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ABSTRACT

Economic Complexity (EC) algorithms estimate the fitness and complexity of the nodes of
bipartite networks, such as the network of countries and their exported products. In their appli-
cation to country-product networks, EC algorithms try to shed light on the hidden capabilities
of countries. Capabilities represent the intangible assets driving the development and wealth of
countries, such as infrastructures and educational systems. We begin by analyzing the linear Eco-
nomic Complexity Index (ECI) method, for which a country is fit if it exports complex products.
Analogously, a product is complex if fit countries export it. We then study the non-linear Economic
Fitness Complexity in its non-homogeneous version (NH-EFC). In this case, countries with high
fitness export various products, from very simple to very complex. If a non-fit country exports a
product, this product has low complexity. The primary outcome of both algorithms is to deliver
the list of countries ranked according to their fitness. These algorithms cease to work when the
network is not bipartite, even if there is only one “weak” link between two nodes of the same
class (e.g., country-country or product-product). Our task has been to generalize them to deal
with non-bipartite networks. We show that the NH-EFC is more stable after introducing small
non-bipartite perturbations (random uncorrelated noise), i.e., the perturbation leaves the ranking
of countries almost unchanged. Eventually, we apply the NH-EFC to study the complexity of the
prey-predator ecosystem in Florida Bay and disclose information on the hidden capabilities of the
organisms in the system.



Da queste mura, una risata invaderà il mondo, infettando di coraggio il laborioso peone
dell’antichità chino sul suo lavoro ⇠ Jack Kerouac
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Introduction

Recently, new tools have been introduced to help assess the health of countries’ economic
growth. These tools complement those already used in macroeconomics and are generally consid-
ered to belong to the Economic Complexity (EC) field. In this new view, the international trade
among countries can be described as a bipartite network composed of countries on the one side and
thousands of their exported goods on the other. Countries and products are mutually linked, but
no link is considered between countries nor between products. By exploiting the network structure,
new metrics for evaluating the economy of countries and the quality of products can be therefore
built. EC algorithms aim to gain information on the capabilities of the countries, that is, all the
intangible assets driving their development and wealth, such as infrastructures and educational
systems. The first work in this new direction we will introduce is the Economic Complexity Index
(ECI) algorithm [1]. The key idea behind the linear map defining the algorithm is that a country
is fit if it exports complex products. Analogously, a product is complex if fit countries export it.
The second EC algorithm we will introduce is the non-linear Economic Fitness Complexity (EFC)
method [2]. It is based on the fact that countries with high Fitness export a large variety of prod-
ucts, from very simple to very complex, while countries with low Fitness export only the products
exported by most countries. The third and final algorithm we will see is the non-homogeneous
version of the latter (NH-EFC), which solves the convergence issues a↵ecting the original algo-
rithm [3]. All these algorithms cease to work as soon as the network is not bipartite anymore,
even if there is only one “weak” link between two nodes of the same class (country-country or
product-product). The aim of this thesis is thus to generalize EC algorithms to apply them also
to non-bipartite networks.

The structure of this work is the following. In Chapter 1, we will present an overview of the EC
literature, first by presenting and explaining the concept of capability, then introducing the above
three algorithms and the equations defining them. Then, in Chapter 2, we will express the ECI
algorithm in matrix representation and study its spectral properties. Moreover, we will see that
by recasting the formalism in terms of the adjacency matrix of the network, we manage to use EC
algorithms even in the case of non-bipartite networks. Then, we will add random uncorrelated noise
(i.e., linking countries with countries and products with products randomly). Focusing firstly on
the ECI algorithm, we will compare the results obtained by directly applying the iterative method
with those obtained using the components of the eigenvectors. Secondly, we will analyze the
stability of both the ECI and the NH-EFC algorithms with respect to this perturbation. Finally,
in Chapter 3, we will apply the NH-EFC method to the Florida Bay prey-predator network to
assess the hidden capabilities of the system. Moreover, we will investigate the correlation between
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Fitness and Complexity and use two di↵erent methods to classify approximately the nodes into
two classes, prey and predator.
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Background & Notation

Here we introduce the background definitions and results we shall use throughout the thesis.
First of all, we rigorously introduce the concepts of graph and bipartite/tripartite graph.

Definition 0.1 (Digraph, Graph). A directed graph (digraph) G is an ordered pair G = (V,E)
where V is called the set of vertices (or nodes) and E ✓ V ⇥V is called the set of edges. Self-edges
(i, i) will not be allowed, that is (i, i) /2 E. An undirected graph (sometimes called simply a graph)
is an ordered pair G = (V,E) where V is called the set of vertices (or nodes) while E ⇢ [V ⇥ V ] is
called the set of edges and it is a subset of pairs of vertices in which opposite pairs [(v, w)] = [(w, v)]
are identified in a single equivalence class. The equivalence class symbol [·] is normally omitted.

Definition 0.2 (Bipartite Graph). A graph is said to be bipartite if G = (V,E) with V =
A [B, ; = A \B and E ⇢ A⇥B.

Definition 0.3 (Tripartite Graph). A graph is said to be tripartite if G = (V,E) with V =
A [B [ C, ; = A \B = B \ C = C \A and E ⇢ A⇥B _B ⇥ C _ C ⇥A.

We now define the important concept of stochastic matrix.

Definition 0.4 (Stochastic Matrix). A square matrix is said to be stochastic if each of its
entries is a nonnegative real number and each row (or column) sums to 1.

In Chapter 2 we will use an important result concerning (also) stochastic matrices, that is the
Perron Frobenius theorem.

