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Abstract

The link communication from/to satellite, re-entry or space vehicles is often subject
to degradation known as black-out. To assess this issue, radio frequency (RF)
wave propagation through complex media (such ionosphere, plasmas and complex
gas mixtures) must be considered. Asymptotic techniques such as ray or beam
tracing can be used to predict EM propagation in these inhomogeneous media
where the radiation can be refracted, reflected and/or absorbed compared to free-
space propagation. Coupled with integral equations for the free-space part of the
simulation domain the model provides a powerful numerical tool to design antennas
for critical applications and for calculating the Radar Cross Section (RCS) of
objects surrounded by complex media such as hypersonic plasma. The ray tracing
method effectively decompose the wavefront with plane wave represented by one
or more rays and follow the propagation using the Eikonal approximation valid
for short wavelength. Contrary to ray tracing in homogeneous media, where the
ray trajectories are straight lines, here a ray can be curved due to the continuous
variation of the refractive index (inhomogeneity). A numerical code capable of
simulating the behavior of rays and following their trajectory within complex media
has been developed at LINKS Foundation. One of the limitations of this model and
consequently of the numerical code is the fact that in order to have reliable results,
a sufficiently dense grid of rays must be generated which interacts with objects in
the "scene" while traversing it (ray traversal); this involves an enormous amount
of computational time. The first part of this thesis work focused precisely on this
problem: speeding up the ray traversal process; this was done by using special
data structures such as K-D Trees or Octrees that can subdivide the physical
space (the scene) into boxes and then through an appropriate traversal algorithm
identify which boxes were hit by the ray in such a way as to follow its trajectory.
In the second part, on the contrary, improvements were made to the physical
model, thus enabling the simulation of electromagnetic scattering situations not
present in the original code, that were limited to the calculation of the Radar
Cross Section considering only perfectly reflective and impenetrable surfaces (PEC);
in particular the equations for boundary surfaces between different and possibly
lossy dielectrics have been introduced, enabling the simulation of scattering with
penetrable dielectrics bodies with sharp boundaries. Due to the secondary rays
generated at the discontinuities the bookkeeping of rays is more complicated and
has to be implemented efficiently. As initial test cases, the Radar Cross Section
of dielectric spheres was calculated and compared with the results obtained with
exact solutions derived from Mie’s series.
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Chapter 1

Introduction

Hypersonic flight regime is conventionally defined for Mach > 5; in these conditions,
air ionization and heat shield ablation generate a plasma sheath around re-entering
hypersonic vehicles.
This ionized plasma layer reflects and attenuates propagating electromagnetic waves
to a point where total RF blackout can and does occur. RF blackout is of special
concern for hypersonic vehicles because continuous contact with ground stations
and GPS satellites is required for communication and navigation. The degree of
plasma formation and signal attenuation varies considerably depending on many
factors. Some factors that impact RF attenuation are re-entry velocity, vehicle
design, heat shield impurity levels, and antenna placement.
Clearly a way to minimise or remove the disruption would provide a significant
advantage for future experiments and missions, allowing the transmission of more
data and a safer control of the vehicle during a delicate phase or the re-entry.
One possible solution to overcome this problem is to study the propagation of
radio frequency waves within complex media such as the ionosphere, plasmas, and
complex gas mixtures. Asymptotic techniques such as ray or beam tracing can be
used to predict EM propagation in these inhomogeneous media where the radiation
can be refracted, reflected and/or absorbed compared to free-space propagation.
A numerical code using these asymptotic techniques combined with integral equa-
tions for the free-space part of the simulation domain was developed at LINKS
Foundation.
The problem was addressed with a hybrid approach to develop the numerical
code. Equivalence Theorem to separate the inhomogeneous plasma region from the
surrounding free space via an equivalent (Huygens) surface has been used, and the
Eikonal approximation to Maxwell equations in the large inhomogeneous region
for obtaining equivalent currents on the separating surface. Then, the scattered
field via (exact) free space radiation of these surface equivalent currents has been
obtained. The ray tracing method used effectively decompose the wavefront with
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Introduction

plane wave represented by one or more rays and follow the propagation using
the Eikonal approximation valid for short wavelength. Contrary to ray tracing in
homogeneous media, where the ray trajectories are straight lines, here a ray can be
curved due to the continuous variation of the refractive index (inhomogeneity).
One of the limitations of this model and consequently of the numerical code is the
fact that in order to have reliable results, a sufficiently dense grid of rays must
be generated which interacts with objects in the "scene" while traversing it (ray
traversal); this involves an enormous amount of computational time. The first
part of this thesis work focused precisely on this problem: speeding up the ray
traversal process; this was done by using special data structures such as K-D Trees
or Octrees that can subdivide the physical space (the scene) into boxes and then
through an appropriate traversal algorithm identify which boxes were hit by the
ray in such a way as to follow its trajectory.
In the second part, on the contrary, improvements were made to the physical
model, thus enabling the simulation of electromagnetic scattering situations not
present in the original code, that were limited to the calculation of the Radar
Cross Section considering only perfectly reflective and impenetrable surfaces (PEC);
in particular the equations for boundary surfaces between different and possibly
lossy dielectrics have been introduced, enabling the simulation of scattering with
penetrable dielectrics bodies with sharp boundaries. Due to the secondary rays
generated at the discontinuities the bookkeeping of rays is more complicated and
has to be implemented efficiently.
Chapter 2 will describe from a purely theoretical point of view electromagnetic
waves starting with Maxwel’s equations and then moving on to the definition of
plane waves to the problem of electromagnetic scattering and then to the definition
and estimation of the Radar Cross Section (RCS).
Chapter 3 will describe in detail the numerical code used as a starting point for
this research project; analyzing both the physical and numerical models used with
their respective approximations.
Chapter 4 will describe in detail the methods used to speed up the Ray Traversal
process; starting with the aselection of the space division structure used and ending
with the results of the numerical model and its advantages brought.
Finally, Chapter 5 will describe the improvements made on the physical model and
physical situations that can be handled by the code with respective results.
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Chapter 2

High Frequency Wave in
Complex Media

2.1 Electromagnetic Wave
2.1.1 Maxwell’s Equations
The state of excitation which is established in space by the presence of electric
charges is said to constitute an electromagnetic field. It is represented by two vectors,
E and B, called the electric vector and the magnetic induction respectively[1]. To
describe the effect of the field on material objects, it is necessary to introduce a
second set of vectors, the electric current density j, the electric displacement D,
and the magnetic vector H. The space and time derivatives of the five vectors
are related by the Macroscopic Maxwell’s equations, which hold at every point in
whose neighbourhood the physical properties of the medium are continuous:

∇ ×H − 1
c
Ḋ = 4π

c
j (2.1)

∇ × E + 1
c
Ḃ = 0 (2.2)

the dot denoting differentiation with respect to time and c is the velocity of
light in the vacuum that is approximately equal to 3 × 1010cm/s.
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They are supplemented by two scalar relations:

∇ ·D = 4πρ (2.3)

∇ ·B = 0 (2.4)

The 2.3 may be regarded as a defining equation for the electric charge density ρ
and 2.4 may be said to imply that no free magnetic poles exist.

2.1.2 Material Equations
The Maxwell’s equations 2.1-2.4 connect the five basic quantities E,H,B,D and j.
To allow a unique determination of the field vectors from a given distribution of
currents and charges, these equations must be supplemented by relations which
describe the behaviour of substances under the influence of the field. These relations
are known as material equations or constitutive relations. In general they are rather
complicated; but if the field is time-harmonic, and if the bodies are at rest, or in
very slow motion relative to each other, and if the material is isotropic (i.e. when
its physical properties at each point are independent of direction), they take usually
the relatively simple form:

j = σE (2.5)

D = ϵE (2.6)

B = µH (2.7)

Here σ is called specific conductivity. ϵ is known as the dielectric constant (or
permittivity) and µ is called the magnetic permeability. Eq. 2.5 is the differential
form of Ohm’s law. Substances for which σ /= 0 (or more precisely is not negligibly
small) are called conductors. Metals are very good conductors, but there are other
classes of good conducting materials such as plasmas (ionised gas). In metals the
conductivity decreases with increasing temperature. However, in other classes
of materials, known as semiconductors (e.g. germanium), conductivity increases
with temperature over a wide range. Substances for which σ is negligibly small
are called insulator or dielectrics. Their electric and magnetic properties are then
completely determined by ϵ and µ. For most substances the magnetic permeability
µ is practically unity. If this is not the case, i.e. if µ differs appreciably from unity,
we say that the substance is magnetic. Of particular interest for this thesis work
are the so-called inhomogeneous or complex media, where the permittivity and
permeability parameters have a dependence on position in space; they are therefore

4



High Frequency Wave in Complex Media

in the form ϵ(r), µ(r). In particular, unitary permeability and a variable dielectric
permittivity profile will be considered.

2.1.3 The wave equation and the velocity of light
Maxwell’s equations relate the field vectors by means of simultaneous differential
equations. On elimination is possible to obtain differential equations which each
of the vectors must separately satisfy. Confining the attention to that part of the
field which contains no charges or currents, i.e. where j = 0 and ρ = 0. First, by
substituting for B from the material equation 2.7 into the second Maxwell equation
2.2, dividing both sides by µ and applying the curl operator we have:

∇ × ( 1
µ

∇ × E) + 1
c
∇ × Ḣ = 0 (2.8)

Next, by differentiating the first Maxwell equation 2.1 with respect to time, use
the material equation 2.5 for D, and eliminating ∇ × Ḣ between the resulting
equation and 2.8 it’s possible to obtain:

∇ × ( 1
µ

∇ × E) + ϵ

c2 Ë = 0 (2.9)

Using the identities ∇ × (uv) = u∇ × (v) + (∇u) × v and ∇ × (∇ × v) =
∇(∇ · v) − ∇2, 2.9 becomes:

∇2E − ϵµ

c2 Ë + (∇lnµ) × ∇ × E − ∇(∇ · E) = 0 (2.10)

Also from 2.3, using again the material equation for D and applying the identity
∇ · uv = u∇ · v + v · ∇u we find:

ϵ∇ · E + E · ∇ϵ = 0 (2.11)

Hence 2.10 may be written in the form:

∇2E − ϵµ

c2 Ë + (∇lnµ) × ∇ × E + ∇(E · ∇lnϵ) = 0 (2.12)

In a similar way it’s possible to obtain an equation for H alone:

∇2H − ϵµ

c2 Ḧ + (∇lnϵ) × ∇ × H + ∇(H · ∇lnµ) = 0 (2.13)

In particular, if the medium is homogeneous, ∇lnϵ = ∇lnµ = 0, and 2.12 and
2.13 reduce to:

∇2E − ϵµ

c2 Ë = 0; ∇2H − ϵµ

c2 Ḧ = 0 (2.14)
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2.1.4 Plane Wave
In a homogeneous medium in regions free of current and charges, each rectangular
component V (r, t) of the field vectors satisfies, according to 2.14, the homogeneous
wave equation

∇2V − 1
v2 V̈ = 0; (2.15)

where the double dot represent the double differentiation with respect to time.
The simplest solution of this equation is called plane wave and it will be examined
in the following.

Let r(x, y, z) be a position of a point P in space and s(sx, sy, sz) a unit vector
in a fixed direction. Any solution of 2.15 of the form

V = V (r · s, t) (2.16)
is said to represent a plane wave, since at each instant of time V is constant

over each of the planes

r · s = constant (2.17)
which are perpendicular to the unit vector s.
It will be convenient to choose a new set of Cartesian axes Oξ,Oη,Oζ with Oζ

in the direction of s. Then

r · s = ζ (2.18)
and one has

∂

∂x
= sx

∂

∂ζ
; ∂
∂y

= sy
∂

∂ζ
; ∂
∂z

= sz
∂

∂ζ
; (2.19)

From these relations one easily finds that

∇2V = ∂2V

∂ζ2 (2.20)

so that 2.15 becomes

∂2V

∂ζ2 − 1
v2
∂2V

∂t2
= 0; (2.21)

If one set:

ζ − vt = p; ζ + vt = q; (2.22)
2.21 takes the form
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∂2V

∂p∂q
= 0; (2.23)

The general solution of this equation is

V = V1(p) + V2(q) = V1(r · s − vt) + V2(r · s + vt) (2.24)

where V1 and V2 are arbitrary functions. It’s possible to see that the argument of
V1 is unchanged when (ζ, t) is replaced by (ζ+vτ, t+τ), where τ is arbitrary. Hence
V1 represents a disturbance which is propagated with velocity v in the positive ζ
direction. Similarly V2(ζ + vt) represents a disturbance which is propagated with
velocity v in the negative ζ direction.

Figure 2.1: Plane wave propagation

Figure 2.2: Wave fronts
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2.1.5 Time-Harmonic Waves
At a point r0 in space the wave disturbance is a function of time only:

V (r0, t) = F (t) (2.25)

The case when F is periodic is of particular interest. Accordingly one consider
the case when F has the form

F (t) = a cos(ωt+ δ) (2.26)

Here a(> 0) is called the amplitude, and the argument ωt+ δ of the cosine term
is called phase. The quantity

v = ω

2π = 1
T

(2.27)

is called the frequency and represents the number of vibrations per second, ω
is called the angular frequency and gives the number of vibrations in 2π seconds.
Since F remains unchanged when t is replaced by t+T, T is called period of the
vibrations. Wave functions (i.e. solution of the wave equations) of the form 2.26
are said to be time harmonic with respect to time.

Let’s first consider a wave function which represent a harmonic plane wave
propagated in the direction specified by a unit vector s. According to the definition
of the plane wave given in the previous section, it is obtained on replacing t by
t− r · s/v in 2.26:

V (r, t) = a cos
è
ω(t− r · s

v
) + δ

é
(2.28)

Eq. 2.28 remains unchanged when r · s is replaced by r · s + λ, where:

λ = v
2π
ω

= vT (2.29)

The length λ is called the wavelength. It is also useful to define a vacuum
wavelength λ0 as

λ0 = cT = nλ (2.30)

this is the wavelength which corresponds to a harmonic wave of the same
frequency propagated in vacuo.

8
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It is also convenient to define vectors k0 and k in the direction s of propagation,
whose lengths are respectively

k0 = 2πk = 2π
λ0

= ω

c
(2.31)

and

k = nk0 = 2π
λ

= nω

c
= ω

v
(2.32)

The vector k = ks is called the wave vector or the propagation vector in the
medium,k0 = k0s being the corresponding vector in the vacuum.

