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Abstract

Sharing transport systems are an established reality in many cities around the
world and their role in the urban mobility is set to gain further relevance in the next
years as the sharing economy paradigm gains momentum. Free floating, one-way
services are the most flexible ones, allowing users to book and pick up a vehicle and
leave it anywhere within the operational area boundaries after its usage. This is a
great advantage from the users perspective, which has helped establishing this kind
of systems as the most successful ones in the urban environment but, at the same
time, it makes management operations more difficult. The absence of predefined
parking stations and the unpredictability of origin-destination demand patterns,
often result in unbalances in the fleet distribution through the area, requiring
operator interventions. Relocation of vehicles in shared mobility is one of the
central research topic of interest because it allows to increase the overall number of
carried out trips, bringing additional revenues to the operator and satisfaction to
the customers.

Recently many shared mobility service providers are including electric vehicles
in their fleet. This transition has been supported by a general gained interest
of the public about environmental issues and by new emerging technologies that
make the storage of energy and the batteries charging easier. However a fleet of
shared electric vehicles requires additional planning of infrastructures (i.e., charging
stations) and new policies to implement charging operations. Although refuelling
operations are also needed for internal combustion vehicles, the charging process for
electric ones requires indeed more time depending on the available infrastructure’s
power capacity therefore complicating the operations management. The optimal
relocation problem in a shared mobility system is then joined by an optimal charging
one.

This thesis research work stems from a wider project on mobility and shared
transport systems from the SmartData@Polito research group and it fits into the
analysis of free-floating shared mobility services employing an electric vehicles
fleet. The main research questions in particular regarded the analysis of network
performances studying the planning of charging infrastructures and the impact of
different charging policies and relocation techniques.

The used approach is analytical and different models based on queuing theory
are proposed. Analytical modelling is used to provide a formal representation of
the system of interest with a set of variables describing its working and evolution
and using mathematical expressions to obtain performance metrics. Differently
from other widespread approaches such as simulation, analytical modelling allows
to build a generic model for the studied service with the advantages of requiring low



computational power and time resources. Moreover the convergence of the analytical
solution is guaranteed by mathematical proofs and the explicit dependency on
the system parameters make the solution easy to interpret with a clear view of
how the model variables influence the system. On the other hand some peculiarity
and constraints of the system may not be included in the final model because
they may increase too much its complexity and may result in a not derivable
mathematical formulation. Starting from simple models of single city zones and
charging stations, more complex ones are built using network of queues representing
the dynamics of a shared mobility fleet through the city. Network of mobility zones
only are first proposed to study the general behaviour of the customers’ demand
and the movement of vehicles through the city. Charging station queues are then
included showing the impact of charging operations on the system performances
and eventually trips time are modelled through delay queues. Many case studies are
presented with model parameters inferred from real data from a car2go database
of trips for the city of Turin. A spatial characterisation of input data and results is
also given through visual maps and graphs. A differentiation in the input data has
been considered studying multiple network realisations with distinct input routing
and demand rates based on data from particular time intervals during the day and
different kind of days.

A particular focus is given to the charging infrastructure planning and recharge
operations required by an electric fleet. The placement and aggregation of charging
stations in the city network is first studied. Charging policies implementing decisions
on when, where to and which vehicles bring to charge are then explored. Relocation
is also taken into account jointly with charging operations, with different possibilities
considered on where to reposition vehicles when the process is completed. All
the performance indicators of interest have been obtained through mathematical
expressions and algorithms such as the Mean Value Analysis.

The reference metrics through all the case studies are the general throughput
(i.e. total number of trips) of the system and the percentage of unsatisfied user
mobility demand as well as their spatial distribution through the city’s zones.
Different combinations of policies are studied to optimise these values. Moreover
the distribution of vehicles in the area, the average utilisation and throughput of
the charging station as well as the probability for a vehicle to wait in line before
charging are also monitored and discussed. In addition, the impact of the fleet
size, the number, positioning and concentration of charging stations and other
parameters specific of some policies is shown. Furthermore a brief study on how
charging operation affects the power grid is proposed and the effect of varying trip
times on the overall operations is observed.

Results showed a promising capacity of the model to represent typical dynamics
of a shared mobility system with the advantage that all indicators are obtained
with a very small computational power required and in very short negligible time.
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With the best combination of policies for charge and relocation it has been observed
a decrease in the unsatisfied percentage of mobility demand up to 20.4% for a
balanced network, corresponding to an increase of around 48% of the throughput.
With an unbalanced routing characterised by higher and more uneven demand
instead optimal policies resulted in a 12.2% reduction of fraction of unsatisfied
demand corresponding to an increase in throughput of around 38%.

Eventually a simulation tool was considered and compared to the analytical
model results. Two of the modelled scenarios were simulated corresponding to a
balanced data and an hourly data system to try and reproduce similar dynamics
with respect to the one tested with the analytical model. In spite of differences
in both the input data and the general network configurations, the analysis and
comparison of the simulation results with the previously extracted metrics has
shown significant similarities in the general behaviour of the system and it has
resulted consistent with the analysis and considerations extracted from the study
of the proposed analytical model.
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Chapter 1

Introduction

Sharing transport systems are already an established reality in many cities around
the world and their role in the urban mobility is set to gain further relevance in
the next years as the sharing economy gains momentum. Different kind of sharing
systems using different means of transport can already be found in many cities;
the most common ones employ cars, bikes, scooters and motorbikes.

Limiting the analysis to car-sharing, a further classification following the tax-
onomy in [1] can be done based on the system specifications and in particular on
its mode and on the type of vehicle’s engine. The mode defines the operational
way of the system that can be station based if shared vehicles are available only
in defined city spaces and two-way if each trip must start and end in the same
station. One-way models instead allow to end the journey in a different zone with
respect to the starting one while free-floating systems lose the constraint of the
stations and vehicles can be freely left and picked up in publicly available spots in
the whole working area. Free floating car sharing (FFCS) systems are the newest in
the market and nowadays are the most common and successful ones. For example,
figure 1.1 shows the trend of usage of station based and free floating shared mobility
systems in Germany from 2011 to 2021 in terms of number of both vehicles and
users. Both types of service show increases in usage and number of customers but
free floating ones are clearly more appealing to users.

Most of the available car sharing systems, were originally designed to work with
a fleet of internal combustion engine vehicles (ICEV). In the last years however,
as the climate crisis awareness has spread, there has been an increasing general
concern on the impact of the utilisation of fossil fuels on the environment. The main
response in the transport sector and industry was to slowly start to switch towards
electric vehicles (EVs). This transition has been supported by new developed
technologies which make it easier to store energy and charge batteries and by a
general tendency of society to move towards greener forms of energy production
and the consequent economic advantages in doing so. Figure 1.2 shows the global
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Introduction

Figure 1.1: Trend in station based and free floating mobility sharing systems in
Germany [2]

trend of sales for EV and their market share. It is clear that, although as of 2021
the global market share of EV is only just below 9%, the trend is extremely positive
especially in world regions as China and Europe and expected to grow in the next
years.

1.1 Operational framework and problem defini-
tion

Converting a shared mobility service to use electric vehicles requires additional
planning and resources and introduces new organisational and managerial challenges
for the system operator that can be summarised as follows:

• Charging stations dimensioning and positioning

• Charging policies and scheduling

• Charging thresholds definition

• Relocation of vehicles after charging

• Workforce management for charging EV

• Management of user contribution to charging operations

• Management of EV lines at the stations

2
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Figure 1.2: Global sales and market share of EV [3]

First a charging infrastructure has to be available and eventually positioned in
the most suitable way through the city, then policies are needed to manage the
charging operations. Differently from ICEV in fact charging an EV requires much
more time which can complicate a lot the management. The main challenge for
the system operator is to charge the fleet in an optimal way such that the user
demand for mobility is still satisfied and the cost for the charging are limited.
The infrastructure planning plays an important role since it may facilitate the
operations by reducing the distances between the vehicles in need for power and the
nearest charging station. This is particularly true for FFCS systems where vehicles
can be parked everywhere while in station-based ones there is an obvious one to one
correspondence of mobility and charging stations. Depending on the available power
at the charging columns and on the vehicles battery capacities then, a complete
recharge may take a non negligible time, making also the scheduling operation
critical. Furthermore a set of thresholds has to be defined to trigger the charging
operation in a reactive way. Alternatively proactive approaches may be studied
which may benefit the overall system operations in spite of further increasing the
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management complexity. Moreover in most cases the user contribution to the
charging operations is not allowed due to difficult or unfamiliar procedure for the
average consumer, requiring more workforce and therefore additional costs for
the system operator. Eventually the possibility of having queues at the charging
stations has to be dealt with, which may add further complexity. These problems
introduced with the electrification of the fleet join the classical issues of a generic
sharing mobility on demand (MoD) system including the relocation operations
needed for the repositioning of vehicles to reduce the customers unsatisfied mobility
demand.

The scope of this work is to formulate an analytical model for the representation
of a generic electric free-floating MoD system based on queuing theory. Differently
from many existing works on the topic of shared mobility, here the approach
is purely analytical and supported by real trips data integration. Whilst in a
simulation environment it is easier to include many parameters and obtain a quite
detailed model, this is often not possible considering analytical representations
that would become too complex to be solved mathematically. However analytical
modelling can provide useful approximate results to study the possible system
behaviours with the important advantage of a much smaller execution time with
respect to simulation. Additionally the convergence of the analytical solution is
guaranteed by mathematical constraints and the explicit dependency on the system
parameters make the solution easy to interpret with a clear view of how the model
variables influence the system. An important novel contribution of this work is
in the performance analysis of MoD systems regarding the fleet charging. The
developed models allowed to perform an in depth study of charging processes and
policies for a fleet of EV obtaining important indicators that can help the system
operators to optimise the management operations.

The main topics dealt with during the process are the determination of the fluxes
inside the network as well as the positioning and dimensioning of the charging
infrastructure and the exploration of possible charging policies also including
relocation. Moreover the definition of additional nodes in the network is taken into
account to associate a time delay to the trips. With the support of real data from
a dataset obtained from car2go fleet, different scenarios have been tested and a
spatial characterisation of the results has been possible. Eventually results of the
model are also compared with the output of a provided simulation tool.

1.2 Methodology recap
The work flow followed for this project can be divided in five steps summarised in
the scheme in figure 1.3.

1. Single queue models definition: for the definition and construction of
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Figure 1.3: Work flow scheme

both single queue and network models, queuing theory has been the main
tool exploited. Before constructing the networks, the single queue models
for each zone type have been fist studied to associate their variable to the
characteristic elements of each represented system. For each queue model in
particular a series of parameters has been defined:

• Customers population
• Arrival rate
• Departure rate
• Number of servers
• Capacity
• Discipline

In all the presented cases the customers are the fleet vehicles, both the arrival
and departure rates are assumed to be exponentially distributed and the
queue discipline is first come first served (FCFS). The number of servers
instead is defined differently based on the zone type: mobility queues have a
single server, delay ones have infinite servers and charging station queues have
a variable number of servers which corresponds to the number of charging
outlets. The capacity of mobility and charging queues has been considered in
the single queue models while it has been set aside in the network ones. All
the considered single queue models are detailed in section 3.1.

2. Queuing network construction: looking instead at the network realisations,
the starting model is a simple network of mobility zones which is then enriched
including charging stations and delay zones. When combining single queues
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to build network models additional parameters and network characteristics
have to be defined:

• Network type
• Routing matrix

The network type chosen is the closed or Gordon-Newell one which is charac-
terised by a constant and finite population (i.e. fleet size) with no customers
that can leave or enter the network. This constraint results in flows at each
node that are always dependent on the system state. The network is mashed
meaning that all nodes are interconnected with each other and the movement
of customers is defined by routing probabilities. Different routing matrices
have been inferred from real trips data to establish the movements of vehicles
through the mobility zones in different scenarios. The routing towards and
from charging stations has been determined instead studying different policies
including relocation of vehicles. The formulated network of queues for this
work are detailed in section 3.2.

3. Performance metrics definition: the performance metrics for the system
evaluation have been defined again looking at queuing theory and in particular
at known mathematical formulations and algorithms to solve the networks
under study. The traffic equations for the network nodes have been written
and solved till convergence to determine the relative fluxes of vehicles. The
convolution (Buzen’s) algorithm has been used to obtain a steady state
distribution probability for the network. However the Mean Value Analysis
(MVA) was the mainly employed tool, used to define and obtain all the
performance metrics for the network. The reference ones were in particular the
throughput (i.e. number of trips) per zone and overall for the network and the
percentage of unsatisfied requests for mobility by users. All the implemented
and used algorithms are explained in detail in chapter 4.

4. Data extraction and characterisation: the input data have been obtained
from a database of trips for the car2go free-floating car sharing available in
the city of Turin. Data have been filtered and grouped to collect spatial and
temporal information about user mobility determining the routing probabilities
and service rates of the network. Chapter 5 reports all the detail of the work
on data extraction and manipulation.

5. Case studies and results analysis: eventually different case studies were
formulated starting from different configurations of parameters for the network
and the relevant performance metrics were obtained through MVA. The
obtained results have then been analysed and commented also providing a
visual characterisation through graphs and maps. A further comparison has
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been made in the end with the output of a simulation tool from which the
same metrics of interest have been computed. All the model case studies are
reported and detailed in chapter 6 while the comparison with the simulation
results is in chapter 7.
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Chapter 2

Literature Review

The study of transport systems is a particularly topical issue in research. Different
aspect concerning mobility are the focus of many works found in literature. Since
the object of this work is to build an analytical model for a car sharing system
including charging stations, a particular relevance is given to problems addressing
queuing theory applications in the transport sector and modelling of sharing system.
Different approaches for the management of charging and relocation operation
employed in shared vehicles systems are then studied.

2.1 Queuing models in transport systems
When looking at transport systems in general, one of the most commonly addressed
problem is the management of road traffic intensity and in particular the study
of traffic behaviour at crossroads mainly using single queue models to describe
road intersection with vehicles queuing [4]. Anokye et al. [5] proposed a simple
single-queue approach to model vehicular traffic intensity at intersections with
traffic lights based on an M/M/1/∞ queue. The system parameters have been
inferred from real data and differentiated based on the hour of the day. Assuming
steady state behaviour for each interval the average queue metrics were used to
predict possible congestion. Another case study using the same approach has been
developed by Ekeocha et al.[6] who suggested that increasing traffic light time for
vehicles can reduce traffic intensity in particular congested time slots minimising
delays. Looking instead at highway systems, a classical example of interrupted
flow is represented by toll plazas where vehicles have to stop to pay a fee before
continuing the journey and they can also represent a perfect application of a queue
model. Duhan et al. [7] applied a simple model of a multi-server queue to the toll
plaza congestion problem in which each server represents a station where vehicles
stop to pay. Model parameters were inferred form peak hours observations and
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the computation of the average number of vehicles and the mean waiting time
suggested that an increasing in the number of toll booths would help reducing
delays. Wang [8] instead presented a more complex model based on M/M/1 queue
theory to solve this problem differentiating between three types of toll booths
namely human-staffed, automated and with electronic collection of fees. Then a
genetic algorithm was also applied to solve the lane number optimisation problem.

Differently from the previous studies analysing interrupted traffic flows, Vandaele
et al. [9] described uninterrupted traffic flows modelling road segments as state
dependent G/G/1 queues with a general distribution of arrival and service times and
making the service rates dependent on the number of vehicles in the system. The
performance metrics of the queue were used then to analytically build speed-flow-
density diagrams. Another modified approach to traffic flows analysis is proposed
by Das and Levinson [10] starting from collected data on a freeway thanks to
several loop detector. Queuing theory was used in particular to determine the
positions of possible active bottlenecks.

All the cases presented so far rely on single queue models, however a better
representation of traffic dynamics would require movement of vehicles and inter-
action between different nodes (i.e. queues). Queuing networks offer a solution
for this new kind of problem. Based on conditions and assumptions made on the
system, open, closed or mixed networks may be used. Woensel and Vandaele [11]
extended their work on uninterrupted traffic flows [9], considering an open network
of consecutive nodes as model of an highway where only feed-forward flows can
be considered. They distinguished two cases with an infinite and a finite buffer
for the queues including blocking mechanisms in the second one. However exact
analytical solutions where not possible and different approximation technique to
obtain the system metrics where presented. A Jackson network based solution
for single-line uninterrupted traffic flows is presented instead by Raheja [12]. The
network is modelled as a closed series of nodes connected in a circle where arrival
and service times follow both an exponential distribution allowing a closed form
expression for the probability distribution of vehicles.

Queuing network in the transport sector are also used to model sharing systems
where queues usually represent city zones or stations from which different types of
vehicles can be booked and taken by users. Following the most widespread approach
in the study of sharing systems, George and Xia [13] designed a closed network
model for a generic station based system with single server queues having Markovian
arrival and service rates where vehicles are the customers moving from one station
to another following a given routing matrix. The availability of vehicles at stations
was the target metric and the network solution was provided through exact MVA
and Schweitzer–Bard MVA approximation. An introduction to the MVA and how it
can be used to solve queuing networks is presented later in the document in section
4.1.3. Additionally a revenue-based fleet size optimisation problem was formulated
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starting from the obtained results. A similar network solution was formulated by
Fanti et al. [14] focusing on electric cars and differentiating three types of queues
at the station for fully charged, partially charged and out of charge vehicles, these
last waiting in line to be charged. Other three queues then define trips in the
neighbourhood for fully and partially charged vehicles respectively and long trips
for fully charged ones only. A routing matrix was eventually constructed to allow
short or long trips based on vehicles power levels (i.e. on their origin queue) and
dealing with out of charged ones before and after the charging process. The MVA
was the chosen tool to solve the network also in this case and an additional fleet size
optimisation problem was proposed. Samet et al. [15] focused on a station based
bike sharing and studied its performances with a closed queuing network model with
finite buffers capacity and three different kind of queues: single server queues to
represent the stations and two classes of multiple server queues to manage rejected
bikes and to model trips time respectively. The repetitive service with random
destination (RS-RD) blocking was chosen to deal with capacities and losses and a
general distribution for both arrival and service times characterises the stations.
Since no straightforward analytical solutions are possible to solve such a network,
an approximate method based on entropy maximisation was employed.

Between sharing systems one of the most popular and convenient solution
nowadays is represented by free floating ones where generic vehicles can be left in
any publicly available parking spot within the boundaries of the system operational
area. From the modelling point of view this can be a complication since the
one-to-one correspondence between station and queue is lost and an alternative
discretization of space is required. Fricker et al. [16] proposed a division of the
service area in many small zones comparable to stations with a total number which
tend to infinity. A closed homogeneous Markovian network was developed at first
with RS-RD blocking and with parameters inferred from real data. Each zone at
steady state is seen as a tandem of an M/M/1 queue for available vehicles and an
M/M/∞ for reserved ones. Additionally a more complex model with the possibility
for users to book and cancelling their reservation was studied. An alternative
approach for free floating sharing systems modelling was proposed by Kim et al.
[17] consisting of a network in which vehicles are servers moving between nodes
as a consequence of user mobility. Both arrival and service times are considered
Markovian processes and losses may happen if no idle servers are available at a
node.
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2.2 Relocation and charging operation manage-
ment in shared vehicles systems

All mobility sharing systems and free floating ones in particular, require special
attention to re-balance operations which are the focus of many researches within
the last years.