Theorem 0.5 (Perron Frobenius Theorem). Let T be an N ⇥N stochastic matrix such that
for a certain power Tm all entries are positive. Then T has one (up to a scalar) eigenvector ⇢

⌧max

with positive components and no other eigenvectors with nonnegative components. The eigenvalue
⌧max corresponding to ⇢

⌧max
is simple, equal to 1 and greater than the absolute values of all other

eigenvalues.

In terms of notation, a bold letter will denote a matrix, for instance X, while Xij will indicate
its entries, and X

T its transpose.
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1. Economic Complexity Literature

One of the main objectives of economic complexity (EC) algorithms is to estimate the capa-
bilities of countries from the products they export. Capabilities represent the intangible assets
that drive the development and wealth of countries, i.e., the socio-economic substrate on which the
national economic system is built, such as infrastructures and educational systems. Nevertheless,
there is no universal standard measure for characterizing them. Each product requires specific and
necessary capabilities that a country must own to produce and then export that product. Thus
the basket of exported products of a country contains hidden information about its fundamental
capabilities. We can represent this framework as a tripartite network country (C) - capability (K)
- product (P) in which capabilities are the intermediate layer between countries and products. The
non-observability of capabilities means that we can only access the “contraction” of this tripartite
network into the bipartite country-product network. In this sense, the export of countries can be
informative about capabilities. From now on, we will focus on the bipartite graph C - P.

Figure 1.1: Tripartite network C - K - P projection into C - P bipartite network. Image taken from [4].

1.1 Economic Complexity Index

In 2009, Hidalgo and Hausmann (from now on, HH) published [1], introducing the so-called
Method of Reflections. This algorithm allows to rank countries and products in the international
market by using only the information contained in the country-product binary matrix M, whose
entries Mcp are 1 if the country c exports the product p and 0 otherwise. For a rigorous derivation
of the matrix M and more information on the dataset that we will use, see appendix A.
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Let Nc and Np be respectively the number of countries and the number of products. The total
number of exported products by each country is thus given by

kc =

NpX

p=1

Mcp, (1.1)

while the number of countries exporting a certain product is given by

kp =
NcX

c=1

Mcp. (1.2)

These two quantities respectively represent the diversification of c and the ubiquity of p. The
iterative map defining the algorithm is the following

(
k
(n+1)
c = 1

kc

PNp

p=1 Mcpk
(n)
p

k
(n+1)
p = 1

kp

PNc

c=1 Mcpk
(n)
c ,

(1.3)

with the initial conditions k
(0)
c ⌘ kc and k

(0)
p ⌘ kp. That is, the diversification kc represents the

zeroth order measure of the quality of country c (the more products a country exports, the best its
position in the market). While the ubiquity kp represents the zeroth order measure of the dis-value
of product p in the global competition (the more countries produce a product, the least is its

value on the market). k(n)c and k
(n)
p are respectively called Economic Complexity Index (ECI) and

Product Complexity Index (PCI). The countries, sorted by their ECI, will form a ranking, and
analogously the products sorted by their PCI. We will refer to this algorithm as ECI.

In the standard view of Ricardian theory [5], an optimal situation occurs when the national
economies have a high degree of specialization so that it would be possible to rearrange rows and
columns ofM to make it almost block-diagonal. Conversely, by reordering the rows and columns by
kc and kp, M approximately takes a triangular shape, as shown in Fig. 1.2. Thus evolved countries
become more complex by acquiring a higher degree of diversification instead of specializing.

Figure 1.2: Matrix M for the year 2010 with rows and columns reordered by respectively decreasing kc
and kp. Image taken from [4].
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1.2 Economic Fitness Complexity

The approximate triangular structure of M implies that the information that a diversified
country exports a product conveys little information about the complexity of the product itself.
Indeed, these countries export almost all products. Conversely, the products exported by less
competitive countries are supposed to have low complexity. To account for this, Tacchella et al. [6]
introduced a non-linear algorithm, i.e., the Economic Fitness Complexity (EFC). The non-linear
iterative map defining the algorithm is the following

8
>><

>>:

F̃
(n+1)
c =

P
p McpQ

(n)
p

Q̃
(n+1)
p =

1
P

c Mcp
1

F
(n)
c

!

8
>>><

>>>:

F
(n)
c =

F̃
(n)
c

hF̃ (n)
c ic

Q
(n)
p =

Q̃
(n)
p

hQ̃(n)
p ip

,

(1.4)

with initial conditions F̃
(0)
c = 1 8c and Q̃

(0)
p = 1 8p. F̃

(n+1)
c and Q̃

(n+1)
p are the intermediate

values of F (n+1)
c and Q

(n+1)
p . Indeed, at each step the intermediate values are normalized by their

algebraic means. The normalization is required for the stabilization of the non-linear map. The
two new quantities introduced in Eq. 1.4 are the Complexity of a product (Qp) and the Fitness of
a country (Fc). Fitness is obtained as the sum of the Complexity of the exported products, while
Complexity non-linearly depends on the Fitness of the exporting countries. Indeed, as explained
above, countries with high Fitness should have less weight in determining the Complexity of a
product, while countries with low Fitness should contribute strongly. That is, if a country with
high Fitness exports a product, this does not a↵ect much its Complexity, while if a country with
low Fitness exports a product, then this product has low Complexity (i.e., it is simple).