In order to make more understandable the derivation of the Eikonal equation for
the geometric optics approximation and the curvilinear trajectories of rays within a
complex medium that will be described in later sections, it is appropriate to consider
a time-harmonic wave of a more complicated form. A general time-harmonic, real,
scalar wave of frequency ω may be defined as a real solution of the wave equation,
of the form

V (r, t) = a(r) cos [ωt− g(r)] (2.33)
a(> 0) and g being real scalar functions of positions. The surfaces

g(r) = constant (2.34)
are called cophasal surfaces or wave surfaces. In contrast with the previous

case, the surface of costant amplitude of the wave do not, in general, coincide
with the surfaces of constant phase. Such a wave is said to be inhomogeneous.
Calculations with harmonic waves are simplified by the use of exponential instead
of trigonometric functions. Eq. 2.33 may be written as:

V (r, t) = Re[U(r)e−iωt] (2.35)
where

U(r) = a(r)eig(r) (2.36)
On substitution from 2.36 into the wave equation 2.15, one finds that U must

satisfy the equation

∇2U + n2k2
0U = 0 (2.37)

U is called complex amplitude of the wave. In particular, for a plane wave one
has

g(r) = ω
1r · s
v

2
− δ = k(r · s) − δ = k · s − δ (2.38)

9
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2.1.6 The laws of refraction and reflection
Starting from 2.79 it follows, on account of the identity ∇ × (∇f) = 0, that the
vector ns = ndr/ds, called sometimes the ray vector, satisfies the relation

∇ × (ns) = 0 (2.39)

Considering a discontinuity surface T and replacing it by a transition layer
throughout which ϵ, µ and n change rapidly but continuously from their values
near T on one side to their values near T on the other. Next one takes a plane
element of area with its sides P1Q1 and P2Q2 parallel and with P1P2 and Q1Q2
perpendicular to T (see fig.2.5). If b denotes the unit normal to this area, then we
have from ??, on integrating throughout the area and applying Stoke’s theorem:Ú

(∇ × ns) · b dS =
Ú
ns · dr = 0 (2.40)

the second integral being taken along the boundary curve P1Q1Q2P2. Proceeding
to the limit as the height δh− > 0, in a strictly similar manner as the derivation of
the continuity of the tangential components, one obtains:

n12 × (n2s2 − n1s1) = 0 (2.41)

where n12 is the unit normal to the boundary surface pointing from the first
into the second medium. Eq.2.41 implies that the tangential component of the ray
vector ns is continuous across the surface or, what amounts to the same thing, the
vector N12 is normal to the surface.

Figure 2.3: Illustration of the laws of reflection and refraction
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Let θ1 and θ2 be the angles which the incident ray and the refracted ray make
with the normal n12 to the surface. Then it follows from 2.41 that:

n2(n12 × s2) = n1(n12 × s1) (2.42)

so that

n2 sin θ2 = n1 sin θ1 (2.43)

Eq. 2.42 implies that the refracted ray lies in the same plane as the incident
ray and the normal to the surface (the plane of incidence) and 2.43 shows that the
ratio of the sine of the angle of refraction to the sine of the ancge of incidence is
equal to the ratio n1/n2 of the refractive indices. These two results express the law
of refraction (Snell’s law). One must expect that there will be another wave, the
reflected wave, propagated back into the first medium. Setting n1 = n2 in 2.42
and 2.43 it follows that the reflected ray lies in the plane of incidence and that
sin θ2 = sin θ1; hence

θ2 = π − θ1 (2.44)

The last results express the law of reflection.

Figure 2.4: Illustration of the laws of refraction(a) and reflection(b)
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2.1.7 Fresnel formulae
This section will describe how the amplitude of the field varies when applying the
laws of reflection and refraction in the case where the incident field is represented
by a plane time-harmonic wave. Recalling the definition of a plane time-harmonic
wave (2.28) let A be the amplitude of the electric vector of the incident field. One
takes A to be complex, with its phase equal to the constant part of the argument
of the wave function; the variable part is

τi = ω
1
t− r · s(i)

v1

2
= ω

1
t− x sin θi + z sin θi

v1

2
(2.45)

In the following each vector will be resolved into components parallel (denoted
by subscript ||) and perpendicular (subscript ⊥) to the plane of incidence. The
choice of the positive directions for parallel components is indicated in the figure
below. The perpendicular components must be visualized at right angles to the
plane of the figure.

Figure 2.5: Refraction and reflection of a plane wave. Plane of incidence

The components of the electric vector of the incident field then are:

E(i)
x = −A|| cos θie

−iτi ; E(i)
y = A⊥e

−iτi ; E(i)
z = A|| sin θie

−iτi ; (2.46)
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The components of the magnetic vector are immediately obtained by using the
following equality for a plane wave considering µ = 1:

H =
√
ϵs × E (2.47)

This gives:

H(i)
x = −A⊥ cos θi

√
ϵ1e

−iτi ; H(i)
y = −A||

√
ϵ1e

−iτi ; H(i)
z = A⊥ sin θi

√
ϵ1e

−iτi ;
(2.48)

Similarly if T and R are the complex amplitudes of the transmitted and reflected
waves, the corresponding components of the electric and magnetic vectors are:

TransmittedF ield :

E(t)
x = −T|| cos θte

−iτi ; E(t)
y = T⊥e

−iτt ; E(t)
z = T|| sin θte

−iτt ;

H(t)
x = −T⊥ cos θt

√
ϵ2e

−iτt ; H(t)
y = −T||

√
ϵ2e

−iτt ; H(i)
z = T⊥ sin θt

√
ϵ2e

−iτt ; (2.49)
with

τt = ω
1
t− r · s(t)

v2

2
= ω

1
t− x sin θt + z sin θt

v2

2
(2.50)

ReflectedF ield :

E(r)
x = −R|| cos θre

−iτr ; E(r)
y = R⊥e

−iτr ; E(r)
z = R|| sin θre

−iτr ;

H(r)
x = −R⊥ cos θr

√
ϵ1e

−iτr ; H(r)
y = −R||

√
ϵ1e

−iτr ; H(r)
z = R⊥ sin θr

√
ϵ1e

−iτr ; (2.51)
with

τr = ω
1
t− r · s(r)

v1

2
= ω

1
t− x sin θr + z sin θr

v1

2
(2.52)

Imposing the boundary conditions that the tangential components of E and H
should be continuous at the interface between two media it follows that:

E(i)
x + E(r)

x = E(t)
x

E(i)
y + E(r)

y = E(t)
y

H(i)
x +H(r)

x = H(t)
x

H(i)
y +H(r)

y = H(t)
y

(2.53)
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On substituting into 2.53 for all the components the relations for D and B and
using the fact that cos θr = cos (π − θi) = − cos θi, one obtains the four relations:

cos θi(A|| −R||) = cos θtT||

A⊥ +R⊥ = T⊥√
ϵ1 cos θi(A⊥ −R⊥) = √

ϵ2 cos θtT⊥√
ϵ1(A|| +R||) = √

ϵ2T||

(2.54)

Is possible to note that the equations 2.54 fall into two groups, one which
contains only the components parallel to the plane of incidence, whilst the other
contains only those which are perpendicular to the plane of incidence. These two
kinds of waves are, therefore, indepensent of one another. Solving 2.54 for the
components of the reflected and trasmitted waves in terms of those of the incident
wave and using the Maxwell’s relation n =

√
ϵ one gets the so called Fresnel

formulae:

T|| = 2n1 cos θi

n2 cos θi + n1 cos θi

A||

T⊥ = 2n1 cos θi

n2 cos θi + n1 cos θi

A⊥

R|| = n2 cos θi − n1 cos θi

n2 cos θi + n1 cos θi

A||

R⊥ = n2 cos θi − n1 cos θi

n2 cos θi + n1 cos θi

A⊥

(2.55)

In the following, test results refer to lossy media; to understand how reflection
and transmission coefficients and their respective angles vary when lossy media are
considered refer to Appendix F.
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2.2 Complex Media

A complex medium will be understood in this discussion to mean a disper-
sive,potentially dissipative and non-homogeneous medium.
In physics, the term dispersion denotes the phenomenon in which a wave, during its
propagation, undergoes an elongation in space of its waveform or wavefront or wave
envelope due to the dependence of the refractive index and the permittivity ϵ of the
medium itself on frequency. As a further consequential effect there is contraction
of the frequency spectrum of the perturbation and scattering in space of the energy
associated with the envelope itself with global conservation of total energy.
The speed of propagation of a wave thus depends on its wavelength.
The relationship between pulsation and wave number is no longer constant, that
is, the dependence between pulsation and wave number is no longer expressed
through a simple linear law. In the case of propagation in dispersive media, it
will be necessary to express ω as a generic function of k, ω(k). The relation that
links the pulsation to the wave number takes the name of dispersion relation. The
explicit form of the dispersion relation will depend on the particular case under
consideration.

Figure 2.6: Two different dispersion curves: a) non-dispersive medium, b) disper-
sive medium

In the case where there is propagation of a wave packet in a dispersive medium,
the different Fourier components of the packet will have different phase velocities.
Under these conditions the faster components of the packet will overpower the
slower ones and the packet will expand by deforming during the motion. Thus in
the case of a perturbation moving in a dispersive medium the phase velocity will no
longer represent the velocity of the perturbation. In this case a new quantity, called
the group velocity vg, which measures the velocity of the wave packet maximum.
One it can be shown that, for wave packets whose Fourier transform is sufficiently
narrow around an average value ko of the wave vector, the group velocity is equal
to the derivative of the pulsation with respect to the wave vector calculated for k0:
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vg = dω

dk
(2.56)

Taking into consideration the propagation of white light in a dispersive medium.
The colors of the components correspond to the wavelengths. As with true visible
light to red corresponds the maximum wavelength, to violet the minimum.

In a well-known experiment Newton demonstrated that sunlight is actually a
mixture of light of various colors. He, through a prism, exploiting the phenomenon
of refraction was able to break down a beam of sunlight into its component colors.

Figure 2.7: Diagram of dispersion in Newton’s prism

Regarding the property of non-homogeneity, it means the lack of spatial symme-
try of the microscopic structure of the medium.

An example of such a propagation medium that will be discussed in detail below
is the hypersonic plasma, whose dielectric permittivity is given by the following
relationship:

ϵr(r) = 1 −
ω2

pe(r)
ω(ω − iνc(r)) (2.57)

where ω2
pe = nee

2/(ϵ0me) is the electron plasma frequency (squared), ne the
electron density, me the electron mass, ϵ0 the vacuum permittivity and νc is the
neutral-plasma collision frequency.
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2.3 Geometrical Optics and Ray Theory

2.3.1 Approximation for very short wavelengths

The electromagnetic field associated with the propagation of visible light is char-
acterized by very rapidly oscillations or, what amount to the same thing, by the
smallness of the wavelength.It may therefore be expected that a good first approx-
imation to the propagation laws in such cases may be obtained by a complete
neglect of the fitness of the wavelength; this approximation can be made also for
object that are electrically large with respect to the operating frequency; this is the
case in analysis of this thesis work. The branch of optics which is characterized
by the neglect of the wavelength is known as geometrical optics, since in this
approximation the optical laws may be formulated in the language of geometry.
The energy may then be regarded as being transported along certain curves (light
rays).

2.3.2 Eikonal equation for GO

In the following, the fundamental equations of geometric optics will be derived from
the equation 2.37 described in 2.1.5 and in the case of complex (inhomogeneous)
time-invariant media in which the refractive index n is a function of the position
n(r) = n(x, y, z) . Moreover, if the electromagnetic wave is monochromatic, i.e. a
pure harmonic expressible as U(x, y, z)e−iωt, with pulsation ω, we can solve the
equation 2.37 by applying the method of separation in the spatial (x,y,z) and
temporal variables t:

∂U(x, y, z)
∂x2 + ∂U(x, y, z)

∂y2 + ∂U(x, y, z)
∂z2 + k2

0n
2(x, y, z)U(x, y, z) = 0 (2.58)

By expressing U(x, y, z) as 2.36 and differentiating with respect to x one obtain:

∂U

∂x
= ∂A

∂x
eik0S + Aeik0Sik0

∂S

∂x
=

è∂A
∂x

+ ik0A
∂S

∂x

é
eik0S (2.59)

where for brevity we have omitted the explicit dependence of S and A on (x,y,z).
Differentiating again with respect to x gives:
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∂2U

∂x2 =
è∂2A

∂x2 + ik0
1∂A
∂x

∂S

∂x
+ A

∂2S

∂x2

2é
eik0S +

è∂A
∂x

+ ik0A
∂S

∂x

é
eik0Sik0

∂S

∂x
=è∂2A

∂x2 + ik0
1∂A
∂x

∂S

∂x
+ A

∂2S

∂x2

2
+ ik0

∂S

∂x

1∂A
∂x

+ ik0A
∂S

∂x

2é
eik0S =è∂2A

∂x2 + 2ik0
∂A

∂x

∂S

∂x
+ ik0A

∂2S

∂x2 − k2
0A

1∂S
∂x

22é
eik0S

(2.60)

By differentiating U(x, y, z) with respect to y and z as well, we obtain expressions
quite similar to the previous one,only with the variables y and z instead of x. Below
are the various differentiations for calculating the scalar Laplacian:

∇2U =∂
2U

∂x2 + ∂2U

∂y2 + ∂2U

∂z2 =
è∂2A

∂x2 + 2ik0
∂A

∂x

∂S

∂x
+ ik0A

∂2S

∂x2 − k2
0A

1∂S
∂y

22é
eik0S+

è∂2A

∂y2 + 2ik0
∂A

∂x

∂S

∂x
+ ik0A

∂2S

∂y2 − k2
0A

1∂S
∂x

22é
eik0S+

è∂2A

∂z2 + 2ik0
∂A

∂z

∂S

∂z
+ ik0A

∂2S

∂z2 − k2
0A

1∂S
∂z

22é
eik0S =è

∇2A+ 2ik0∇A∇S + ik0A∇S − k2
0A|∇S|2

é
eik0S

(2.61)

By substituting the equations 2.61 and 2.37 inside 2.36, since the exponential
term eik0S cannot be equal to zero, it is deduced:

∇2A+ 2ik0∇A∇S + ik0A∇S − k2
0A|∇S|2 + k2

0n
2A =

∇2A+ k2
0A(n2 − |∇S|2) + ik0(A∇2S + 2∇A∇S) = 0

(2.62)

By separating the real part and the imaginary part, we get the equations:

∇2A+ k2
0A(n2 − |∇S|2) = 0 (2.63)

k0(A∇2S + 2∇A∇S) = 0 (2.64)
At this point one can introduce the approximation that leads to geometric optics;

it consists in admitting that in the 2.63 the term ∇2A is negligible compared to
the other two:

∇2A << k2
0A(n2 − |∇S|2) (2.65)
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Since the latter are multiplied by k2
0 and therefore have a weight that grows

as ω2 that is 1/λ2, we use to say that geometric optics is the limit of ondulatory
optics in the hypothesis of relatively high frequencies ω− > ∞ (or low wavelengths
λ− > 0) that is the assumption described in the previous section.

Introducing the approximation 2.65 in 2.63, since we exclude the trivial solution
in which the amplitude A is equal to zero, we obtain the equation:

∇S · ∇S = |∇S|2 = n2 (2.66)

where as before n = √
ϵµ is the refractive index. The function S is often called

the Eikonal and 2.66 is known as the Eikonal equation; it is the basic equation of
geometrical optics and it describes the spatial variation of the phase and relates it
to the refractive index. The surfaces

S(r) = constant (2.67)

may be called geometrical wave surfaces or the geometrical wave-fronts.

