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Summary

The growth of the Internet knows no rest, and brings with it the necessity to
deliver services at unprecedented orders of magnitude. The cloud has become
the foundation upon which services can be delivered and managed at scale, along
with engineering applications to be cloud-native. In this context, Kubernetes has
been the driving force behind the successful management, deployment and delivery
of large-scale services. With Kubernetes, computing nodes are brought together
into clusters, where organizations have full visibility over the overall resources at
their disposal, for an effective utilization of the deployed infrastructure. Moreover,
companies may need to control multiple clusters to ensure their presence in multiple
regions, increase availability, scale better in terms of maintenance, and may rely on
different cloud providers for cost management or vendor lock-in avoidance.

To take full advantage of a multi-cluster infrastructure, clusters may be connected
together to create a single yet flexible environment where the deployment of heavy
workloads can leverage the aggregate resources that clusters provide together. Liqo,
an open-source project started at Politecnico di Torino, embraces this idea and
makes it a reality. Liqo makes it possible to deploy an application consisting of
several micro-services to different clusters. To preserve the overall functioning
of the application, the different application’s components have to communicate
with one another, from one cluster to the other. This was achieved by creating a
hub-and-spoke topology, where traffic passed through a central hub cluster.

This thesis presents the design and implementation of a solution whereby
workloads deployed in a multi-cluster scenario can directly exchange traffic. With
this approach, clusters connected to a central cluster are able to discover one another
and exchange the network parameters required for direct communications, using
the central cluster as a relay. Once this initial setup completes, traffic starts flowing
directly, without traversing the central cluster, which is freed from networking
overhead and overloads the previous topology implied, reducing the latency in
communications and making them immune to temporary network outages on the
central cluster. This results in a mesh, peer-to-peer topology and was made possible
by evolving the networking and service reflection logic at the core of Liqo.
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Chapter 1

Introduction

Recent years have witnessed the rise of cloud-native solutions to handle the massive
amount of requests that big companies deal with on a daily basis to deliver their
services to millions of users. When developing software, this approach wins over the
traditional monolithic software architecture: the idea is to develop applications as
composed of many small highly-cohesive and loosely-coupled parts, whose life-cycle
can be easily and independently managed to accomplish the goal of the overall
application. The delivery of such small components meets an unprecedented ease
of management when associated with the containerization techniques and the
capabilities offered by container orchestrators that have spread across the software
industry.

Among those orchestrating systems, Kubernetes has earned a primary role in
the cloud scene. Thanks to its features, ease of use and powerful declarative API,
it enables users to effectively handle the high dynamism that characterizes the
modern working loads. Its value resides in these tools that are at the disposal of
developers, as well as in its open-source nature. All these elements contributed to
its spread, but even more importantly to the growth of the cloud community as a
whole. Indeed, cloud-native principles are no longer a prerogative of big companies,
but are becoming more and more used by small and medium sized firms.

As a result, clusters are being used in many aspects of the software industry, and
with this comes the necessity to interconnect them to fully exploit their capabilities.

1.1 Introducing Liqo
In this scenario, Liqo [1] takes its place and aims to contribute to enhance the
cloud-native experience even more and open the gates to new possibilities. Liqo is
an open-source project that enables dynamic and seamless Kubernetes multi-cluster
topologies, supporting heterogeneous on-premise, cloud and edge infrastructures.
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Introduction

It establishes itself over the Kubernetes API, and expands it to make different
clusters combine into a multi-cluster network of computing nodes.

Liqo provides automatic peer-to-peer establishment of relationships to share and
consume resources and services between independent and heterogeneous clusters.
Once the peering is established, a cluster can seamlessly offload workloads to its
remote peer, without requiring any modifications to Kubernetes or the applications.
Liqo makes multi-cluster native and transparent: remote clusters are simply seen
as nodes that add up to the other available nodes of the local cluster, thus being
compliant with the standard Kubernetes approaches and tools. To make remote
pods be able to communicate, Liqo provides a network fabric that enables multi-
cluster pod-to-pod connectivity.

1.2 Goal of the thesis
This thesis stems from the analysis of how Liqo currently implements the manage-
ment multi-cluster deployments. In particular, when a cluster creates a peering
session with multiple remote clusters and then offloads to them its own workloads,
pods that are scheduled to those remote clusters might need to communicate. In
this case, their communications cannot flow directly from one remote cluster to the
other, but need to be forwarded to the central cluster from which the workloads
were offloaded, and after traversing it, they can land on the remote cluster. The
goal of this thesis is to propose a design of a network overlay that is automatically
configured and deployed across those remote clusters, providing their pods the
ability to communicate directly without relying on the central cluster and therefore
cutting down the overhead introduced by this additional intermediate step, and
even reducing the latency of pods communications.

The result is a peer-to-peer, full mesh network of clusters that enables direct pod-
to-pod traffic flows. To achieve it, several updates were required on different core
elements within Liqo, with particular focus on the logic that exchanges the network
parameters and sets up the network connections between clusters, the proper
reflection of services and endpoints, and the correct translation of IP addresses
from one address range to the other to avoid address conflicts.

1.3 Structure of the work
This thesis will unfold with the following structure:

• Chapter 2 provides an overview on Kubernetes, the technology at the root
of Liqo for automatic deployment, scaling, and management of containerized
applications.

2
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• Chapter 3 provides an overview on Liqo, including a detailed description of
its core concepts and main components.

• Chapter 4 provides a thorough analysis on the different multi-cluster topolo-
gies handled by Liqo and how they affect the remote offloading of workloads.

• Chapter 5 provides a conceptual description of the changes this work required
to materialize the goal of this thesis.

• Chapter 6 provides an in-depth study of the implementation details that
together constitute the proposed solution.

• Chapter 7 provides a review of the proposed solution in terms of functional
and performance tests.

• Chapter 8 concludes the presented work, summarizing the achieved results
and taking a quick glance at some possible improvements that future works
may provide.
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Chapter 2

Kubernetes

This chapter introduces the Kubernetes technology, giving an overview of the
evolution of the way applications are deployed and managed, from the early days
of virtualization up to the latest methodologies of the present day.

2.1 What is Kubernetes
Kubernetes [2] is a platform for managing containerized workloads and services. It
is based on a declarative configuration, meaning that developers declare intents
and Kubernetes responds to these intents by applying the built-in logic that is
shipped with.

Kubernetes is Greek for “helmsman” or “pilot”. The name is often found in its
short form, “K8s”, which results from counting the eight letters between “K” and
“s”.

The Kubernetes project [3] has been developed by Google, and it was open-
sourced in 2014. It combines over 15 years of Google’s experience running production
workloads at scale and it brings forward the best solutions and practices of the
cloud computing world.

Kubernetes is already the de-facto standard in the DevOps community, and
nowadays it undergoes a massive utilization in production environments across the
entire world. In order to understand why Kubernetes has gained so much traction
and has got a paramount role in solving cloud-native problems, we can start by
analyzing what technologies traced the path to its ascension.

2.2 Evolution of workloads management
Traditional deployment era In the traditional deployment era, organizations
ran applications on physical servers. There was no way to define application
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Figure 2.1: Evolution of applications deployments

constraints to limit resource usage, and some applications would end up taking
most of the resources available, making the remaining applications starve. This
led system managers to deploy one server per application, increasing costs and
maintenance work. At this point, the community rediscovered the abandoned
concept of virtualization.

Virtualized deployment era In the virtualized deployment era, developers
could run multiple Virtual Machines (VMs) on a single physical server, and ensure
applications would not interfere with one another, by running one VM per applica-
tion. Virtualization allows defining resource-usage constraints for each VM, and
makes software running on one VM isolated from the rest of the system and other
VMs, leading to a much more stable and secure environment, as applications cannot
interfere with one another, nor freely access private application data. Moreover, it
allows better scalability as application instances can be scaled up or down easily by
spawning or deleting VMs as needed. Each VM includes a whole operating system
and can be tweaked to include the properly versioned dependencies as requested by
the running application: this creates sealed compartments that are easy to manage
and maintain, as well as to debug. Overall, less physical servers are deployed, costs
are lower and companies can get the most out of their available servers, preventing
them from being underused.

Containerized deployment era The next step in the evolution of workloads
deployment came with the rise of containerization. Containers work similarly to
VMs, but with less strict isolation properties so that different applications can
share the same Operating System. For this, they are considered lightweight. Just
like VMs, containers have their own filesystem, share of CPU, memory, process
space, and more. Containers are decoupled from the underlying infrastructure: this
makes them portable across clouds and OS distributions. What makes them so
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popular is the set of extra benefits they provide, such as:

• The agile application creation and deployment, given the ease of creation of
container images compared to VM images.

• Continuous development, integration and deployment, thanks to the reliable
and frequent container image build and deployments.

• Application health checks and observability.

• Cloud and OS distribution portability.

• Application-centric management, raising the abstraction level in order to
simply focus on running the application.

• Resource utilization that yields high efficiency and density.

In parallel to the sheer technological advancements, an improvement on the
workload management methods has been observed: from handling VMs as single
entities, we moved to a “cattle” model where VMs were handled in a more general
way (although their management would still be quite coupled to their lives), to
move further and reach a decoupled approach, that is the one used by Kubernetes:
a declarative way that expresses general intentions that are taken by the system
and applied to all of the interested resources, without having to deal with the
single instances, resulting in a more detached view where resources are seen as
commodities that can be created, destroyed, and replaced as needed.

2.3 Kubernetes concepts
2.3.1 Kubernetes objects
Kubernetes objects are persistent entities in a cluster. Kubernetes uses these
entities to represent the state of a cluster. Specifically, they describe:

• What containerized applications are running and on which nodes.

• The resources available to those applications.

• The policies around how those applications behave, such as restart policies,
upgrades, and fault-tolerance.

A Kubernetes object is a “record of intent”: once an object is created with its
specifications, the Kubernetes system will constantly work to ensure that object
exists and its specifications are met. By creating an object, Kubernetes shapes the
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cluster to make it compliant to the expressed workload: this is the cluster’s desired
state.

To work with Kubernetes objects—whether to create, modify, or delete them—a
user needs to interact with the Kubernetes API. For example, it is possible to use
the kubectl command-line interface, and the CLI will make the necessary API calls
corresponding to the entered commands.

Almost every Kubernetes object includes two nested fields that govern the
object’s configuration: the object’s “spec” and “status” fields. The former specifies
the desired state and is required upon the object creation, while the latter tracks
the current state of the object. The Kubernetes control plane continually manages
every object’s actual state to make it match the specified desired state.

When creating an object, a user most often provides the information in the form
of a .yaml 1 file, as the one presented below for the Pod resource:

Listing 2.1: Kubernetes resource
1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : example−pod
5 spec :
6 # user ’ s d e s i r e d s t a t e f o r t h i s ob j e c t

The kind of object to be created is defined with the kind field, while the apiVerson
defines which version of the Kubernetes API is used to create the object. The
metadata helps uniquely identify the object, including a name string. Finally, the
spec field is the user’s desired state for the object.

The following is a non-exhaustive list of the built-in Kubernetes objects that
can be found inside an operating cluster.

