
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Realistic path development in a virtual
environment for detection and

rehabilitation treatments of Alzheimer’s
disease patients

Supervisors

Prof. Vito DE FEO

Prof. Andrea SANNA

Candidate

Daniele BIGAGLI

July 2022

Summary

Today, virtual reality is experiencing significant progress with respect to its tech-
nologies, and although it struggles to find a place in the more commercial and
consumer environment, from a professional perspective it emerges in applications
and functionalities. With increased performance and lower costs, virtual reality
devices are being used for staff training, remote intervention, meetings in virtual
environments, learning and health simulations. In particular, virtual reality is
increasingly being used for medical analysis, detection and rehabilitation, being
able to assist in interventions of patients with physical or cognitive impairments.

It is with these objectives in mind that PEDAL project was born, which aims
to create an explorable virtual environment to allow immersion for patients with
cognitive difficulties or diseases such as Alzheimer’s. The idea is to act directly on
the training of memory and spatial orientation, predominant factors in the context
of diseases of this kind. By combining a virtual reality device with a stationary
bicycle with handlebars, the intention is to let the patient move within the virtual
environment by simulating a bicycle ride, trying to orient himself within a city
district by repeating predetermined paths.

In this thesis, the problem of defining orientation paths is examined, aiming to
create a tool that allows rapid and scalable definition of paths, executable by bicycle
within a given virtual environment. The first objective of the work is to create
an abstract representation of the environment, which can be used by subsequent
search algorithms as well as other accessory components, and use it to identify
paths between two selected points that meet the requirements of practicability,
length and realism.

It is then ensured that each identified path has all the parameters and components
needed to implement path learning phases, using indications, symbols or textual
descriptions, and performance evaluation, so as to have a track of the progress made
in several treatments. In order to support the user during the various phases of the
application, a virtual assistant is introduced that can function as a guide and as the
main source of interaction for the user, and that is capable of reacting according
to the patient’s progress with respect to the path to be followed. Finally, it is set
the task of introducing a management system of pedestrians NPCs that move in

ii

certain areas of the map, defined by the environment representation algorithms
themselves.

For the project’s development, Unity, one of the most popular and supported
game engines, was used, constructing a city environment from a reproduction of
a section of the city of Colchester, combining the virtual scene system with the
scripting mechanism it implements through the C# language.

Referring to numerous path planning researches in the field of robotics and video
games, various path finding algorithms were analysed, in particular those related
to A*, to define an algorithm that would search for the best path to get from one
point to another on the virtual map and that would meet the requirements imposed.
A tool was implemented for Unity, which refers to the game engine’s Editor library,
which allows the representation of the virtual environment to be extracted from the
3D model, analysing the presence of roads and buildings, and on which, providing a
starting point and destination, the defined path finding algorithms can be applied,
using elements of the Unity user interface.

The virtual assistant, imagined as a small floating robot and created by a
member of the project’s graphics and rendering team, was integrated into the
virtual environment so that it could refer to the abstract representation, by nodes
and connections, of the city. Functionality has been added to it that allows it
to obtain information on the user’s status, such as a track of the most recently
travelled road, the direction taken and the stop times, and consequently be able
to process it to give advice or directions to the user, using 3D interface systems,
animations and particle effects.

Finally, by using 3D humanoid models as placeholders, a system was added for
the appearance and disappearance of pedestrians moving through areas identified
as walkable, relying on Unity’s coroutine mechanism.

In order to be able to refine the parameters that constitute the steps of the
path finding algorithm used, a small virtual urban area with streets, buildings and
pavements was created. In this environment, multiple applications of path finding
algorithms were performed until an initial configuration of the parameters was
found to be satisfactory.

Starting from these results, the Turn, Bounds and Orientation Sensitive A*
algorithm was applied to the virtual Colchester to test the outcomes and further
refine parameters, arriving at the final configuration used for path definition.

Finally, up to 5 paths were defined using implemented methods and tested by 5
different subjects who tried out the platform on a PC, controlling their movements
with mouse and keyboard. For each path, the length in metres and the average
travel time of the entire route were pre-calculated. In the tests, it is checked
whether the distance covered by the subjects and the time taken to follow the path,
knowing its directions, come close to the pre-calculated values, proving that these
may be optimal values as parameters for the evaluation phases. It is also tested

iii

whether the behaviour of a subject moving on the streets of the virtual city is
similar to the expected behaviour described by the identified path.

This document is divided into six chapters; the first chapter introduces virtual
reality and how it is applied in the field of healthcare. The PEDAL project is
then briefly presented. In the second chapter, a number of articles and studies
concerning treatment and rehabilitation with virtual reality are illustrated. This is
followed by a description of the topic of pathfinding, and then a number of articles
on path search in real-life situations and in video games are presented. In the third
chapter, the hardware technologies involved in the PEDAL project are described,
as well as software technologies, in particular by delving into Unity. The objectives
of this thesis are described in depth in the fourth chapter, following with full details
of the implementation and study of the involved algorithms. In the fifth chapter,
some applications of the pathfinding algorithms are presented to show the most
important differences in their results, followed by the outcomes of some motion
tests in the platform to make evaluations with respect to parameters characterising
the defined paths. Finally, the sixth chapter presents the conclusions.

iv

Acknowledgements

Thanks to my family for always supporting me in pursuing my dreams and goals
until now. Thanks also to all the friends and people who have accompanied me on
this path. Finally, thanks also to all the people involved in the PEDAL project for
their mutual help and cooperation, it was a pleasure to take part in this experience.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Virtual Reality . 1
1.2 VR technology for healthcare . 2
1.3 PEDAL project . 3

2 Related Works 5
2.1 State of the Art . 5
2.2 Path finding . 7

2.2.1 Maps representations for path finding 9
2.2.2 Grids . 9
2.2.3 Gaming applications . 13
2.2.4 Objectives of path planning 15

3 Technologies 17
3.1 Hardware . 17

3.1.1 HTC Vive Pro . 18
3.1.2 HP Reverb G2 . 18
3.1.3 Oculus Quest 2 . 19

3.2 VR development . 20
3.2.1 Unity . 21
3.2.2 Custom tools for Unity . 22
3.2.3 SDK for VR integration . 22
3.2.4 Unity input system . 25
3.2.5 Unity execution order . 25

vii

4 Development 27
4.1 Project requirements . 27
4.2 Tools developed for Unity . 29

4.2.1 Obstacles and Roads detection 29
4.2.2 Path definition . 32
4.2.3 Basics with Dijkstra algorithm 32
4.2.4 A* algorithm . 32
4.2.5 Turns, Orientation and Bounds distance Sensitive A* algorithm 34
4.2.6 Line Of Sight A* algorithm 37
4.2.7 Path as game object . 38

4.3 Progress and path tracking . 38
4.3.1 Virtual Assistant behaviour 40
4.3.2 Evalutation criteria . 41

4.4 Pedestrians system . 42
4.4.1 Pedestrians spawn management 43
4.4.2 NPC behaviour . 46

5 Test and Results 48
5.1 Path definition on a virtual environment 48

5.1.1 Dijkstra algorithm application 50
5.1.2 A* algorithm application . 51
5.1.3 TOBS_A* algorithm application 52
5.1.4 Paths definitions on realistic environment 55
5.1.5 Navigation tests . 59

6 Conclusions 68

Bibliography 71

viii

List of Tables

5.1 List of paths defined for tests and data analysis. 60
5.2 Test data from simulations on path 1. 62
5.3 Test data from simulations on path 2. 63
5.4 Test data from simulations on path 3. 64
5.5 Test data from simulations on path 4. 65
5.6 Test data from simulations on path 5. 66

ix

List of Figures

2.1 Virtual Reality for stroke rehabilitation. A Stroke of Genius: Neu-
rorehabilitation through Virtual Reality; Illumin Magazine; 2019
Aug 27. 6

2.2 A grid map from a famous top-down strategy game. Eurogamer,
2017 Oct 19. 8

2.3 Most used map representation methods. 10
2.4 A square-grid tile map in a strategic videogame, Fire Emblem: Three

Houses, 2019. 11
2.5 An hexagonal grid map in Civilization V, 2010. 11
2.6 Waypoints representation (left) and NavMesh representation (right)

in a World of Warcraft map section. 12
2.7 Hierarchical graph definition examples, Boost Hierarchical Pathfind-

ing with Extended Graphs, Davide Aversa, 2015 Aug 28. 13
2.8 An example of the map abstraction with sectors and regions [22]. . 14
2.9 A famous car racing game. 16

3.1 HTC Vive Pro headset. 18
3.2 HP Reverb G2 headset. 19
3.3 Meta Quest 2 headset. 20
3.4 Unity ’Tools’ dropdown menu with user-defined functions 23
3.5 Path Manager Editor tool window, defined during development . . . 23
3.6 Movement control methods. Teleportation (left), Michael Eichenseer,

medium.com, 2017 Jun 14, and hand tracking (right), David Heaney,
uploadvr.com, 2022 May 02. 24

3.7 Input Action Asset of the XR player controller 26

4.1 Path definition structure . 28
4.2 Single node step of the obstacles and roads detection algorithm . . 31
4.3 Idle animation with correct graphical effects (left) and pointing left

animation with incorrect graphical effects (right) 41
4.4 A path script with distance and average time displayed. 42

x

4.5 User walkable nodes (Blue) and pedestrians spawning nodes (Black) 44
4.6 NPC behaviours diagram . 46
4.7 Walking status of an NPC (left) and Talking status of an NPC (right) 47
4.8 Chatting status of two NPCs . 47

5.1 Virtual environment representing a small neighborhood built with
Unity . 49

5.2 Graph representation of the walkable areas (light blue) of the map . 49
5.3 Path defined with Dijkstra algorithm 50
5.4 Path defined with A* algorithm . 51
5.5 Path defined with w1 = 1, w2 = 1, w3 = 1 53
5.6 Path defined with w1 = 0.3, w2 = 1, w3 = 1 53
5.7 Path defined with w1 = 0.3, w2 = 1, w3 = 0.5 54
5.8 Path defined with w1 = 0.3, w2 = 1, w3 = 0.1 54
5.9 Map preview of the Colchester sections used in the project 56
5.10 Virtual Colchester overview as imported without textures. 56
5.11 Portion of the resulting path with w1 = 0.3, w2 = 1, w3 = 0.1. 57
5.12 Portion of the resulting path with w1 = 0.1, w2 = 0.5, w3 = 0.2. . . . 58
5.13 Path defined with TOBS_A* from Firstsite art gallery to Colchester

Gallery. 59
5.14 Same path defined with A* algorithm. 59
5.15 Path 1 represented in a Google Maps itinerary. 61
5.16 Path 1 overview. 62
5.17 Path 2 overview. 63
5.18 Path 3 overview. 64
5.19 Path 4 overview. 65
5.20 Path 5 overview. 66

xi

Acronyms

AD Alzheimer’s Disease

AI Artificial Intelligence

DPA Dynamic Pathfinding Algorithm

HMD Head-Mounted Display

IDA* Iterative Deepening A* algorithm

IDE Integrated Development Environment

LOS A* Line of Sight A* algorithm

MCI Mild Cognitive Impairments

NPC Non-Playable Character

PEDAL Personalized Environment for Dementia Assisted Living

SDK Software Development Kit

TOBS A* Turns, Orientation and Bounds distance Sensitive A* algorithm

UI User Interface

VA Virtual Assistant

VR Virtual Reality

xiii

Chapter 1

Introduction

1.1 Virtual Reality
Virtual reality has always been described in several ways, and looking at its most
recent definitions, it can be found that VR is a "real-time interactive graphics with
3D models, combined with a display technology that gives the user the immersion
in the model world and direct manipulation" [1], or it refers to "a immersive,
interactive, multi-sensory, viewer-centered, 3D computer generated environments
and the combination of technologies required building environments" [2]. Althought
slightly different, these definitions and most of the others share key features that
are defining virtual reality as it is; the simulation of an immersive experience in a
reconstructed virtual environment, which people can perceive with multiple senses,
and where they can interact and have an impact on things that compose this
environment.

There are three types of VR systems, depending on the level of the immersion
they provide:

• Fully-Immersive VR is the most realistic virtual experience; it encases the
visual and audio perception of the user in the virtual world, cutting out all that
belongs to the reality. [3] This system is often realized with Head-Mounted
Display that tracks user’s head movements and gloves to let them touch
and interact with objects inside the virtual environment. This technology
makes the user feel part of the recreated world, as if events are happening to
themselves. Walking through cities or driving virtual vehicles are examples of
an immersive virtual reality.

• Non-Immersive VR is a system realized with common displays and applications
that resemble something like a window to a virtual world; while providing a
lower level of presence and interaction, it could achieve an increase comfort

1

Introduction

and a lower cost overall. This technology provides a computer-generated
environment but lets the user have full control over their movements and the
physical world around them. Inputs such as keyboards or controllers are used.
Classic video games are generally an example of non-immersive virtual reality.