2.3.3 The light rays and the intensity law of geometrical
optics

Starting from the Eikonal equation derived in the previous section one has:

s = ∇S
n

= ∇S
|∇S|

(2.68)

and is possible to demonstrate that s is in the direction of the average Poynting
vector. Hence the average Poynting vector is in the direction of the normal to
the geometrical wave-front. The geometrical light rays may be now defined as
the orthogonal trajectories to the geometrical wave fronts S = constant. One
shall regard them as oriented curves whose direction coincides everywhere with the
direction of the average Poynting vector. If r(s) denotes the position vector of a
point P on a ray, considered as a function of the length of arc s of the ray, then
dr/ds = s, and the equation of the ray may be written as

n
dr
ds

= ∇S (2.69)

and it can be demonstrated that at every point the electric and magnetic
vectors are orthogonal to the ray. Considering now two neighbouring wave-fronts
S = constant and S + dS = constant (2.8). Then:

dS

ds
= dr
ds

· ∇S = n (2.70)
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Hence the distance ds between points on the opposite ends of a normal cutting
the two wave-fronts is inversely proportional to the refractive index.

Figure 2.8: Illustrating the meaning of the relation ns = ∇S

The integral
s

C nds taken along a curve C is known as the optical length of the
curve. Denoting by square brackets the optical length of the ray which joins point
P1 and P2, one has

[P1P2] =
Ú P2

P1
nds = S(P2) − S(P1) (2.71)

Since the average energy density is propagated with the velocity v = c/n along
the ray

nds = c

v
ds = cdt (2.72)

where dt is the time needed for the energy to travel the distance ds along the
ray; hence

[P1P2] = c
Ú P2

P1
dt (2.73)

so the optical length [P1P2] is equal to the product of the vacuum velocity of
light and the time needed for light to travel from P1 to P2. The intensity of light I
is defined as the absolute value of the time average of the Poynting vector:

I = |S| (2.74)

and the conservation law gives

∇ · (Is) = 0 (2.75)

To see the implications of this relation is possible to take a narrow tube formed
by all the rays proceeding from an element dS1 of a wave front S(r = a1 with
a1 constant, and denoting by dS2 the corresponding element in which these rays
intersect another wave-front S(r = a2. Integrating 2.75 throughout the tube and
applying Gauss’theorem one obtain:
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Ú
Is · vdS = 0 (2.76)

v denoting the outward normal to the tube. Now

s · v = 1 on dS2

= −1 on dS1

= 0 elsewhere
(2.77)

so that 2.76 reduces to:

I1dS1 = I2dS2 (2.78)

I1 and I2 denotes the intensity on dS1 and on dS2 respectively. Hence IdS
remains constant along a tube of rays. This result expresses the intensity law of
geometrical optics.

Figure 2.9: Illustrating the intensity law
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2.3.4 The differential equation of light rays
The light rays have been defined as the orthogonal trajectories to the geometrical
wavefronts S(x,y,z)=constant and if r is a position vector of a typical point on a
ray and s the length of the ray measured from a fixed point on it, then

n
dr
ds

= ∇S (2.79)

This equation specifies the rays by means of the function S, but one can easily
derive from it a differential equation which specifies the rays directly in terms of
the refractive index function n(r) which is the case of interest of this thesis work
since dealing with complex media.

Differentiating 2.79 with respect to s one obtain:

d

ds

1
n
dr
ds

2
= d

ds
(∇S)

= dr
ds

· ∇(∇S)

= 1
n

∇S · ∇(∇S)

= 1
2n∇[(∇S)2]

= 1
2n∇n2

(2.80)

i.e

d

ds

1
n
dr
ds

2
= ∇n (2.81)

This is the vector form of the differential equations of the light rays. In particular,
in a homogeneous medium n=constant and 2.81 reduces to:

d2r
ds2 = 0 (2.82)

whence

r = sa + b (2.83)
a and b being constant vectors. Eq. 2.83 is a vector equation of a straight

line in the direction of the vector a, passing through the point r = b. Hence in a
homogeneous medium the light rays have the form of a straight lines.

Let’s now consider rays in a complex medium which has a spherical symmetry,
i.e. the refractive index depends only on the distance r from a fixed point O:
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n = n(r) (2.84)

This case is approximately relized by the earth’s atmosphere, when the curvature
of the earth is taken into account of in situation of ionized gas in general.

Consider the variation of the vector r × [n(r)s] along the ray. One has:

d

ds
(r × ns) = dr

ds
× ns + r × d

ds
(ns) (2.85)

Since dr/ds = s, the first term on the right vanished. The second term may, on
account of 2.81 be written as r × ∇n. Now from 2.84:

∇n = r
r

dn

dr
(2.86)

so that the second term on the right-hand side of 2.85 also vanished. Hence

rs = constant (2.87)

This relation implies that all the rays are plane curves, situated in a plane
through the origin, and that along each ray

nr sinϕ = constant (2.88)

where ϕ is the angle between the position vector r and the tangent at the point
r on the ray (see 2.10).

Figure 2.10: Illustrating the ’curved’ ray
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Returning to the general case and considering the curvature vector of a ray, i.e.
the vector

K = ds
ds

= 1
ρ

v (2.89)

whose magnitude 1/ρ is the reciprocal of the radius of curvature; v is the unit
principal normal at a typical point of the ray. From 2.81 and 2.89 it follows that

nK = ∇n− dn

ds
s (2.90)

This relation shows that the gradient of the refractive index lies in the osculating
plane of the ray. If one multiply 2.90 scalarly by K and use 2.89 finds that

|K| = 1
ρ

= v · ∇ lnn (2.91)

Since ρ is always positive, this implies that as one proceeds along the principal
normal the refractive index increases so the ray bends towards the region of higher
refractive index.

Figure 2.11: Bending a ray in a inhomogeneous(complex) medium
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2.4 Electromagnetic Scattering
The scattering of electromagnetic waves by systems whose individual dimensions are
small compared with a wavelength is a common and important occurrence. In such
interactions it is convenient to think of the incident (radiation) fields as inducing
electric and magnetic multipoles that oscillate in definite phase relationship with
the incident wave and radiate energy in directions other than the direction of
incidence. The exact form of the angular distribution of radiated energy is governed
by the coherent superposition of multipoles induced by the incident fields and in
general depends on the state of polarization of the incident wave. If the wavelength
of the radiation is long compared to the sizeof the scatterer, only the lowest
multipoles, usually electric and magnetic dipoles, are important. Furthermore, in
these circumstances the induced dipoles can be calculated from static or quasi-static
boundary-value problems[2].
The customary basic situation is for a plane monochromatic wave to be incident on
a scatterer. For simplicity the surrounding medium is taken to have µr = ϵr = 1. If
the incident direction is defined by the unit vector n0, and the incident polarization
vector is ϵ0, the incident fields are

Einc = ϵ0E0e
ikn0·x (2.92)

Hinc = n0 × Einc/Z0 (2.93)

where k = ω/c and a time-dependence e−iωt is understood. These fields induce
dipole moments p and m in the small scatterer and these dipoles radiate energy in
all directions. Far away from the scatterer, the scattered(radiated) fields are found
to be:

Esc = 1
4πϵ0

k2 e
ikr

r
[(n × p) × n − n × m/c] (2.94)

Hsc = n × Esc/Z0 (2.95)

where n is a unit vector in the direction of observation and r is the distance
away from the scatterer. The power radiated in the direction n with polarization ϵ,
per unit solid angle, per unit incident flux(power per unit area) in the direction n0
with polarization ϵ0, is a quantity with dimensions of area per unit solid angle. It
is called the differential scattering cross section:

dσ

dΩ(n, ϵ, n0, ϵ0) =
r2 1

2Z0
|ϵ∗ · Esc|2

1
2Z0

|ϵ∗
0 · Einc|2

(2.96)
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Since instruments called radar are usually used to measure electromagnetic
scattering of objects; the scattering cross section will be referred to in the following
as radar cross section.

A radar detects or tracks a target, and sometimes can identify it, only because
there is an echo signal. It is therefore critical in the design and operation of radars
to be able to quantify or otherwise describe the echo, especially in terms of such
target characteristics as size, shape and orientation. For that purpose the target is
ascribed an effective area called the radar cross section. The echo characteristics
depend in strong measure on the size and nature of the target surfaces exposed
to the radar beam and on the incident wave frequency. The variation is small for
electrically small targets (targets less than a wavelength size) because the incident
wavelength is too long to resolve target details. On the other hand, the flat, singly
curved and doubly curved surfaces of electrically large targets each give rise to
different echo characteristics [3].
The radar cross sections of simple bodies can be computed exactly by a solution of
the wave equation in a coordinate system for which a constant coordinate coincides
with the surface of the body. The exact solution requires that the electric and
magnetic fields just inside and outside the surface satisfy certain conditions that
depend on the electromagnetic properties of the material of which the body is
made.
An alternative approach is the solution of the integral equations governing the dis-
tribution of induced fields on target surfaces. The most useful approach at solution
is known as the method of moments, in which the integral equations are reduced
to a system of linear homogeneous equations. Alternatives to these exact solutions
are several approximate methods that may be applied with reasonable accuracy
to electrically large target features. They include the theories of geometrical and
physical optics, the geometrical and physical theories of diffraction, and the method
of equivalent currents.
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2.4.1 Definition of RCS

An object exposed to an electromagnetic wave disperses incident energy in all
directions. This spatial distribution of energy is called scattering, and the object
itself is often called a scatterer. The energy scattered back to the source of the
wave (called backscattering) constitutes the radar echo of the object.
The intensity of the echo is described explicitly by the radar cross section of the
object. The formal definition of radar cross section is:

σ = lim
R−>∞

4πR2 |Es|2

|E0|2
(2.97)

where E0 is the electric-field strength of the incident wave impinging on the
target and Es is the electric-field strength of the scattered wave at the radar. This
permits one to calculate the scattered power density on the surface of a large sphere
of radius R centered on the scattering object. R is typically taken to be the range
from the radar to the target.

Figure 2.12: Concept of RCS

The limiting process in 2.97 is not always an absolute requirement. In both
measurement and analysis, the radar receiver and transmitter are usually taken to
be in the far field of the target, and at that distance the scattered field Es decays
inversely with the distance R. Thus, the R2 term in the numerator is canceled by an
identical but implicit R2 term in the denominator. Consequently the dependence
of the RCS on R, and the need to form the limit, usually disappears.
Radar cross section is therefore a comparison of the scattered power density at the
receiver with the incident power density at the target.

It is often necessary to measure or calculate the power scattered in some other
direction than back to the transmitter, a bistatic situation. A bistatic RCS may
be defined for this case as well as for backscattering, provided it is understood that
the distance R is measured from the target to the receiver.
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Example of RCS characteristics on simple object

Because of its pure radial symmetry, the PEC sphere is the simplest of all three-
dimensional scatterers. Despite the simplicity of its geometrical surface, however,
and the invariance of its echo with orientation, the RCS of the sphere varies con-
siderably with electrical size. The exact solution for the scattering by a conducting
sphere is known as the Mie series, and it is shown in the figure below.

Figure 2.13: RCS of a perfectly conducting sphere as a function of its electrical
size ka

The parameter ka = 2/λ is the circumference of the sphere expressed in wave-
lengths, and the RCS is shown normalized with respect to the projected area of the
sphere. The RCS rises quickly from a value of zero to a peak near ka = 1 and then
executes a series of decaying undulations as the sphere becomes electrically larger.
The undulations are due to the interference of two distinct contributions to the
echo, one a specular reflection from the front of the sphere and the other a creeping
wave that skirts the shadowed side. The two go in and out of phase because the
difference in their electrical path lengths increases continuously with increasing ka.
The undulations become weaker with increasing ka because the creeping wave loses
more energy the longer the electrical path traveled around the shadowed side.
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Figure 2.14: Log-log plot of the data displayed in Fig. 2.13

The log-log plot of Fig.2.14 reveals the rapid rise in the RCS in the region
0 < ka < 1, which is known as the Reyleigh region. Here the normalized RCS
increases with the fourth power of ka, a feature shared by other electrically small
or thin structures. The central region characterized by the interference between the
specular and creeping-wave contributions is known as the resonance region. There
is no clear upper boundary for this part of the curve, but a value near ka = 10
is accepted. The region ka > 10 is dominated by the specular return from the
front of the sphere and is called the optics region. For spheres of these sizes the
geometric optics approximation πa2 is usually an adequate representation of the
magnitude of the RCS.
The echoes of all scattering objects, and not just the perfectly conducting sphere,
can be grouped according to the electrical-size characteristics of the object. The
dimensions of a Rayleigh scatterer are much less than a wavelenght, and the RCS
is proportional to the square of the volume of the body. Resonant scatterers are
generally of the order of one-half to 10 wavelength in size, for which neither Rayleigh
nor optics approximations are available for making estimates or predictions.

The echo characteristics of permeable (dielectric) bodies can be more complicated
than those of perfect conductors because energy may enter the body and suffer
several internal bounces before emerging.
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2.4.2 RCS prediction techniques
Although the complexity and size of most scattering objects preclude the application
of exact methods of radar cross sections prediction, exact solutions for simple bodies
provide valuable checks for approximate methods. The exact methods are restricted
to relatively simple or relatively small objects in the Reyleigh and resonant regions,
while most of the approximate methods have been developed for the optics region.
There are exceptions to these general limitations, of course; The exact solutions
for many objects can be used for large bodies in the optics region if one uses
arithmetic of sufficient precision, and many of the optics approximations can
be extended to bodies of modest electrical size in the resonance region. Low
frequqency approximations developed for the Reyleigh region can extend nearly
into the resonance region.

