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Abstract

During the past decade, phase separation has emerged as a main driver of the self-organizing
processes taking place in eukaryotic cells, whereby membranes and other biological components
acquire specific chemical identities, corresponding to distinct biological functions. Most often,
such processes are �active�, i.e. they involve the action of energy-consuming enzymatic reactions.
The aim of this thesis is to study a minimal model of active domain formation on cell membranes,
combining an analytical approach and numerical computations. We derive a mean-field phase
diagram identifying parameter regions where the membrane system tends to demix by either
a nucleation process or by spinodal decomposition. Numerical simulations confirm the general
structure of the mean-field diagram and allow to discuss some kinetic effects that cannot be
captured in the mean-field approach.
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Introduction

Phase separation is the process in which a homogeneous mixture of a number of molecular species
spontaneously separates (demixes) in two coexisting phases characterized by different concen-
trations of one or more molecular species. During the past decade it has become increasingly
clear that this phenomenon plays an important role in biology, as it participates in processes
whereby, within eukaryotic cells, membranes and other biological components self-organize in
different internal structures [1, 2, 3, 4]. These can emerge spontaneously or by means of specific
driving factors inducing chains of symmetry-breaking events. For example, stem cells generate dif-
ferentiated daughter cells by asymmetric cell division, a central process in the maintenance of living
tissues, endowing them with specific fate determinants. Symmetry breaking takes place also in the
presence of extracellular chemotactic gradients, that cause the cell to develop an advancing anterior
part and a retracting posterior part endowed with different chemical compositions. Typically, these
non equilibrium processes of internal organization require energy to sustain heterogeneity among
the distinct phases, and are therefore termed as �active processes�. The main aspect of phase
separation in biological processes is that it allows to generate specific behaviors with specialized
functionalities, for instance controlling RNA metabolism or DNA damage response, by spatially
segregating proteins and nucleic acids in cells. This ordering of similar molecules in spatially sepa-
rated domains is driven by a combination of attractive and repulsive interactions. Phase separation
may take place abruptly when some control parameter crosses some critical value and a tipping
point is reached. Here, we focus on phase separation processes taking place on cell membranes,
where different types of lipids and membrane-bound molecules undergo transformations induced by
enzymes that are constantly shuttling between the membrane and cytosol. We study in particular
how specific molecular concentrations and reaction rates influence the phase separation process.
It is observed that the separation into two different phases can occur either by nucleation or by
spinodal decomposition. Nucleation takes place when a germ (droplet) of a stable phase is formed
by thermal fluctuations in the �sea� of a metastable phase. Spinodal decomposition occurs when a
homogeneous phase becomes thermodynamically unstable and fluctuations induce its decay into a
stable phase simultaneously in all of the regions of the system. The problem is studied by combining
a simple mean-field model, that can be treated analytically, and a numerical model that allows to
observe kinetic features not captured by the mean-field.
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Mean-field model

1 Model description
Here we describe a simple model for active phase separation on cell membranes, driven by positive
feedback loops induced by the interactions between membrane-localized, laterally diffusing mole-
cules and a finite pool of enzymes that shuttle between the membrane and cytosol. A similar model
was initially introduced in Ref. [5] to describe chemotactic polarization. There, a single positive
feedback loop was considered, and polarization was driven by an external activation field. Here we
study in detail the process of spontaneous phase separation in a more symmetric model containing
two positive feedback loops [6] when the external activation field is switched off.

On the membrane, we will consider the following concentration fields:

A : membrane-localized molecules
B : modification of A
EA : enzyme that converts B!A

EB : enzyme that converts A!B

The EA, EB enzymes shuttle between membrane and cytosol. Binding of EA to the membrane is
favored by A, binding of EB to the membrane is favored by B. These two interactions introduce
two reinforcing feedback loops, favoring the formation of membrane regions enriched in either A
and EA, or B and EB.

In the cytosol , the following concentration fields are considered:

EA
cyto : cytosolic, freely diffusing form of EA

EB
cyto : cytosolic, freely diffusing form of EB

To simplify the model, the following assumptions are made:

¡ diffusion in the cytosol is much faster than lateral diffusion on the membrane: the limit of
infinite cytosolic diffusion is thus considered, and the cytosol is treated as an unstructured
reservoir (the fields EA

cyto and EB
cyto are therefore treated as numbers);

¡ the production and destruction of the membrane-localized molecules A and B are neglected,
and only the interconversion processes A!B and B!A are considered, therefore A+B=
c= const.

The chemical kinetics of the above species can be described in a mean-field (mass-action kinetic)
approach as (see Fig. 1):

@A
@t

= D�A¡ g(A;B;EA; EB) (1)

@B
@t

= D�B+ g(A;B;EA; EB) (2)

g(A;B;EA; EB) = kB
c EBA
K +A

¡ kAc
EAB
K+B

(3)

@EA
@t

= kA
aEA

cytoA¡ kAdEA (4)

@EB
@t

= kB
a EB

cytoB ¡ kBd EB (5)

where Michaelis-Menten terms (for simplicity, with the same Michaelis-Menten constant K) are
adopted to describe the enzymatic kinetics, the reaction term g describes the enzyme-driven inter-
conversion of A and B, and� is the Laplace-Beltrami operator on the curved membrane surface [6].
In what follows, we will mainly analyze model (1�5) as a set of deterministic equations. However,
we will also assume the presence of additive noise terms when discussing nucleation phenomena.
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Figure 1. Minimal model of active domain formation.