Weikl and Bogenberg [18] provided a first categorisation of classical relocation
techniques in sharing scenarios employed in literature. The first distinguish is
between user-based and operator-based strategies. Entrust users to re-balance
the network is certainly cost effective from the operator point of view but some
incentives are required for users to modify their behaviours to benefit the overall
operations; possible incentives were identified as special-priced rides or free parking.
This also requires to prior inform the customer of their possible contribution
or to ask them for their intended destination before departure. Operator-based
strategies on the other hand require availability of permanent workforce which
can be costly and involves additional trips without a revenue. However it can
be combined with gas filling or battery charging operations and it is much more
reliable than the previous approach. The authors then also provided a two step
optimisation model for vehicle repositioning with an offline demand prediction
and a online optimisation algorithm to find the best relocation strategies when
the vehicle distribution deviate from the predicted positioning. Uesugi et al. [19]
studied the optimal assignment of vehicles to users in a one-way car sharing system
with user-based relocation in order to optimise the re-balance operations. The
optimisation problem aimed at minimising the square residual error sum between
the optimum and the real number of parked vehicles in a station, assigning the
optimal number of vehicles to each user. Boldrini et al. [20] modelled a single-
class closed queuing network applicable to both station-based and free floating
shared systems with exponential arrival and service times at the queues and trips
time modelled with infinite servers queues. Studying the performances of a free
floating bike sharing (FFBS) system using this model, an increase of the fleet size
resulted non beneficial in terms of additionally satisfied demand therefore user-
based relocation policies were proposed. This study in particular used stackable
vehicles such that is simple for a single driver to move more units in a single trip.
Two simple heuristic relocation strategies were implemented: a uniform one in
which users bring an additional vehicle to the planned destination with a certain
probability and a backpressure one where the same type of relocation happens only
if the number of vehicles in the destination zone is less than the number in the
origin one. An additional approach is then proposed for an optimal relocation
strategy involving a modification of the original network to include load dependent
relocation queues and defining a parameter which regulates the probability for a
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user to relocate an additional vehicle when moving to another station. Barth and
Todd [21] developed a queuing simulation model with parameters inferred from
collected data for a station-based sharing system with electric vehicles. Different
algorithms for operator-based relocation were tested in the simulation environment:
a static one based on real-time needs at particular stations, an historical predictive
one using prediction of expected demand to determine the best relocation routes
and an exact one with optimised scheduled operations based on exact knowledge
of future demand. The system performances were measured through metrics such
as the user average waiting time, the number of waiting customers and the total
number of relocation operations required. Additionally a cost analysis was carried
out for each scenario based on fixed costs of system deployment and on the trade
off between costs for personnel, management and relocation operations and extra
earnings from increases in met demand. A similar approach based on a model of a
closed queuing network with M/M/1 queues representing city zones and M/G/∞
queues for the interconnections was studied by Bazan et al. [22]. Additionally an
optimisation model was developed with constraints derived from the previous one,
to minimise the number of empty trips (i.e. relocation trips) while maximising the
total revenue. The two models were then combined in a simulation environment to
obtained through MVA the optimal fleet size, the total costs of relocation and the
average availability of vehicles. Jorge et al. [23] proposed instead an optimisation
model for vehicles relocation that aims at maximise the operator revenues from paid
trips and taking into account costs of staffed-based operations and maintenance.
Also a simulation model was developed to test a real-time policy in which at each
minute each station in the network is classified as supplier or demander based on
previous data of departures and arrival at that station for the same time period.
The relocation problem is then solved by computing the optimal routes from the
supplier to the demander stations that minimise the operation costs. Some variant
of the same policy were tested changing the interval of time to assess if a station
is a supplier or introducing different constraints such as a minimum number of
vehicles to be left at each station or an initial distribution of vehicles that has to be
respected at the beginning of each day. The optimal model applied to a case study
provided significant increases in the daily profit of the operator whilst the real time
policies resulted in a more limited but still substantial increase. Another case of
cost effective relocation is presented by Zhang and Pavone [24] which developed
a queuing model for autonomous MoD systems with self-driving vehicles that
rebalance themselves according to the system needs. A closed Jackson network was
used also in this case comprehending passenger losses. The optimal rebalancing
problem was formulated and solved to minimise the number of relocated vehicles
guaranteeing their availability through the network together with an additional
real-time rebalancing policy. Again performance metrics were obtained through
MVA showing the determinant impact of relocation in the management of traffic
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congestion.
The operation of refuel or recharge of vehicles are another important branch

of research in MoD systems. User contributions can be considered providing
incentives in a similar way as seen for user-based relocation. However with sharing
systems based on EV this may be a further complication. Most of the deployed
systems currently rely on operators to connect EV to charging stations whether
they are distributed through the operational area or concentrated in a single facility.
The management of such operations represent a significant cost both in terms of
workforce and of time needed.

Two of the most explored topics regarding the management of sharing systems
with charging stations are the stations location and sizing problems. Sadeghi-
Barzani et al. [25] proposed an optimal approach for both these problems which
minimises the costs for the deployment of a fast charging station infrastructure as
a mixed integer non linear programming (MINLP) solved with a genetic algorithm.
Costs for the station development and electrification were considered as well as the
loss on the electricity grid. Asamer et al, [26] instead developed an optimisation
model for an electric taxi system. After inferring the user demand from historical
data and identifying the charging demand, the optimal placing regions for the
charging infrastructure were obtained as result of a mixed integer linear program-
ming (MILP) based on the maximal covering location problem [27]. Roni et al. [28]
formulated an optimisation model for the charging management and planning of
the related infrastructure for a FFCS with an EV fleet, as an integer programming
(IP) combining the optimal location of charging stations problem together with the
optimal assignment of EV to them. Applying it to a case study they found that
the dominant component of the total time required for the charging operations
is the effective charging time required by the vehicle and that therefore adding
more stations in the network is beneficial in reducing the average time to reach
them but its contribution is almost negligible looking at the overall performances.
Starting from real trips data of a free floating car sharing, He et al. [29] developed
a queuing network model with multi-server nodes as charging stations. A particular
attention was given to customers’ picking behaviours distinguishing vehicles by
their level of charge. Two different operator-based approaches were also considered
for the charging process: one reactive and threshold activated and one proactive
both with the possibility to interrupt the operation before the completing of the
battery charge. On top of this network the charging infrastructure planning and
fleet sizing optimisation were formulated as a non linear programming (NLP) for
which an upper and a lower bound solution were computed. Folkestad et al. [30]
proposed instead an optimisation model for both charging and repositioning of
vehicles in a FFCS including their assignment to the stations and the routing of
staff in charge of the operations. An hybrid genetic search algorithm was proposed
as approximate solution and tested on real data bringing to the conclusion that
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combining repositioning with charging has a positive impact in terms of increased
met users’ demand. Ma and Xie [31] focused on an online method to assign vehicles
to fast chargers and formulated a dynamic MILP to integrate in the optimal charg-
ing location problem. The aim of the on-line assignment problem was to minimise
travel times and queuing delays resulting from charging operations, based on a
given realisation of the system. The charging schedule was optimised following a
rolling time-window for 24 hours intervals and results have been obtained from a
simulation queuing model. A more complex approach was employed by Liang et
al. [32] involving deep reinforcement learning (DRL) combined with binary linear
programming (BLP) to solve a charging schedule and EV relocation problem. In
particular DRL was used to compute the EV status in the system at specific time
instants including their location and level of charge. Then an online scheduling
was applied as a BLP to decide optimal repositioning and charging strategies.

2.3 Research group works
The study for this thesis project derives from the wider work on mobility and
shared transportation carried out by the research group SmartData@Polito1; this
center focuses on Big Data technologies, Data Science (from data management, to
data modelling, analytics, and engineering), and Machine Learning methodologies
applied to several domains of knowledge, finding solutions for both theoretical
problems and helping companies toward applications. Some of the group works
already addressed the theme of shared mobility in an urban environment.

In [33] a detailed study on the customers’ demand prediction in a FFCS is
presented starting from real trips data from the car2go database for the city of
Vancouver. Several state of the art machine learning algorithms have been tested
taking into account their prediction accuracy as well as the complexity of the
models for both short and long term predictions. In the same paper the car sharing
database was enriched with data from an open dataset from the Municipality census
including features describing detailed and diverse socio-demographic characteristics
of the city. These feature were then correlated with the demand for mobility in the
FFCS and, using machine learning techniques, a tentative of prediction of demand
was made based on these data only without any knowledge of past trips to try and
highlight relationship between demographics and mobility in the city.

A data-driven model for demand prediction in FFCS systems is instead detailed
in [34] with the aim of generalise the probability distribution of observed input data.
A time estimation was performed assuming exponentially distributed inter-arrival
times between bookings and with different arrival rates for each hour and type of

1https://smartdata.polito.it
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day. The spatial characteristic instead was obtained fitting a bi-dimensional Kernel
Density Estimation (KDE) on spatial data for each one of the previously derived
temporal slot. The demand model was then tested in a simulation environment to
generate new trips traces. A study on an electric fleet charging management is the
proposed with a particular focus on different placement strategies for the charging
infrastructure namely a centralised hub and a distributed set of stations.

The same demand model was used in [35] where the scalability problem of an
electric FFCS was studied with a simulation approach. The impact of system
design choices and infrastructure planning on the performances was initially shown
comprehending an economic analysis on costs and revenues. Then the system
scalability was investigated increasing the mobility demand and observing how
parameters such as the charging infrastructure and the fleet size affected the system
capability to cope with it.

A particular focus on the optimisation of charging infrastructure was given in
[36, 37]. Charging station placement and car return policies in particular were
studied including the possibility for users to return vehicles directly to a charging
station if the state of charge is below a certain threshold. Heuristic methods were
first explored for the station positioning such as selecting the top zones by average
parking time or total number of parkings. Two optimisation algorithms were then
proposed aiming at minimising costs and customers’ dissatisfaction: a local search
and a genetic algorithm. Performances were measured in the developed simulation
environment in terms of percentages of infeasible, charges and rerouting trips. The
firsts due to discharged batteries, the seconds when users directly plug vehicles to
charge them and the latter when customers are forced to change their destination
zone in order to charge the vehicle.

The problem of relocation applied to e-scooter sharing was addressed in [38] and
treated in a simulation environment. Two prediction models for the demand are
proposed: one baseline stationary model simply using averages over hour of day for
two day type (i.e. weekday and weekend) of past rentals data to determine future
demand and a second one using Deep Learning (DL) to better capture the spatio-
temporal dependence of urban mobility. Based on the predicted customers’ demand
then a relocation schedule is implemented which identifies at each simulated hour
pick up and drop off zones according to the expected surplus or lack of scooters
respectively. Eventually a greedy strategy selects the pick up and the drop off zones
with the highest number of surplus and the highest lack of vehicles respectively
and assigns the closest worker to perform relocation of the maximum number of
scooters they can move according to the system needs. A similar work on e-scooters
is in [39] based on the demand estimation model already described in [34] and
focusing on the impact of charging thresholds and heuristic policies on the battery
swap operations to charge the fleet. In particular the consequences of an increased
number of workers and a reduced time required for the operations are shown as
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well as the effect of the possible users contribution.
In the end the study in [40] proposes an interesting study of free floating systems

comparing different engine types for the fleet namely ICEVs using gasoline, diesel
and liquefied petroleum gas (LPG) and EVs. Using simulation different scenarios
were studied including the required refuelling or recharging operation required
by the fleet and focusing on, besides customers’ satisfied demand and system
profitability, on the environmental impact of each case by calculating the total
greenhouse gases (GHG) emissions.
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Chapter 3

Queuing modelling for
shared MoD systems

Modelling is in general a powerful tool to provide a formal representation of a
system and explain how does it work. The model is represented by means of state
variables that describe how the system is working at any time. The relation between
the variables and how they change and influence each others, describe the rules
according to which the system change its state. Modelling can be very helpful in the
design and dimensioning phase to try and forecast future behaviours, or on already
developed projects to study peculiar scenarios, solve possible critical situation and
obtain performance metrics for their evaluation. In particular analytical modelling
provides the mathematical description that relates the elements of the system and
derives mathematical expression to obtain performance indicators. A different
but complementary approach is given by simulation models which recreate the
system behaviour thanks to a simulation environment on a computer and extract
performance metrics by simply observe its evolution.

Queuing modelling is a particular branch which uses queues as the studied
object. A queuing system is characterised by customers that arrive to a queue in
order to receive a service. The main parameters that describe such objects are:
the arrival and departure process of customers in the queue, the number of servers
which provide the service, the capacity of the waiting line, the customer population
size and the queue discipline. The scope of this work is to provide an approximate
analytical queuing model to represent a free floating electric car sharing system. To
do so two different models are required for starters: the mobility zone queue, which
simply represent the zone of the city where car sharing vehicles can be parked, and
the charging station queue where electric vehicles are connected to charging outlets
in order to increase their battery level. Eventually new queues can be introduced
to model, for example, trips time between mobility and charging zones. In the
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following the first approximated models for the mobility and the charging queue in
isolation are illustrated and then combined in the city zone queue. The successive
steps is to create a network of zones to relate the fluxes of vehicles between them.
A summary of the models presented in the chapter is reported in table 3.1 with
single queue models in 3.1a and network ones in 3.1b.

Queue models Assumptions

Mobility zone

M/M/1 Exponential arrivals
and service times

M/M/1/Bp Finite capacity
M/M/1/F Finite population

M/M/1/Bp/F Finite population
and capacity

Charging zone
M/M/C Multiple servers

M/M/C/Bc/F Multiple servers,
finite population and capacity

City zone M/M/1/Bp/F + Tandem of finite capacities
M/M/C/Bc/F and finite population queues

(a) Single queue models

Queue models Assumptions
Mobility zones M/M/1/F Gordon-Newell
only network network

Charging stations M/M/1/F + Gordon-Newell network with
in the network M/M/C/F multiple servers queues

M/M/1/F + Single infinite
M/M/C/F + servers queue

Delay zones M/M/∞ in the network
in the network M/M/1/F + Multiple infinite

M/M/C/F + servers queue
M/M/∞ in the network

(b) Queuing network models

Table 3.1: Single queue and queuing network models summary

A common variable between all the models is the population of customers that
is made by the vehicles fleet which is assumed to be a set of homogeneous cars
all with the same characteristics. In particular they all present the same battery
capacities and average energy consumption.
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3.1 Single zone queue models

Study the queue model in isolation is important to give a first characterisation of
the its parameters and observe the behaviour of the customers inside each node.
The first required step in the construction of the analytical model for the car sharing
system, is to define its variables and associate them to the system parameters.

3.1.1 Mobility zone

The mobility zone queue represents a discretized zone of the city where the vehicles
are parked. The position of the vehicles inside the zone is not taken into account.
The departure process of vehicles from the queue is determined by the request for
mobility of a user and it is a parameter that may vary with the city zone and in
time. The arrival process, similarly, describes trips that end within the city zone
limits. The number of servers for the queue is equal to one because one request for
mobility is processed at a time and the service time is considered to be null since
a mobility request can be either immediately satisfied if a vehicle is available in
the zone, or it can remain unsatisfied if no vehicles are available. The reservation
time, which is the time between the user booking request for the car and the
actual moment in which the ride begins, has not been considered in this modelling
scenario. With this configuration the time spent by vehicles in the queue is given
by the single contribution of the waiting time i.e. the one during which idle, parked
vehicles wait to be booked. The queue discipline which describe the movement of
the customers within the queue is the FIFO; this assumes that the user will book
a car within the zone of their choice without distinguishing between the possible
available choices. Eventually the state variable which represents the state of the
system is the number of vehicles present in the zone.

Users mobility requests are assumed to be random variables of a Poisson dis-
tribution and independent from each other such that the mean service time is
exponentially distributed with parameter µp. Similarly the vehicles arrival process
is assumed to be Poissonian with parameter λp. These assumption are often made
in literature and have been validated for a case of a FFCS by the work in [34].
With this configuration and considering an infinite capacity of the waiting line, the
city zone queue model is an M/M/1 queue as in the scheme in Figure 3.1. This is
a well known queue for which it is simple to find a close form expression of the
probability distribution of its customers and consequently, all the desired indicators
can be easily calculated.
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Figure 3.1: M/M/1 queue scheme

Mobility zone with finite capacity

Introducing a finite capacity in the queue model can be useful to represent the
limited availability of parking spots in a city zone. An accurate dimensioning of this
aspect although, would require an extensive knowledge of both the city topography
and the state of all vehicles in it at all time which is, of course, impossible to obtain.
Nonetheless even an approximate value for the capacity of the waiting line can
reflect peculiar characteristics of some city zones for which it is known that the
availability of parking spots it is a critical factor. The finite capacity model for
an M/M/1 queue is well known and it corresponds to an M/M/1/Bp queue. More
details on classic queuing models can be found in the original formulation of Allen
[41].

The main difference with the original model is given by the introduction of
possible losses and by its finite state space as shown in the Markov chain in figure
3.2. An expression for the steady state distribution of customers πi in the queue
can be obtained with the equations in 3.1 where π0 is the probability of having an
empty queue and ρp is its utilisation. In the car sharing scenario the possible queue
losses represent cars that can not end their trips in the desired zone of destination
and are therefore redirected elsewhere.

Figure 3.2: Markov chain of M/M/1/Bp queue
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πi = π0 · ρi
p ρp = λp

µp

π0 = 1 − ρp

1 − ρBp+1

(3.1)

Mobility zone with finite population

Finite population models are useful to describe a system in which the limited
number of customers has an impact on the queue indicators. In particular the
arrival rate depends on the number of customers that are not already in the queue
as shown in its Markov chain in figure 3.3. As for the case of finite capacity queues,
the number of possible states for the model is finite but no losses can happen. The
equations for the closed form of the probability distribution function at steady
state are reported in 3.2.

Figure 3.3: Markov chain of M/M/1/F queue

πi = π0 · F !
(F − i)! · ρi

p ρp = λp

µp

π0 = 1qF
i=0

F !
(F −i)!ρ

i
p

(3.2)

Combining the two described models a new queue of type M/M/1/Bp/F can
be obtained which reflects the effects of both the finite population model and the
finite capacity of the waiting line. The basic assumption for this case is that not
all the the customers can be simultaneously in the same queue, i.e. Bp < F . In
a shared mobility environment this would mean that non all the vehicles in the
fleet can be parked inside the same zone at the same time due for example to a
lack of parking spots or even on a general definition of city zones based on smaller
areas. Additionally the arrival rate of the cars in each zone depends on how many
cars are already inside it; this assumption can result particularly relevant when
the fleet size is small and the number of zones is limited. The resulting Markov
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chain is reported in figure 3.4; this is the same as the one shown in figure 3.3 but
truncated in correspondence of the state Bp. Similarly a closed form expression
for the probability density function can still be obtained starting from the finite
population one, just limiting the space of the summation as shown in the equations
in 3.3.

Figure 3.4: Markov chain of M/M/1/Bp/F queue

πi = π0 · F !
(F − i)! · ρi

p ρp = λp

µp

π0 = 1qBp

i=0
F !

(F −i)!ρ
i
p

(3.3)

3.1.2 Charging station

Charging stations are required in an electric car sharing system in order to perform
charging operations required by the vehicles. Different approaches can be used
allowing the users to connect the cars to the charging outlets or leaving this
operation to the car sharing employees which can retrieve vehicles from a city
zone and bring them to charge. In all these scenarios the charging station can
be modelled as a queue in which the servers represent the charging outlets and
consequently the service rate depends on the time needed by a car to complete its
charging process. Arrival rates in the zone can be decided according to the need
for charging of the fleet and to possible charging policies and strategies.

For this model the state variable is, again, the number of vehicles in the queue
and the queue discipline is the FCFS one. In a first approximation both the arrival
and departure rates are assumed to be Poisson distributed and independent. The
basic model for the charging queue is then the M/M/C where C is the number of
servers (i.e. charging outlets) as shown in the scheme in Figure 3.5.
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Figure 3.5: M/M/C queue scheme

As shown for the parking zone queue, the model can be improved considering the
finite population and the capacity of the waiting line. While the finite population
is exactly the same as the one considered for the parking queue (i.e. the vehicles
fleet), the limitation on the size of the waiting line is a parameter that can be set a
priori by the system operator. Especially when the charging operations are carried
out by the car sharing employees in fact, it can be decided to limit the number of
vehicles that wait for a plug to become available or even not to allow queuing at
the stations. Furthermore the physical meaning of the waiting line in the charging
queue can vary whether the cars are brought in its proximity while waiting or if
they simply become unavailable to the users and are physically brought to the
station only when they can be put on charge.

An additional difference with the model considered in section 3.1.1, is given by
the presence of multiple servers. This means that the overall service rate of the
queue changes with the occupation of the C servers as it is possible to notice in its
Markov chain in figure 3.6. Anyhow, an expression for the steady state distribution
of the M/M/C/Bc/F queue can be derived where F is the same fleet size considered
for the parking queue and Bc is the chosen capacity and it is shown in equations
3.4.