• Semi-Immersive VR is somewhat of an hybrid of the previous systems, where
developers combine the simplicity of the VR desktop with a higher level of
immersion, using additional devices such as gloves, joysticks, glasses. This
kind of technology is often used for educational and training purposes, for
instance flight simulator systems.

Common recent devices used for immersive Virtual Reality are gaming HMD
such as Oculus Rift, HTC Vive, Playstation VR. Oculus and HTC have developed
and distributed standalone headset; in exchange for a lower performance, they do
not need to rely on an external support system such as a PC or a gaming console.

1.2 VR Technology for healthcare
Virtual Reality technology has been evolving rapidly for several years, with ever-
increasing performance growth, while at the same time becoming more accessible
in terms of cost and usability. The employment of VR in analysis and healthcare
is therefore rising, where ever more companies have adopted these tools for the
medical professionals’ training, education, and interventions or treatment of patients
suffering from various diseases. VR technology has the possibility of simulating
environments, situations, points of view that are normally impossible to reproduce,
granting a chance to other people to experience a pathological condition that could
be difficult to explain or imagine, allowing to contribute to an improvement in the
treatments dedicated to these pathologies.

In general, rehabilitation in healthcare refers to the treatment and process to
restore good health and regain impaired functions and abilities [4]. Two main
categories can describe different types of impaired functions: physical impairments
are the ones related to injuries and difficulties on movement and control of body
parts such as hands, legs, head, limbs, while cognitive impairments are instead
related to complications in vision, hearing, memory. The latter are the most
challanging cases, with diseases that affect brain and neuron system directly

Virtual Reality has had a major impact in the field of mental health; over the
years, applications have been developed that allow therapies for the treatment of
anxiety, the improvement of the attention deficit, recovery from post-traumatic
stress. It is also used for the treatment of kind of phobias such as the fear of
driving, fear of flying, fear of specific animals and insects [5]; since therapies of
this type are managed through the principle of exposure, with VR it’s possible

2

Introduction

to live situations that are impractical or impossible to recreate, reducing the cost
widely and minimizing the risks. The feeling of being in a fully controlled virtual
environment, which can be switched off if necessary, helps the patient to feel safe
and more efficient [6]. Other important fields of applications of the Virtual Reality
are diagnosis and rehabilitation treatments for patients with stroke recoveries,
schizophrenia and dementia.

Moreover, advantages of the virtual reality are given by the full control over
stimulus presentation and response measurement, according to medical operators
or researchers [7]. It’s possible for developers and rehabilitation specialists to
design virtual environments and simulations to adapt the system to requirements
based on patient’s status and impairments. VR systems are often flexible to
gradual differentiations in difficulty and challenge of specific sessions, allowing,
when possible for the patient, independent treatments performed individually, with
non-medical support, or remote.

1.3 PEDAL project
The Personalized Environment for Dementia Assisted Living project, PEDAL, aims
to become an accessible support for the treatment of patients with Alzheimer Disease
(AD) or Mild Cognitive Impairment (MCI), combining a common VR headset with
a stationary bicycle. Patients can navigate a digital realistic neighborhood while
riding the bike and be stimulated to find their way back to a specific destination
defined in the map. The stationary bike, connected to a smart trainer, allows a
real movement of the patient in a confined space, which could be the therapeutic
office or a dedicated room in a house. This treatment can positively improve
those aspects that are generally affected by diseases such as Alzheimer’s, not only
short-term and long-term memory, but also orientation as well as the ability to
learn, speak and move efficiently; in a PEDAL session, the patient is asked to
memorize and reproduce the shortest route to return to their virtual home, testing
their memory and their spatial orientation skills.

With the guidance of coordinator Prof. Vito De Feo, the work of this thesis
consisted of implementing various artificial intelligence related components. First,
multiple tools and algorithms were implemented that allow developers to summarise
a virtual environment into a graph of walkable or obstructed nodes, which can be
used to perform subsequent path search investigations on them. With this in mind,
the research started from the basics of the Dijkstra algorithm to explore other
variant algorithms and to test them for different goals; path defining, indications,
direction tracking at runtime. Using this graph system, the logic behind the
virtual assistant was implemented; a robot character, created by the rendering and
animation team, with the aim of teaching the user how to travel the path to a

3

Introduction

certain destination, giving indications and hints. In the end, other Non-Playable
Characters have been added to the environment, to simulate pedestrians that
populate a city area.

4

Chapter 2

Related Works

2.1 State of the Art

The efficiency of VR technology for supporting people with Alzheimer’s or Mild
Cognitive Impairment [8] has been a hotly debated issue over the years. There
are numerous studies about it, which are mainly divided into two different fields:
tests that deal with discriminating, among a larger group of people, those who
are affected by AD or dementia from the controls, putting all the examined in
conditions to try to perform some kind of tasks in a virtual environment, and
longer-term treatments where patients are invited to repeat training sessions several
times in order to verify any positive results in preventing a decay of neurological
conditions or even improving their state.

In earlier times, studies such as [9] were illustrations of a typical research in this
area. In this study, it has been prepared a computer-simulated virtual environment
to assess daily living skills in a sample of people with traumatic brain injuries
(TBI). A group of people capable of independent living, but with medical diagnosis
of closed brain injury, were tested with a simulation where patients had to interact
with a reproduced kitchen environment, where they would have to prepare a can of
soup. Results of this research have stated that task executed in familiar environment
have the potential to be an assessment and training support for these people.

In 2012, researchers tried to understand which aspects of the VR rehabilitation
systems affect better recovery [10]. To do that, they developed different config-
urations of the same simulation using different devices such as haptic devices,
vision-based system and exoskeleton, and let a number of patients with chronic
stroke randomly try these systems, with a treatment meant for be repeated in
four weeks. While having overall good results in improvements with all of these
three configurations, they noticed that less-constrained devices had a better result
concerning the ability to retain achieved gains. In general, rehabilitation treatments

5

Related Works

performed with Virtual Reality devices led to significant improvements for stroke
support and recovery.

Figure 2.1: Virtual Reality for stroke rehabilitation. A Stroke of Genius: Neu-
rorehabilitation through Virtual Reality; Illumin Magazine; 2019 Aug 27.

Given the heterogeneity of tests that have been done, some studies such as [11]
and [12] have dealt with discerning between most of them to collect specific studies
on this subject and find similarities between results and conclusions.

The first of these two reports dealt with collecting and summarizing the results
of a set of experimental studies where researchers performed interventions using
VR on patients with MCI or dementia, generally obtaining positive results. In
summary, it was found that treatments with this technology have small-to-medium
improvements on characteristics such us physical fitness, cognition and emotions;
the results brought to the physical functions of some patients have indicated how
VR treatments that also include physical training can benefit the motor functions
of patients with MCI or AD. It is clear how the adaptability of this technology to
the need of the patients, while trying out certain activities or tasks, results in a
feeling of greater safety, comfort and less anxiety for them.

The second report devoted the greatest attention to the collection of studies that
exclusively use Immersive Virtual Reality (iVR) for the diagnosis and treatment
of patients with Alzheimer’s Disease. In this analysis, it was clear that iVR can
distinguish people with AD from healthy controls or people with other different

6

Related Works

cases of dementia, while studies on treatments with iVR to improve the ability of
performing certain routine functions are more limited. In general, however, patients
with AD and MCI reported that they enjoy treatments executed with iVR, resulting
in a positive factor for possible rehabilitation on participants with cognitive deficits.
It was also reported that, for some tasks, learning and performance improvement of
these patients growth more than other groups; among these, better performances
were observed in space navigation tasks. In the report [13], the results of a 7-
week treatment were observed for a patient with MCI and probable development
of AD, who are asked to learn to orient themselves inside a symmetrical multi-
storey building, without any landmarks or element of interests, using a control
system composed by an Oculus Rift and a custom wheelchair, which captures
real-world motion and reflect it in the virtual environment. Ah the end of the
treatment period, the patient was able to complete every different orientation task
in the simulation; beyond that, his family reported an overall improvement in his
real-world orientation skills and navigation while driving.

2.2 Path finding
Artificial intelligence is playing a fundamental part in the development of modern
video games, which bring with them ever-increasing requirements in terms of gaming
experience and realism. The problem of pathfinding in video games is one of the
most widespread challenges, as it requires developers to find the right compromise
between the quality of results and the amount of resources required, considering
the complexity of path search algorithms. Pathfinding usually refers to finding the
best route from one point to another, taking into account obstacles and costs of
traversing certain areas rather than others; the calculation of these paths can often
take place at runtime, demanding it quite frequently. For this reason, there are
numerous studies that aim to find the best solutions for these challenges, adapting
to the environment they target, while optimising spent resources and speed of
computation. While Dijkstra has long remained the only possible algorithm for
finding paths within graphs, since the definition of the A* algorithm this has
become the cornerstone for pathfinding, in games and non-games environment.
Due to its versatility and the possibility of being refined to suit different tasks,
there are multiple studies presenting variations of the algorithm.

In [14] the authors’ aim was to define a pathfinding algorithm applied to robotics
and video games, which would allow a path to be found that was short and
realistic-looking. The proposed solution, the Theta* algorithm, is described as
a compromise between the basic A* algorithm and pathfinding algorithms that
make use of visibility graphs instead of grids. In the algorithm, each iteration
is performed by making a line-of-sight check between the potential path nodes

7

Related Works

and the nodes being expanded, continuing in the same direction by relying on the
angles that define the range of visibility in the chosen orientation, imposed by the
non-traversable grid cells, which represent obstacles.

The heuristic function that is used in A* to constrain the exploration of nodes
to the most promising ones plays a fundamental role in the algorithm; for this
reason, many of the variants that are proposed aim to intervene on this function in
order to obtain desired results. In [15], the author tried to explore the possibilities
of the heuristic function by introducing the concept of orientation into it, so as to
take into account the direction taken up to that point for the choice of subsequent
nodes visited. The results represent an optimisation in terms of time and visited
nodes for the algorithm on uniform cost maps.

Figure 2.2: A grid map from a famous top-down strategy game. Eurogamer, 2017
Oct 19.

Although the concept of the uniform grid and algorithms based on it is a common
and recurring problem in top-down strategy games and old RPGs, there are other
representations of game areas over which paths are to be calculated. Extended game
environments, such as open-worlds and MMORPGs, often rely on representations
of the map by using a mesh that covers the traversable area, defined by a series of
convex polygons, each of which ensures that a character can move freely from one
point to another in that same polygon. Study [16] dealt with the implementation
of an algorithm that optimises the complexity and resources used in defining a

8

Related Works

minimum path over a mesh of convex polygons. The steps in this algorithm, after
defining the area that can be traversed by the moving agents, are to find which
polygons must be travelled through to realise the path, using the A* algorithm.
Then, this channel formed by the detected polygons is used to calculate the shortest
path within it, based on the concept of a visibility graph.

2.2.1 Maps representations for path finding
An element that connects all attempts to apply the path finding problem to
game environments is the need for a usable representation of the map, generally
composed of a structure of elements and connections between them. This kind of
problem has been examined in depth in the past in robotics and motion planning
applications [17], studying different methods of designing representative graphs of
real environments where the movement of robots and automated vehicles had to be
planned. Most of the methods proposed for defining representative graphs can be
divided into two macro categories: cell decomposition methods and skeletonization
methods.

The first of these two categories includes those methods that break down the
environment under consideration into cells of fixed or variable size and generally
polygonal or circle-shaped. Each cell often represents a navigable portion of the
map, connected to the other cells to which it is adjacent. The most commonly used
forms of cell decomposition are typically:

• Square cells

• Hexagonal cells

• Triangular cells

’Skeletonization’ techniques deal with extracting traversable areas from the
examined map topology by defining a set of vertices with their respective coordinates
in the environment and connections joining those vertices that are in line of sight
of each other.

These techniques generally produce representative maps composed of irregular
cells that define particular graphs such as the visibility graph or the waypoints
navigation graph.

2.2.2 Grids
A grid in a video game is generally a set of cells, each defined by a location on the
map and representing a specific section of the environment, connected by edges
to form a graph. The greater the granularity of the grid, the more accurate the

9

Related Works

Figure 2.3: Most used map representation methods.

resulting description of the terrain. Following this, the fundamentals of two popular
grid-based approaches are presented: regular grids and irregular grids [18].

Regular Grids

Regular grids are the best-known type of grids, used in video games and robotics,
and consist of identical, equilateral polygons arranged to cover the entire map.
Only triangular, square and hexagonal shapes can be used for regular tessellation
of cells of equal size. The square cells are themselves classified into two sub-groups,
depending on the number of connections found on each cell; if there are four
connections, and thus possible movements from a cell, then the grid is generally
called tile grid; if, on the other hand, movement is also permitted diagonally,
reaching eight connections per cell, then it is called octile grid.

In study [19], a search is performed on all different grid types and results are
evaluated by applying search algorithms such as A* and iterative deepening A*
(IDA*). A grid called tex, consisting of square tiles but replicating the equivalent
topology of a hexagonal grid, is also proposed. A number of considerations are made
in the results, such as the fact that a hexagonal grid provides a better topological

10

Related Works

representation of the underlying environment and how a tex grid brings with it the
advantages of a hexagonal grid, but is simpler to implement. It was also shown
how the choice of grid affects the asymptotic performance of the IDA* algorithm.
In general, however, the requirements of the application and the design of the game
influence which type of grid and search algorithm will achieve best results.