Namespace

A namespace is a mechanism that provides a scope for names, enabling isolation of
groups of resources within a single cluster. Names of resources need to be unique
within a namespace, but not across namespaces. Namespace-based scoping is
applicable only for namespaced objects, such as Deployments and Services, and
not for cluster-wide objects, such as StorageClasses, Nodes and PersistentVolumes.

1YAML is a human-readable and easy to understand data serialization language that is often
used for writing configuration files and is oriented to data. YAML stands for YAML ain’t markup
language (a recursive acronym).

7



Kubernetes

Pod

The smallest deployable unit of computing that can be created and managed in
Kubernetes. A Pod (as in a pod of whales or a pea pod) is a group of one or more
containers, with shared storage and network resources, and a specification for how
to run the containers. A Pod represents a logical host, because the containerized
applications it contains are generally tightly coupled and work in harmony to
provide a workload-specific service.

ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of Pod replicas running at any
given time. As such, it is often used to guarantee the availability of a specified
number of identical Pods.

Deployment

A Deployment provides declarative updates for Pods and ReplicaSets. The Deploy-
ment contains the desired state, and the Deployment controller changes the actual
state to the desired state at a controlled rate.

DaemonSet

A DaemonSet ensures that all or some Nodes run a copy of a Pod. As nodes are
added to the cluster, Pods are therefore added to them. As nodes are removed
from the cluster, those Pods are garbage collected. Deleting a DaemonSet will
clean up the Pods it created. A common use case for a DaemonSet is to have a
running logs collection daemon on every node.

Service

A Service is an abstract way to expose an application running on a set of Pods
as a network service. Since Pods can be destroyed and recreated at any time to
match the cluster’s desired state, their IP address can change. Services are used to
abstract the IP tracking process by giving a single DNS name for a set of Pods.

A Service is associated through a set of Pods by specifying a selector that has
to match the labels of such Pods. To make the Service aware of which container
port to forward the incoming requests, it is required to specify the targetPort: the
reason is that a Pod can host more than one container, each with a different port
within the same Pod. In case more than one container needs to be accessible, more
targetPort fields will be configured in the Service definition.

A single Service can match more than one Pod, in which event it will load-balance
between them.
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Services are used to access the final containers from within the cluster, but even
more importantly from the outside. By specifying the serviceType, it is possible to
have different behaviors in terms of Pod exposure:

• ClusterIP Service (default), only accessible from resources inside the cluster,
it requires an Ingress in order to be reachable externally. It has an IP address
that is unique within the cluster, and a DNS lookup of its name would result
in its IP address.

• Headless Service, a special kind of ClusterIP Service that has no IP address
assigned. The use case is when a Pod requests to communicate with a specific
Pod, not a randomly chosen Pod in the set of Pods behind the Service. In
this case, a DNS lookup of its name results in the IP address of the Pod it
exposes.

• NodePort Service, accessible externally from a static port on each node
in the cluster. In this case, external traffic can access directly the Service by
specifying the Node IP and the static port. In the definition of the Service,
the “port” attribute has to be specified, because a ClusterIP service will be
automatically created and be routed traffic from the NodePort Service.

• LoadBalancer Service, accessible externally but only via the cloud provider’s
load balancer. Each cloud provider has its own native load balancer implemen-
tation that routes the traffic. What happens is that NodePort and ClusterIP
Services are automatically created by K8s and the load balancer routes the
traffic to them. This time, however, the port open on the nodes will not be
directly accessible externally but only through the load balancer itself. So the
entry point becomes the cloud provider’s load balancer.

Endpoints and EndpointSlice

An Endpoints object represents the connection between Pods and Services, with the
objec. It is used by K8s to keep track of Pod IP addresses that are the endpoints
of the related Service. EndpointSlices provide a simple way to track network
endpoints within a Kubernetes cluster, by grouping network endpoints together.
EndpointSlices are an improvement over the original Endpoints API.

By creating a Service, K8s automatically creates an Endpoints object named
after the service. They are used by K8s to keep track of Pod IP addresses and
ports the Service has to route traffic to. Endpoints are an additional layer of data
that binds Pods and Services.

Ingress

An Ingress manages external access to the services in a cluster, typically HTTP.
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Ingress exposes HTTP and HTTPS routes from outside the cluster to services
within the cluster. Traffic routing is controlled by rules defined on the Ingress
resource.

ConfigMap

A ConfigMap is an object used to store non-confidential data in key-value pairs.
Pods consume ConfigMaps as environment variables, command-line arguments, or
as configuration files in a volume, that is a directory containing data, accessible
to the containers in a pod. Data in ConfigMaps is set separately from application
code: this allows decoupling environment-specific configurations from container
images, so that applications can be easily portable.

ConfigMaps do not provide secrecy. Confidential data should be stored in
Secrets.

Secret

A Secret is an object designed to contain a small amount of sensitive data, such
as password, tokens, or keys. Such information might otherwise be put in a
Pod specification or in a container image. Using a Secret means not including
confidential data in the application code.

Considering their nature, Secrets are similar to ConfigMaps, but are specifically
intended to hold confidential data.

2.3.2 Controllers
Kubernetes controllers stem from robotics and automation, where a control loop
is a non-terminating process that regulates the state of an observed system. A
Kubernetes controller is a control loop that watches the state of the deployed
cluster, then makes or requests changes where needed. Each controller tries to
move the current cluster state to the desired state.

A controller tracks at least one type of Kubernetes object. The controllers for
that resource are responsible for making the current state come closer to the desired
state expressed in the object’s “spec” field.

Kubernetes comes with a set of built-in controllers that run inside the kube-
controller-manager component.
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2.3.3 Extending the Kubernetes API
Custom Resources

Custom resources (shortened as CRs) are extensions of the Kubernetes API. Once
a custom resource is installed, users can create and access its objects using kubectl,
just as they do for built-in resources like Pods.

On their own, custom resources let you store and retrieve structured data. When
you combine a custom resource with a custom controller, custom resources provide
a true declarative API.

The Kubernetes declarative API enforces a separation of responsibilities. You
declare the desired state of your resource. The Kubernetes controller keeps the
current state of Kubernetes objects in sync with your declared desired state. This
is in contrast to an imperative API, where you instruct a server what to do.

You can deploy and update a custom controller on a running cluster, indepen-
dently of the cluster’s lifecycle. Custom controllers can work with any kind of
resource, but they are especially effective when combined with custom resources.

Custom Resource Definitions

The CustomResourceDefinition API resource (shortened as CRD) allows defining
custom resources. The Kubernetes API is programmed to serve and handle the
storage of custom resources.

CRDs free developers from writing their own API server to handle the custom
resource.

The Operator pattern

The Operator pattern combines custom resources and custom controllers. You can
use custom controllers to encode domain knowledge for specific applications into
an extension of the Kubernetes API.

Operators are software extensions to Kubernetes that make use of custom re-
sources to manage applications and their components. Operators follow Kubernetes
principles, notably the control loop as described in Subsection 2.3.2.

2.4 Kubernetes components
Deploying Kubernetes means creating a Kubernetes cluster. A Kubernetes cluster
is a set of worker machines, called nodes, that run containerized applications.
Every cluster has at least one worker node. The worker nodes host the application
workloads. Among them, one or more are also designated to host the Kubernetes
control plane. The control plane is the very core of the Kubernetes orchestration
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logic, and constitutes the container orchestration layer that exposes the API
and interfaces to define, deploy, and manage the lifecycle of containers. Usually,
the control plane runs on multiple computers and a cluster runs multiple nodes,
providing fault-tolerance and high availability.

2.4.1 Control plane components
The control plane components make global decisions about the cluster management,
scheduling and general status, and respond to cluster events, such as scaling up an
application when certain resource-usage thresholds are exceeded.

Control plane components can be run on any node in the cluster. For a matter of
simplicity and ease of setup, those components are generally started up on the same
node, which is entirely dedicated to them and won’t run user-defined application
workloads.

kube-apiserver

The API server is a component of the Kubernetes control plane that exposes the
Kubernetes API. The API server is the front end for the Kubernetes control plane.
The main implementation of a Kubernetes API server is kube-apiserver. It is
designed to scale horizontally: one can run several instances of kube-apiserver and
balance traffic between those instances.

etcd

This is a consistent and highly-available key-value store used as Kubernetes’ backing
store for all cluster data.

kube-scheduler

This component watches for newly created Pods with no assigned node, and selects
a node for them to run on. When making a scheduling decision, it considers
the individual and collective resource requirements, hardware/software/policy
constraints, affinity and anti-affinity specifications, data locality, inter-workload
interference, and deadlines.

kube-controller-manager

This component runs the main Kubernetes control logic. It embeds several con-
trollers, but it is compiled as a single process. Each controller is a control loop that
watches the shared state of the cluster through the API server and makes changes
attempting to move the current state towards the desired state.
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Some of its controllers are:

• Node controller, responsible for noticing and responding when nodes go
down.

• Job controller, watches for Job objects that represent one-off tasks, then
creates Pods to run those tasks to completion.

• Endpoints controller, populates the Endpoints object (that is, joins Services
and Pods).

• Service Account and Token controllers, create default accounts and API
access tokens for new namespaces.

cloud-controller-manager

This component embeds cloud-specific control logic. It lets you link your cluster
into your cloud provider’s API, and separates out the components that interact
with that cloud platform from components that only interact with your cluster. Its
controllers are specific to the selected cloud provider. Therefore, if Kubernetes is
ran on-premise or in a learning environment, like inside a PC, the cluster does not
have a cloud controller manager.

2.4.2 Node components
Node components run on every node, maintaining running Pods and providing the
Kubernetes runtime environment.

kubelet

This component runs on each node in the cluster and makes sure that containers
are running in a Pod. It takes a set of PodSpecs (provided through various
mechanisms) and ensures that the containers described in those specifications
are running and healthy. The kubelet doesn’t manage containers which were not
created by Kubernetes.

kube-proxy

This component is a network proxy that runs on each node in the cluster, imple-
menting part of the Kubernetes Service concept. It maintains network rules on
nodes. These network rules allow network communications to Pods from network
sessions inside or outside of the cluster. Moreover, it uses the operating system
packet filtering layer if there is one and it’s available, otherwise forwards the traffic
itself.
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Container runtime

This is the software that is responsible for running containers. Kubernetes supports
container runtimes such as containerd, CRI-O, and any other implementation of
the Kubernetes CRI (Container Runtime Interface).

2.4.3 Addons
Addons use Kubernetes resources to implement and provide cluster-level features.

DNS

All Kubernetes clusters should have a cluster DNS, which is a DNS server that
serves DNS records for Kubernetes services and adds up to the other DNS servers
that might be present in the environment. Containers started by Kubernetes
automatically include this DNS server in their DNS searches.

In particular, Kubernetes DNS schedules a DNS Pod and Service on the cluster,
and configures the kubelets to tell individual containers to use the DNS Service’s
IP to resolve DNS names. Services and Pods of a Kubernetes cluster are assigned
a DNS record.. A DNS query may return different results based on the namespace
of the pod making it. DNS queries that don’t specify a namespace are limited to
the pod’s namespace. To access services in other namespaces, one needs to specify
the namespace in the DNS query.