Exact Methods

Differential Equations The exact methods are based on either the integral
or differential form of Maxwell’s equations. Maxwell’s four differential equations
constitute a succinct statement of the relationship between electric and magnetic
fields produced by currents and charges and by each other. The four equations
may be manipulated for isotropic source-free regions to generate the wave equation
described in Chapter 2:

∇2F + k2F = 0 (2.98)

where F represents either the electric field or the magnetic field. The wave
equation is a second order differential equation which may be solved as a boundary-
value problem when the fields on the surface of the scattering obstacle are specified.
The fields are typically represented as the sum of known and unknown components
(incident and scattered fields), and the boundary conditions are the known relation-
ships that must be satisfied between the fields (both electric and magnetic) just
inside and just outside the surface of the obstacle exposed to the incident wave.
Those boundary conditions are particularly simple for solid conducting or dielectric
objects.
The boundary conditions involve all three components of the vector fields, and
the surface of the body is described. The solution of the wave equation is most
useful for those systems in which the equation is separable into ordinary differential
equations in each of the variables. The scattered fields are to be determined in the
actual solution of the problem. The solution allows the fields to be calculated at
any point in space, which in RCS problems is the limit as the distance from the
obstacle becomes infinite.
An example of a solution of the wave equation is the following infinite series for a
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perfectly conducting sphere:

σ

πa
=

--- ∞Ø
n=1

(−1)n(2n+ 1)
fn(ka)[kafn−1(ka) − nfn(ka)

---2 (2.99)

The function fn(x) is a combination of spherical Bessel functions of order n and
may be formed from the two immediately lower order functions by means of the
recursion relationship

fn(x) = 2n− 1
x

fn−1(x) − fn−2(x) (2.100)

An efficient computational algorithm may be developed by using the two lowest
orders as starting values

f0(x) = 1 (2.101)

f1(x) = (1/x) − i (2.102)

Integral Equations (MoM) Maxwell’s equations may also be manipulated to
generate a pair of integral equations (known as the Stratton-Chu equations):

Es =
j

[ikZ0(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ] dS (2.103)

Hs =
j

[−ikY0(n × E)ψ + (n × H) × ∇ψ + (n · H)∇ψ] dS (2.104)

where n is the unit surface normal erected at the surface patch dS and the
Green’s function ψ is:

ψ = eikr

4πr (2.105)

The distance r in 2.105 is measured from the surface patch dS to the point at
which the scattered fields are desired. These expressions state that if the total
electric and magnetic field distributions are known over a closed surface S, the
scattered fields anywhere in space may be computed by summing (integrating)
those surface field distributions.
The surface field distributions may be interpreted as induced electric and magnetic
currents and charges, which become unknowns to be determined in a solution.
The two equations are coupled because the unknowns appear in both. Unknown
quantities also appear on both sides of the equations because the induced fields
include the known incident field intensity and the unknown scattered field intensity.
The method of solution is known as the method of moments, reducing the integral
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equations to a collection of homogeneous linear equations which may be solved by
matrix techniques.
The solution of the integral equations begins with the specification of the relation
between the incident and scattered fields on the surface S, as governed by the
material of which the object is made. If the body is perfectly conducting or if
the electric and magnetic surface fields can be related by a constant (the surface
impedence boundary conditions), the equations become decoupled, and only one or
the other need to be solved. If the body is not homogeneous, the fields must be
sampled at intervals within its interior volume, complicating the solution.
Once the boundary conditions have been specified, the surface S is splitted into a
collection of small discrete patches, as suggested in Fig. 2.15. The patches must
be small enough (typically less than 0.2λ) that the unknown currents and charges
on each patch are constant or at least can be described by simple functions. A
weighing function may be assigned to each patch, and the problem is essentially
solved when the amplitude and phase of those functions have been determined.
The point of observation is forced down to a general surface patch, whereupon the
fields on the left sides of eq.2.103 and 2.104 are those due to the coupling of the
fields on all other patches, plus the incident fields and a ’self-field’. The self-field
(or current or charge) is moved to the right side of the equations, leaving only
the known incident field on the left side. When the process is repeated for each
patch on the surface, a system of 2n linear homogeneous equations in 2n unknowns
is generated. If the boundary conditions permit the decoupling of the equations,
the number of unknowns may be helved. The coefficients of the resulting matrix
involve only the electrical distances (in wavelengths) between all patches taken by
pairs and the orientation of the patch surface normals. The unknown fields may
be found by inverting the resulting matrix and multiplying the inverted matrix by
a column matrix representing the incident field at each patch. The surface fields
are then summed in integrals like eq.2.103 and 2.104 to obtain the scattered field,
which then may be inserted in eq. 2.97 to compute RCS.
The method of moments has become a powerful tool in the prediction and analysis
of electromagnetic scattering, but it has three limitations however.
First because of computer memory and processing time both increase rapidly with
the electrical size of the object, MOM is economically restricted to objects not
much more than a few wavelengths, or perhaps a few dozen wavelenghts, in size.
The second limitation is that MOM yields numbers, not formulas, and is therefore
a numerical experimental tool. Third, the solutions for some objects may contain
spurious resonances that do not actually exist, thereby reducing the confidence one
may have in applying the method to arbitrary structures.
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Figure 2.15: The MoM divides the body surface into a collection of discrete
patches

Approximate Methods

Approximate methods for computing scattered fields are available in both the
Rayleigh and the optics regions. Rayleigh region approximations may be derived by
expanding the wave equation in a power series of the wavenumber k. The expansion
is quasi-static for small wavenumbers(long wavelengths compared with typical body
dimensions), and higher order terms become progressively more difficult to obtain.
The RCS pattern of a Reyleigh scatterer is very broad, especially if the object
has similar transverse and longitudinal dimensions. The magnitude of the echo
is proportional to the square of the volume of the object and varies as the fourth
power of the frequency of the incident wave.
Several approximate methods have been devised for the optic region, each with
its particular advantage and limitations. The most mature of the methods are
geometrical optics and physical optics approximation , with later methods attacking
the problem of diffraction from edges and shadow boundaries. While the general
accuracy of the optics region approximations improves as the scattering obstacle
becomes electrically larger, some of them give reasonably accurate results (whitin 1
or 2 dB) for objects as small as a wavelength or so.
The theory of geometric optics is based on the conservation of energy within a
slender fictitious tube called a ray as described in Sec. 2.3.3. The direction of
propagation is along the tube, and contours of equal phase are perpendicular to
it. In a lossless medium, all the energy entering the tube at one end must come
out to the other as seen in previous chapter, but energy losses within the medium
may also be accounted for. An incident wave may be represented as a collection
of a large number of rays, and when a ray strikes a surface, part of the energy is
reflected and part is transmitted across the surface. The amplitude and phase of
the reflected and transmitted rays depends on the properties of the media on either
side of the surface. The reflection is perfect if the surface is PEC, and no energy
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is transmitted across the boundary. When energy can pass through the surface,
transmitted rays are bent toward the surface normal in crossing a surface into an
electrically denser medium (higher index of refraction) and away from the surface
normal into a less dense medium. This bending of rays is called refraction.
Depending on surface curvature and body material, reflected and transmitted rays
may diverge from one another or they may converge toward each other. This
dependence is the basis for the design of lenses and reflectors at radar wavelengths
as well as optical wavelengths.
The reduction in intensity as the rays diverge (spread away) from the point of
reflection can be calculated from the curvatures of the reflecting surface and the
incident wave at the specular point [4], that point on the surface where the angle
of reflection equals the angle of incidence. The principal radius of curvature of the
surface are measured in two orthogonal planes at the specular point, as shown in
Fig. 2.16 . When the incident wave is planar and the direction of interest is back
toward the source, the geometric optics RCS is simply:

σ = πa1a2 (2.106)

where a1 and a2 are the radii of curvature of the body surface at the specular
point.

Figure 2.16: The GO RCS of a doubly curved surface depends on the principal
radii of curvature at the specular point. The specular point is that point on the
surface where the surface normal points toward the radar

This formula becomes exact in the optical limit of vanishing wavelengths and
is probably accurate to 10 or 15 percent for radii of curvatures as small as 2 or 3
wavelengths. It assumes that the specular point is not close to an edge. When
applied to dielectric objects, the expression should be multiplied by the square
of the voltage reflection coefficient associated with the material properties of the
object. Internal reflections should also be accounted for, and the phase of internally
reflected rays adjusted according to the electrical path lengths traverse within the
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body material. The net RCS the should be computed as the coherent sum of the
surface reflection plus all significant internal reflections. Eq. 2.106 fails when one
or both surface radii of curvature at the specular point become infinite, yielding
infinite RCS, which is obviously wrong. This occurs for flat and singly curved
surfaces.
The theory of physical optics (PO) is a suitable alternative for bodies with flat and
singly curved features. The theory is based on two approximations in the application
of eq. 2.98 and 2.99, both of which are reasonably effective approximations in a
host of practical cases. The first is the far-field approximation, which assumes
that the distance from the scattering obstacle to the point of observation is large
compared with any dimension of the obstacle itself. This allows one to replace the
gradient of Green’s function with:

∇ψ = ikψ0s (2.107)

ψ0 = eikr·seikR0

a0
(2.108)

where r is the position vector of integration patch dS and s is a unit vector
pointing from an origin in or near the object to the far-field observation point,
usually back toward the radar. R0 is the distance from the origin of the object to
the far-field observation point.
The second is the tangent plane approximation, in which the tangential field
component n × E and n × H are approximated by their geometric optics values.
That is, a tangent plane is passed through the surface coordinate at the patch dS,
and the total surface fields are taken to be precisely those that would have existed
had the surface at dS been infinite and perfectly flat. Thus the unknown in the
integrals of the previous equations may be expressed entirely in terms of the known
incident field values. The problem than becomes one of evaluating one of the two
integrals and substituting the result into eq. 2.97 to obtain RCS.
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Chapter 3

LACE RT Code

At the heart of this thesis work is a computational code developed at the Antennas
and Electromagnetic Compatibility Laboratory at the LINKS Foundation[5]. It
has been realized with the aim of studying the propagation of electromagnetic
waves within complex media such as the plasma formed in vehicles flying through
atmosphere in hypersonic regime (Mach>5). It is possible to study the propagation
properties of RF waves and try to mitigate detrimental effect on the radio links,
the so-called RF blackout or brownout in case partial reduction of the signal
strength. Similarly the radar return, the RCS described in the previous chapter
can be evaluated in support and development of radar systems. This problem
of calculating the far-field was addressed with a hybrid approach, first applying
the Equivalence Theorem to separate the inhomogeneous plasma region from
the surrounding free space via an equivalent (Huygens) surface,and the Eikonal
approximation to Maxwell equations in the large inhomogeneous region (ray-tracing)
for obtaining equivalent currents on the separating surface. Then, the diffuse field
was obtained via the (exact) free-space radiation of these equivalent surface currents.
This chapter will describe the physical and numerical model used in the code.

Figure 3.1: Algorithm overview with input and output data.
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3.1 Physical Model
The medium is supposed to be stationary;a time-dependence exp(−iωt) in the EM
fields is assumed and suppressed, with ω = 2πf being the angular frequency at
frequency f . One is interested in the frequency range where the plasma response is
dominated by the electron motion; considering collisional effects in the plasma and
neutral particles, but as the the wave phase velocity is much greater than plasma
thermal velocity, temperature and higher order collective kinetic effects can be left
out. This is the so-called collisional unmagnetised “cold plasma” approximation in
standard literature. In this regime the dielectric tensor is diagonal and the proper
plasma constitutive relation is:

ϵr(r) = 1 −
ω2

pe(r)
ω(ω − iνc(r)) (3.1)

where ω2
pe = nee

2/(ϵ0me) is the electron plasma frequency (squared), ne the
electron density, me the electron mass, ϵ0 the vacuum permittivity and νc is the
neutral-plasma collision frequency. Equation 3.1 is also equivalent to well-known
Appleton-Hartree equation (in the special case of no magnetic field), which has
been extensively applied to ionospheric propagation. For multi species partially
ionised plasmas the collision frequency is related to temperature via:

νc(r) = Σαnα,0(r)σα,0(Te(r))
ó

8kBTe(r)
πme

(3.2)

with Te being the electron temperature, n0 the neutral density, kB the Boltzmann
constant and σα,0 is the neutral-electron scattering cross section for the neutral
specie α. The collisional frequency is a function of Te through both the electron
mean velocity and the scattering cross section.In a single ideal gas approximation
a representative value of σc for hot air is 1 · 10−19m−2.
In this model, the spatial distribution of the hypersonic flow and of the related
plasma parameters are known in numerical form from CFD simulations. Hence,
data representation must be made consistent with the EM model. It has been
necessary to compute both the relative electric permittivity and its gradient for
a very high number of spatial locations; due to data origin, the gradient has to
be computed numerically. If not done with care, this step may lead to inaccurate
EM field calculation and/or very high computational cost. Moreover, the plasma
profiles are typically computed in CFD simulation on an unstructured spatial grid.
Most of the accurate and fast multivariate interpolation methods are available for
regular gridded data set only, which makes the gradient calculation a critical data
processing. It has been choosen to process the CFD 3D plasma profiles in two steps.
First, by interpolating ϵ(r) on a regular rectangular grid with typical resolution of
≈ λ/5. Second, by fitting the regular grid using a global cubic spline, that allows a
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rapid and smooth evaluation of the gradient, which is continuous by construction.
The overall physical model of the scattering problem is shown in Fig. 3.2. There
are one or more impenetrable objects (in black) immersed into an inhomogeneous
medium (coloured map) defined by the dielectric function ϵ(r) (possibly complex).

Figure 3.2: Schematic of the physical model. Inhomogeneous media (here plasma
surrounding a vessel) are enclosed by an equivalent surface (dashed red line) on
which equivalent currents radiate to the outside.

The source can be internal to the inhomogeneous dielectric, as is the case for
an antenna on a vehicle, or external, such as an incident plane wave, as it is the
case for RCS computations. Equivalence Theorem has been employed to separate
the inhomogeneous [4] region from the surrounding free space via an equivalent
(Huygens) surface. The scattered field is obtained via free space radiation of the
magnetic and electric surface equivalent currents Ms = −n × E and Js = n × H,
where E and H are the electric and magnetic fields on the equivalence surface, and
n is the surface normal unit vector.
Of particular interest are situations where the plasma volume is electrically large,
and its density varies slowly compared to the operational wavelength λ; hence,
it’s possible to employ the Eikonal approximation to Maxwell equations in the
inhomogenous region; under these conditions the applied method is more efficient
the full-wave methods such as FEM or FDTD, where the computational cost
becomes prohibitive. Note that the mentioned use of the Equivalence Theorem
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does not involve any approximation for radiation outside the inhomogeneous region.
Rays originate either from the antenna location (radio link case) or from outside
the plasma region (RCS case). There is no physical discontinuity between plasma
and free space, avoiding the need to generate both reflected and refracted rays at
interfaces. Regardless of their origin point, rays are followed (Ray Tracing) until
they intersect the equivalent surface, where their contribution to the (equivalent)
field is calculated. For the case of incident wave source, where rays start outside
the equivalent surface, both entrance and exit intersections are considered. Once
the fields at the equivalent surface are calculated by ray-tracing, they are converted
to surface current via the Equivalence Theorem and made radiate in free space
generating the far total (radio link case) or scattered (RCS case) field.
The Eikonal solution is an approximate one, and thus it is convenient to limit its
region of application as much as possible; hence, the equivalence surface is chosen
to enclose only points where plasma effects are not negligible (from that point
outwards, radiation is exact). However, there are situations where rays encounter
caustics, and on such surfaces the field approximation is inaccurate; when this
happens close to the equivalence surface, it is then necessary to move such a surface
outwards.