Comparing (1.3) and Eq. (1.4) we notice a fundamental di↵erence. Indeed, for the first order of
the ECI, the successfulness of a country is given by the average Complexity of its products. While,
for EFC, Fitness is equal to the sum of the Complexity of its products. Moreover, as shown in [4],
ECI rapidly loses correlation with the capabilities of the countries when iterated. On the other
hand, Fitness preserves the information on the diversification of the export baskets. For instance,
let us consider two countries, one developed and one not. The first will have a more diversified
export basket, and on average, the Complexity of its products will be higher than the one of the
second. Therefore the next iteration should increase the gap between the two compared to the
starting point. This reasoning applies to all the orders of the iterative method.

1.3 Non-Homogeneous Economic Fitness Complexity

Despite the success of EFC, which has been used for state-of-the-art forecasting for economic
growth [2, 7], it su↵ers from a couple of issues. The first one is a convergence issue [8]. In the
original work, they have addressed it by introducing the notion of “rank convergence” instead
of dealing with absolute convergence. That is, they consider the fixed point achieved when the
ranking of countries stays unaltered step by step. The second one is that despite their finite
capabilities, the countries that export no good have zero Fitness. Servedio et al. [3] solved these
issues by introducing a non-linear non-homogeneous map (NH-EFC). Introducing the new variable
Pp = Q

−1
p and the parameters φc and ⇡p, the set of iterated variables thus becomes

(
F

(n)
c = φc +

P
p0 Mcp0/P

(n−1)
p0

P
(n)
p = ⇡p +

P
c0 Mc0p/F

(n−1)
c0 ,

(1.5)
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with 1  c  Nc and 1  p  Np, and initial conditions F (0)
c = 1 8c and P

(0)
p = 1 8p. In contrast

to the original map, the non-homogeneous one is not defined up to a multiplicative constant. The
normalization procedure is thus not necessary. The parameter φc represents the intrinsic Fitness
of a country. Indeed, each country has a set of capabilities characterizing it regardless of its
exports. The inverse of the parameter ⇡p can be considered an innovation threshold. If a product
has not been invented yet, then no country exports it, and its quality lies at its maximum value.
The smaller the parameter is, the higher the Complexity of the product and more sophisticated
capabilities are necessary to produce it. Let now φc = ⇡p = δ 8c, p. Introducing the new variables
P̃p = Pp/δ and F̃c = Fcδ, Eq. (1.5) can be recast in the form

(
F̃

(n)
c = δ

2 +
P

p0 Mcp0/P̃
(n−1)
p0

P̃
(n)
p = 1 +

P
c0 Mc0p/F̃

(n−1)
c0 .

(1.6)

In particular, as soon as the parameter δ2 is much smaller than the typical value of Mcp (i.e.,
δ
2 ⌧ 1), the fixed point does not depend on δ. In this new metric, Q̃p = (P̃p − 1)−1 represents the
Complexity of a product.
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2. Introducing Non-Bipartite Perturbations

2.1 ECI

Let us now focus on the ECI algorithm. To homogenize the notation, in analogy with the EFC

algorithm, let F (n)
c and Q

(n)
p identify the quantities previously labeled as k(n)c and k

(n)
p defined in

Eq. (1.3). We thus have
(
F

(n+1)
c = 1

kc

P
p McpQ

(n)
p

Q
(n+1)
p = 1

kp

P
c McpF

(n)
c ,

(2.1)

with c = 1, . . . , Nc and p = 1, . . . , Np. Inserting the second into the first and vice versa, we get

(
F

(n)
c = 1

kc

P
c0p

1
kp
McpMc0pF

(n−2)
c

Q
(n)
p = 1

kp

P
cp0

1
kc
McpMcp0Q

(n−2)
p .

(2.2)

2.1.1 Matrix Representation and Spectral Analysis

We now want to recast the ECI algorithm in a vectorial form to study it through its spectral
properties. We begin by introducing the matrices D

−1 and U
−1, defined as follows. Let ~d and

~u be respectively the Nc dimensional vector of the diversification of the countries and the Np

dimensional vector of the ubiquity of the products. That is, let ~Nc and ~Np be respectively the
Nc and Np dimensional vectors of 1s. We have

~d = M~Nc , ~u = M
T~Np . (2.3)

We thus construct the diagonal matrices D and U whose diagonal entries are the elements of the
vectors ~d and ~u. We can finally define D

−1 and U
−1 as

D
−1=̇

0

B@

1
d1

. . .
1

dNc

1

CA

=

0

B@

1
kc=1

. . .
1

kc=Nc

1

CA

(2.4)
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and

U
−1=̇

0

B@

1
u1

. . .
1

uNp

1

CA

=

0

BB@

1
kp=1

. . .
1

kp=Np

1

CCA .

(2.5)

That is, D−1 is the Nc⇥Nc diagonal matrix with (diagonal) entries the inverse of the diversification
of the countries, while U

−1 is the Np ⇥Np diagonal matrix with (diagonal) entries the inverse of
the ubiquity of the products. Therefore, Eq. (2.2) is equivalent to

(
~F
(n) = D

−1
MU

−1
M

T ~F (n−2)

~Q
(n) = U

−1
M

T
D

−1
M ~Q

(n−2)
,

(2.6)

where ~F
(n) and ~Q

(n) are respectively Nc and Np dimensional vectors 8n. We then define the
matrices S1 and S2 as S1 = MU

−1
M

T and S2 = M
T
D

−1
M. We notice that these matrices are

symmetric, indeed (
S
T
1 =

.
MU

−1
M

T
/T

= MU
−1

M
T = S1

S
T
2 =

.
M

T
D

−1
M
/T

= M
T
D

−1
M = S2,

(2.7)

since U
−1 and D

−1 are diagonal. Finally, defining the matrix N1 as N1 = D
−1

S1 and the matrix
N2 as N2 = U

−1
S2, we can express Eq. (2.6) as

(
~F
(n) = N1

~F
(n−2)