Figure 3.6: Markov chain of M/M/C/Bc/F queue
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πi =π0 · ρi
c ·

C−1Ù
i=0

F − i

i + 1 ·
BcÙ

i=C

F − i

C

ρc = λc

C · µc

π0 = 1qBc
i=0 ρi

c ·rC−1
i=0

F −i
i+1 ·rBc

i=C
F −i

C

(3.4)

3.1.3 City zone
A general model for the city zone can be obtained combining the two previously
described ones for the mobility and the charging station queues. In particular the
final configuration would be a tandem of the charging station and the mobility zone
queues where the departing flux of vehicles from the first one is completely directed
towards the second one as shown in the scheme in figure 3.7. This is reflected
in the real scenario by the cars that, once the charging process is completed, are
detached from the charging outlet and become available for users bookings inside
the same city zone. The incoming flows of vehicles in the two queues can be instead
modelled in different ways depending on the charging policy adopted.

Figure 3.7: City zone queue model scheme

In the first approximation a general arrival process to the city queue, Poisson
distributed and with rate λ, is splitted in two parts according to a probability
that describes the charging needs of the vehicles in the system. The individual
arrival process of the two components queues are therefore branches of a Poisson
process and still Poisson distributed with parameters λc and λp respectively. These
parameters can be defined in different ways according to the chosen policy on
how to bring vehicles to charge. All the studied alternatives are explained later
when considering a network of queues in section 3.3.2. Although the tandem of
two queues is a well known model, the introduction of finite capacities in the two
sub-components and the consequent possible losses, forbid the formulation of a
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closed product form expression for its steady state probability. In the following
analysis the limitations due to the finite capacities of the queues buffers are set
aside and the correspondent simplified model is analytically studied.

3.2 Queuing network modelling
To fully describe a MoD system through an approximate analytical queuing model,
it is necessary to consider a network of multiple city zones such as the one described
in paragraph 3.1.3. The queuing network allows to relate the flows of vehicles
throughout the city by means of routing matrices and traffic equations. Different
types of networks can be modelled based on the scenario and on the assumptions
made; the most suitable option for the analysed system is a closed one also known as
a Gordon-Newell Network. This type of network is defined by a finite and constant
population with customers that do not leave the system, exponentially distributed
service times and a FCFS discipline. Moreover the sum of the probabilities for a
customer to leave a queue i and go to any other queue j in the network pij must
be equal to one and the system must be ergodic (i.e. ρi < 1 for all queues i).
Additionally the possibility to allow cycles has been included with trips departure
and arrival zones that can coincide whilst no limitations for the queues capacity
are considered in the first attempt. Including limitations on the queues buffer in
fact would require to deal with possible losses drastically increasing the complexity
of the model.

3.2.1 Closed queuing network of mobility zones
The first network model implemented is composed by a fixed number N of mobility
zones queues, each representing an area of the city where car sharing vehicles can
be parked. The network is fully meshed meaning that a trip can start and end in
whatever city sector with the only constraint that no vehicles can leave the network.
A routing matrix can be build to collect the routing probabilities pij for the entire
network as in equation 3.5. Since the system is closed, these routing probabilities
have to satisfy equation 3.6, which also implies that the routing matrix R must be
stochastic.

R =

p00 ... p0N

...
pN0 ... pNN

 (3.5)

NØ
j=1

pij = 1, ∀i = 1,2, ..., N (3.6)
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The service times for each queue are still considered independent and exponentially
distributed with mean 1

µi
. The parameter µi is specific for each zone and reflects

the average users demand for mobility in that particular city area.
The scheme for a generic zone i in the network is shown in figure 3.8 where

the possible routes are highlighted each with its probability and λ∗
i represent the

customers flow through the queue at steady state.

Figure 3.8: Generic zone in the network scheme

3.3 Charging stations in the network
A crucial element in an electric sharing system is the charging infrastructure.
Charging stations are usually placed inside one or multiple city zones and consist
of one or more charging points each with a socket where the EV can be attached
through a plug and a cable. As seen in section 3.1.2, the charging station can be
modelled as a multi-server queue where each server represents a charging outlet.
This queue representation can be incorporated as a separate node in the network of
mobility zones model following the scheme in figure 3.9 for each city zone in which
the charging infrastructure has to be included. In a realistic scenario, of course,
there is no need to include charging stations in each city zone since it would imply
excessive costs and an high unused capacity.

3.3.1 Charging rates and performances
In characterising the charging station queue model, the first parameter to set
is the service rate which will quantify the rate of charging of each outlet in the
station. This is an intrinsic characteristic of the installed infrastructure, since each
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Figure 3.9: Charging station in generic city zone scheme

charging point has its own power. In the model approximation the service rates are
exponentially distributed with a mean value µCi that can be set according to the
system characteristics. An exponential distribution for the charging rates is required
by the network model to have a closed form solution and apply the algorithm to
solve it as the MVA later explained in section 4.1.3. This assumption may be
justified by the fact that, according to the different charging policies explained in
the following, vehicles that are brought to charge have a starting battery level that
may vary a lot hence requiring a different quantity of time to complete the charge.
The overall service rate of the station will be then still exponentially distributed
with mean value C · µCi where C is its number of servers (i.e. charging outlets).
As of today the majority of the publicly available charging infrastructure has a
power around 22kW . However especially in the last few years, some supercharger
alternatives are appearing on the market such as the Tesla supercharger [42] which
has an outlet power up to 250kW . Even so this kind of infrastructure is often still
not widespread or even accessible by the general public or by car sharing customers
and it is in general more difficult to operate.

Other parameters to be set by the operator that influence the charging per-
formances are the charging thresholds. The minimum threshold is the minimum
fraction of residual battery capacity allowed before making the vehicle unavailable
for booking and bring it to charge. This is crucial in a sharing system to avoid
situations where the EV loses all its battery capacity during a user rent or a
vehicle remains available but with a battery status such that no user books it. The
maximum threshold instead set the maximum fraction of battery to be charged
in a complete charging operation. This is usually set to less than 100% of the
total capacity to avoid a fast degradation and preserve the battery and prolong its
lifespan.

Table 3.2 shows the impact of charging thresholds and charging stations power
on the average time required for a complete charge. The EV took as reference for
these scenarios is a Fiat new 500 action [43] in its model with a battery capacity
of 23.8kWh an average consumption of 13kWh per 100km that guarantees an
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autonomy of around 180km.

Charging EV Charging thresholds Average
station Battery min max charging
power capacity time
16kW 23.8kWh 20% 90% 63 min
16kW 23.8kWh 10% 1000% 81 min
22kW 23.8kWh 20% 90% 46 min
22kW 23.8kWh 10% 100% 59 min

Table 3.2: Charging infrastructure performances example

3.3.2 Flux in the charging station: charging policies
In order to redefine the routing matrix and the flows in the network considering
the newly added charging nodes, different approaches using distinct policies can be
employed. The incoming rate in the charging zone in particular can be decided a
priori following pre-determined strategies to meet the power needs of the fleet. In
the following three policies to determine the entering flux in the charging queue are
illustrated namely opportunistic, uniform and closest station, all assuming that the
charging operations are carried out by the system operators and that no relocation
is employed after.

Opportunistic charging

The first analysed policy is referred as opportunistic since it considers only the
power necessity of the vehicles entering in the city zones where a charging station
is installed. No vehicles are then moved from one zone to another in order to be
put in charge. This is a strong assumption especially if no particular criteria are
followed to determine the positioning of the charging infrastructure in the city.
However if the charging poles are enough and distributed in busy zones and the
charging thresholds are set reasonably, it may be safe to assume that the EVs
will eventually reach a charging station without run out of power. Even so this is
not guaranteed because, depending on the input routing matrix, there may be a
possibility, even if small, that repetitive cycles happen in the network which do not
include zones with a charging station.

This policy needs a fraction of the flux entering a city node to be redirected to
the charging station inside it as depicted in the scheme in figure 3.10.
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Figure 3.10: Opportunistic charging policy scheme

The flux in the station λCi
is determined analytically as a function of the EV

autonomy and the fraction of the system flux which is directed towards the zones
with a charging station as in equations from 3.7 to 3.9. The parameter K is
inversely proportional to the average autonomy in terms of trips of the vehicles
in the fleet ta, while the terms CS in the summation indicates the mobility zones
with a charging infrastructure within.

λCi = K · λi (3.7)

λ̂i = (1 − K)λi (3.8)

K = 1
ta

· 1q
j∈CS

λ∗
jq

∀j
λ∗

j

(3.9)

It is important to notice that while the terms K is used as a probability to redirect
the flows of vehicles, there are no bounds in its formulation that ensure a value
less than one as required by its definition. However in modelling realistic scenarios
the eventuality of having a K greater than one is unlikely.

From the point of view of the entire city network, each charging station is
considered as a unique node and therefore the original routing matrix is modified
consequently to reflect the changes. In particular changing the policy that deter-
mines the flux entering in the charging nodes, will result in a modification of the
routing probabilities in both the columns corresponding to the charging station and
the mobility zone to which it belongs. An example of a modified routing matrix is
in 3.10 where a charging station has been included in zone i. Since no relocation
after charging is being considered yet, all the flux outside is directly merged into
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the corresponding mobility zone resulting in the last row of the matrix.

R =


p00 ... p0i · (1 − K) ... p0N p0i · K

... ... ...
pN0 ... pNi · (1 − K) ... pNN p0i · K
0 0 1 0 0 0

 (3.10)

Uniform relocation charging

More complex approaches for the charging operations can be considered involving
the concept of relocation of the fleet. Relocation implies the movement of vehicles
from one network’s node to another not as a consequence of user mobility but
because of system operations. The network operator can use relocation to try and
balance the system according to the expected user demand for mobility or, as in
this case, to enhance the charging process. A scheme for a generic charging policy
including relocation is shown in figure 3.11.

Figure 3.11: Generic charging policy with relocation scheme

The first considered policy exploiting relocation for charging is referred as
uniform since vehicles are taken from every zone of the city, according to the
expected fleet power needs, and are distributed uniformly towards the charging
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stations in the network. The incoming flux λCi
in the station under observation

is therefore determined by the contributions of multiple fluxes from all over the
network as in equation 3.11. The fraction K of the mobility flow to be redirected
to the station, in this case, depends on the specific zone to which the flux was
originally directed and it can be defined as in 3.13. In fact, given that 1

ta
is the

fraction of vehicles that has to be taken from each zone and brought to charge,
three cases may arise depending on the source zone. If the zone is the one with
the charging station within, the entirely fraction is directed into its station since
relocation to other charging point would bring no advantages. Consequently if
a zone has another charging station within, no vehicles leave that zone to reach
an external charging point. In all the other cases (i.e. mobility nodes without a
charging infrastructure) the fraction 1

ta
of the incoming flux is splitted uniformly

and forwarded towards the NCS charging nodes in the network. For all the network
nodes the fraction of flux which is not redirected for charging purposes λ̂j is the
same and depends only on the autonomy in terms of trips of the fleet as in equation
3.12.

λCi =
NØ

j=1
Kj · λj ∀i ∈ CS (3.11)

λ̂j = 1 − 1
ta

· λj ∀j (3.12)

Kj =



1
ta

if j = i

1
NCS ·ta

if j /∈ CS

0 if j ∈ CS, j /= i

(3.13)

Closest station relocation charging

The last considered policy to determine the incoming flux in the charging nodes,
is the closest station. This is a possible variant of the uniform one previously
explained, since it employs relocation for charging following the same scheme as
in figure 3.11. The additional aspect introduced by the closest station policy is,
as the name suggest, the geographical dependency of the system operations. In
a real case scenario, in fact, it is safe to assume that the geographical distance
between two nodes (i.e. city zones and charging stations) plays an important role
in the decision making process, especially considering the operator’s costs in terms
of both time and fuel. In particular considering the relocation for charging, this
policy assumes that vehicles are relocated from zones without charging points to
the closest station. The additional spatial element requires to have an explicit
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knowledge of the network grid over the city in terms of geographical coordinates
or, at least, the relative distances between all the zones in the network. Once this
information are obtained, it is useful to define for each charging zone in the network
the set ZCSi

as the set of mobility zones for which CSi is the closest charging point.
The flux obtained with these hypothesis is in equation 3.14 and in this case the
fraction K is equal to the inverse of the vehicles trips autonomy for all the mobility
nodes. From the point of view of the system operations, this policy can bring
important advantages since all the relocated EV for charging operations from one
zone are directed to the same charging node which is also the closest one.

λCi =
NØ

j=1
K · λj ∀j ∈ ZCSi

(3.14)

K = 1
ta

(3.15)

λ̂j = 1 − K · λj ∀j (3.16)

3.3.3 Flux out the charging station: relocation after charg-
ing

Once the charging process is completed, the EVs leave the charging nodes servers
and become available for the users bookings. In a real case scenario the cars have
to be unplugged and moved away in order to make the charging outlet in the
station available for new vehicles. Different policies may be actuated to decide
where the EVs have to be taken following their charging operations in a similar
way as it has been done do determine the fluxes toward the charging station in
section 3.3.2. The most simple case implies that cars are simply unplugged and
left in the same zone of the charging station while becoming available for booking.
More complex policies may involve a further relocation following different criteria
to determine the final destination nodes. All these strategies, and in particular the
ones involving relocation, require the intervention of the system operator and can
be planned beforehand following different optimisation criteria. A general scheme
to highlights the flux out of the charging node is presented in figure 3.12. The
different policies will provide different definitions for the probability pCsi,j from
the charging node i to all the mobility zones in the network. Four strategies are
proposed in the following: no relocation after charging, uniform relocation, highest
demand relocation and probabilistic relocation.
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Figure 3.12: Generic scheme for flux outside the charging station

No relocation after charging

Considering the baseline scenario with no relocation after charging implies that all
the vehicles leaving the station become available in the corresponding mobility node.
Whilst this does not generate movement between city zones, it is still required that
vehicles are unplugged to leave the servers available for new charging operations.
This also means that cars have to be physically moved to a parking spot available
in the same zone. An alternative policy, easier to applied in reality, consists in
leaving the cars in the same spot once they have completed the charging. This kind
of operation does not require to move the vehicles and it may be therefore more
convenient in terms of costs and personnel required. However this would also imply
that the charging station stays unavailable until the EVs is booked again and would
significantly increase the complexity of the analytical model. For all these reason
the first and only considered policy with no relocation after charging, assumes that
vehicles leave the station once the charging is completed and become immediately
available in the corresponding mobility zone. The simple mathematical formulation
for the probability pCsi,j following these assumption is in equation 3.17.

pCsi,j =


0 if j /= i

1 if j = i

(3.17)

Uniform relocation after charging

The first approach involving relocation, is referred as uniform and, as the name
suggests, implies a uniform distribution of the vehicles towards all the other
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mobility zones in the network. It is the simplest approach considering relocation
to implement, since the probability to move to each of the N mobility node in the
network is the same and it is expressed as in equation 3.18. This kind of relocation
does not take into account any factor regarding user mobility demand or the spatial
distribution of the charging stations.

pCsi,j = 1
N

(3.18)

Highest demand relocation after charging

A more sophisticated policy using relocation can be formulated taking advantage of
the available data on the expected user demand in each mobility node. In particular
it is possible to limit the number of destination zones of the relocation operations
to avoid to bring vehicles where they will probably remain unused for a long time.
This policy requires to select the Ntop zones with the highest expected user mobility
demand where Ntop is a new parameter that can be set according to the studied
scenario. Once the top nodes have been selected a uniform relocation is employed
limited to this set. Defining Ztop as the set of the Ntop mobility zones with the
highest expected mobility demand, the expression for the probability pCsi,j is in
equation 3.19.

pCsi,j =


0 if j /∈ Ztop

1
Ntop

if j ∈ Ztop

(3.19)

Probabilistic relocation after charging

The final considered policy is a modified version of the highest demand one using a
probabilistic approach. Starting again from the expected demand for user mobility,
the flux out of the charging station is redirected towards each mobility node with
a probability proportional to its expected demand rate. This allow for a simpler
formulation without the need for an additional parameter such as Ntop. Given the
vector of the service rates for each zone µ its normalised version µ̂ is computed
which reflects the out probability as in equation 3.20.

pCsi,j = µ̂j (3.20)

3.4 Trips time and delay zones
In the network models seen in sections 3.2 and 3.3, customers movements throughout
the city nodes are treated as instantaneous. In fact when a vehicle leaves a mobility
zone or a charging station, it will appear immediately in the destination node
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according to the probabilities in the routing matrix. This assumption may be too
simplistic considering a mobility sharing system in which, of course, movement
between two points in the city requires a non negligible amount of time.

In order to include the trip time as a parameter in the queuing network model, a
possible approach is to consider an additional kind of node whose aim is to associate
a certain delay to each trip. The most suitable queue for this job is the M/M/∞ or
infinite servers queue shown in the scheme in figure 3.13. Customers entering this
kind of node do not queue since there is no buffer and there is always a free server
available. The time spent in the queue is therefore given by the only contribution
of the service time which in this case is associated to the trip time. It is important
to notice that although an exponential distribution may not be the best one to
describe the trips times even in an approximate way, this assumption is fundamental
for an easy integration of the queue model in the network. Considering other types
of distribution of service time such as a constant or a Gaussian one in fact would
result in a non Gordon-Newell network, loosing the possibility to obtained a closed
form expression from the distribution of customers with a normalisation constant
and making impossible to apply the convolution theorem or the mean value analysis
to obtain system metrics. On the other hand even if considering an high average
for the exponential distribution, there may be very low values for the service time
representing trips duration that are likely much longer.

Figure 3.13: M/M/∞ queue scheme

Different approaches may be considered on how to set the network routing
to include the trip delay. Ideally a delay node should be placed between each
possible couple of origin-destination nodes such that the average service time can
be modelled as realistically as possible considering the physical distance between
the zones and the average vehicles speed. This although, would exponentially
increase the dimension of the network and, consequently, its complexity. The two
considering methods instead, use a unique delay zone for the whole network and
multiple delay nodes each associate to a origin mobility one respectively.
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3.4.1 Single delay zone
In the first approach a single M/M/∞ queue is added to the network and all
the routing is diverted to pass through this node before reaching the intended
destination. This requires to set a unique mean value for the service time of the
delay node that has to reflect as much as possible the general mean trip time for all
kind of movements in the network. A generic scheme for this approach is presented
in figure 3.14. It can be noticed how all the fluxes are directed to the delay zone
except the ones between a mobility zone and the charging station within its space.
In fact this kind of movements are associated to a null trip time since the vehicles
never leave the city zone.

Figure 3.14: Single delay zone scheme

A particularly relevant complication regarding this model is that once all the
flows merge into the delay zone, it is impossible to exactly determine their origin
nodes and therefore compute the probabilities pD,j and pD,Csj

. It would be necessary
in fact to go back to each individual contribution of the total flow in D and aggregate
the ones directed to the same destination node weighting them by the quantity of
incoming flux losing the one-to-one correspondence of origin and destination of the
routing matrix. An approximation method is implemented in the next chapter to
overcome this problem.

3.4.2 Multiple delay zones on departure nodes
In order to have a more punctual estimation of the service times and not to lose
the origin-destination coupling of the network routing matrix, the second proposed
approach considers a distinct delay zone, modelled still as an M/M/∞ queue, for
each origin mobility zone. In this way all the flows of vehicles starting from a
node passes through a different delay queue, whose average service time may be
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set accordingly considering possible peculiarity of the departure zone. In particular
all the trips originated from each node are collected and the average distance
is computed; the rate for each delay zone is obtained then dividing the average
speed of the vehicles in the network by the computed average distance of the
corresponding mobility zone. This procedure may result particularly useful for
example, for zones that are significantly distant from the rest of the network and
therefore generate flows with a greater trip time on average. While the dimension of
the network increases by a factor N (i.e. number of mobility zones), the advantages
of this method may result worth it especially considering the possibility of retaining
the same routing probabilities of the original network. In fact each delay zone
would just represent an additional step following the exit from a mobility zone.
Starting from the original routing matrix represented in 3.21, the new one can be
built with some simple operations and obtaining the result as in 3.22. In particular
N new rows and columns are appended to the original matrix, representing the
routing probabilities from and to the N delay zones respectively. Then the content
of the first N rows in the original matrix is simply moved down to the last N rows
since the flows out of each delay zone follow the same probabilities as the flows
exiting the mobility zones in the original network. The probabilities out of the
charging stations instead do not change. In the end the block in the upper right
corner in equation 3.22 is an identity matrix since all the flows from each mobility
zone are redirected to the corresponding delay zone. All other possible flows in the
network are not allowed and are therefore represented with a zero probability in
the routing matrix.