Figure 2.4: A square-grid tile map in a strategic videogame, Fire Emblem: Three
Houses, 2019.

Figure 2.5: An hexagonal grid map in Civilization V, 2010.

11

Related Works

Irregular Grids

Irregular grids have been increasingly used in modern times, providing the possibility
of speeding up and optimising graph search algorithms at the cost of having to
process a more complex map representation. The most applied irregular grid
methods are the visibility graph and the waypoint system. Visibility graphs
generally portray locations that are visible to each other, where each node in the
graph represents a location point, and each edge represents a visibility connection
between them. In practice, for every segment that links two points in the map and
does not encounter any obstacles, a connection is generated in the graph. Often, to
reduce the number of connections and thus the complexity of the resulting graph,
vertices that would represent concave corners within the unobstructed areas are
ignored. Similar to visibility graphs, and which make use of only convex polygons
to represent individual sections of the game map, are navigation meshes, or Nav
Mesh. Analogously, polygons included in the Nav Mesh represent walkable areas
and adjacent polygons are connected to each other in the graph describing it.

The waypoint system, on the other hand, involves a set of points with their
coordinates, the waypoints, and for each of them connections joining the same
point to an arbitrary number of other nodes. The latter kind of system suffers from
high computation times and wider memory usage. In [20], a waypoint system was
used to plan routes for free floating space robots in a 3D environment. Dividing
the task into two sub-problems dealing with finding the best sequence of waypoints
to perform the required tasks and optimising the movement between them so as to
make more efficient use of resources showed satisfactory results in improving the
use of energy for such planning.

Figure 2.6: Waypoints representation (left) and NavMesh representation (right)
in a World of Warcraft map section.

12

Related Works

2.2.3 Gaming applications
In the context of video games, pathfinding problems occur repeatedly, receiving
path calculation requests even several times per second. Taking games of the
isometric MOBA genre as an example, the movement of the playing character
takes place by clicking the destination on the map that one wants to reach, and
this happens frequently over periods of seconds; each click corresponds to a new
calculation of a shorter path to get to the destination, considering obstacles and
areas that cannot be crossed. For this reason, the necessity for fast and efficient
algorithms is further increased in this field.

Many studies have therefore been focused on the problem of pathfinding in video
games, aiming to minimise computational time. In [21], a survey of pathfinding
methods is conducted, going on to elaborate studies and modifications on the
heuristic functions used in grid maps and applying extensions to the algorithms
that allow the analysed map to be hierarchically subdivided and thus also decompose
the problem into nested tasks. The latter analysis in particular often occurs in
research of this type, proposing hierarchical abstractions of the planning problem
on several levels, so that a more abstract solution can first be defined, which can
then be refined into a lower-level solution later. These methods speed up algorithms
by eliminating the possibility of backtracking on hierarchically higher levels.

Figure 2.7: Hierarchical graph definition examples, Boost Hierarchical Pathfinding
with Extended Graphs, Davide Aversa, 2015 Aug 28.

In regular grid representations, elaborations concerning the symmetry of certain
portions of the grid can be made to speed up certain planning steps; with the
assumption that the traversable zones on the map have uniform traversal costs, it
is possible to reduce these zones to individual sub-paths with a cost equivalent to
all those symmetrical paths that could be composed within them. Some reference
is made to those solutions involving pre-computations of paths on the map that
are stored in a database dedicated to storing, for example, all the shortest paths

13

Related Works

joining certain nodes in pairs.
Furthermore, in this additional study [22], a combination of pre-computation

criterion and hierarchical abstraction criterion for planning tasks was implemented
to demonstrate the improvements these approaches can bring to the results. Starting
with assumptions from the use of algorithms such as Partial-Refinement A* [23], one
of the most famous algorithms that applies abstraction criteria, partial refinement
and collaboration in pathfinding, combined with a pre-computed database system
with information on map abstraction domains, they defined an algorithm called
DBA*. The application of this algorithm to maps from a famous top-down tactical
rpg produced noticeable results in terms of memory saved, in the range of hundreds
of KB, and in terms of time saved, up to 10 seconds in some applications.

In practice, the DBA* algorithm performs an offline pre-computation before the
actual path finding. In this phase, the algorithm processes the grid in such a way
as to divide it into sectors of a predetermined size. Regions are then identified,
which are sets of cells within a sector that are mutually reachable without leaving
the sector. For each region, a representative point is defined and the database of
paths joining each point of adjacent regions is pre-built using A*.

Figure 2.8: An example of the map abstraction with sectors and regions [22].

At this point, the online search uses the database to reduce computation time.
The path found by the algorithm corresponds to the path that links the starting
point to the representative point of the region that includes it, the path that
links the representative point of the starting region to the representative point
of the region that includes the destination point, and finally navigates from this
representative point to the destination itself. A key feature of this approach is the
possibility of using the time to reach the first representative point of departure as

14

Related Works

the time to compute the route.

2.2.4 Objectives of path planning
In many applications, the objectives of path planning are not just limited to finding
the shortest path between two points. Especially in robotics, but also in video
games, the search for the best path aims not only to reduce the overall length of
the result as much as possible, but also to keep away from obstacles, for reasons
of safety or realism, and to define turns more softly in order to save robots more
energy.

In [24], the authors addressed these multiple objectives to find the optimal
path for the movement of a mobile robot. Defining the path as a sequence of
segments, each defined by two points called rotation points that are part of the
path itself, the resulting overall length equals to the sum of the lengths of the
identified segments. The minimum distance between each segment of the path and
each obstacle in the specific environment is then considered for safety purposes.
Lastly, the average angle of the path is calculated, which defines the smoothness of
that path, considering the angle of deviation formed by each pair of consecutive
segments. The goal of the research was to define an algorithm that aims to minimise
all these listed factors.

The authors demonstrated that the algorithm defined for this task, the Multi
Objective Evolutionary Algorithm, achieves more accurate results than the well-
known Particle Swarm Optimisation (PSO) algorithm. Its complexity, however,
combined with the slowness of the operators involved in processing the factors to
be minimised, make it suitable only for offline path planning.

Objectives of this kind are also often taken into account in video game contexts;
in many categories, the problem of path planning is related to the presence of
Non-Playable Characters (NPCs) populating a game environment. Pedestrians in
a city, animals in a wild environment, or other vehicles in racing games are all
subjects that must move through a specific environment with reference to paths.
Their behaviour, however, must be realistic and natural, as well as optimising the
distances travelled.

In this paper [25], the authors analysed the accuracy of algorithms such as
A* and Dynamic Pathfinding Algorithm (DPA) with regard to the problem of
finding the shortest path and avoiding dynamic obstacles during the movement of
NPC cars in a car racing game. In the study, an attempt is made to combine the
characteristics of these two algorithms to make the player’s competing cars attempt
to chase the shortest path while at the same time avoiding moving obstacles at
runtime.

DPA is a method used to avoid obstacles along the route. It makes use of two
collision points, located at the anterior part of the vehicle, so that they can detect

15

Related Works

Figure 2.9: A famous car racing game.

obstacles located on the left or right front of the car.
Using Unity, a racing circuit was reproduced to test the effectiveness of the

implemented method; the combination of the advantages of the two mentioned
algorithms allowed the vehicles to always complete the circuit with static and
dynamic obstacles. Starting with an offline path planning to be used as a guideline
for the route the cars should follow, implemented with A*, the application of DPA
at runtime allowed cars to avoid every obstacle they encountered.

16

Chapter 3

Technologies

3.1 Hardware

The objective of PEDAL simulations is to combine orientation and memory treat-
ment with a physical training for the patient, using an integrated stationary bicycle.
In the future, PEDAL software will run on a head-mounted display and a supported
bike to read user inputs such as pedaling, steering, braking and interacting with
any user interface, adding a PC external projection to let operators or relatives
monitor session and progresses. To reproduce this system, the hardware team
worked on a prototype of the stationary bike using easy-to-get components that
allow them to simulate aimed functionalities.

Starting from a real bicycle, the team mounted a Smart Trainer on the rear wheel
with a IR sensor module to capture its rotation and consequently the pedalling
speed of the user. With this sensor, it was possible to use the read value as input for
player movement in the software. The bike handlebar orientation was determined
with a potentiometer sensor and used to change the direction of the player forward
movement in the simulation, while the braking system was determined with a toggle
switch. All these inputs values were managed by an Arduino Uno microcontroller,
converted to have desired format and range, and then transmitted to the game
engine.

At last, an HMD was used to immerse the user into the virtual environment.
At present, there are many HMD proposals that combine excellent functionality
with affordability; several state-of-the-art HMD systems were evaluated during the
initial discussions regarding the overall hardware system in order to realise the first
prototype for the project.

17

Technologies

3.1.1 HTC Vive Pro

The first device that has been taken under consideration was the HTC Vive Pro.
This head-mounted display was released in April 2018, and since then it has been
one of the top of the range devices in the industry. It is a lightweight visor that is
also sold individually without controllers, and requires direct connection to a PC.
It features a high resolution, of 1440 x 1600 px per eye, an outward-facing camera
and attachable headphones. The cost is slightly higher than other devices in the
same range, and the need to have it connected to a computer all the time has led
to an orientation towards other devices.

Figure 3.1: HTC Vive Pro headset.

3.1.2 HP Reverb G2

The HP Reverb G2 also appears as a device that needs to be wired to the computer
in order to operate, but has an integrated tracking system that allows functioning
without external cameras. In terms of resolution, it is the device with the highest
configurations in this range, reaching 2160 x 2160 pixels per eye. It has front and side
cameras that allow tracking of the user’s movement. It provides developer support
for Microsoft Windows Mixed Reality, with integration for all VR development
systems.

18

Technologies

Figure 3.2: HP Reverb G2 headset.

3.1.3 Oculus Quest 2
Oculus Quest 2, or more recently Meta Quest 2, is a stand-alone virtual reality
headset developed by Facebook Reality Labs, formerly Oculus, in 2020. It has an
Android-based internal operating system, and can run on desktop computer with an
Oculus-compatible VR software, using an USB or Wi-Fi connection. This headset
got a pair of goggle-like lenses that give the user a stereoscopic 3D visual and,
paired with motion sensors and accelerometers, can reflect head motions real-time
in the virtual world it is projecting.

Going on technical features, the Quest 2 runs on a Qualcomm Snapdragon XR2
chipset, with a display that allow a resolution of 1932 x 1920 pixel per eye.

Due to its portability, cost-effectiveness and the enormous developer support it
provides, Meta Quest 2 was chosen as the visor for the prototype of the project.

19

Technologies

Figure 3.3: Meta Quest 2 headset.

3.2 Software Development
When developing VR applications, developers should be able to focus on modeling
advanced interactions and system behaviour, to make VR worlds become more
realistic and responsive [26]. For that purpose, VR software systems, game engines
and development kits are facilitating an abstract view of the system providing
higher-level libraries and tools, reducing the effort needed to create and render
virtual environments.

Modern game engines provide the developer with an editor for managing their
assets, with a set of tools and APIs to optimize the development of game applications.
The main component of a game engine is the rendering engine, which incorporates
all of the complicated code needed to efficiently identify and render the player’s
view from a complex 3D model of the environment [27].

Beside the rendering engine, game engines include many other useful components
to support the development:

• Physics and collision engine

• User interface support

• Animation engine

• Audio implementation engine

• Materials, textures, shadows management

20

Technologies

• IDE to support programming with common languages

In VR development, the concept of toolkit describes a tool with the aim of
providing reusable components that can be utilized to create VR application
programs, avoid building everything from scratch, and reduce the amount of
low-level programming [28].

On the other hand, software development kits (SDKs) are used by the developers
to integrate VR applications for any specific platform. SDKs provide fundamental
supports and are usually distributed by vendor and providers in order to help
developers in the production of software applications aimed to run on their systems
and devices. Typically, an SDK includes components such as:

• Libraries and APIs

• Processes

• Implementation and code samples

• Developer guides

• Blueprints

3.2.1 Unity
Unity is today the most popular game engine; with plenty of cross-platform
features, it is popular with autonomous developers and triple-A studios. It includes
professional tools for programmers and artists, it’s easy to learn and proposes
business models to favor small independent companies.

Unity uses a component-based approach revolving around objects called "prefabs",
pre-configured game objects that can be stored in a project and utilized as templates
to create new instances of the same object in an environment. While working with
independent workspace environments called "scenes", it is possible to manage, move,
edit, duplicate assets easily with drag-n-drop features, windowed game simulation,
edit single or multiple instances of game objects working on components, attach
script functionalities to the objects. Thanks to the massive number of user it has
attracted since 2005, Unity now provides rich documentation and several videos and
tutorials online. In more recent versions of the engine, tools for team collaboration
has been greatly improved and integrated in the editor, with version control, cloud,
branches, merging.

