.738513
Full-Increase_wrapped_neg Dist 0.70 1 0.965475 0.686392 0.812842 0.744285
Full-Increase_wrapped_neg Dist 0.90 1 0.977815 0.916008 0.705806 0.797285
Full-Increase_wrapped_neg Dist 0.95 1 0.977403 0.948111 0.671162 0.785953

Table 4.4: Results of the experiments with Time interval = 30 with target state
= "AlmostFull"
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.5 5 0.935130 0.617621 0.328060 0.4285099317385155
Full-AlmostFull_wrapped 10 0.7 1 0.955736 0.701100 0.702354 0.7017263276729855
Full-AlmostFull_wrapped 10 0.7 5 0.933531 0.679178 0.195951 0.30415083308973984
Full-AlmostFull_wrapped 10 0.8 1 0.925915 0.705882 0.001130 0.0022562752655824014
Full-AlmostFull_wrapped 10 0.8 5 0.925859 0.000000 0.000000 Nan
Full-AlmostFull_wrapped Dist 0.5 1 0.942683 0.593206 0.721846 0.65123391241558
Full-AlmostFull_wrapped Dist 0.5 5 0.936617 0.600601 0.432863 0.5031191857283572
Full-AlmostFull_wrapped Dist 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-AlmostFull_wrapped Dist 0.7 5 0.937343 0.684388 0.287288 0.40469558296856356
Full-Decrease_wrapped 10 0.5 1 0.955604 0.699438 0.703390 0.7014084507042253
Full-Decrease_wrapped 10 0.5 5 0.943527 0.646412 0.525895 0.5799584631360333
Full-Decrease_wrapped 10 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Decrease_wrapped Dist 0.5 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Decrease_wrapped Dist 0.5 5 0.944525 0.651823 0.540301 0.5908459043402153
Full-Decrease_wrapped Dist 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Increase_wrapped 10 0.5 1 0.945265 0.611401 0.718079 0.6604598796172
Full-Increase_wrapped 10 0.5 5 0.946117 0.644775 0.608286 0.6259993216725616
Full-Increase_wrapped 10 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Increase_wrapped 10 0.7 5 0.935060 0.682359 0.232015 0.3462862764387604
Full-Increase_wrapped 0 0.5 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Increase_wrapped 0 0.5 5 0.935325 0.623835 0.321375 0.4242122925859176
Full-Increase_wrapped 0 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Increase_wrapped Dist 0.5 1 0.942683 0.593206 0.721846 0.65123391241558
Full-Increase_wrapped Dist 0.5 5 0.944986 0.626911 0.637006 0.6319181729017795
Full-Increase_wrapped Dist 0.7 1 0.955743 0.701241 0.702166 0.7017032088077538
Full-Increase_wrapped Dist 0.7 5 0.938501 0.685072 0.315443 0.4319793681495809
Dummy 0 0.0 1 0.955743 0.701241 0.702166 0.7017032088077538

Table 4.5: Results of the experiments with Time interval = 60 with target state
= "AlmostFull".

the quality of the extracted rules, hence of the classification, varies accordingly
to the baseline. As an example, the best performing experiments of two different
configurations are presented in Tables 4.6 and 4.7. As we can see, none of the tested
configuration is able to reach better results than the baseline in terms of f1 score.
Some configurations, when dealing with confidence values higher than the "Dummy
rule" or number of matches higher than 1 are able to reach slightly higher values
of precision. The highest improvement, in Table 4.7, is of 5%. Nevertheless, the
negative impact of this improvement is a very high decrease in the recall, meaning
that more precise models are not able to catch the great majority of the positive
cases. Such drops in the recall (from 73% to 11% in the best case), do not seem
to be easily applicable in practical scenarios. Last, all kinds of event generation
tested are able to reach the baseline.

Experiments with different time zones

As a last investigation, the configuration tested in the experiments whose results
are shown in Table 4.4 were tested in different time zones. The 24 hours of the day
were divided in 6 different groups of equal duration, to verify if whether there are
significant variations, since the results of the data exploration showed a non-uniform
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped Dist 0.7 5 0.988976 0.723757 0.020450 0.039775
Full-Decrease_wrapped 10 0.5 1 0.993813 0.722846 0.723072 0.722959
Full-Decrease_wrapped 10 0.7 1 0.993813 0.722846 0.723072 0.722959
Full-Decrease_wrapped Dist 0.5 1 0.993813 0.722846 0.723072 0.722959
Full-Decrease_wrapped Dist 0.7 1 0.993813 0.722846 0.723072 0.722959
Full-Decrease_wrapped Dist 0.7 5 0.989248 0.729207 0.058851 0.108912
Full-Increase_wrapped 10 0.7 1 0.993813 0.722846 0.723072 0.722959
Full-Increase_wrapped 0 0.5 1 0.993813 0.722846 0.723072 0.722959
Full-Increase_wrapped 0 0.7 1 0.993813 0.722846 0.723072 0.722959
Full-Increase_wrapped Dist 0.7 1 0.993813 0.722846 0.723072 0.722959
Dummy 0 0.0 1 0.993813 0.722846 0.723072 0.722959