If A+B is uniformly distributed at initial time, adding (1) and (2) shows that the following
conservation law holds at all times:

A+B = c = const (6)

The total number of enzymes shuttling between the membrane and the cytosol is conserved:

� hEi+Ecyto = Etot (7)

where �=S /V, S is the membrane surface, V is the volume of the cytosolic reservoir that exchanges
enzymes with S and hE i represents the average value of the membrane-bound molecule E on the
membrane:

hEi = 1
S

Z
E d�

If association/dissociation of EA and EB to/from the membrane is much faster than the typical
dynamics of the A and B fields on the membrane, one may consider the EA and EB fields to be in
approximate equilibrium with A and B:

EA = EA
cyto

KA
d
A (8)

EB = EB
cyto

KB
d
B (9)

where the dissociation constants KAd=kAd/kAa, KB
d=kBd /kBa were used. Moreover, using (7) one may

reexpress:

EA
cyto = EA

tot

1+ � hAi/KAd
(10)

EB
cyto = EB

tot

1+ � hB i/KB
d

(11)

The conservation law (6) allows to rewrite the system dynamics in terms of the single order
parameter

� = B ¡A (12)

obeying the constrained Landau-Ginzburg equation

@�
@t

= D��+ f�;�(�) (13)

where

f�;�(�) = (c2¡ �2) [�h(¡�)¡�h(�)]; with h(�) = 1
2K+ c¡ �

(14)

and

� = kA
c EA

tot

KA
d+(c¡h�i) �/2

; � = kB
c EB

tot

KB
d +(c+ h�i) �/2

(15)
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Observe that � and � are functional integrals of the field configuration �. In particular, � is an
increasing function of h�i and � is a decreasing function of h�i. This reflects the fact that the
shuttling of EA and EB enzymes from the cytosol to the membrane regions occupied, respectively,
by the A and the B molecules, introduces in the system a global negative feedback : the EA enzymes
promote the spread of the A membrane region and the binding of new EA enzymes to it but, at
the same time, EA enzymes are depleted from the cytosol and the propensity of their binding to
A region decreases. The opposite happens with the EB enzymes. We will show in the following
Sections that this global negative feedback favors the formation of stable steady states characterized
by the spatial coexistence of membrane regions occupied by the A phase with regions occupied by
the B phase.

2 Open-loop system
We start the analysis of the problem (13,14) by treating � and � as assigned constants. In this
case, (13) can be rewritten in the variational form

@�

@t
= D��¡V�;�0 (�) = ¡ �F�;�

��
(16)

in terms of the effective energy

F�;�[�] =
Z �

D
2
(r�)2+V�;�(�)

�
d� (17)

where the potential

V�;�(�) = ¡
Z
f�;�(�) d� (18)

can be written explicitly usingZ
c2¡ �2

2K + c� �
d� = ��

2

2
+ (2K + c) �� 4K (K+ c) log(2K+ c� �)+ const (19)

3 Uniform steady states of the open-loop system
Uniform equilibrium solutions of (16) correspond to the roots of the equation f�;�(�) = 0, which
are readily found from (14) to be

�¡ = ¡c; �0 = (2�+1) 1¡ �
1+ �

c; �+ = c (20)

where

� = �/�; � = K /c (21)

The combination of (6,12) implies that acceptable roots � must satisfy the condition

¡c 6 � 6 c (22)

In particular, �0 satisfies (22) if and only if
�

1+�
6 � 6 1+�

�
(23)

Stable roots satisfy V�;�00 =¡f�;�0 > 0. By an elementary study of the sign of f�;� one obtains the
picture summarized in Table 1.

�<
�

1+�
�0>c �¡ stable, �+ unstable Am

�

1+ �
6 �6 1+�

�
¡c6 �06 c �¡, �+ stable, �0 unstable Ab, C, Bb

�>
1+�

�
�0<¡c �¡ unstable, �+ stable Bm

Table 1. Stability of uniform equilibria. The Am and Bm cases correspond to monostable equilibria where,
respectively, the A or the B phase is favored. In the bistable case, the subcases �< 1 (Ab), �=1 (C), and
�> 1 (Bb) can be distinguished.

3 Uniform steady states of the open-loop system 11



The corresponding shapes of f�:�(�) and of the potential V�:�(�) are shown in Fig. 2 and Fig. 3
respectively. The Ab, C, and Bb bistable cases are separately analyzed in the lowest rows of the
two Figures.
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Figure 2. Shapes of the function f�:�(�) for the cases listed in Table 1. Blue: A phase is favored. Red:
B phase is favored. Purple: phase coexistence.
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Figure 3. Shapes of the potential V�:�(�) for the cases listed in Table 1. Blue: A phase is favored. Red:
B phase is favored. Purple: phase coexistence.

In the Ab, C, and Bb cases, two stable equilibria are possible. Either the A phase or the B phase
are favored, depending on the sign of the degree of metastability

12 Mean-field model



�V�;� = V�;�(�+)¡V�;�(�¡) = (�¡ �)
Z
¡c

c

(c2¡ �2)h(�)d� (24)

showing that the three cases correspond to the parametric conditions listed in Table 2.

