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Abstract

Proteins are at the base of every biological function within the cell, ranging

through a variety of transport, signaling and enzymatic tasks. Their func-

tionalities heavily rely on their three-dimensional structure which is extremely

difficult, time consuming and expensive to determine. In this thesis we dis-

cuss Direct Coupling Analysis (DCA), the state-of-the-art statistical physics

model used to learn structural information about co-evolving proteins based on

their amino-acid sequence. Phylogenetically related homologous sequences can

be considered as belonging to a unique protein family with specific structural

properties defining their functionality. For our purposes such sequences, aligned

and collected in a data structure called Multiple Sequence Alignment (MSA),

can be thought of as samples drawn from a probability distribution encoding

the fundamental structural traits of the protein family they belong to. The

form of the distribution is obtained by applying a Maximum Entropy Principle

imposing as empirical constraints the single and pairwise frequency counts of

the amino-acids in the MSA. The resulting probability distribution is a Potts

model whose parameters, to be inferred, represent the direct-interaction tensor

for any two given residues and the local biases for each position in the sequence.

More precisely, DCA represents an inverse Potts problem aimed at inferring the

set of parameters which better describes the direct residue-residue interactions

for a specific protein family. Among the possible methods that can be used

to solve the inference problem, we consider the state-of-the-art architecture for

contact-prediction, PlmDCA, a maximum likelihood estimate of the parameters
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by means of a gradient-ascent of a pseudo-loglikelihood function depending on

the specific MSA. In particular, the purpose of this thesis is to develop a possible

improvement of PlmDCA inspired by the Attention Mechanism, a deep learning

technique developed in the context of Natural Language Processing. Attentions

is gaining popularity in the computational biology community after the recent

exploit of AlphaFold 2 by DeepMind which used it in its deep learning archi-

tecture for protein structure prediction at the 2020 CASP competition. In this

new model, the interaction tensor of the Potts model is written as a non-linear

low-rank decomposition whose aim is to share amino-acid features, effectively

reproducing the fact that different positions may be in contact due to similar

chemical interactions. The validity of the Attention-Based PlmDCA is tested

against the standard PlmDCA architecture using three MSA whose structural

data are fully available through the Pfam database.
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Chapter 1

Introduction

This introductory chapter is aimed at presenting the fundamental biological

aspects at the base of the problem of protein folding and the techniques that have

been developed in an attempt to solve it. Furthermore, we discuss the connection

between the Protein Folding Problem and the Protein Design Problem, along

with the scientific and industrial relevance of the two. Finally, we give an

overview of the recent developments in statistical inference models for protein

analysis, which are at very the core of this thesis and will be discussed in more

details in the following chapters.

1.1 The Protein Folding Problem

The problem of protein folding is among the hardest and most challenging is-

sues in modern biological chemistry, biophysics and statistical learning. Since

the first theoretical studies by Linus Pauling [1] and the development of X-ray

crystallography, the question of what determines the three-dimensional confor-

mation of a protein eluded researchers for almost 70 years. In order to ade-

quately understand the scale of the problem and the implications of solving it,

it is necessary to first describe the chemical constituents of proteins, along with

the interactions that play the fundamental role in their composition.
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Proteins are a broad class of biological macromolecules involved in virtually

every activity within living cells [2]. Out of their many tasks, proteins act as

enzymes for metabolic reactions, DNA replication, transcription and transla-

tion. They constitute the dynamical scaffolding of the cell in the form of the

cytoskeleton, an arrangement of protein filaments capable of extending or con-

tracting depending on the cell’s needs. They even serve as molecular motors,

converting energy into motion or mechanical work that can be used to move

cargo inside the cell or to propel micro-organisms through viscous fluids by

means of flagella [3].

From a biochemical point of view, proteins are polymers composed of sub-

units called amino-acids. An amino-acid is a compound formed of an amino

and a carboxyl functional group, as well as a side chain residue that uniquely

identifies a specific amino-acid. Out of the hundreds possible amino-acids oc-

curring in nature, in a biological genome only 20 of them are codified and used

as building blocks for proteins. Amino-acids form chains by means of conden-

sation reactions producing peptide bonds. Given two amino-acids, a peptide

bond is a covalent linkage between the carbon of the carboxyl group of the one

amino-acid and the nitrogen in the amino group of the other amino-acid. The

rotational degrees of freedom of the resulting dipeptide are the dihedral angles

Φ and Ψ which characterise its spatial conformation [4].

In particular, proteins are biological polypeptides constituted of amino-acids

synthesised inside the cell. According to the Central Dogma of molecular biol-

ogy, proteins are the result of a two-part process: transcription and translation.

At the level of the nucleus in eukaryotes and of the cytoplasm in prokaryotes,

the genomic information stored inside DNA double strands is transcribed into

mRNA filaments . The actual protein synthesis is performed within ribosomes,

where the mRNA information is translated into a sequence of amino-acids. This

sequence constitutes the primary structure, i.e. the most fundamental bit of in-

formation to describe the protein. However, as soon as the amino-acids emerge

from the ribosome, the sequence starts folding at first into local complexes

defining a secondary structure and eventually into a global three-dimensional
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configuration, the native state or tertiary structure. Although there might be

some environmental influences, the native state strongly characterises the bio-

chemical functionality of the protein in a specific organism, so its knowledge can

be highly valuable for medical and industrial purposes. However, unfortunately

structure analysis is extremely expensive and time consuming compared to mod-

ern protein sequencing methods, i.e. techniques used to unveil the amino-acid

sequence underlying a specific protein. As a result of this, the quantity of struc-

tural data is largely outnumbered by the amount of sequenced proteins and the

only way to put to concrete use this information would require a full knowledge

of the folding mechanism. Indeed, if this were understood, primary and tertiary

structures would be virtually equivalent with each other.

1.1.1 Protein Folding Models

From a thermodynamics point of view, the native state of a protein represents

a stable state or global minimum in the energy landscape associated to the

amino-acid conformation space. How this state is reached constitutes the actual

question of the problem. In order to be in the folded state each amino-acid

must minimise the electrostatic interactions with any other amino-acid. This

corresponds to finding the optimal conformation of the dihedral angles (Φ,Ψ)

for each peptide bond. Since each of these has a varying number of stable

configurations, the number of possible structures a polypeptide can fold into

grows exponentially with the length of the backbone of the chain. In 1969,

Cyrus Levinthal [5] pointed out that if a polypeptide had to randomly sample

through all possible configurations, then reaching the native state would take

it a time longer than the age of the universe, assuming a sampling rate of the

order of nanoseconds or picoseconds. Undoubtedly, nature does not work this

way and a protein folds into its native state in a time which is on average of

the order of milliseconds, following pathways and short-cuts which are still not

entirely understood. This is the main challenge behind the problem of protein

folding: it is theoretically and computationally extremely hard to understand
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and predict how a given amino-acid sequence will fold into its native state.

From a pure theoretical point of view, the standard way to find the structure

of a molecule would be to write down its Hamiltonian and apply Schrodinger’s

equation in order to find the ground state, which would correspond to the na-

tive state of the protein. This method guarantees the most accurate results, as

demonstrated in the field of Quantum Chemistry. However, for macromolecules

the complexity of the interactions at play would make it impossible to diago-

nalise the system’s Hamiltonian, making any attempt essentially vain.

Since a quantum mechanics approach is practically not feasible, the physics

community focused its efforts in developing effective descriptions aimed at un-

derstanding the thermodynamics of the folding process and statistical inference

methods to predict structural properties starting from amino-acid sequences.

During the last 70 years, biophysicists presented different models which treated

the folding process as a phase transition between an unfolded and a native

state. An example of these is the 2-state model, which correctly predicted the

phenomenon of cold unfolding. Other examples may include the diffusion and

2-state kinetics models, which determined the temperature dependence of the

escape rate from the unfolded to the native state and their relaxation dynamics

[6].

Even if these models give some insights about the nature of the folding

transition, they do not allow us to understand the actual mechanism that a

protein spontaneously follows to reach its native state. Therefore, the ability

to predict structural information about an amino-acid sequence and generate

new sequences with specifically selected features still eludes us. However, the

recent development in statistical and machine learning techniques, combined

with the ever increasing amount of sequenced data available to train the mod-

els, constituted a huge leap forward in protein structure prediction. In 2020

the Critical Assessment of Protein Structure Prediction (CASP), a worldwide

biennial community experiment to determine the state of the art in modeling

protein structure, reached an astonishing result with Google’s architecture Al-

phaFold2 [7] which scored a prediction accuracy measure higher than 90%. Up
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to this day, this constitutes the best result in determining the structure of a pro-

tein given its amino-acid sequence and effectively solves the prediction problem.

Nonetheless, any deep learning architecture and in particular the one involved

in AlphaFold2 poses a problem of interpretability: a human observer cannot

consistently predict the model’s result or simply understand the reasons behind

the prediction. In other words, even if AlphaFold2 does solve the predictive

aspect of the Protein Folding Problem, it does not convey any information on

the actual folding mechanism. In this sense, the problem is still wide open.

1.2 The Protein Design Problem

Complementary to the problem of protein folding which focuses on understand-

ing the mechanism that produces the native state of an amino-acid sequence,

the Protein Design Problem aims at developing a systematic method to syn-

thesise artificial amino-acid sequences which spontaneously and accurately fold

into a given target three-dimensional structure. As a consequence, this is often

referred to as the Inverse Folding Problem and its relevance is deeply rooted in

the fact that the biological functionality of a protein can be engineered by acting

directly on its spatial conformation. Therefore, being able to design amino-acid

sequences capable of folding into desired structures would allow researchers to

create proteins with specifically selected functionalities useful in a plethora of

fields ranging from medical to environmental or industrial purposes [8], [9].

Even though the Protein Design Problem could be tackled using deep learn-

ing in an analogous way to AlphaFold2, the available amount of data paves the

way to alternative inference methods based on statistical physics models. These

do not bring about the problem of interpretability due to their reduced architec-

tural complexity. The general idea behind statistical physics models for protein

structure analysis relies in the assumption that there exists a set of potential

amino-acid sequence which fold into specific structures related to particular bi-

ological functions. Then, the actual observed proteins can be thought of as

samples drawn from this set according to some probability distribution that
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captures the characteristics of those specific structures. The goal of statistical

physics is to model such probability distributions so that to learn from sequenced

data the largest amount of information relative to the hidden, artificial protein

space.

In the following chapters we describe in details the general methods of sta-

tistical physics modelling and the current state-of-the-art techniques, Direct

Coupling Analysis, used to extrapolate structural information starting from

evolutionary-related amino-acid sequences. Then, we explore the attention

mechanism, a recent machine learning development which had a primary role in

AlphaFold2 and that is gaining more and more popularity in the protein com-

munity, as well as in the natural language processing community where it was

actually conceived. Finally, we present a possible development of DCA inspired

by the attention mechanism.
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Chapter 2

Statistical Inference

In this chapter we set the main statistical framework starting from the evo-

lutionary evidence that make possible this particular modellisation. Then, we

develop the mathematical treatment leading to the definition of the Potts model.