Table 4.6: Results of the experiments with Time interval = 15 and threshold for
"AlmostFull" = 1.

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.7 5 0.966922 0.735984 0.110600 0.192301
Full-AlmostFull_wrapped 10 0.8 1 0.964945 0.750799 0.023021 0.044673
Full-AlmostFull_wrapped 10 0.8 5 0.964495 0.780000 0.003821 0.007604
Full-AlmostFull_wrapped Dist 0.7 1 0.981062 0.733895 0.734326 0.734110
Full-Decrease_wrapped 10 0.5 1 0.981062 0.733895 0.734326 0.734110
Full-Decrease_wrapped 10 0.7 1 0.981062 0.733895 0.734326 0.734110
Full-Decrease_wrapped Dist 0.5 1 0.981062 0.733895 0.734326 0.734110
Full-Decrease_wrapped Dist 0.7 1 0.981062 0.733895 0.734326 0.734110
Full-Increase_wrapped 10 0.8 1 0.966462 0.765233 0.083660 0.150830
Full-Increase_wrapped 10 0.8 5 0.964533 0.882353 0.004408 0.008773
Full-Increase_wrapped 0 0.5 1 0.981062 0.733895 0.734326 0.734110
Full-Increase_wrapped 0 0.7 1 0.981062 0.733895 0.734326 0.734110
Full-Increase_wrapped Dist 0.7 1 0.981062 0.733895 0.734326 0.734110
Dummy 0 0.0 1 0.981062 0.733895 0.734326 0.734110

Table 4.7: Results of the experiments with Time interval = 30 and threshold for
"AlmostFull" = 2.

usage of the bike sharing system. These experiments are focused on assessing how
the classifier performs in those situations, and how the scenario varies.
Hours 0 - 4
In this time zone the situation is nearly always constant. In fact, the total number
of situations where the situation changes from AlmostFull to Normal or vice versa
is 86 over more than 35000 samples. In this situation there is not much practical
interest in predicting the critical situations because of the very low usage of the
system, however it may be an interesting extreme situation where to test the
classifier. A selection of the best results is presented in Table 4.8. As we expected,
the precision and recall scores for the baseline are very close to 1. It is interesting
to notice that we are still able to find stricter rules that allow more precise results,
but again these rules are applied very rarely.
Hours 4 - 8
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.7 5 0.966193 0.980527 0.416951 0.585099
Full-AlmostFull_wrapped 10 0.8 1 0.944639 1.000000 0.031661 0.061379
Full-AlmostFull_wrapped 10 0.8 5 0.942996 1.000000 0.002923 0.005828
Full-AlmostFull_wrapped Dist 0.5 5 0.974882 0.982397 0.570872 0.722120
Full-AlmostFull_wrapped Dist 0.7 5 0.974798 0.982353 0.569411 0.720937
Full-AlmostFull_wrapped Dist 0.8 1 0.949680 0.995968 0.120312 0.214689
Full-Decrease_wrapped 10 0.5 5 0.947118 0.981250 0.076473 0.141889
Full-Decrease_wrapped 10 0.7 1 0.997605 0.980459 0.977594 0.979024
Full-Decrease_wrapped 10 0.8 1 0.943136 1.000000 0.005358 0.010659
Full-Decrease_wrapped Dist 0.7 1 0.997605 0.980459 0.977594 0.979024
Full-Decrease_wrapped Dist 0.8 1 0.942913 1.000000 0.001461 0.002918
Full-Increase_wrapped 10 0.7 5 0.967140 0.981257 0.433512 0.601351
Full-Increase_wrapped 10 0.8 1 0.945865 0.990991 0.053580 0.101664
Full-Increase_wrapped 0 0.5 1 0.997605 0.980459 0.977594 0.979024
Full-Increase_wrapped 0 0.7 1 0.997605 0.980459 0.977594 0.979024
Full-Increase_wrapped Dist 0.7 5 0.975745 0.982843 0.585972 0.734208
Full-Increase_wrapped Dist 0.8 1 0.950042 0.985019 0.128105 0.226724
Full-Increase_wrapped Dist 0.8 5 0.943163 1.000000 0.005845 0.011622
Dummy 0 0.0 1 0.997605 0.980459 0.977594 0.979024

Table 4.8: Results of the experiments in the time zone 0 - 4.