~Q
(n) = N2

~Q
(n−2)

,
(2.8)

or, in terms of the initial conditions, we have

(
~F
(2n) = N

n
1
~F
(0)

~Q
(2n) = N

n
2
~Q
(0)

.
(2.9)

Eq. (2.8) is a linear equation, finding the ECI by the Method of Reflections can thus be
reformulated as a fix-point problem and solved using the spectral properties of the (linear) system.
In particular, since N1 and N2 are stochastic ergodic matrices1, for the Perron Frobenius theorem
(see Theorem 0.5), their spectrum of eigenvalues is bounded in absolute value by their unique
upper eigenvalue λ1,21 = 1, where superscripts 1,2 refer to N1 and N2, respectively [9]. We now
want to find an expression that allows us to compute the eigenvector associated with the second
eigenvalue (for reasons that will soon become clear) without solving the full eigenvalue problem.
Let us now focus on ~F

(n), that is on countries (analogous results hold for the products). We start
by noticing that the eigenvectors of N1 are not orthogonal since N1 is not symmetric, we thus
define the symmetric matrix H

H = D
− 1

2S1D
− 1

2 = D
+ 1

2N1D
− 1

2 . (2.10)

1
The fact that they are stochastic matrieces follows from their definition. Indeed, multiplying M and MT

respectively by D−1
and U−1

is equivalent to normalizing their rows making them sum to one.
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H is symmetric, thus its eigenvectors are orthogonal. Moreover, it has the same eigenvalues of N1.
Indeed, the eigenvalue problem for H can be expressed as

H~ i = λi
~ i, (2.11)

which, using Eq. (2.10), becomes

D
1
2N1D

− 1
2 ~ i = λi

~ i. (2.12)

Thus
N1

.
D

− 1
2 ~ i

/
= λi

.
D

− 1
2 ~ i

/
! N1~'i = λi~'i, (2.13)

where we defined ~'i = D
− 1

2 ~ i. We can express ~'(n)
i as

~'
(n)
i = N1~'

(n−1)
i = · · · = N

n
1 ~'

(0)
i . (2.14)

We can thus compute λi with the following formula.

λi = lim
n!1

000N1~'
(n)
i

000
000~'(n)

i

000
. (2.15)

For the first eigenvector, since λ1 = 1, we have

~'
(n)
1 = N1~'

(n−1)
1 . (2.16)

Exploiting the orthogonality of ~ i, we have

δij =
.
~ i

/T ~ j =
.
~'i

/T
D

1
2D

1
2 ~'j =

.
~'i

/T
D~'j , (2.17)

implying .
~'i

/T
D~'j = δij . (2.18)

Thus ~'i can also be orthogonalized if appropriately multiplied by D. We can therefore use
Gram–Schmidt process to compute the second eigenvector, that is

~'
(n)
2 = ~'

(n)
1 −

 
~'
(n)
1 · ~d
00~d
002

!
~d. (2.19)

The eigenvector corresponding to λ1 = 1 is simply a uniform vector with identical components.
This is the reason why Hidalgo and Hausmann prescribe to stop their algorithm after a finite
number of iterations, otherwise all countries would have the same asymptotic value (ECI). By
ordering the eigenvalues λi in decreasing order λ1 > |λ2| ≥ · · · ≥ |λNc | and expanding ~F

(0) as

~F
(0) = a1~'1 + a2λ2~'2 + · · ·+ aNcλNc ~'Nc , (2.20)

we can express the first equation of Eq. (2.9) as

~F
(2n) = a1~'1 + a2λ

n
2 ~'2 + · · ·+ aNcλ

n
Nc
~'Nc

= a1~'1 + a2λ
n
2 ~'2 +O((λ3/λ2)

n).
(2.21)

Therefore, at sufficiently large n, the ranking of the countries is determined by the components
of ~'2. Thus, computing the components of the eigenvector associated to the second eigenvalue
means determining the ranking of countries. With Eq. (2.19), we can do this without solving the
full eigenvalue problem. We finally notice that the ranking is independent of the initial conditions
~F
(0).
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2.1.2 Adjacency Matrix Representation

Up until now, we have represented the bipartite network of countries and products in terms
of its matrix M. We now recast this formalism in terms of the adjacency matrix A given by the
(Nc +Np)⇥ (Nc +Np) square matrix

A =

✓
0 M

M
T 0

◆
. (2.22)

The diagonal blocks are blocks of zeros (the first of dimensions Nc ⇥Nc and the second Np ⇥Np)
since the graph is bipartite. There are therefore no links among countries, nor among products.
We notice that A is a symmetric matrix. Let ~k be the Nc +Np dimensional vector whose first Nc

components are the kc associated to the countries (their diversification) and whose last Np are the
kp associated to the products (their ubiquity). Thus, in terms of the adjacency matrix, we have

(
F

(n+1)
i = 1

ki

P
j AijQ

(n)
j

Q
(n+1)
i = 1

ki

P
j AijF

(n)
j ,

(2.23)

with i, j = 1, . . . , Nc + Np. Now, ~F (n) and ~Q
(n) are Nc + Np dimensional vectors 8n. The

first Nc components of ~F (n) represent the Fitness of countries2, while the last Np components of
~Q
(n) represent the Complexity of products. Although expressed in a di↵erent form, Eq. (2.23) is

equivalent to Eq. (2.1). Indeed, let us consider for instance F
(n+1)
c , we have

F
(n+1)
c =

1

kc

X

j

AcjQ
(n)
j

=
1

kc

 
NcX

j=1

AcjQ
(n)
j +

Nc+NpX

j=Nc+1

AcjQ
(n)
j

!