Finally, we explore possible solutions to the Inverse Potts Problem and the tech-

niques used to extract structural information from the model itself.

2.1 Co-evolution and genetic compensation

The reasons behind the recent uprise of statistical physics models in the field of

protein analysis are to be sought in two main factors. From a purely technical

point of view, the last decade has seen significant improvements in protein se-

quencing methods, resulting in a vast increment in the amount of available data

suitable to deep statistical analysis. Moreover, from a biological point of view,

researchers were able to recognise the natural tendency of proteins to conserve

their structural conformation throughout the course of evolution. During long

periods of time, random mutations in the genetic code of individuals may lead to

the synthesis of dysfunctional proteins in which one or more amino-acids differ

from the original sequence. This phenomenon could occasionally produce bene-

ficial alteration of the phenotype, but most likely it is the cause of unfavourable,

14



deleterious diseases. When this is the case, on average natural selection prevents

the mutation from being passed on to future generations by implicitly apply-

ing the principle of the survival of the fittest. Therefore, only those mutations

which preserve the biological functionality of the mutated protein are likely to

be preserved. The spatial conformation, on which the functionality depends,

can be conserved whenever the presence of a new amino-acid in the chain is

counterbalanced by another mutated amino-acid such that their mutual inter-

action mimics the one of the original pair. The positions of such amino-acids

in the sequence are said to have co-evolved, producing a new protein which is

phylogenetically related to the original one. Phylogenetically or evolutionary re-

lated proteins constitute a protein family, characterised by a certain biological

functionality which is expressed across different species [10].

The ability to collect and categorise amino-acid sequences into different pro-

tein families can be turned into a very powerful statistical tool as it converts the

myriads of sequenced proteins into a finite clustering system which can be used

to selectively learn specific functionalities originated from repeated structures

within the family. Indeed, this is the road we will take.

2.2 Multiple Sequence Alignments

Phylogenetically related sequences belonging to a protein family can be collected

into data structures called Multiple Sequence Alignments (MSAs), constructed

in such a way that homologous positions in the amino-acid chains are aligned in

the MSA. Since the length of the various sequences may vary across the family

and their mutual similarity can be limited, the task of constructing a Multiple

Sequence Alignment can be computationally demanding. Before the final result

is reached, sequences may be altered by inserting or deleting specific positions

or adding gaps in order to produce a more meaningful alignment. Among the

various techniques employed to this end, a common solution is the use of Hid-

den Markov Models [11] which determine the most likely MSA by assigning a

probability to all possible combinations of gaps, matches and mismatches. Once
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it is determined, a MSA identifies a protein family and can be used to produce

a summary statistics on which a model can infer relevant patterns. In particu-

lar, under the assumption that the MSA is a sample from a hidden probability

distribution, the goal of inverse statistical physics is that of inferring structural

information of the protein family by learning the most compatible distribution

with the summary statistics.

Mathematically, a MSA can be modelled as a matrix A = (Aa
i ) with i =

1, 2, . . . , N and a = 1, 2, . . . ,M , where N is the length of each sequence, while

M is the depth of the alignment, i.e. the number of sequences stored in it. Given

the ath sequence, element Aa
i represents the specific amino-acid at position i and

it is encoded as an integer number between 1 and 21, representing the alphabet

of cardinality q = 21 containing the 20 amino-acids and the gap sign "−" used

during the alignment procedure to represent insertions and deletions.

R A N CN A N G A E − −
A H A M A NC R H N − −
N H E N E C E G A H A R
− HN G C A R − R −
T T E M S C G R P A A −

CONSERVED RESIDUE

CO-EVOLVING RESIDUES

EVOLUTION

N G

Figure 2.1: Natural selection constraints on the structure and biological functional-

ity of proteins impose different levels of conservation along the evolutionary tree of a

protein family. Constraints on specific site lead amino-acid conservation, while con-

straints on specific contacts lead to amino-acid co-evolution

Considering the average depth of actual MSAs, the most basic and yet in-
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formative statistics we can extract out of them are the single and pair-wise

frequency counts of the amino-acids in the alignments:

fi(A) =
1

M

M∑
a=1

δA,Aa
i
,

fi,j(A,B) =
1

M

M∑
a=1

δA,Aa
i
δB,Aa

j
.

(2.1)

From a biological point of view, the phylogenetic character of the MSA brings

about a certain degree of homology in the sequence pool which can be inter-

preted as a probabilistic bias towards a specific set of sequences. This may

lead to false correlations and under-representation of biologically meaningful

but under-sampled sequences. Because of this, empirical frequency counts have

to be corrected by introducing a weighting factor for each sequence, in order to

account for the fact that they are not independently drawn from a probability

distribution. For a given sequence Aa, its weight can be computed as the inverse

of the number of sequences with Hamming distance dH(Aa,Ab) smaller than

zN , where z ∈ {0, 1} is a similarity threshold which usually is taken around 0.2-

0.3. The sum of all these weights acts as the effective sequence number Meff

of the MSA:

ma =
∣∣∣{b|1 ≤ b ≤M,dH(Aa,Ab) ≤ xN

}∣∣∣,
Meff =

M∑
a=1

1

ma
.

Therefore, the frequency counts can be re-written as:

fi(A) =
1

Meff

M∑
a=1

1

ma
δA,Aa

i
,

fi,j(A,B) =
1

Meff

M∑
a=1

1

ma
δA,Aa

i
δB,Aa

j
.

(2.2)

Regardless of the definition of the frequency counts, it is possible to evaluate

the correlations between amino-acid position occupancy introducing the mutual
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information

MIij =
∑
A,B

fi,j(A,B) log
fi,j(A,B)

fi(A)fj(B)
.

However, this measure cannot be used as a proxy for residue interactions in the

three-dimensional structure of the protein. This is due to the fact that pair-

wise frequency counts are not representative of the direct interactions between

two sites [12]. Indeed, even if residue contacts give rise to high correlations in

position occupancy, this can be affected by indirect intermediate interactions as

well. In order to disentangle these direct and indirect correlations, it is necessary

to develop a model which explicitly only accounts for two-bodies interactions.

2.3 Principle of Maximum Entropy

Since the fundamental idea behind statistical physics approaches to protein anal-

ysis is that the observed sequences are samples drawn from a hidden probability

distribution, we are interested in finding the optimal distribution consistent with

the observables represented by the summary statistics extracted from the MSA.

In general, when presented with some observations of a given stochastic pro-

cess, finding the most compatible probability distribution with those data is a

classical problem in statistical inference. In particular, the desirable distribution

is the one which better "explains" the observations by making the least amount

of assumptions. In mathematical terms, this is equivalent to finding the least

constrained or flattest distribution consistent with the given empirical observa-

tions. Given a discrete random variable x ∈ X and some partial observation f̃ ,

the Maximum Entropy Principle (MEP) states that the least constrained prob-

ability distribution compatible with the observation is the one which maximises

the Shannon entropy

S[P ] = −
∑
x∈X

P (x) logP (x), (2.3)
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under the constraints ∑
x∈X

f(x)P (x) = f̃ ,

∑
x∈X

P (x) = 1.
(2.4)

This is a classical problem in information theory and can be straightforwardly

thought of as a constrained functional maximisation problem [13]. The standard

way to solve it is by means of Lagrange multipliers. In particular the functional

to be maximised is written in the form

L[P ] = −
∑
y∈X

P (y) logP (y)− λ
(
f̃ −

∑
y∈X

f(y)P (y)
)
− µ

(
1−

∑
y∈X

P (y)
)
, (2.5)

where λ and µ are the multipliers. The optimal distribution is computed by

imposing the functional derivative equal to zero as in

δL
δP (x)

= − logP (x) + λf(x) + const = 0,

which implies a distribution of the form

P (x) ∝ eλf(x) =
1

Z
eλf(x),

Z =
∑
x∈X

eλf(x)
(2.6)

In the statistical physics jargon, the normalisation constant Z has the role of

the partition function of the described system.

2.4 Potts Model and Direct Coupling Analysis

Given the single site and pair frequency counts define in equation 2.2, applying

the MEP to infer the probability density P (A) = P (A1, . . . , AN ) defined over

the space of protein sequences, we get:

P (A) =
1

Z
exp

{∑
i<j

Jij(Ai, Aj) +

N∑
i=1

hi(Ai)
}
, (2.7)

where {Jij(Ai, Aj)} and {hi(Ai)} act as the Lagrange multipliers used to impose

respectively the constraints on the single and pair-wise frequency counts. In a
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statistical physics context, this is the probability distribution of a paradigmatic

model called Potts model, whose Hamiltonian reads

H = −
∑
i<j

Jij(Ai, Aj)−
N∑
i=1

hi(Ai) (2.8)

The Potts model is a generalisation of the Ising model for interacting degrees

of freedom whose states, often referred to as colours, are discrete values taken

from a finite palette of q elements. In general, the degrees of freedom can be

collocated at the vertices of a graph G, specific of the system which is being

described. In the context of modelling a protein family, the corresponding graph

is fully-connected and the colours are to be intended as the 21 possible amino-

acids with which sequences can be constructed. For what concerns the coupling

tensor J and the field h, their biological interpretation is that {hi(Ai)} represent

the local amino-acid biases, while {Jij(Ai, Aj)} are the direct couplings between

amino-acids Ai and Aj , respectively at position i and j.

Once the form of the distribution has been established, in order to obtain

actual information about the interactions within the protein family, the param-

eters of the model have to be inferred from the observables, effectively solv-

ing the Inverse Potts Problem. In statistical physics, solving the Potts model

amounts to computing the partition function of the system which is then used

to determine its properties. The inverse problem corresponds to finding the

optimal parameters which fit the model and return an accurate description of

the system. The solutions of the Inverse Potts Problem is at the core of all

statistical physics techniques which go by the name of Direct Coupling Analysis

(DCA) [14]. These techniques may present different approaches to the solu-

tion of the inference problem, either analytical or computational ones. In the

following, we discuss the independent-site and mean-field approximation which

can be thought of as approximated analytical methods, while next chapter is

devoted to a purely computational method based on the principle of maximum

likelihood.
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2.4.1 Gauge Invariance

In order to solve the inverse problem, it is necessary to determine
(
N
2

)
q2 +Nq

parameters corresponding to {Jij(Ai, Aj)} and {hi(Ai)}. However, the consis-

tency conditions

Pi(Ai) =
∑
A\Ai

P (A) = fi(Ai),

Pi,j(Ai, Aj) =
∑

A\{Ai,Aj}

P (A) = fi,j(Ai, Aj),
(2.9)

only account for
(
N
2

)
(q− 1)2 +N(q− 1) independent equations. This has to do

with the fact that both single and pair-wise empirical frequency counts must

follow the normalisation and marginalisation conditions

1 =

q∑
A=1

fi(A), (2.10)

fi(A) =

q∑
B=1

fij(A,B) (2.11)

for all i = 1, . . . , N . This implies a redundancy in the set of parameters which

gives rise to a gauge invariance: the probability distribution P (A) does not

change under the transformationJ̃ij(A,B) = Jij(A,B) +Kij(A) +Kji(B)

h̃i(A) = hi(A) + gi −
∑

j ̸=i(Kij(A) +Kji(A))

, (2.12)

where {Kij(A)} and gi are arbitrary quantities. In the following we shall use

the lattice gas gauge in which

Ji,j(A, q) = Ji,j(q, A) = hi(q) = 0

for all i, j = 1, . . . , N and A = 1, . . . , q. This choice, which does not influence

the following results, denotes the case where couplings and biases are measured

with respect to the gap state q.