In this situation, the states are far more dynamic than in the previous time zone.
Unfortunately, the rules extracted cannot adapt to the situation better than the
baseline, and in the sole situation where we get a slightly higher precision score,
the recall decreases to 11%. The best results are presented in Table 4.9.

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped Dist 0.5 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213
Full-AlmostFull_wrapped Dist 0.5 5 0.925165 0.6666666666666666 0.127018 0.2133804892425582
Full-Decrease_wrapped 10 0.5 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213
Full-Decrease_wrapped Dist 0.5 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213
Full-Increase_wrapped 0 0.5 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213
Full-Increase_wrapped Dist 0.5 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213
Dummy 0 0.0 1 0.945100 0.6653076352853966 0.629825 0.6470800288392213

Table 4.9: Results of the experiments in the time zone 4 - 8.

Hours 8 - 12
In this case the situation is less dynamic than in the previous time zone. As usual,
the classifiers do not achieve better results compared to the baseline in terms of f1
score. Nevertheless, if we craft the confidence threshold precisely to exclude the
baseline rule, we are able to reach a good enhancement in the precision (7%). The
recall still assumes low values, but the reduction is the lowest obtained. This is a
strategy that we can use if we want to augment the precision and limit the loss in
the recall to some extent. The results are shown in Table 4.10
Hours 12 - 16
In this case the situation is not much different from the previous one. The results
(Table 4.11) confirm that the exclusion of the baseline rule is an effective method
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.500 5 0.953272 0.757322 0.188150 0.301415
Full-AlmostFull_wrapped Dist 0.500 1 0.971679 0.726185 0.756757 0.741156
Full-AlmostFull_wrapped Dist 0.500 5 0.959955 0.728814 0.402287 0.518419
Full-Decrease_wrapped 10 0.500 1 0.971679 0.726185 0.756757 0.741156
Full-Decrease_wrapped 10 0.500 5 0.959844 0.735352 0.391372 0.510855
Full-Decrease_wrapped Dist 0.500 1 0.971679 0.726185 0.756757 0.741156
Full-Decrease_wrapped Dist 0.500 5 0.962852 0.735247 0.479210 0.580239
Full-Increase_wrapped 10 0.500 1 0.971679 0.726185 0.756757 0.741156
Full-Increase_wrapped 10 0.500 5 0.964884 0.730049 0.546778 0.625260
Full-Increase_wrapped 0 0.500 1 0.971679 0.726185 0.756757 0.741156
Full-Increase_wrapped 0 0.500 5 0.947452 0.793651 0.025988 0.050327
Full-Increase_wrapped Dist 0.500 5 0.968087 0.729634 0.642412 0.683250
Dummy 0 0.000 1 0.971679 0.726185 0.756757 0.741156
Full-Decrease_wrapped 10 0.575 1 0.955194 0.796610 0.219854 0.344603

Table 4.10: Results of the experiments in the time zone 8 - 12.

to improve the precision.

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped Dist 0.5 1 0.962644 0.691805 0.657116 0.674014
Full-AlmostFull_wrapped 10 0.5000 5 0.945159 0.717391 0.110315 0.191225
Full-Decrease_wrapped 10 0.5000 1 0.963149 0.698324 0.656638 0.676840
Full-Decrease_wrapped Dist 0.5000 1 0.963149 0.698324 0.656638 0.676840
Full-Increase_wrapped 10 0.5 1 0.963065 0.697062 0.657116 0.676500
Full-Increase_wrapped Dist 0.5 1 0.962644 0.691805 0.657116 0.674014
Full-Increase_wrapped 0 0.5000 1 0.963149 0.698324 0.656638 0.676840
Full-Increase_wrapped 0 0.5000 5 0.942941 0.790476 0.039637 0.075489
Dummy 0 0.0000 1 0.963149 0.698324 0.656638 0.676840
Full-Decrease_wrapped 10 0.5931 1 0.952428 0.764940 0.275072 0.404636

Table 4.11: Results of the experiments in the time zone 12 - 16.