2.5 RBAC
Kubernetes defines several APIs for managing access permissions over resources.
The Role-Based Access Control (shortened as RBAC) is a method of regulating
access to compute or network resources based on the roles of individual users.

The RBAC API declares four kinds of Kubernetes objects: Role object, defines
permissions within a particular namespace. ClusterRole object, same as Role,
but defines cluster-wide permissions (all namespaces), because this resource is
non-namespaced. RoleBinding, grants permissions within a specific namespace to
a user or set of users. ClusterRoleBinding, grants cluster-wide permissions to a
user or a set of users.

• Role object, defines permissions within a particular namespace.

• ClusterRole object, defines cluster-wide permissions (all namespaces), be-
cause this resource is non-namespaced.

• RoleBinding object, grants permissions within a specific namespace to a
user or set of users.
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• ClusterRoleBinding object, grants cluster-wide permissions to a user or a
set of users.

2.6 Virtual Kubelet
Virtual Kubelet [4] is an open source Kubernetes kubelet implementation that
masquerades as a kubelet for the purposes of connecting Kubernetes to other APIs.
Virtual Kubelet features a pluggable architecture and direct use of Kubernetes
primitives, making it much easier to build on.

From the official documentation, Virtual Kubelet is focused on providing a
library that developers can consume in their projects to build a custom Kubernetes
node agent. This project features an interface developers can implement that
defines the actions of a typical kubelet (such as creating, deleting and updating
pods, retrieving container logs and metrics, getting pod, pods and pod status).

Thus, Virtual Kubelet allows the creation of a special node within the cluster
supported by customized APIs. This is what Liqo requires: a special node that
represents an entire remote cluster and therefore needs some custom APIs to deploy
pods and containers.

Figure 2.2: Virtual Kubelet
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2.7 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using custom resource
definitions (CRDs).

Similar to web development frameworks such as Ruby on Rails and SpringBoot,
Kubebuilder increases velocity and reduces the complexity managed by developers
for rapidly building and publishing Kubernetes APIs in Go. It builds on top of
the canonical techniques used to build the core Kubernetes APIs to provide simple
abstractions that reduce boilerplate and toil.

16



Chapter 3

Liqo

This chapter introduces the conceptual foundations at the base of Liqo [5], as well
as the core elements that make up its architecture.

3.1 Liqo: an overview
The Kubernetes technology is widely employed to handle cloud tasks. Clusters are
designed to provide more resources—in terms of sheer computing power, available
memory, storage capacity—than the ones normally required, to handle temporary
peaks of load. This means that this excess of capabilities could be used by other
clusters that undergo a period of higher load. Liqo [1] aims to unleash this potential
power by connecting clusters together and have them work synergically to pursue
their goals.

To accomplish this task, clusters establish a peering session that results in a
larger virtual cluster that hosts the sum of the resources exposed by each cluster
involved in the peering process.

The benefit of using Liqo is that it takes the core concepts that are well-known
in the Kubernetes environment and exploits them to achieve more possibilities.
Indeed, a cluster sees its peers simply as (virtual) nodes that add up to its (physical)
ones, and schedules tasks to its nodes regardless of their actual nature.

The next sections will describe more in depth the presented concepts, starting
with a core element and how to establish it: the Liqo peering.

3.2 The Liqo peering
Once two (or more) Kubernetes clusters are available to host workloads, they can
become part of a multi-cluster topology by activating a peering session between
them. This is where the Liqo experience starts off. A Liqo peering takes separate
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entities and joins them into a wider environment that is capable of handling larger
workloads. As a result, each involved cluster becomes aware of the existence of
other remote peers, modeled by the ForeignCluster Custom Resource (CR). This
process entails the exchange network parameters and other cluster information,
so as to create a secure VPN that pods will leverage to communicate with one
another as part of a large distributed cross-cluster application.

Cluster peerings are not required to be symmetric. Their flexibility allows a
cluster to establish:

• An outgoing peering, so that the cluster can offload its workloads, but
won’t receive any by its peer.

• An incoming peering, so that the cluster hosts remote workloads, but won’t
offload any to its peer.

• A bidirectional peering, the union of the two above.

When an outgoing peering is active, it is of paramount importance to control
what could be offloaded and what should not. This is done by leveraging some
native Kubernetes concepts, namely Namespaces and label selectors, and some
logic provided by Liqo to select which namespaces to offload, which pods within
such namespaces to offload, and even which remote peers as the target of this
offloading mechanism. The possibilities are endless.

The basic requirements to start a peering session is to have access to the remote
Kubernetes API Server. This allows clusters to exchange information and create
resources remotely, with the result of having a VPN that remote pods use to
communicate as if they were all in the same Kubernetes cluster.

3.3 The Liqo reflection
Once a peering is established, the workload offloading is enabled by leveraging the
virtual node abstraction and the namespace extension.

A virtual node represents a remote cluster and all of its shared resources (e.g.
CPU and memory). This allows for a transparent extension of the local cluster’s
resources, as the virtual node added to the cluster is seamlessly taken into account
by the vanilla Kubernetes scheduler when selecting the best place for executing
workloads.

In addition to that, Liqo enables the extension of Kubernetes namespaces
across the cluster boundaries. Once a namespace is selected for offloading, Liqo
automatically creates twin namespaces in the selected subset of remote peers. These
remote twin namespaces will host the remotely offloaded pods, as well as other
resources living in the local namespace that has been extended remotely, such as
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those related to service exposition (Ingress, Service and Endpoints resources), or
storing configuration data (ConfigMaps and Secrets), to name a few.

3.4 Liqo Custom Resources
The following subsections present some of the Custom Resources used by Liqo to
provide the peering and reflection features.

3.4.1 The NetworkConfig CR
This CR represents a set of network parameters (mainly IP addresses) by means
of which clusters know how a remote peer has remapped the local PodCIDR, as
well as the remote peer’s PodCIDR. The “spec” part includes data related to the
local cluster, while its “status” part reports the changes to the specifications. The
idea is that a cluster creates this CR and sends it to the remote cluster it is going
to establish a peering with. The remote cluster processes this CR and annotates
in the “status” part everything it had to change in terms of IP address ranges to
avoid any conflicts. These updates are reported back to the owning cluster.

Concurrently, the same happens in the opposite direction, so the remote cluster
generates a NetworkConfig, writes its “spec” part and sends it to the local cluster,
which annotates any changes in the “status” part to make the remote cluster aware
of any modifications to the original specifications.

Once both the CRs are processed, a Liqo control loop reconciles them to create
the TunnelEndpoint CR.

3.4.2 The TunnelEndpoint CR
This CR contains the relevant network configuration to establish a VPN tunnel
with the remote cluster. This is used to make pods reach out to other remote pods
as if they were in the same network.

3.4.3 The ForeignCluster CR
This CR models a remote cluster. It contains the details about the peering
session that is in place between two clusters, such as whether the peering has been
established successfully and what direction it takes (outgoing, incoming, or both).
A ForeignCluster is created starting from the NetworkConfigs that the two parties
have exchanged and processed.
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3.4.4 The ShadowPod CR
When a Pod is scheduled onto a virtual node, a Pod is created in the remote cluster
for the actual workload execution. In the local cluster, a new object paired with
the remote Pod is created: this is the ShadowPod. This resource, combined with
the appropriate logic, represents the remote Pod in the local cluster and controls it.

3.5 Liqo Components

3.5.1 The CRD Replicator component
This component is dedicated to the reflection of the Liqo CRs just presented. To do
so, it requires access to the remote API Server. It is a core element as it implements
the network parameter exchange between clusters to set up the ForeignCluster and
TunnelEndpoint CRs which will later be used respectively to keep track of the
active peering sessions and to ensure remote pod-to-pod communications.

The CRD Replicator architecture is quite complex, but essentially it is im-
plemented through a so-called reflector, which is a data structure containing the
required objects and data to detect changes in local and remote namespaces (using
local and remote informers), as well as to perform the traditional CRUD1 operations
in those namespaces (using local and remote clients). In particular, when an object,
such as a NetworkConfig, is created in a namespace enabled for reflection and with
the proper metadata labels set up, the local reflector (that is the one belonging to
the cluster that created the object) follows these steps:

• It detects a new object to be reflected.

• It creates a copy of that object in the remote namespace by using a pre-
configured client to access the remote API server.

• It listens to any changes occurring in the reflected object, which usually boils
down to a status update performed by the remote cluster controllers, as
happens with NetworkConfigs to let the sender cluster know about possible
remappings.

• It listens to any changes occurring in the local original copy, such as a deletion
that needs to propagate to the remote cluster’s namespace so that the remote
copy gets deleted as well.

1Create, read, update, and delete (CRUD) are the four basic operations of persistent storage.
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Figure 3.1: CRD Replicator

3.5.2 The Virtual Kubelet component
This component is a custom version of the Virtual Kubelet project. Whenever a
peering session is established with a remote cluster, a dedicated instance of this
component is created. Once created, it is used to offload pods to remote clusters,
seen by the Kubernetes control plane as normal cluster nodes onto which to schedule
a normal task. In addition to that, it is used to reflect core Kubernetes resources,
such as Services and Endpoints: once deployed in a Liqo-enabled namespace, that
is a namespace extended remotely, they will always be reflected to the selected
remote peers.

3.5.3 The IPAM component
This component contains the logic that translates IP addresses back and forth and
keeps track of all the possible remappings between the local cluster and the remote
peers. It is fundamental within Liqo as it knows all the NAT rules that are used to
avoid address conflicts.
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Chapter 4

Workloads in a multi-cluster
environment

This chapter analyzes how offloading workloads to multiple peered clusters impacts
the performance of the overall cluster architecture. Then, it proceeds by describing
the current adopted strategy to handle complex cluster topologies, in order to lay
down the foundation upon which it is possible to understand how the proposed
work evolves from the current solution and to make a well-informed comparison
between the two.

4.1 Overview
Thanks to the Liqo peering technology, clusters can be offloaded workloads from
other clusters, participating in a synergetic effort to execute complex applications.
This works well between two peered clusters, where one cluster either offloads some
pods to the other end of the peering, while having other pods executing locally,
or delegates the execution of all the pods that make up the workload to its peer.
Both cases constitute the simplest usage of the capabilities that Liqo can provide.
An example is shown in Figure 4.1.

More advanced uses of the Liqo technology may lead to a situation where one
cluster has multiple peers to which it offloads parts of an application workload, while
such peers have no peerings established between them. This can be represented as
a tree where peers are the leaves and the first cluster is their common parent node.
Figure 4.2 exemplifies this concept.

As a consequence, a pod executing in one leaf cluster might need to communicate
to another pod that has been deployed to another leaf cluster. In this case, the
generated traffic would be able to reach the other leaf via the parent cluster the
two leaves have in common. This makes the parent cluster a central hub where all
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Figure 4.1: Two-cluster deployment

Figure 4.2: Three-cluster deployment

the communications between peers necessarily have to go through before hitting
the destination, due to how the peering was set up, as visualized in Figure 4.3.