R =



N

NCS

p0,0 . . . . . . p0,N p0,Cs0 . . . p0,CsNcs... . . . pj,i
... ... ...

... pi,j
. . . ... ... ...

pN,0 . . . . . . pN,N pN,Cs0 . . . pN,CsNcs

pCs0,0 . . . . . . pCs0,N
... ...

pCsNcs,0 . . . . . . pCsNcs,N

. . .

0. . .

Nú ýü û NCSú ýü û 
(3.21)
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R =



N

NCS

N

pCs0,0 . . . . . . pCs0,N
... ...

pCsNcs,0 . . . . . . pCsNcs,N

p0,0 . . . . . . p0,N p0,Cs0 . . . p0,CsNcs... . . . pj,i
... ... ...

... pi,j
. . . ... ... ...

pN,0 . . . . . . pN,N pN,Cs0 . . . pN,CsNcs

0 0 I

0 0. . .

0. . .

Nú ýü û NCSú ýü û Nú ýü û

(3.22)
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Chapter 4

Queuing Network
performance metrics and
indicators

Deriving the system indicators and the performance metrics is much more difficult
if a network of queues is considered instead of a simple queue in isolation. The
common way is to try and derive the steady state distribution probabilities of the
network. In some cases and for certain categories of networks these probabilities
can be written in a convenient compact mathematical expression known as product
form; the overall expression for the network is therefore the result of the product
of the steady state distribution of the single queues as they were considered in
isolation. From the obtained expression all the network metrics can be computed,
although this may result in particularly computationally complex tasks. For this
reason and for the analysis of networks that do not allow a simple product form
distribution, different approximation techniques and analysis have been formulated
and some of them have been employed in the following steps.

4.1 Mobility zones network

The first network considered is made up of mobility zones only, as previously
described in section 3.2; this is a closed, cyclic queuing network whose nodes are all
M/M/1 queues. Considering only single server queues is a particularly simplifying
condition since it allows to use well known algorithms and procedure to derive the
needed indicators.
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4.1.1 Customers flows

The peculiar characteristic of the mobility zones network such as the one chosen
to represent the car sharing system, is that customer’s flows in its nodes are not
independent and consequently not Poissonian. In fact both arrivals and departures
in each node depend on the current distribution of customers throughout the
network. Flows in the network are described through the traffic equations for each
node. A system of N traffic equations for the closed network can be written as in
equation 4.1 or in matrix form using the routing matrix R as the one in equation
3.5 and the unknown vector of flows λ∗ as in 4.2.

I
λ∗

i =
NØ

j=1
pijλ

∗
j ∀i ∈ [1, N ] (4.1)

λ∗ = λ∗ · R (4.2)

Building such a system for the analysed closed queuing network results in a set of
N linearly dependent equations since, as stated before, flows in each node are not
independent and nor entering flux from outside neither exiting flux from the inside
are allowed. The traffic equations system can therefore be solved by fixing the flow
inside one of the queue obtaining in this way relative results with respect to the
reference node. In a computer environment, starting from a random initial guess of
the unknown vector λ∗, an iteration process can start computing the relative fluxes
as in equation 4.2, until convergence is reached and the final vector is obtained. It
is important to stress the fact that in both cases the solution of the system is a
vector of relative flows in the network nodes which does not give a quantitative
result on the real throughput.

4.1.2 Steady state distribution probabilities of the network

Whilst for ergodic open networks each queue can be assumed to behave indepen-
dently at steady state, this assumption is not valid for closed networks. This
also means that the steady state probabilities of the network can not be written
as a simple product form. Instead, thanks to Gordon-Newell theorem, the joint
steady-state probabilities can take a non-trivial product form as in equation 4.3,
which takes into account the limited state space including a normalisation constant
G(F, N) as in equation 4.4. In fact given the vector n in equation 4.5 which express
the distribution of the customers in the network’s nodes, such distribution is valid
only when n belongs to the allowed state space S(F, N) in equation 4.6 which takes
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into account the constraint on the constant population F .

Pr(X(∞) = x) = πn =


1

G(F,N) ·rN
i=1 βi(ni) if

q
i ni = F

0 if
q

i ni /= F
(4.3)

G(F, N) =
Ø

n∈S(F,N)

NÙ
i=1

βi(ni) (4.4)

n = [n1, n2, ..., nN ] (4.5)

S(F, N) = {n ∈ NN :
NØ

i=1
ni = F} (4.6)

The factor βi(ni) express the probability distribution of each single queue i in
isolation and depends on its utilisation ρi. In particular the formulation of the
Gordon-Newell theorem in equation 4.3 is valid for closed network of queues of type
./M/1 and ./M/C. Therefore the nodes must have an exponential distribution
of their service times but can have different distributions for the arrival ones and
in the same network can coexist multiple servers and single server queues. The
number of servers Ci in each queue will determine the expression of βi(ni) as in
equation 4.7. The utilisation of each node is expressed by the well known formula
in equation 4.8 where λ∗

i and µi are the steady state customer flow and the service
rate of the queue respectively.

βi(ni) =



ρni
i if i is a ./M/1
ρ

ni
i

ni! if ni < Ci

ρ
ni
i

Ci!·C
ni−Ci
i

if ni ≥ Ci

if i is a ./M/C
(4.7)

ρi = λ∗
i

µi

(4.8)

Normalisation constant computation

As for its definition, the direct computation of the correction factor G(F, N) requires
the exploration of all the network state space S(F, N). In particular all the possible
combinations of customers in the queues have to be tested. This may lead to a too
computationally complex problem when the number of nodes and the population
of the network increase. The cardinality of the state space may be computed
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through equation 4.9 and it is easy to imagine how the complexity of this operation
represents a problem even considering relatively small networks and population
sizes.

|S(F, N)| =
A

F + N − 1
F

B
(4.9)

A numerical approach can be employed instead, provided by the convolution
algorithm or Buzen’s algorithm first formulated by the homonymous author [44]
whose main step are summarised in Algorithm 1. This recursive method is based
on the fact that one can easily compute G(f, N) as function of G(f − 1, N). In this
way starting from an empty network and increasing at each step the population by
one, it is possible to evaluate the correction factor with just N · F multiplications
and N · F additions.

Algorithm 1 Convolution (Buzen’s) algorithm
1: procedure Conv(F, N) ▷ for Network of single server queues
2: ▷ Initialisation
3: g(0, n) = 1 n = 1, ..., N f = 1, ..., F

4: g(f,1) = ρn
1 n = 1, ..., N f = 1, ..., F

5: ▷ Recursion
6: g(f, n) = g(f, n − 1) + ρn · g(f − 1, n)
7: ▷ Termination
8: g(F, N)
9: end procedure

The computation of the normalisation constant, as said, allows to write an
expression for the joint steady state probabilities of the network and consequently
to extract useful metrics such as the mean number of customers in each queue
or their actual utilisation and throughput. A modified version of the algorithm
can be employed to include multi-server queues or queues where the service rate
depends on the state of the network. However, the dependency on the steady state
distribution to exactly compute network indicators can still lead to complexity
problems for big networks.

4.1.3 Mean Value Analysis
The MVA is an approximation technique and a powerful tool in analysing closed
networks first formulated by Reiser and Lavenberg [45]. It allows to directly
compute the network performance metrics, bypassing the need for the steady state
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distribution calculation and the exploration of its state space. The algorithm is
based on a previous result obtained by the same authors [46] stating that the
stationary state probabilities when a customer enters a network are equal to the
stationary state probabilities at arbitrary times for the same network with one less
customer. This allows to find a simple relation between the mean waiting time
and the mean queue size of the same system with one less customer. Combining
this result with Little’s law, a recursive procedure is obtained which increases the
population size at each iteration as reported in Algorithm 2.

Algorithm 2 Mean Value Analysis
1: procedure MVA(F, N) ▷ for Network of single server queues
2: ▷ Ln(f): mean number of customers in queue n in a network with f customers
3: ▷ Wn(f): mean time spent in queue n in a network with f customers
4: ▷ λ∗

n: relative flow of customers in queue n
5: ▷ λf : real throughput of the network
6: ▷ Initialisation
7: Ln(0) = 0 n = 1, ..., N

8: ▷ Recursion
9: Wn(f) = 1+Ln(f−1)

µn

10: λf = fqN

n=1 Wn(f)·λ∗
n

▷ Little’s Law
11: Ln(f) = λ∗

n · λf · Wn(f) f = 1, ..., F

12: ▷ Termination
13: when f=F
14: end procedure

The results obtained with the MVA algorithm allows to compute the real
throughput of the network with equation 4.10 starting from the relative flows
obtained through the traffic equations as seen in section 4.1.1 in equation 4.1.

In the car sharing environment, the throughput vector λ represent the total
number of trips at steady state per city zone and it is an essential result for
computing other metrics such as the occupation vector (i.e. the utilisation of each
zone) as in equation 4.11. The occupation vector tells how much of the capacity of a
node is used and in the case under study corresponds to the fraction of user demand
for mobility that is met by the system. Using this simple result it is then possible
to compute a fundamental indicator in the modelling of a sharing system which
is the fraction of unsatisfied mobility demand as in equation 4.12. Additionally
the actual number of lost mobility requests per unit time can be simply obtained
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multiplying the unsatisfied fraction by the rate of demand for each zone.

λ = λf · λ∗ (4.10)

ρ = λ

µ
(4.11)

ud = 1 − ρ (4.12)

Another fundamental outcome of the algorithm is the mean time spent by a
customer in each node which, in theory, is the combination of the waiting plus the
service time of the queue. In the car sharing system however, the service time is
considered to be null since when a mobility request arrives (with rate 1

µ
), it is either

immediately satisfied or rejected if no vehicles are available in the zone. Therefore
the mean time in the queue correspond to the waiting time during which a car
remains idle and available for booking in a city zone.

Also in this case a modified version of the algorithm can be implemented to
deal with multi-server or infinite-server queues.

4.2 Network with charging stations and delay
zones

The network model for the electric car sharing system is not complete without
considering the charging infrastructure. As introduced before in section 3.3 charging
stations are considered as separate nodes and modelled as multi-server queues.
Furthermore the introduction of delay zones in the system as shown in section 3.4,
modifies again the routing and the fluxes in the network. Similarly to what has
been done with the mobility zones in section 4.1, the flux inside the new nodes
have to be determined solving the system of traffic equations with the modified
version of the routing matrix. Then the convolution algorithm and the MVA in
their multi-server and infinite-servers versions can be employed to obtain the overall
network indicators and extract the system performances.

4.2.1 Multi-Servers Convolution algorithm and MVA
The introduction of multiple server queues in the network, results in state-dependent
service rates. In fact, considering the charging stations, the total rate of charge in
the node depends on how many of the available outlets are occupied. Consequently
also the utilisation of multi-server queues ρi will depend on the number of customers
in the node. A new definition of the utilisation is then needed in the Convolution
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algorithm taking into account the state dependency. The new formulation is shown
in Algorithm 3.

Algorithm 3 Multi-server Convolution (Buzen’s) algorithm
1: procedure Conv(F, N) ▷ for Network of multi-server queues

2: ▷ µn(f): service rate of queue n when it has f customers

3: ▷ sn: number of servers in queue n

4: µn(f) = min(f · µn, sn · µn)

5: ρn = λ∗
n

µn(1) n = 1, ..., N

6: An(f) = rf
j=1

µn(j)
µn(1) n = 1, ..., N

7: ▷ Initialisation

8: g(0, n) = 1 n = 1, ..., N f = 1, ..., F

9: g(f,1) = ρn
1

A1(f) n = 1, ..., N f = 1, ..., F

10: ▷ Recursion

11: g(f, n) = qf
j=0

ρj
n

An(j) · g(f − j, n − 1)

12: ▷ Termination

13: g(F, N)

14: end procedure

For the same reasons the state-dependency of the service rates of multi-server
queues impact also on the MVA Algorithm. In particular a correction factor is
required in computing the mean time and the marginal probability pn(j, f) is
introduced and updated in the recursion steps as shown in Algorithm 4.

In dealing with the infinite servers model of the delay zone the modification
required on the MVA algorithm are minor and regard only the delay which in these
type of queue is given by the only contribution of the service time and therefore
can be easily computed as in equation 4.13.

Wn(f) = 1
µn

(4.13)

4.2.2 Waiting probability in charging stations
Another useful indicator for the charging queues, is the probability for a vehicle of
waiting in line before receiving the service. Following the implemented charging
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Algorithm 4 Multi-server Mean Value Analysis
1: procedure MVA(F, N) ▷ for Network of multi-server queues

2: ▷ Ln(f): mean number of customers in queue n in a network with f customers

3: ▷ Wn(f): mean time spent in queue n in a network with f customers

4: ▷ λ∗
n: relative flow of customers in queue n

5: ▷ λf : real throughput of the network

6: ▷ pn(j, f): marginal probability of j customers in queue n given a network

with f customers

7: ▷ sn: number of servers in queue n

8: ▷ Initialisation

9: Ln(0) = 0 n = 1, ..., N

10: pn(0,0) = 1 n = 1, ..., N

11: pn(j,0) = 0 j = 1, ..., sn − 1 n = 1, ..., N

12: ▷ Recursion

13: Wn(f) = 1+Ln(f−1)+Sn

µn

14: Sn = qsn−1
j=1 (sn − j) · pn(j − 1, f − 1)

15: λf = fqN

n=1 Wn(f)·λ∗
n

▷ Little’s Law

16: Ln(f) = λ∗
n · λf · Wn(f) f = 1, ..., F

17: pn(0, f) = 1 −qN
i=1 pn(i, f)

18: pn(j, f) = λf ·pn(j−1,f−1)
µn

j = 1, ..., sn − 1 ▷ Update pn(j, f)

19: ▷ Termination

20: when f=F

21: end procedure

policies, in fact it may happen that an EV is brought to a charging station and
finds all the charging outlets already occupied. In this eventuality the vehicle
may be kept in queue near the station and plugged whenever one of the outlet
is freed. In the case of an heavy utilisation of the infrastructure, the charging
queue occupation may increase a lot and it may be difficult to organise the vehicles
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in line. The waiting probability then become useful to study the impact of this
phenomenon and eventually including a capacity for the waiting line. As stated
before introducing a limited capacity queue would result in a serious complication
of the overall network since possible losses may happen. The waiting probability
for multiple server queues can be easily obtained through the Erlang-C formula
as in equation 4.14 avoiding the need for the probability distribution of the node.
This is a well known results obtained as function of the number of servers s, the
flux λ, the service rate µ and the consequent utilisation of the queue ρ.

pw =
1
s!

1
λ
µ

2s
· 1

1−ρqs−1
i=0

1
i!

1
λ
µ

2i
+ 1

s!

1
λ
µ

2s
· 1

1−ρ

(4.14)

4.2.3 Approximate method for single delay zone model
The main concern of introducing a single delay zone in the network, as explained
in section 3.4, is that once merged it is not possible to go back to the single
contributions of the flow in the node in order to assign the correspondent routing
probabilities. The developed approximate method to overcome this problem is
based on the assumption that the relative flows in each original network node
at steady state remain the same once the delay zone is added. In fact the only
scope of including the additional node is to introduce a variable delay associated
to the trips but without modify the original routing. Another assumption is that
all the flows in the new network have to pass through the delay zone. Therefore
the traffic equations are solved considering the original network with the mobility
and charging zones only in order to find the relative flows in each node; then the
delay zone is introduced and a relative flow equal to the sum of all the flows in the
network is assigned to it. Having then the complete vector of flows λ∗, it is possible
to directly extract the system metrics with the MVA. However it is important to
notice that not all the fluxes in the network imply moving from one city zone to
another since there is also an internal routing between some mobility zones and the
charging stations inside them. These movements, depending on the assumption
made, may just represent vehicles that are unplugged from the charging station and
left there or relocated in its proximity therefore requiring very little or not delay
at all. Nevertheless the fraction of these trips can be considered negligible with
respect to the total amount of flows in the network especially when considering
charging policies with relocation of vehicles.
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Real case city scenario
applications

Applying the model to real scenarios, requires of course real data to be used as
input. In particular the routing matrix has to be extracted from the movement
of the vehicles through the city, and the service rates of each zone require an
estimation of the user demand which can be spatially and temporarily distributed.
Also the identification of the city zone is required as well as the positioning of the
charging infrastructure. All these data are obtained in the following starting from
real records of bookings of a car sharing system already manipulated to comprehend
initial and final position and time of each booking. It is important to notice that
in the analysed cases the fleet is made up by internal combustion engine vehicles
while the proposed model assumes an homogeneous fleet of EVs.

5.1 Data extraction and manipulation
Real data of a sharing MOD system have been provided by the SmartData@Polito
research group which developed an open source tool called UMAP[47]. This is
composed by three modules for the acquisition, normalisation and integration of
data and their analysis and characterisation. In particular it harvests sharing
companies web services to collect snapshots of the system state at periodic time
instants [37]. For this work, data for the city of Turin have been considered which
contained trips details from the FFCS system of internal combustion vehicles
available in the city and for a time period between the years 2016 and 2017. Data
showed for each taken trip, the vehicle’s plate, initial and final time and position
of the trip as well as its total duration and travelled distance and the level of fuel
at the beginning and at the end. The input data file is initially filtered to include
only valid bookings, therefore trips with a duration less than 3 minutes and greater
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than 90 minutes are excluded. Moreover a condition on the travelled distance is
considered including in the valid dataset only trips with a total distance greater
than 500 meters. Then the data are grouped by their start date and start hour of
the day and collected according to the desired type of input.

5.1.1 Routing matrix
The routing matrix of the network has to follow the expected movements of vehicles
between the city mobility zones. Of course the assumption of having a unique
matrix to describe the routing inside the network at any time can not be accurate
since in realistic cases it has at least a time dependency on the hour and type of
the day. However restricting to much the dataset in order to try to include all
the peculiarity of a specific network condition may result in too specific models
that may overfit the particular situation and do not provide useful information.
Two types of routing matrix have been used in this work to represent different
conditions of the network and are explained in the following.

Hourly data routing matrix

The first type of routing matrix is obtained considering only trips that starts
within a specific hour of the day and considering weekdays only. The bookings are
then mapped to the city grid using their coordinates and the dataset is grouped
by the origin and destination id of the city grid zones. The creation of the city
grid from the data and the corresponding mapping procedure of the trips are
explained in detail in the following section 5.2.1. A simple counting operation is
then performed to obtain the number of total departures and total arrivals per
zone which are inserted accordingly in the routing matrix. The single probabilities
are then obtained enforcing the stochasticity of the matrix normalising it by row
such that the sum of the entry of each row is equal to one.

The routing matrices obtained using hourly data result, as expected, unbalanced.
In fact considering a single hour interval of the day some specific pattern are easily
found with some zones that attract a lot of vehicles and others that generate
mobility. A non trivial problem in obtaining this matrices is the lack of data,
especially if considering peculiar hours of the night. Some zones in fact may not
generate or attract any trip for a particular hour resulting in a complete row or
column of zeros in the routing matrix. Having a row with all zeros (i.e. a zone that
does not generate any trip) would represent a problem in normalising the matrix
when enforcing stochasticity. To obviate to this an artificial flux is created for these
zones that starts and end in the zone itself. In this way the network routing is not
changed since vehicles have a probability equal to one to "move" to the same zone
and the corresponding row of the matrix automatically sums to one.
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Balanced daily routing matrix

The second kind of routing matrix employed does not filter data according to a
specific hour of the day. In this way the obtained network is much more balanced
since all the city zones attract and generate almost the same number of trips during
the day. The data are then grouped by starting hour and averaged by day before
the same procedure used for the hourly matrix is applied grouping again the trips
by zone id and counting the departures and arrivals for each zone. Since much
more data are considered in this case the probability to have a zone that does not
generate any trip is almost null.