Hours 16 - 20
The results of the experiments (Table 4.12) in this time zone do not show big
differences from the previous ones. All the kinds of the event generation are able
to reach the same scores as the baseline. In 3 cases the precision score is improved
by more than 10%, but the number of positive predictions decreases to very low
values. Similarly to what happened in the previous two time zones, crafting the
confidence threshold in order to exclude the baseline rule allows to increase the
precision without nullifying the recall.
Hours 20 - 24
In this last time zone we have similar results to the other night time zone. In this
case again the system has low numbers of user, and the situation tends to remain
constant.

To conclude the analysis by time zone, we can say that for sure there are some
time zones that need to be monitored with more attention, and they coincide with
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-Decrease_wrapped 10 0.70 1 0.939855 0.846154 0.010082 0.019928
Full-Decrease_wrapped Dist 0.50 1 0.968677 0.717705 0.796975 0.755266
Full-Increase_wrapped 10 0.50 1 0.963202 0.661157 0.806599 0.726672
Full-Increase_wrapped 10 0.70 1 0.946359 0.776316 0.162236 0.268385
Full-Increase_wrapped 10 0.70 5 0.940022 0.815789 0.014207 0.027928
Full-Increase_wrapped 10 0.80 1 0.939689 0.750000 0.008249 0.016319
Full-Increase_wrapped 0 0.50 1 0.968677 0.717705 0.796975 0.755266
Full-Increase_wrapped Dist 0.70 1 0.942023 0.811688 0.057287 0.107021
Dummy 0 0.00 1 0.968677 0.717705 0.796975 0.755266
Full-Decrease_wrapped 10 0.65 1 0.953113 0.761352 0.330431 0.460850

Table 4.12: Results of the experiments in the time zone 16 - 20.

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Full-AlmostFull_wrapped 10 0.70 5 0.964927 0.9707750952986023 0.382382 0.5486535008976661
Full-AlmostFull_wrapped 10 0.80 1 0.944475 1.0 0.004004 0.007976071784646063
Full-Decrease_wrapped 10 0.70 5 0.945954 1.0 0.030531 0.05925206410879067
Full-AlmostFull_wrapped Dist 0.5 1 0.994503 0.9446913580246914 0.957457 0.9510315684812329
Full-Decrease_wrapped Dist 0.70 1 0.995675 0.9675291730086251 0.954454 0.9609473418997228
Full-Decrease_wrapped Dist 0.70 5 0.946010 0.9701492537313433 0.032533 0.06295399515738499
Full-Increase_wrapped Dist 0.5 1 0.994392 0.9428289797930015 0.957457 0.9500869133349888
Full-Increase_wrapped 0 0.70 1 0.995675 0.9675291730086251 0.954454 0.9609473418997228
Dummy 0 0.00 1 0.995675 0.9675291730086251 0.954454 0.9609473418997228
Full-Decrease_wrapped 10 0.75 1 0.945564 0.9795918367346939 0.024024 0.046897899364924285

Table 4.13: Results of the experiments in the time zone 20 - 24.

the hours in the daytime. The zone where the situation is more unstable is the
early morning (4-8). However, the quality of the prediction of the associative model
does not outperform the baseline in terms of f1 score, adapting to its value in all
the situations. Higher values of precision can be reached, but lowering the number
of times when the model performs a positive prediction.
Also the analysis of one-hour-long time zones and intervals of 15 minutes was
performed, but since the results do not differ in the substance from the ones already
presented, they are not discussed in more details.

4.2.2 Results AlmostEmpty

Here, the experiments where the target is the "AlmostEmpty" state are presented.
The class labels can contain two values that represent the states "Normal" and
"AlmostEmpty". The majority of the experiments done in this work regard the
"AlmostFull" case. With the aim of comparing the performances, the most repre-
sentative experiments were also run with the "AlmostEmpty" target. The starting
parameters configuration were the same as the one presented in Section 4.2.1.
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Experiments with different time intervals

Time interval = 30
In this experiment none of the configurations tested resulted in higher f1 scores
compared to the baseline. 6 configurations, including all the types of event genera-
tion and distance definition, reach better results when considering the precision
metric. All the tested configurations are presented in Table 4.14. As we can see,
the baseline is not very different from the same experiment with opposite target.
This means that the two situations tend to having similar behaviour in terms of
variations between the normal and critical states.
Time interval = 15
The best performing results of the experiments run with this configuration are
presented in Table 4.15. As we can see, no experiment reaches higher results than
the baseline in terms of f1 score, and all the enhancements in precision happen only
with high costs in recall, hence rules with higher precision loose their applicability
in the most common cases.