21



2.5 Solutions to the Inverse Potts Problem

Once the gauge is fixed, a naive solution to the inference problem would be that

of directly computing the single site and pair marginal distributions Pi(A) and

Pij(A,B) with the goal of using them to single out the parameters {Jij(Ai, Aj)}

and {hi(Ai)} in terms of the empirical frequencies fi(Ai) and fi,j(Ai, Aj). How-

ever, computing the marginals would require tracing out all other variable in a

computationally unfeasible procedure which would take an exponential time of

order O(qN ).

A more promising technique to solve the problem is based on the fact that

the partition function contains all the information we may need about marginals.

Indeed, from statistical physics we know the relationships:

Pi(A) = −∂ logZ

∂hi(A)
,

Cij(A,B) = Pi,j(A,B)− Pi(A)Pj(B) = − ∂2 logZ

∂hi(A)∂hj(B)
,

(2.13)

where Cij is the connected correlation function. These results would be ex-

tremely useful if there were a way to compute the partition function, which is

another computational problem that can only be solved in exponential time.

Approximate solutions make this feasible for small couplings. In particular,

introducing the modified model

H(α) = −α
∑
i<j

Jij(Ai, Aj)−
N∑
i=1

hi(Ai),

it is possible to compute the corresponding Gibbs potential, defined as the

Legendre transform of the free energy F = − logZ:

G(α) = − logZ(α) +

N∑
i=1

q−1∑
X=1

hi(X)Pi(X). (2.14)

This is useful in that, due to the functional form of the Legendre transform, for

any given value of α biases and correlations can be computed as

hi(A) =
∂G(α)
∂Pi(A)

, (2.15)

(C−1)ij(A,B) =
∂hi(A)

∂Pj(B)
=

∂2G(α)
∂Pi(A)∂Pj(B)

. (2.16)
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These computations can be performed by means of a small-coupling expansion

[15] around the independent-site condition, i.e. a Taylor expansion around α = 0

G(α) = G(0) + ∂G(α)
∂α

∣∣∣
α=0

α+O(α2) (2.17)

2.5.1 Independent-site approximation

Sites are independent when there is no interaction between the degrees of free-

dom of the system. In our case, this can be obtained setting α = 0. In this

particular situation the Gibbs potential is equivalent to the opposite of the

entropy. Indeed,

G(α = 0) = ⟨E⟩(0)− S(0) +

N∑
i=1

q∑
B=1

hi(B)Pi(B) (2.18)

= −
N∑
i=1

q∑
A=i

hi(B)Pi(B)− S(0) +

N∑
i=1

q∑
B=1

hi(B)Pi(B) = −S(α = 0)

Writing everything as

G(α = 0) =

N∑
i=1

q−1∑
A=1

Pi(A) logPi(A) +

N∑
i=1

[
1−

q−1∑
A=1

Pi(A)
]
log

[
1−

q−1∑
A=1

Pi(A)
]

(2.19)

we can use equation 2.15 to compute the biases:

hi(A)
∣∣∣
α=0

= log
Pi(A)

Pi(q)
= log

fi(A)

fi(q)
(2.20)

for all A = 1, . . . , q − 1. Analogously, using equation 2.16 and inverting the

resulting matrix we get

Cij(A,B)
∣∣∣
α=0

=
[
Pi(A)δA,B − Pi(A)Pi(B)

]
δi,j =

[
fi(A)δA,B − fi(A)fi(B)

]
δi,j

(2.21)

As expected, different sites do not present any correlation, while different amino-

acids in the same sites are anti-correlated. The independent-site approximation

fits all the single-site frequency counts to the biases, but it does not have enough

parameters to fit the two-point correlations as well. For that, it is necessary to

move to a higher term in α.
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2.5.2 Mean-field approximation

In order to compute the first order term, we need to evaluate the derivative of

the Gibbs potential at α = 0. Starting from equation 2.14, we get:

dG(α)
dα

= −d logZ(α)

dα
−

N∑
i=1

q−1∑
A=1

dhi(A)

dα
Pi(A)

= − 1

Z(α)

∑
A

[∑
i<j

Ji,j(Ai, Aj) +

N∑
i=1

dhi(Ai)

dα

]
e−H(α) −

N∑
i=1

q−1∑
A=1

dhi(A)

dα
Pi(A)

= −
〈∑
i<j

Ji,j(Ai, Aj)
〉
α
. (2.22)

Since α = 0 coincides with the independent-site case, the probability distri-

bution can be factorised into single-site marginals resulting in a Mean-Field

approximation. Then, the expectation value of the coupling tensor can be com-

puted as:

dG(α)
dα

∣∣∣
α=0

= −
∑
i<j

∑
A,B

Ji,j(A,B)Pi(A)Pj(B). (2.23)

Then, up to first order the Gibbs potential can be approximated by

G(α) =
N∑
i=1

q∑
A=1

Pi(A) logPi(A)− α
∑
i<j

∑
A,B

Ji,j(A,B)Pi(A)Pj(B) +O(α2).

(2.24)

Once more, using equations 2.15 and 2.16 we determine the self-consistent equa-

tions for local biases and connected correlations:

Pi(A)

Pi(q)
= exp

{
hi(A) +

∑
j ̸=i

q−1∑
B=1

Ji,j(A,B)Pj(B)
}
, (2.25)

(C−1)i,j(A,B)
∣∣∣
α=0

=

−Ji,j(A,B) for i ̸= j

δA,B

Pi(A) +
1

Pi(q)
for i = j

. (2.26)

Within the mean-field approximation, equations 2.25 and 2.26 solve the original

problem of inferring biases {hi(Ai)} and couplings {Ji,j(Ai, Aj)} by fitting single

site and pair empirical frequency counts fi(A) and fij(Ai, Aj) to single- and

two-site marginals.
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2.6 Interaction score and contact prediction

Regardless of the method used to tackle it, once the inverse problem has been

solved and all the parameters have been determined, the relevant information

regarding the residue-residue interactions is contained inside the coupling tensor.

However, since J is a 4-order tensor, it associates a q× q matrix with any given

position pair (i, j) making it not straightforward to rank the likelihood that two

positions are in contact within the three-dimensional structure of the protein

family. In order to do so, it is necessary to devise a mapping Jij → s ∈ R

returning a score associated with any given position pair. This is core behind

Historically, the first proxy to be introduced was a direct information mea-

sure [16] defined as the mutual information of the two-side model

P dir
ij (A,B) =

1

Zij
exp

{
Jij(A,B) + h̃i(A) + h̃j(B)

}
, (2.27)

where {Jij(A,B)} are the already inferred couplings, while {h̃i(A)} are new

biases obtained by imposing the single-site empirical frequencies

fi(A) =

q∑
B=1

P dir
ij (A,B) (2.28)

and Zij is the corresponding normalisation constant. Then, the direct informa-

tion is defined as

Dij =
∑
A,B

P dir
ij (A,B) log

P dir
ij (A,B)

fi(A)fj(B)
. (2.29)

Alternatively, a popular choice is to consider the zero-sum gauge:
q∑

A=1

Ji(A) =

q∑
A=1

Jij(A,B) = 0 (2.30)

for all i, j = 1, . . . , N and b = 1, . . . , q. Unlike the lattice-gas gauge, the zero-

sum gauge does not break the symmetry between the states of the Potts model.

It also minimises the Frobenius norm, which can be used as a reasonable measure

of the interaction strength:

Fij =

√√√√ q−1∑
A,B=1

J2
ij(A,B). (2.31)
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Moreover, trial and error [10] showed that the best results are achieved by

implementing an Average-Product Correction (APC), for which

FAPC
ij = Fij −

FiFj

F
,

where

Fi =
1

N

∑
k ̸=i

Fik,

F =
1

N(N − 1)

∑
k,l ̸=i,j

Fkl.

What this correction does is to subtract from the Frobenius norm a null-model

contribution for the pair (i, j), due to single site properties of i and j. This is

needed because it can be seen empirically that some residues are more prone

to establish interactions, acting as a confounding factor which would increase

the score of all the pairs containing those residues. Average-Product Correction

effectively diminishes this effect.

Ultimately, contact prediction is implemented by sorting from higher to lower

the Frobenius norm score for each of the
(
N
2

)
possible position pairs and con-

sidering the first L = O(N) terms.
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Chapter 3

Pseudo-loglikelihood Direct

Coupling Analysis

This chapter is devoted to the discussion of PlmDCA, the current state-of-

the-art DCA method based on a likelihood maximisation principle. After the

theoretical and computational framework is established, we also present some

results obtained by applying the model to three protein family MSA.

3.1 Maximum Likelihood Estimation

Section 2.3 was focused on the discussion of the problem of finding the least

constrained probability distribution which is compatible to a given set of em-

pirical observations. Another problem, very much related to this, is that of

inferring the parameters of a known distribution starting from set of samples

independently drawn from the distribution.

In the context of Bayesian statistics, a common solution to this inference

problem is given by the Maximum Likelihood Estimate (MLE) [17]. Consider a

probability distribution P (x, {θ}) characterised by parameters θ and a dataset

of M independent samples D = {xµ}µ=1,...,M drawn from it. The likelihood
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function is defined as the joint probability of the parameters conditioned to the

observation of the dataset: P (θ|D). According to the Maximum Likelihood

Principle, the parameters that better explain the observations are those which

maximise the likelihood, i.e.

θMLE = argmax
θ

P (θ|D). (3.1)

Usually, for reasons of computational efficiency the best the likelihood is rede-

fined as the opposite of the loglikelihood

L = − logP (D|θ) (3.2)

which is then minimised with respect to the parameters. This method is partic-

ularly useful when the analytical form of the function is particularly tractable

and its convexity is easy to prove, so that the existence of a global minimum is

guaranteed.