�< 1 �> � �V�;�> 0 A phase is favored Ab

�=1 �= � �V�;�=0 phase coexistence C
�> 1 �< � �V�;�< 0 B phase is favored Bb

Table 2. Parameter ranges corresponding to each of the bistable cases Ab, C and Bb.

One of the parameters controlling phase separation is the barrier that separates the two poten-
tial wells of V�;�(�). For �= �, this is

b = V�;�(�0)¡V�;�(�¡) = �

�
c2+4K (K + c) log

�
1+ c2

4K2+4Kc

��
(25)

4 Closed-loop system

Let us now study the constraints on generic configurations of � due to the � dependence of �, �.
From (15, 21) we get

� = �
�

= kB
c kB

a kA
dEB

tot

kA
c kA

a kB
d EA

tot
1+ (c¡h�i) �/2KAd

1+ (c+ h�i) �/2KB
d

(26)

Observe that � is a decreasing function of h�i. This is again a manifestation of the global negative
feedback mechanism described at the end of the Sect. 1.

Eq. 26 can be solved to give

h'i = (1+ �A) �1¡ (1+ �B) �
�A �1+ �B �

(27)

where for convenience we introduce the following new parameter combinations and dimensionless
quantities:

�0 =
kB
c EB

tot

kA
c EA

tot ; �1 = KA
d

KB
d �0; 𝒸 = � c; �A = 𝒸

2KAd
; �B = 𝒸

2KB
d
; ' = �/c (28)

It is important to observe that h'i is not free to assume any possible value, but it is constrained
by the �physical� condition

¡1 6 h'i 6 1

which, using (27), translates into

�0/�+ 6 � 6 �0/�¡ (29)

with

�¡ = KB
d

KA
d+𝒸

; �+ = KB
d +𝒸
KA

d (30)

The right boundary corresponds to h'i=¡1 (again consequence of the negative feedback mech-
anism), a homogeneous distribution of uniform A phase, while the left boundary corresponds to
h'i=+1, a homogeneous distribution of uniform B phase.

Fig. 4 summarizes our findings. Regions Am, Ab are separated from Bm, Bb by the coexistence
line C (�=1). The only physically realizable values of � are those in the strip �0/�+6 �6 �0/�¡,
marked with darker colors in the diagram. The equations of the lines delimiting the different regions
are summarized in Table 3.

4 Closed-loop system 13



10 1 100 101
10 1

100

101

102

f f+
am bm

C
Ab Bb

Am Bm

Figure 4. Parameter regions corresponding toA-dominatedmonostable (light blue) and bistable (blue) cases,
or B-dominated monostable (light red) and bistable (red) cases. The only physically realizable values of �
are those in the central strip colored with different shades of purple (see Eq. 29). The diagram was obtained
with KA

d=2, KBd=1 and 𝒸=1.

lines equations
C �=1
am �= �

1+�

bm �= 1+�

�

f¡ �= �0/�+
f+ �= �0/�¡

Table 3. Equations of the curves delimiting the various regions in the diagram of Fig. 4.

Fig. 4 shows that the bistable region is larger for smaller values of � (c � K), i.e. in the
saturation regime of Michaelis-Menten kinetics (see App. A), and smaller for larger values of �
(c�K), i.e. in the linear regime. Therefore, the strength of the effective interaction between the
chemical components of the system, responsible for the process of phase separation, can be assumed
to be proportional to c/K. This is coherent with the idea that the membrane-localized molecules
A, B mediate an effective interaction between the enzyme species EA, EB.

5 Relaxation of the closed-loop system to the steady state

To a given initial configuration of � there corresponds a representative point in the physical strip
�0/�+6 �6 �0/�¡ (see Eq. 29 and Fig. 4). We will now show that the � dynamics described by
the constrained Landau-Ginzburg system (13�15) induces a drift of the representative value �
towards the coexistence line �=1.

Let us first focus on the �< 1 (� <�) part of the diagram, where the A phase is favored (see
Tab. 2). In this part of the diagram, let us consider a representative value �, corresponding to a
generic configuration where the regions occupied by A phase are separated by some interface from

14 Mean-field model



regions occupied by the B phase. Since the A phase is favored, the regions occupied by the A phase
will tend to grow at the expense of the regions occupied by the B phase, so that h�i= hB i¡ hAi
will decrease, and consequently (due to (15)) � will decrease and � will increase. Summarizing:

�< 1: � <�;
@�
@t

< 0; @�
@t

> 0

which together imply

@�

@t
= @

@t

�

�
= 1

�

�
@�

@t
¡ �

�

@�

@t

�
>

1
�

�
@�

@t
¡ @�

@t

�
> 0

and also (using (24))

@
@t
�V�;� < 0

which shows again the effects of the negative feedback [6]: the more the A phase grows, the less
favored its further expansion becomes, since the degree of metastability (24) decreases. Conse-
quently, the growth of the phase slows down as time advances [6].