Experiments with different values for AlmostEmpty

The thresholds tested are 1, 2 and 3, as we did in the similar section when we
were discussing the "AlmostFull" case. We can analyze the results of the best
configurations in Tables 4.16, 4.17, and 4.14. When increasing the value of the
threshold, also the value of the baseline increases, meaning that the situation
becomes more "constant" and the changes in the stations’ state become more rare.
The results of the classifiers do not differ from what we saw in the majority of
the experiments: all the types of event generation are able to extract the baseline.
However, rules with higher confidence and support are not extracted.

Experiments with different time zones

Since in this discussion there are many common facts in the experiments and
configurations tested, there is not much interest in the results of the experiments
for all the time zones with the "AlmostEmpty" target. For this reason, only one
representative "time zone" was tested. The results are shown in Table 4.18, and are
not different from the cases we already discussed, as they show the same analogy
on the results, with a slightly different value for the baseline if we compare this
experiment to its correspondent (Table 4.12).

4.3 Other approaches
In this section we present the results of the experiments with the two strategies
introduced in Section 3.5. First, we will present the results in the case where a
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Empty-AlmostEmpty_wrapped 10 0.5 5 0.925146 0.682968 0.451759 0.543808
Empty-AlmostEmpty_wrapped 10 0.7 1 0.956742 0.777317 0.787611 0.782430
Empty-AlmostEmpty_wrapped 10 0.7 5 0.924815 0.735949 0.372263 0.494430
Empty-AlmostEmpty_wrapped 10 0.8 1 0.905668 0.789858 0.061061 0.113358
Empty-AlmostEmpty_wrapped 10 0.8 5 0.903073 0.768131 0.026557 0.051340
Empty-AlmostEmpty_wrapped Dist 0.5 1 0.943464 0.680149 0.807070 0.738194
Empty-AlmostEmpty_wrapped Dist 0.5 5 0.936154 0.688725 0.645042 0.666168
Empty-AlmostEmpty_wrapped Dist 0.7 1 0.957715 0.785634 0.786411 0.786022
Empty-AlmostEmpty_wrapped Dist 0.7 5 0.939865 0.774299 0.551985 0.644510
Empty-AlmostEmpty_wrapped Dist 0.8 1 0.941553 0.779828 0.568760 0.657777
Empty-Increase_wrapped 10 0.5 1 0.942707 0.675629 0.807600 0.735743
Empty-Increase_wrapped 10 0.5 5 0.927811 0.641936 0.608384 0.624710
Empty-Increase_wrapped 10 0.7 1 0.957715 0.785634 0.786411 0.786022
Empty-Increase_wrapped 10 0.7 5 0.933374 0.734750 0.509182 0.601514
Empty-Increase_wrapped 10 0.8 1 0.957715 0.785634 0.786411 0.786022
Empty-Increase_wrapped 10 0.8 5 0.915294 0.808641 0.186396 0.302959
Empty-Increase_wrapped Dist 0.5 1 0.942714 0.675585 0.807882 0.735835
Empty-Increase_wrapped Dist 0.5 5 0.928428 0.643708 0.616542 0.629832
Empty-Increase_wrapped Dist 0.7 1 0.957715 0.785634 0.786411 0.786022
Empty-Increase_wrapped Dist 0.7 5 0.934546 0.736069 0.525745 0.613378
Empty-Increase_wrapped Dist 0.8 1 0.957715 0.785634 0.786411 0.786022
Empty-Increase_wrapped Dist 0.8 5 0.915433 0.808679 0.188233 0.305383
Empty-Decrease_wrapped 10 0.5 1 0.941790 0.669752 0.809966 0.733216
Empty-Decrease_wrapped 10 0.5 5 0.932021 0.650644 0.673047 0.661656
Empty-Decrease_wrapped 10 0.7 1 0.956742 0.777317 0.787611 0.782430
Empty-Decrease_wrapped 10 0.7 5 0.939579 0.751741 0.579602 0.654543
Empty-Decrease_wrapped 10 0.8 1 0.957715 0.785634 0.786411 0.786022
Empty-Decrease_wrapped 10 0.8 5 0.918771 0.809941 0.231918 0.360586
Empty-Decrease_wrapped 10 0.9 1 0.902183 0.897059 0.010771 0.021287
Empty-Decrease_wrapped 0 0.5 1 0.955190 0.762365 0.793650 0.777693
Empty-Decrease_wrapped 0 0.5 5 0.917627 0.745866 0.251660 0.376340
Empty-Decrease_wrapped 0 0.7 1 0.957715 0.785634 0.786411 0.786022
Empty-Decrease_wrapped 0 0.7 5 0.904241 0.742938 0.046440 0.087416
Empty-Decrease_wrapped 0 0.8 1 0.957715 0.785634 0.786411 0.786022
Empty-Decrease_wrapped Dist 0.5 1 0.941884 0.670370 0.809648 0.733456
Empty-Decrease_wrapped Dist 0.5 5 0.938592 0.665625 0.759959 0.709671
Empty-Decrease_wrapped Dist 0.7 1 0.957715 0.785634 0.786411 0.786022
Empty-Decrease_wrapped Dist 0.7 5 0.951629 0.776964 0.715638 0.745041
Empty-Decrease_wrapped Dist 0.8 1 0.957715 0.785634 0.786411 0.786022
Empty-Decrease_wrapped Dist 0.8 5 0.927326 0.793133 0.357324 0.492684
Dummy 0 0.0 1 0.957715 0.785634 0.786411 0.786022