3.2 Numerical Model
To compute the electromagnetic wave propagation into inhomogeneous media the
classical Eikonal theory described in Sec. 2.2.2 has been adopted. The Eikonal
field approximation can be expressed as follows:

E(r) = e(r)E(r)eik0S(r) (3.3)

where E(r) is a slowly varying field, e is the unit polarisation vector, and S(r)
is the normalised Eikonal phase function (defining the wave-front surface). This
ansatz is inserted into Maxwell equations, with the assumption that the medium
properties are weakly dependent on the spatial coordinate (see below for discussion
of validity), which yields the hierarchy of equations for the Eikonal function, energy
(power density) and the polarization. In the following the specific choices for the
numerical implementation of this set of equations will be described. First, the ray
trajectory equation is expressed as a system of first order Ordinary Differential
Equations (ODEs) using the normalised wavevector ξ = ∇S as dynamic variable
and the electrical path length differential dσ = Re(√ϵr)ds, where s is the arc-length
along the trajectory; this results in:

dr
dσ

= ξ

Re(ϵr)
(3.4)
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d

dσ
= 1

2Re(ϵr)
∇Re(ϵr) (3.5)

To the next order of the hierarchy, one has the power density and polarization
transport, that assume the solution of the trajectory equations. The complex
polarisation unit vector ê obeys the following equation along the ray trajectory:

dê
dσ

= −
1
ê · dξ

dσ

2 ξ

|ξ|2
(3.6)

As the trajectory equations 3.4, this equation is integrated with standard ordinary
differential equations (ODE) techniques. 3.4 and 3.5 have been chosen because
they have shown to be more stable in complex geometries; this results from the
absence of high order curve differentials that would need to be computing after
ray tracing. Furthermore, these formulas are easily integrated into ODE solution
involved in ray tracing, which enables more efficient and accurate computations.
Energy transport requires considering that the plasma is possibly lossy due to
collisions; moderate dissipation is assumed. The transport equation for the field
energy can be cast into the form of a divergence equation with a linear dissipation
term coming from the anti-hermitian part of the dielectric tensor (simply Im(ϵ(r))
in the isotropic case) as:

∇ · (vt̂U) = ck0
Im(ϵr)
Re(ϵr)

U (3.7)

where c is the vacuum speed of light, t̂ is the unit vector along the trajectory, k0
is the free-space wave number and U = Re(ϵr)|E|2 is the electromagnetic energy
density in Eikonal approximation. Equation 3.7 shows the interplay between:

1. the divergence of rays due to the local variations of the local index

2. the energy absorption by the lossy medium, embedded in the imaginary part
of ϵr

3. the wave amplitude |E|

Phase and amplitude transport in our case result in the following relationship
between (complex) amplitudes at two points P1 and P2 along a ray path:

E(P2) = E(P1)

öõõôRe(n2)
Re(n1)

DF exp (iΦ − α) (3.8)

where nl =
ñ
ϵr(Pl) is the complex refractive index evaluated at Pl, with l = 1,2,

and
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α = k0/2
Ú

γ

Im(ϵr(r))
Re(ϵr(r)) dσ,Φ = k0

Ú
γ
dσ (3.9)

where γ is a parametrization of the ray trajectory between points P1 and P2,
namely γ : [σ1, σ2] → R3 with γ(σ1) = P1 and γ(σ2) = P2 and γ obeys to 3.4 and
3.5. In 3.8 DF indicates the divergence factor that accounts for divergence of
the infinitesimal ray tube (i.e. along an individual ray) in a lossless medium; it
represents the shrinking or expansion of the wave front surface along its propagation.
The medium properties needed for evaluating the ray path and equations (3.8,3.9)
are either computed from analytical models or via numerical interpolation of gridded
data.

3.2.1 Ray Tube Approach
Because of the expected complexity of the ray set as a whole, a shift from a
ray-based approach, as common in the related literature, to a ray-tube based
description of the relevant field quantities has been performed. This allows to
include collective effects such as ray folds (e.g. caustics) that are not directly
present in the individual ray descriptors, and to express amplitude and radiation
in a more effective manner. To do this, rays have been grouped in bundles of three,
that represents the discretization of the wavefront with triangular patches (see
figure 3.3), on the basis of geometrical contiguity at launch; this only entails proper
bookkeeping of trajectories. Each three-ray bundle is a ray-tube in the adopted
scheme.

Figure 3.3: Sketch of the adopted ray tube propagation scheme.
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As a first step, the equivalence surface (ES) is converted into a triangular
tessellation using standard algorithms; the triangular cells have a typical side
length varying in the range from λ/10 to λ/3. As said earlier on, the equivalence
surface is arbitrary and may coincide with the boundary of the scattering media.
Alternatively, a canonical shape such as a sphere can be chosen to encapsulate the
media volume. The nodes (vertices) of the mesh determine ray launch directions.
For sources in the plasma region (e.g. antennas mounted on a vehicle) ray starting
directions are obtained by the directions of the vertices of the equivalent surface
mesh as seen from the source location. For a plane wave source, rays start all par-
allel from a plane just outside the equivalence surface, with initial direction normal
to the starting plane; their location (and density) is determined by back-projecting
the mesh nodes along the wave direction onto the starting plane.
The initial associated field intensity and polarisation may be sampled from input
antenna data or may be provided in analytical form. In figure 6 it is shown a set
of rays (red lines) launched from a point just above a simple vessel (black), in free
space. The rays point toward the spherical equivalence surface nodes and they are
stopped at the intersection. Rays that encounter the impenetrable vessel (or any
other such body) are reflected, i.e. they are stopped and re-launched with new
initial conditions according to the usual specular reflection laws for fully reflective
objects. A limitation of this code is precisely the fact that it can only handle
reflections on PEC surfaces and thus with a simple formulation of the reflection
laws; what was done through this thesis project was precisely to make it capable of
handling reflections on dielectrics and thus calculating the right Fresnel coefficients
and the right ray trajectories and amplitudes. Figure 7 shows an example of the
electric field on the equivalence surface.

Amplitude and Radiation

Convenience of the ray-tube description is immediately evident for the amplitude
calculation, and the ensuing radiation. The divergence factor (DF) appearing
in amplitude propagation 3.8 can in principle be expressed in terms of the local
surface principal radii. Although mathematically exact, this formulation contains
higher order derivatives of the Eikonal function which may be subject to large error
when the medium properties are not known analytically but resulting from other
numerical calculations or measurements, as in CFD originating plasmas.
With reference to the notation of Fig. 3.3, we have that the divergence factor
can be related to the changes in the front surface area simply with the relation
DF =

ñ
A1/A2.

At a difference with other approaches, the radiated field is obtained consistently
with the ray-tube based approach described above. That means that the (far)
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radiated field is expressed as the sum of the radiation from the patches ∆Ti defined
by the intersection of the ray tubes with the chosen equivalence surface,

Es(r, θ, ϕ) =
Ø

i

Es,i(r, θ, ϕ) (3.10)

an example of these patches is shown in the simple case of Fig. 3.5.
The field on each triangular patch is approximated with constant magnitude and
linear phase variation. The electric field vector Ei is obtained as the average of
the three values pertinent to the three rays of any tube, as per 3.8, 3.6 (note that
the divergence factor is intrinsically a tube property, while phase, attenuation and
polarization are properties of individual rays). The magnetic field Hi is likewise
obtained from the three values at the rays, in turn related to the electric field there
by the local ray impedance relationship, and the wavefront normal t̂i is likewise
the average of the three ray wave front normals.
With these assumptions, the patch radiated fields can be expressed as:

Esi(r, θ, ϕ) = −ik0

4π
eik0r

r
e−ik0r̂·riSi(θ, ϕ)ai (3.11)

with

ai = θ̂(−ϕ̂ · Mi + θ̂ · Z0Ji) + ϕ̂(θ̂ · Mi + ϕ̂ · Z0Ji) (3.12)

Si(θ, ϕ) = 1
∆Ti

Ú
∆Ti

eik0(r̂−t̂)·(r′−ridΣ′ (3.13)

Mi = −n̂i × Ei; Ji = n̂i × Hi; (3.14)

where ri, n̂i and ∆Ti are the patch centroid, normal unit vector and the surface
area respectively, θ̂, ϕ̂ are the unit vectors in the directions θ, ϕ and r̂(θ, ϕ) the
unit vector which points from the origin to the observation point, and Z0 is the
free space impedance. It turns out that the radiation shape factor Si can be
conveniently written in closed form for quick and efficient radiation calculation. We
observe that this ray-tube based approach to radiation does not require to assign
a surface area to individual rays on the equivalent surface. Also, in presence of
complex inhomogeneity, tubes with rays diverging far apart are expected to have
lower accuracy; as they result in larger areas, their contribution to radiated field is
weaker: this results in an intrinsic robustness.

Folds

It is well known that the Eikonal approximation breaks down near caustics where
the field becomes singular. One is, in general, not interested in the field near
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the caustics; thus, the equivalent surface is generally placed sufficiently far from
them (although one must often compromise with other numerical constraints).
Nevertheless, caution must be taken when a ray tube passes throughout one these
singular regions. Caustics arise when the ray field folds. The wave front folding
affects the phase of the field carried by the wave with a phase shift of π/2 radians.
These events must be accounted for, so that the proper phase shifts can be applied
to the ray tube field. Caustics may be, in principle, detected by calculating the
principal radii of the wave front, but again high order numerical derivatives can
make this a very difficult task. Instead, the crossing of rays forming the ray tube
which occurs when passing through the caustic point has been detected and a phase
shift correction has been applied when needed.

Figure 3.4: Ray trajectories (red lines)
from a dipole source above a small sim-
plified vessel, in free space. The spher-
ical equivalence surface is also depicted
(coloured).

Figure 3.5: Electric field on a spherical
equivalent surface for the configuration
in Fig. 3.4.
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Chapter 4

Methods for Fast Ray
Tracing

The classical methods also used in Computer Graphics to accelerate the ray tracing
process use data structures that can divide the physical volume into subvolumes;
at that point the ray tracing algorithm is divided into two main parts: a first part
called Point Location where the box where a generic point is located (e.g., the
first point of intersection between the ray and the box) is identified, and a second
part called Ray Traversal where by exploiting the Point Location function all the
intersected boxes are identified and the intersection check is performed with the
object mesh patches contained in the individual boxes following the ray trajectory.
The major difference between the classical Ray Traversal and the one considered in
this thesis work is the trajectory of the rays; this is because in classical Ray Traversal
algorithms the trajectories are considered rectilinear because the propagation of
light in a vacuum is considered in order to recreate high-fidelity images; in the case
of the propagation of electromagnetic waves within complex media as described in
the previous chapters, the ray trajectories tend to be curvilinear; for this reason
the ray is structured in a segmented manner so that curved trajectories can be
modeled.
The standard method for ray traversal that will be abbreviated as Brut Force
provides, once created the surface mesh of the object on which you want to calculate
the reflections, to examine one by one every single patch of the mesh and check
if there is an intersection with the ray; this obviously leads to an explosion of
calculation time if you consider very large meshes.
To overcome this problem, binary data structures were used[6] to divide the space
into multiple sub-regions and as a result an algorithm was created that allows the
intersection test to be performed on only a small portion of the patches that make
up the mesh and not on all of them as is done in the standard method (Brut Force).
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The algorithm was implemented in MATLAB and the results showed a significant
decrease in computation time confirming what was expected from the theory.
Tests were performed considering four different types of geometries with increasing
complexity in order to consider multiple practical applications.
In the following, all the steps that led to the writing of this prototype algorithm
will be described, starting from the description of the binary structures for the
division of space until you get to the various modules that make up the algorithm;
in the last part of this chapter will be presented and commented the numerical
results and a version of the algorithm adaptable to the numerical model contained
in the code described in the previous chapter will be presented.

4.1 Spatial Subdivision
Hierarchical data structures are important representation techniques in the domains
of computer vision, image processing, computer graphics, robotics, and geographic
information systems. They are based on the principle of recursive decomposition
(similar to divide and conquer methods). They are used primarly as devices to sort
data of more than one dimension and different spatial types.
There are several types of hierarchical structures capable of dividing physical space
recursively; in this chapter the Octree and K-D tree respectively will be considered
as the most efficient ones capable of handling a three-dimensional space.

4.1.1 Octree
Typically an Octree is a hierarchical data structure showing how objects are
distributed in the object space, which has been mainly used in image processing or
solid modeling areas. Conventional octree construction divides a three-dimensional
space for each axis using the spatial median, obtains eight subspaces, which can be
represented by an octree. The root node of an octree represents the entire object
space. If the entire space contains more objects than a given limit, the space is
divided into eight sub-spaces represented by eight children nodes. A subspace thus
created is defined as a voxel. These voxels are further divided into eight voxels, and
this process is repeated until the voxels satisfy the given criteria. In general, the
criteria used to determine whether or not the given octree should be divided further
depend upon the number of objects intersecting with a voxel and the maximum
depth of an octree allowed [7].
However, the octree contains cell boundaries that are static and their location is
independent of the objects. This independence makes the more intersections. The
kd-tree, on the other hand, places the boundaries around the objects, especially if
the empty space is cut off, thus it can result in much higher intersection probability.
Furthermore, conventional octree construction uses uniform voxels to get spatial
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partition, which leads to higher depth of the tree, and generates much empty nodes
which waste much memory.

Figure 4.1: Generation of the spatial subdivision (left) and the corresponding
data structure (right)

Figure 4.2: Octree Example

4.1.2 K-D Tree
A K-D Tree (also called as K-Dimensional Tree) is a binary search tree where data
in each node is a K-Dimensional point in space. In short, it is a space partitioning
data structure for organizing points in a K-Dimensional space.
Every non-leaf node can be thought of as implicitly generating a splitting hyperplane
that divides the space into two parts, known as half-spaces. Points to the left
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of this hyperplane are represented by the left subtree of that node and points to
the right of the hyperplane are represented by the right subtree. The hyperplane
direction is chosen in the following way: every node in the tree is associated with
one of the k dimensions, with the hyperplane perpendicular to that dimension’s
axis. So, for example, if for a particular split the "x" axis is chosen, all points in
the subtree with a smaller "x" value than the node will appear in the left subtree
and all points with a larger "x" value will be in the right subtree. In such a case,
the hyperplane would be set by the x value of the point, and its normal would be
the unit x-axis.
Considering for sake of simplicity a 2D-Tree one has that the root would have an
x-aligned plane, the root’s children would both have y-aligned planes, the root’s
grandchildren would all have x-aligned planes, and the root’s great-grandchildren
would all have y-aligned planes and so on.
The choice of splitting plane can be made according to several criteria such as
choosing the center of gravity of the volume to be split or the median of the points
contained within the box.

Figure 4.3: A 3-dimensional k-d tree. The first split (the red vertical plane) cuts
the root cell (white) into two subcells, each of which is then split (by the green
horizontal planes) into two subcells. Finally, four cells are split (by the four blue
vertical planes) into two subcells. Since there is no more splitting, the final eight
are called leaf cells.

48



Methods for Fast Ray Tracing

4.2 K-D Tree vs. Octree
Considering the meshes of four different geometries (sphere,two spheres, sphere &
cylinder, vehicle) a comparison was made between the two different spatial division
methods in terms of tree levels and leaf boxes generated. This was done to check
the efficiency and memory occupancy of both structures. The levels of the data
structure represent the number of divisions made and a node is associated with
each level, while the leaf boxes represent the last level of the structure (tree) and
indicate the minimum size of the bounding boxes beyond which it is not possible to
divide; this is because a criterion is imposed on the algorithm to stop space division
once a defined number of mesh points (i.e., 200) are contained in a generated box.
The comparison was made by setting this number of points equal to 30% 10% and
1% of the total number of mesh points for each individual geometry.

SPHERE

Octree K-D Tree
# of Levels # of Leaf Boxes # of Levels # of Leaf Boxes
2 9 2 4
3 73 5 16
4 457 8 128

Table 4.1: The first line refers to 30% of the points, the second to 10%, and the
last to 1%.

2 SPHERES

Octree K-D Tree
# of Levels # of Leaf Boxes # of Levels # of Leaf Boxes
2 9 2 4
4 73 5 16
5 457 8 128

Table 4.2: The first line refers to 30% of the points, the second to 10%, and the
last to 1%.
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SPHERE & CYLINDER

Octree K-D Tree
# of Levels # of Leaf Boxes # of Levels # of Leaf Boxes
2 9 3 4
3 65 5 16
4 425 8 128

Table 4.3: The first line refers to 30% of the points, the second to 10%, and the
last to 1%.