The opposite situation is verified in the �> 1 part of the diagram:

�> 1: � >�;
@�
@t

> 0; @�
@t

< 0; @�
@t

< 0; @
@t
�V�;�> 0

In both cases the depth of the two potential wells of V (�) tends to be equalized, and the system
tends to the coexistence line �=1, where �= �, �0=0, f�;�(¡�)=¡f�;�(�) and V (¡�)=¡V (�).
At the same time, h�i tends to the equilibrium value (cf. (27))

h�ieq = (1+ �A) �1¡ (1+ �B)
�A �1+ �B

c

and the last stages of the dynamics are well described by the Landau-Ginzburg equation (16) with
the corresponding asymptotic values of �= � and approximate global �mass� conservation

h�i ' h�ieq

In the presence of additive noise, a phase-separated state may originate from a uniform field
configuration � by either a spinodal decomposition (if the representative point of the system is
initially in the part Am or Bm of the diagram) or by nucleation (if the representative point of the
system is initially in the part Ab or Bb of the diagram).

To study the approach to the steady state it is convenient to imagine that the system is prepared
in one of the uniquely defined uniform states corresponding to points of one of the two boundaries
of the physical strip �0/�+6 �6 �0/�¡ (see Eq. 29 and Fig. 4), i.e. ether '=¡1 (right boundary)
or '=+1 (left boundary). Then, different situations are possible, depending on whether the strip
lies to the left or to the right of the coexistence line �=1, or whether the coexistence line �=1 is
contained in the strip itself.

When the strip lies to the left of the coexistence line �=1 (Fig. 5, left column), at the steady
state there will be a uniform A phase, since, even if the system is prepared on the left boundary of
the strip (pure B phase), the negative feedback will drive it towards the right boundary ('=¡1,
pure A phase). The same would be true if the system was prepared in any other uniform or
non-uniform state, corresponding to a representative point contained in the interior of the strip.
Moreover, the transition from an initial uniform B phase to the steady state A phase takes place
either by spinodal decomposition, if the system is initially in the monostable (Fig. 4, Am) region
(Fig. 5, As, As'), or by nucleation, if the representative point is initially in the bistable (Fig. 4, Ab)
region (Fig. 5, An). The opposite happens when the strip lies to the right of the coexistence line
�=1 (Fig. 5, right column), leading to the Bs, Bs', Bn cases of Fig. 5.

When the coexistence line �=1 is instead contained in the interior of the physical strip (Fig. 5,
center column), the steady state will always be characterized by phase coexistence, since the
negative feedback will always drive the system towards the coexistence line �=1. Translating the
geometric condition on the relative position of the strip (see Eq. 29) with respect to the coexistence
line �=1, one finds that phase coexistence is reached at the steady state only if

�¡ 6 �0 6 �+ (31)

5 Relaxation of the closed-loop system to the steady state 15



Interestingly, the width of the bistability region (30) does not depend on �:

�+¡ �¡ = (KB
d +𝒸) (KAd+𝒸)¡KAdKB

d

KA
d (KAd+𝒸)

> 0

The value of h'i in the steady state is given by

h'ieq =

8>>>>>><>>>>>>:
¡1 ; �0 < �¡

(1+ 2KAd/𝒸) �0¡ (1+ 2KB
d /𝒸)

�0+1
; �¡ < �0 < �+

+1 ; �0 > �+

Phase coexistence configurations are characterized by regions of the A phase separated from regions
of the B phase by a phase interface. In the limit of thin interface (small diffusivity) the fraction
of membrane occupied by the B phase is approximately equal to 1

2
(1+ h'ieq).

The transition from an initial uniform B phase to the steady phase coexistence state takes place
either by spinodal decomposition (Fig. 5, Css, Csn) or by nucleation (Fig. 5, Cns, Cnn).

As Css Bs

An Cns Bn

As' Csn Bs'

Cnn

Figure 5. Classification of the paths of relaxation to the steady state. The graphs show the possible relative positions of
the relevant intervals of � values, for fixed �. Vertical dashed lines: �=1. Black intervals: bistability region (see Eq. 23).
Colored intervals: physical region (see Eq. 29). Red: B phase. Blue: A phase. The global negative feedback drives the
system in the direction of the arrows. The A, B, C cases correspond to steady states characterized by a pure A phase,
a pure B phase, or phase coexistence, respectively. Subscripts label different paths of approach to the steady state:
nucleation (n), spinodal decomposition (s) or a combination of the two (s').

The parametric equations for the cases shown in Fig. 5 are listed in Table 4. The corresponding
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regions of parameter space are shown in the phase diagram of Fig. 6.

As �0<
�

1+�
�¡

As'
�

1+ �
�¡< �0<min

�
�¡;

�

1+ �
�+

�
An

�

1+�
�+< �0< �¡

Css
1+�

�
�¡< �0<

�

1+�
�+

Csn �¡< �0<min
�
1+ �

�
�¡;

�

1+�
�+

�
Cns max

�
1+ �

�
�¡;

�

1+�
�+

�
< �0< �+

Cnn max
�
�¡;

�

1+�
�+

�
< �0<min

¡
�+;

1+�

�
�¡

�
Bs �0>

1+�

�
�+

Bs' max
¡
�+;

1+�

�
�¡

�
< �0<

1+ �

�
�+

Bn �+< �0<
1+�

�
�¡

Table 4. Parametric equations for the regions of the phase diagram shown in the following Fig. 6. In the
A, B, C cases the final steady state is characterized, respectively, by a uniform A phase, a uniform B phase,
or phase coexistence. The subscripts denote different modes of approach to the steady state: spinodal
decomposition (s) or nucleation (n). The subscript s' denotes amixed casewhere phase separation is initiated
by a spinodal decomposition, but later on, the negative feedback drives the system in the nucleation region.
Double subscripts are used when a different mode is followed, depending on whether the system is initially
on the left or the right boundary of the physical strip (Eq. 29). See Eq. (30) for the definition of �¡ and �+.