Table 4.14: Results of the experiments with Time interval = 30 and target state
= "AlmostEmpty".

classifier is built for each single station, then the results in the more general type
of pre-processing. Finally, we make a comparison of the best performing strategies
in each presented case to make a final evaluation of the adopted strategies.

4.3.1 Station-specific Approach
Some tests were made with this approach. First, a classifier with default parameters
was trained for each considered type (Decision Tree, Random Forest and XGBoost).

65



Experiments

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Empty-AlmostEmpty_wrapped 10 0.7 5 0.944670 0.818424 0.467765 0.595293
Empty-AlmostEmpty_wrapped 10 0.8 1 0.975300 0.855373 0.861782 0.858566
Empty-AlmostEmpty_wrapped 10 0.8 5 0.941912 0.832732 0.415815 0.554665
Empty-AlmostEmpty_wrapped 10 0.9 1 0.917440 0.875923 0.059402 0.111259
Empty-AlmostEmpty_wrapped 10 0.9 5 0.914791 0.879911 0.023781 0.046310
Empty-AlmostEmpty_wrapped Dist 0.8 1 0.973415 0.835739 0.864287 0.849773
Empty-AlmostEmpty_wrapped Dist 0.8 5 0.958643 0.858473 0.628160 0.725476
Empty-Increase_wrapped 10 0.7 1 0.974491 0.845335 0.865048 0.855078
Empty-Increase_wrapped 10 0.8 1 0.975629 0.858586 0.861802 0.860191
Empty-Increase_wrapped 10 0.8 5 0.940774 0.813975 0.413772 0.548647
Empty-Increase_wrapped 10 0.9 1 0.913406 0.883333 0.005309 0.010555
Empty-Increase_wrapped Dist 0.7 1 0.974515 0.845499 0.865148 0.855211
Empty-Increase_wrapped Dist 0.8 1 0.975624 0.858506 0.861842 0.860171
Empty-Increase_wrapped Dist 0.8 5 0.939671 0.813370 0.397804 0.534295
Empty-Decrease_wrapped 10 0.8 1 0.975148 0.853545 0.862283 0.857892
Empty-Decrease_wrapped 10 0.8 5 0.952427 0.834334 0.565433 0.674055
Empty-Decrease_wrapped 10 0.9 1 0.917670 0.873570 0.062708 0.117016
Empty-Decrease_wrapped 10 0.9 5 0.914849 0.880029 0.024542 0.047753
Empty-Decrease_wrapped 0 0.5 1 0.975073 0.852022 0.863425 0.857686
Empty-Decrease_wrapped 0 0.5 5 0.922786 0.831287 0.141063 0.241196
Empty-Decrease_wrapped 0 0.7 1 0.975073 0.852022 0.863425 0.857686
Empty-Decrease_wrapped 0 0.7 5 0.922786 0.831287 0.141063 0.241196
Empty-Decrease_wrapped 0 0.8 1 0.975803 0.860750 0.861181 0.860966
Empty-Decrease_wrapped 0 0.8 5 0.914057 0.851981 0.014645 0.028795
Empty-Decrease_wrapped Dist 0.8 1 0.973290 0.834213 0.864848 0.849254
Empty-Decrease_wrapped Dist 0.8 5 0.966367 0.854881 0.738811 0.792619
Empty-Decrease_wrapped Dist 0.9 1 0.918308 0.890028 0.069560 0.129035
Dummy 0 0.0 1 0.975803 0.860750 0.861181 0.860966

Table 4.15: Results of the experiments with Time interval = 15 and target state
= "AlmostEmpty".