5.1.2 Service rates

The service rates of each mobility node reflects the expected demand for user
mobility in that city zone. Although complex methodologies can be developed to
try and estimate the demand, in this work the service rates are simply extracted
from the available trips data. Since they are hourly rates, they can be obtained by
simply summing the rows of the hourly routing matrix before the normalisation
procedure. In fact this would directly give the total number of trips generated by
each mobility zone in one hour. Also in this case it may happen to have zones that
do not generate any trips in the hour interval and therefore having a service rate
equal to zero. This would then be a problem in computing different metrics, for
example in the MVA, that require to divide by the zones service rates. A small
but different from zero artificial rate is then imposed which combined with the
modification of the routing matrix performed for these nodes, result in vehicles
cycling within this zones. It is important not to set a too high value for this
imposed service rate since it may alter the overall performances of the network by
creating artificial trips and therefore influencing the system throughput.

If considering instead the case with a balanced routing matrix, the total number
of trips generated is still counted for each zone but is then divided by the hours in
the interval of time considered (24 if considering all day data) obtaining in this
way an average hourly rate of demand.

5.2 Geographical data and spatial characterisa-
tion

When analysing mobility systems it may be useful to consider also the spatial
dimension for example to take into accounts distances or visualise the results on a
map. For these reasons the coordinates of the trips data are considered.
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5.2.1 City grid
The first operation concerning the spatial coordinates, is to create a grid of the
city. The geopandas library of python has been used for this scope to create a geo
dataframe representing a grid of polygons object. Each polygon is a square with a
given common side length created within the minimum and maximum latitude and
longitude registered in the booking data. An ID is then assigned to each of this
grid square and only the objects enclosing the coordinates of the trips are retained.
The result is a grid with square zones to which trips data may be mapped. An
example obtained with data for the city of Turin is shown in figure 5.1 where each
grid cell has a side of 500 meters and the number printed within represents its ID.

5.2.2 Input data characterisation
Just looking at the spatial characteristics of the input data some peculiarity of the
dataset can be highlighted. For both routing matrices obtained before in section
5.1.1, the total number of departures and arrivals for each zone is plotted in figure
5.2. In particular figures 5.2a and 5.2b show departures and arrivals per zone
respectively with the balanced routing matrix while figures 5.2c and 5.2d show the
same metrics obtained with the hourly data routing matrix of trips started between
noon and 1 pm during weekdays.
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Figure 5.1: Turin city grid example
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(a) Departures for balanced routing matrix (b) Arrivals for balanced routing matrix

(c) Departures for hourly data routing ma-
trix (12-1pm)

(d) Arrivals for hourly data routing matrix
(12-1pm)

Figure 5.2: Total departures and arrivals per zone with different routing matrices

It is clear from the maps that the great majority of trips both start and end
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in peculiar zones corresponding to the city center. The only exception is the
detached zone in the top of the map corresponding to the airport which also
appears to be fairly busy. No particular differences can be spotted between the
results distribution on the map obtained with the two different matrices except
for the absolute numbers which of course are much bigger in the first case which
consider the whole available dataset instead of just a small portion of it used in
the second scenario.

Another possible preliminary characterisation of data can be done looking at the
average users’ demand profile considering hourly intervals during the day. Figure
5.3 shows the system demand obtained as sum of all the mobility zones’ service
rates in the network for all the possible hourly data routing matrices. Recalling that
the service rate of each zone indicates the number of mobility requests arriving on
average in the hour, these values give the total system demand for the corresponding
interval. The profile shows higher values in what can be considered the peak traffic

Figure 5.3: System demand for hourly data intervals during the day

hours corresponding to commuting time, i.e. around 8 in the morning and between
4 and 5 in the afternoon. Moreover the lowest values are during the night especially
between 1 and 4 in the morning.

5.2.3 Charging stations positioning
Since the available input data refer to a car sharing system which does not employ
electric vehicles, the charging infrastructure is not present and therefore has to be
placed in city zones of choice. Although the optimisation of the charging station
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positioning is not the main scope of this work, different criteria are explored.
In particular the differences in the network performances following a random
positioning and one based on the mobility demand are considered in the following
analysis.

Demand based charging stations positioning

Thinking at real sharing scenarios, it is reasonable to assume that positioning the
charging infrastructure in the zones which attract a greater amount of vehicles
flux would result in a better exploitation of the infrastructure capacity. This is
especially true if no relocation is considered in the charging operations such as in
the case described by the opportunistic policy in section 3.3.2.

Starting again from the trips data and from the total trips generated and
attracted by each zone, it is easy to sort the nodes list by the number of departures
or arrivals. Based then on NCs which is the number of charging nodes to include in
the network, the NCS top zones are selected and the charging stations are placed
there. Using the available data little differences have often resulted between the top
zones ordered by number of departures and by number of arrivals especially when
considering the case with a balanced routing matrix. In most real scenarios when
using this kind of positioning, the resulting charging zones are often concentrated
in a city sector as shown by the 20 red zones in the example in figure 5.4a. It can
be useful to avoid this situation and instead try to have a greater distribution of
the charging nodes at least to avoid charging stations in neighbouring zones. If for
example a neighbours delta of two zones around each charging node is considered
for not adding another station, it is obtained a result as in figure 5.4b.
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(a) No neighbour delta (b) Neighbour delta of two zones

Figure 5.4: Charging stations positioning in zones with most departures
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Chapter 6

Case studies and results

The FFCS network model formulated in chapter 3 has been tested with real input
data taken from the available car2go dataset. All the presented case studies in
particular use mobility data for the city of Turin. The city grid has been extracted
as explained in section 5.2.1 and data have been filtered depending on the specific
analysed scenario. For the first case studies, the simplified version of the network
with just the mobility zone as in section 3.2 has been employed while in the following
the charging nodes and charging problem have been introduced. Eventually a final
analysis including the trip time with the delay zones has been performed. A recap
of all tested definitions of system parameters which determined the case studies
reported in this chapter, is reported in table 6.1.

6.1 Network of mobility zones
The mobility network without including charging nodes, has been first introduced
to study the impact of different routing matrices and service rates on the general
fluxes in the network. This analysis does not consider any charging operation of
the fleet and therefore it can be associated to a dummy scenario in which every EV
has a potentially infinite battery capacity. Moreover no relocation operation of the
fleet are considered therefore vehicles move throughout the network just according
to the users mobility patterns. Two main cases are studied based on different input
routing matrices obtained as in section 5.1.1.

6.1.1 Mobility network with balanced routing matrix
Considering a routing matrix obtained with trips data from the whole day and
averaged to get hourly rate, we expect to have a quite balanced network at steady
state with an even distribution of vehicles in most city zones.
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System parameter Case studied

Routing matrix Balanced matrix
Hourly data matrix

Fleet size from 400 up to 5500 vehicles
Charging stations Random

positioning Demand Based
Charging stations from 1 to 30 charging stations

concentration with 30 to 1 outlets per station

Charging Policy
Opportunistic
Closest station

Uniform

Relocation
No relocation

Highest demand
after charging Uniform

Probabilistic
Vehicle fixed from 0.14 to

consumption 0.20 kWh/km
Trip fixed, from 0 to

length 90 minutes

Delay zones Single zone
Multiple zones

Table 6.1: Parameters definitions for case studies
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(a) Average vehicles (b) Average unsatisfied demand

(c) Throughput

Figure 6.1: Mobility zone network metrics with balanced routing matrix on city
grid
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Figure 6.1 shows some of the obtained metrics plotted on the city grid in a
scenario with a total of 400 vehicles in the network. In 6.1a in particular it can be
seen that the fleet is evenly spread throughout the whole city with the maximum
number of accumulated vehicles in a single zone slightly greater than two. Observing
figure 6.1b instead it can be seen that the great majority of zones present a similar
value for the computed average of unsatisfied demand around 40% of the total
mobility requests per zone. Some other zones instead present values much larger
(some greater than 90%) and looking at the previous analysed map in 6.1a, it can
be seen that they correspond to the city zones where the average number of vehicles
is around zero. This can reflect a situation in which there is a certain amount of
mobility request from these zones but almost no trips end in them and therefore
the number of available vehicles is always less than the needed one.

Lastly, figure 6.1c shows the data of the throughput on the city map. The
absolute values appear quite small with less than one trip per zone in the hour in
all the cases. This can be explained by the way in which the service rates have
been obtained, counting and averaging the number of trips en each hour of each
day. In fact there are hour in the nights in which the number of trips is very low
(possibly zero) and moreover the ratio of unsatisfied trips, as seen, is not negligible.
Looking at the spatial differences in throughput in the map, it is easy to notice
that the zones with the highest throughput are the ones in the city center plus the
airport (i.e. the detached zone in the upper part of the map). This is an expected
result since these zones are the ones that receive most mobility requests and are
also very busy destinations.

Some global indexes can also be obtained such as the overall system throughput
which for this case is equal to 52.12 and indicates the total number of trips that
happen in this network each hour. Moreover the average unsatisfied mobility
demand has been computed and it is equal to 38.4%. This last value has been
obtained by averaging the unsatisfied demand for each zone weighted by the
corresponding number of mobility requests.

6.1.2 Mobility network with hourly data routing matrix
The strong assumption with considering a balanced routing matrix as in section
6.1.1, is that the vehicles’ routing and the mobility requests stay constant through
the day. To have a more accurate analysis regarding a particular hour or type
of day, data can be filtered to obtain hourly routing matrix and service rates as
shown in section 5.1.1. Considering only week days or weekends and a particular
hour of the day in fact some recurrent pattern can emerge. Figure 6.2 shows the
average vehicles, unsatisfied demand and throughput per zone plotted on the city
grid when considering input data of trips started between midday and 1pm and
only during week days. Differently for what it has been seen for the case with a
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(a) Average vehicles (b) Average unsatisfied demand

(c) Throughput

Figure 6.2: Mobility zone network metrics with hourly data (12-1pm) on city grid
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balanced routing matrix, here the distribution of vehicles in the network is much
more unbalanced with few zones that tend to accumulate vehicles. Consequently
also the average unsatisfied mobility demand has a more stretched range of values
since the city zones in which there is an abundance of vehicles will meet all the
users’ requests while many others will not have enough vehicles to do so. This
shows that for the considered hour, some zones generally attract more vehicles.

For what concerns the throughput, also in this case it can be seen that zones in
the city center and the airport, have a general greater number of completed trips
with respect to other city sectors. Moreover the absolute value of the throughput
are also greater than the case studied in section 6.1.1 since this interval hour is
usually one of the busiest of the day. The overall system throughput in fact adds
up to 150.86 while the weighted average unsatisfied demand for the network is
57.21%.

Average hourly profile of a day

A complete profile of the system throughput, average unsatisfied demand and
maximum number of vehicles per zone with hourly data for the whole day and
considering weekdays only, can be seen in figure 6.3. It is important to recall
that each interval of time is treated separately from the others supposing that the
system reaches its steady state conditions with the fixed input routing matrix. This
is a strong assumption considering the relatively small time interval with respect
to the average trips time. It is in fact very unlikely that the system can reach
its steady state in just one hour. However this kind of analysis can be useful to
highlight general mobility trends through the day and study peculiar characteristic
of the network in each hour.

Looking at the general picture in figure 6.3, to greater values of throughput
correspond smaller percentages of unsatisfied demand as expected, and the obtained
profile appears to follow a trend of usage with relative peaks in the early morning,
at noon and around five in the afternoon supposedly following users’ increasing
demand at commuting hours. In particular these hour intervals present a much
greater value of system throughput with respect to all the others. This results from
less unbalanced systems, as confirmed by their maximum number of vehicles in a
single zone, where also at steady state many trips manage to be completed. In
fact vehicles will still tend to rack up in particularly attractive zones but, due to a
concurrent high demand for mobility in them, this effect is mitigated and the total
throughput can increase. Consequently the system unsatisfied demand is heavily
affected by the low values in these zones since their high demand rates make their
weighted contribution much more relevant with respect to other network nodes.
Moreover, looking at the maximum number of vehicles in a zone for each hour, it
is clear that for most time intervals the vehicles tend to accumulate in a single
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Figure 6.3: System indicators for different hour of day input matrix
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zone. This is due to highly unbalanced routing matrices that, in a steady state
analysis, brings to an heavily uneven distribution of vehicles in the network. In
the end in all these scenarios, there will be a quite big and variable number of
dead zones defined for this analysis as nodes for which the average throughput at
steady state is less than 0.01. The number of dead zones for each hour interval
are reported in 6.4 and are in general coherent with the trends observed in figure
6.3. A net difference is shown considering the three intervals between 1 and 3 in
the night which correspond to the lowest values of throughput and exhibit more
than half of the mobility zones as dead. For all the other time intervals, except for
the one starting at 10 in the evening, the obtained values are not so distant and
oscillating not always according to the same profile seen for the throughput. For
example looking at the interval starting at 5 in the afternoon, this was the second
best one in absolute throughput value, however it presents a number of dead zones
(25) greater than 14 others intervals ones. The dependency of these two factors
in fact is not direct because the throughput can be increased completing many
trips between few zones even if many others are not reached and therefore do not
generate any mobility.

Figure 6.4: Dead zones for different hour of day input matrix

6.1.3 Impact of number of vehicles on user demand
An interesting analysis can be carried out looking at the impact of the total number
of vehicles on the system performances. In particular it can be useful for the
system operator to evaluate the increase in met mobility requests as function
of the fleet size. The obtained results are shown in the form of the cumulative
distribution function (CDF) of unsatisfied mobility demand per zone with an
increasing number of vehicles in the network and considering, as before, different
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input routing matrices; figure 6.5a shows the result with a balanced routing matrix,
while figure 6.5b with hourly data. The two graphs shows very different behaviours

(a) Balanced routing matrix

(b) Hourly data routing matrix (12-1pm)

Figure 6.5: CDF of unsatisfied mobility demand per zone with increasing fleet
size

especially if comparing the relative differences between the curves representing
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networks with a different fleet size. As observed before for the first case as in figure
6.5a, with 400 vehicles in the network most zones present similar percentage of
unsatisfied mobility demand with around 80% of them having between 40% and
50% of lost requests. Figure 6.5b shows on the other hand, a much more regular
increase in the CDF which means that there are zones where the user demand is
almost always satisfied, while in many others the percentage of dissatisfaction is
quite high. To have a direct comparison with the previous case it can be seen that
only around the 30% of the zones have a percentage of unsatisfied requests less
than 50% with a fleet size of 400 vehicles.

Increasing the fleet size would mean in principle that more mobility requests
can be satisfied. However in the steady state analysis of the network which has
a fixed routing matrix, this effect is bounded by the unbalances in the repetitive
origin-destination patterns. For this reason in figure 6.5a, increasing the fleet size
results in a translation of the curve towards the left which means that the average
unsatisfied demand in the network decreases with it. However this decrease is not
directly proportional to the increase in the number of vehicles but the improvements
diminish at each step and reach a plateau after which further increase will not
improve the system performances. This means that, although the system is balanced,
the fixed routing and no vehicles relocation operations will always cause some
unsatisfied mobility requests. A numerical representation of this phenomenon can
be seen in table 6.2 where the values of the average weighted unsatisfied demand
for the network with an increasing number of vehicles are reported. Of course
from the point of view of the system operator, a trade off is necessarily considered
between the costs to acquire, maintain and operate a big fleet and the potential
increases in revenue due to a greater number of satisfied users’ trips.

Number of Average Number of Average
vehicles unsatisfied demand vehicles unsatisfied demand

400 30.40% 2500 10.40%
900 21.94% 3500 8.91%
1400 15.73% 4500 8.85%
1900 12.55% 5500 8.85%

Table 6.2: Average unsatisfied mobility demand of the network with balanced
routing matrix and increasing fleet size

The situation is very different looking at the results in figure 6.5b; here the
system is based on an unbalanced routing matrix and therefore vehicles tend to rack
up in few zones leaving many others almost empty. Here increasing the number of
vehicles results in a small improvement only if considering small fleet sizes. Further
increases in fact do not provide any additional benefits since most vehicles would
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stay idle and unused. The numerical values of the average unsatisfied mobility
demand for the systems confirm these considerations extracted from the graph and
are reported in table 6.3.

Number of Average Number of Average
vehicles unsatisfied demand vehicles unsatisfied demand

400 57.21% 800 56.56%
600 56.61% 1000 56.55%

Table 6.3: Average unsatisfied mobility demand of the network with hourly data
routing matrix and increasing fleet size

6.2 Network with charging stations
The first problem faced when considering charging nodes in the network, is the
determination of the number of such stations and their positioning in the city grid.
Different approaches for the positioning have already been discussed in section 5.2.3
and their performances are compared in the next analysed case studies. However
to study the impact of the number and the concentration of the charging poles is
necessary to first define the policies following which vehicles are brought to and
taken from them. Therefore for the first problem a single charging policy is chosen
while in the next analysis all the others are compared. For all the following analysis
some system parameters regarding the charging infrastructure and the vehicles are
kept constant and are shown in table 6.4.

Charging EV Charging thresholds
outlet Battery min max Vehicles Trip
power capacity consumption length
20kW 24kWh 20% 90% 0.17 kWh/km 4 km

Table 6.4: Constant charging parameters for case studies

6.2.1 Charging stations number dimensioning
For the dimensioning problem the opportunistic charging policy has been chosen
since it is the simplest implemented model as explained in section 3.3.2. Moreover
no relocation is took into account after the charging operations which means that
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vehicles leaving the station become available for booking in the corresponding city
zone. It is important to recall that the opportunistic charging policy computes
the fraction of vehicles that has to be sent to charge when arriving to a mobility
zone with a station inside, based on the fraction of the total flux entering the node.
For the algorithm to properly function this fraction of flux must always be less or
equal than one therefore in the implementation, the value is clipped to one if it
resulted greater than one in the computation. When this happens it means that the
charging operations with that specific configuration can not fully satisfy the energy
needs of the fleet. Eventually, from a probabilistic perspective, the computed value
represents the probability that a vehicle finishing its trip in that mobility zone is
redirected to the charging station within, therefore it must always be less or equal
than one.

Balanced routing matrix

In the first analysed case the system has been studied with a balanced routing
matrix and station positioning following the demand based policy explained in
section 5.2.3 such that for each realisation they are placed in the zones with the
greatest number of departures in the input data and avoiding, when possible, to put
more than one station in a neighbourhood of two zones. The number of charging
nodes has been increased at each step considering always just one charging outlet for
each. From the computation it resulted that for up to four charging stations in the
network the fraction of flux to be redirected to the charging nodes resulted greater
than one thus the value has been clipped. This means that at least five charging
nodes are required to satisfy in theory the needs of the fleet. Figure 6.6 shows some
indicators regarding the stations as their number increases. It is clear from the
graphs that increasing the number of charging nodes, the average throughput and
utilisation of the single station decrease. The decreasing slope is particularly evident
in the first part of the considered range while, after a certain amount of stations
are already present, more additions result in less and less changes in performances.
Almost the same profile can be seen also in the third graph representing the average
number of vehicles in service during the hour. Looking at the absolute numbers it
can be seen than even when redirecting the whole flux of vehicles to the charging
nodes, as in the first four cases, the average utilisation of the stations is always less
than 80% and diminishes rapidly. Consequently the average number of vehicles in
charge is always less than one.

When considering the graph in figure 6.7, the total average time spent by a
vehicle in the charging stations is plotted together with its average waiting time.
The total average time decreases rapidly at the beginning and then stays almost
constant starting already from low values on the x-axis. This is due to the fact
that the total time is given by the contributions of the waiting time and the service
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Figure 6.6: Charging stations indicators with balanced routing matrix
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Figure 6.7: Time analysis in charging stations

time. The service time is an exponential with a mean value that is kept constant
and depends on the system parameters as set in table 6.4 and in this case it is 1.19
vehicles charged per hour. The waiting time comes into play only when vehicles
arrive at the station and find the outlet already occupied. From the figure it can be
seen that this contribution is relevant only with few charging nodes in the network
while the total time that stays almost constant for greater number of stations it is
the result of the only main contribution of the service time. Increasing the number
of charging points in the network in fact it can be expected that the probability
for a vehicle to wait for an outlet to become available is very low.