10 1 100 101
0

10 1

100

101

102

As

As0

An

Css Bs

Bn

Bs0

Csn Cns

Cnn
as an c c+

bsbn

Figure 6. Phase diagram of the mean field model obtained with (13�15), obtained with KA
d=2, KBd=1 and

𝒸=1. The equations of the lines delimiting the different regions are summarized in Table 5.
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lines equations
as �0=

�

1+ �
�¡

an �0=
�

1+ �
�+

c¡ �0= �¡
c+ �0= �+

bn �0=
1+ �

�
�¡

bs �0=
1+ �

�
�+

Table 5. Equations of the curves delimiting the various regions in the phase diagram of Fig. 6. See Eq. 30
for the definition of �¡ and �+.

6 Control parameters

The �¡, �+ parameters (Eq. 30) control the extension of the coexistence region, while the � para-
meter controls the mode of initiation of the phase separation process (spinodal decomposition or
nucleation, see Table 4).

The expression

�+
�¡

=
�
1+ 𝒸

KA
d

��
1+ 𝒸

KB
d

�
shows that a large coexistence region is obtained when 𝒸 � KA

d, or 𝒸 � KB
d, or both. Recalling

Eq. 28, and assuming for simplicity KAd�KB
d�Kd, this condition can be rewritten as

c � V
S K

d (32)

where S is the membrane surface and V is the volume of the cytosolic reservoir. Interestingly,
Eq. 32 suggests that in the presence of comparable surface concentrations c of membrane-bound
molecules, phase separation should be favored on larger membrane bodies.

Let us now analyze the role of the � parameter. Fig. 6 shows that nucleation is favored for
values of � below the intersection of the an and bn lines, i.e. for

V
S K

d > K (33)

If both (32) and (33) are verified, phase coexistence states are expected to easily emerge from initial
uniform state by a nucleation process, and c�K, corresponding to saturation regime of Michaelis-
Menten kinetics.
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Numerical model

1 Model description

In the present Section we provide a lattice-gas model implementation of the abstract model defined
in Sect. 1 and explore the space of model parameters by way of numerical simulations. As a model
of cell membrane, we consider a two-dimensional L � L square lattice with periodic boundary
conditions in which each site can be occupied by either a single, free A or B molecule (states A, B),
or a single A or B molecule bound to the corresponding EA or EB enzyme (states A?, B?). As a
model of the cytosol, we consider an unstructured reservoir containing a number nA, nB of free
enzymes of type EA, EB, respectively. Association of EA and EB enzymes to an A or B molecule
on the membrane takes place with rates rAa nA and rBa nB, respectively. Dissociation from an A or B
molecule takes place with rates rAd and rBd , respectively. Moreover, a bound enzyme A? or B? induces
the transition of a neighboring B or A molecule to the opposite A or B state with rate rAc , rBc ,
respectively. Simulations were performed applying Gillespie's algorithm [7] on an L= 100 lattice.

We expect the relation between the parameters of the lattice model and those of the mean-
field theory of Sect. 1 to be non trivial. However, simple dimensional arguments suggest the rough
estimates:

kA
a � rA

a V ; kB
a � rB

a V (1)
kA
d � rA

d; kB
d � rB

d (2)

KA
d � 1

V
rA
d

rA
a ; KB

d � 1
V
rB
d

rB
a ; � � K � KA

d � KB
d (3)

�0 = kB
c EB

tot

kA
c EA

tot � rB
c nB

tot

rA
c nA

tot � �0
0 (4)

�¡ � rB
d /rBa

rA
d/rAa+L2

; �+ � rB
d /rBa +L2

rA
d/rAa

(5)

S c � L2 (6)

2 Role of catalytic activity

In this Section we report the results of simulations performed with varying values of rAc , rBc to
study the dependence of the steady state on catalytic rates. All of the other parameter values were
kept constant and had the same values for the A and B species (see Tables 1�4 below). For these
values, the estimates (1�6) give �� 10¡4, �¡� 10¡2, �+� 102. When rB

c < rA
c (and therefore the

A phase was favored) the sites of the system were initially mostly occupied by B molecules, except
for a 10% randomly chosen sites occupied by A molecules, to allow the nucleation of regions of
the A phase. The opposite choice was adopted when rBc >rA

c . In both cases, free enzymes rapidly
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bound to the membrane, leading to the formation of an A phase where sites were either in an A or
an A? state, and B phase where sites were either in a B or a B? state. A slower evolution of the
A phase and B phase regions characterized the later relaxation towards the statistical stationary
state. In the snapshots of the simulations below, the A, A?, B and B? states are shown in cyan,
blue, pink and red, respectively.

When rB
c � rA

c (see Fig. 1 and Table. 1), an initial mixture of the A and B phase nucleated
larger and larger regions of the A phase, ultimately relaxing to a uniform A phase, in qualitative
agreement with the prediction of the mean-field model.

t=0 t=0.01

t=70000t=5926.7t=955.88

t=10.34t=3.21

t=100.15

Figure 1. Emergence of a uniform A phase from a B-dominated random mixture of the A and B phases.