Another aspect of Unity that’s distinguish this game engine from multiple others
is the supported scripting language; leaning on the famous IDE Virtual Studio, it
integrates C# scripts as components for its game objects. C# is an object-oriented
programming language developed by Microsoft that combine basics from C++ and

21

Technologies

functionalities from Java. Unity provides several C# libraries to help integration
with all other components that participate to the lifespan of a game object in the
scene.

The main components used in Unity are:

• Mesh Renderer, the component that allow the visualization of a mesh or a 3D
model in the virtual environment.

• Rigidbody, it’s a component used to implement physics to the object. Adding
the rigidbody component to an object means this object will undergo gravity
and collisions with other different objects.

• Collider, a bounding box used to manage collisions.

• Animations, a controller with machine-state system that let the object have
different animations depending on user-defined variables.

• Scripts, one or multiple attached scripts that let the user define any functional
behaviour for the game object depending on events, inputs, states.

Thanks to all different SDKs and a complex modern input system, with Unity is
possible to manage all kind of user inputs, to integrate keyboards, mice, controllers,
haptic devices, and microcontroller elaborated input such the ones coming from an
Arduino board.

3.2.2 Custom tools for Unity
In Unity Editor, it is possible to implement customised tools to implement functions
in the editor interface itself. In this way, there is the possibility of having additional
supports in the UI that can be used both at development level and runtime.

In order to insert such a tool in the Unity UI, it is necessary to develop functions
in a script that imports the UnityEditor library and place it in the ’Editor’ folder
in the project’s root directory. Subsequently, a reference to the implemented tool
can be found in Unity’s ’Tools’ menu, located in the top bar of the interface. This
will open a customised window, which may contain user-defined variable inputs, a
series of buttons to execute certain functions and other elements such as sliders,
text fields and switches.

3.2.3 SDK for VR integration
SDKs for VR are important tools that allow easy implementation of pre-built and
configured interactions in the project. The importance of interactions in a VR
environment is emphasised, and SDKs generally provide supports for the integration

22

Technologies

Figure 3.4: Unity ’Tools’ dropdown menu with user-defined functions

Figure 3.5: Path Manager Editor tool window, defined during development

of interactions such as grabbing objects, physically interacting and interacting with
user interfaces. Other configurations that are provided by SDKs concern user
locomotion; typically, player movement is implemented via one of the following
methods:

• User teleportation to an aimed location

23

Technologies

• Common controllers

• Hand tracking gestures

Figure 3.6: Movement control methods. Teleportation (left), Michael Eichenseer,
medium.com, 2017 Jun 14, and hand tracking (right), David Heaney, uploadvr.com,
2022 May 02.

There are numerous SDKs developed for the most popular game engines; below
a list of the most frequently used ones is presented:

• XR Interaction Toolkit is the official XR interaction framework made by
Unity. It’s a high-level, component-based, interaction system for VR and
AR experiences. It allows 3D and UI interations to be handled by Unity
input events, combining two types of components defined as ’Interactor’ and
’Interactable’ and an ’Interaction Manager’ that is responsible for managing
the two components together.

• Microsoft’s official Mixed Reality Toolkit (MRTK) is a project proposed
by Microsoft to provide components and functionality to aid the development
of VR applications in Unity, initially released to support the Hololens system.

• Virtual Reality Toolkit is one of the first supports released for virtual
reality. It provides configurations for locomotion, interaction with objects,
physics of bodies in virtual space and more, while keeping itself low-coded
and beginner-friendly.

• Oculus Interaction SDK is the official SDK release by Oculus. Its fo-
cus is oriented to the development on Oculus/Meta platforms, supporting
components for standardized interactions for controllers and hands.

• XR Tool Kit (XRTK) is a community-supported branch of the Microsoft’s
MRTK, differing with the latter with its focus on an additional expandability
and cross-platform support.

24

Technologies

In this project, the XR Interaction Toolkit was added for the integration of
the HMD Oculus Quest 2. In the development phases, relying on the Unity Input
System, tests of the motion and exploration system were carried out using Oculus
controllers. There are also plans for interactions via mouse and keyboard, in the
case of parallel control by a treatment supervisor, and via an integrated input
controller on the bicycle.

3.2.4 Unity input system
The Unity Input System is an extension package for Unity and represents a versatile
tool for developing cross-platform input controls for any application. Through
this system, it is possible to define standardised game actions to be called up in
application scripts, without the necessity to discriminate the type of input, e.g.
from controller or mobile. Taking care of this is the Input Actions system, in which
it is possible to define the custom action and assign all those inputs from different
platforms or methods that will correspond to that action.

All the actions defined by developers form the Input Action Asset, which
represents the entire control scheme of the application. This is subdivided into a
number of Action Maps, each corresponding to the control scheme that handles
input in a certain context, such as in the game menu or during actual gameplay. In
each Action Map, individual actions are defined, which may be of different types,
such as buttons or boolean values, integers, two-dimensional axes, etc. For each
action, the inputs that trigger this specific action are included; for example, by
defining the action ’For ward’, used in the application to move one’s character
forward, it is possible to insert input patterns such as the ’W’ button of the
keyboard, the up arrow, the analogue tilt of a controller pad. In the application, it
will be sufficient to handle these types of input by referring to the event linked to
’Forward’, regardless of the type of input behind the action.

3.2.5 Unity execution order
In Unity, each object in a scene has its own life cycle, which begins when the
scene starts and ends when the object is destroyed. All the functionalities related
to a game object can be distributed in the different event-related methods that
constitute the cycle, related to initialisation, activation, updating in the current
frame, etc.

Some of the most important methods that feature the execution of a script in
Unity are listed below.

• Awake This functions is called as first, before any Start function is run, and
just after a prefab is instantiated. The game object must be active or it will
wait to execute this function until it is.

25

Technologies

Figure 3.7: Input Action Asset of the XR player controller

• Start If the game object is active and the script is enabled, the Start function
is called before the first frame update. Any object in a scene will run the Start
function before any other Update function is called.

• Fixed Update This function is a recurring function that can be executed
multiple times every frame, if the frame rate is low, or it may be not be called
between certain frames if the rate is high. It is called on a certain timer,
independent from the frame rate, and anticipate every physics calculation in
the scene.

• Update This function is called once per frame. It is the main method for
frame updates.

• Late Update This is called also once per frame, but after Update function
has finished. Any calculation that are executed in the Update function will be
completed when Late Update method will run.

• On Destroy This function is called after all frame updates, and for the last
frame of the game object’s existence in the scene.

26

Chapter 4

Development

4.1 Project requirements

Simulations for PEDAL rehabilitation have to be performed in a virtual environment
that reproduces a real city area, developed in such a way as to be known, or at
least familiar, to the patient. Working on the construction of every possible specific
neighborhood would be an impossible task, and so, one of the rendering and
graphics member of the project team worked on an algorithm capable of extracting,
from a portion of a city sector selected from navigation map systems, a virtual
reproduction of that area ready to be imported and used in the Unity editor.

The main idea is to select, from the imported area, a number of locations to
be used as landmarks and to define starting points for different routes which the
patients would be asked to travel, to simulate the task of returning back home from
that specific location, such as from a cinema, a park, a famous attraction. The
important requirement here is to have a logic of path definition that could be easily
replicated, scalable, easy-to-use; it is needed a tool that allow developers to quickly
define paths and start working on them soon. Although the real shortest route
from a location to the destination is not always the correct one, due to realistic
person behaviours such preferring wider roads with fewer turns, it is still a good
starting point for path definition. By adding other criteria to recurring path search
algorithm, it is possible to refine them in order to find routes that reflect people’s
realistic behaviour.

Analyzing the city section to decide which areas are viable and which represent
obstacles should also be part of a simple task for developers, in a way that could
be algorithmically replicated, fast enough to let them interact and modify the city
as needed. The objective is to implement a Unity tool that allows, by entering
a certain number of parameters related to the configuration of the city area, to
construct the graph of nodes describing the parts that can be traversed and thus

27

Development

Figure 4.1: Path definition structure

subject to the path research.
PEDAL treatments are meant to be divided in different sessions; the first thing

is to let the patient acquire familiarity with the system in its entirety, ensuring
that they are in comfort and mentally prepared for the training. Since a virtual
experience could be something new for the patient, it is expected to invite them
into an exploring session of the virtual environment. Starting from the location that
will represent the residence of the user, it have to be possible for the patient to have
a look around, trying basic inputs of the system like steering and braking, while
starting to memorize landmarks and particular characteristics of the environment
around their virtual home. In this phase, called "Exploration", the patient could
travel across the city environment for any duration, possibly discussing with a
medical operator about bicycle configuration, headset settings, pedalling friction.

In a second phase, the patient will begin to learn a route home from the chosen
location. At this point, a teaching system is required that maintains immersion in
virtual reality and is clear and simple for users with potential cognitive difficulties.
The patient will follow the directions given by a virtual assistant and/or a medical

28

Development

practitioner and try to memorise the route so that they can then repeat it with
fewer or no directions. The training sessions will not be time-limited, but should
nevertheless be monitored in terms of timing and progress so that action can be
taken in case of excessive mental strain on the patient, loss of orientation or motion
sickness.

Thanks to the last phase, any improvements in the patient’s treatment can
be monitored. The objective of these sessions is to evaluate, by means of certain
parameters such as elapsed time, the number of wrong turns and the total distance
travelled, the user’s performance in executing the chosen path. The idea is to plan
for the patient, consistent with the type and intensity of his cognitive impairments,
a treatment that would involve a fixed number of training sessions followed by
a certain number of evaluation sessions, spread over several days. By studying
the results and the progress in repeating the exercise, it will be possible to verify
whether and how the treatment has positively impacted on the patient’s state, so
as to plan subsequent sessions by changing the route, the difficulty, and the type of
help provided.

A further aim of the Pedal project is to allow a patient a repeatable exercise that
can help both with motor activity and with preventing or reducing the degeneration
of cognitive disease.

4.2 Tools developed for Unity
The first algorithm used in the path definition process that has been implemented
is the Obstacles and Roads detection algorithm, to allow a fast processing of the
virtual city and to identify those areas where the user will be able to move around
by bicycle. For simplicity’s sake, the idea is that the user will only be able to
move on the road, thus excluding pavements and pedestrian areas. The other main
algorithm is the one made to identify an actual path to be used in the training and
evaluation phases, saving it in a Unity scene so that it can be manipulated by the
other components of the virtual environment.

4.2.1 Obstacles and Roads detection
As defined above, a tool is needed that can analyse any reproduction of a city sector
and schematise it into an abstract representation, composed by nodes identified as
walkable or non-walkable. The first step is to find which parameters will define and
differentiate each city area; working with rectangular sections, the maximum width
and height of the map can work as boundaries for the scanning algorithm. The
program for procedural generation of the virtual map takes care of extracting roads
as separate objects, slightly elevated from the base plane, hence it is necessary to
indicate the height at which the street objects are located.

29

Development

At this point, it is necessary to define the requirements determining whether a
node, which is located at a certain position on the map, is classified as walkable:

• Absence of obstacles. A node should be defined as non-walkable if an
obstacle such as a building, tree or fence is present within its radius. The
size of the area occupied by the node plays a key role in this function, as a
radius that is too large would risk excluding entire parts of roads if located
between buildings that are too close together or with decorative elements such
as trees in unfortunate positions, while one that is too small could lead to the
presence of small paths that are actually impractical.

• Presence of the road. A node should be defined as not traversable if there
is no road within its radius. The user will have to move by simulating a
bicycle course, so it should be recommended to only proceed on the street,
aiming not to include areas represented by pavements, but also green parks,
gaps between buildings, or ’grey zones’ resulting from the city’s procedural
generation algorithm.

The competence area of a node is the area defined by the circle having a certain
radius, called "tolerance radius", centred at the point of the node’s coordinates.
The dimension of the node, on the other hand, is the area covered by the cell it
represents, in the grid covering the entire virtual surface, and this last parameter
is responsible for defining how many nodes will cover the area of the city. Varying
this parameter means increasing or decreasing the overall number of nodes that
will describe the environment, and with it also the complexity of the operations
that will then be performed on the graph. To easily represent the graph of nodes,
these are saved in a two-dimensional matrix.

The total number of nodes defining a city section is, having h as the city height,
w as the city width, where r is the length dimension of the cell represented by the
node and n is the resulting number:

n = hw

r2 (4.1)

The algorithm then takes care of scanning all the nodes created according to this
criterion and checking their requirements to be classified as walkable. Any node
that passes the two requirements and is classified as such is flagged as walkable
and is linked to all its neighbouring nodes that are also walkable. A node is a
neighbour of another node if the latter is adjacent to the former, also considering
diagonal adjacency. Finally, it is created a graph of nodes and connections that can
be navigated by means of row and column indices, so as to refer to the orientation
of nodes with respect to their neighbours.