3.2 PlmDCA

For our purposes, the probability distribution is the one associated to the Potts

model, described by equation 2.7 and characterised by the coupling tensor J

and the biases h, while the dataset is the Multiple Sequence Alignment A =

(Aa
i ). As discussed in section 2.2, after the reweighting implemented to mitigate

possible phylogenetic biases in the alignment, all instances of the MSA can

be thought to be independent with one another. Therefore, the conditional

probability P (A|J ,h) factorises into

P (A|J ,h) =
M∏
a=1

P (Aa|J ,h) (3.3)

and the loglikelihood function becomes:

L(A,J ,h) = − 1

M

M∑
a=1

logP (Aa|J ,h) (3.4)

= − 1

M

M∑
a=1

log
[ 1
Z

exp
(∑
i<j

Jij(A
a
i , A

a
j ) +

N∑
i=1

hi(A
a
i )
)]

.
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Although this is an analytic function, the computation of the partition function

Z is extremely demanding and makes the problem of minimising L essentially

unfeasible. A practical solution to this problem is that of considering the con-

ditional probability P (Ai|A\i) instead of the whole distribution, so that:

P (Ai|A\i) =
1

Zi
exp

{∑
j ̸=i

Jij(Ai, Aj) + hi(Ai)
}
, (3.5)

with

Zi =

q∑
A=1

exp
{∑

j ̸=i

Jij(A,Aj) + hi(A)
}
. (3.6)

Being a sum only over the alphabet {1, 2, . . . , q}, the partial partition function

Zi is easier to compute and we can define a pseudo-loglikelihood function [18]

for any position in the alignment i = 1, . . . , N as

gi(A,J ,h) = − 1

M

M∑
a=1

logP (Aa
i |Aa

\i)

= − 1

M

M∑
a=1

log
exp

{∑
j ̸=i Jij(Ai, Aj) + hi(Ai)

}
∑q

A=1 exp
{∑

j ̸=i Jij(A,Aj) + hi(A)
} (3.7)

= − 1

M

M∑
a=1

{∑
j ̸=i

Jij(Ai, Aj) + hi(Ai)− log
[ q∑
A=1

exp
{∑

j ̸=i

Jij(A,Aj) + hi(A)
}]}

The parameters of the model can now be inferred by minimising equation 3.7

for each possible position in the sequence . The stationary point is found by

means of a gradient-based minimisation algorithm which requires the explicit

form of the gradient in order to optimise the computation of each update step.

The gradient is given by

∂gi
∂Jxy(α, β)

= − 1

M

M∑
a=1

I[Aa
y = β]

(
I[Aa

x = α]− P (Ax = α|A\x = Aa
\x)

)
δi,x,

(3.8)

∂gi
∂hx(α)

= − 1

M

M∑
a=1

(
I[Aa

x = α]− P (Ax = α|A\x = Aa
\x)

)
δi,x. (3.9)

Finally, one last adjustment that can be made is the addition of a regularisation

term. This is usually included in order to avoid overfitting the model on the
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available data, mitigating the finite sampling problem. In this case, the standard

choice is to use the L2 regularisation

Ri(J ,h) = λJ

∑
i<j

∑
A,B

J2
ij(A,B) + λh

q∑
A=1

h2
i (A), (3.10)

which penalises arbitrarily large coupling terms. Empirically, a good choice for

the regularisation parameters is λJ = λh ≈ 0.01 for most of the MSAs we deal

with.

At this point , the optimisation consists in N parallel minimisations for each

gregi = gi+Ri with i = 1, . . . , N . Each of these minimisations will return the set

of optimal parameters JMLE
i,∗ and hMLE

i . The final step is to enforce by hand

the symmetrisation Ji,j(A,B) = Jj,i(B,A) by imposing

Jij(A,B) = Jji(B,A)←− 1

2
[Jij(A,B) + Jji(B,A)].

Once the coupling tensor has been inferred, residue-residue contacts are pre-

dicted by by computing the Frobenius norm of all
(
N
2

)
possible contacts, sorting

the resulting score from higher to lower.

3.3 Results from PlmDCA

The accuracy of PlmDCA can be investigated by applying it to protein families

of which the structure has already been established by experimental means. In

this is way it possible to compare the predicted residue-residue contacts with the

actual contacts in the three-dimensional structure of the family. In general, for a

given protein family, the associated structure is given as the relative positions of

all heavy elements constituting the amino-acids. This can be referred either to

the structure of a single sequence or to the average of the structures of multiple

sequences within the family.

Upon defining a threshold below which residues are considered in contact,

structural information can be used to extrapolate the effective contact positions

which serve as a benchmark to validate the contacts predicted by the model. In

the following, two amino-acids are considered in contact if they are within 8Å
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in the folded structure, but lie apart by at least 6 positions in the underlying

sequence.

We considered three protein families of different dimensions taken from the

Pfam database1. The first family is the PF00014 which contains active domains

of protease catalyzers, called Kunitz domains. The corresponding MSA contains

8871 non-identical sequences of 53 amino-acids. Figure 3.1 shows a specific

instance of this family, the domain 1KTH found in homo sapiens.

Figure 3.1: Kunitz domain 1KTH of the Protein Family PF00014

The second family is the PF00595 which contains PDZ domains, common struc-

tural domains found in signaling proteins of bacteria, yeast, plants and animals.

Its corresponding MSA contains 15299 sequences of 82 residues. Figure 3.2

shows structure 1B8Q, a PDZ found in Rattus norvegicus.
1https://pfam.xfam.org/
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Figure 3.2: PDZ domain 1B8Q of the Protein Family PF00595

The third family, PF13354, consists of catalytic domains of class A of beta-

lactamases and its MSA is composed of 7515 sequences of 202 amino-acids.

Figure 3.3 shows structure 4R3B, a Beta-lactamase SHV-1 domain found in

Klebsiella pneumoniae, an anaerobic, rod-shaped bacterium.

Figure 3.3: Beta-lactamase domain 4R3B of the Protein Family PF00595

Using the data provided by the Pfam database, the accuracy of the model
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has been evaluated by computing the Positive Predictive Value (PPV) curve.

Given the Frobenius norm of the
(
N
2

)
possible contacts, ranked from higher to

lower, the PPV at x ∈ (1, 2, . . . ,
(
N
2

)
) returns the value

PPV(x) =
TP(x)

x
, (3.11)

where TP(x) represents the number of true contacts predicted among the first

x predictions. Ideally, for a perfect inference model the PPV curve should be

constant for the first Nc predictions and then it should decrease as Nc/x, where

Nc is the number of actual contacts in the structure.

Moreover, for each family we included a graphical representation of the con-

tact map, a binary matrix indicating whether positions i and j are in contact.

In our graphs, the actual contact map is superimposed with the predicted con-

tact map defined using the first N predictions. Positive predictions are shown

as blue dots, while negative ones are in red. Grey dots indicate the effective

structure obtained by the information provided by the Pfam database.
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Figure 3.4: (a), (c), (e): Positive Predictive Value as a function of the number of pre-

dicted contacts. The red and black curve represent respectively the PPV of PlmDCA

and that of an ideal model that correctly predicts all and only true contacts. (b),

(d), (f): Graphical representation of the symmetric Contact Matrix, where grey dots

correspond to the known structure of the family, while blue and red dots correspond

to true and false predictions by PlmDCA respectively. P@N represents the PPV eval-

uated at N.
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Far from being a perfect model, as shown by the PPV curve, nonetheless

PlmDCA is able to capture hundreds of contacts with little computational effort.

Indeed, the minimisation can be easily parallelised by writing the total likelihood

as a disjoint sum of single-site likelihood functions as seen in equation 3.2. Each

of these functions gi depends only on a set of parameters (Ji,∗,hi) which can

be learned in parallel [19].
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Chapter 4

Attention Mechanism

In this chapter we give an overview of the main concepts and models developed in

the context of Natural-Language Processing (NLP). In particular, we introduce

the Attention Mechanism as a general method for emulating human cognitive

attention and its different implementations. Finally, we present the Transformer,

a attention-based encoder-decoder architecture introduced by a team at Google

Brain in 2017.

4.1 Natural Language Processing

As the name suggests, a natural language is any language used in human soci-

eties which has developed and evolved naturally without any intentional plan-

ning or premeditation. Natural Language Processing is a particular field of

artificial intelligence mainly concerned with two broad tasks: Natural-Language

Generation (NLG) and Natural-Language Interpretation (NLI) [20], [21]. Gen-

erally speaking, NLI deals with machine reading comprehension, i.e. the ability

to process text and understand its meaning by recognising words and their inter-

play in the construction of sentences. In particular, examples of this may include

speech recognition, text classification or sentiment analysis. NLG is concerned

with the construction of specific architectures that can produce human-readable
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(or -understandable) text, taking as input textual or non-textual information.

Possible application of NLG are image captioning, text summarisation and text

emulation. Many more NLP applications can be classified both as interpreta-

tion and generation tasks. Among these, two of the most iconic applications

are machine translation programs and speech-emulating software, also known

as chatbox. In the first case, the machine must understand the given text in a

specific language and generate a textual output which conveys the same infor-

mation as the input, but in another language. In the second case, the software

must reply to the user input emulating a conversation, therefore it must be

able to discriminate between assertions and questions producing a meaningful

comeback with respect to the general context of the discussion.

4.1.1 Sequential Processing

Among the different techniques and architectures developed by the NLP com-

munity, a first breakthrough was represented by Google’s Seq2seq [22] in 2014.

Seq2seq is a multi-purpose family of machine learning approaches to NLP based

on the sequential transformation of an input sequence, representing textual

or non textual information, into an output sequence by means of an encoder-

decoder structure made of Recurrent Neural Networks (RNNs). A Recurrent

Neural Network is any neural network which presents feedback connections,

effectively introducing loops in the topology of the model. This defines a non-

linear dynamical architecture particularly suited for sequential processing as in

the case of NLP [23]. For a basic RNN, given an input sequence x1, . . . ,xN at

time-step t the model computes a hidden state ht as a function of the current

input xt and the previous state ht−1 which are concatenated and passed to a

feedforward network with weight matrix W , biases b and a sigmoid activation

function:

ht = σ
(
W

 xt

ht−1

+ b
)
. (4.1)
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The hidden state is simultaneously stored for computing the next input’s hidden

state and passed to another feedforward layer to return the final output:

yt = f(V ht + c) (4.2)

Usually the final layer contains a non-linear function f depending on the form

of the expected output. As an example, categorical output may be preceded by

a softmax layer which returns the probability distribution of the result among

all the possible categories. Figure 4.1 shows the internal architecture of a basic

recurrent layer.

xt

ht−1

ht

yt

f

σ

CONCATENATION
ht

W

V

Figure 4.1: Schematic representation of the internal architecture of a Recurrent Neu-

ral Network (RNN). Current input xt and previous hidden state ht−1 are concatenated

and fed to feedforward layer with weights W and sigmoid activation. The result is

the current hidden state of the RNN, which is fed to a new feedforward layer with

weights V and activation f depending of the specific task of the model. This returns

the current output of the network. Bias terms in feedforward layers are omitted for a

lighter graphical representation.