A B
ra 0.01 0.01
rd 1 1
rc 100000 0.01
ntot 10000 10000

Table 1. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 1
(�00 =10¡7).

By exchanging the parameters for the A and B species one observes a mirror behavior (see
Fig. 2).

t=0 t=0.01 t=3.59 t=12.64

t=6874.17 t=29852.30 t=70000t=991.08

Figure 2. Emergence of a uniform B phase from an A-dominated random mixture of the A and B phases.
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A B
ra 0.01 0.01
rd 1 1
rc 0.01 100000
ntot 10000 10000

Table 2. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 2
(�00 =107).

By decreasing the rB
c / rAc ratio, a phase-separated stationary state characterized by phase

coexistence is seen to emerge from the initial random mixture via the formation and coarsening of
island of the A phase in the sea of the B phase (see Fig. 3 and Table 3).

t=0 t=0.54 t=23.61 t=47.67

t=7510.74 t=39999.83 t=100000t=1387.68

Figure 3. Emergence of a phase coexistence stationary state via the formation and coarsening of island of
the A phase in the sea of the B phase.

A B

ra 0.01 0.01
rd 1 1
rc 10000 100
ntot 10000 10000

Table 3. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 3
(�00 =10¡2).

By exchanging the parameters for the A and B species one observes a mirror behavior (see
Fig. 4).
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t=0 t=0.49 t=25.67 t=49.19

t=7711.56 t=41156.68 t=100000t=1422.33

Figure 4. Emergence of a phase coexistence stationary state via the formation and coarsening of island of
the B phase in the sea of the A phase.

A B
ra 0.01 0.01
rd 1 1
rc 100 10000
ntot 10000 10000

Table 4. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 4
(�00 =102).

3 Slowing down of coarsening in the symmetric case

When rBc �rAc , simulations show an effect not predicted by the mean-field theory. Phase separation
via coarsening of regions of the A and B phases is significantly slowed down (see Fig. 5 and Table 5).
This is likely due to the speed of propagation of fronts of the more favored phase going to zero as
rB
c /rAc ! 1. This effect is reminiscent of the phenomenology of the two-dimensional voter model
where phase ordering with zero surface tension takes place in logarithmic times [8].

t=0 t=0.01 t=8.07 t=19.41

t=2552.45 t=24496 t=50000t=543.39

Figure 5. When rB
c � rAc , phase ordering is slowed down.
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A B
ra 0.01 0.01
rd 1 1
rc 9000 3000
ntot 10000 10000

Table 5. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 5
(�00 =0.33).

By exchanging the parameters for the A and B species one observes a mirror behavior (see
Fig. 6).

t=0 t=0.01 t=4.57 t=15.86

t=2359.08 t=24661.41 t=70000t=538.53

Figure 6. When rB
c � rAc , phase ordering is slowed down.

A B
ra 0.01 0.01
rd 1 1
rc 3000 9000
ntot 10000 10000

Table 6. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 6
(�00 =3).

The slowing down of phase separation is particularly evident when rB
c = rA

c (see Fig. 7 and
Table 7).

t=0 t=0.096 t=0.03

t=20000

t=26.09

t=975.40 t=12654.73t=314.79

Figure 7. When rB
c = rA

c , phase ordering is slowed down.
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A B
ra 0.01 0.01
rd 1 1
rc 10000 10000
ntot 10000 10000

Table 7. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 7
and Fig. 8 (�00 = 1).

After initial transient, a similar picture is observed also starting with an A-dominated (10%
sites occupied by B molecules) initial configuration (see Fig. 8 and Table 7).

t=0 t=0.0098 t=0.03 t=2.18

t=967.20 t=6682.06 t=20000t=14.17

Figure 8. When rB
c = rA

c , phase ordering is slowed down (A-dominated initial state).

In Fig. 9 typical states for large times are shown for the previously investigated parameter
values. The values of �00 grow from left to right, corresponding to large-time states characterized
by a uniform A state (leftmost panel), phase coexistence with majority A or B phase, or a uniform
B state (rightmost panel). The central panels show typical large-time states for approximately
symmetric values of the catalytic rates rBc and rAc , such that phase separation is slowed down.

rAc=10
5

rBc=10
-2

ρ0'=10
-7

rAc=10
4

rBc=10
-1

ρ0'=10
-5

rAc=10
4

rBc=10
2

ρ0'=10
-2

rAc=9⋅103

rBc=3⋅103

ρ0'=0.33

rAc=10
4

rBc=10
4

ρ0'=1

rAc=3⋅103

rBc=9⋅103

ρ0'=3

rAc=10
2

rBc=10
4

ρ0'=10
2

rAc=10
-1

rBc=10
4

ρ0'=10
5

rAc=10
-2

rBc=10
5

ρ0'=10
7

Figure 9. Large-time states corresponding to increasing values of �00 (from left to right).

4 Role of dissociation rates

Here we investigate the role of dissociation rates by performing simulations with the same para-
meter values as in Tables 3, except for the values of rAd = rB

d � rd, which are here varied. One
observes a coarsening scenario similar to the one shown in the previous Figs. 3, 4, but with more
irregular interfaces and faster coarsening when rd is increased (Figs. 10, 11 and corresponding
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Tables 8, 9), and with smoother interfaces and slower coarsening when rd is decreased (Figs. 12,
13 and corresponding Tables 10, 11).

t=0 t=0.11 t=1.38 t=2.46

t=9.66 t=66.79 t=1918.93 t=7000

Figure 10. Higher dissociation rates lead to faster coarsening and more irregular interfaces.