30

Development

Figure 4.2: Single node step of the obstacles and roads detection algorithm

In Unity, it is possible to verify the previous requirements by making use of
the Collider components, the object tag function and some dedicated functions
of the UnityEngine library. As a first step, all roads intended to be included in
paths must have a recognition tag, e.g. ’Road’, which can be set in the Unity
Editor inspector. At the same time, all elements constituting an obstacle must
have an appropriate tag, which may be different between the various object types
in order to facilitate their use with other functions, e.g. "Building", "Tree", "Fence".
Then, for each node, the OverlapSphere function can be invoked, which creates
a sphere, receiving as input the centre coordinates and the radius, and checks
whether it triggers collisions with other objects in the scene. For each intersected
object, it is possible to check its tag and thus ascertain whether it belongs to the
above categories. The tolerance radius is used as the radius for the definition of
this sphere; for simplicity, half the size of the grid cells has been used as tolerance
radius in the development of this tool.

31

Development

4.2.2 Path definition
To define a route that will be used in the training and testing phases, it is first
necessary to identify suitable points to be used as starting points or destinations.
Known locations or famous landmarks are appropriate solutions to represent starting
points in order to simulate the task of having to return home after visiting that
particular site. As for the destination, the first idea is to choose a location that
is inserted in a living environment and use it as a fixed point, so that for the
patient this will represent his home in the virtual world. However, it is possible to
select a location as the destination with the same criteria as the starting points,
reproducing the task of visiting two famous places within the city on the same day.

After deciding which starting and finishing points will constitute the itinerary,
it is necessary to make some assessments of various factors; it is needed to check
that the overall distance of the path, the number of turns, forks and crossroads,
and the variability of the characteristics of the environment reflect the difficulty
aimed at for this task. If these characteristics are suitable, the process can move
on to the actual path identification.

4.2.3 Basics with Dijkstra algorithm
The first steps to verify the functioning of the path finding tool were made by
applying Dijkstra’s algorithm to the city graph. Dijkstra’s algorithm solves the
problem of finding the shortest path from a point in the graph, called source,
to a destination. In the city graph, each node can have up to a maximum of 8
connections with neighbouring nodes, each of which will have a cost equal to the
distance of the current node’s co-ordinate point and the co-ordinate point of the
neighbouring node it has connected. Specifically, each connection with neighbour
nodes located on the same vertical or horizontal axis will have a cost equal to the
size of each cell r, while it will have a cost of

√
2r with the remaining neighbour

nodes located in the directions of the diagonals. The sum of the costs of the
connections between all nodes involved in the resulting path will represent the
distance to be cycled to reach the destination.

Although functional, this algorithm is inefficient for tasks of this kind; in the
case of graphs with a high level of symmetry and all equal costs, the shortest paths
between a source and a destination are almost infinite. Dijkstra simply finds one
of these, which in practice turns out to be variable in orientation and therefore
unrealistic in comparison to a path a human would take to make the journey.

4.2.4 A* algorithm
A* is a search algorithm that has long been used in the pathfinding research
community. Its efficiency, simplicity, and modularity are often highlighted as its

32

Development

strengths compared to other tools. Due to its ubiquity and widespread usage,
A* has become a common option for researchers attempting to solve pathfinding
problems [29]. The special feature of the A* algorithm is the introduction of a
heuristic function to determine a cost prediction for getting from a certain node to
the destination. The potential of this function is due to the possibility of refining
it and adapting it to the field in which the algorithm is to be applied, which is why
it is very popular for the development of board games and strategy games.

Generally, when searching for a shorter path in a map, people tend to use as
heuristic function the straight-line distance between the current node and the
destination, the Euclidean distance, or in the case of grid maps they tend to prefer
the Manhattan distance or the octile distance.

Algorithm 1: A* algorithm standard implementation
Result: Get path from start to destination
Initialize node list = [start];
while node list ! = [] do

Select m from node list with lower cost;
if m = destination then

destination found;
end
Extract m from node list;
for n in neighbors(m) do

Compute the cost f(m, n)
f(m, n) = g(m, n) + h(n, destination);
Where f(m, n) is the cost of the neighbor n, g(m, n) is the cost to
move from m to n, and h(n, destination) is the heuristic function,
defined as the Euclidean distance estimated to be between the node
n and the destination.

if g(m) + g(m, n) < g′(n) then
Where g(m) and g(n) are the actual distance from start to
respectively nodes m and n, while g′(n) is the previous
calculated distance to n from the starting pointn.

Update g(n) = g(m, n) + g(m);
Append node n to node list;

else
exit loop;

end
end

end

33

Development

This algorithm, compared to Dijkstra, allows the destination to be reached
faster by visiting fewer nodes. For the definition of the chosen heuristic function,
however, the algorithm is focused on finding a path that, in the context of road
maps, tends to follow the perimeters of the traveled area. In addition, the chosen
route, of all possible routes, remains as similar as possible in terms of its course
to the straight line connecting the source with the destination. This would mean,
in terms of navigating a city environment, preferring roads with many turns and
intersections to possible routes involving straight avenues and fewer turns.

The aim of the project is not to find exactly the shortest path, but to calculate
a route and a distance travelled between two points that realistically reflects the
journey that a person would take to make this trip. For this reason, the classical
algorithm A* is not sufficient for our purposes, and it is necessary to refine its
components, working on the heuristic function that defines the iteration of the
algorithm.

4.2.5 Turns, Orientation and Bounds distance Sensitive A*
algorithm

The study of paths within certain environments that have behaviours that can
be traced back to realistic patterns, whether of people, vehicles or robots, is a
much-debated subject that is constantly being researched and updated. In the case
of [30], the aim was to generate paths for forklifts, working in warehouses, that
were optimistically as smooth and with as few turns as possible.

Imagining a person cycling a route to a certain destination, it is easy to imagine
how they prefer to avoid as many crossroads as possible, keeping to their side of
the road, and making gentler turns.

It is necessary to redefine a new heuristic function h to account for these
behaviours; each of the previous path-trending requirements is summarised by a
function hi, which is then weighted with wi to be summed to the overall cost:

h(m, n, p, t1, t2, dest) =

[w0 + w1h1(m, n, t1) + w2h2(m, n, t2) + w3h3(m, n, p)] h0(n, dest)

where m is the current extracted node of the iteration, n is the visited neighbor
node, p is the previous extracted node and connected to m. t1 and t2 will be defined
later with their respective functions. The weights corresponding to each contribution
of the heuristic function are defined at the start, then varied by performing multiple
attempts and analysing the results produced by their variations. The individual
contributions hi of the function are now described.

h0(n, dest, a)

34

Development

is the basic function making up the heuristic function; it is the Euclidean distance
present between the neighbour node n and the destination node dest. To this
contribution is then added a value a, which equals to the number of iterations
of the algorithm that have been executed. In this way, it is possible to maintain
approximately the same incidence of the contributions even for the nodes closer
to the destination, which would see their Euclidean distance reduce considerably
compared to the first ones.

h1(m, n, t1)

The function h1 returns a binary variable that is equal to 1 if an obstacle is
present within t1 steps in the direction described by m towards n, and 0 otherwise.
Those directions that would see a future obstacle on the path are then weighted
more than the others, not taking into account the orientation that the user has
previously maintained.

h2(m, n, t2)

The function h2 returns a float variable defined between 0 and 1. This contri-
bution takes into account the distance of the node n from the boundaries of the
walkable area, and resulting value is closer to 1 the closer the node is to a boundary,
considering up to t2 nodes away. If there are then no boundaries within t2 nodes
from n, the value of the function returns 0, otherwise it returns 1

d
, where d ≤ t2 is

the number of nodes between n and its nearest boundary. The aim of this factor
is to prefer a path that stays away from the road edges, preventing the algorithm
from squashing the path against the boundaries of the road.

h3(m, n, p)

The function h3 returns a float value defined between 0 and 1. This contribution
is intended to ensure that the algorithm would prefer to maintain a stable orientation
as long as possible by weighting changes in direction. The value returned by the
function is equal to 0 if the direction taken from node m to node n is the same
as the direction taken from the previous node p to the current node m; on the
other hand, if this varies, the result of the function will be different from 0. More
precisely, the function returns 1

2 if the change of direction occurs only along one of
the two axes, such as if the taken turn is only 45°, while in all other cases it will
return 1.

The Turns, Orientation and Bounds distance Sensitive A* algorithm is then
defined as described in the following pseudo-code:

35

Development

Algorithm 2: TOBS_A* algorithm implementation
Result: Get path from start to destination
Initialize node list = [start];
Initialize a = 0;
while node list ! = [] do

Select m from node list with lower cost;
if m = destination then

destination found;
end
Extract m from node list;
for n in neighbors(m) do

if Obstacle in t1 steps then
update h1(m, n, t1);

end
if Boundaries in t2 steps then

update h2(m, n, t2);
end
if Heading change then

update h3(m, n, p);
end
Compute the cost f(m, n)
f(m, n) = g(m, n) + h(m, n, p, t1, t2, destination);
Where f(m, n) is the cost of the neighbor n, g(m, n) is the cost to
move from m to n, and h(m, n, p, t1, t2, dest) is the updated
heuristic function which estimates the cost to move from n to
destination.

if g(m) + g(m, n) < g′(n) then
Where g(m) and g(n) are the actual distance from start to
respectively nodes m and n, while g′(n) is the previous
calculated distance to n from the starting point.

Update g(n) = g(m, n) + g(m);
Append node n to node list;

else
exit loop;

end
end

end

36

Development

4.2.6 Line Of Sight A* algorithm
Trying to think of having to summarise a route from a point to a destination, it is
easy to imagine it as a series of checkpoints describing changes of direction, passing
obstacles or choices made at a crossroads. For a navigator, the main interest in
following a certain path is to know how one should behave when reaching these
checkpoints, not considering the pattern that the nodes between the last checkpoint
passed and the next to be reached maintain.

The objective is therefore to have an algorithm that is able to find path nodes
that can represent checkpoints; to achieve this, it is sufficient to try to reduce the
path description to nodes that can ’see’ each other two by two. In practice, each
node of the route must have its successor and predecessor in line of sight, no longer
limited to its adjacent nodes.

To achieve this, the A* algorithm was modified to introduce a line-of-sight check
between the neighbouring node visited and the predecessor of the current node.
The implementation is shown as follows, excluding the sections of the A* iteration
that remain identical in this version of the algorithm.

Algorithm 3: LOS_A* algorithm iteration
if LineOfSight(p, n) then

if g(p) + g(p, n) < g′(n) then
Where p is the predecessor node of m in the path.
Update g(n) = g(p, n) + g(p);
Update predecessor parent(n) = p;
Append node n to node list;

end
else

if g(m) + g(m, n) < g′(n) then
Where g(m) and g(n) are the actual distance from start to
respectively nodes m and n, while g′(n) is the previous calculated
distance to n from the starting pointn.

Update g(n) = g(m, n) + g(m);
Update predecessor parent(n) = m;
Append node n to node list;

end
end

The path obtained by using the LOS_A* algorithm, however, has certain
characteristics that are not in accordance with the assumptions we have set up:
although optimised, the path tends to pass very close to the obstacles it is intended

37

Development

to circumvent. In addition to this, the distance obtained from the sum of the
distances between the pairs of nodes is less than that obtained with A*, and
consequently too optimistic with respect to a distance a user would travel to
reproduce the route. Even though this approach is not suitable for defining a path
for exercises and the evaluations that would be applied, the LOS_A* algorithm
can be used for other purposes relating to the guidance and support system.

4.2.7 Path as game object
Once the path has been defined, this development-support tool can automatically
insert it into the scene as a game object, saving its characteristics into it. The
CityPath script will then be added as a component to the game object, inserting
into it parameters such as the total distance of the path, all the nodes that constitute
it, and their coordinates. Referring to the idea of summarising the path in a few
checkpoints, it was possible to act on the path generated by TOBS_A* with the
line-of-sight criterion; instead of introducing the LOS check within each iteration,
the path is analysed after being extracted, checking for obstacles in the line between
the nodes involved, taken in pairs. Only the furthest possible nodes that are at
least in line-of-sight with the previous and the succeeding one, including the source
and destination, are then preserved. The result of this operation is an array of key
points that essentially describes the route between the starting point and the end
point, where each of them is positioned in such a way as to identify a change of
direction, acting as a guide for the person who wants to complete the trip.

The Path object is then described as follows:

• The parent object, defined by the City Path script. It stores the start and
end point of the path, the total distance involved and the list of checkpoints
that describe it, sorted from source to destination.

• A certain number of child objects, defined by the Path Checkpoint script
component. In each of them, the corresponding previous node and the successor
node within the path are saved, if they exist.

4.3 Progress and path tracking
During one of the phases of the PEDAL treatments, it is necessary to keep track
of the user’s progress with respect to the path by setting criteria for evaluation.
The basic idea is to take into account what is the next checkpoint the user has to
reach, and to base the indications and considerations on the player’s progress in
relation to it. The study on this aspect was carried out on parameters such as:

38

Development

• The minimum distance before that checkpoint is considered reached. Since
the important thing is that the user passes through the road within which the
checkpoint is located, considering the extreme case in which the checkpoint is
at the closest point to a boundary of the traveled area, e.g. the inside corner
of a turn, while the user passes from the opposite point to the other boundary,
the checkpoint should be counted as passed. For this logic, a value at least
equal to the width of the road should be set as the minimum distance to
surpass the checkpoint. In the case of an environment with roads of similar
width, it is possible to set a fixed value for this parameter, while in the case
of a more distinct difference between main roads, side roads or cycle paths, it
is possible to consider setting a minimum threshold distance adapted to each
checkpoint, depending on the width of the road where it is located.