In the context of NLP, in order to be processed, each element of an input

sentence has to be mapped into a unique mathematical representation suitable

for the machine to understand. A simple solution to this problem can be a
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dictionary ID lookup, in which an integer number is assigned to each word

of a given dictionary. Another possibility is to implement a one-hot encoding

so that words are mapped into finite-size vectors whose components are all

zero except for a single element, different for each word, which takes value 1.

However, even though these solutions have their field of applications, they fail

to represent a fundamental aspect of natural languages which is the fact that

words have a semantic and morphological relationship with one another. Word

embedding solves this problem by introducing real-valued vectors that encode

the meaning of a word in such a way that if two words have similar meaning

their vector representations will be close in the vector space. In this way, the

semantic structure of a language and its dictionary can be fully represented into

a mathematical form.

In order to understand the fundamental idea underneath the Seq2seq algo-

rithm, consider an input sequence representing a sentence I = [I1, I2, . . . , IN ],

where Ii can either be a word or a punctuation mark. Each element of the

sentence is mapped into the embedding space producing the actual input x =

(x1,x2, . . . ,xN ), where xi ∈ RD is the embedding of the ith word and D is

the dimensionality of the embedding space. Each embedding is then processed

sequentially by a RNN which encodes the input information into a fixed-length

context vector c, given by [23]:

c = f({h1,h2, . . . ,hN}), (4.3)

where ht = g(ht−1,xt) is the hidden state of the RNN at time t. Functions f

and g depend on the specific implementation of the network. A common choice is

to take as context vector the final hidden state of the sequence, so that c = hN .

The encoded information stored in the context vector is then passed into a RNN

decoder architecture which is trained to sequentially predict the next output

word yt as a function of the previous predictions {y1,y2, . . . ,yt−1}. Practi-

cally, the starting input of the decoder are c and a <START> token which tells

the model when to initiate the prediction procedure. Eventually, it stops when

the <END> token is generated. Finally, the output sequence {y1,y2, . . . ,yM}
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is mapped into the word representation producing the actual output sentence

O = [O1, O2, . . . , OM ]. From a mathematical point of view, the decoder im-

plements a time-step-based factorisation of the probability distribution of the

output sequence:

P (y) =

M∏
t=1

P (yt|{y1, . . . ,yt−1}, c), (4.4)

with

P (yt|{y1, . . . ,yt−1}, c) = F (yt−1, st, c), (4.5)

where F is a non-linear function, specific of the choice of the RNN architecture,

while st is the hidden state of the decoder at time t. Figure 4.2 shows a schematic

implementation of the encoder-decoder architecture. For clarity’s sake, it should

be mentioned that the RNNs used in Seq2seq are variations of the generic model

shown in figure 4.1. In particular, in the encoder’s RNNs all outputs are entirely

neglected and only hidden states are passed to the decoder. Also, decoder’s

RNNs modified in order to include an extra input which corresponds to the

context vector c, which is fundamental in the prediction of the output yt.
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Figure 4.2: General representation of a Seq2seq architecture. At each iteration during

the encoding process, a word embedding is passed as input to a Recurrent Neural

Network (RNN) which produces a hidden state as a function of the previous hidden

state and the current input. The encoder’s hidden states are then used to construct a

fixed-length context vector which is passed to the decoder. At each step of decoding

phase, a RNN predicts a new output as a function of the context vector and both

hidden state and output from the previous step. The decoding process initiates when

a ⟨START⟩ token is passed to the first RNN and terminates when the ⟨END⟩ token is

predicted.
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The encoding mechanism implemented by Seq2seq constituted a great step

forward in areas such as machine translation and text summarisation in that it

provided a model that, at each time-step, is potentially capable of unbounded

memory of previous words, regardless of their distance relative to the present

input. This makes possible a better understanding of longer sentences, where

words with a strong semantic relation might be far away from each other. How-

ever, from a practical point of view the actual memory of the model turns out

to be very short due to the Vanishing Gradient Problem (VGP). In general,

during the supervised training process, a backpropagation algorithm efficiently

computes the gradient of a loss function with respect to the weights and bi-

ases of the model and recursively updates the parameters accordingly. Training

stops when the loss function is minimised, i.e. when the model has learned the

optimal weights and biases. The efficiency of this type of algorithms, based on

the chain rule, puts backpropagation at the foundation of machine learning. Its

main drawback depends on the presence of non-linear activations, such as hy-

perbolic tangents or sigmoid functions, whose gradient is a number in (0, 1]. As

a consequence of the use of the chain rule, the backpropagation produces smaller

and smaller gradients which make the update irrelevant, effectively halting the

learning procedure. This problem grows more and more relevant for deep net-

works with a large number of layers.

Another criticality of the encoder-decoder RNN model is its sequential na-

ture. During the training process, inputs must be fed sequentially into the ar-

chitecture and because of this it cannot be parallelised. This makes such models

extremely slow if compared with current state-of-the-art set models, where the

input is fed as a single block, allowing for a better parallelisation.

4.1.2 Long Short-Term Memory

The Vanishing Gradient Problem is a common issue in deep neural networks

and because of this different techniques have been devised to counteract its ef-

fect of stopping the learning procedure. Among these, the most frequently used
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solutions include batch normalisation, residual connections or the adoption of

different activation functions. Since standard activation functions such as hyper-

bolic tangents and sigmoid functions are almost flat for large inputs, resulting

in vanishing derivatives, batch normalisation rescales the input so that it does

not reach the outer edges of these functions. Another solution is that of imple-

menting an additive connection between the two ends of an activation block.

This residual connection is not flattened by the activation function, resulting in

a higher overall derivative. Finally, a more straightforward solution is that of

introducing different activation functions whose derivative do not tend to van-

ish. An increasingly common class of activation functions that suit this issues

are called rectifiers and their prototype is the rectified Linear Unit (ReLU).

In the context of Natural Language Processing, a popular solution to VGP is

represented by the Long Short-Term Memory unit [24], a recurrent network that

can be used in encoder-decoder architectures as a more advanced replacement

for the basic recurrent layer discussed in the previous section. At the core of

this block there are gates specifically designed to implement a selective forget &

remember process. Figure 4.3 shows the internal architecture of a LSTM block

inside an encoder.
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Figure 4.3: Internal representation of a Long Short-Term Memory layer. When used

in encoder-decoder models, at each iteration the current input xt and the previous

output yt−1 are concatenated and activated by two non-linear gates, the forget gate

and the input gate, with the goal of updating the cell state of the layer, ct−1. An

output gate combines the input and the updated state to produce the new output

yt which is fed to the next iteration of the encoding or decoding process, along with

the cell state ct. Bias terms in feedforward layers are omitted for a lighter graphical

representation.

At each time-step, the LSTM encoder updates the cell state ct−1 and computes

a new output vector yt as a function of internal hidden states of the encoder

given by:

ft = σ
(
Wfx

′
t + bf

)
,

it = σ
(
Wix

′
t + bi

)
,

c̄t = tanh
(
Wcx

′
t + bc

)
,

ot = σ
(
Wox

′
t + bo

)
,

where x′
t is the concatenation of output yt−1 and the current input xt. The
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new output and cell state are computed as:

ct = (ft ⊗ ct−1)⊕ (it ⊗ c̄t) (4.6)

yt = ot ⊗ tanh ct, (4.7)

where ⊗ and ⊕ represent element-wise multiplication and addition. In reference

to figure 4.3, it possible to distinguish the three main components of the archi-

tecture: a forget gate, an input gate and an output gate. Each gate is modelled

as a feedforward network characterised by a specific activation function and a

set of weights and biases to be learned during the supervised training process.

The forget gate erases part of the memory inside the cell state which is then

updated by the input gate. Finally, the resulting state is fed to the output gate

which produces the current output to be passed to the next iteration, along with

the cell state itself.

The strength of this architecture is that the outputs are obtained combining

linear and non-linear operations. This produces an additive gradient which has

linear access to the forget gate’s activations. The fact that the forget matrix can

be learned to not vanish, along with the additivity property make the gradient

much more likely to not vanish, making the training process actually feasible.

However, even if replacing a standard RNN with a LSTM does mitigate the Van-

ishing Gradient Problem resulting in a longer memory of the encoder-decoder

model, it does not improve its learning time. This is due to the fact that mod-

els such as Seq2seq remain intrinsically sequential and therefore not prone to

parallelisation.

The first non-sequential model which solved this problem was presented in

2017 by Vaswani et al. [25] with the introduction of the Transformer architecture

based on the Attention Mechanism. In the following sections we explore the

concept of Attention in machine learning and how the Transformer drastically

modified the field of NLP.
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4.2 Attention and self-attention

In a RNN encoder-decoder, whether it is based on simple recurrent layers or

LSTMs, the main fragility lies in the fact that the encoder has to represent all

the information enclosed in the input sequence within a fixed-length context

vector. If this fails to fully represent the input, then the decoder’s output will

be poorly defined.

Instead of having a fixed vector, it would be reasonable to introduce a model

in which the decoder can look back at the entire input sequence, focusing on

the parts that are more important for the prediction of the next output. The

main idea behind attention is to enforce this mechanism in a convenient and

meaningful way.

The attention mechanism was devised in an attempt to emulate biological

cognitive attention, i.e. the ability to concentrate on relevant stimuli, blocking

out those which are not necessary in producing a response to a particular input.

In machine learning this can be implemented in different forms. A particularly

useful form of attention for language interpretation is self- or intra-attention.

Self-attention relates different positions of the same sequence in order to produce

a representation which highlights the relative importance of each element with

respect to the others. Consider an input sequence X = [x1, . . . ,xN ], where

xi ∈ RD,1. A self-attention layer computes a row-wise normalised matrix A

whose components Aij express how much the ith element attends to the jth one,

i.e. how much attention word xi should pay to word xj . Using this attention

matrix, the initial sequence can be mapped into a new representation which

encodes the self-attention information:

yi =

N∑
j=1

Aijxj .

In order to compute the attention matrix, it is necessary to have a way to

evaluate the similarity between xi and xj . In the case of simple self-attention,
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this is done using a dot product or a scaled dot product, so that:

A = softmax
(XTX√

D

)
.

In this form simple self-attention has no learnable parameters and therefore

its result is purely deterministic. To avoid this, we can introduce a matrix

W ∈ RD,D and define the attention matrix as:

A = softmax
(XTWX√

D

)
∈ RN,N .

In this way the model has more flexibility as it can learn the parameters W

by means of backpropagation, also giving a deeper meaning to the similarity

measure of the attention matrix.