4.1.1 Problem assessment
The scenario presented above translates to a single point of failure in the central
cluster, adds up overhead to the network communications, and increases the pressure
on the central cluster, which now has to manage its own communications as well
as those that simply need to pass through before hitting the other end, as they
originate from a leaf cluster and are headed toward another leaf cluster.
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Figure 4.3: Traffic is routed through the central cluster

4.1.2 Possible solutions
First things first, to maintain an engineering spirit throughout the exposition of
this paper, it should be mentioned that, for small applications, the overhead and
increased pressure on the central cluster might even be acceptable in favor of a
simpler setup and management. Of course, this depends on assessments regarding
the nature of the cluster architecture and what workloads it is going to host.

Having characterized the problem and established what issues might arise when
handling cross-cluster workloads, different solutions can be proposed. Each solution
is a different approach to addressing the same problem, where the results are similar
but the implementations are widely different and influence the general outcome. It
should be also noted that these approaches are not mutually-exclusive, and could
be deployed together to reach the common goal of a less overloaded central cluster.

Workflows affinity

One possibility is to consider business logic affinity and consequently deploy closely
related pods in the same cluster to significantly reduce the amount of cross-cluster
traffic that needs to traverse the central cluster. This approach focuses on the
application domain and requires a deep understanding of the interactions of the
application components. The effort put into this analysis could be quite large, as
it deals with how the core business logic works, and, depending on the complexity
of the application, might not translate into an actual improvement in the amount
of cross-cluster traffic that traverses the central cluster.
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Figure 4.4: Establishing another full peering between the two leaf clusters; traffic
can be routed directly to the destination.

Adding full peerings

Another possibility is to establish a direct peering between leaf clusters, thus making
the initial tree topology a cyclic graph, as shown in Figure 4.4. This increases the
complexity of the overall architecture, as well as its management and maintenance.
Moreover, it places stricter requirements in terms of peering establishment that
not always can be satisfied, e.g. a cluster administrator is not willing to establish a
peering with a third entity due to permission constraints.

Implementing induced peerings

A different approach is to build a lightweight peering mesh between leaf clusters so
as to make traffic travel directly to the destination without passing through the
central cluster. As later sections will point out, this solution can be automated and
does not require manual setup: this is the reason such peerings are called “induced”.
The advantages are a reduced overhead, latency, and less pressure on the central
cluster, at the cost of a slightly increased complexity within the Liqo components.
From a user perspective, this is completely transparent as it does not require to
manually operate on the cluster, nor to change application workloads.

This solution appears to be a desirable candidate to solve the above mentioned
problem, mostly because it provides transparency to application developers, and
frees cluster administrators from reviewing their cluster’s peering policies.

Before getting into the details of the concepts behind the induced peering and its
implementation aspects, it is worth taking a step back and looking at the current
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Figure 4.5: Induced peering between the two leaf clusters; traffic is routed directly
to the destination.

state of the things so as to make it possible to compare the current solution and
the one proposed in the present work. Therefore, the next section will outline how
Liqo works under the hood when handling an offloading request, in particular by
describing the key concept of resource reflection.

4.2 Liqo resource reflection
Liqo makes it possible to offload workloads to remote clusters. When considering
the set of pods that compose an application, the offloading might be full (i.e. all
the pods are executed remotely), or just partial (i.e. some pods are executed
locally and some remotely). In both cases, Liqo has the responsibility to keep the
overall application in a functioning state, letting pods (of the same application
or even other pods) across different clusters communicate successfully in order to
fulfill their tasks. To this end, the Liqo control plane makes use of two important
components, namely the Virtual Kubelet and the IPAM service, to reflect the
necessary resources to the remote clusters where pods have been offloaded and to
keep track of them in the local cluster.

The following sections will focus on the reflection of Services, Endpoints and
Pods, and will assume that the peering process between the considered clusters
has already completed, for which reason another core Liqo component, that is the
CRD Replicator, will not be mentioned. Indeed, this component is required to
exchange the networking data to establish the peerings, thanks to which the actual
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Figure 4.6: Reflection in a two-cluster deployment

offloading phase can happen. Once this initial setup is completed, the offloading
and reflection operations carried out by the Virtual Kubelet with the aid of the
IPAM component can start.

4.2.1 Two-cluster workloads
Starting with a simple two-cluster architecture, we can analyze how the Liqo
reflection logic handles multi-cluster workloads effectively. Note that the following
examples assume that pods and services live in Liqo-enabled namespaces, which
are those that have been extended remotely for offloading and resource reflection
purposes.

Figure 4.6 shows an example of a Pod offloading to a remote cluster. Cluster
B has already established a peering session with cluster A, and has got all the
data about possible remappings between the two clusters in the IPAM component.
Specifically, it has not been remapped by cluster A, while the last has been
remapped to another PodCIDR (192.168.0.0/24). Cluster B’s scheduler decides
to offload Pod 1 to A: the Virtual Kubelet that refers to A offloads Pod 1, which
gets assigned a free IP address within the cluster A’s PodCIDR. Moreover, before
creating ShadowPod 1, it contacts the local IPAM and establishes that the IP
address to assign to it is 192.168.0.5 (remapped). At this point, Pod 1 is actually
executed in cluster A.

Such an example lays down the basis for more complex deployments, where
service and endpoints resources enter the scene and thus make the offloading
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Figure 4.7: Advanced reflection in a two-cluster deployment

mechanism a very powerful tool to distribute workloads across clusters and make
pods accessible remotely. Figure 4.7 shows an example of this possibility.

Just like the previous example, Pod 1 is offloaded to cluster A, with its counter-
part ShadowPod 1 in cluster B. The difference is that the (shadow) pod is exposed
through Service 1 and its related Endpoints 1 deployed in cluster B, and reflected
to cluster A to expose the offloaded (actually running) pod in cluster A as well.
Because the pod is running in cluster A, it gets its IP address from the cluster A’s
PodCIDR (same for the reflected Endpoints 1). Moreover, the Virtual Kubelet
learns from the local IPAM that the IP address to assign to ShadowPod 1 and
Endpoints 1 is 192.168.0.5 (remapped, see RemoteNATPodCIDR). By having the
service and the endpoints resources in both clusters, any pod living in A or B is
able to communicate with Pod 1 via its local service.

Please note that because the pod is executed in cluster A, its IP address belongs
to A’s PodCIDR (same for the reflected Endpoints 1), while the shadow pod in
cluster B has an IP address out of B’s PodCIDR: it should be within A’s PodCIDR,
but due to the remapping it is within 192.168.0.0/24.

Alternative configuration

For the sake of completeness, Figure 4.8 shows another possible configuration
with two clusters. The real difference here is that the pod is not offloaded to
a remote cluster. Nonetheless, the related service and endpoints resources are
reflected to the remote cluster by the Virtual Kubelet, which learns from the local

28



Workloads in a multi-cluster environment

Figure 4.8: Alternative reflection in a two-cluster deployment

IPAM that the IP address to assign to Endpoints 1 is 10.0.0.6 (not remapped, see
LocalNATPodCIDR). Still, any pod in cluster A can communicate to Pod 1 via the
reflected Service 1.

This time, note that the reflected Endpoints 1 gets an IP address in B’s PodCIDR
(A has not remapped B’s PodCIDR to a different address range).

4.2.2 Three-cluster workloads
Now that the basics of reflection are covered, even more advanced layouts can
be proposed, such as a three-cluster architecture with a central cluster that has
established a peering session with two remote clusters, seen as the leaves of this
tree-shaped topology. Once more, by making the overall setup more complex, new
challenges arise that Liqo has to deal with in order to stick to its main goal of
keeping applications functional when deployed in a multi-cluster environment.

In particular, the challenge to overcome is to make remote pods, running in the
leaf clusters, exchange traffic even though their clusters have not established any
peering session. Currently, Liqo leverages the addition of a new network, called
ExternalCIDR, specifically designed for this purpose and deployed in each cluster.
As in the case of the PodCIDR networks, also ExternalCIDR ones can be remapped
to other ranges to avoid address conflicts.

However, the adopted strategy has some scalability issues that will become
visible with the following example. What is presented now is a cornerstone around
which the present work unfolds: it will propose a natural advancement in terms
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Figure 4.9: Advanced reflection in a three-cluster deployment

of scalability, while retaining the ease of use that is characteristic of the current
implementation.

Figure 4.9 illustrates the aforementioned use case. Pod 1 is offloaded to cluster A,
as a result of the decision made by cluster B’s scheduler. Just like before, ShadowPod
1 is assigned an IP address that complies with the RemoteNATPodCIDR entry (for
cluster A) in the central cluster IPAM, namely 10.10.0.14 (remapped). The pod is
exposed through Service 1 and Endpoints 1, which are present in the central cluster
and are reflected to both the leaf clusters. Speaking of the reflected Endpoints 1
in cluster A, everything stays the same in terms of IP address allocation. Quite
different is the matter of assigning an IP address to the reflected Endpoints 1 in
cluster C. The definition of the right IP address made by the Virtual Kubelet
dedicated to cluster C depends on the newly introduced ExternalCIDR belonging
to cluster B. This new address range became necessary as the normal cluster B
PodCIDR is already reserved by C to host endpoints directly reflected from B,
but the endpoints resource that is being reflected this time actually refers to a
pod that runs on a third cluster (A), for which reason the name “external” has
been chosen. The underlying principle is to always avoid IP address conflicts, and
the ExternalCIDR ensures this does not happen. Moreover, as indicated in the
RemoteNATExternalCIDR entry, cluster C has remapped the original 172.16.2.0/24
address range to 172.16.20.0/24.

At this point, any pod running in cluster C and willing to reach the remote Pod
1 would simply need to contact the reflected Service 1, and the communication flow
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will traverse the central cluster before landing to Pod 1. Under the hood, some
Liqo components are deputed to handle all the remappings and understand what
destination the traffic is headed to.

From a user perspective, this is completely transparent, which means that:

• Cluster managers are not required to manually operate on the cluster to make
this work.

• Application developers are not required to change their applications, which is
one of Liqo’s strengths.

As anticipated, it is clear that now the central cluster is burdened with the
additional task of handling the traffic flows that are exchanged between pods
deployed in the two leaf clusters. This poses a scalability problem that, with large
workloads, results in much more work to be done by the central cluster, increased
latency and networking overhead. Even worse, when the central cluster becomes
unavailable, such passthrough flows come to a halt.

The next chapter will start from these weaknesses and build a set of concepts
that will represent an evolution of pod-to-pod communication between clusters
that share no peering.
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Chapter 5

Evolution of multi-cluster
workload deployments:
concepts

The primary concept that will be discussed in this chapter is a new type of peering
that will be created between clusters that share a common peer, meaning that the
configuration under examination is the one that comprises at least three clusters in
a tree-shaped topology. This addition is backed by a set of new Custom Resource
Definitions (CRDs) and some updates to how the CRD Replicator works.