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Empty-AlmostEmpty_wrapped Dist 0.5 1 0.976025 0.605085 0.606614 0.605849
Empty-Increase_wrapped 10 0.5 1 0.976025 0.605085 0.606614 0.605849
Empty-Increase_wrapped 10 0.7 1 0.973741 0.688981 0.246986 0.363621
Empty-Increase_wrapped 10 0.7 5 0.972478 0.674786 0.181307 0.285818
Empty-Increase_wrapped Dist 0.5 1 0.976025 0.605085 0.606614 0.605849
Empty-Increase_wrapped Dist 0.7 1 0.973741 0.688981 0.246986 0.363621
Empty-Increase_wrapped Dist 0.7 5 0.971865 0.691071 0.133310 0.223506
Empty-Decrease_wrapped 10 0.5 1 0.975223 0.588313 0.613848 0.600809
Empty-Decrease_wrapped 10 0.7 1 0.973741 0.688981 0.246986 0.363621
Empty-Decrease_wrapped 10 0.7 5 0.972395 0.688152 0.166724 0.268417
Empty-Decrease_wrapped 0 0.5 1 0.976025 0.605085 0.606614 0.605849
Empty-Decrease_wrapped 0 0.7 1 0.973741 0.688981 0.246986 0.363621
Empty-Decrease_wrapped Dist 0.7 1 0.973741 0.688981 0.246986 0.363621
Empty-Decrease_wrapped Dist 0.7 5 0.973050 0.682528 0.210816 0.322134
Dummy 0 0.0 1 0.976025 0.605085 0.606614 0.605849

Table 4.16: Results of the experiments with Time interval = 30 and AC-TH = 1.

Later, since the overall results were low, a grid-search was done for each classifier.
In Tables 4.19, 4.20, and 4.21 all the considered parameters are shown. Each grid
search was done 3 times maximizing 3 different objective metrics: recall, precision,
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Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Empty-AlmostEmpty_wrapped Dist 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Increase_wrapped 10 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Increase_wrapped 10 0.7 5 0.950952 0.763436 0.214312 0.334674
Empty-Increase_wrapped 10 0.8 1 0.942819 0.768473 0.009452 0.018675
Empty-Increase_wrapped Dist 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Increase_wrapped Dist 0.7 5 0.950816 0.762801 0.211222 0.330834
Empty-Decrease_wrapped 10 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Decrease_wrapped 10 0.7 5 0.953456 0.719284 0.313924 0.437086
Empty-Decrease_wrapped 10 0.8 1 0.945442 0.775785 0.073376 0.134071
Empty-Decrease_wrapped 10 0.8 5 0.942446 1.000000 0.000121 0.000242
Empty-Decrease_wrapped 0 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Decrease_wrapped Dist 0.5 1 0.956044 0.595777 0.735155 0.658168
Empty-Decrease_wrapped Dist 0.7 1 0.966982 0.712817 0.714069 0.713443
Empty-Decrease_wrapped Dist 0.8 1 0.945762 0.770278 0.082283 0.148683
Dummy 0 0.0 1 0.966982 0.712817 0.714069 0.713443

Table 4.17: Results of the experiments with Time interval = 30 and AC-TH = 2.

Extraction Type #neighbors Conf Thr Match Thr Accuracy Precision Recall F1
Empty-AlmostEmpty_wrapped 10 0.7 1 0.903835 0.709677 0.006335 0.012557
Empty-AlmostEmpty_wrapped Dist 0.5 1 0.946859 0.678727 0.853441 0.756122
Empty-Increase_wrapped Dist 0.5 1 0.946859 0.678727 0.853441 0.756122
Empty-Decrease_wrapped 10 0.5 1 0.945553 0.671035 0.855168 0.751994
Empty-Decrease_wrapped 10 0.7 1 0.904169 0.837838 0.008926 0.017664
Empty-Decrease_wrapped 0 0.5 1 0.946859 0.678727 0.853441 0.756122
Empty-Decrease_wrapped 0 0.5 5 0.906087 0.755435 0.040023 0.076019
Empty-Decrease_wrapped Dist 0.5 1 0.946859 0.678727 0.853441 0.756122
Dummy 0 0.0 1 0.946859 0.678727 0.853441 0.756122

Table 4.18: Results of the experiments in the time zone 16 - 20.

and f1. These experiments were done twice, considering time intervals of 30 minutes
with 5 and 3 time windows. The best results of each classifier are shown in Tables
4.22 and 4.23. In both cases the highest results in terms of precision and f1 score
are reached by the XGBoost classifier.