Hourly data routing matrix

The same analysis on the number of charging station has been done with an input
matrix considering trips data for weekdays between 12 and 1 pm. All the other
configurations are kept the same including the positioning strategy of the charging
nodes in the zones which follows the greatest number of departed trips criteria.

Figure 6.8 shows similar profiles as in the previous example in figure 6.6. Also
in this case for the networks with up to four charging nodes, the value of the
fraction of flux to be brought to charge was clipped to one thus more stations are
needed to satisfied the fleet energy demands. The main difference with respect to
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Figure 6.8: Charging stations indicators with hourly data routing matrix (12-1pm)
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the case with the balanced routing matrix is in the absolute numbers which are
proportionally higher due to an higher general throughput for the mobility zones.

(a) Time analysis

(b) Time analysis (zoomed)

Figure 6.9: Time analysis in charging stations with hourly data routing matrix
(12-1pm)
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Interesting results can be seen looking at the study of the average time spent
by a vehicle in the charging zone as in figure 6.9. In particular huge numbers can
be seen in the first bars in figure 6.9a. As seen for this unbalanced network in
fact, vehicles tend to rack up in few zones which, clearly, correspond to the ones
in which the few charging nodes are placed. Moreover all the flow in these zone
is redirected to charge causing many vehicles to accumulate there thus increasing
greatly the waiting time at the stations. This effect is of course mitigated including
more charging nodes until, as it can be seen in the zoomed graph in figure 6.9b,
the waiting contribution on the total time becomes less impacting and the overall
values stay almost constant with the increasing of the charging stations number.

6.2.2 Charging stations concentration
Another factor concerning the placement of charging stations in the network, is
whether or not including more outlets per each station or spread them as much as
possible through the city. For this study the charging policy plays an important
role and in particular considering relocation of vehicles for charging purposes
has a strong impact on the results. The first case studied is a system with a
balanced routing matrix with a total of 30 charging outlets aggregated in different
ways through the network and with the charging nodes placed in the zones with
most departed trips. Figure 6.10 shows the system total throughput and the
corresponding average unsatisfied mobility demand as function of the different
aggregation of charging outlets and with all the implemented charging policies. For
this case relocation after the charging operations is still not considered. The two
graphs are, as expected, mirrored since an increasing in throughput correspond
to a proportional decrease in unsatisfied mobility. The most interesting result is
that for the opportunistic charging policy the values of throughput stays almost
constant with just a slight increase when charging nodes are more spread. For both
the closest and the uniform charging policy instead the throughput tend to increase
a lot when charging stations are disaggregated. In terms of absolute values, the
opportunistic charging policy presents in this case a throughput always greater than
the other two which is almost reached in the case when just one outlet is considered
for each station. The differences between the least and the most aggregated cases
are particularly relevant for the two policies considering relocation with a delta of
unsatisfied mobility demand around 30%. This result is due to the fact that no
relocation is employed after charging therefore, for these two policies, vehicles are
brought from all the network to the zones with a station and are left there when
the operations are completed. In this way there is an abundance of vehicles in
that zones that unbalances the system causing high values of unsatisfied mobility
demand in the other network sectors. Another result that has to be noted is that
for up to six charging stations in the network, the opportunistic policy required to
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Figure 6.10: System global indices for different aggregation of charging outlets
and charging policies with balanced routing matrix
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clip the value of the fraction of flux to be brought to charge. This as explained
before means that the energy needs of the fleet could not be completely satisfied
with this configuration and the whole flux directed to the mobility zones with a
station inside is directly queued to charge.

An additional analysis is performed considering a probabilistic relocation after
charging and the obtained profiles are shown in figure 6.11. The three curves show

Figure 6.11: System global indices for different aggregation of charging outlets
and charging policies with balanced routing matrix and relocation after charging

an almost opposite situation with respect to the one depicted in figure 6.10 with
the closest and uniform policies showing almost constant and slightly increasing
throughput values as the number of outlet per station decreases. In absolute values
the unsatisfied mobility demand for these two cases is comparable with the one
obtained with the opportunistic policy and no relocation after charging. On the
other hand, the opportunistic charging policy with relocation after charging shows
relative poor results, with a decreasing trend as the number of outlet per station
decreases. The only anomaly is represented by the value of throughput obtained
with just one outlet in all the charging nodes. This can be explained by the fact
that this is the only point of the curve obtained without clipping the value of the
fraction of flux to be redirected to charge. In fact for up to 15 charging nodes in
the network with this configuration the system is not capable of satisfy the energy
needs of the fleet. This may be due to a less relative flux entering the nodes with a
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station within, because of the relocation after charging which tend to re-balance
the system by moving vehicles towards all the other zones in the network.

Repeating the same analysis using only data from a one hour time interval
during the day (i.e. 12-1 pm) to build the routing matrix, the obtained results are
reported in figures 6.12 and 6.13. It can be easily noticed that the curves trends in
both figures are very similar to the ones of the previous example with the balanced
routing matrix in figures 6.10 and 6.11. Moreover also in this case the fraction of
flux to the charging stations determined with the opportunistic policy, has been
clipped to one when considering a network with up to 5 charging nodes and with
up to 15 charging nodes when considering also relocation after charging. The main
difference considering the hourly data routing matrix is in the absolute values of
the throughput which are greater due to higher fluxes of vehicles and mobility
requests and a greater average unsatisfied demand due to the more unbalanced
nature of the system.

Figure 6.12: Performance indices for different aggregation of charging outlets and
charging policies with hourly data routing matrix

Overall the two analysed cases show that for the same number of total outlet
in the network, it is better to spread them in different city zones. However the
improvements are not so relevant when considering either relocation policies before
and after the charge or no relocation at all which appear to be the best possible
combination. A detailed analysis of the charging policies and relocation after
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Figure 6.13: System global indices for different aggregation of charging outlets
and charging policies with hourly data routing matrix and relocation after charging
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charging is carried out in sections 6.2.3, 6.2.4 and 6.2.5.

6.2.3 Charging policies
Charging policies determine how often and where EVs have to be charged, therefore
they play a fundamental role in the system operations. The policies implemented
to bring vehicles to the charging nodes have been explained in section 3.3.2 and
are now analysed in detailed. For the first case study, a balanced routing matrix
has been used and a total of 20 charging outlets have been placed, two per station,
in the ten zones with most departures but excluding the once in the immediate
neighbourhood of an already placed charging node. The resulting positioning on
the city map is shown in figure 6.14.

The system charging infrastructure parameters as defined in table 3.2 are kept
also for these case studies.

Mobility zones indicators

From the steady state study of the model, some indicators have been extracted
and are plotted on the city grid to have also a spatial characterisation of the
results. Figure 6.15 shows the average number of vehicles in each city mobility
zone with the three different charging policies. Each zone marked with a red dot
corresponds to a mobility zone with a charging station within. This analysis allow
to see how the vehicles are distributed at steady state and in particular how this
distribution is influenced by the charging operations mode. The results shows
important differences according to the policy employed and in particular between
the opportunistic and the other two which use relocation of vehicles. In the first
case, as in figure 6.15a the system appear quite balanced with an even distribution
of vehicles in almost all the zones in the network. This result is quite similar to the
one shown in figure 6.1a which considered the same network but without charging
infrastructure thus taking into account only flows between mobility zones. This
means that charging operations using this configuration and the opportunistic
policy do not have a strong impact on the mobility of users.

Considering instead the results in figure 6.15b, it can be seen that around half
of the fleet is concentrated in a single zone at steady state. This charging policy
requires to move vehicles from all the network and bring them into the closest
charging station according to the system average energy needs. Since no relocation
after charging is considered in this scenario, vehicles are left in the corresponding
mobility zones when the charge is completed. The accumulation of vehicles in that
specific mobility zone can then be explained by the presence of the charging station
in it. Moreover the position of that zone with respect to the other charging nodes
and to the city boundaries indicates that the charging station within is the closest
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Figure 6.14: Charging station positioning on city map
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(a) Opportunistic policy (b) Closest CS policy

(c) Uniform policy

Figure 6.15: Average vehicles per city zone on map with different charging policies
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one for many zones in the north sector of the city. For all these reason it is safe to
assume that many EVs are relocated to that specific charging nodes resulting in
heavy concentration in the corresponding mobility zone.

The third graph in figure 6.15c obtained with the uniform charging policy,
shows a middle ground situation between the two previously analysed ones. In
fact also this policy requires to move vehicles from the whole network but they
are distributed uniformly towards all the placed stations. Of course in principle
this is a strongest assumption with respect to the closest charging policy since it
would require for example to bring vehicles to charge in a faraway zone even if
there is a much closer one available. However it is interesting to analyse this results
because it can be seen how vehicles still tend to rack up in the mobility zones
with a charging station within but, in this case, they are more evenly distributed
between them. In fact the biggest average number of vehicle in a single zone is
around 60 while in the closest policy was greater than 200.

Another result is plotted in figure 6.16 and shows the average unsatisfied mobility
demand for each city zone, still considering the three different policies and no
relocation after charging. Again with the opportunistic charging policy the results
are quite similar to the network of just mobility zones and can be seen is figure
6.16a. As expected from the even distribution of vehicles in the network in fact, the
average unsatisfied mobility demand is similar and around 40% in most city nodes
included the ones with a charging station within. Few other zones than present
greater values and they correspond to the ones with a smaller average number of
vehicles as seen in figure 6.15a.

For what concerns the two other policies, the range of unsatisfied demand
is almost the same but, again, the spatial characterisation is different. In fact
considering the closest station policy in figure 6.16b, it can be seen how the zone
where there was a great accumulation of vehicles has a null unsatisfied demand.
Intermediate results are then visible in the other zones with a charging station
within but they are very similar to the values in all the other mobility zones. Also
in this case few zones present higher values probably due to a low incoming rate of
vehicles.

Results obtained with the uniform charging policy are then showed in figure
6.16c. Here it can be seen a clear difference between the zone with a charging
station that present a lower value of unsatisfied demand and all the other mobility
nodes in the network. This is explained as before by vehicles that are uniformly
brought to charge and then left in the corresponding mobility zone.

The last map visualisation in figure 6.17 shows instead the values of the through-
put for each zone in the network. Here the results are very similar considering all
the policies at least in the relative differences between the zones. This is due to the
same input matrix and the same demand model employed in all three cases which is
indeed the main factor in the determination of the throughput. The only difference
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(a) Opportunistic policy (b) Closest CS policy

(c) Uniform policy

Figure 6.16: Average unsatisfied mobility demand per city zone on map with
different charging policies
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(a) Opportunistic policy (b) Closest CS policy

(c) Uniform policy

Figure 6.17: Throughput per city zone on map with different charging policies
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is in the absolute range of values; in fact the closest charging policy present the
smallest ones suggesting a distribution of vehicles which does not exactly follow
the user demand. Recalling the zone in which vehicles accumulate with the closest
station policy, this is not the same as the one with the greatest value of throughput
probably due to a greater demand for mobility in this last one. The uniform policy,
on the contrary, has the biggest throughput values and this can be explained again
by the distribution of vehicles obtained with this policy. In this case in fact one of
the zone in which vehicles rack up is the one with the greatest mobility demand,
increasing in this way the number of satisfied trips from that zone and thus its
throughput.

Overall this case study suggests that employing relocation operations to bring
vehicles to charge but leaving them there afterwards, causes an uneven distribution
of vehicles in the network which, if does not follow the users mobility demand
results in a decrease of the general throughput. Moreover unbalanced systems
when brought at steady state increase the risk to have dead zones in the network
where vehicles do not arrive thus excluding them from the system operations. For
the same reasons performances can not be improved in such systems for example
increasing the fleet size. An example of this phenomenon is provide in figure 6.18
where the CDF of unsatisfied mobility demand per zone is plotted for the three
different policies. For the opportunistic charging policy in figure 6.18a it is clear
that increasing the number of vehicles in the network, more user demand can be met
moving the curve towards the left. Of course the decrease in unsatisfied demand is
not directly proportional to the increase in fleet size since even with a huge number
of vehicles the fixed routing and no relocation of vehicles do not allow to satisfy all
the users requests. For what concerns the two other policies, unsatisfied demand
basically do not decreases adding more than 400 vehicles. The uniform policy in
figure 6.18c shows a net improvement when passing from 200 to 400 vehicles but
further increases do not benefit the system. The closest station policy as in figure
6.18b instead shows essentially the same results for all the cases from up to 200
vehicles. As stated before this policy with no relocation after charging causes an
heavily unbalanced distribution of vehicles which make increasing the fleet size
useless.

In the end a summary of the principal network indicators for the three imple-
mented policy is provided in table 6.5. The total number of requests lost per hour
has been obtained by multiplying the fraction of unsatisfied demand for each zone
by their demand rate and then summing them up for the whole network.

Charging stations indicators

In order to better study the impact of the charging policies on the network, it
is useful to also look at indicators regarding the single charging stations to see
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Charging System System average Maximum number
policy throughput unsatisfied of vehicles

demand in a zone
Opportunistic 52.21 38.29% 1.91

Closest CS 35.89 57.58% 219.05
Uniform 46.24 45.34% 63.23

Charging Number of zones with Total number of
policy average unsatisfied lost requests

demand >90% per hour
Opportunistic 11 32.40

Closest CS 15 48.72
Uniform 13 38.37

Table 6.5: Network indicators recap
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how their capacity is exploited and have a time analysis of the overall operations.
Figure 6.19 shows for each policy the average throughput in each charging station
in red and their average utilisation in green. In table 6.6 instead are printed the
average throughput and utilisation for the whole set of stations in the network.

Charging Average station Average station
policy throughput utilisation

Opportunistic 0.23 9.60%
Closest CS 0.15 6.10%

Uniform 0.19 7.86%

Table 6.6: Average throughput and utilisation of charging stations

It is useful to recall that the station placement policy is such that the nodes with
most departed trips in the dataset are chosen and in the bar plot they are ordered
following this criteria. For all three graph in figure 6.19 throughput and utilisation
of the stations follow the same path since they are strictly correlated. Figure 6.19a
shows a decreasing trend in both throughput and utilisation following the ordered
list of stations. An higher departure rate correspond with this configuration to
a general higher throughput for the mobility zone and therefore for the station
within. With the opportunistic charging policy in fact greater is the flux in the
zone, greater would be the number of vehicles that are sent to charge there.

The closest station policy instead takes into account the geographical position
of the charging nodes, therefore throughput and utilisation are not directly propor-
tional to the flux in the mobility zone. Figure 6.19b shows a particular low value
for the station in the node with zone ID 200. Looking at the city map in figure
6.14 it can be seen that this is the zone detached from the other and therefore far
away from the rest of the network (i.e. the airport). For this reason this zone does
not receive an incoming flux of vehicles relocated to be charged. Only EVs arriving
in that mobility zone are charged in there according to the probability expressed as
function of the average energy needs of the fleet. On the other hand the most used
station is the one in the zone with ID 383 which looking at the previous examples
as in figure 6.15b was the one where vehicles rack up due also to its proximity to
all the zones in the city north sector.

Lastly figure 6.19c shows the result obtained with the uniform relocation charging
policy. As expected this are the most balanced with respect to the other ones. EVs
in fact are relocated from the whole network and sent to all the stations with a
uniform probability. For this reason the throughput and utilisation of the single
stations are very similar to each other.

The numerical data in table 6.6 shows again that, considering no relocation
after charging, the opportunistic policy ensure a greater utilisation of the charging
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infrastructure. Even if the uniform policy guarantees a better distribution of the
power load, the average station throughput is still lower than the one obtained
with the opportunistic. Considering the absolute values however this configuration
of the network shows a very low average utilisation of the charging infrastructure
which is less than 10% in the worst case. Another important parameter connected
to the station utilisation is the probability to wait when arriving at a charging node.
As explained in section 4.2.2, waiting at a charging station because the outlet is
already occupied can be critical in the organisation of the system operations. The
probability that when an EV is brought to charge has to wait for a server to become
available can be easily computed with the Erlang-C formula. The obtained results
with the three charging policies are plotted in figure 6.20 together with the average
number of vehicles in each station. Again the x-axis shows the stations ordered by
number of departed trips in the corresponding mobility zone and the general trend
of all graphs in figure 6.20 follow the ones in figure 6.19. Again the opportunistic
has a proportionality between throughput in the zone and number of vehicles and
probability to wait at the charging station. The closest station policy shows an
almost zero probability to wait in the station at the airport while the uniform
one has very similar values between all the stations. Looking at the numbers, the
probability to wait are very low in particular with the two policies using relocation
because of the low utilisation of stations for the closest policy and also due to the
balanced workload for the uniform one which is the one with the lowest peak value.
Figure 6.20a is the only one presenting slightly grater probabilities but still low
enough since the most used station has a probability to wait for vehicles arriving
around 6%.

6.2.4 Charging policies with hourly data routing matrix
A similar analysis on the effects of the different charging policies as in the whole
section 6.2.3 can be carried out using hourly data to build routing matrix and
service rates for the network. As done for previous case studies, data of trips in the
time interval 12-1 pm and only for weekdays have been considered. The charging
related parameters in table 6.4 are still valid for this example. The charging station
positioning follows again the zones with most departures which for the input matrix
resulted in the distribution in figure 6.21.
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(a) Opportunistic policy

(b) Closest CS policy

(c) Uniform policy

Figure 6.18: CDF of unsatisfied mobility demand per zone with increasing fleet
size and different charging policies
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(a) Opportunistic policy

(b) Closest CS policy

(c) Uniform policy

Figure 6.19: Throughput and utilisation of charging stations
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(a) Opportunistic policy

(b) Closest CS policy

(c) Uniform policy

Figure 6.20: Average number of vehicles and probability to wait in each charging
station
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Figure 6.21: Charging station positioning on city map

Mobility zones indicators

At first indicators regarding the mobility network have been extracted and plotted
over the city grid map. Figure 6.22b shows the average vehicles in each city zone
at steady state. The relative differences in the results between the three policy are
similar to the one already observed for the balanced network. The closest station
policy in fact is the one where vehicles tend to accumulate more in a single zone,
which has also a station within as it can be seen in figure 6.22b. Using the uniform
policy instead the vehicles distribution is still uneven but there is more than one
zone with a charging point in which the number of vehicles is much greater than
in the others. In figure 6.22c two zones in particular appear different from the
others. The more balanced distribution of vehicles is obtained as expected with
the opportunistic policy. However also in this case there are particular zones in
which the concentration of vehicles is greater; this result is due as seen before, to
the unbalanced routing matrix used as input for the system.
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(a) Opportunistic policy (b) Closest CS policy (c) Uniform policy

Figure 6.22: Average number of vehicles per zone on map with different charging
policies (12-1pm)
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(a) Opportunistic policy (b) Closest CS policy (c) Uniform policy

Figure 6.23: Throughput per city zone on map with different charging policies
(12-1pm)

Figure 6.23 shows the zones throughput over the city map. The three maps
are all similar in the differences between the zones values but the opportunistic
in figure 6.23a shows a slightly smaller range of values suggesting a more even
distribution of the throughput through the network. Lastly figure 6.24 shows the
percentages of average unsatisfied user mobility demand in the network. For all
the policies the results show an inverse relation with respect to the throughput as
expected. Also considering the absolute values they all present similar numbers,
only in figure 6.24a there appear to be more zones in the city center with a blueish
colour thus with a smaller percentage of not satisfied requests.