4.2.1 Additive attention

In the context of encoder-decoder RNNs, the attention mechanism was intro-

duced by Bahdanau et al. in 2014 [26] in order to tackle the problem relative to

the fixed-length encoding vector. In particular, since the encoder always maps

the input information into a fixed context vector, then for longer sequences

the decoder has a limited access to the whole information provided by the in-

put. This causes a bottleneck which lowers the performance of the model when

applied to complex inputs. The solution proposed by Bahdanau involves an

attention layer following the encoder and which provides the decoder with a

different context vector at every sequential iteration of the decoding process.

In this new architecture, the probability distribution of the output sequence is

factorised into

P (y) =

M∏
t=1

P (yt|{y1, . . . ,yt−1},X) =

M∏
t=1

g(yt−1, st, ct), (4.8)

where st = f(st−1,yt−1, ct) is the hidden state of the decoder at time t and ct

is the specific context vector for the prediction of output yt. The computation

of the context vector, which depends on a set of annotations (h1, . . . ,hN ) rep-

resenting the hidden states of the encoder, enforces the attention mechanism.
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This is not to be intended as self-attention as the similarity score, or alignment

score, is computed between the current hidden state of the decoder and all the

annotations of the encoder. In particular, the annotations are mapped into the

context vector as in

ci =

N∑
j=1

αijhj (4.9)

where α = (αij) ∈ RM,N is the attention matrix. The main difference between

the present attention mechanism and self-attention is that in this case the sim-

ilarity score refers to elements of different vector spaces. A given row αi,∗

specifies how much hidden state si−1 attends to every annotation {hj}. In par-

ticular, for each annotation-hidden state pair the alignment score is determined

as in

eij = a(si−1,hj), (4.10)

where function a can be a linear or non-linear mapping, specific of the chosen

implementation. The attention matrix is then defined as the row-wise softmax

of the corresponding alignment matrix e:

α = softmax(e), (4.11)

that is

αij =
exp(eij)∑N
k=1 exp(eik)

. (4.12)

Being positive definite and normalised, αij can be thought of as a probability

indicating the importance of annotation hj with respect to the previous hidden

state si−1 in constructing the next state si and predicting the output yi.

The specific architecture proposed by Bahdanau consisted in a bidirectional-

RNN encoder with LSTM or Hidden Gate units, which for each input produces

two hidden states
−→
h i and

←−
h i. These are computed sequentially from start to

end and back, in order to capture the relations a word has with preceding and

following words so that to provide a better representation of the semantic and
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logical structure of the sentence. These two hidden states are concatenated

and constitute the annotation for input xi. Then, for every iteration of the

decoder, annotations are passed to the attention layer which is implemented as

a feedforward network with the alignment score being defined as

eij = a(si−1,hj) = vT
a tanh(Wasi−1 +Uahj), (4.13)

where va, Wa and Ua are model parameters to be learned during the supervised

training process. A softmax layer returns the weights αij which are used along

with the annotations to compute the context vector, as in equation 4.9. This is

then passed to the decoder which outputs the predicted result yi. The atten-

tion mechanism proposed by Bahdanau is known as additive attention as the

similarity score between hidden states and annotations is computed by adding

them together, as shown in equation 4.13 and graphically in figure 4.4b.

h 1

h 1

h 2

h 2

h 3

h 3

h N

h N

h 3

x1 x2 x3 xN

h1 h2 h3 hN

s0 s1 s2 s3 sM−1
⟨START⟩

y1 y2 y3 ⟨END⟩

c1 c2 c3 cM

ENCODER

ATTENTION
LAYER

DECODER

(a) RNN Encoder-Decoder with Additive Attention
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ci

SOFTMAX LAYER

(c) Attention layer

Figure 4.4: (a): Bahdanau et al.’s architecture based on the encoder-decoder model

with intermediate attention layer. For each sequential input, a bi-directional encoder

computes the hidden state which is then passed to the attention layer. Iteratively,

the decoder predicts an output yt based on the context vector ct computed in the

attention layer. (b): Internal representation of the feedforward layer used to compute

the alignment score eij relative to the encoder hidden state hj and decoder hidden

state si−1. (c): Schematic representation of the attention layer producing context

vector ci. The input si used in computing the alignment scores {ei∗} is omitted.

Figure 4.4a shows the encoder-decoder sequential model proposed by Bahdanau

[26], while figures 4.4b and 4.4c show the internal architecture of the additive

attention layer.

Every time the decoder produces an output, it soft-searches for relevant

information in a sequence of vectors each of which encodes an element of the

input sequence, effectively enforcing the attention mechanism. This way the

encoder does not have the constraint of squeezing the entire input into a single

fixed-length context vector. Because of this, Bahdanau’s model represent an

important improvement over the standard encoder-decoder approach. This is

especially evident for long sequences, but it can be observed with sequences

of any length. However, even if it implements the attention mechanism, this

architecture remains a sequential model as the inputs are fed one at a time

into the encoder. Therefore, as for standard encoder-decoder RNNs, the model

cannot be easily parallelised and the training process remains slow.
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4.3 Attention Is All You Need

4.3.1 Attention as a soft dictionary

A common trait between simple self-attention described in section 4.2 and addi-

tive attention seen in section 4.2.1 is that a set of inputs (z1, . . . ,zN ) is mapped

into a new representation (z′
1, . . . ,z

′
N ) through a linear mapping W constructed

by computing an attention or similarity score between elements {ai} and {bj}

of two possibly different vector spaces , both associated with the initial input

through some sort of relationship. Mathematically:

W = (Wij) =
(
score(ai, bj)

)
, (4.14)

z′
i =

∑
j

Wijzj . (4.15)

In dot product self-attention, every element involved is taken from the same

pool, corresponding to the input sentence, and the similarity score is computed

simply by means of a dot product. In Bahdanau’s additive attention the score

is given by a feedforward network and it involves hidden states of the encoder

and the decoder.

The thread between these two versions is that the attention mechanism

can be seen as a smart implementation of a soft-dictionary retrieval algorithm.

Generally, in programming languages a hard dictionary is an associative array

composed of keys paired to a unique value. In order to retrieve a value, we

pass a query which is compared with all the keys in the dictionary until the

matching one is found. Then, the dictionary returns the value corresponding

to that key. If there is no matching between query and keys, the algorithm

throws an error. Figure 4.5 shows as an example the implementation of a hard

dictionary in Julia. In the example the query is the string "strawberry" and the

retrieval system returns its value which is 5.
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Figure 4.5: Example of a hard dictionary in Julia. Keys and values are in one-to-one

correspondence and when a query is passed to the retrieval system, this returns the

value associated to the unique key matching the query.

In contrast to this, in a soft dictionary the result is given by a weighted mix-

ture of all the possible values with the weights depending on the compatibility

between the given query and the key of each value. Consider a dictionary with a

set of keys and values {kj ,vj}j=1,...,N , for a specific query qi the soft dictionary

algorithm will return

yi =

N∑
j=1

fscore(q,kj)vj , (4.16)

where fscore is the particular compatibility score of the algorithm.

The query, key and value formalism in the context of attention was intro-

duced by Vaswani et al. in a paper of 2017 with the captivating title Attention

Is All You Need [25]. They presented the Transformer, an encoder-decoder

architecture based on this particular implementation of the attention and self-

attention mechanism which allows for an efficient in-block reading of the in-

put sentence. The Transformer effectively solved the last remaining issue in

encoder-decoder NLP-oriented architectures, i.e. the long training time due to

the sequentiality of the models. Indeed, in contrast with the standard sequential

encoder-decoder, Vaswani et al.’s architecture can be conveniently parallelised

making the training process remarkably faster.

In their architecture, an attention layer is characterised by the following

operations. Consider a query vector q ∈ Rd and a set of keys and value

{ki,vi}j=1,...,N with ki ∈ Rd and vi ∈ Rdv . The attention relative to that
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specific query is given by:

attention
(
q, {k}, {v}

)
=

N∑
i=1

exp(q·ki√
d
)∑N

l=1 exp(
q·kl√

d
)
vi. (4.17)

Thus, this particular implementation of the attention mechanism relies on a

scaled dot product similarity score, activated by a softmax function which nor-

malises the attention weights and increases the sparsity of the model. For a set

of queries (q1, q2, . . . , qN ), the attention function can be efficiently computed

simultaneously on each of them by combining all queries, keys and values in

corresponding matrices Q ∈ RN,d, K ∈ RN,d and V ∈ RN,dv . Using linear

algebra, which is highly optimisable from a computational point of view, the

attention matrix is given by:

A = attention
(
Q,K,V

)
= softmax

(QKT

√
d

)
V , (4.18)

so that each row Ai corresponds to the attention vector relative to query qi.

4.3.2 Self-attention and Multi-Head attention

The nature of queries, keys and values depends on the particular model to which

the attention mechanism is applied. For instance, in the case of self-attention all

the elements depend on the initial input X ∈ RN,dx which is used to generate

Q,K,V by means of linear mappings:

Q = XWQ,

K = XWK ,

V = XWV .

(4.19)

Matrices WQ ∈ Rdx,d, WK ∈ Rdx,d and WV ∈ Rdx,dv constitute the pa-

rameters of the model and can be learned with the goal of highlighting specific

intra-relationships within the input data. However, in many cases there are

different kinds of such relationships. For example, consider the sentence "the

restaurant was not too terrible". A NLP sentiment analysis algorithm designed

to classify users’ reviews should be able to understand that the word "terrible"
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is a property of "restaurant", but also that "not" and "too" are both referred

to "terrible", respectively inverting and moderating its meaning. Therefore, in

this particular case there are three different kinds of relationships within the

elements of the input sentence.

The restaurant was not too terrible

attribute

intensity

inversion

Figure 4.6: Example of the possible semantic relations in a sentence.

In order to deal with this fundamental aspect of natural languages, Vaswani

et al. [25] proposed an in-parallel implementation of H self-attention mecha-

nisms by mapping Q, K and V with linear projections (W h
Q,W

h
K ,W h

V ), one

for each attention head h = 1, . . . ,H. The results of each head are then con-

catenated and projected once more into WO ∈ Rdo which gives the final output.

Figure 4.7 shows the architecture of a multi-head layer.
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Figure 4.7: Multi-Head Attention layer. The matrix input X is mapped into Query,

Key and Value matrices (Q,K,V ). These are re-mapped and fed in parallel to H

self-attention layers. The results of these are concatenated and finally mapped into

output matrix Y .

4.3.3 Transformers

The main claim of Vaswani et al. is that the old RNN encoder-decoder architec-

ture used for machine translation and other NLP tasks could be entirely replaced

by a multi-head attention encoder-decoder model: the Transformer. As already

mentioned, this development replaces the slow sequential model with a much

faster block architecture, easy to parallelise and train. The only recurrence in

the model happens in the decoder which predicts the next target output as a
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function of the output predicted in earlier steps.