• The maximum distance to the next checkpoint before considering the user on
the wrong track. Should the user stray too far from the route, directions to
the next checkpoint alone are no longer enough; instead, a path may need
to be recalculated at runtime to help the user get back on the correct route.
This parameter therefore defines when this type of event should occur, and at
the same time when the user should be considered to be back on the correct
path. Based on the same logic as the previous parameter, it is necessary to
consider how the distance to a checkpoint may vary depending on the road the
user is on. For example, after taking a very long avenue, the user could find
himself at a great distance from the next checkpoint, although remaining on
the correct path. Again, designing this parameter for each checkpoint based,
this time, on the length of the road on which it is located is the right solution.
For example, the maximum distance should not be less than the distance from
the previous checkpoint to the target checkpoint. In general, this parameter
alone is not sufficient to evaluate this criterion, and it is therefore necessary
to add other evaluation parameters, such as orientation, last cells crossed, etc.

The first parameter was used to define the threshold for which the update of
the checkpoint defined as ’next to be reached’ takes place. Specifically, when the
user enters the range defined by this parameter, a function updates the status of
the checkpoint reached, marking it as passed, and picks its successor checkpoint,
which is used as the next target by the navigation functions. Referring instead to
the maximum distance parameter from a target checkpoint, the virtual assistant
intervention was implemented to ensure that the user is guided back to the correct
path. To guide him, an algorithm for calculating the shortest path is applied, using
the user’s position as a starting point and, as destination, a checkpoint selected
from the last of those visited or the next checkpoint to be reached; this selection
depends on whether the purpose is to make the user repeat part of the path, so
that they travel it in its entirety as it is designed, or whether it is sufficient to get

39

Development

them back on the right path, accepting a diversion on the route.

4.3.1 Virtual Assistant behaviour
A virtual assistant (VA) was included in the project in order to implement certain
functionalities; the first of these was to integrate path tracking with the VA, so
that directions could be given to the user through it, while the second was to give
the possibility of simple interactions with the system, aiming at minimising the
patient’s effort (button presses, menu complexity, etc.). Focusing on the function of
guidance and directions, the first step was to define the criteria by which directions
are provided to reach a specific checkpoint, depending on the current state of
the user. Two types of information on the user’s state in the environment were
identified:

• The most recently covered road, called "Headed Direction". This information
is described by a 2D vector showing part of the road the user has travelled,
retrieved by averaging the vectors obtained joining the coordinates of a number
of nodes visited by the user and the user’s position. The number of nodes to
be considered for the calculation is a parameter that is defined according to
the characteristics of the environment and the road.

• The user’s current "Orientation". Regardless of the road taken, this information
is defined by the component in the horizontal plane of the user’s ’forward’
vector. Although this orientation is not relevant in the description of the route
taken so far by the patient, as they may have, for example, turned on the
position to look around, it is important with regard to the directions to be
given. In practice, providing the user with the simple indication that they
should "turn right" may not be sufficient, or even misleading, if the user is
oriented very differently from the direction of the path taken so far.

Thanks to the work of rendering and animation team members, certain types of
indications have been implemented which the virtual assistant, realised as a small
floating robot, can provide to the user in real time. With regard to orientation,
animations were created to indicate to the right or left with respect to where one
is facing; in general, this type of indication is used to suggest to the patient which
way to face in order to return in the right direction on the path. This type of VA
behaviour is performed by analysing the angle between the vector indicating user’s
orientation and the vector connecting user’s position to the position of the target
checkpoint; either the actual checkpoint of the path to be reached or a ’support’
checkpoint generated by the runtime pathfinding algorithm aiming to return to the
main path.

40

Development

The other type of indication that has been realised makes use of graphic effects
integrated with the VA that indicate whether the road being taken is correct. If
this is not the case, such as if the user is too far from the target waypoint or his
heading direction differs too much from the correct direction, signals suggesting
the wrong course are displayed.

Combinations of these indications, supplemented with other supports such as
textual explanations, navigation maps, notification sounds can be used in the
various treatment phases for the intended purposes.

Figure 4.3: Idle animation with correct graphical effects (left) and pointing left
animation with incorrect graphical effects (right)

4.3.2 Evalutation criteria
As mentioned above, during sessions, it will be necessary to be able to evaluate
the performance of a user attempting to reproduce the defined path. While many
criteria will be based on behavioural parameters of the examinee, others will
concern movement parameters such as the total distance travelled and the time
taken to reach the destination; these two simple criteria form the basis of the
characterisation of a path. The objective of defining a realistic path also helps to
produce an equally realistic estimate of the distance corresponding to the given
path, so as to have an effectively replicable value that corresponds to a distance
that, on average, a user who is perfectly familiar with the itinerary would cover.
By referring to this distance, it is also possible to estimate the time corresponding
to this optimal case by taking into account the average speed of the user’s pace in
the virtual environment.

Determining the speed of the user’s motion is not trivial, and will require special
attention. In an advanced state of the project, it is possible to imagine a movement

41

Development

speed that depends on the patient’s pedalling speed, setting a upper limit for this
value. At the same time, it is not intended to set a speed system as accurate
as that of a driving simulator, as the objectives of these treatments are different.
To begin with, a static speed parameter was defined by evaluating a few factors.
What is needed is a travelling speed that allows users to easily take the tightest
curves in the game map and also allows sufficient time to orient themselves by
looking around without stopping. At the same time, it is necessary that the speed
of movement is sufficient not to make it too tedious to pass a long avenue without
turning.

In Unity, it is generally recommended to refer to a unit of measure for the length
of the virtual scene as a metre. In this way, in addition to reporting the elements
of the environment with proportionate and real dimensions, it is possible to define
the speed of the agents navigating the map in terms of metres per second. After
several attempts of different velocities, it was decided to use v = 4m/s as the speed
parameter for further experiments.

Figure 4.4: A path script with distance and average time displayed.

In the following chapter of this document, relating to tests and results, data
taken from a number of tests are reported, aimed at verifying how similar a path
defined by using methods described above is to an optimal path that a user would
take being conscious of all the directions that constitute it. The data collected
refer to the total distance travelled by the user during the journey and the time it
took them to complete it.

4.4 Pedestrians system
The realism of the virtual environment is an important component to increase
user immersion. Where the accuracy of the 3D models, the reproduction of the
player’s movements, and the interaction with the environment play an important
part in the success of this objective, the introduction of non-player characters in
the virtual world aims at making the user perceive a more alive and somewhat
less simulated place. The objective in this case is to develop a system to manage

42

Development

NPCs in the game environment. The first consideration to be made is how many
NPCs to place in the map, aiming to find the right compromise to have a realistic
number of people ’living’ the environment, but without overburdening the game
engine with a high number of models. A second consideration relates to how it is
sufficient to place characters only in the player’s immediate surroundings, where
they can therefore be seen, leaving distant areas empty. With these observations, it
is possible to define parameters to algorithmically manage spawning of pedestrians
in the virtual environment:

• The number of pedestrians to be brought into the explorable area.

• The maximum distance range within which pedestrians should appear.

• The maximum distance within which pedestrians can remain in the environ-
ment, beyond which they would then be removed in favour of the appearance
of new NPCs.

4.4.1 Pedestrians spawn management

Using the parameters defined above as input for the function, a script was defined
for managing the appearance of NPCs in the game map. The question that has
been raised is where to make the characters appear and where they could move;
as first, all those areas where there are no obstacles, such as buildings or trees,
but where there is no road, designed to be dedicated to vehicles, have been chosen
as areas that the NPCs can travel through. Therefore, the Obstacles and Roads
detection algorithm was re-proposed, but with a variation: the nodes marked as
walkable for NPCs are those nodes that aren’t walkable by the user, they do not
have any obstacles and among their adjacent nodes there is at least one node that
is walkable by the user. In this way, all areas representing pavements adjacent to
the road travelled by the player are preferred as spawn points.

In Unity, there is a component that autonomously manages the path an NPC
will take when setting a certain destination, called the ’Nav Mesh Agent’. Thanks
to it, it is possible to enter parameters such as speed, acceleration, and angular
velocity that the object in question must have in the scene; it is then only necessary
to insert the destination that the NPC must reach in order to allow it to move
through the environment. To choose the destination, a function was defined that
randomly picks the position of a node that meets the ’no obstacles and no road’
requirement.

43

Development

Figure 4.5: User walkable nodes (Blue) and pedestrians spawning nodes (Black)

To manage the actual NPC spawn and vanish functionality, two functions were
defined that rely on Unity’s ’Coroutines’ system. A coroutine makes it possible to
divide several tasks between different frames, returning control to Unity at the end
of each frame, and restarting in the next frame from where execution had been left
off.

Defined functions, managed by two separate coroutines, are called ’Spawn’ and
’Despawn’ and have been implemented as follows. Variables that are defined are p
as the player current position, maxCount as the maximum number of pedestrians
that can be alive in the environment, activePedestrians are the list of all current
NPCs that are located in the game world, the range r1 is the maximum distance
from the user where pedestrians can appear, while r2 is the maximum distance
from the user current position where pedestrians can remain in the environment.

44

Development

Algorithm 4: Spawn function
while true do

if sizeof(activePedestrians) < maxCount then
Select pr as random position taken from one of the nodes identified
as possible spawn points for NPCs and at a maximum distance of r1
from the user’s position;

if pr is found then
Pick a random NPC model m from the available model list;
Instantiate npc with model m and position pr;
Add npc to activePedestrians;

end
Wait for end of the frame;

end
end

Algorithm 5: Despawn function
while true do

for npc in activePedestrians do
d = distance of npc from p;
if d > r2 then

Remove npc from activePedestrians;
Remove npc from the scene;

end
end
Wait for 1 seconds;

end

45

Development

4.4.2 NPC behaviour
For NPCs, several possible behaviours that they may have in the scene during their
presence on the map were defined. After collecting some animations to represent
these behaviours, the criteria for choosing which of these to perform, with what
possibility and for how long were thought of. The possible behaviours, called
’statuses’ of NPCs, were divided into two main categories:

• The ’main’ statuses, i.e. the behaviours that can occur starting from an idle
state of the NPC, such as at the moment they are spawned in the scene.

• The ’secondary’ statuses, are the behaviours that can occur as a result of
specific events that happen during one of the main statuses or other secondary
statuses, thus interrupting their execution in favour of the new behaviour.

The functioning flow of the behaviours was implemented starting from an idle
state for each character; when in this state, one of the defined main statuses is
randomly chosen, the variables necessary to realise it are set and the animation
is then started. At this point, the chosen behaviour could be completed without
interruption, e.g. finishing the set time or reaching the chosen destination. However,
one or more events may occur, and each of them has a previously defined possibility
of interrupting the current execution and switching to a secondary status. The
values describing the possibilities of each status being chosen are parameters that
have been tuned through several simulation attempts. When one of these statuses,
whether main or secondary, is completed without interruption, the NPC returns to
the idle state and the cycle begins again.

Figure 4.6: NPC behaviours diagram

For first simulations, a total of four possible statuses were implemented, divided
into two main and two secondary ones. Specifically, the two main behaviours

46

Development

an NPC can have are walking and calling on the phone. The first of the two
continues its execution until the destination is reached or until an obstacle prevents
it from proceeding; the second status has a fixed execution time of 60 seconds. The
probability values of primary statuses are indicated by a corresponding value pi,
which when all are summed up results in q

pi = 1.
As for secondary behaviours, chatting with other NPCs and observing buildings

and other landmarks on the map have been developed. Both of these statuses can
be undertaken by characters as a result of events occurring during the walk status,
with a possibility indicated by a certain value pj, recalculated at each occurrence
of their respective event; this value is independent for each status and is pj ≤ 1.

Figure 4.7: Walking status of an NPC (left) and Talking status of an NPC (right)

Figure 4.8: Chatting status of two NPCs

47

Chapter 5

Test and Results

5.1 Path definition on a virtual environment
The application of the TOBS_A* algorithm led in most cases to the definition of
paths that reflected the requirements. In order to present some results, a reduced
virtual environment with streets, pavements and buildings was realised to emphasise
the differences the applied pathfinding algorithms demonstrate. The source and
destination of the path used are the same for all applications, aiming to expose
how variations in defined parameters affect the result.

For each attempt at path definition, the characteristics that characterise that
attempt will be shown, with screenshots of the nodes describing the environment
grid. Each node is shown in light blue if it is walkable by the user, in dark blue if it
is included in the path detected by the algorithm. Nodes belonging to non-walkable
areas will be left hidden. Figure 5.2 shows the result of the application of the
Obstacle and Roads detection algorithm, which identified the nodes that could
be visited by the user during simulations. It is worth noting that the entire road
dedicated to vehicles was covered, leaving out the areas corresponding to pavements.