To better mark the differences between the observed cases it is useful to look at
the system metrics summarised in table 6.7. From these data is clearer that the
opportunistic charging policy shows the best performances as already observed for
the previously analysed case study with the balanced routing matrix. The main
difference in this case is that the system is already quite unbalanced due to the
input routing matrix therefore the effects of the single charging policies are less
evident. Moreover the requests rates in this hour interval are much higher resulting
in greater absolute values for the throughput. A side effect to this increase in
demand which is amplified by the uneven distribution of vehicles in the network
is that the lost requests per hour are much more than in the previously analysed
case. In the end this configuration creates many "dead zones" in which vehicles
rarely arrive and the user mobility demand is almost never satisfied.
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(a) Opportunistic policy (b) Closest CS policy (c) Uniform policy

Figure 6.24: Average unsatisfied mobility demand per city zone on map with
different charging policies (12-1pm)

Charging System System average Maximum number
policy throughput unsatisfied of vehicles

demand in a zone
Opportunistic 149.63 57.56% 52.98

Closest CS 112.35 68.13% 223.91
Uniform 126.60 64.09% 111.50

Charging Number of zones with Total number of
policy average unsatisfied lost requests

demand >90% per hour
Opportunistic 33 202.91

Closest CS 44 240.19
Uniform 37 225.94

Table 6.7: Network indicators recap (12-1pm)

Charging stations indicators

A last study with the same network configuration has been performed focusing on
the single charging stations performances.
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(a) Opportunistic policy

(b) Closest CS policy

(c) Uniform policy

Figure 6.25: Average throughput and utilisation of charging stations (12-1pm)

Figure 6.25 shows the average throughput and utilisation of all the stations in
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the network. In all the graphs the order of the stations on the axis follows the
decreasing number of departed trips from the corresponding mobility zone. The
profile in figure 6.25a is not regular as the one obtained in the previous case study
and shown in figure 6.19a. This suggests that the zones with the highest rate of
demand do not always correspond to the ones with the greatest flow of vehicles,
due again to the unbalanced nature of this network which leads to high values of
unsatisfied demand.

Figure 6.25b shows the throughput and utilisation of charging nodes with the
closest station policy. The geographical position of the stations is determinant in
this case to establish the routing of vehicles towards them. Two nodes in particular
appear to have much lower throughput values than the other and they correspond to
zones with ID 200 and 77 respectively. Looking at their positioning in the city map
in figure 6.21 it is clear that the first corresponds to the airport which is detached
from all the rest of the city area while the latter is in a peripheral zone of the city
such that it is the closest station to very few mobility nodes. Additionally, as seen
before, the nodes in this particular city sector do not have an high throughput
resulting in a very low utilisation of the charging station.

The results obtained with the uniform relocation charging policy are displayed
in figure 6.25c and shows, as expected, a more uniform distribution of the charging
loads between the available nodes. This policy in fact is less affected by the
unbalance of the network since whatever is the flux of vehicles in each zone, the
relocation operations to bring them to charge are always uniform towards all the
stations in the city.

Charging Average station Average station
policy throughput utilisation

Opportunistic 0.69 28.81%
Closest CS 0.45 19.10%

Uniform 0.51 21.52%

Table 6.8: Average throughput and utilisation of charging stations (12-1pm)

In table 6.8 are printed the average numerical values for the three policies.
As seen in the previous case with the balanced routing matrix in table 6.6, the
greatest average utilisation of the stations is obtained with the opportunistic policy
while the closest station one leads to the smallest results. The main difference
between the two cases is in the absolute values of the throughput which are much
higher with the analysed unbalanced network. The average percentage of utilisation
consequently is greater for all the policies but still under the 30% of the maximum
capacity. However for the opportunistic and the closest station policies the variance
is also high therefore it is important to have a further look at the distribution of
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vehicles in the stations and the consequent waiting probability. Figure 6.26 shows
the obtained results with the average number of vehicles in blue and the probability
to wait in green for each charging station and charging policy. As expected figure
6.26a shows the most critical results due to the general higher throughput of the
stations in this configuration. In particular the station in the mobility zone with
ID 547, has an average number of vehicle which is greater than two. Recalling that
each charging nodes has two charging outlets, this means that on average there
will be a number of EV in the stations such that both the outlets are occupied and
a further vehicle arriving would have to wait. The computed value for the vehicles
probability to wait is in this case greater than 40%. While this percentage may
seem not critical this may open further discussions on the necessity to include a
limited capacity of the waiting line in the charging stations. In fact, depending
on the physical configuration of the node, it may be difficult to organise a waiting
line of vehicles at the charging outlets which requires additional parking space and
labor. However, as stated before, no capacities of the waiting line are considered
in the developed model since they would introduce potential losses which are not
compatible with the network analysis technique employed so far.

The two other policies in figures 6.26b and 6.26c shows less critical values for
the waiting probabilities at the stations and the latter in particular is the one
that better mitigate this risk since the load is well balanced through the available
charging nodes.

6.2.5 Relocation after charging

A further level of complexity of the modelled network is introduced considering
relocation operations after the EVs charging process is completed. As seen for
the charging policy in fact some movement of vehicles not depending on users’
mobility can be introduced in order to re-balance the system. In this section are
considered specifically operator based vehicles repositioning from the moment an
EV is unplugged from the charging outlet. As explained in section 3.3.3 three
different relocation after charging policies have been considered namely uniform,
highest demand and probabilistic relocation. The results obtained with these
different approaches and considering no relocation after charging are compared and
combined with the different charging policies illustrated before. A first overview
of global system metrics is provided and then the best possible combinations are
analysed in detail in the next section.
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Charging policies and relocation after charging combinations with bal-
anced routing matrix

Figure 6.27 shows through heat maps the system throughput and the average
unsatisfied demand with all the possible combinations of charging policies and
relocation after charging. In particular results in figure 6.27a are obtained with a
demand based station positioning in the network while metrics in figure 6.27b with
a random placement. In both figure the system throughput is inversely proportional
to the unsatisfied mobility demand as for its definition.
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(a) Opportunistic policy

(b) Closest CS policy

(c) Uniform policy

Figure 6.26: Average number of vehicles and probability to wait in each charging
station (12-1pm)
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(a) Demand based station positioning

(b) Random station positioning

Figure 6.27: Heat maps of possible combinations of charging policies and reloca-
tion after charging with different station positioning strategies

Starting from the demand based positioning of charging nodes in figure 6.27a it
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is evident that the worst result is obtained combining a closest charging station
policy with no relocation after charging. The results in the first column of each
map (i.e. without relocation after charging) are the same obtained and commented
in section 6.2.3 from which it was clear that the best policy was the opportunistic
one. However looking at all the other metrics in the map the opportunistic policy
with no relocation after charging is just the third best result whilst the greatest
system throughput is reached combining either the closest station or the uniform
charging policy with the highest demand relocation after charging. Other good but
slightly worst values of the throughput are reached considering again either the
closest station or the uniform charging policy with the probabilistic relocation after
charging. In general is evident that combining no relocation before with relocation
after charging policies or vice versa, the obtained throughput is much less than
in all the other cases. This results suggest that the best possible performances
are obtained by taking vehicles to charge from allover the network, and then by
relocating them in the zones in which it is more probable that they will be booked.
The difference between the highest demand and the probabilistic relocation after
charging is in fact that employing the first one EVs are only relocated in the top
N mobility zones of the network by expected demand rates, while in the second
case they are brought in all the network according to a probability which follows
the users’ demand. For the studied case the top 50 zones are considered for the
highest demand relocation. Moreover the two best combination produces the same
throughput which suggests that for this case there is little difference between
bringing vehicles to charge uniformly in all the stations or to the nearest one. Of
course these system metrics do not take into account other factor such as the
cost for the operator to move vehicles which increases with the travelled distance.
Eventually this further consideration suggests that the best combination of policies
with this network configuration is considering the closest station policy with the
highest demand relocation after charging. The heat map on the right in figure
6.27a shows the average values of unsatisfied mobility demand for the system each
obtained weighting the single contributions of each mobility zone. The identified
best combination of policies leads to a percentage of unsatisfied mobility demand
of 37.2% while in the worst case scenario this reaches 57.6%.

Figure 6.27b shows the same results in terms of throughput and percentage
of unsatisfied demand with all the possible combination of charging policies but
considering a random placement of the stations in the network. In this way the
charging nodes do not necessarily coincide with the highest users’ demand mobility
zones. The results are not so different with respect to the previous case. In
particular considering relocation operations before and after the charging process
the station positioning does not have any impact on the overall system throughput
unless this would result in an heavy utilisation of a particular station with vehicles
queuing and accumulating. Since this is not the case considering a balanced routing
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matrix and the charging station utilisation is always well below the maximum
capacity, the throughput is not affected at all. A similar comment can be made
regarding the baseline scenario with opportunistic charging policy and no relocation
after charging. Here the station positioning only affects the computation of the
fraction of vehicles to be redirected to charge when arriving in the mobility zone
with a station within. In this particular case the flux of vehicles in these mobility
zones is not enough to guarantee the needed requests for power of the fleet. In
fact the values has been clipped by the algorithm meaning that all vehicles are
brought to the station but this is still not enough. The resulting throughput of the
system is therefore slightly higher than the previous case but it has to be taken into
account that more charging operations would be needed. The same phenomenon
characterises also all the other combinations including the opportunistic charging
policy. The increase in throughput is even more evident when considering relocation
after strategies since the random positioning of stations probably does not follow
the user mobility demand. For the remaining two combinations of policies, namely
the closest station or the uniform charging policy with no relocation after charging,
the throughput is even smaller when considering the random placement of stations.
This is straightforward since vehicles are brought from the whole network to these
nodes and then they are left there where they will tend to pile up since users’
demand in these nodes is possibly not high.

Charging policies and relocation after charging combinations with hourly
data matrix

The same analysis of possible combinations of charging policies and relocation
strategies related to the charging process can be done considering hourly bookings
data to describe the routing and the users’ demand in the network. The system
throughput and average unsatisfied mobility demand for all the cases are reported
in the heat maps in figure 6.28. The results for a network following a demand
based stations positioning are in figure 6.28a while in figure 6.28b the charging
nodes are placed randomly through the city. Again the percentage of unsatisfied
mobility demand is inversely proportional to the total throughput of the system.

102



Case studies and results

(a) Demand based station positioning

(b) Random station positioning

Figure 6.28: Heat maps of possible combinations of charging policies and relo-
cation after charging with different station positioning strategies and hourly data
matrix (12-1pm)
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The first thing that can be notice is that the highest throughput is obtained
using uniform relocation before and after the charging operation. Very similar
results are also obtained considering the closest station policy with a uniform
relocation after charging. This relocation strategies can be in fact more suitable
for this kind of network since, as seen in section 6.2.4, the distribution of vehicles
through the city tend to be very uneven. A uniform relocation then, act as a
re-balance for the system bringing some vehicles in all the mobility zones. For this
same reason the throughput results lower if considering a probabilistic approach
in the relocation after charging and even lower when using the highest demand
strategies. Following the first approach in fact more vehicles are brought in zones
where they already tend to rack up and this is even more pronounced considering
the second policy which limits the number of destination zones for the relocation.
The re-balance effect obtained with both these strategies will eventually be less
impacting than with a uniform relocation.

Moreover the worst results are obtained as before including relocation before
and not after the charging process as expected. A valid alternative would still be to
consider the baseline scenario with opportunistic charging and no relocation but the
throughput in this case can be quite lower since as stated before, the re-balancing
obtained with the relocation can benefits the system dynamics. In the end it can
be seen that if no relocation is considered before charging then including it after
would worsen the situation since it would cause a deficit of vehicles in the mobility
zones with a station (i.e. the one with the highest mobility demand).

Looking at figure 6.28b, it can be seen the effects of a random placement of
stations in the same network analysed before. This impact is not so relevant in the
previously identified best configurations of policies since a wider relocation is always
preferable wherever the stations are placed. Better results are achieved in this case
considering relocation after charging even when employing an opportunistic policy.
This is motivated by the fact that stations are possibly placed in zones where the
demand is not high therefore moving vehicles from there would benefit the overall
throughput.

6.2.6 Best policies for charging case studies
Relocation operations related to the charging process can represent an important
tool enhancing the system performances but they also imply a cost for the system
operator. Moreover it has been proven that combining different relocation strategies
do not always improve the situation therefore, based on the network configuration,
general routing and expected users’ demand, particular policies schemes are more
suitable than others. In the following the best combination of policies in terms
of throughput and unsatisfied mobility demand found in section 6.2.5 for the two
kind of networks are analysed in detail.
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Closest station charging policy and highest demand relocation for bal-
anced routing matrix

With a balanced network, such as the one obtained with a routing matrix considering
all trips in the dataset, the best solution appears to involve a closest station charging
policy and a highest demand relocation. Figure 6.29 reports the average vehicles,
average unsatisfied demand and throughput for each zone on the city grid.
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(a) Average vehicles (b) Average unsatisfied demand

(c) Throughput

Figure 6.29: Best policies for charging network with balanced matrix on city grid
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From figure 6.29a it can be seen that the vehicles distribution is quite even
through all the network. This guarantees low values of unsatisfied mobility demand
in almost all the zones as shown in figure 6.29b. Very few squares in the map are
associated instead to a percentage of unsatisfied users’ requests with high values
ranging approximately between 70% and 100%. These also corresponds to nodes
in which the average number of vehicles is around zero. The zones with a charging
station within (represented with a red dot on the map) appear to have a low
values of unsatisfied demand. However vehicles do not pile up as seen in figure
6.15b as effect of the closest station policy because in this case a redistribution is
guaranteed by the relocation operations after charging. The throughput has still a
geographical distribution similar to all the cases studied before with highest values
in the city center and at the airport which represent the zones with the highest
mobility demand.

Table 6.9 reports some numerical performance metrics obtained for this network.
If comparing these results with the one reported in table 6.5 for the opportunistic
policy which were the best if not considering relocation after charging, it can be
seen that besides worst values of throughput and unsatisfied mobility demand, the
vehicles distribution was more uniform through the network in that case and less
zones had an unsatisfied demand greater than 90%. However the total number of
lost requests per hour is less using the combination of the two relocation policies
suggesting that the overall users’ demand is better met with this approach.

System System average Maximum number
throughput unsatisfied of vehicles

demand in a zone
53.11 37.23% 2.51

Number of zones with Total number of
average unsatisfied lost requests

demand >90% per hour
12 31.50

Table 6.9: Best charging policies network indicators recap

Looking at the charging stations in the network, figure 6.30 shows throughput
and utilisation for each while the average values over the network are reported in
table 6.10. The peculiar characteristic of the closest station policy are still well
observable in the graph with the zones with ID 200 (i.e. the airport) that has the
lower utilisation due to its distance from the rest of the network. On the contrary
zone 383 has the highest utilisation due to its proximity to most part of the north
sector of the city, in spite of the demand rate of the mobility zone which is the
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second to last with respect to all the other nodes with a station. The overall average
values of throughput and utilisation suggest that the charging infrastructure is not
heavily used as already seen when considering these input data. Consequently the
number of vehicles in the stations is such that the probability to queue there is
very low.

Figure 6.30: Throughput and utilisation of charging stations for best policies
network

Average station Average station
throughput utilisation

0.21 9.03%

Table 6.10: Average throughput and utilisation of charging stations for best
policies network

The highest demand relocation strategy requires the definition of an additional
parameter which is the number of top zones ordered by their expected demand to
which limit the relocation of vehicles. The previously illustrated results are obtained
with a number of zones equal to 50. However a study of this parameter may be
useful to see its impact on the network performances. Figure 6.31 shows the system
throughput and the number of lost requests per hour as the number of considered
top zones for relocation is increased. The trends appear to be consistent and
opposite with respect to each other. After an initial big improvement, increasing
the number of zones over 15 appear to worsen both the throughput and the lost
requests. This suggests the idea that limiting the relocation after charging to few
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zones is the best option since the network is already well balanced and only nodes
with an high demand can generate more trips with additional vehicles. Moreover
the range of absolute values on the y-axis in both plot is narrow, which means
that the impact of this factor is not so relevant in the overall performances of the
network.

Figure 6.31: System throughput and lost requests increasing number of top zones
by highest demand

Uniform charging policy and relocation for hourly data routing matrix

The second network studied follows a routing matrix obtained with hourly trips
data from noon to 1 pm, and the best combination of policies for it is using a
uniform relocation before and after the charging operations. Figure 6.32 shows
the main system metrics on the city map. Observing figure 6.32a, it can be seen
that vehicles still tend to accumulate at steady state in particular zones. However
the maximum number of vehicles in a zone, as reported in table 6.11 is around 30
and it can be seen on the map that there are few other zones with a relative high
number. Especially if comparing this result with the ones obtained with the same
network but without relocation after charging as in figure 6.22, this case shows
the best distribution of vehicles through the network. Additionally vehicles do not
necessarily pile up in zones with a charging station inside but in very attractive
nodes according to the users’ routing. The range of unsatisfied demand in figure
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(a) Average vehicles (b) Average unsatisfied demand

(c) Throughput

Figure 6.32: Best policies for charging network with balanced matrix on city grid
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6.32b is still wide but in addition to the average of the system, both the number of
zones with a percentage of lost request greater than 90% and the total number of
lost request per hour are significantly improved with respect to all the cases without
relocation after charging as reported in table 6.11. All these results highlight the
need for relocation operations in an heavily unbalanced network. Eventually the
distribution of the throughput on the map in 6.32c follows the usual pattern of
users demand.

System System average Maximum number
throughput unsatisfied of vehicles

demand in a zone
155.45 55.9% 29.94

Number of zones with Total number of
average unsatisfied lost requests

demand >90% per hour
26 197.07

Table 6.11: Best charging policies network indicators recap (12-1pm)

Moving on the impact of the policies on the charging stations, figure 6.33
shows the throughput and utilisation of each charging node in the network. Both
graphs are characterised by similar values for all the stations which is a peculiar
characteristic of the uniform charging policy. This kind of network as seen in the
previous analysis in section 6.2.4, can cause criticality at the charging station level
because the high demand rates and throughput require an heavy utilisation of the
infrastructure. However using the uniform approach to put vehicles in charge the
load is distributed in the best way. The resulting average utilisation and throughput
for the whole set of stations in the network are reported in table 6.12 and do not
seem to indicate a particularly critical situation.

Average station Average station
throughput utilisation

0.63 26.43%

Table 6.12: Average throughput and utilisation of charging stations for best
policies network (12-1pm)

A further study can be done computing the average number of vehicles and the
probability to wait at each station. Results are displayed in figure 6.34. Again the
values are all similar due to the uniform policy and the number of vehicles is less

111



Case studies and results

Figure 6.33: Throughput and utilisation of charging stations for best policies
network (12-1pm)

than 0.7 for each station. Recalling that there are two charging outlets in each
station this suggest that rarely both will be occupied at the same time. In fact the
probabilities for a vehicle arriving at the station to wait are quite small and all
between 9% and 13%. This result further confirms that a uniform relocation is the
best option when dealing with heavy loads on the charging infrastructure.
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Figure 6.34: Average number of vehicles and probability yo wait in each charging
station in best policies network (12-1pm)

6.2.7 Impact of charging operations on the power grid

An interest aspect concerning charging mechanism in the network is the study of
the power loads required for the needed operations. With particular configurations
of network and at peak hours, the stations heavy utilisation can be critical also
in terms of the energy required to the city power grid. A quantitative analysis
of the amount of power needed considering hourly data matrix for the whole day
is done in the following with the network configurations seen in the paragraphs
before. Figure 6.35 shows the power needed by the system fixing the average
trip length first and the average EV consumption after. Superimposed in both
graph is the bar plot of the system throughput for the same network. For all this
network simulations it has been used the opportunistic charging policy and no
relocation after charging. The most noticeable aspect in figure 6.35 is that the
total average power consumption follows the trend of the system throughput. In
general more trips means more energy consumption and therefore more charging
operations increasing the power consumed. Looking at the differences between the
three curves in both graphs it is easy to see that increasing the average EV energy
consumption per kilometre, or the average trip length, the needed power increases.
This follows the same consideration made before because more consumption per
kilometre means necessity to charge the vehicle more often and a greater trip length
implies charges needed every fewer completed trips.
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Figure 6.35: System power consumption varying average trip length and average
EV consumption

6.3 Network with delay zones

The simplifying assumption made in all the networks studied so far is that once a
vehicle leaves a departure zone it appears instantaneously in the destination one.
The time component in the mobility flows can although be determinant if the trips
time increases for example considering inter-city sharing scenarios. Delay zones
have been introduced in the network to study this effect as explained in section 3.4.
Table 6.13 reports the usual system metrics for the two networks with different
routing matrices, employing the best charging policies and considering the different
approaches to include trips delay. For both network configurations and with both
methods to add delays, the throughput of the system decreases and consequently
the average unsatisfied mobility demand increases. This is expected since including
the trip delay diminishes the relative flows in all the mobility zones. In fact part of
these flows is now at steady state in the delay queues. No particular differences are
visible between the single delay queue and the multiple delay queues approaches.
However the throughput is lower using the second one for both studied networks.
The service times of the delay queues for this approach have been evaluated using
the mean physical distance between each zone and the rest of the network. In the
single delay queue the service rate is instead the average of all the service rates
computed for the other method.
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Balanced matrix
Delay System throughput Average unsatisfied

demand
None 53.11 37.23%

Single queue 52.15 38.37%
Multiple queues 51.22 39.46%

Hourly data matrix
Delay System throughput Average unsatisfied

demand
None 155.47 55.9%

Single queue 152.88 56.63%
Multiple queues 149.24 57.67%

Table 6.13: System performances with best charging policies and different delay
strategies

Table 6.14 shows the average number of vehicles in the delay zones and the
average time spent there by each. The first metric indicates how many vehicles are
moving from one zone to another at steady state and therefore are not available
for booking. The values for the multiple queues approach are slightly smaller
which also justifies the lower throughput obtained. The main difference however
is between the results obtained with the two network configurations. With the
second one in fact the number of moving vehicles at steady state is much greater
and more than 1

8 of the total fleet size. The average time in the queue for the single
zone approach coincide with the average trip time computed while for the multiple
queues one depends also on the routing inside the network. However this values
are not so different for both the analysed networks and around 20 minutes which is
a reasonable results for the dataset under study.