The transformer’s encoder is composed of a multi-head self-attention fol-

lowed by a feedforward layer. Then, its output is fed to the multi-head attention

layer inside the decoder, acting both as queries and keys. The values, updated

at each iteration of the decoding process, are provided by a multi-head masked

self-attention computed on the word embeddings of all the previous outputs of

the decoder itself. The mask consists of a matrix M , such that

Mij =

0 i ≥ j

−∞ i < j

, (4.20)

to be added to QKT , so that the resulting softmax matrix has null elements for

i < j. This device is used to avoid word embeddings from attending to words in

subsequent positions. This choice is implemented in order to ensure only causal

relations among words, i.e. that the predictions for position i can only depend

on the known outputs at positions less that i. Consider at time t the predicted

sentence (y1,y2, . . . ,yt). When computing the self attention for each element

of this sentence, we want to preserve the fact that when word yi was predicted

there was no information regarding words yi+1,yi+2, . . . ,yt, so word yi could

only attend to previous predictions.

At each iteration, the result of the decoder’s self-attention mechanism is fed

to the multi-head attention layer which takes as queries and keys the output of

the encoder attention layer, which is computed only once. Finally, the result is

passed to a feedforward network.

A crucial point to be remarked is that, since this attention architecture is no

longer sequential in the reading of the input, the model must include a device

which introduces a notion of ordering in the input sentence. This is crucial in

NLP as words may have very different meaning and very different relations with

one another depending on their position in the sentence. In their article Vaswani

et al. proposed a positional encoding to be added to the word embeddings. In

particular, for a d-dimensional word embedding xpos, its positional encoding
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ppos = (ppos
1 , . . . , ppos

d ) is given by

ppos,i =

sin(pos/100002i/d) i even

cos(pos/100002i/d) i odd
.

Finally, in order to reduce the possibility of having small gradients, which

would impact the training process, each attention and feedforward layer is

equipped with a residual connection and a normalisation layer. Figure 4.8 shows

the Transformer architecture as depicted in Vaswani et al.’s paper.
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Figure 4.8: Schematic representation of the Transformer architecture. Positional

encodings are added to the input sequence which is passed to a multi-head self attention

layer. After a feedforward layer, the result acts as Query and Key in the decoder’s

multi-head attention. Iteratively, the Value matrix is given by a masked multi-head

self attention evaluated on the outputs predicted on previous steps of the decoding

procedure. The result of the decoder’s multi-head attention is passed to a feedforward

layer and activated by a softmax resulting in the current prediction. Throughout the

architecture, residual connections and normalisation layers are used to mitigate the

Vanishing Gradient Problem.
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Chapter 5

Attention Based Direct

Coupling Analysis

In this chapter we discuss how protein analysis can be modelled as a Language

Processing task, implying that attention based architectures can be tailored

specifically for this problem. Moreover, we introduce a variation of the standard

PlmDCA method inspired by the attention mechanism and in particular by the

multi-head attention discussed in section 4.3.2. Finally, we present a comparison

between the results of this novel architecture and PlmDCA.

5.1 Protein language Models

The attention mechanism was conceived and developed in the context of natu-

ral language processing, giving excellent results in many tasks such as machine

translation, sentiment analysis, text summarisation and many more. Neverthe-

less, the range of applicability of this mechanism is much wider than NLP, as

it can be applied virtually to any machine learning task [27]. In particular, a

straightforward implementation of the attention can be thought for those prob-

lems which can be modelled as a natural language. Protein Structure Analysis
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belongs to this specific set of problems.

From a linguistic point of view, any natural language can be characterised

by a morphology, defining the distinctive vocabulary of the language, a syntax

which governs how words can be combined in a sentence and a semantic which

determines its meaning. In parallel to this, a protein family can be modelled as

a language whose dictionary is composed of the 20 naturally occurring amino-

acids and with a morphology corresponding to the physical laws governing the

residue-residue interactions which shape the three-dimensional structure. Each

instance of the protein family represents a possible sentence in that language,

with its semantic being conveyed by the biological functionality of the protein

within an organism [28]. Alternatively, the set of amino-acids can be thought of

as the alphabet of the language, where common structural motifs constituting

the secondary structure or functional domains are treated as words of a vocab-

ulary. However, this vocabulary would be ill-defined as in general it is not clear

whether a sequence of amino-acids is part of a functional domain or not. This

is in contrast with human languages which include punctuation to clearly and

univocally separate structures such as words or sentences [29].

Regardless of the specific modellisation, protein families can be thought of

as languages. Therefore, machine learning and statistical learning approaches

to Protein Structure Analysis can be enhanced by applying attention-based

concepts and architectures. In particular, after the introduction of the Trans-

former and various techniques based on that, such as GPT-3 or BERT [30], the

computational biology community developed different implementation of these,

specifically adapted to protein language models and usually pre-trained on pro-

tein sequence databases. Examples of these are ProtBERT, ProtXLNet and

ProtTrans [31].

In contrast to these supervised models, we are interested in a unsupervised

attention-based approach which leverages the evolutionary constraints of pro-

tein families. In the next sections we present AttentionBasedDCA, a version of

PlmDCA inspired by the attention mechanism in its Query-Key-Value formula-

tion.
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5.2 AttentionBasedDCA

Following the work of Bhattacharya et al. [32], we propose to modify the Potts

model defined in equation 2.7 by discarding the local bias term and introducing

the following non-linear low-rank decomposition of the interaction tensor:

Ji,j(Ai, Aj) =

H∑
h=1

softmax(W h)ijV
h
Ai,Aj

(5.1)

=

H∑
h=1

softmax(QhKhT

)i,jV
h
Ai,Aj

, (5.2)

The main idea behind this new model, AttentionBasedDCA, is that we are inter-

ested in decoupling the information relative to the specific family under investi-

gation and the information depending on the amino-acid pool which is common

to all proteins. The form of equation 5.1 is inspired by the self-attention mech-

anism, such as in equation 4.18. In particular, for a protein family described by

a MSA with sequences of length N , matrix W ∈ RN,N is meant to encode the

positional information relative to two-body interactions specific of that family.

Since it can be observed that the number of contacts in a protein grows linearly

with the length of the sequence [32], it is reasonable to assume that matrix

W is rather sparse. Therefore, we can lower its rank by decomposing it into

matrices Q,K ∈ RN,d, where d is a hyper-parameter of the model. In this way,

the number of independent parameters lowers from N2 to 2Nd, resulting in a

linear model with respect to the MSA length. The row-wise softmax function

is applied for normalisation purposes and in order to increase sparsity.

For protein sequence alignments composed of q = 21 possible amino-acids

(20 natural amino-acids and the gap sign), matrix V ∈ Rq,q is meant to capture

the information relative to cross-family protein properties. Indeed, due to the

universality of the amino-acid alphabet, proteins present local three-dimensional

complexes which are repeated throughout their backbone, determining their

secondary structure. Among these common structural motifs, two paradigmatic

examples are the alpha helices and the beta sheets.

Finally, as in multi-head attention, the information is split in different triplets
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or heads {Qh,Kh,V h}h=1,...,H each of which should ideally capture different

properties of the protein family. Such properties may include the presence of

specific patterns of amino-acids, their formal charge and their electrostatic in-

terplay, as well as their three-dimensional relative arrangement or functional

relation. From an attention point of view, the interaction term Jij(Ai, Aj) is

built as the tensor product between the attention score softmax(QhKhT

)ij mea-

suring the self-compatibility of position-dependent features and the amino-acid

features V h
Ai,Aj

. Therefore, we are assuming that the self-attention score is eval-

uated over the matrix representation of the information relative to the specific

protein family.

5.2.1 Implementation

As in the case of PlmDCA, we are interested in inferring the 2HNd + Hq2

model parameters corresponding to matrices {Qh,Kh,V h}h=1,...,H . This is

equivalent to a unsupervised learning which is performed by minimising the

pseudo-loglikelihood function built on the MSA A = (Aa
i )

a=1,...,M
i=1,...,N

g(A, {Qh,Kh,V h}) = − 1

M

N∑
i=1

M∑
a=1

logP (Aa
i |Aa

\i)

= − 1

M

N∑
i=1

M∑
a=1

log
exp

{∑
j ̸=i Jij(Ai, Aj)

}
∑q

c=1 exp
{∑

j ̸=i Jij(c, Aj)
} (5.3)

= − 1

M

N∑
i=1

M∑
a=1

{∑
j ̸=i

Jij(Ai, Aj)− log
[ q∑
c=1

exp
{∑

j ̸=i

Jij(c, Aj)
}]}

,

where Jij(Ai, Aj) is given by equation 5.1. The optimisation of the parameters

is performed by means of gradient-based minimisation algorithms requiring the
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analytic form of the gradient, which is given by:

∂g

∂Qh
xy

=
1

M

M∑
a=1

N∑
j=1

q∑
α,β=1

I[Aa
j = β]

(
I[Aa

x = α]− P (Ax = α|Aa
\x)

)
×

× [KT
yj sf(QhKhT

)xj − sf(QhKhT

)xj

N∑
l=1

KT
yl sf(QhKhT

)xl], (5.4)

∂g

∂Kh
xy

=
1

M

M∑
a=1

N∑
i,j=1

q∑
α,β=1

I[Aa
j = β]

(
I[Aa

i = α]− P (Ai = α|Aa
\i)

)
V h
α,βQ

h
iy

× [sf(QhKhT

)ijδxj − sf(QhKhT

)ij sf(QhKhT

)ix], (5.5)

∂g

∂V h
αβ

=
1

M

M∑
a=1

N∑
i,j=1

I[Aa
j = β]

(
I[Aa

i = α]− P (Ai = α|Aa
\i)

)
sf(QhKhT

)ij ].

(5.6)

Finally, a coupling-wise L2 regularisation term is added to the total likelihood

in order to reduce the possibility of overfitting the parameters:

R(J) = λ
∑
i,j

∑
A,B

J2
ij(A,B), (5.7)

where λ is the regularisation rate which we fixed to ∼ 0.005 after some trial and

error.

The actual implementation of the code has been carried out de novo using the

programming language Julia. The main challenge was that of speeding up the

computation of the gradient whose structure is more complex than PlmDCA’s

one. This was a crucial aspect since the optimisation procedure was enforced by

a gradient descent algorithm. Moreover, the new form of the coupling tensor in

equation 5.1 does not guarantee the proper convexity of the pseudo-loglikelihood

function and the existence of an absolute minimum. Therefore, the gradient

descent may be even more computationally demanding because a higher number

of iterations are needed to converge. Finally, in contrast to what happens for

PlmDCA, matrices {V h} are shared across all positions i = 1, . . . , N resulting

in single site pseudo-likelihood functions which depend on a common set of

parameters. Therefore, a complete parallelisation of the minimisation procedure

is not allowed and the optimisation time is much longer if compared to that of
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PlmDCA. A possible way we used to exploit the power of parallel computation

was that of implementing a site-depending update of the gradient relative to each

row of matrices {Qh,Kh}. Future developments may focus on this important

issue. The current code is stored in a private GitHub repository which will be

released to the public as soon as few adjustments are made.