48

Test and Results

Figure 5.1: Virtual environment representing a small neighborhood built with
Unity

Figure 5.2: Graph representation of the walkable areas (light blue) of the map

49

Test and Results

5.1.1 Dijkstra algorithm application
As a first example, Dijkstra’s algorithm was applied to find the shortest path from
the starting point to the finishing point, located in the southernmost part of the
game area. By representing in green all those nodes that have been visited during
the iterations of the algorithm, it is easy to see that almost the entire playable
area has been visited, before finding the actual destination. This does not prove
particularly efficient, especially in the case of very large maps with a high level of
detail (i.e. very smaller nodes).

Figure 5.3: Path defined with Dijkstra algorithm

As is evident, Dijkstra’s algorithm per se is not a good alternative for the
pathfinding problem applied to graphs with homogeneous link costs and symmetrical
connections between all nodes.

50

Test and Results

5.1.2 A* algorithm application
Following the logic made during development, subsequent attempts at path finding
were conducted with the A* algorithm. Thanks to the heuristic function applied,
in this case the Euclidean distance, as the nodes are very small compared to the
map size, it was possible to find the destination faster. The overall nodes visited
are significantly smaller than those visited with Dijkstra, and are shown in figure
5.4. The resulting path, however, is identical to the previous case.

Figure 5.4: Path defined with A* algorithm

As expected, however, the path resulting from this algorithm tends to remain
adjacent to the boundaries of the walkable area, deviating from the pattern that
would be expected by a person making that journey by bicycle.

51

Test and Results

5.1.3 TOBS_A* algorithm application
Arriving at the application of the TOBS_A* algorithm to the reproduced virtual
environment, it is possible to bring to light the main influences that the weight and
support parameters of the heuristic function have on the realisation of the final
path. The parameters that were manipulated for the experiments are listed again
below:

• The weight of the basic distance component of the heuristic function w0

• The weight w1 of the function component h1 that takes considerations of the
presence of obstacles in the direction of the node n, with the number of steps
performed in that direction equals to t1

• The weight w2 of the function component h2, which impacts on the function
that checks if there are any boundaries of the walkable area near the node n,
checking in a range of nodes from n equals to t2

• The weight w3 of the function component h3, which affects the total cost from
m to n whether the movement between these two nodes would result in a
change of orientation from the one previously held

The value of w0 was kept equal to 1 in the experiments conducted, to emphasise
the impact of the other components on the resulting cost. Next, the results of a
number of experiments performed by varying the wi parameters are presented and
some considerations that led to selecting the final value of these parameters are
explained.

For all tests, values for parameters t1 and t2 were set according to the conforma-
tion of the road; taking into account the width in nodes of the roadway, t1 was set
equal to 7, while t2, representing the desired distance from the sides of the road,
equal to 2.

In the first test, shown in Figure 5.5, the values of the weights w1, w2, w3 = 1
were set. Although the resulting path appears acceptable, some considerations can
be made. In some sections of the path, it was kept adjacent to the boundaries of
the road, in order to favour an orientation without future obstacles. It is therefore
clear that, according to the desired criteria, the incidence of the h1 component
must be less than the other components, aiming first to have a path that tends to
stay more towards the middle of the road.

52

Test and Results

Figure 5.5: Path defined with w1 = 1, w2 = 1, w3 = 1

Figure 5.6: Path defined with w1 = 0.3, w2 = 1, w3 = 1

53

Test and Results

Figure 5.7: Path defined with w1 = 0.3, w2 = 1, w3 = 0.5

Figure 5.8: Path defined with w1 = 0.3, w2 = 1, w3 = 0.1

54

Test and Results

For a second test, therefore, the weight w1 was reduced to the value of 0.3,
leaving the other two unchanged. In this case, the criteria of distancing the path
from the boundaries was fulfilled, however, showing another problem. The defined
path does not follow the course of the shortest path from the starting point to the
destination, but favours keeping the same direction as much as possible, lengthening
the route. In a city layout such as the one presented, where the streets are all
roughly similar, the route in figure 5.6 is unrealistic in this respect. According
to this result, the effect of the h3 component should also be lowered, especially
compared to the incidence of the base component h0.

Lastly, some tests were conducted by varying the parameters w1 and w3, keeping
them lesser or equal than 0.5, to analyse the relevant results. Figures 5.7 and 5.8
present two examples of paths realised with these variations, respectively w1 = 0.3
and w3 = 0.5 in the former one, and with w1 = 0.3 and w3 = 0.1 in the latter one.
The path found is more or less identical in both tests, fulfilling the established
criteria and thus producing a path with a realistic pattern and appropriate length
to be implemented in the project. A small variation occurs in the number of nodes
visited before arriving at the solution, although this is of little significance.

5.1.4 Paths definitions on realistic environment
After making these conclusions, the path definition system has been brought to
a map with a more realistic conformation: a section of the city of Colchester.
Colchester is a town located in East of London, England, and a rectangular section
of it was reproduced as a virtual environment for the simulations. It has been
made sure to include some famous locations within this section, such as Colchester
Castle. The idea is to perform parameter variation tests in such a context, aiming
to find the most suitable values for multiple path definition in this environment.
To begin with, the two points defining the extremes of the path were identified,
starting from Colchester Castle and ending at the entrance to the Culver Square
Shopping Centre, in order to cross a good part of the city section and diversify the
areas and streets encountered.

55

Test and Results

Figure 5.9: Map preview of the Colchester sections used in the project

Figure 5.10: Virtual Colchester overview as imported without textures.

The proposed virtual environment is thus composed as follows:

• A system of roadways representing the areas that can be traversed by the
user during the simulations, which cannot be crossed by pedestrians and
are distinguishing for the nodes that will form the graph on which search

56

Test and Results

algorithms are applied.

• A horizontal plane covering the entire imported section, each area belonging to
this plane represents pedestrian areas and where the user cannot walk during
sessions.

• A set of buildings that constitute the obstacles on the map.

Overall, the proposed area has a width of about 1 km and a height of about
700 metres. As a size for the grid cells, 1 m was chosen, in order to have a good
granularity and at the same time not to increase the complexity too much, allowing
several path computations in a short time.

Taking the values of the weights wi obtained from the last experiments carried
out in the first reproduction of a city scene, the TOBS_A* algorithm is applied to
the section of Colchester focusing on the area near the castle, used as a starting
point, to examine its behaviour. Figure 5.11 shows the path resulting from the
algorithm applied using w1 = 0.3, w2 = 1 and w3 = 0.1 as weights. It can be seen
in this case how the path tends to prefer a wider route than the actual shortest one
to reach the High Street and proceed, effectively lengthening the path considerably.

It is easy to see how this problem originates from the actual contribution that
its components make to the heuristic function used. Although h1, h2 and h3
contribute to each other as desired, their weight is excessive compared to the weight
of the basic component h0, characterising the most promising direction to reach
the endpoint.

Figure 5.11: Portion of the resulting path with w1 = 0.3, w2 = 1, w3 = 0.1.

By performing an initial proportional reduction of the wi parameters, and then
further tuning them, it was possible to find a more suitable configuration for this

57

Test and Results

type of environment. In this example, the objective is to define a route that
favours the crossing of High Street, represented by the long horizontal street in
the foreshortened view, while passing through streets that possess 3 or 4 nodes in
width. After a number of attempts, the values for the parameters that meet the
defined requirements that have been found are:

• w1 = 0.1

• w2 = 0.2

• w3 = 0.5

Below there is the same portion of the map with the path found using these
weights for the contributions of the h function.

Figure 5.12: Portion of the resulting path with w1 = 0.1, w2 = 0.5, w3 = 0.2.

To emphasise the results obtained by the algorithm, two further points of interest
were identified to calculate an orientation path. The starting point was placed at the
Firstsite art gallery, located just below Colchester Castle, and the destination was
placed at another art gallery located in the northwest of the virtual environment, the
Colchester Gallery. Figure 5.13 shows the entire path defined using the TOBS_A*
algorithm and the weights obtained from the previous experiment. The pattern of
the path reflects what is desired, proceeding along High Street as far as possible,
then turning into North Hill and proceeding to the Colchester Gallery intersection.

Figure 5.14 below shows the shortest path from the same starting point to the
same destination found using the basic A* algorithm. It is evident that even in
this case the route tends to remain as close as possible to the line connecting the
source to the destination location, increasing the number of turns taken in the trip.

58

Test and Results

Figure 5.13: Path defined with TOBS_A* from Firstsite art gallery to Colchester
Gallery.

Figure 5.14: Same path defined with A* algorithm.

5.1.5 Navigation tests

For each path, the distance is stored as an accessible parameter on the corresponding
game object. By referring to the user’s average speed of travel, the average
completion time for each path is recorded as well. A number of paths have been
defined in order to document tests in which they are reproduced from the start to
the destination, measuring the time taken and the distance covered by the overall
movement of the user. The objective is to verify that these measurements coming
from a user attempting to reproduce the path by knowing the route actually match

59

Test and Results

the distance determined by the path finding algorithm and the calculated average
time.

The paths defined for these tests are listed below, in which are included the two
presented earlier in this chapter.

Path Starting Point End Point Distance Avg Time
1 Colchester Castle Culver Square 739 m 185 s
2 Firstsite Gallery Colchester Gallery 987 m 247 s
3 Head St. Herrick House 703 m 176 s

4 Water Tower Spiritualist
Church 1175 m 294 s

5 Trinity St Church ODEON Cinema 276 m 69 s

Table 5.1: List of paths defined for tests and data analysis.

By importing the virtual city using procedural elaboration of a section of the
real map of Colchester, designed to have dimensions that refer to Unity units as
to metres, it was possible to create distance-accurate paths. The following figure
shows path 1 reproduced on Google Maps with an indication of the corresponding
distance.

For each path, five tests were conducted with five different people. In each test,
the player is asked to try to reach the destination by following directions given
directly to the user, thus reproducing the case where the path is known to the
player. In addition to the directions, the itinerary map is kept visible throughout
the test in order to have a clearer view of the route to be taken.

In order to take into account the impact of the familiarity of controls that
improves as the test progresses, the different paths are proposed to the subjects in
random order. Control of the game avatar is performed via keyboard and mouse,
running tests directly on a desktop PC, using Unity’s editor demo system.

The defined test paths are now briefly described:

• The first path has its starting point in front of the Colchester Castle, while its
destination is the Culver Square shopping centre. It is a medium-length path
that extends mostly along the High St. main street.

• The second path is longer and starts at the Firstsite Gallery and proceeds
to another art gallery located in the northwest area of the Colchester section
used. It is an easy path as it only involves two turnings, travelling through
the entire High St.

60

Test and Results

Figure 5.15: Path 1 represented in a Google Maps itinerary.

• In the third path, the user starts by coming from a street called Head St.
located to the southwest area of the map, and then proceeds until a residential
building further north. It is of medium length and a little more complicated
in its routing.

• The fourth path is the longest of the defined ones, starting at the Water Tower
to the west of the used section and, traversing the entire southernmost area of
the map, reaching a church located in the extreme south-east of the explorable
area.

• Finally, the fifth path is the shortest and explores a small area near Culver
Square, starting from a church and arriving at a cinema located in Head St.

61

Test and Results

Path 1

Figure 5.16: Path 1 overview.

Subject Distance Covered Completion Time e(Distance) e(Time)
A 738 m 192 s -1 m +7 s
B 744 m 198 s +5 m +13 s
C 735 m 204 s -4 m +19 s
D 738 m 196 s -1 m +11 s
E 743 m 194 s +4 m +9 s

Table 5.2: Test data from simulations on path 1.

62

Test and Results

Path 2

Figure 5.17: Path 2 overview.

Subject Distance Covered Completion Time e(Distance) e(Time)
A 997 m 250 s +10 m +3 s
B 993 m 265 s +6 m +18 s
C 985 m 250 s -2 m +3 s
D 990 m 253 s +3 m +6 s
E 993 m 257 s +6 m +10 s

Table 5.3: Test data from simulations on path 2.

63

Test and Results

Path 3

Figure 5.18: Path 3 overview.

Subject Distance Covered Completion Time e(Distance) e(Time)
A 698 m 175 s -5 m -1 s
B 714 m 191 s +11 m +15 s
C 702 m 180 s -1 m +4 s
D 710 m 188 s +7 m +12 s
E 699 m 184 s -4 m +8 s

Table 5.4: Test data from simulations on path 3.

64

Test and Results

Path 4

Figure 5.19: Path 4 overview.

Subject Distance Covered Completion Time e(Distance) e(Time)
A 1192 m 304 s +17 m +10 s
B 1216 m 312 s +41 m +18 s
C 1200 m 312 s +25 m +18 s
D 1198 m 305 s +23 m +11 s
E 1188 m 306 s +13 m +12 s

Table 5.5: Test data from simulations on path 4.

65

Test and Results

Path 5

Figure 5.20: Path 5 overview.