=
1

kc

Nc+NpX

j=Nc+1

AcjQ
(n)
j

=
1

kc

X

p

McpQ
(n)
p ,

(2.24)

where the first sum in the second line is zero since Acj = 0 8j = 1, . . . , Nc. Moreover, the last
two expressions are equivalent, they only di↵er for the notation (j = Nc + 1, . . . , Nc + Np !
p = 1, . . . , Np). We notice that by using the adjacency matrix representation, we can define two

new quantities, the Complexity of countries (represented by the first Nc components of ~Q(n))
and the Fitness of products (represented by the last Np components of ~F (n)). In the case of
the ECI algorithm, since it is symmetric, given the same initial conditions, the Complexity of
countries is equivalent to their Fitness, and analogously the Fitness of products is equivalent to
their Complexity, as we can see expressing these new quantities in terms of the matrix M

(
F

(n+1)
p = 1

kp

P
c McpQ

(n)
c

Q
(n+1)
c = 1

kc

P
p McpF

(n)
p .

(2.25)

2
By the term Fitness, we now refer to the quantity defined in the first equation of Eq. (2.23), even though we

are dealing with the ECI algorithm. We made this choice because we will soon introduce the concept of Fitness of

products and the Complexity of countries. Therefore, to continue calling the quantity F by the name Economic

Complexity Index would have been misleading.
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The latter is equivalent to Eq. (2.1) except for the notation (Fc ! Qc and Qp ! Fp), while in the
EFC algorithm this is no longer the case. We now want to find the matrices D

−1
A and U

−1
A that

are analogous to D
−1 and U

−1. In analogy with what was done before, we can define the vectors
~dA and ~uA as

~dA = ~uA = A~Nc+Np (2.26)

where ~Nc+Np is the Nc +Np dimensional vector of 1s. We thus have

U
−1
A = D

−1
A =̇

0

BBBBBBBBB@

1
d1

. . .
1

dNc
1

dNc+1

. . .
1

dNc+Np

1

CCCCCCCCCA

=

0

BBBBBBBBB@

1
k1

. . .
1

kNc
1

kNc+1

. . .
1

kNc+Np

1

CCCCCCCCCA

.

(2.27)

That is, D
−1
A and U

−1
A are the diagonal matrices whose (diagonal) entries are the inverse of

the elements of the vector ~k (that is the diversification of the countries and the ubiquity of the
products). We notice that now D

−1
A = U

−1
A . Eq. (2.6) can thus be recast with the adjacency

matrix representation as

(
~F
(n) = D

−1
A AU

−1
A A

T ~F (n−2) = NA
~F
(n−2)

~Q
(n) = U

−1
A A

T
D

−1
A A ~Q

(n−2) = NA
~Q
(n−2)

.
(2.28)

In the latter we have introduced the matrix NA =̇ D
−1
A AU

−1
A A

T = U
−1
A A

T
D

−1
A A which is analo-

gous to the matrices N1 and N2 in the previous formalism. The fact that the evolution of ~F (n) and
of ~Q(n) is characterized by the same matrix NA is in accordance with what was said before about
the Complexity of countries being equivalent to their Fitness, and analogously for the products.
We now express NA in terms of the matrix M in order to study its eigenvalues and eigenvectors.
We have

NA = D
−1
A AU

−1
A A

T

= (D−1
A A)2.

(2.29)

The product D−1
A A can be expressed as

D
−1
A A =

✓
D

−1 0
0 U

−1

◆✓
0 M

M
T 0

◆

=

✓
0 D

−1
M

U
−1

M
T 0

◆
.

(2.30)
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Thus

NA =

✓
0 D

−1
M

U
−1

M
T 0

◆✓
0 D

−1
M

U
−1

M
T 0

◆

=

✓
D

−1
MU

−1
M

T 0
0 U

−1
M

T
D

−1
M

◆

=

✓
N1 0
0 N2

◆
.

(2.31)

In terms of the initial conditions, we have
(
~F
(2n) = (NA)n ~F (0)

~Q
(2n) = (NA)n ~Q(0)

.
(2.32)

In particular, N1 and N2 are the products of the same matrices but in di↵erent order. Thus all
the Nc eigenvalues of N1 are also eigenvalues of N2 (but since it is Np ⇥ Np dimensional it also
has other eigenvalues). Moreover, since the spectrum of a block diagonal matrix is the union of
the spectra of the blocks, NA has as upper eigenvalue λ = 1 with degeneracy 2. Therefore, as seen
before, at sufficiently large n the eigenvector ~'2 of N1 associated with its second eigenvalue will
completely determine the ranking of countries. It can be expressed in terms of eigenvectors of NA

as

vN1 =

0

BBBBBBBB@

('2)c=1
...

('2)c=Nc

0
...
0

1

CCCCCCCCA

, (2.33)

where the last Np entries are zeroes. Analogously, let ~φ2 be the eigenvector associated with the

second eigenvalue of N2. At sufficiently large n, ~φ2 will completely determine the ranking of
products. It can be expressed in terms of eigenvectors of NA as

vN2 =

0

BBBBBBBB@

0
...
0

(φ2)p=1
...

(φ2)p=Np

1

CCCCCCCCA

, (2.34)

where the first Nc entries are zeroes.