5.2.2 Results

In the same way as in PlmDCA, once the parameters are optimised position-

position contacts are predicted by computing a score which associates each

of the
(
N
2

)
position-pair (i, j) with the Frobenius norm of the corresponding

q× q interaction matrix Jij given by equation 5.1. Higher scores correspond to

stronger interactions. The accuracy of the model can be evaluated by comparing

predicted contacts either with known structural information belonging to protein

families or with other state-of-the-art models such as PlmDCA itself. In the

following the present the results obtained by applying the model to the same

three protein families used for PlmDCA in section 3.3: PF00014, composed

of 8871 Kunitz domains of 53 amino-acids; PF00595, composed of 15299 PDZ

domains of 82 amino-acids; PF13354, composed of 7515 β-lactamase domains

of 202 amino-acids.

The hyper-parameters of the model have been trained on family PF00014

for reasons of computational efficiency. In particular, in order to determine

the optimal value of d and H, the lower dimension of the rectangular matrices

(Qh,Kh) and the number of attention heads respectively, we evaluated the

performance of the model in predicting the first N/2, N and 2N couplings,

where N = 53 is the length of sequences in family PF00014. Figures 5.1a, 5.1b

and 5.1c represent the Positive Predictive Value respectively at N/2, N and 2N

as a function of the number of attention heads H and for different values of d.

It can be noticed that for small values of H the model performs consistently

badly, however it reaches a plateau around H = 20. For what concerns the

lower dimension d, the best performances are reached for d ≳ 15. As expected,
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the model is quite accurate in predicting the first N/2 = 26 contacts and it gets

worse at N = 53 and especially at 2N = 106.
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Figure 5.1: Positive Predictive Value evaluated at (a) N/2, (b) N and (c) 2N for

increasing values of d as a function of the number of attention heads H for protein

family PF00014.

In the following we shall fix the number of attention heads and the lower

dimension to H = 32 and d = 20. This combination produces a significant

compression in the number of parameters with respect to PlmDCA. Figure 5.2a

shows how the number of parameters in AttentionBasedDCA grows linearly with

the length of the protein family, in contrast with PlmDCA where the growth is

quadratic. In order to quantify the parameter reduction of the two models, we

define a compression ratio

Cratio(N) =
LAtt(N)

LPlm(N)
, (5.8)

where LAtt(N) and LPlm(N) are the number of parameters in AttentionBased-

DCA and PlmDCA respectively. In particular, for N = 53 we have Cratio =
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0.15, which means that only 15% of the number of the parameters of PlmDCA

are used in AttentionBasedDCA. For higher values of N , the ratio decreases

even more. Figure 5.2b shows the compression ratio as a function of the length

of the MSA.

Finally, following what we did in section 3.3, we present the PPV curve and

the Contact Plot evaluated by AttentionBasedDCA on protein families PF00014,

PF00595 and PF13354. In particular, for each family the PPV curve of the

model is compared to that of PlmDCA and to an ideal model which predicts

all and only true contacts. Figures 5.3a, 5.3c, 5.3e show the PPV curves, while

figures 5.3b, 5.3d and 5.3f the contact maps evaluated at x = N . The known

structure of the family is represented by grey dots, while positive and nega-

tive contacts are represented by blue and red dots respectively. Even though

PlmDCA performs systematically better than AttentionBasedDCA, it is clear

that the general predictive power of the latter is of the same order of magnitude

of the former’s. This is particularly true for protein family PF00014 on which

the two models are essentially indistinguishable. However, the accuracy drops

of about 20% in the cases of PF00595 and PF13354. This may be due a poor

evaluation of the hyper-parameters. In particular, the lower dimension d = 20

might be too small to encode the whole information of protein family signif-

icantly longer than PF00014. In the future, this effect could be corrected by

learning a mapping between the length of the sequences and the optimal value of

the lower dimension d. Nevertheless, this must be done maintaining the desired

linear scaling law of the parameters with N , which is the actual fundamental

strength of the present architecture.
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Figure 5.2: Number of parameter in AttentionBasedDCA and PlmDCA (a) and their

ratio (b) as a function of the length of the protein family MSA.
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Figure 5.3: (a), (c), (e): Positive Predictive Value as a function of the number of

predicted contacts. The green, red and black curve represent respectively the PPV

of AttentionBasedDCA, PlmDCA and that of an ideal model that correctly predicts

all and only true contacts. (b), (d), (f): Graphical representation of the symmetric

Contact Matrix, where grey dots correspond to the known structure of the family, while

blue and red dots correspond to true and false predictions by AttentionBasedDCA

respectively. P@N represents the PPV evaluated at N.
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Chapter 6

Conclusions

In this thesis we discussed the fundamental aspects of Direct Coupling Analysis,

the state-of-the-art statistical model for protein contact predictions and struc-

tural analysis based on the conservation of particular patterns in phylogeneti-

cally related amino-acid sequences constituting a protein family. Furthermore,

we presented the Attention Mechanism in the various forms in which it was con-

ceived and developed in the context of Natural Language Processing, focusing

on the implementation of the Transformer and the Query-Key-Value formalism.

Inspired by this, we developed AttentionBasedDCA, a particular implementa-

tion of a pseudo-loglikelihood maximisation DCA where the coupling tensor

is written as a non-linear low-rank decomposition. This choice is motivated

by biological aspects such as the necessity to lower the number of parameters

in the interaction tensor in order to mimic the linear scaling of the contacts

with the length of the sequence [32]. In particular, using a small fraction of

the parameters used in standard PlmDCA, our model reaches an accuracy on

contact predictions which is comparable to that of PlmDCA for medium-small

sequences.
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6.1 Future Developments

6.1.1 Optimisation

Compared to PlmDCA, the computations needed for maximising the pseudo-

likelihood for the total length of the sequence is several order of magnitude

slower. Apart from a possible sub-optimal implementation of the code, this

slowness depends on the increased computational complexity of the gradients

along with the impossibility of a complete parallelisation over the positions of

the sequence. A possible development of this work could be that of investigat-

ing alternative variations of this architecture, more suitable to parallelisation.

An example of this is replacing the Value matrix V ∈ Rq,q with a position-

dependent matrix Ṽ = (Vi,α,β)
i=1,...,N
α,β=1,...,q. This would solve the parallelisation

problem, maintaining at the same time the number of parameters of the order

of O(N).

6.1.2 Auto-regressive Generative Model

Following a recent line of research [33], a further improvement of the architec-

ture would be that of turning it into an auto-regressive generative model. In

general, given a set of observation X = (Xij)
j=1,...,M
i=1,...,N , a generative model learns

a probability distribution P (x|X) over the space (x1, x2, . . . , xN ), with the goal

of using it to sample new points which are statistically indistinguishable from

the observed ones [34]. In the context of protein analysis, this would corre-

spond to generating artificial sequences which carry the relevant information of

the specific protein family used to train the model. Remarkably, the ability to

sample new sequences with determined characteristics possibly originating from

different protein families suggests the potential to solve the Protein Design Prob-

lem, with limitless implications in both research and medicine. Moreover, the

generation of artificial sequences would provide a new method to test the ac-

curacy of the model. Indeed, looking for ways to discriminate between natural

and artificial sequences would provide a benchmark for the effectiveness of the
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statistical modellisation.

The path to make our architecture a generative model is quite straight-

forward as it is already designed to learn the parameters of the probability

distribution over the space of protein sequences

P (A) =
1

Z
exp

{∑
i<j

Jij(Ai, Aj)
}
, (6.1)

where

Jij(Ai, Aj) =

H∑
h=1

softmax(QhKhT

)ijV
h
Ai,Aj

(6.2)

and Z is the normalisation constant. The generative character of the model

depends on the particular technique used to sample over P (A). An efficient

approach exploits Bayes’ theorem and the chain rule for probability [34] in

order to write the N-dimensional distribution using the exact factorisation

P (A) =

N∏
i=1

P (Ai|Ai−1, Ai−2, . . . , A1), (6.3)

where P (Ai|Ai−1, Ai−2, . . . , A1) is the probability distribution for amino-acid

in position i, conditioned to all previous positions. Such a model is define an

auto-regressive model, adopting a terminology originating from the literature on

time-series models where previous time-steps observations of a system are used

to predict its current state. In our case, we fix an ordering for the variables

so that the distribution of the ith random variable depends on the values of

all the preceding ones in the chosen ordering. In particular, we may use a

parameterisation of the conditional distributions which follows that of equation

6.1:

P (Ai|Ai−1, Ai−2, . . . , A1) =
exp

{∑i−1
j=1 Jij(Ai, Aj)

}
zi(Ai−1, Ai−2, . . . , A1)

=
exp

{∑i−1
j=1 Jij(Ai, Aj)

}
∑q

Ai=1 exp
{∑i−1

j=1 Jij(Ai, Aj)
} , (6.4)

where at each step the normalisation factor zi can be computed in polynomial

time O(q), in contrast with the normalisation constant of the full distribution

which can only be compute in exponential time O(qN ).
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Finally, using an auto-regressive model of this kind turns the unsupervised

task of learning the full probability distribution from a Multiple Sequence Align-

ment into a task of supervised learning, where (Ai−1, . . . , A1) is the input feature

vector and Ai represents the output label. This opens the way to the imple-

mentation of possible new techniques coming from the much wider literature on

supervised learning [33].

6.1.3 Inter-Attention for Protein-Protein Interactions

In this thesis we presented the Attention Mechanism as a set of techniques used

to learn relationships of various nature depending on the specific input data

under investigation. In particular, we focused on general-purpose attention and

self- or intra-attention which is the version on which we based AttentionBased-

DCA. In the context of proteins, self-attention is used to learn the specific

language of a family, i.e. the patterns that characterise phylogenetically related

homologous sequences.

A possible future line of research is that of implementing an inter-attention

based statistical modelling aimed at studying Protein-Protein Interactions (PPI).

In order to carry out their biological function, proteins tend to aggregate in

networks by means of physical interactions [35], [36]. As in residue-residue

contacts, protein-protein interaction mechanisms are conserved across different

species due to the high degree of co-evolution between residues at the interface

of partner proteins. Following a linguistic analogy, an inter-attention model

for the statistical analysis of PPI would be equivalent to a translation process

where proteins of a given family are associated with their partner proteins from

another family. In our architecture, this could be implemented by allowing the

Value matrix V to learn across different families and introducing family-specific

Queries and Keys matrices.
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