VEHICLE

Octree K-D Tree
# of Levels # of Leaf Boxes # of Levels # of Leaf Boxes
2 9 2 4
3 41 5 16
5 729 8 128

Table 4.4: The first line refers to 30% of the points, the second to 10%, and the
last to 1%.

Looking at the tables above, it can be seen that the K-D Tree algorithm always
generates the same number of levels and leaf boxes because it goes to divide the
space by ’chasing’ the points that are there; Octree instead divides regardless of
the points contained in a box the space into eight subboxes until the number of
stop points is reached. Furthermore, it can be observed that as the complexity of
the geometry increases, the number of leaf boxes generated by the Octree tends
to explode while those generated by the K-D Tree tend to remain constant, this
at the expense of a slight increase in the number of levels (nodes) generated. In
conclusion, to accelerate the ray tracing process, the K-D Tree algorithm was
chosen. The comparison of the spatial subdivision generated by the two algorithms
on the vehicle is shown in Fig. 4.4 and 4.5 while for other geometries see Appendix
C.
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Figure 4.4: Spatial subdivision using Octree

Figure 4.5: Spatial subdivision using K-D Tree
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4.3 Ray Traversal algorithm using K-D Tree

In the following, straight rays modeling propagation within homogeneous media
will be considered first, and ray traversal optimization algorithms will be used
starting from the basic algorithms using the K-D Tree structure.
Using the basic algorithm, first a ray is intersected with an axis aligned box that
covers the whole scene. This will return entry and exit distances. These will
represent an interval on which an intersection of the ray with the scene is valid.
When there is no intersection between the ray and the box the function returns no
intersection. Otherwise one will continue by progressively finding all leaves that
the ray pierces by point-location queries on the kd-tree [8].
One will start with a point that is on the entry of the ray into the scene box or if the
ray origin is inside of the box this point will be the ray origin. This step is called
leaf location. It is implemented by traversing the kd-tree from the root downwards:
in each inner node we traverse to the child which includes the half-space containing
our search point. When a leaf is found the ray is intersected with all the objects
referenced in the leaf (there may be none). If there is no valid intersection that lies
inside the leaf box, the next leaf location search occurs. This requires computing
the exit point of the ray on the bounding box associated with the leaf. To avoid
visiting the same leaf, the new point to search is moved along the ray path by a
small epsilon outside the box. This is repeated until an intersection is found or the
next point is outside the scene bounding box.
As this sequential (Classical) traversal algorithm has to visit the exactly same
sequence of nodes several times, it is not very efficient, though it does need constant
local memory for its execution which is beneficial for parallel implementations.
Moreover, the numerical stability of the algorithm is dependent on the choice of
the epsilon. For scenes with very large models and/or ones that lead to kd-trees
with cells having one extent equal to zero a choice of a wrong epsilon can lead to
an endless loop due to the rounding of floating-point values.
After correctly implementing the optimization algorithm for straight rays, we moved
on to modeling curvilinear rays by segmented lines and applied the same algorithm
on the latter.
The implementation was done with different types of Leaf Location and Ray Traver-
sal; so that multiple versions of the same algorithm could be compared so that the
best one could be chosen to be used then within the LACE RT Code described in
Chapter 4.
In particular for the Leaf Location the classical version and an ’original’ one called
then Integer Location was implemented; while for the Ray Traversal also a classical
version called Sequential Traversal and one using another data structure called
Neighbor Links was implemented. A pseudo-code of the implemented algorithm is
given below[8].
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Figure 4.6: Simple scene with three triangles with a corresponding kd-tree with
three leaves (boxes) and three inner nodes (circles).

Figure 4.7: Pseudo-code for Point Location[8]
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Figure 4.8: Pseudo-code for Sequential(Classic) Ray Traversal[8]
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4.3.1 Point Location
The Point Location function is responsible for identifying in which box leaf a generic
test point is contained. To do this it takes as input the same K-D Tree structure
and a generic test point (e.g., it can be the point of impact of the ray with the
root box and translated by a constant epsilon) and outputs the index of the data
structure corresponding to the box leaf containing the point. To do this it descends
the tree starting from the root box and descending to the right or left respectively
if the same coordinates of the test point are to the right or left of the splitting
plane considered.

Classic Location

The classical point location method broadly follows the pseudo-code described in
Fig.4.7 .Once the coordinates of the point under test are taken as input, a check is
made on the various dimensions starting from the root node and then gradually
moving down the tree to the leaf boxes.
For example the first check is done on the first coordinate of the point (x), if it is
less than the first dimension on which the split of the space surrounding the object
was done then it will proceed in the left branch of the tree, if it is greater then in
the right branch; before performing the check on the second dimension operating
with the same method but referring to the second dimension of the split (y), a
check is performed to verify whether the current node is a leaf or not; in case it
is a leaf the search stops and the corresponding index is provided in the output,
otherwise the search continues by repeating the procedure on the second dimension
and then verifying that the corresponding node is a leaf or not and so on. Below
are the results of a test performed on the module, and it can be seen that the
results are as expected, in red the test point is plotted and the leaf box that was
detected by the function is highlighted, and the point falls exactly within it.

Integer Location

In this newly implemented method, an attempt has been made to optimize the
classical method in terms of execution time while going, however, to increase
memory occupancy.
This is because the idea behind this method is to create a three-dimensional
mapping matrix once at the beginning of the algorithm. The elements of such a
matrix will be the indexes of all box leaves generated by the K-D Tree structure;
then taking the data structure each index of the box leaves is ’mapped’ within a
slot of the matrix: hence the name mapping matrix.
To do this, a new subroutine was created that taking as input the data structure of
the K-D Tree goes to first identify all the values along each coordinate where cuts
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were made in the three dimensions and saving these values within three vectors.
The sizes of these three vectors will also go into determining the size of the mapping
matrix.
Instead, in the second step, the coordinates of each of the two maximum and
minimum points describing a box leaf are compared with the vectors containing
the values of the cuts, and it is identified which of these values lie between the
extremes of a box leaf.
The final result of this operation will be an nx× ny × nz matrix where going to
select the element of the matrix pointed by a triplet of integers representing which
cut is considered along each dimension (e.g. (4,2,3) means that the fourth cut
is considered along the x-coordinate, the second along the y-coordinate, and the
third along the z-coordinate) will result in the output directly in the index of the
corresponding box leaf.
In the Point Location function at this point the generic test point will be taken as
input, its individual coordinates will be isolated, and a subtraction will be made
between the test point coordinate and the vector containing all the values of the
cuts along that coordinate: the index of the value less than zero contained in
the vector resulting from this operation will be the index to point to along that
coordinate within the mapping matrix.
The results of the test performed on this module are shown in Fig 4.10 and it can
be seen that the results are the same as those of the classical method, while a
schematic of the algorithm is shown in Fig 4.11.

56



Methods for Fast Ray Tracing

Figure 4.9: Test on the CLASSIC point location module

Figure 4.10: Test on the INTEGER point location module
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Figure 4.11: Flowchart of the new INTEGER location module
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4.3.2 Ray Traversal
Once the Point Location subroutines were generated, we moved on to the next
implementation, which was Ray Traversal, whereby we ’chase’ the ray by exploiting
the location information. The following will describe the two traversal modes
implemented.

Sequential Traversal

In this ’classical’ version, the pseudo-code of Fig.4.8 has been followed.In particular,
once the ray has been generated, the point of impact with the root box is first
searched [9] through a special subroutine; once this is done, the point is shifted
by an infinitesimal amount within the root box in such a way as to ensure the
correct operation of the Point Location routine; then the leaf box in which the point
falls is located using the latter. Then a second intersection check is performed,
but this time directly on the patches constituting the mesh; here we can see the
significant advantage of this algorithm since having included in a preliminary step
the information of the patches belonging to each box leaf this second intersection
test is performed only on this sub-set, significantly increasing the execution time
as will be shown later. If there is no intersection with the patches contained in
the box leaf the exit point from the leaf is identified and also translated by the
same infinitesimal amount so as to bring it into the adjacent leaf then repeating
the Point Location and check on the patches. The algorithm stops in cases where
the intersection with the patch is found or the ray exits the root box.

Fig. 4.12 shows the results of the full traversal algorithm, in particular the
impact points with the mesh patches are highlighted. In red are the points found
using the K-D Tree structure while with blue asterisk those using the Brut Force
method. From the figure it can be seen that they are perfectly coincident, this
result is for a test performed with 100 rays having common origin but random
direction[10], tests up to 5000 rays were performed and the results were always
the same: perfect coincidence between the impact points found using the Brut
Force method and using the K-D Tree structure. This was to be sure that the ray
tracing algorithm implemented in this way would lead to exact results. The spatial
division is not shown in the image in order to have greater clarity.
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Figure 4.12: Sequential Traversal (100 rays):the blue asterisks indicate the points
of intersection between the rays and the mesh found using the Brut Force method
while in red those found using the K-D Tree (the spatial subdivision structure has
been omitted for image clarity).

Neighbor-Link Traversal

In contrast to the sequential version of traversal, in this second implemented method
if there was no impact in the first leaf box detected the next test is done directly in
all its neighbors (hence the name Neighbor-Link) without using the Point Location
function again.
This is at the expense of an increase in the memory used because one has to build
in a preliminary step the Neighbor-Link, so there was a need to add a new field
to the data structure that includes the information of the neighbors for each leaf
box; to carry out this procedure a new subroutine was created that performs the
check for each leaf box and detects its adjacent ones, i.e. with at least one vertex
in common or in the case where a vertex of a leaf box is within the area bounded
by a face of another box.
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Figure 4.13: Orientation of a leaf box in the 3D space

Starting from the orientation given in three-dimensional space to the leaf boxes
described in Fig. 4.12, within the subroutine to create the Neighbor-Link, box faces
were defined starting from the vertices (e.g., face 1 is the one defined by vertices 1
2 3 4) and the faces adjacent to them were identified. A summary of all the faces
with their respective adjacencies is given in the table below. The adjacent faces
refer to the hypothetical neighboring boxes.

Neighbor-Link

Face Vertex Adjacent Face Vertex (Adjacent Face)
1 1-2-3-4 3 5-8-7-6
2 1-5-6-2 4 8-4-3-7
3 5-8-7-6 1 1-2-3-4
4 8-4-3-7 2 1-5-6-2
5 2-6-7-3 6 4-8-5-1
6 4-8-5-1 5 2-6-7-3

Table 4.5: Neighbor-Link

Once the faces were defined, checks were made to see if each of the vertices of
adjacent faces fell within the area described by the face considered for the leaf used
for the test.
The results of the Neighbor-Link construction are presented in Fig. 4.13 where a
flaw in the structure namely an ’overestimation’ of the neighbors is also highlighted.
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In other words all neighbors of a given leaf box are identified, but at the same time
some neighbors of the neighbors themselves are also identified, this is because the
check was performed by generating two grafted loops, one considering a test leaf
in order and a second considering the leaf with the next index following the order
of the structure, this led to having faces other than the neighboring one being
considered neighbors.
This however only leads to a slight increase in memory occupied but does not
negatively affect the Ray Traversal results as will be shown below,red highlights a
test leaf box while yellow highlights all nearby ’effective’ and also ’overestimated’
leaf boxes.

Figure 4.14: Neighbor-Link Test

Fig. 4.14 on the other hand shows the results of the test for Ray Traversal
using the generated structure; as for Sequential Traversal also in this case tests up
to 5000 rays were performed and it was highlighted what was said above ox that
having in the given structure a few more neighbors does not affect the traversal
operation in the least since we have again that the points intersected with the Brut
Force method and using the K-D Tree are perfectly coincident; in the figure in
yellow are highlighted those found with Neighbor-Link while with blue asterisk
those found with Brut Force.
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Figure 4.15: Test Neighbor-Link Traversal (100 rays):the blue asterisks indicate
the points of intersection between the rays and the mesh found using the Brut
Force method while in yellow those found using the K-D Tree with Neighbor-Link
(the spatial subdivision structure has been omitted for image clarity).
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4.4 Benchmark of Numerical Model

Once the proper functioning of the algorithm was assured, simulations were carried
out for increasing numbers of rays, starting from 10 up to 5,000, and computational
time measurements were taken. The simulations were carried out using an Intel(R)
Core(TM) i7-4500U CPU @ 1.80GHz 2.40 GHz and considering the four geometries
and algorithms described in the chapter. What was observed from the results is
that by using the data structures for subdividing the space (K-D Tree) there is a
significant improvement in terms of computational time (on the order of 102 −103s);
with regard to the various types of algorithms there is that for a low number of
rays slight differences in execution time can be seen, but as this number increases
they all tend to converge asymptotically to the same performance.
Only results for the most complex geometry i.e., the vehicle, are reported in this
section; for other results look at Appendix C.

Figure 4.16: Computational Time Performance (Vehicle)
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4.5 Ray Tracing for a ’Segmented’ Ray

This section describes the ray traversal optimization algorithm for a ray formed by
a ’segmented’ line; this is because the idea behind this first part of the thesis is to
apply conventional ray traversal optimization and speedup algorithms in the radio
frequency domain where rays can assume curvilinear trajectories when propagating
within complex media as described in Chapter 2.
Following the numerical model implemented within the code described in Chapter
3, the trajectory of the ray is constructed by small ’segments’ defined by a time
step that indicates the progress of the ray along its trajectory; from here we have
that eventually the entire ray will be described by a ’segmented’ line so that any
curvatures can be considered.
For this reason within the MATLAB prototype of the ray traversal algorithm, the
ray generation part was modified; whereas in the first classical version with straight
lines each individual ray was described by an origin point and a vector describing its
direction, in this new version each ray is defined by a series of points representing
the start and end points of each segment and a time step describing the length of
these segments. In particular, a time step of 0.2 seconds and a number of steps of
40 were chosen to validate that the algorithm works correctly.
The operation of the algorithm is as follows: starting from the start point one
advances one time step at a time, at first a check is made to see if the end point
of the current segment intersects the root box, if so one proceeds with the Point
Location function on that point, if not one proceeds to the next step and adds
another segment to the ray; once the intersection with the root box and the next
box leaf containing the end point of the segment is found a check is made to see
if that segment intersects one of the patches of the object mesh, in this case this
check will be an intersection check between segment and triangle and no longer
between line and triangle; if a collision has occurred between the current segment
and one of the patches the traversal stops and moves on to the next ray; in case no
collision had occurred with the mesh it was passed to the step, then to the segment,
next; here, once the Point Location step was carried out again, it was checked
whether the box in which there was the endpoint of the segment was a ’neighbor of
the previous box going to exploit the information contained in the Neighbor-Link;
if it was, the collision check with the mesh was performed again; if it was not, the
classical traversal algorithm was performed again by taking the start point of the
segment as the origin and stopping it if the point location function returned the
index of the box leaf where the end point of the segment lay.
In Fig. 4.17 the performance in terms of computational time is highlighted, again
comparing with the classical method shows that there are huge improvements of
the order of 103 seconds, the simulations were carried out starting from a small
number of rays up to 1000.
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Fig. 4.18 instead, shows the result of a test performed using a time step of 0.2 s is a
number of steps equal to 40 to generate the ray; as can be seen, the point of impact
is highlighted in green and represents the correct operation of the algorithm.