5.1 The induced peering
So far, when offloading pods from a central cluster to multiple (at least two) peers
that have no direct peering between them, the pod-to-pod traffic could only happen
by sending it to the central cluster, whose task was to forward it to another remote
destination. In this way, an application can continue working as communications
are made possible between its pods spread over many clusters. It is important
to notice that those leaf clusters are not bound to any ongoing peering session,
therefore are not required to know or be aware of each other.

A concrete improvement would consist of being able to avoid this passthrough
traffic and instead make it flow directly between the relevant pods, while still
preserving an important point, that is not to require them to establish an additional
peering session, which would affect the ease of set up and would entail access to
the remote API servers from each party, something that might not be feasible, or
simply not desirable.

By considering this communication necessity carefully, the only true demand
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is to have a functioning networking phase between the two remote clusters. No
offloading is requested: if this was the case, a normal peering, as the ones presented
so far, would have sufficed.

For this purpose, a new kind of peering has been designed: the induced peering.
The word “induced” recalls something that is just a consequence of an already
existent full-featured peering. As anticipated, this peering only provides the
networking elements that allow for direct pod-to-pod communication. Peers linked
by an induced peering are called induced peers.

With the induced peering, pod-to-pod communications between leaf clusters
flow directly from source to destination with no additional networking overhead
introduced by an intermediary in the form of a central cluster, which is not burdened
with the generated traffic that is not within its competencies. As a consequence,
pods offloaded to leaf clusters can continue to communicate even in case the central
cluster becomes temporarily unreachable, as their routing policies are configured
to bypass the central cluster. Of course, during this outage, the reflected endpoints
that directly point to the remote pods running in an induced peer cannot be
updated to the changes that potentially occur on the IP address of those pods, as
this is controlled by the central cluster. Therefore, if pods change their IP address
for any reasons, the overall deployed application that such pods compose together
will experience a denial of service.

The next sections will detail the basic building blocks and the processes for
establishing an induced peering.

5.2 APIs: Neighborhood and ForeignCluster
Now that clusters have a new type of peering at their disposal, the IPAM component
must be adapted to accommodate more information, specifically the one related
to potential induced peers. In order to fill this data, the current APIs have been
updated: the new Neighborhood API, and the updated ForeignCluster API.

5.2.1 The Neighborhood CR
A Neighborhood object contains all the clusters that have established a full peering
session with the cluster that originates this resource—as the name suggests, they
are its neighbors—, except for the cluster this piece of information is intended for.

In the example shown in Figure 5.1, the central cluster creates two Neighborhood
resources and sends them to its direct peers. Thanks to this mechanism, each peer
gains knowledge about the existence of a remote cluster that otherwise would have
remained unknown. For convenience, the destination cluster does not appear in
the list of the central cluster neighbors, as it of course already knows about itself.
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Figure 5.1: Neighborhoods exchange

Leaf clusters also send a Neighborhood object to the central cluster with an
empty list of neighbors.

The component dedicated to the remote reflection of the Neighborhoods is the
CRD Replicator, whose access to the remote API Servers allows to create remotely
such resources in a dedicated namespace.

5.2.2 The (induced) ForeignCluster CR
At this point, each receiver of the Neighborhood resource has a controller that
reconciles the neighbors data and creates an induced ForeignCluster object. This
is a streamlined ForeignCluster resource that annotates the remote cluster as an
induced peer, but lacks fields that are normally necessary in a full-fledged peering
session. This process is visualized in Figure 5.2.

5.3 Networking setup

5.3.1 Exchange of NetworkConfigs
Once the induced ForeignCluster has been created, another Liqo custom controller
reconciles it to produce a NetworkConfig just like the ones created in a normal
peering. Such a resource thus contains the cluster’s local network information in
the “spec” field, and will report, within the “status” field, the changes made by the
target cluster (the induced peer). However, this time such an object has to travel
across the central cluster before arriving at the destination. Therefore, it is called
a passthrough NetworkConfig.
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Figure 5.2: Induced ForeignClusters creation

For the sake of clarity, the purpose of these objects is to ultimately create the
VPN endpoints that will enable the direct communications between pods.

In Figure 5.3, cluster C receives A’s NetworkConfig and learns what PodCIDR
is used by A. In this case, by assuming that cluster C has already reserved the
address range 10.0.1.0/24 for other purposes, it remaps it to 10.81.0.0/24 and
writes that information in the PodCIDRNAT entry under the status field. This
information returns back to A, so that cluster A can correctly configure its local
IPAM. Moreover, since the destination NAT is done on the destination cluster,
cluster A needs to know about this remapping to correctly NAT any destination
IP addresses that belong that remapped range and map them back to the local
PodCIDR 10.0.1.0/24 (this is done by a dedicated Liqo component).
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Figure 5.3: Exchange of passthrough NetworkConfigs: A to C

On the other hand, C creates its own NetworkConfig, the central cluster forwards
it to A, which learns that C’s PodCIDR is 10.0.3.0/24. If this address range is
not already reserved, as it is in this example, cluster A will set the PodCIDRNAT
entry, under the status field, to None, otherwise it will pick a free address range
and use it to remap C’s PodCIDR. In both cases, this information gets reflected
back to C. This is depicted in Figure 5.4.

A note regarding the forwarding of passthrough NetworkConfigs

The reason for which NetworkConfigs have to follow this forwarding procedure
operated by the central cluster is because leaf clusters have no access to the induced
peer’s API server. Therefore, they simply leverage the already established normal
peering session with the central cluster, which then is capable of setting this kind of

36



Evolution of multi-cluster workload deployments: concepts

Figure 5.4: Exchange of passthrough NetworkConfigs: C to A

passthrough NetworkConfigs apart from the normal ones, and then forwards it to
the other remote cluster, again leveraging the already established normal peering
session.

5.3.2 TunnelEndpoints creation

At the end of this exchange process, the two induced peers have the same two
copies of the passthrough NetworkConfigs. Again, by reusing an already existing
Liqo custom controller, each cluster merges the two NetworkConfigs (one is local,
one is the reflected one) and produces a TunnelEndpoint object, as Figures 5.5 and
5.6 present.
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Figure 5.5: Cluster A: TunnelEndpoint creation

Figure 5.6: Cluster C: TunnelEndpoint creation

The two resulting resources contain all the data required to establish a VPN
tunnel toward the other induced peer.
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Figure 5.7: IPAM status once the networking setup has completed

5.3.3 IPAM data
To accommodate the additional networking information related to induced peers,
the IPAM storage is used as it was for normal peers, since the kind of data to store
is the exactly the same.

Figure 5.7 shows what IPAM stores in each cluster after the networking setup is
complete. The focus is on the two induced peers.

Note the remapping that exists between the two induced peers. In particular,
cluster C has remapped A’s PodCIDR to 10.81.0.0/24. This will constitute a key
piece of information, as later subsections will highlight.

5.3.4 Changes to the CRD Replicator
The CRD Replicator has a key role in the process of network parameters exchange
between the induced peers. It has been updated to ensure each party receives the
NetworkConfig from the counterpart via the central cluster.

The forwarding operated by the central cluster is aided by the data that is
carried in the labels within the NetworkConfig resource. More specifically, this
data reports the peculiar nature of this object, as well as the identity of the actual
recipient. The CRD Replicator component has been updated to adapt to this
scenario and treat such a resource differently from the normal NetworkConfigs.

The greatest changes in its behavior can be observed in the central cluster,
since it has the job to set passthrough NetworkConfigs apart from traditional
ones, and forward them to the destination instead of consuming them locally.
However, to keep the implementation consistent with the current code base, the
core reflection principles discussed in Subsection 3.5.1 have been preserved. The
idea is to leverage what has been already established when the central cluster
activated a direct peering with clusters A and C, including namespaces, reflectors,
and data structures. In other words, the direct peerings have paved the way to the
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establishment of the induced peering.
From the point of view of a passthrough NetworkConfig that is created in cluster

A and has to reach cluster C, this translates into the following:

• A already has access to B’s API server, and has already configured the
namespace to reflect toward B.

• B already has access to C’s API server, and has already configured the
namespaces to receive from A and reflect toward C.

• C has already configured the namespace to receive from B.

Figure 5.8 visualizes this process. It shows that the central cluster has got a new
CRD Replicator that is dedicated to the aforementioned forwarding process. This
process consists of a normal reflection activity, this time though being between two
namespaces of the same cluster. As the next Chapter will highlight, the central
cluster physically has one CRD Replicator that splits into multiple reflection
modules, each with its own tasks, therefore Figure 5.8 is just a logical view of the
central cluster reflection process.

The status gets written by the destination cluster, in this case C, and the same
reflection modules that have been used to reflect forward the resource from A to B
to C have the capability to detect this change and reflect it back from C to B to A.

The same applies in the opposite direction, with the due variations.
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Figure 5.8: CRD Replicators and Namespaces for the reflection of a passthrough
NetworkConfig

5.4 Resource reflection

5.4.1 Endpoints reflection
Once the networking between the two induced peers is configured, the induced
peering is set up. All that remains is to use it to make remote pods directly
communicate with one another. To achieve this, endpoints resources must be
reflected and their IP address must point to the actual running pods. This is shown
in Figure 5.9.

Pod 1, exposed through Service 1, is offloaded to cluster A. Thus, Service 1
and Endpoints 1 are reflected to that same cluster, as well as to cluster C. A
corresponding ShadowPod 1 is running in cluster B. Any pod running in cluster C
willing to reach out to Pod 1 would first pass through the (local) reflected Service 1.
The destination IP address of Pod 1 would then be obtained through the reflected
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Figure 5.9: Endpoints reflection: unknown IP address

Endpoints 1 that is connected to the service. Thus, the reflection of the endpoints
plays a key role.

However, the decision the Virtual Kubelet C has to take about what IP address
to write in that reflected Endpoints object is not trivial, and was solved with the
introduction of the ExternalCIDR address range, with all the limitations that led
to the induced peering, as explained earlier in Section 4.2.2.

At first glance, it appears that the IP address to write to that Endpoints
resource is the one owned by the running Pod 1 in cluster A. A closer analysis
reveals that cluster C might have remapped A’s PodCIDR to another range. This
key information—that is the potential remapping operated by C toward A—is
something the Virtual Kubelet C (running in cluster B) must be aware of when
reflecting the Endpoints object to cluster C. However, it is nowhere to be found
in the local (cluster B) IPAM, but can be found in cluster A’s IPAM, under the
LocalNATPodCIDR entry dedicated to cluster C that has been configured in a
previous step.
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Figure 5.10: Endpoints reflection: access to remote IPAM

5.4.2 Remote IPAM access
As just mentioned, the Virtual Kubelet C requires access to the remote IPAM
service before being able to reflect the endpoints. To make this possible, the “liqo”
namespace of cluster A, where A’s IPAM service resides, needs to be offloaded
toward central cluster B. This operation follows the standard namespace extension
that Liqo provides to enable the workload offloading, as presented in Section
3.3. At this point, the Virtual Kubelet C, running in cluster B, can learn what
address range to use to write the IP address in the reflected endpoints, by simply
following the reflected IPAM service. The IPAM in cluster A will then use the
LocalNATPodCIDR value for cluster C and return an IP address of 172.16.23.14,
which combines the mapped network range with the host part of the original IP
address. Figure 5.10 displays this behavior.
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Chapter 6

Evolution of multi-cluster
workload deployments:
implementation

This chapter illustrates how the presented concepts unfold into the actual imple-
mentation, providing a closer look at the different components adopted for the
solution.