4.3.2 Station-non-specific Approach

With this type of approach, the same classifiers and grid-search parameters as
in Section 4.3.1 were considered. In this case, time intervals of 30 minutes, and
3 consecutive time windows were tested for the whole day and the time zones
considered in the experiments for the associative classifier. The best results of each
classifier are shown in Table 4.24. In this case the best results of f1 are achieved by
the XGBoost classifier, whereas Random Forest achieved higher precision. Since the
experiments conducted on each separate time zone did not demonstrate different
results than the one just presented, we omit such results in this chapter.
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Parameter Values
Max Depth 2, 3, 4, 5
Min samples split 2, 3, 4, 5, 6
Criterion gini, entropy
Class weight none, balanced

Table 4.19: Grid-search parameters of the Decision Tree classifier.

Parameter Values
Max Depth 2, 3, 4, 5
N. of estimators 10, 100, 1000
Min samples split 0, 1, 2, 3, 4
Criterion gini, entropy
Class weight none, balanced

Table 4.20: Grid-search parameters of the Random Forest classifier.

4.4 Overall results
Up to this point, the most relevant experiments and result have been presented.
To make a final comparison, we can pick the tests with intervals of 30 minutes and
3 consecutive time windows, that were tested for all the considered models. The
results are summarized in Table 4.25. As we can see, the associative classifier is
not the best performing model if we consider the f1 score, however the difference
from the best one (XGBoost) is below 2%. If we consider the precision instead,
the configurations of the associative classifier considering the "negative" states
significantly outperform the other classifiers (≈ 7% more). We can conclude that
the associative classification is a valid option if we are interested in models that
are extremely reliable when making a prediction.
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Parameter Values
Max depth 2, 3, 4, 5
N. of estimators 10, 100, 1000

Table 4.21: Grid-search parameters of the XGBoost classifier.

Classifier Avg Accuracy Avg Recall Avg Precision Avg F1_score
DecisionTree 0.981 0.768 0.721 0.744
RandomForest 0.961 0.803 0.473 0.595
XGBoost 0.983 0.750 0.764 0.757

Table 4.22: Best classifiers results considering 5 consecutive time windows.

Classifier Avg Accuracy Avg Recall Avg Precision Avg F1_score
DecisionTree 0.981 0.755 0.721 0.737
RandomForest 0.964 0.832 0.494 0.620
XGBoost 0.983 0.758 0.763 0.760

Table 4.23: Best classifiers results considering 3 consecutive time windows.

Classifier Accuracy Recall Precision F1_score
DecisionTree 0.978 0.769 0.868 0.816
RandomForest 0.976 0.731 0.874 0.796
XGBoost 0.978 0.771 0.867 0.816

Table 4.24: Best classifiers results considering 3 consecutive time windows in the
whole day
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Classifier Accuracy Precision Recall F1
Full-AlmostFull_wrapped 0.974 0.793 0.794 0.794
Full-Decrease_wrapped 0.974 0.793 0.794 0.794
Full-Increase_wrapped 0.974 0.793 0.794 0.794
Full-Increase_wrapped_neg 0.978 0.943 0.696 0.801
Full-Decrease_wrapped_neg 0.978 0.944 0.695 0.800
Dummy 0.974 0.793 0.794 0.794
DecisionTree 0.978 0.868 0.769 0.816
RandomForest 0.976 0.874 0.731 0.796
XGBoost 0.978 0.867 0.771 0.816

Table 4.25: Comparison of all the best classifiers tested.
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Chapter 5

Conclusions

5.1 Results
In these chapters we discussed the formulation of the problem, the analysis of the
data, the proposed solution and its results. We analyzed the available dataset, and
built the association classifier based on spatio-temporal contextual information.
The results of the classification show that our associative classifier is not able
to improve the results of the other models tested in terms of f1 score. However,
all the best classifiers tested reach values in range 80% - 81%, and none of them
significantly outperforms the baseline. If we consider the precision, the associative
classifier is able to achieve the best results (94%), 7% higher than the second best
model.
In our context, a classifier with such a high precision score can provide valuable
insights to bike sharing managers, because highly reliable predictions can enable
optimized and targeted balancing operations. For this reason, we can be satisfied
with the results achieved by the associative classifier.

5.2 Future Works
In this work, plenty of experiments were conducted, and many kinds of event gen-
eration were tested. However, the generations considering also the "not increasing"
and "not decreasing" events, that obtained the most promising results, were tested
only in few of the experiments. Specifically, further tests on the most relevant time
zones need to be run considering the two aforementioned events.
Additionally, we plan to extend the proposed methodology in the multi-class clas-
sification context, considering Critical and Almost Critical as two separate cases,
with the goal of obtaining more specific results.
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