2.1.3 Non-Bipartite Perturbations

We now want to study what happens if random perturbations are added to the system, i.e.,
if we consider random links between countries and between products, resulting in the adjacency
matrix A having non-zero elements in the diagonal blocks. That is, we are now considering a graph
that is no longer bipartite. We begin by considering an adjacency matrix of the form

A = A0 + "A1, (2.35)

13



where A0 is the adjacency matrix of the bipartite case, " is a small parameter (whose values we
will vary in the next steps) representing the strength of the perturbation, and A1 is a random
matrix of the following form

A1 =

✓
A1a 0
0 A1b

◆
. (2.36)

In particular, A1a and A1b are binary random matrices with the constraint of having the diagonal
elements set to zero to avoid self loops (A1a is a Nc⇥Nc dimensional matrix while A1b is a Np⇥Np

dimensional matrix). We sample from two di↵erent probability distributions. In the first one the
probability that the entries of A1a and A1b are 1 is 50%, and in the second it is 1% (henceforth,
we will refer to these probability distributions as the first and the second, respectively).

We now study how varying " the di↵erence between the first two eigenvalues of NA changes.
Indeed, the new links added to the system act as a perturbation that removes the degeneracy of its
eigenvalues. Since NA is still a stochastic matrix, the largest eigenvalue will be 1, independently
of the perturbation. On the other hand, the second largest eigenvalue, which we call λ, will no
longer be equal to 1 once we add a perturbation. It means that if we apply the ECI algorithm,
as we explained before, it converges to the second eigenvector of NA. However, it is no longer the
eigenvector that provides the ranking, since it corresponds to the almost constant eigenvector with
almost identical components. It means that the ECI algorithm, used in its iterative formulation,
will lead to improper results. In Fig. 2.1, for the first and the second probability distribution, we
compare the original (unperturbed) ranking of countries with each perturbed one (that is, one for
each value of "). We make the comparison by counting the minimum number of swaps necessary
to make the two rankings equal3. For the first probability distribution, even for small values of the

Figure 2.1: Number of swaps in the ranking of countries between unperturbed and perturbed case for ECI
iterative algorithm for the two probability distributions.

3
For this and all the following plots, error bars will not be present. We have run the code several times, obtaining

approximately the same results (i.e., variation in the number of swaps on the order of units). However, for values of

the parameter of almost one, the computation time significantly increases, not allowing us to repeat the computation

a large number of times.

14



parameter as " = 5 · 10−5, there are more than one thousand swaps, meaning that the iterative
application of the ECI algorithm is strongly a↵ected by the perturbation, giving a very di↵erent
ranking as we expected. For the second probability distribution, we reach more than one thousand
swaps for " = 10−3. We will see soon that we can obtain better results looking at the eigenvector
components, despite performing this kind of analysis is more tricky in the perturbed case. In Fig.
2.2, it is shown the behavior of the quantity ∆ = 1 − λ as a function of " for the two probability
distributions. We thus see that with the increase of the strength of the perturbation, the di↵erence

Figure 2.2: ∆ dependence on " for the two probability distributions.

between the first two eigenvalues significantly increases, growing from the magnitude order of one-
thousandth (for the first probability distribution, while for the second one it is even smaller) for
" = 10−5 to almost one for " = 10−1. We notice that for each value of the parameter ", both
the di↵erence between the first two eigenvalues and the number of swaps in the ECI perturbed
ranking are smaller for the second probability distribution with respect to the first one. Moreover,
analogous results will hold for the next computations. The reason is that when we sample from
the second probability distribution, we add fewer links to the adjacency matrix, which is thus more
similar to the unperturbed one.

We now focus on the second couple of eigenvalues of NA, that is, the third and the fourth
ones, which we denote λ3 and λ4. In the bipartite case, the eigenvectors associated with these two
eigenvalues are vN1 and vN2 , that we defined in Eq. (2.33) and Eq. (2.34). They determine the
ranking of countries and the ranking of products, respectively. Fig. 2.3 shows the behavior of λ3 and
λ4 as a function of " for the two probability distributions. We notice again that the perturbation
removes the degeneracy for both the eigenvalues. A significant consequence of the perturbation is
that the eigenvectors determining the ranking of countries and products are now mixed. Therefore,
it is not trivial to understand which of the two eigenvectors determines the ranking of countries
and which determines the ranking of products. Thus, we analyze both, focusing on the ranking of
countries. In Fig. 2.4 and Fig. 2.5, for the first and the second probability distribution, respectively,
we compare the original (unperturbed) ranking with each perturbed one. The behavior is similar
for the two probability distributions. The main di↵erence is that, for the first one, the number of

15



Figure 2.3: λ3 and λ4 dependence on " for the two probability distributions.

Figure 2.4: Number of swaps in the ranking of countries between the unperturbed case and the ranking
done with third and fourth eigenvectors as a function of " for the probability distribution of 50%.

swaps between the unperturbed ranking and the one done with the fourth eigenvector explodes
before (" = 0.05) compared to the second one (" = 0.5). The ranking done with the components
of the third eigenvector is more similar to the original one. We thus conclude that this eigenvector
determines the ranking of countries.
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Figure 2.5: Number of swaps in the ranking of countries between the unperturbed case and the ranking
done with third and fourth eigenvectors as a function of " for the probability distribution of 1%.

2.2 NH-EFC

In this section, we will conduct a similar study on NH-EFC and compare the results with those
obtained with ECI. We can rewrite the NH-EFC algorithm in the adjacency matrix formalism as

(
F̃

(n)
i = δ

2 +
P

j Aij/P̃
(n−1)
j

P̃
(n)
i = 1 +

P
j Aji/F̃

(n−1)
j .