A B
ra 0.01 0.01
rd 10 10
rc 10000 100
ntot 10000 10000

Table 8. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 10
(�00 =10¡2).

t=0 t=0.10 t=1.37 t=2.41

t=9.69 t=453.45 t=5026.70 t=8000

Figure 11. Higher dissociation rates lead to faster coarsening and more irregular interfaces.

A B
ra 0.01 0.01
rd 10 10
rc 100 10000
ntot 10000 10000

Table 9. Rate constants and total number of enzymes of the two species for the simulation shown in Fig. 11
(�00 =102).
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t=0 t=53.70 t=2012.24 t=2.3⋅104

t=7.37⋅105 t=4.41⋅106 t=107t=2.44⋅105

Figure 12. Lower dissociation rates lead to slower coarsening and smoother interfaces.

A B
ra 0.01 0.01
rd 0.01 0.01
rc 10000 100
ntot 10000 10000

Table 10. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 12 (�00 =10¡2).

t=0 t=117.63 t=2078.35 t=2.3⋅104

t=7.38⋅105 t=4.45⋅106 t=107t=2.44⋅105

Figure 13. Lower dissociation rates lead to slower coarsening and smoother interfaces.

A B
ra 0.01 0.01
rd 0.01 0.01
rc 100 10000
ntot 10000 10000

Table 11. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 13 (�00 =102).

We further performed simulations in the completely symmetric case, with the parameter values
taken from Table 5, where however the values of rA

d= rB
d � rd are now varied. We observe that a

significant coarsening effect cannot be recovered by neither increasing (Fig. 14 and Table 12) nor
decreasing rd (Fig. 15 and Table 13).
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t=0 t=0.20 t=1.51

t=5000t=2042.17

t=3.24

t=523.45t=45.12

Figure 14. In the completely symmetric case, higher dissociation rates lead to a highly disordered scenario.

A B
ra 0.01 0.01
rd 10 10
rc 9000 3000
ntot 10000 10000

Table 12. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 14 (�00 =0.33).

t=0 t=0.01 t=0.04 t=0.54

t=293640.93 t=748207.68 t=800000t=77621.31

Figure 15. In the completely symmetric case, coarsening is not recovered by lowering dissociation rates.

A B
ra 0.01 0.01
rd 0.01 0.01
rc 9000 3000
ntot 10000 10000

Table 13. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 15 (�00 =0.33).

5 Role of the total number of enzymes

Here we investigate the role of the total number of enzymes by performing simulations with the
same parameter values as in Table. 1, except for the values of nAtot and nBtot, which are here varied.
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By increasing nAtot or nBtot (Figs. 16�19 and corresponding Tables 14�17) we observe that the
phase coexistence region shrinks (compare e.g. Fig. 3 and Table 3 with Fig. 18 and Table 16).
Moreover, high values of nAtot and/or nBtot favor the relaxation to absorbing states (Figs. 16�19).

t=0 t=8.56⋅10-7 t=8.68⋅10-5 t=1.49⋅10-4

t=23.95 t=448.02 t=3000t=2.17

Figure 16. A high total number of enzymes favors the relaxation to absorbing states.

A B
ra 0.01 0.01
rd 1 1
rc 10000 10000
ntot 1011 10000

Table 14. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 16 (�00 =10¡7).

t=0 t=9.39⋅10-7 t=8.51⋅10-5 t=1.4⋅10-4

t=23.92 t=448.11 t=3000t=2.16

Figure 17. A high total number of enzymes favors the relaxation to absorbing states.

A B
ra 0.01 0.01
rd 1 1
rc 10000 10000
ntot 10000 1011

Table 15. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 17 (�00 =107).
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t=0 t=1.32⋅10-5 t=6.07⋅10-5 t=1.19⋅10-4

t=73.12 t=498.26 t=2500t=2.9⋅10-4

Figure 18. Increasing the total number of the enzymes leads to the disappearance of the phase-separated
stationary state (compare with Fig. 3).

A B
ra 0.01 0.01
rd 1 1
rc 10000 10000
ntot 106 10000

Table 16. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 18 (�00 =10¡2).

t=0 t=1.3⋅10-5 t=6.15⋅10-5 t=1.18⋅10-4

t=72.91 t=498.03 t=3000t=2.92⋅10-4

Figure 19. Increasing the total number of the enzymes leads to the disappearance of the phase-separated
stationary state (compare with Fig. 4).

A B
ra 0.01 0.01
rd 1 1
rc 10000 10000
ntot 10000 106

Table 17. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 19 (�00 =102).

Decreasing the total number of enzymes below the number of lattice sites (Figs. 20�23 and
corresponding Tables 18�21), we observed more irregular interfaces and faster coarsening, similarly
to what previously seen by increasing the dissociation rate (see Figs. 10, 11 and corresponding
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Tables 8, 9). Actually, by either decreasing the total number of enzymes, or by increasing their
dissociation rate, one similarly gets less membrane-bound enzymes (of the order of 90% of the sites
in the simulations of Figs. 20�23), with the apparent effect of destabilizing the phase-separated
regions.

t=0

t=2500t=925.34t=132.34

t=1.7t=0.09t=0.01

t=18.2

Figure 20. Lowering the total number of enzymes leads to faster coarsening and more irregular interfaces.