Subject Distance Covered Completion Time e(Distance) e(Time)
A 282 m 74 s +6 m +5 s
B 274 m 70 s -2 m +1 s
C 276 m 79 s +0 m +10 s
D 285 m 78 s +9 m +9 s
E 279 m 74 s +3 m +5 s

Table 5.6: Test data from simulations on path 5.

From the tests conducted, it emerges that the distance travelled by the subjects
tends to be very close to that predicted by the path calculation, with an error
e(Distance) often lower than 10m, and in any case always less than 5%. The time
taken to complete the tasks is always slightly higher than the pre-calculated time,
also due to the fact that the resulting average speed of the users during simulations
is a bit lower than that used in the calculation, considering minor moments of stops
during the journey.

66

Test and Results

In general, the results obtained from these tests are satisfactory; especially for
the expected travel time, the parameter of each path is valid as a lower bound for
the evaluation of the exercise.

As far as distance is concerned, it too may represent a lower limit for user
performance in the platform, but this is not intended to be a real objective for the
sessions, as it alone does not provide an accurate indication of the path travelled.

67

Chapter 6

Conclusions

In this thesis project, the aim was to create an easy-to-use tool that would allow
a quick orientation path to be defined for the different phases of rehabilitation
treatments for Alzheimer’s patients. Each path had to be a virtual object within a
Unity scene, described by a multitude of waypoints and characterised by certain
parameters that could be used in the learning and evaluation phases.

The results obtained through this thesis work are satisfactory, achieving the
desired objective. By varying the parameters defined for the heuristic function used
by the path search algorithm by small amounts, it is possible to identify orientation
paths that meet the set requirements of realism and behaviour from any starting
point and destination. Thanks to this tool, it was possible to define a method for
creating an abstract representation of the map, which can also be used for various
other purposes, such as the insertion of NPCs in the virtual environment. The
representation of paths via a set of waypoints allows the platform system to track
progress, provide directions, recognise any loss of orientation and guide the user
back to the correct steps.

The tool for defining paths proved to be optimal in offline processing, but began
to have too high computation times in cases where the map size was too large
compared to its granularity (number of nodes > 4 · 106).

As for the path search performed at runtime, the algorithm based on A* and
line-of-sight performs well, taking advantage of Unity’s threading and coroutines
mechanism. Here again, however, an excessively large size ratio between the map
and the cells leads to a non-tolerable slowdown of the online search algorithm.

The pedestrian management tool was also realised in accordance with the
intended objectives; it is possible to easily manipulate the defined parameters
concerning the actual spawning of NPCs in the map and those concerning the
behaviour they have, in order to adapt to the desired virtual environment. Finally,
multiple functions have been defined to capture information on the patient’s
advancement and progress in the simulation, so that it can be processed by the

68

Conclusions

virtual assistant or the system in general for when the actual treatment phases are
implemented.

As for further developments, possible insights or improvements can be discussed
divided into different parts that constitute this thesis.

• Concerning the definition of the orientation paths, the accuracy of the two dis-
tance parameters, minimum and maximum, which characterise the individual
checkpoints of the path, can be improved. Where the criteria concerning the
minimum distance parameter to a checkpoint, used to define the overcoming
of the given checkpoint, are adequate in their operation, those concerning the
maximum distance and consequently the loss of orientation should be explored
in depth. Once the phases of the treatments are specified in their methods
and constitutions, better criteria for the loss and recovery of orientation could
be defined. Therefore, considerations should be made that consider not only
the distance between the user and the last checkpoint passed and the distance
between the user and the next checkpoint to be reached, but also the direction
most recently taken by the patient, the direction in which they are currently
facing and/or the time elapsed since the last checkpoint was passed.

• The online path search uses algorithms based on the grid representation of
the map and consequently implements processing with a certain degree of
complexity, which would not be necessary to design a path based merely on the
directions to be taken to reach a certain location. A pre-calculated waypoint
system for the map could easily handle an environment consisting mainly of
roads and crossings; leaving the online part to a simple search algorithm based
on a small number of waypoints describing the roads on the map could greatly
simplify calculations performed at runtime compared to the current methods.

• Once the virtual environment is enriched with more diversified elements, other
types of pedestrian behaviour can be added. Following the system of primary
and secondary behaviours, other types of NPC actions can be added so that
they interact more with the environment, e.g. crossing the street at crosswalks,
observing elements of interest in the city, shop windows, signs. Optionally
also add actions concerning interaction with the user, such as a greeting or
some sentence spoken when the player and the NPC come to meet.

This study once again demonstrates the potential that path finding techniques
can bring to the field of video games and automation. The versatility of the most
common algorithms allows the problem to be adapted to more or less complex
situations. Combinations of the advantages and needs of these algorithms, such as
pre-computation of certain search elements, processing of different representations
of the analysed environment, and hierarchisation of tasks make it possible to

69

Conclusions

implement path finding systems as accurate as necessary in the field of application.
The simplicity and different functionalities of Unity then made it possible to achieve
all the set goals by implementing functions and scripts that are easily accessible,
debuggable, and refinable. It also made it possible to quickly create virtual demo
environments for testing and analysing results, making use of Unity’s Gizmos
functions that allow data and abstractions to be visualised directly in the scene in
the Unity editor.

70

Bibliography

[1] Henry Fuchs and Gary Bishop. Research directions in virtual environments.
1992 (cit. on p. 1).

[2] Carolina Cruz-Neira. «Virtual reality overview». In: Siggraph. Vol. 93. 23.
1993, p. 2 (cit. on p. 1).

[3] Asmaa Saeed Alqahtani, Lamya Foaud Daghestani, and Lamiaa Fattouh
Ibrahim. «Environments and system types of virtual reality technology in
STEM: A survey». In: International Journal of Advanced Computer Science
and Applications (IJACSA) 8.6 (2017) (cit. on p. 1).

[4] Shi Cao. «Virtual Reality Applications in Rehabilitation». In: vol. 9731. July
2016, pp. 3–10. isbn: 978-3-319-39509-8 (cit. on p. 2).

[5] Riva G. «Applications of virtual environments in medicine». In: Methods Inf
Med 42.5 (2003) (cit. on p. 2).

[6] Freeman D. «Studying and treating schizophrenia using virtual reality: a new
paradigm». In: Schizophr Bull 34.4 (July 2008) (cit. on p. 3).

[7] Maria Schultheis and Albert Rizzo. «The application of virtual reality technol-
ogy in rehabilitation». In: Rehabilitation Psychology 46 (Aug. 2001), pp. 296–
311 (cit. on p. 3).

[8] Lee Ae Young Oh Eungseok. «Mild Cognitive Impairment». In: J Korean
Neurol Assoc 34.3 (2016), pp. 167–175 (cit. on p. 5).

[9] Charles Christiansen, Beatriz Abreu, Kenneth Ottenbacher, Kenneth Huff-
man, Brent Masel, and Robert Culpepper. «Task performance in virtual
environments used for cognitive rehabilitation after traumatic brain injury».
In: Archives of Physical Medicine and Rehabilitation 79.8 (1998), pp. 888–892.
issn: 0003-9993 (cit. on p. 5).

[10] Mónica S Cameirão, Sergi Bermúdez i Badia, Esther Duarte, Antonio Frisoli,
and Paul F M J Verschure. «The combined impact of virtual reality neu-
rorehabilitation and its interfaces on upper extremity functional recovery in
patients with chronic stroke». In: Stroke 43.10 (Oct. 2012), pp. 2720–2728.
issn: 0039-2499 (cit. on p. 5).

71

BIBLIOGRAPHY

[11] Kim JH Kim O Pang Y. «The effectiveness of virtual reality for people with
mild cognitive impairment or dementia: a meta-analysis». In: BMC Psychiatry
19.219 (July 2019) (cit. on p. 6).

[12] Clay F et al. «Use of Immersive Virtual Reality in the Assessment and
Treatment of Alzheimer’s Disease: A Systematic Review». In: J Alzheimers
Dis. 75 (May 2020), pp. 23–43 (cit. on p. 6).

[13] Moussavi Z White PJ. «Neurocognitive Treatment for a Patient with Alzheimer’s
Disease Using a Virtual Reality Navigational Environment». In: J Exp Neu-
rosci 10 (Nov. 2016), pp. 129–135 (cit. on p. 7).

[14] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. «Theta*: Any-Angle
Path Planning on Grids». In: J. Artif. Intell. Res. (JAIR) 39 (Jan. 2014)
(cit. on p. 7).

[15] Geethu Elizebeth Mathew. «Direction Based Heuristic for Pathfinding in
Video Games». In: Procedia Computer Science 47 (2015), pp. 262–271 (cit. on
p. 8).

[16] Xiao Cui and Hao Shi. «Direction Oriented Pathfinding In Video Games». In:
International Journal of Artificial Intelligence I& Applications 2 (Oct. 2011)
(cit. on p. 8).

[17] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia Kavraki, and Sebastian Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. English. MIT Press, May 2005
(cit. on p. 9).

[18] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. «A
Comprehensive Study on Pathfinding Techniques for Robotics and Video
Games». In: Int. J. Comput. Games Technol. 2015 (Jan. 2015) (cit. on p. 10).

[19] Peter Yap. «Grid-Based Path-Finding». In: Proceedings of the 15th Conference
of the Canadian Society for Computational Studies of Intelligence on Advances
in Artificial Intelligence. AI ’02. Berlin, Heidelberg: Springer-Verlag, 2002,
pp. 44–55 (cit. on p. 10).

[20] Suping Zhao, Bruno Siciliano, Zhanxia Zhu, Alejandro Gutierrez-Giles, and
Jianjun Luo. «MULTI-WAYPOINT-BASED PATH PLANNING FOR FREE-
FLOATING SPACE ROBOTS». In: International Journal of Robotics and
Automation 34 (Jan. 2019) (cit. on p. 12).

[21] Adi Botea, Bruno Bouzy, Michael Buro, Christian Bauckhage, and Dana S.
Nau. «Pathfinding in Games». In: Artificial and Computational Intelligence
in Games. 2013 (cit. on p. 13).

[22] William Lee and Ramon Lawrence. Fast Grid-based Path Finding for Video
Games (cit. on p. 14).

72

BIBLIOGRAPHY

[23] Nathan R. Sturtevant and Michael Buro. «Improving Collaborative Pathfind-
ing Using Map Abstraction». In: Proceedings of the Second Artificial Intelli-
gence and Interactive Digital Entertainment Conference. The AAAI Press,
2006, pp. 80–85 (cit. on p. 14).

[24] Yang Xue and Jian-Qiao Sun. «Solving the Path Planning Problem in Mobile
Robotics with the Multi-Objective Evolutionary Algorithm». In: Applied
Sciences 8.9 (2018) (cit. on p. 15).

[25] Yoppy Sazaki, Anggina Primanita, and Muhammad Syahroyni. «Pathfinding
car racing game using dynamic pathfinding algorithm and algorithm A». In:
July 2017, pp. 164–169 (cit. on p. 15).

[26] Frank Steinicke, Timo Ropinski, and Klaus H. Hinrichs. «A generic virtual
reality software system’s architecture and application». In: ICAT ’05. 2005
(cit. on p. 20).

[27] Michael Lewis and Jeffrey Jacobson. «Game engines in scientific research».
In: Communications of the ACM 45 (Jan. 2002), pp. 27–31 (cit. on p. 20).

[28] Tuukka Takala. «A Toolkit for Virtual Reality Software Development - Inves-
tigating Challenges, Developers, and Users». PhD thesis. Jan. 2017 (cit. on
p. 21).

[29] Daniel Foead, Alifio Ghifari, Marchel Kusuma, Novita Hanafiah, and Eric
Gunawan. «A Systematic Literature Review of A* Pathfinding». In: Procedia
Computer Science 179 (Jan. 2021), pp. 507–514 (cit. on p. 33).

[30] Rashmi Ballamajalu. «Turn and Orientation Sensitive A* for Autonomous
Vehicles in Intelligent Material Handling Systems». Rochester Institute of
Technology, 2020 (cit. on p. 34).

73

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Virtual Reality
	VR technology for healthcare
	PEDAL project

	Related Works
	State of the Art
	Path finding
	Maps representations for path finding
	Grids
	Gaming applications
	Objectives of path planning

	Technologies
	Hardware
	HTC Vive Pro
	HP Reverb G2
	Oculus Quest 2

	VR development
	Unity
	Custom tools for Unity
	SDK for VR integration
	Unity input system
	Unity execution order

	Development
	Project requirements
	Tools developed for Unity
	Obstacles and Roads detection
	Path definition
	Basics with Dijkstra algorithm
	A* algorithm
	Turns, Orientation and Bounds distance Sensitive A* algorithm
	Line Of Sight A* algorithm
	Path as game object

	Progress and path tracking
	Virtual Assistant behaviour
	Evalutation criteria

	Pedestrians system
	Pedestrians spawn management
	NPC behaviour

	Test and Results
	Path definition on a virtual environment
	Dijkstra algorithm application
	A* algorithm application
	TOBS_A* algorithm application
	Paths definitions on realistic environment
	Navigation tests

	Conclusions
	Bibliography