(2.1)

Since this algorithm is not linear, we can no longer study Fitness and Complexity through the
spectral properties of a matrix. Thus, we have to apply the algorithm in its iterative form.

Again, we compare the ranking without perturbation with those obtained for di↵erent values
of the parameter " by counting the number of swaps. Fig. 2.6 shows the results for the first
probability distribution of both NH-EFC and ECI (computed with the third eigenvector)4. The
picture inside Fig. 2.6 is a photo with uncorrelated white noise. Despite the presence of the
noise, we are still able to see and recognize two people and several colored balloons. Analogously,
spurious links in the country-product network do not a↵ect the NH-EFC algorithm. Although the
perturbation, it manages to reproduce the unperturbed ranking almost perfectly, with swaps on
the order of units up to " = 0.05. It then reaches values of a few hundred for " = 0.5. On the other
hand, for ECI, the number of swaps is hundreds from the value " = 10−3. In Fig. 2.7, the results
for the second probability distribution are shown. In this case, the number of swaps for NH-EFC
is almost constant (between 15 and 20 swaps for all the values of the parameter). Regarding ECI,
for small values of " there are fewer swaps than NH-EFC, while for " = 5 · 10−3 they are more,
and finally it explodes for " ⇡ 0.1. We conclude that the NH-EFC algorithm is much more stable
than the ECI algorithm with respect to non-bipartite perturbations.

4
The number of swaps of ECI is computed with respect to the unperturbed ECI ranking and the number of

swaps of NH-EFC is computed with respect to the unperturbed NH-EFC ranking.
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Figure 2.6: Number of swaps in the ranking of countries between unperturbed and perturbed case for both
ECI (third eigenvector) and NH-EFC with probability distribution of 50%.

Figure 2.7: Number of swaps in the ranking of countries between unperturbed and perturbed case for both
ECI (third eigenvector) and NH-EFC with probability distribution of 1%.
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3. Prey-Predator Network

In this chapter, we will use the results of Section 2.2 to study an example of the prey-predator
network. Indeed, the formalism introduced in the previous chapter allows us to deal also with
directed graphs. The prey-predator network is a relevant example of a directed non-bipartite
network since in the food chain, organisms that are neither top predators nor primary producers
both eat and are eaten. In the specific example we will consider, the nodes are organisms while
the edges represent directed carbon exchange in Florida Bay1. Therefore there is an edge from i

to j if organism i eats species j2. In the network, 128 nodes are present, but we removed the last
six since they do not represent organisms (they indicate Water POC, Benthic POC, DOC, Input,
Output, and Respiration). Our network thus consists of 122 nodes and 1767 edges, as shown in
Fig. 3.1. The nodes are colored using the HITS algorithm [10]. This algorithm assigns two scores
for each node: a hub value and an authority value. The more nodes it points to, the higher the hub
value, while the more nodes point towards it, the higher the authority value. Specifically, lighter
nodes have a low hub value, while darker nodes have a high hub value.

In [11], the EFC algorithm is applied to ecological networks. Specifically, they consider the
bipartite networks such as plant-pollinator, seed-disperser, and anemone-fish networks. In each of
these, the first element represents a passive agent and corresponds to the products of the original
Economic Complexity algorithm. On the other hand, the second element is active and corresponds
to the countries. Moreover, rather than Fitness and Complexity, they use the terms importance
and vulnerability. The importance of active species is determined by the number of its mutualistic
passive partners, each weighted with its vulnerability. That is, the more partners and the more
vulnerable they are, the more important an active element is. On the other hand, the vulnerability
of a passive element is bounded by the less important species it interacts with, analogously with
the country-product network. However, in our case, it is no longer possible to distinguish between
passive and active agents since most elements are both.

We have applied the NH-EFC and computed the Fitness and the Complexity of each organism,
as shown in Fig. 3.2. We highlighted four organisms, i.e., phytoplankton, spotted seatrout, green
turtle, and barracuda. The first has both low Fitness and low Complexity, the second has inter-
mediate Fitness and intermediate Complexity, the third has high Fitness and low Complexity, and
the fourth has high Fitness and high Complexity. In particular, predators with high Fitness eat a
large variety of prey, from very simple to very complex. Predators with low Fitness eat only the
organisms eaten by most predators. On the other hand, if a predator with low Fitness eats one
prey, then the Complexity of the prey is low.

We now try to interpret these results in terms of the hidden capabilities of the system. Since
Fitness is determined by the number of organisms eaten (each weighted with its Complexity), it
means that if a predator has high Fitness, then it has more capabilities than others (i.e., more
clever, more versatile, or faster), as in the case of the barracuda. Moreover, because the organisms

1
Available at https://snap.stanford.edu/data/Florida-bay.html

2
In the original edge list, the nodes are switched, meaning that organism j eats species i.
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Figure 3.1: Florida Bay prey-predator network. Nodes are colored according to their hub value computed
with the HITS algorithm. The higher it is, the darker they are.

with high Complexity weigh more in determining the Fitness of a predator, it is thus more difficult
to eat them, like the green turtle.