A B
ra 0.01 0.01
rd 1 1
rc 10000 100
ntot 4750 4750

Table 18. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 20 (�00 =10¡2).

t=0 t=0.01 t=0.09 t=1.7

t=132.34 t=875.12 t=2500t=18.2

Figure 21. Lowering the total number of enzymes leads to faster coarsening and more irregular interfaces.

A B
ra 0.01 0.01
rd 1 1
rc 100 10000
ntot 4750 4750

Table 19. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 21 (�00 =102).
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t=2500t=486.75t=33.46

t=1.42t=0 t=0.86t=0.05

t=4.57

Figure 22. Further lowering the total number of enzymes leads to even faster coarsening and more irregular
interfaces.

A B
ra 0.01 0.01
rd 1 1
rc 10000 100
ntot 4156 4156

Table 20. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 22 (�00 =10¡2).

t=0

t=2500

t=0.06 t=0.78 t=1.47

t=35.33 t=484.40t=4.41

Figure 23. Further lowering the total number of enzymes leads to even faster coarsening and more irregular
interfaces.

A B
ra 0.01 0.01
rd 1 1
rc 100 10000
ntot 4156 4156

Table 21. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 23 (�00 =102).

With the present set of parameter values, when the fraction of membrane-bound enzymes
becomes less than approximately 75% of the sites (Figs. 24, 25 and corresponding Tables 22,
23), the coarsening process is impaired and highly disordered configurations take the place of the
previously observed ordered, phase-separated states.
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t=0 t=0.11 t=1.85 t=4.12

t=32.43 t=978.23 t=2874.29 t=5000

Figure 24. With the present set of parameters, when the fraction of membrane-bound enzymes drops below
75%, the phase ordering process is significantly impaired.

A B

ra 0.01 0.01
rd 1 1
rc 10000 100
ntot 3562 3562

Table 22. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 24 (�00 =10¡2).

t=0

t=31.15 t=982.31

t=0.12 t=1.24 t=3.11

t=5000t=2845.67

Figure 25. With the present set of parameters, when the fraction of membrane-bound enzymes drops below
75%, the phase ordering process is significantly impaired.

A B
ra 0.01 0.01
rd 1 1
rc 100 10000
ntot 3562 3562

Table 23. Rate constants and total number of enzymes of the two species for the simulation shown in
Fig. 25 (�00 =102).
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Conclusions

In this thesis, we studied a simplified model of active phase separation on cell membranes based
on the competing enzymatic activity of two molecular species by both a mean-field approach and
numerical simulations. We derived a mean-field phase diagram identifying parameter regions where
the membrane system tends to demix by either a nucleation process or by spinodal decomposition.
This analytical approach led to an interesting prediction: in the presence of comparable surface
concentrations of membrane-bound molecules, phase separation is expected to be favored on larger
membrane bodies. Moreover, we found that, in the framework of the mean-field model, a necessary
condition for the appearance of phase-separated states via a nucleation process is that enzymatic
action takes place in the saturation regime of Michaelis-Menten kinetics. Numerical simulations
confirmed the qualitative structure of the mean-field diagram and highlighted an interesting kinetic
effect that the mean-field approach could not capture: in the symmetric case, when the kinetic
rates of the two molecular species became approximately equal, the phase separation process
was impaired and the system did not demix. We also observed that lowering the number of
membrane-bound enzymes led to rougher interfaces and faster coarsening, and to the almost
complete disappearance of coarsening below some threshold. It would be quite interesting to further
investigate these fluctuation-induced phenomena by going beyond the mean-field approach.
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Appendix A

We provide here for convenience the derivation of the Michaelis-Menten expression for enzymatic
kinetics. One assumes that an enzyme E forms a transient bound state ES with a �substrate� S,
which, by the enzymatic action of E, can be transformed into the product P :

[E] + [S] �
ka

kd

[ES] !k
c

[E] + [P ] (A.1)

where the square brackets denote concentrations of the molecular factors and ka, kd and kc are
kinetic constants. The kinetic equations for the system of reactions (A.1) are

@[ES]
@t

= ka[E] [S]¡ kd[ES]¡ kc[ES] (A.2)

@[P ]
@t

= kc[ES] (A.3)

Assuming now that:

¡ the reactions are in an approximately stationary state, so that:

[ES] = ka [E] [S]/(kc+ kd)
[ES] = [E] [S]/K (A.4)

where

K = kc+ kd

ka

is the Michaelis-Menten constant;

¡ the number of enzymes E is much smaller than that of the substrates S, so that:

[S] = [Stot]¡ [ES] ' [Stot] (A.5)
[E] = [Etot]¡ [ES] (A.6)

from (A.4) we get

[ES] = [Etot] [Stot]
K+ [Stot]

and also
@[P ]
@t

= kc [Etot]
[Stot]

K+ [Stot]

which is the Michaelis-Menten equation for the speed of the catalytic reaction. When [Stot] tends
to infinity we get

vmax= kc [Etot]

which is the maximum velocity of the catalytic reaction in the saturation regime.
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