This will allow sharing a deeper level of detail on the APIs, as well as on the
changes done to the CRD Replicator and the Virtual Kubelet to support the
induced peering.

6.1 APIs implementation
6.1.1 The Neighborhood CR
Listing 6.1 shows that the Neighborhood resource comprises a Spec and a Status
section. The former contains the identity of the cluster that sent this resource
remotely to another cluster, and specifically the unique cluster ID, as well as the
Neighbors map, which contains the IDs and names of all the clusters that have
peered with the local cluster (except the receiver of this resource) that creates
and sends this resource. The Status is left empty, as it won’t be updated by the
receiver, differently from what happens with NetworkConfigs, for example.

The NeighborhoodList struct lists Neighborhood resources.
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Listing 6.1: The Neighborhood custom resource
1 type Neighbor s t r u c t {
2 ClusterName s t r i n g ‘ j son : " clusterName " ‘
3 }
4

5 // NeighborhoodSpec d e f i n e s the d e s i r e d s t a t e o f Neighborhood
6 type NeighborhoodSpec s t r u c t {
7 // ClusterID i s the ID o f the sender o f t h i s r e s ou r c e
8 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
9 // Neighbors conta in s the c l u s t e r s that have peered with the

l o c a l c l u s t e r
10 Neighbors map [ s t r i n g ] Neighbor ‘ j son : " ne ighbors " ‘
11 }
12

13 // NeighborhoodStatus d e f i n e s the observed s t a t e o f Neighborhood
14 type NeighborhoodStatus s t r u c t {}
15

16 // Neighborhood i s the Schema f o r the neighborhoods API
17 type Neighborhood s t r u c t {
18 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
19 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
20

21 Spec NeighborhoodSpec ‘ j son : " spec , omitempty " ‘
22 Status NeighborhoodStatus ‘ j son : " s tatus , omitempty " ‘
23 }
24

25 type NeighborhoodList s t r u c t {
26 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
27 metav1 . ListMeta ‘ j son : " metadata , omitempty " ‘
28 Items [ ] Neighborhood ‘ j son : " i tems " ‘
29 }

6.1.2 The ForeignCluster CR and the induced peering
As already mentioned, the ForeignCluster API is used also for the induced peering
case. It has been extended to keep track of the Spec and Status of this new
type of peering session. Therefore, the Spec now has a FullPeering struct and an
InducedPeering struct. The former contains data about the full peering session,
which, for an induced ForeignCluster, means just some general information between
the two clusters, and the latter contains data about the induced pereing session,
i.e. whether the induced peering is enabled and the cluster identity (ID and name)
of the cluster that created and sent the Neighborhood resource.

On the other hand, the Status field kept its original structure, while being able
to store the new induced peering type.
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Listing 6.2: The induced ForeignCluster custom resource
1 // C l u s t e r I d e n t i t y conta in s the in fo rmat ion about a remote c l u s t e r (

ID and Name)
2 type C l u s t e r I d e n t i t y s t r u c t {
3 // Fore ign Clus te r ID
4 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
5 // Fore ign Clus te r Name
6 ClusterName s t r i n g ‘ j son : " clusterName " ‘
7 }
8

9 type Fu l lPee r ing s t r u c t { /∗ f u l l pee r ing f i e l d s ∗/}
10

11 type InducedPeer ing s t r u c t {
12 // InducedPeeringEnabled i n d i c a t e s whether the induced pee r ing i s

a c t i v e
13 InducedPeeringEnabled PeeringEnabledType ‘ j son : "

inducedPeeringEnabled " ‘
14 // Clus te r I d e n t i t y o f the sender o f the Neighborhood
15 O r i g i n C l u s t e r I d e n t i t y C l u s t e r I d e n t i t y ‘ j son : "

o r i g i n C l u s t e r I d e n t i t y , omitempty " ‘
16 }
17

18 // Fore ignClusterSpec d e f i n e s the d e s i r e d s t a t e o f Fore ignClus te r .
19 type Fore ignClusterSpec s t r u c t {
20 // Fore ign Clus te r I d e n t i t y
21 C l u s t e r I d e n t i t y C l u s t e r I d e n t i t y ‘ j son : " c l u s t e r I d e n t i t y , omitempty "

‘
22 // Fu l lPeer ing d e f i n e s the c o n f i g u r a t i o n f o r a f u l l pee r ing
23 Ful lPeer ing Fu l lPeer ing ‘ j son : " f u l l P e e r i n g , omitempty " ‘
24 // InducedPeer ing d e f i n e s the c o n f i g u r a t i o n f o r an induced

pee r ing
25 InducedPeer ing InducedPeer ing ‘ j son : " inducedPeering , omitempty " ‘
26 }
27

28 // Fore ignClus t e rSta tus d e f i n e s the observed s t a t e o f Fore ignClus te r
29 type Fore i gnClus te rSta tus s t r u c t {
30 // f i e l d s conta in ing the pee r ing status , namely type ( e . g . "

InducedPeer ing " ) and cond i t i on ( e . g . " Es tab l i shed " )
31 }
32

33 // Fore ignClus te r i s the Schema f o r the f o r e i g n c l u s t e r s API
34 type Fore ignClus te r s t r u c t {
35 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
36 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
37 Spec Fore ignClusterSpec ‘ j son : " spec , omitempty " ‘
38 Status Fore ignClus t e rSta tus ‘ j son : " s tatus , omitempty " ‘
39 }
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For example, a three-cluster architecture with cluster B as the central one and
clusters A and C as the leaves, this resource, when sent to cluster A by cluster B,
would look like the following:

Listing 6.3: Example of ForeignCluster resource
1 ap iVers ion : d i s cove ry . l i q o . i o / v1alpha1
2 kind : Fore ignClus te r
3 metadata :
4 name : c l u s t e r −c−induced
5 spec :
6 c l u s t e r I d e n t i t y :
7 c l u s t e r ID : c
8 clusterName : c l u s t e r −c
9 f u l l P e e r i n g :

10 incomingPeeringEnabled : "No"
11 networkingEnabled : " Yes "
12 outgoingPeer ingEnabled : "No"
13 inducedPeer ing :
14 inducedPeeringEnabled : " Yes "
15 o r i g i n C l u s t e r I d e n t i t y :
16 c l u s t e r ID : b
17 clusterName : c l u s t e r −b
18 s t a tu s :
19 peer ingCond i t i ons :
20 − s t a tu s : Es tab l i shed
21 type : InducedPeer ing

6.2 Changes to the CRD Replicator
The CRD Replicator plays a key role in the correct and working definition of an
induced peering. It has been updated so that NetworkConfigs can traverse the
central cluster, land on a remote cluster that soon will be an induced peer and let
it know about the necessary network parameters used to establish a VPN tunnel
that will make pods communicate with one another. Although its architecture has
been rethought to support the induced peering scenario, its distinctive reflection
logic has been preserved and extended for this use case.

Before introducing the changes done to the CRD Replicator, it is worth giving
a deeper insight over the workings of the CRD Replicator, and in particular on its
main building block: the reflector.

6.2.1 The reflector
At the core of the CRD Replicator is the reflector, a piece of software that is
responsible for creating a copy of a local resource to a remote namespace. This
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logical component is set up with all the data it requires to access its local API
server, the remote peer’s API server and to configure two informer objects that
are instructed to watch for any addition, update, and deletion events occurring to
specific resources in a local and a remote namespace. Every time they detect such
an event, they put it in a working queue. This queue of events is consumed item
by item, and for each event a different operation can be expected.

For example, in case a NetworkConfig has been just created and added to a
namespace, the local informer, which watches for additions of NetworkConfigs
in that namespace, places that event in the queue. Then, that event is popped
out of the queue and processed, and in particular the external reflector uses the
client to the remote peer’s API server to replicate that NetworkConfig to a remote
namespace. Now, the remote informer keeps track of that NetworkConfig in the
remote namespace. It occurs that the remote peer updates the NetworkConfig
status, and therefore an update event is placed in the queue thanks to the remote
informer. This event is consumed from the queue by triggering a corresponding
update on the status of the original copy of the resource, which now reports the
same data that was written in the remote reflected copy. This is the mechanism
that is used to replicate resources remotely and reflect back their status once it has
been updated by the remote peer. The remote informer is also capable of detecting
deletions of resources in the remote namespace, by adding a deletion event in the
working queue, which leads the reflector to recreate the resource remotely, using
the client to the remote API server. In case the deletion event affects the original
local copy of the resource, the client to the remote API server will destroy the
remote copy.

6.2.2 External and internal reflectors
Before the introduction of the induced peering, the CRD Replicator contained one
reflector per remote peer. Now, in addition to that, it contains another reflector,
which is responsible for the forwarding of all the passthrough NetworkConfigs.
This reflector has been called an internal reflector, while the normal ones have
been called external reflectors. As the name suggests, the distinction is based on
the scope of the reflection mechanism. Even though their name is different, they
are built the same: they are simply reflectors as just described. What actually
changes their behavior is the data on which they operate. To achieve this, the
CRD Replicator internals have been redesigned with the goal of having a shared
data structure and behavior. For sure, this helped to keep things consistent and
easier to implement, without introducing brand new logic that would complicate
the reflection mechanisms.

As stated above, external and internal reflectors are basically the same. What
changes their behavior is the data on which they operate. This data is contained
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in a dedicated data structure, as shown in the Listing 6.4.

Listing 6.4: ResourceToReflect
1 type ResourceToRef lect s t r u c t {
2 gvr schema . GroupVersionResource
3

4 sourceNamespace s t r i n g
5 targetNamespace s t r i n g
6

7 sourceCluster ID s t r i n g
8 ta rge tC lus t e r ID s t r i n g
9 l o c a lC lu s t e r ID s t r i n g

10

11 l i s t e r F o r S o u r c e cache . GenericNamespaceLister
12 l i s t e r F o r T a r g e t cache . GenericNamespaceLister
13

14 /∗ other f i e l d s ∗/
15 }

Each ResourceToReflect object is an instance of a resource that has to be
reflected remotely. It contains the required information to operate such a reflection:

• The type of the resource.

• The source namespace, which is the local namespace from which to replicate
the resource.

• The target namespace, which is the namespace the resource will be replicated
to. In case of an external reflector, it is a remote namespace, while in case
of an internal reflector, it is another local namespace within the same local
cluster.

• The source cluster ID, which is the local cluster ID.

• The target cluster ID, which is the cluster ID of the target namespace. In
case of an external reflector, it is the remote cluster ID, while in case of an
internal reflector, it is the local cluster ID.

• A reference to the local cluster ID.

• The source lister, which is used to retrieve local instances of the resource to
reflect in the source namespace.

• The target lister, which is used to retrieve local or remote instances of the
resource to reflect in the target namespace.