Figure 4.17: Benchmark for the segmented version of the Ray Tracing

66



Methods for Fast Ray Tracing

Figure 4.18: Testing the algorithm adapted to the segmented line. From the
figure, the ray constructed using line segments can be seen and in green the point
of impact with the geometry is highlighted confirming that the algorithm works
correctly.
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Chapter 5

Electromagnetic Scattering
by Penetrable Dielectric
using upgrated LACE RT
Code

In the second part of this thesis work, improvements have been made directly on
the code described in Chapter 3 in order to broaden physical situations that can be
handled. In the original code, ray reflections were considered only on a completely
reflective and impenetrable surface (PEC), whereas we wanted to consider the
case of (possibly lossy) dielectric interface; by doing so, the rays will not only
be reflected, but once the surface is impacted, wavefronts will be generated, one
reflected and one refracted, in accordance with when described in the Chapter 2.
In order to accomplish the above, several subroutines were added to the existing
code;the main purpose is first to compute the reflection and transmission coefficients
at the inteface and consequently the amplitudes and directions of the transmitted
and reflected field starting from a given incident field, once the computation of
the trajectory of all primary rays is finished, the trajectories of the secondary rays
are computed from appropriate initial coditions and so on. For validation of the
correct operation of the code, homogeneous dielectric sphere was considered, and
once the RCS was calculated, it was compared with the Mie series [4]. Detailed
procedures and results will be discussed later in the chapter.
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5.1 Formulation of the Scattering Problem
A dielectric, which is defined by the constitutive parameters ϵ and µ (or refractive
index n = √

ϵrµr) is illuminated by an incident plane wave in free space. The
refractive index of the scatterer is assumed to be smoothly varying in the general
case, or be homogeneous (as in our tests), except at the scatterer boundary. The
goal is to determine the backscattered field (RCS).
To represent the incident plane wave, a large number of rays are shot toward the
dielectric sphere following the ray tube approach used in the physical model of the
LACE RT Code in order to discretize the wavefront of a plane wave [5].
The incident rays encounter the scatterer boundary and reflected and refracted
rays are generatd, i.e. at point 1 in Fig.5.1. The refracted rays propagate inside
the object and eventually encounter the scatterer boundary (point 2 in Fig. 5.1).
Again reflacted rays and refracted rays are generated, except this time the refracted
rays exit the scatterer while the reflected rays bounce off the boundary and remain
inside the inhomogeneous object.
The intensities of the reflected rays become weaker after every bounce against the
boundary and this process can be terminated after several bounces.

Figure 5.1: Geometry of the Scattering Problem
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5.2 Reflection/Refraction at the Curved Scat-
terer Boundary

When a ray is incident upon the scatterer boundary, a reflected ray and a refracted
ray are generated due to the discontinuity in the medium parameters. To determine
the fields associated with the reflected and refracted rays as they propagate away
from the boundary, their initial values including the ray directions, amplitudes,
polarizations and wavefront curvatures are needed at the impact point.
The local coordinate system at the boundary used in order to take into account all
these parameters is reported in the figure below:

Figure 5.2: Local coordinate systems for the incident, reflected and refracted rays
at the scatterer boundary.

The local coordinate system depicted in Fig.5.2 was taken from the literature[4]
along with the respective decomposition of the incident field into its perpendicular
and parallel components and the calculation of the amplitudes of the two transmitted
and reflected fields.
Starting from a generic incident field decomposed into its parallel and perpendicular
components as in [4]:

Ei = (Ei · ϕ̂i)ϕ̂i + (Ei · θ̂i)θ̂i (5.1)

The reflected and transmitted fields at the impact point on the boundary are
then obtained by using the planar reflection and transmission coefficients:

Er = R⊥(Ei · ϕ̂r)ϕ̂i +R||(Ei · θ̂i)θ̂r (5.2)

Et = T⊥(Ei · ϕ̂r)ϕ̂t + T||(Ei · θ̂i)θ̂t (5.3)
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As for the reflection and transmission coefficients R⊥,R||,T⊥,T|| they are the
same as those described in Chapter 2 which are recalled below for a lossy medium:

R|| =
n2 cos θi − n1

ñ
1 − ϵ1

ϵ2
sin θi

2

n2 cos θi + n1
ñ

1 − ϵ1
ϵ2

sin θi
2

R⊥ =
n1

ñ
1 − ϵ1

ϵ2
sin θi

2 − n2 cos θi

n1 cos θi + n2
ñ

1 − ϵ1
ϵ2

sin θi
2

T|| = (1 +R||)
n1

n2

T⊥ = 1 +R⊥

(5.4)

In this case, ϵ2 and consequently n2 can be complex considering a lossy medium,
and the transmission angle will become the ’true’ angle of transmission given by
the following expression[11]:

θt = arctan
 √

ϵ1µ1 sin θi

Re
èñ
ϵ̃2µ2 − ϵ1µ1 sin θi

2
é

 (5.5)

A more detailed description of the Fresnel equations applied to a lossy medium
is given in Appendix D.

5.2.1 Numerical Simulation of Ray Trajectories
In Fig. 5.3 we show the calculated ray trajectories throughout a sphere with ϵr = 14
with up to three interactions with the boundary interfaces.
Specifically, in red are indicated the rays incident to the first surface and those
reflected on it, while in blue are indicated the rays transmitted after the first impact
and those transmitted after the second impact (which will exit the sphere); finally,
in black are indicated the reflected rays generated by the second impact with the
surface of the sphere from the rays transmitted at the first interface. It can be
seen that blue rays go to converge at a focal point that as described in Chapter 3
carries a phase shift of π.
The focal point of the black rays lays outside the scatterer.
These phase jumps generated in the focal points as in caustics must be correctly
calculated to best reconstruct the radiated far field; for caustics arising outside the
scatterer one solution to avoid taking them into account is to choose an appropriate
distance of the equivalent surface, in this case it is chosen very close to that of the
sphere so that the focal points fall outside it and the phase jumps do not affect the
correct reconstruction of the far field.
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Figure 5.3: Results of simulation of ray reflections and refractions for an homoge-
neous dielectric sphere with ϵr = 14.Two focal points can be seen: one inside the
sphere generated by the the refracted wavefront at the first boundary; and one just
outside the sphere generated by the wavefront encountering the boundaries three
times and being transmitted-reflected-transmitted respectively.

5.3 Correct bookkeeping of rays

An important aspect to consider in order to have meaningful results is the proper
bookkeeping of the rays. This is because each ray once it impacts the surface will
generate two new rays that will both contribute to the far-field. Considering the
numerical model implemented in the LACE RT code, the new trajectory of the
reflected or transmitted ray will be calculated while the other will be saved in a
data structure in memory and then, once the calculation of the trajectory of all
the primary rays is finished, it will be taken from the latter and all the trajectory
traveled will be calculated in turn; this procedure is also carried out one at a time
on all the secondary rays generated by the first impact of the primary rays. The
latter will in turn generate reflected and refracted rays, and the same bookkeeping
criterion used previously will be applied. The energy associated with a primary
ray will be splitted at each interaction with the boundary surface so that after a
number of passes the secondary ray will carry a negligible amount of energy. Thus
the process can be stopped after a specified number of reflections/transmissions or

72



Electromagnetic Scattering by Penetrable Dielectric using upgrated LACE RT Code

when the associated energy goes below a threshold value.
Another parameter that must be taken into account is the ’history’ of each individual
ray; this is because what you are going to ’follow’ is the propagating wavefront (the
rays represent the vertices of triangular patches used to discretize the wavefront);
so once the rays are grouped by groups of three they must be of the same type:
either all reflected or all transmitted, so that the transmitted or reflected wavefront
can be reconstructed correctly. To overcome this problem, a vector was created
containing codes representing the transmission or reflection of each ray.
A schematic of the operation of the numeric code with the newly inserted modules
is shown in the figure below.

Figure 5.4: Schematic of the operation of the numerical code with the new
modules.
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5.4 Test Cases & Numerical Results
5.4.1 Dielectric With Losses
As a first test case for validating the proper functioning of the new subroutines
inserted within the code, it was chosen to consider a material with high losses;
meaning that the transmitted rays are completely absorbed before meeting the
other surface and therefore the contribution to the RCS is made only by the
reflected ones.
Considering the general expression of the dielectric permittivity of dissipative (lossy)
materials:

ϵ̃ = ϵ− j
σ

ω
= ϵ0ϵr − j

σ

ω
(5.6)

and considering dissipative media with conductivity equal to σ = 7ϵ0ω , one
obtain that the expression of the permittivity of the medium considered for this
first test case is as follows:

ϵ̃ = ϵ0ϵr − j
σ

ω
= ϵ0ϵr − j

7ϵ0ω

ω
= ϵ0(ϵr − j7) (5.7)

To test the applicability of the code by considering different types of materials,
a scan on the relative permittivity (ϵr) was chosen starting from 0.1 up to 50 and
taking the field value for θ = 0 degrees (RCS Monostatic-backscattering) and taking
as reference the same field given by Mie’s series considering an electrical size of the
object equal to ka=35.
The results are shown in the figure 5.4, and it can be seen that throughout the
selected permittivity range the RCS values calculated using the numerical code
almost perfectly follow those given by the Mie series theory going to justify a wide
range of applicability of the code for different types of materials.

Once the correct operation of the code was ascertained for different permittivity
values, a single value of it (ϵr = 2.2) was selected and a scan on the electrical
magnitude was performed.

The hybrid method used in the code (raggistic plus physical optics) had already
been tested for a PEC [5] and the result was that for the simple case under con-
sideration our method was equivalent to standard PO approximation (i.e. same
results over the wavelength spectrum). For the dielectric what we wanted to show
is that starting from the reference given in the literature on MECA[12] (Modified
Equivalent Current Approximation, basically an extension of the PO method for
penetrable dielectrics) it was seen that as the electrical magnitude of the object
increases it tends to the exact solution given by the Mie series, but even in the
areas where it is not asymptotically close to the exact solution the LACE RT Code
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Figure 5.5: RCS for increasing ϵr and ka=35

gives solutions very similar to those given by MECA.

Fig.5.6 and 5.7 shows the results of the simulations, and what can be observed
is that the results confirm what is expected since it has that as the electrical
magnitude of the object increases, the results provided by the code tend to converge
asymptotically to those given by the theory.
In order to compare the angular dependence (bistatic RCS) of the RCS with respect
to the angle of observation between the results of the simulations and the exact
ones provided by the series of Mie, a single permittivity (ϵr = 2.2) and two electrical
sizes (ka=10;ka=35) were selected.
The results of the simulations are shown in Figures 5.8-5.11.
What can be observed from the plots is that the described trend in Fig.5.7 is
confirmed, because for ka=10 we have that the behavior of the bistatic RCS as the
angle of observation varies differs from the exact behavior given by the Mie series
much more than the case considered for ka=35 where, as verified above, there is an
asymptotic approach to the exact solution. In both cases, however, the value of the
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backscattericng (RCS for θ = 0) turns out to be practically exact and coincident
with that given by theory.

Figure 5.6: Monostatic RCS of a sphere. PEC and lossy characterization using
the MECA method taken from [12].An high degree of overlapping in the curves of
Mie and MECA clearly demonstrates the accuracy of the high frequency technique.
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Figure 5.7: RCS comparison for increasing ka and fixed ϵ (2.2).The trend described
turns out to be very similar to that in Fig. 5.6; this goes to confirm what was said
earlier, namely, that even in areas where the solutions is not exact, the hybrid code
tends to behave like the MECA numerical method for dielectrics and like the PO
for PEC[5]
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Figure 5.8: RCS comparison for ka=10 (ϕ = 0); θ Polarization

Figure 5.9: RCS comparison for ka=10 (ϕ = 90); θ Polarization
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Figure 5.10: RCS comparison for ka=35 (ϕ = 0); θ Polarization

Figure 5.11: RCS comparison for ka=35 (ϕ = 90); θ Polarization
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5.4.2 Dielectric Without Losses
A lossless dielectric was chosen as the second test case; in this case we have an
expression of the real permittivity therefore without an imaginary part. Specifically,
the parameters chosen for the simulation were ϵr = 30,ϵr = 14 and an electrical
sphere size of ka = 31.44.
The major difference with the previous test case is the fact that now the rays
transmitted inside the interface are not absorbed by the material but reach the
inner face of the sphere going on to generate another pair of rays.
Taking advantage of the data structure described earlier, it was chosen to follow three
reflections of each ray: the first reflection on the first interface, the transmission
inside the sphere, and the second reflection on the inner edge of the sphere.
Proceeding in this way still managed to track more than 92% of the initial energy
of the electromagnetic wave.
Referring back to Fig.5.3 and observing the ray trajectories, one can see focal
points and caustics generated by reflections; as mentioned earlier, these physical
phenomena generate wave phase jumps that must be correctly calculated in order
to correctly reconstruct the radiated far field.
The method used in this test was to add phases to the entire wavefront for each
front considered; then going to add or subtract the same phase to all the flux tubes
constituting the entire wavefront.
After carrying out several tests considering different phases to be added, it was
seen that making improvements on the back and forward scattering (the results
of the simulations were very close to the exact solution) showed a worsening on
the lateral part of the radiated field; while in the cases where the trend of the
theoretical curves for the lateral field was followed almost perfectly, there was a
worsening on the back and forward scattering.
The results of the simulations are shown in the figures 5.12-5.15.
Going on to investigate the possible causes of these worsening and complementary
improvements led to the conclusion that in order to obtain a correct reconstruction
of the field one must calculate the phases during the propagation of each individual
flux tube and not apply a global phase on the entire wavefront; this procedure
must be done on run within the code with the insertion of new subroutines.
Future work on further optimization of the numerical code can be done in this
direction.
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Figure 5.12: RCS comparison (ϵr = 30)considering 3 reflections.Improvement can
be observed in the calculation of back and forward scattering but a deterioration
in the ’lateral’ part of the field.

Figure 5.13: RCS comparison (ϵr = 14) considering 3 reflections.Improvement can
be observed in the calculation of the ’lateral’ part of the field but a deterioration
in back and forward scattering.
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Figure 5.14: RCS comparison (ϵr = 30) considering 3 reflections.Improvement can
be observed in the calculation of back and forward scattering but a deterioration
in the ’lateral’ part of the field.