Moreover, we notice that in the Fitness-Complexity plane, we can identify two regions. The
first one is close to the diagonal line going from low Fitness and low Complexity to high Fitness and
high Complexity. The second one is the one in the top left with low Fitness and high Complexity.
Therefore, Fitness and Complexity are correlated. In particular, we see that no organisms with
low Complexity have high Fitness.
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Finally, we said that in our case, it is no longer possible to separate passive and active agents
since most elements are both. However, we can still look for the best division of the nodes into two
classes: prey and predator. One way to proceed is by using Newman’s modularity [12]. Modularity
is a measure of the structure of networks used in community detection. Indeed, maximizing the
modularity corresponds to favoring connections between nodes of the same class (or module) and
disfavoring links between nodes of di↵erent modules. On the contrary, minimizing the modularity
corresponds to maximizing the bipartivity of the network [13]. That is, favoring links between
nodes of di↵erent classes and disfavoring connections between nodes of the same module. We
then obtain that the prey class consists of the first fifteen elements (the ones that do not eat
other organisms, corresponding to plankton species and seagrass) plus meroplankton and raptors.
Another way to do so is by using the HITS algorithm we used to color the nodes. We (arbitrarily)
put in the prey class the elements with the two lowest hub values, i.e., the first fifteen organisms
plus four zooplankton species. We notice that we obtain di↵erent results with the two methods
(and by changing the arbitrary choice of the second one) because since the network is not bipartite,
the division is not unique. That is, di↵erent algorithms bring di↵erent results.
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Conclusions

In this thesis, we have expressed both the ECI and the (NH-)EFC algorithm in terms of the
adjacency matrix of the network, which in the case of a bipartite network is a block matrix whose
diagonal blocks are zeroes. In this way, we managed to study the non-bipartite case simply by
considering a network adjacency matrix whose diagonal blocks were nonzero. We have thus applied
the ECI method to a network with random links between nodes of the same class. In the bipartite
case, the eigenvectors associated with the second eigenvalues of the matrices N1 and N2 determine
the countries’ ranking and products’ ranking, respectively. In the perturbed case, the eigenvector
associated with the second eigenvalue of NA has nearly identical components, so it contains no
ranking information. Indeed, the eigenvectors determining the ranking of countries and products
are now mixed. For the countries’ one, we saw that the third gives better results, meaning that for
high values of the parameter defining the strength of the links, it has fewer swaps (while the fourth
explodes) compared to the original one, deducing that the third eigenvector determines the ranking
of countries. Moreover, by using eigenvectors components, we get better results than by directly
applying the iterative procedure. Because the new eigenvalues are di↵erent, thus the number of
steps required for the iterative method is also di↵erent. Then, we compared the stability of ECI
with the ranking done with the third eigenvector and NH-EFC and showed that the NH-EFC is
more stable after introducing small non-bipartite random perturbations. Remarkably for NH-EFC,
the number of swaps is very few, even when the parameter reaches values of almost one. Finally, we
applied the NH-EFC algorithm to study the prey-predator ecosystem in Florida Bay, interpreting
our results in terms of the hidden capabilities of the system. In particular, if an organism has high
Fitness, it means that it has more capabilities than others (i.e., more clever, more versatile, or
faster), as in the case of the barracuda. Moreover, if an organism has high Complexity, it is thus
harder to eat it, as the green turtle. Furthermore, we saw that in the Fitness-Complexity plane, we
can identify two regions and that no organisms with low Complexity have high Fitness. Lastly, we
used two approaches to divide the nodes into the two classes of prey and predator. The first was
minimizing Newman’s modularity, while the second was using the HITS algorithm and arbitrarily
classifying the prey as the elements with the two lowest hub values. We obtained similar results,
i.e., in both cases, the prey class was composed of the first fifteen organisms that do not eat other
organisms and some other species of plankton. However, the two results were not equal since, with
the first method, also raptors appear to be in the prey class. Because the network is not bipartite,
the division is not unique, and di↵erent algorithms thus produce di↵erent results.

The interesting methodology that we developed can be further improved. For instance, we
could consider di↵erent weights for di↵erent types of swaps. In the sense that, e.g., one country
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changing its ranking position from the last to the first position should be considered di↵erently
than an equal number of swaps between neighbors (i.e., each country changes ranking position by
a few places). Moreover, we could compare Fitness and Complexity in the context of ecological
networks with existing ecological indices to study if there are correlations among them and to
better validate and interpret our results. A significant additional development would be using
Fitness and Complexity to detect endangered species. Lastly, we could apply the EC algorithms in
the version we developed to any other non-bipartite network, which has never been done because
it was not possible before.
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A. Methods

A.1 Dataset

We used data extracted from the BACI dataset [14]. We focused on the trading data of the year
1996. We removed the countries exporting nothing and the products exported by no one, obtaining
a total of 161 countries and 5036 products classified according to a four-digit code (six-digit code
coarse-grained by considering only the first four digits) [15].

A.2 Country-Product Binary Matrix

Starting from the flows qcp of US dollars representing the export in dollars of the product p

by the country c, we can then construct the binary matrix M through the so-called Revealed
Comparative Advantage (RCA) criterion. That is, the ratio between the export of the product p
by country c and the global export of p done by all countries is divided by the ratio between the
total export of c and the whole world export, i.e.

RCAcp =

qcpP
c0 qc0pP
p0 qcp0P

c0p0 qc0p0

. (A.1)

In order to build M from the RCA matrix, we consider Mcp = 1 if RCAcp ≥ 1 and zero
otherwise.

25



Bibliography

[1] C. A. Hidalgo and R. Hausmann The building blocks of economic complexity, PNAS 106, 10570–10575,
(2009), available at https://www.pnas.org/doi/full/10.1073/pnas.0900943106

[2] M. Cristelli, A. Tacchella, M. Cader, K. Roster and L. Pietronero On the Predictability of Growth,
Policy Research Working Paper 8117; The World Bank: Washington, DC, USA (2017), available at
https://openknowledge.worldbank.org/handle/10986/27620
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