The Listing below shows the implementation of the reflector data structure.
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Listing 6.5: Reflector
1 type R e f l e c t o r s t r u c t {
2 // TenantNamespaces i s a map o f c l u s t e r I D s and tenant namespaces .
3 TenantNamespaces map [ s t r i n g ] s t r i n g
4

5 c l i en tForTarge t dynamic . I n t e r f a c e
6

7 r e s o u r c e s map [ schema . GroupVersionResource ] [ ] ∗ r e sourceToRe f l e c t
8 workqueue workqueue . RateL imi t ing In t e r f a c e
9 i sLoca lToLoca l bool

10

11 /∗ other f i e l d s ∗/
12 }

Each Reflector instance contains the data to handle the reflection:

• A map of cluster IDs and namespaces, used by the reflector to keep track of
the remote cluster IDs and their namespaces.

• A reference to the client of a target cluster. In case of an external reflector, it
is the client towards a remote API server, while in case of an internal reflector,
it is the client towards the local API server.

• A list of ResourceToReflect instances, therefore knowing how to deal with
each of the resources to reflect.

• A working queue to store all the addition, update, and deletion events of the
tracked resources.

• An indication on its nature, telling whether it is an internal reflector or not.

6.2.3 Induced peering scenario
When the central cluster receives the passthrough NetworkConfig from one of its
peers, it has to move it forward to the destination cluster because it is not intended
for itself. By having established a peering with the sender of the passthrough
NetworkConfig and another peering with the final receiver of that same resource,
the central cluster already has the proper reflectors that will permit forwarding
that object. The only thing missing is the logic that copies the NetworkConfig
from one reflector to the other. This actually translates into moving that resource
from one local namespace, where the resource has been copied to, to another local
namespace, from which the resource will be copied and then written to a remote
namespace belonging to the final receiver.

The CRD Replicator therefore has been updated to include the internal reflector,
used only to reflect NetworkConfig resources between local namespaces that are
bound to the normal reflectors created for the full peering sessions.
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Figure 6.1: Reflectors

The NetworkConfigs are the only resources that need to undergo this special
treatment, as they carry precious network information that induced peers have to
exchange in order to successfully set up a VPN connection.

As depicted in the Figure above, each cluster has a number of external reflectors
that reflects the number of active peering sessions: the central cluster, due to
having two peerings, has two external reflectors. As explained earlier, each external
reflector keeps track of a local and a remote namespace, by watching for additions,
updates, and deletions of specific resources in those namespaces. Those events are
collected in a working queue that holds the details of the events and allows the
external reflectors to operate accordingly: in case the event is the addition of a
NetworkConfig to the local namespace, the external reflector has to replicate that
resource remotely to the remote namespace, leveraging the client to the remote
peer’s API server that holds within.

Cluster B has also an internal reflector, which carries out a similar job to the
external reflectors: it watches for additions, updates, and deletions on the two
local namespaces, and replicates NetworkConfigs from one namespace to the other.
This is done to forward a passthrough NetworkConfig coming from A and headed
towards C. The internal reflector leverages the same namespaces already configured
for the external reflection logic.

6.2.4 The resulting NetworkConfigs
When considering the usual three-cluster architecture with cluster B as the central
cluster, having two bidirectional (outgoing and incoming) peerings with cluster
A and C, and those two cluster having an induced peering established, several
NetworkConfigs are processed and treated to set up all the proper VPN communi-
cations. The following Figure shows the resulting number of NetworkConfigs once
their exchange between the three clusters is completed.
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Figure 6.2: The resulting NetworkConfigs

The total amount of NetworkConfigs shown in Figure 6.2 are divided as follows:

• Cluster A has four NetworkConfigs in namespace ns-b, namely one pair of
local and remote copies reflected to and by B (peering with B), one pair of
local and remote copies reflected to and by C via B (induced peering with C).

• Cluster C has four NetworkConfigs in namespace ns-b, namely one pair of
local and remote copies reflected to and by B (peering with B), one pair of
local and remote copies reflected to and by A via B (induced peering with A).

• Cluster B has eight NetworkConfigs, divided into two namespaces. In names-
pace ns-a, these are one pair of local and remote copies reflected to and by A
(peering with A), one pair of remote copies reflected by A to C and by C to A
(passthrough NetworkConfigs). In namespace ns-c, these are one pair of local
and remote copies reflected to and by C (peering with C), one pair of remote
copies reflected by A to C and by C to A (passthrough NetworkConfigs).

Handling NetworkConfigs in the central cluster

The example above showed the resulting NetworkConfigs in the context of a three-
cluster architecture. When considering a growing number of leaf clusters, all peered
with a common central cluster and therefore participating in the full mesh of induced
peerings, the number of NetworkConfigs handled by the central cluster becomes
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larger and larger. In particular, the number N of passthrough NetworkConfigs
stored and handled by the central cluster grows as the square of the total number
n of involved clusters (including the central one), following the equation:

N = n(n − 1)

This amount is added to the standard, non-passthrough NetworkConfigs that the
central cluster exchanges with its peers as part of the full-fledged, normal peering
sessions. This can pose a problem in terms of scalability for the central cluster,
due to the number of NetworkConfigs and the resources used to handle them.

6.3 Changes to the Virtual Kubelet
The Virtual Kubelet component has been updated to enable the correct reflection of
Endpoints toward a remote cluster when the relevant Pod is deployed to a different
remote cluster that has an induced peering with the first cluster. The reason is that
the central cluster’s Virtual Kubelet needs to know whether one induced peer has
remapped the PodCIDR of the other induced peer, therefore it requires access to
the remote IPAM before assigning the correct IP address to the reflected Endpoints
resource.

To ensure the central cluster is able to connect to the remote IPAM, this
component needs to be exposed via a service and such a service needs to be
reflected on the central cluster, so that the last knows about it and can reach out
to it. This reflection is done by simply offloading the “liqo” namespace toward
the central cluster, thus leveraging a feature that Liqo already provides. The
reason behind this is because that namespace contains all the pods that enable
the various Liqo-related features, including the IPAM service. Once the IPAM
service is reflected, the central cluster only needs to understand whether to use
the local IPAM or the remote one when translating an IP address for the purpose
of reflecting a Service and the relevant Endpoints resource. Of course, this is not
limited to one peer of the central cluster: any peers can offload its own “liqo”
namespace toward the central cluster, and the central cluster will thus receive the
reflected IPAMs, each one in its own namespace.

Before introducing the rest, it is worth noticing that the actual resource type
that carries the IP address of the Pod and that is connected to the Service resource
for the Pod exposition is the EndpointSlice resource, even though the discussion
so far always mentioned the Endpoints resource as the concept that represents
the tracking of Pod IP addresses. The EndpointSlice is a different and improved
implementation of the Endpoints resource, but both do the same job.

The following listing presents the core changes done to the EndpointSlice
reflection logic within the Virtual Kubelet component. Some parts have been
omitted for convenience and to keep the discussion clear.
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Listing 6.6: Virtual Kubelet
1 func MapEndpointIPs ( /∗ params ∗/ ) /∗ r e tu rn s ∗/ {
2 /∗ . . . ∗/
3 // Get the c l u s t e r ID o f the c l u s t e r the address be longs to
4 response , e r r := ipamc l i en t . GetC lus t e r Ident i ty ( ctx , &ipam .

C lus t e r Ident i tyReques t { Ip : o r i g i n a l })
5 c l u s t e r ID := response . GetClusterID ( )
6 clusterName := response . GetClusterName ( )
7

8 useLocalIPAM := true
9 i f c l u s t e r ID != " " {

10 // Remote c l u s t e r ID found , check whether c l u s t e r mapping
e x i s t s

11 ipamClient = remoteIpamClients [ c l u s t e r ID ]
12 i f ipamClient == n i l {
13 i d e n t i t y := di scoveryv1a lpha1 . C l u s t e r I d e n t i t y {
14 ClusterID : c lus te r ID ,
15 ClusterName : clusterName ,
16 }
17 ipamClient = initRemoteIpamClient ( ctx , &i d e n t i t y )
18 remoteIpamClients [ c l u s t e r ID ] = ipamClient
19 }
20

21 i f ipamClient != n i l {
22 clusterMappingResponse , e r r := ipamClient .

DoesClusterMappingExist ( ctx , &ipam . ClusterMappingRequest { ClusterID
: f o r g e . RemoteClusterID })

23 i f c lusterMappingResponse . GetDoesExist ( ) {
24 useLocalIPAM = f a l s e
25 }
26 }
27 }
28

29 i f useLocalIPAM {
30 // Remote c l u s t e r ID not found , use l o c a l IPAM
31 ipamClient = ipamc l i en t
32 } // e l s e remote c l u s t e r ID found and c l u s t e r mapping found , use

remote IPAM
33

34 mapResponse , e r r := ipamClient . MapEndpointIP ( ctx , &ipam .
MapRequest{ ClusterID : f o r g e . RemoteClusterID , Ip : o r i g i n a l ,
I s Induced : ! useLocalIPAM })

35 /∗ . . . ∗/
36 }

The logic shown above can be better understood by referring to an example
consisting of a central cluster B, and two leaf clusters A and C. Among A and C
an induced peering has been already established. The central cluster offloads a pod

54



Evolution of multi-cluster workload deployments: implementation

to cluster A. This Pod is exposed through the relevant Service and EndpointSlice
resources, which need to be reflected toward cluster C so that other pods can
directly communicate with the first pod. To properly set the IP address of the
EndpointSlice resource that is going to be reflected to cluster C, the Virtual Kubelet
that runs in cluster B and that refers to cluster A accesses the cluster A’s remote
IPAM and learns of a possible remapping done by C on the A’s PodCIDR. This
information is found under the LocalNATPodCIDR entry. This example assumes
that C has remapped A’s PodCIDR from 10.1.0.0/24 to 10.3.3.0/24.

Given this, the presented code refers to that specific Virtual Kubelet. Starting
from an IP address of 10.1.0.18, this code determines the cluster identity (i.e.
cluster ID and name) of the cluster the address belongs to, which is A. This is
done using the local IPAM of cluster B. Then, since the address belongs to a
remote cluster, it determines whether to use the local or the remote IPAM for the
translation of the IP address to the address space 10.3.3.0/24. This is done by
querying the A’s remote IPAM in order to know whether it stores the information
saying that A has been remapped by C from the original address range 10.1.0.0./24
to a different one. This is the case, since A has been remapped to 10.3.3.0/24. The
last line of code is the actual translation, which takes the original IP 10.1.0.18 and
returns 10.3.3.18.

This code interleaves with some important functions introduced in the IPAM
component to make all this work happen correctly. The following section will give
some details about the changes done on the IPAM service.

6.4 Changes to the IPAM component
The IPAM component stores all the required data about remappings operated by
the local cluster toward remote ones, and vice versa. Among this information, it
also contains the remappings between induced peers, something that is fundamental
for the correct EndpointSlice resource reflections.

In addition to that, some logic has been introduced to support the induced
peering case when translating IP addresses from one address range to the other.
Listing 6.7 reports the most important updates to the IPAM component. Some
parts have been simplified for convenience.