Figure 5.15: RCS comparison (ϵr = 14) considering 3 reflections.Improvement can
be observed in the calculation of the ’lateral’ part of the field but a deterioration
in back and forward scattering.
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Chapter 6

Summary & Conclusions

Extreme heating of the air by strong shock waves during hypersonic atmospheric
re-entry creates a plasma flow that blocks or strongly attenuates the radio frequency
signal (RF black/brown-out). Several approaches have been explored in the past
without finding a convincing direct solution to this well known disruption of RF
communications in atmospheric re-entry. Clearly a way to minimise or remove
the disruption would provide a significant advantage for future experiments and
missions, allowing the transmission of more data and a safer control of the vehicle
during a delicate phase or the re-entry. One possible solution to overcome this
problem is to study the propagation of radio frequency waves within complex
media such as the ionosphere, plasmas, and complex gas mixtures. Asymptotic
techniques such as ray or beam tracing can be used to predict EM propagation in
these inhomogeneous media where the radiation can be refracted, reflected and/or
absorbed compared to free-space propagation.
The ray tracing method effectively decompose the wavefront with plane wave
represented by one or more rays and follow the propagation using the Eikonal
approximation valid for short wavelength. Contrary to ray tracing in homogeneous
media, where the ray trajectories are straight lines, here a ray can be curved due
to the continuous variation of the refractive index (inhomogeneity). One of the
limitations of ray tracing (both for homogeneous and inhomogeneous cases) and
consequently of the numerical code is the fact that in order to have reliable results,
a sufficiently dense grid of rays must be generated which interacts with objects in
the "scene" while traversing it (ray traversal); this involves an enormous amount of
computational time.
The main purpose of this thesis work was to improve a numerical code developed
at LINKS Foundation capable of using these asymptotic methods for two specific
purposes:

1. Speeding up the ray traversal process; this was done by using special data
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structures such as K-D Trees or Octrees that can subdivide the physical space
(the scene) into boxes and then through an appropriate traversal algorithm
identify which boxes were hit by the ray in such a way as to follow its trajectory.

2. Broaden physical situations that can be handled including penetrable dielectric
and, in general, discontinuous dielectric interfaces.

Regarding the first part, a prototype was developed in MATLAB of the algorithm
for the optimization of the Ray Traversal process; this is because in the classical
(Brut Force) method of Ray Tracing, a check is made to find the intersection of
the ray with each of the patches constituting the mesh of the geometry; leading
to a very rapid increase in computational time as the complexity of the geometry
and the density of the mesh increase. In the new algorithm, on the other hand,
this check will be performed only on a small subset of patches that will be present
within the boxes generated by dividing the volume of the space thanks to the
aforementioned data structures. In a first step, a comparison was made on the
two well-known partitioning methods based on Octree and Kd-tree structures; this
comparison was made in terms of the number of levels (subdivisions) generated
and the number of ’leaf’ boxes i.e., the box containing a fixed number of points
of the mesh of the geometry that constitutes the lowest level of the tree. Four
different types of geometries with increasing complexity and number of patches
were used to make this comparison; what was observed was that while with the
use of the KD-Tree the number of levels and box leaves remained almost constant
as the geometry increased, with the use of the Octree this was not the case and for
complex geometries there was an explosion in the number of box leaves generated,
bringing as a consequence a vast memory occupancy leading to the choice of the
K-D Tree as the data structure to be used.
Once the subdivision of the space (scene) was implemented, we moved on to the
actual traversal phase comprising two main algorithms: the Ray Traversal and
its sub-part Point Location. It was chosen to compare 3 different versions of this
algorithm: one that used the classical Point Location method (Sequential), one
that used an new version of the Point Location called Integer Location inspired by
a publication [13], in which a mapping matrix has been created that can directly
output the index of the data structure corresponding to the box containing the
point to be located, by simply selecting the corresponding matrix cell; and finally
a structure that used another data structure called Neighbor Links in which all
possible neighbors of each individual leaf node were stored so that the intersection
check was performed on a smaller number of elements once the first leaf box
was pierced by a ray. The algorithm was tested on a CAD model of the ESA
re-entry vehicle (Intermidiate eXperimntal Vehicle) IXV, and testing all the three
versions against the classical Brut Force one (in which the intersection check is
performed on each individual patch constituting the mesh); the simulations were
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carried out considering an increasing number of rays generated up to a maximum
of 5000, and the results show that as the number of rays considered increases,
all three optimization algorithms converge to the same performance and while
they differ little by going to consider few rays.In general, we find an improvement
in computational time of 102 − 103 was obtained in the region of performance
convergence.
Once the algorithm had been successfully tested on the classical rays represented
with straight lines; we adapted the method for the case of curved rays (as they in
inhomogeneous media) represented by a segmented line. In this way it is possible
to model the curved trajectories that rays assume during propagation in this type
of media and build the trajectories one step at time.
The adapted algorithm works by going forward along the trajectory one step at a
time and checking the intersection between a single segment and a patch (the check
on the intersection is no longer of the line-triangle type), if there is a successful
intersection we move on to the next ray, if not, one goes to see in which box leaf the
end point of the current segment falls, if it is one of the neighbors of the previous
box one again performs the intersection test with the patches contained in the
neighboring boxes, if not one starts with the Ray Traversal for straight lines by
having it stop in the box leaf where the end point of the current segment lies.
Significant improvements in computational time (on the order of 103) were also
found in this version of the algorithm; comparison was made with a Brut Force
method also adapted to segmented lines.
Future work inherent in this first part involves incorporating this algorithm within
the Fortran90 code developed at LINKS Foundation so that simulation time can
be optimized and speeded up.
In the second part, on the other hand, enhancements were made directly to the
numerical code and in particular to the physical model used. In the original code
the ray reflections were considered only on a completely reflective and impenetrable
material (PEC), what was desired was to also consider the impact of the rays on a
penetrable object; this leading to the generation of a second ray at each intersection
with the dielectric interface. The generation of this second ray is governed by Snell’s
laws of reflection and refraction. Considering the rays as constituent elements of
the wavefront of a plane wave, we made use of Fresnael’s formulas to calculate the
reflection and transmission coefficients at the interface and consequently calculate
the respective amplitudes of the transmitted and reflected fields. In this regard,
several subroutines were added to the original source code capable of decomposing
the incident field at the interface and calculating the respective reflection and
transmission coefficients and then reconstructing the reflected and transmitted
fields; and other routines capable of deciding which of the two generated beams to
follow and saving the other in memory and then restarting with ray tracing from it
once all the primary beams to follow are finished (rays book-keeping).
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To validate the proper functioning of the new features, it was chosen to consider a
sphere with constant dielectric properties. Two test cases were chosen for validation
of the correct operation of the code. A first one considering a lossy dielectric
and assuming that all rays entering the surface were absorbed by the material
and the contribution of the far field was given only by the reflections on the first
interface;two scans were carried out on the permittivity parameters prime and
electrical size (equivalent to a frequency or wavelength scan) after, the first was
carried out by fixing the losses and going to vary the real part of permittivity in
such a way as to verify the applicability of the code for different types of materials,
all of which was confirmed by simulations after being compared with the exact
scattering solution given by Mie’s series; the second on the other hand was carried
out by going to fix the permittivity and losses, what was observed is that as for
PEC also for dielectric the hybrid method (raggistic plus PO) implemented within
the code as the electrical magnitude of the object increases tends to the exact
solution given by the theory and in the regions where the solutions do not converge
it behaves like a pure PO method for PEC and to its extension for penetrable
dielectric called MECA method. A second test case going to consider a lossless
dielectric and thus multiple ray reflections, in particular we focused on 3 reflections
and still managed to follow more than 92% of the initial energy. What was seen
from the results is that by analyzing the ray trajectories, focal points and caustics
are formed that go to cause phase jumps to be properly calculated to reconstruct
as faithfully as possible the radiated field.
Future work can be directed toward further optimizing the code in terms of
calculating phase on each individual flux tube and not applying a constant phase
shift over the entire wavefront.
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Appendix A

Discussion on Eikonal
validity for inhomogeneous
media

The necessary condition for the applicability of the ray theory can be cast into the
following relations:

δ ≡ |∇log(|ϵr|)
k0

≪ 1 (A.1)

|∇log(|E|)
k0

≪ 1 (A.2)

Im(ϵr)
Re(ϵr)

∼ δ (A.3)

The first two demand the properties of the medium and the wave amplitude
to vary slowly over the distance of a wavelength (i.e. weakly dependent on the
spatial coordinate r). The last equation requires a weak energy exchange between
the media and the EM wave and partly overlaps with eq. A.2. As well known,
these conditions are typically violated near caustics (even in free-space), cut-off
and resonance regions. In an inhomogeneous media, a high density, high gradient
region may be generated and cut-off layers may appear. The ray is expected to
suffer reflection at cut-off, since the wave is evanescent on the other side. Actually,
reflection must occur before the cut-off is reached. Indeed, for oblique propagation,
only the component of k parallel to the density gradient goes to zero, whereas the
group velocity is still well defined. This kind of reflection does not lead to a global
breakdown of the Eikonal approximation, but is associated with the formation of a
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caustic or of a focal point, so that some care has to be taken in the determination
of the phase along the ray. Thus, even in this extreme case, a good approximation
is expected away from the cut-off layer (i.e. at the equivalent surface).
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Appendix B

Octree/K-D Tree
comparison for different
geometries

Below are plots of the volume division around the considered object as described
in Chapter 4. The data structure construction algorithms used were the K-D Tree
and the Octree.

Figure B.1: K-D Tree Sphere Figure B.2: Octree Sphere
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Figure B.3: K-D Tree 2 Spheres Figure B.4: Octree 2 Spheres

Figure B.5: K-D Tree Spheres & Cylin-
der

Figure B.6: Octree Spheres & Cylinder
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Appendix C

Benchmark of Numerical
Model

The simulation results for the remaining geometries are shown below; they exhibit
similar behaviors as seen for the vehicle except for the single sphere where the
algorithm where Integer Location was used seems to have even better performance.

Figure C.1: Computational Time Performance (Sphere)
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Benchmark of Numerical Model

Figure C.2: Computational Time Performance (2 Sphere)

Figure C.3: Computational Time Performance (Sphere & Cylinder)
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Appendix D

Fresnel Coefficients for Lossy
Materials

Consider a uniform plane wave in medium 1 impinging obliquely on medium 2,
characterized by finite conductivity and occupying the region z ≥ 0. Medium 1
is described by a wavenumber β1 = ω

√
ϵ1µ1, expressed in terms of the angular

frequency ω, the real permittivity ϵ1, and the real permeability µ1. Medium 2 is a
lossy dielectric with complex wavenumber given by

β2 = ω
√
ϵ2µ2 = ω

√
µ0µ2ϵ0ϵ2r = ω

c

ñ
µ2r(ϵ′

2r + iϵ
′′
2r) (D.1)

where c is the speed of light in vacuum, µ2r is the relative permeability of
medium 2 (assumed to be real), and ϵ

′
2r and ϵ

′′
2r are respectively the real and

imaginary part of the complex relative permittivity of the second medium.

D.1 TE Polarization
It is assumed that the incident electric-plane field in medium 1 is linearly polarized
in the positive y direction, and propagates along the incident wave vector β

i
=

β1(sin θix̂+ cos θiẑ), where θi is the angle of incidence and the caret sign denotes
a unit vector. The incident electric field and its corresponding magnetic field are
thus given as:

Ei = ŷE0e
iβ

i
·r (D.2)

H i = 1
iωµ1

∇ × Ei (D.3)
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suppressing and e−iωt time dependence. The reflected fields in medium 1 and
the transmitted fields in medium 2 are given as follows[11]:

Er = ŷE0ΓT Ee
iβ

r
·r (D.4)

Hr = 1
iωµ1

∇ × Er (D.5)

Et = ŷE0τT Ee
iβ

t
·r (D.6)

H t = 1
iωµ1

∇ × Et (D.7)

Here:

β
r

= β1(sin θrx̂− cos θrẑ) (D.8)

and

β
t

= β2(sin θtx̂+ cos θtẑ) (D.9)

are respectively the reflection and transmission wave vectors, involving the real
angle of reflection θr and the complex angle of refraction θt; ΓT E is the fresnel
reflection coefficient, and τT E is the Fresnel transmission coefficient.
Following the standard approach of equating the tangential components of the total
electric and magnetic fields at the interface z=0 results in equality of the angle of
reflection and the angle of incidence, the "complex" Snell’s law:

β1 sin θi = β2 sin θt (D.10)

and the Fresnel relfection and transmission coefficients:

ΓT E = µ2β1 cos θi − µ1β2 cos θt

µ2β1 cos θi + µ1β2 cos θt

(D.11)

τT E = 2µ2β1 cos θi

µ2β1 cos θi + µ1β2 cos θt

(D.12)
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D.2 TM Polarization
It is assumed that the incident magnetic field in medium 1 is linearly polarized
in the positive y direction, and propagates along the incident wave vector β

i
=

β1(sin θix̂+ cos θiẑ). The incident magnetic field and its corresponding electric field
are thus given as follows:

H i = ŷH0e
iβ

i
·r (D.13)

Ei = 1
−iωϵ1

∇ ×H i (D.14)

The reflected fields in medium 1 and the transmitted fields in medium 2 are
expressed as:

Hr = ŷH0ΓT Me
iβ

r
·r (D.15)

Er = 1
−iωϵ1

∇ ×Hr (D.16)

H t = ŷH0τT Me
iβ

t
·r (D.17)

Et = 1
−iωϵ1

∇ ×H t (D.18)

where β
r
,β

t
, θr and θt are defined as in the TE-polarization case.

Equating the tangential components of the total electric and magnetic fields
at the interface z=0 yields the equality of the angle of reflection and the angle of
incidence, Snell’s law and the Fresnel reflection and transmission coefficients:

ΓT M = ϵ2β1 cos θi − ϵ1β2 cos θt

ϵ2β1 cos θi + ϵ1β2 cos θt

(D.19)

τT M = 2ϵ2β1 cos θi

ϵ2β1 cos θi + ϵ1β2 cos θt

(D.20)
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D.3 True Angle of Refraction
From the complex Snell’s law given in Equation D.11, it follows that:

β2 cos θt = β2

ñ
1 − sin θt

2 =
ñ
β2

2 − β2
1 sin θi

2 ≡ p+ iq (D.21)

where p and q are real quantities, and q > 0. Consequently, the exponential
term associated with the refracted fields in either polarization can be rewritten as:

eiβ
t
·r =

eiβ2(x sin θt+z cos θt) =
ei[xβ1 sin θi+z(p+iq)] =
e−qzei(xβ1 sin θi+pz)

(D.22)

The surfaces of constant amplitude are defined as qz=constant; thus, the wave
decays along the positive z direction. On the other hand, the surfaces of constant
phase are given by the planes xβ1 sin θi + pz = constant. The true (real) angle of
refraction is then defined as follows:

θt = arctan
1β1 sin θi

p

2
(D.23)

Using the notation introduced in Eq. D.23, the Fresnel coefficients for both
polarizations are rewritten as follows:

ΓT E = µ2β1 cos θi − µ1(p+ iq)
µ2β1 cos θi + µ1(p+ iq) (D.24)

τT E = 2µ2β1 cos θi

µ2β1 cos θi + µ1(p+ iq) (D.25)

ΓT M =
β1 cos θi − ϵ1

ϵ2
(p+ iq)

β1 cos θi + ϵ1
ϵ2

(p+ iq) =
√
ϵ1µ1 cos θi − ωϵ1µ2

β2
2

(p+ iq)
√
ϵ1µ1 cos θi + ωϵ1µ2

β2
2

(p+ iq) (D.26)

τT M = 2β1 cos θi

β1 cos θi + ϵ1
ϵ2

(p+ iq) =
2√

ϵ1µ1 cos θi√
ϵ1µ1 cos θi + ωϵ1µ2

β2
2

(p+ iq) (D.27)
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