Listing 6.7: IPAM
1 func f indClus te r ID ( ip s t r i ng , subnets map [ s t r i n g ] netv1alpha1 . Subnets )

( c lus te r ID , clusterName s t r i n g ) {
2 f o r c l u s t e r ID = range subnets {
3 doesBelong , e r r := ipBelongsToNetwork ( ip , subnets [ c l u s t e r ID ] .

RemotePodCIDR)
4 i f e r r == n i l && doesBelong {
5 re turn c lus te r ID , subnets [ c l u s t e r ID ] . ClusterName
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6 }
7 }
8 re turn " " , " "
9 }

10

11 func ( liqoIPAM ∗IPAM) g e t C l u s t e r I d e n t i t y ( ip s t r i n g ) ( c lus te r ID ,
clusterName s t r i ng , e r r e r r o r ) {

12 parsedIP := net . ParseIP ( ip )
13 i f parsedIP == n i l { /∗ e r r o r management ∗/ }
14

15 liqoIPAM . mutex . Lock ( )
16 d e f e r liqoIPAM . mutex . Unlock ( )
17

18 // Get a l l subnets
19 subnets := liqoIPAM . ipamStorage . getClus te rSubnets ( )
20

21 // Find c l u s t e r ID o f the c l u s t e r the ip address be longs to
22 // In case c l u s t e r ID == " " , r e turn i t as i s and don ’ t re turn an

e r r o r
23 c lus te r ID , clusterName = f indClus te r ID ( ip , subnets )
24

25 re turn
26 }
27

28 func ( liqoIPAM ∗IPAM) doesClusterMappingExist ( c l u s t e r ID s t r i n g ) (
doesEx i s t bool ) {

29 subnets := liqoIPAM . ipamStorage . getClus te rSubnets ( )
30 _, doesEx i s t = subnets [ c l u s t e r ID ]
31 re turn
32 }
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Evaluation

This chapter shows a set of functional and performance tests that have been
conducted to demonstrate the behavior of the induced peering solution compared
to the normal peering one, as well as other measurements to confirm the induced
peering was working as expected.

7.1 Functional tests
Functional tests have been conducted manually by using Google’s microservices
demo application [6]. This application, called Online Boutique, is a cloud-native
microservices demo application consisting of a 11-tier microservices application.
The application is a web-based e-commerce service where users can browse items,
add them to the cart, and purchase them.

Google uses this application to demonstrate use of technologies like Kuber-
netes/GKE1 and gRPC2. This application works on any Kubernetes cluster, as
well as Google Kubernetes Engine.

The Online Boutique demo application has been deployed in a three-cluster
scenario, and functional tests have been carried out to verify its correct functioning,
as well as that the offloaded Pods could communicate directly. In particular,
this test was focused on the reflection of endpoints to the leaf clusters that were
connected through an induced peering, and on the traffic measurements between
them and the central cluster.

1Google Kubernetes Engine (GKE) provides a managed environment for deploying, managing,
and scaling containerized applications using Google infrastructure.[7]

2gRPC is a modern open source high performance Remote Procedure Call (RPC) framework
that can run in any environment.[8]
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The deployment of the application started on the central cluster, and thanks
to the proper node affinity configurations, some pods were scheduled to one leaf
cluster, other pods were scheduled to the other cluster, and the pod related to the
application frontend was scheduled on the central cluster. For example, the cart
service pod was running on the leaf cluster A, and its related Endpoints and Service
resources were reflected to leaf cluster C: the Endpoints resource contained an IP
address that logically pointed to the remote pod executing on cluster A. Similarly,
the database pod was running in cluster C, and its related Endpoints and Service
resources were reflected to cluster A, with the correct IP address configurations that
logically pointed to the remote pod in cluster C. Thanks to this setup, pods were
able to communicate directly without having their traffic exchanges pass through
the central cluster. This has been verified by measuring the traffic on the central
cluster: the results showed that the traffic was properly being exchanged directly
between the two leaf clusters A and C.

7.2 Performance tests
For the performance benchmarking of the induced peering, the focus was on the
measurement of the latencies between leaf clusters with respect to the adoption of
the induced peering solution compared to the usage of the normal peering solution,
as well as on the measurement of the time required to establish the peer-to-peer,
full mesh network of clusters using the induced peering solution, with respect to
the number of involved clusters that had a full peering session with a designated
central cluster.

7.2.1 Latency measurements
For the purpose of measuring the latencies of a three-cluster topology, where one
cluster works as a central cluster, a testbed was hosted by a Kubernetes cluster
composed of six worker nodes, totally encompassing 332 virtual cores and 2 TB of
RAM. The testbed leveraged the Liqo Benchmarks GitHub repository [9], which
contains a set of tools to streamline the benchmarking of Liqo. In particular, the
Liqo K3s3 cattle tool has been used to deploy the three-cluster setup: this is an
Helm chart that streamlines the creation of a given number of single-node K3s
clusters on top of a pre-existing Kubernetes cluster.

The testbed was created to simulate a scenario whereby an organization controls
a cluster in the West US region and activates two peering sessions with two other

3K3s is a highly available, certified Kubernetes distribution designed for production workloads
in unattended, resource-constrained, remote locations or inside IoT appliances.[10]
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Figure 7.1: Three-cluster scenario: clusters spanning over multiple continents

clusters located in Europe, in particular in the regions of North and South Italy.
Between those two clusters no active peering is established, but once the West
US cluster sets up the two peering sessions (and becomes the central cluster of
this topology), an induced peering is established between the two clusters in Italy.
The company then deploys pods so that they get scheduled in the remote clusters
of North and South Italy. Such pods are then able to communicate directly by
exploiting the induced peering, with massive advantages in terms of latency. As
presented in the following diagrams, the solution is compared to a traditional
peering where pods’ communications need to pass through the central cluster
before hitting the other leaf cluster, resulting in high latencies even though the
clusters are quite close to each other: the formed path is very inefficient, as it starts
and ends in Italy, but passes through the USA.

To reflect the actual latencies of such an intercontinental communication, laten-
cies have been added to this benchmark, so that the round trip time between the
central cluster and the leaf clusters has been set to around 180 ms, as it would be
between West US and Italy, while the latency between the two leaf clusters has
been set to around 20 ms, as it would be between North and South Italy.

The following charts show the latency measurements and demonstrate the
value provided by the induced peering in the effort of cutting down the delay of
communications between remote pods belonging to the Italian regions.

Figure 7.2, reported for completeness, simply reveals that no differences are
found in the latency between West US and the two Italian clusters, with or without
the induced peering, as expected. The real value is shown in Figures 7.3 and 7.4,
where the latencies between the two Italian clusters are drastically reduced to about
24 ms, compared to the 365 ms that a normal peering would produce as the sum
of the two 180 ms latencies that characterize the path between Italy and West US,
thanks to the usage of the induced peering network setup: indeed, their latencies
are the ones normally observed between two close regions like the ones of North
and South Italy.
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Figure 7.2: Latency between West US cluster and the other ones

Figure 7.3: Latency between North Italy cluster and the other ones
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Figure 7.4: Latency between South Italy cluster and the other ones

The comparison highlights the great benefits of the induced peering in such
a scenario, with an improved latency that is fifteen times better. Of course, the
more the central cluster is closer to the leaf clusters, the less evident is the latency
improvement. However, in general terms, the latency has a solid benefit from the
induced peering, as it cuts off an intermediate step in the communication exchange
between remote pods.

7.2.2 Time measurements
A set of measures has been conducted to analyze the behavior of the establishment
of a full mesh of induced peers. The testbed was hosted by a Kubernetes cluster
composed of six worker nodes, totally encompassing 332 virtual cores and 2 TB
of RAM, running the Liqo K3s cattle tool from the Liqo Benchmarks GitHub
repository, just like the one already mentioned. A growing number of clusters has
been used in these measures, starting from the simplest three-cluster topology. In
each experiment, one of the clusters has been designated as the central one, while
all the remaining ones were the leaves of the tree-shaped topology. More precisely,
by considering the connections deployed between every induced peer, so as to form
a full mesh, the final topology becomes a graph. However, by only considering the
full-fledged peering sessions that are established between the central cluster and
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Figure 7.5: Time to setup a full mesh of induced peerings

each of the leaf clusters, the topology can still be seen as a tree of nodes, where
there is a common parent node which is the central cluster.

The starting and final points in time among which the measures were taken
are, respectively, the first moment in which the central cluster creates the first
Neighborhood resource (which is sent over to the other clusters by means of the
CRD Replicator), and the last moment in which one of the leaf clusters completes
the creation of the last TunnelEndpoint resource that stores the VPN tunnel data.

Figure 7.5 reports the results of the time measurements. It highlights a linear
growth with the number of clusters that together constitute the full mesh of induced
peers, including the central cluster. Therefore, the solution scales linearly with
the total number of deployed clusters, even though the number of passthrough
NetworkConfigs handled by the central cluster and the total number of TunnelEnd-
points that represent the full mesh of interconnections in the whole multi-cluster
architecture both grow as the square of the total number of clusters.

It is worth noting that this result was obtained by activating all the normal
peering sessions with the central cluster at the same time. Instead, in case the
peering sessions are established progressively in several separate moments, the
time required to extend the full mesh of induced peers at each progressive step
decreases, as the number of resources to handle is lower. Moreover, this operation
constitutes an initialization process, whose time span affects the initial moments
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of the multi-cluster setup and no longer impacts the performance of the clusters
when the peerings are fully operational, that is when the actual offloading phase
starts and workloads can be scheduled remotely. However, to help with the timings
and reduce them, it is possible to increase the concurrency of the reconcilers and
of the CRD Replicator’s workers, at the cost of increased consumption of cluster
resources.
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Conclusions

This work constitutes a proof of concept that shows how it is possible to establish
direct communications between offloaded pods without requiring a central cluster
to forward the traffic, therefore avoiding the scalability issues that emerge on such
a centralized setup. By means of induced peering and with the aid of a common
central cluster, clusters can automatically discover remote peers and thus create
the network connections that allow for lower latency pod-to-pod communications
and less overhead on the central cluster.

As a proof of concept, it may require additional tweaks to smooth out some issues
with the induced peering, such as the large number of NetworkConfig resources
that are handled by the central cluster once it activates a large number of peering
sessions with its remote peers. Other improvements may be directed towards the
decrease of the time required to set up the full mesh of induced clusters, when
their number increases, by means of increasing the concurrency on the controllers’
reconcilers, which handle the various resources and CRs, as well as the CRD
replicator’s concurrent workers of the central cluster, which reflect an amount
of NetworkConfigs that increases with the increase of the number of established
peering sessions.

This work created a valid solution performance-wise, without losing the inherent
ease of use of Liqo. From a user perspective, this solution can translate to an
improved experience of the overall application. For a developer, it is completely
transparent and does not require them to operate any change to their applications.
From the standpoint of a cluster administrator, the induced peering represents an
addition to their toolset they can use to carry out fine-tuning adjustments to their
multi-cluster architecture.
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