As explained before in section 4.2.3 an approximate method is used to establish
the flux in the single delay zone therefore the results may be affected by a small error.
Moreover the multiple delay queues approach can use a more precise estimation of
the trips time from each zone. For these reason in the following only this method
is considered.

Instead of computing the service rates as function of the estimated time to reach
a destination from each zone, arbitrary values of the trip time can be assigned to
study the impact of the delay zones in possible different scenarios. Figure 6.36
shows the system throughput and the average number of vehicles in the delay zones
as the average trip time is increased. For both networks the trends of the two curves
are very similar. The throughput in fact has a net decrease when introducing a
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Balanced matrix
Delay Average number Average time

of vehicles in spent in
delay zones delay zones [min]

Single queue 18.48 21.26
Multiple queues 18.95 21.04

Hourly data matrix
Delay Average number Average time

of vehicles in spent in
delay zones delay zones [min]

Single queue 52.87 20.75
Multiple queues 57.45 21.8

Table 6.14: Delay queues metrics with best charging policies

minimum delay and then decreases almost linearly but smoothly for the balanced
network in figure 6.36a. This decrease appears even more gradual in the other
network in figure 6.36b. On the contrary the number of vehicles in the delay zones,
which are the ones moving, increases in a nearly linear way as expected as the trip
time increases. In the end with a fixed average trip time on the order of the ones
computed in table 6.14 (i.e. around 20 minutes) the loss in throughput are small
and the number of vehicles moving at steady state is around 20 for the balanced
network and around 50 for the other.
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(a) Balanced matrix

(b) Hourly data matrix (12-1pm)

Figure 6.36: System throughput and number of vehicles in the delay zones with
increasing average trips time
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Chapter 7

Simulation results
comparison

All the obtained results showed and analysed in chapter 6, have been obtained
through the resolution of analytical models based on queuing theory. As said
before these models assume a steady state behaviour for the system with a fixed
routing matrix and demand rates to describe the vehicles movement through the
city network. To further validate these results a comparison with results from a
simulation tool are proposed. The simulation tool used is Odysseus1 which stands
for Origin-Destination Simulator of Shared E-mobility in Urban Scenarios. It was
developed inside the SmartData@Polito research group and is a management and
simulation software for mobility data with a particular focus on shared electric fleet
in an urban environment. The tool simulates vehicles’ trips in the city network
tracing the origin and destination zones and the corresponding SoC before and
after the booking. The path followed by the vehicle is not simulated in detail and
the actual trips distance is estimated from the Euclidean distance between the
centroids of the starting and ending zone multiplied by a correction factor which
is specific for each city [36]. Fleet charging processes are also simulated imposing
thresholds for the battery level and strategies for the operations’ management and
the infrastructure placement.

7.1 Input data adaptation
To have a fair comparison with the results of the model some modifications of
the input data to feed to the simulator were required. In particular the input of

1https://odysseus-simulator.readthedocs.io/en/latest/index.html
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the model is a static stochastic routing matrix inferred from real data while the
simulator requires directly a trace of trips with an origin and destination time and
space in the form of latitude and longitude.

7.1.1 Balanced data
The balanced matrix obtained for the model as in section 5.1.1, includes all trips
in the time period for all hours of day and for both weekdays and weekends. In
the simulator a new scenario has been created using the complete trips dataset as
input. The important difference between the two is that the input routing matrix
of the analytical model is extracted from the input trace considering it a stationary
process and studying the system behaviour at steady state. The simulation model
instead considers this time variability resulting in different routing and demand
rates for each day.

7.1.2 Hourly data input
The hourly data input matrix for the analytical model has been obtained filtering
input trips with a starting time between noon and one in the afternoon as explained
in section 5.1.1. To create an input trace for the simulator which mimics similar
dynamics, the same dataset was taken and the trips within the 12-1 pm interval for
each day were replicated for all the other hour intervals for the day. Additionally a
quite long simulation time is required to overcome the impact of the system initial
conditions on the general results. Therefore a six month trace has been generated
in which each day presents the same hourly trips pattern repeated 24 times. With
this method however an additional variability is present in the input data with
respect to what obtained with the fixed routing matrix of the analytical model since
each day is different from the other. Nevertheless this day by day variance allows to
include in the simulation all trips generated in the considered time interval which
were also taken into account in the computation of the analytical model’s routing
matrix.

7.2 Simulation configurations
The simulator is made by different modules to manage the input data, create the
city scenario, generate the demand, provide the supply configuration and complete
the simulation. Different parameters and strategies can be set to be used in the
modules. In the following the used demand model, the possible configurations for
the supply and the followed simulation technique are briefly explained.
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7.2.1 City scenario and Demand model
From the given input trips trace, a first data manipulation provides the origin-
destination pattern through the network, mapping latitude and longitude on the
city grid and creating its visual map. A set of valid zone is extracted and various
parameter are computed such as the average speed and average driving distance of
vehicles, the set of neighbouring zones through the distance matrix of the network
and the actual fleet size.

The demand module would allow to estimate the customers mobility requests in
time using prediction models such as the Poisson-KDE proposed in [34]. However
for the simple studied simulations, the demand is computed from the input data in
a similar way as done for the analytical model, counting for each zone and at each
time interval the number of generated trips towards the rest of the network.

7.2.2 Supply model
The system configurations for each simulation are defined in the supply model.
Table 7.1 shows a list of the main parameters that can be set for the supply model
definition.

Category Parameter
Vehicles fleet Vehicles factor

Engine type
Profile type

Vehicle model
Charging infrastructure CPS placement policy

Distributed CPS
System CPS

Num charging poles
Num charging zones

Charging policies Charging strategy
Charging relocation strategy

Charging thresholds
Charging queuing
Number of workers

Table 7.1: Supply model main configuration parameters list

For what concerns the vehicles, the fleet size is already inferred by the input
trips data which also contain the unique plate number of each vehicle. A vehicle
factor can be set for the simulation to easily modify this number. Moreover the
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engine type, the model and the profile type, which determines the voltage and
current output, of the EVs are set. All data related to the vehicles can be extracted
in this way; for EVs these are the battery capacity, the average consumption and
the charging performances with different type of charging stations. The charging
stations parameters instead include the possibility to distribute or concentrate the
stations in a single zone, to decide the policy for the placement and to set the
number of stations and poles to include in the network. For the charging operations
it can be choose to adopt a reactive or proactive strategy and how to choose the
station to which bring the EV. The thresholds for the charging can be set and the
possibility to queue at stations can be enabled. Eventually the number of available
workers has to be set together with the average time they took to reach a vehicle
to bring it to charge.

For what concern stations positioning in particular, the possibility to place them
in the top zones by number of parking was already implemented. This is similar to
the demand based approach used in the analytical model and explained in section
5.2.3, however a slight modification to the code was applied to avoid the positioning
of stations in neighbouring zones.

In the end other parameters, not included in table 7.1 because they are not of
interest for this work and mainly regarding relocation strategies can be set through
the supply model.

7.2.3 Simulation technique
The simulation module allows to perform simulation with two different strategies: a
model driven and a trace driven one. The model driven approach uses the inferred
demand from the Poisson-KDE estimation model while the trace based one follows
the list of bookings created by the demand module and it is the chosen approach
for the studied cases. The list of booking requests is simply scrolled through and
a further check on the validity of the origin and destination zones is performed
before a new simulation event is generated. After the simulation is carried out
different statistics are generated on the general performances of the system and
some graphs are produced.

7.3 Simulation case studies
Two main case studies have been tested with the simulator tool corresponding to
different input data as explained before in section 7.1. The balanced data case
uses the whole dataset of traces to create a scenario and a demand trace while the
hourly data case considers only trips in the 12-1 pm time interval repeated through
the whole day.
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Excluding the different input data, the other simulation parameter are kept
constant in the two simulation. A list of the chosen configuration is in table 7.2.

Vehicles fleet Vehicles factor 1
Engine type Electric
Profile type Three-phase

Vehicle model Fiat 500e 2020
Charging CPS placement policy Number of parking

infrastructure Distributed CPS True
System CPS True

Num charging poles 20
Num charging zones 10

Charging policy Charging strategy Reactive
Charging relocation strategy Closest free

Charging thresholds –% to 90%
Charging queuing True
Number of workers 12

Table 7.2: Simulation main configuration parameters

With respect to the tested analytical models some differences are present in
parameters that could not be changed. In particular looking at the charging policy,
reactive charging is implemented which means that EV are brought to charge when
the battery level is below a security threshold. This threshold is computed based on
the vehicles average consumption and the maximum driving distance in the city to
have a safe margin and avoid to have EV’s battery dying mid trip therefore its value
depend on the single case. The maximum threshold instead has been manually
set to 90% of the battery capacity. Additionally EV are brought to charge in the
nearest station available which is the same strategy implemented for the analytical
model and referred as closest station. The positioning of the stations then follows
the zone with the greatest number of parking avoiding to place two stations in
neighbouring zones. This resulted in an almost equal placement with respect to the
analytical model which followed the expected user demand. In the end the charging
outlet was defined as a three-phase charger set to provide an output voltage of
400V and an output current of 32A which results in a total power of 22.17kW. The
maximum charging power allowed by the vehicle with this charging profile was also
set to 22kW. This is the most similar solution to the one adopted in the analytical
model which considered an output power of 20kW for the charging outlets.
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7.3.1 Balanced data simulation
The first simulation case proposed is based on the whole trace of input trips from
July to December 2017 including both weekdays and weekends. The computed
number of vehicles for this simulation is 439 and the computed minimum threshold
to trigger the reactive charging of EV is 19.49% which are both similar values
to the one considered in the analytical model. It is important to stress that this
simulation simply follows the day-by-day input trace of data while the network in
the analytical model resulted from an input fixed routing matrix therefore a direct
comparison of the two approaches may be not so informative. However it can be
useful to extract overall average metrics for the network to compare the general
behaviours of the systems with the two models.

The charging station positioning on the map follows the maximum number of
parkings approach explained before and resulted in the grid in figure 7.1. The
placement is very similar to the one obtained with the balanced matrix in the
analytical model with all the stations placed in and around the city center and an
additional one at the airport as shown in figure 6.14.

Mobility network indicators

A first characterisation of the predicted demand can be seen in figure 7.2 where
the total number of requests (figure 7.2a) and the hourly demand rate (figure 7.2b)
per each zone are plotted. As expected from the input trace an higher mobility
demand is generated in the city center zones. Moreover the airport generates a
consistent number of requests while in general going towards the city outskirts
results in a decreasing of the demand. In terms of rates values these exceed one
requests per hour on average only in very few zones in the center of the map.

The actual number of generated and attracted trips by each zone in the network
are instead shown in the maps in figure 7.3. The general distribution through
the city is very similar to the demand one. Looking at the absolute values of the
departures in figure 7.3a, it can be seen that also the range of values is almost
the same as the demand one suggesting a good satisfaction of customers’ mobility
requests.

Each generated event can be tracked through the simulator which gives the
possibility to study in detail the trend of users’ demand and satisfied bookings not
only in the form of aggregated averaged metrics. Figure 7.4a for example shows
the profile of events in the simulation time frame in terms of requests, bookings
and unsatisfied requests. The data for the plot have been resampled in one hour
intervals. The gaps in the curves correspond to time periods for which the input
data were not available probably due to a system malfunctioning. The graph
suggests that the percentage of unsatisfied demand is always below 50% since the
bookings (green) curve is always above the unsatisfied (red) one. Additionally
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Figure 7.1: Simulation city grid

figure 7.4b shows a zoom on the events generated at the beginning of the simulation.
It can be seen that at the very beginning the curve of unsatisfied requests is almost
superimposed to the bookings one while it decreases with the simulation time and
stays always below the other one after. This suggest the existence of an initial,
even if short, transient period. The starting distribution of vehicles probably was
not ideal to fully satisfy the customers demand. Going further with the simulation
instead that system balances itself reaching an almost stationary condition which
can be therefore compared to the steady state condition of the analytical model.

A first comparison with the proposed model can be done observing the system
target metrics as in figure 7.5. The most similar case to this simulated one studied
with the analytical model is the one obtained with a balanced routing matrix, a
closest station charging policy and no relocation after charging. The throughput in
figure 7.5a appears almost equal in both distribution and values range to the one
obtained with the model and showed in figure 6.17b. The total hourly throughput
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(a) Demand (b) Demand rate

Figure 7.2: Simulation demand and demand rate

for the network is 49.13 compared to the total number of mobility request per area
which was 64.17. The percentage of unsatisfied mobility request is instead plotted
in figure 7.5b. Here it is evident that most of the value are in range between 20%
and 40% with few zones with value that approaches 50% and just one which exceed
it. The smallest percentages of unsatisfied demand are at the zones with charging
stations within and in their immediate neighbourhoods. The used charging policy
in fact brings EV to charge in the nearest station and do not relocate them after the
process is complete. Therefore it is safe to assume that some EV will accumulate
in these zones resulting in most of the demand being met there. An important
factor in the configuration of the simulator is that if vehicles are not present in
the intended origin zone, a customer can take it from an immediate neighbouring
one resulting in zones near the charging station to have similar smaller values of
unsatisfied demand.

A further detail on how much this configuration affect the system performances
can be seen in figure 7.6 in which the percentage of satisfied trips and between
them the percentage of satisfied trips in the intended zone are shown. The total
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(a) Departures (b) Arrivals

Figure 7.3: Total simulated departures and arrivals per zone

percentage of satisfied trips is 76.46% and the 72.04% of them were from vehicles
booked in the intended origin zone which is the 55.08% of all the requests. In
a direct comparison with the most similar scenario studied with the analytical
model, the overall percentage of unsatisfied mobility demand for that case was
57.58%. The two results confirm that the analytical approximation is very precise
for this case in spite of some differences in the initial configurations of the two
models. Moreover the initial transient period was not cut off for the computation
of these metrics therefore, even if very short, may have contributed in increasing
the percentage of unsatisfied requests in the simulation.

In the end a simple analysis of the time complexity can be perform. The
simulation for this case took 194.73 seconds which confirms the higher need of
time and computational resources for the simulation model with respect to the
analytical one. The analytical model in fact took on average around 9.70 seconds
including the time to load the data and plot some graphs of which just around 0.68
seconds are used to build the network and extract the system metrics.
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(a) Whole period (July-December 2017

(b) Starting period (1-30 July 2017)

Figure 7.4: Simulation event profile

Charging stations indicators

A further analysis can be done looking at the charging stations in the simulated
network scenario. As already displayed in table 7.2, there is a total of 10 stations
in the network each with 2 charging outlets which is the same configuration of the
analytical model.

Figure 7.7 shows the throughput and the utilisation of each station in the
network. The pattern of the stations’ throughput does not exactly follow the
utilisation one. This happens because, differently from the analytical model, EVs
reach the stations with different level of residual battery therefore some charging
operation take more time than others. Moreover the only station which present
values significantly smaller than the others is the one in the zone with id 239 which
corresponds to the airport. The charging policy in fact requires that EVs are
brought to the closest station and the airport is far from the rest of the network. It
is safe to assume that all the charging events happening at the airport are therefore
of vehicles that were already arriving there with no further relocation involved.
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(a) Throughput (b) Unsatisfied mobility demand

Figure 7.5: System target metrics per zone

Figure 7.6: Satisfied trips details

Similarly the second station by smallest throughput and utilisation is in the north
sector of the city near to few other zones for which the throughput, as seen in 7.5a,
is relatively small. Overall the throughput of the most used station is smaller than
0.35 charged EVs per hour and the maximum utilisation is around slightly above
20%. Computing the mean values for all the stations in the network it results an
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average throughput of 0.24 and an average utilisation of 14.13%. All these values
suggest that the infrastructure is not particularly stressed.

Figure 7.7: Throughput and utilisation of charging stations

Other interesting statistics on the energy consumption and its components and
on the general charging operations can be obtained directly through the simulator
and are shown in table 7.3.

Parameter Value
Total charges number 10488

Total WtW energy 377827.17 kWh
Total WtT energy 225816.53 kWh
Total TtW energy 152010.64 kWh

Total charges energy 185641.08 kWh
Total energy cost 13902.63 €

Total WtW CO2 emissions 87289.11 kg
Average charging duration 3620.52 sec

Average EV SoC 60.12%
Charges by EV 24.50

Average SoC at charging 17.70%

Table 7.3: Simulation charging processes statistics
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A particularly useful measurement to compute the total energy consumption of
a generic mobility system is given by the well-to-wheel (WtW) which takes into
account all the processes required from the extraction of the energy source (well)
to its consumption by the vehicles (wheel). This value can then be divided in its
two components namely well-to-tank (WtT) and tank-to-wheel (TtW). From the
collected data it can be seen that with the given configuration the major component
of the total energy consumption is in the WtT phase so from the extraction to
the charging of the vehicle. The TtW instead is the actual measure of the energy
employed for moving the EVs. The same classification is used for CO2 emissions
but since in this scenario EVs are employed, the TtW emissions component is zero
and the total value is entirely due to the extraction and production of the energy
required. The total energy quantity provide to the EVs through charging processes
is also quantified and it is, as expected, greater than the one consumed (TtW
component) at the end of the simulation. With respect to the analytical model,
the utilisation and throughput of charging stations are higher in the simulated
scenario which is consistent with the higher overall throughput of the mobility
zones. Dividing the total amount of energy used in the charging process by the
total simulation duration it results an average of 49.58kW of power injected per
hour while in the analytical model this same value is 24.40kW.

In the end some measures more specifically concerning the simulated charging
processes are provided. The average duration of a charge is around one hour and
the average state of charge (SoC) of EV going into the station is 17.70% so slightly
less than the set minimum threshold. Moreover the mean SoC of EVs in the system
is 60.12% which is above the mid point between the two charging thresholds and an
average of 24.5 charges per vehicle are carried out in the six month of simulation
time span.

7.3.2 Hourly data simulation
As explained in section 7.1.2 input data for this case study have been filtered
to include only trips happened between noon and one in the afternoon and on
weekdays. This pattern of trips has then been artificially replicated for all hours
of the day. The considered time period of data for the simulation is between July
and December 2017. The number of vehicles available for this simulation is 409
while the computed minimum threshold for charging is 18.69% also in this case
very similar to the configuration of the analytical model.

Mobility network indicators

Figure 7.8 shows the city map obtained by the simulation with the positioning of
the charging stations highlighted in red. The placement is very similar to the one
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obtained with the analytical model for the hourly data routing matrix with most
of the station placed around the city center and one in the airport.

Figure 7.8: Simulation city grid (12-1pm)

The demand computed from the input trace for this scenario has been plotted in
figure 7.9. The pattern through the city shows again a greater request for mobility
in the city center zone and in part at the airport and the average rates of requests
are all below one trips per zone.

An overview of the actual trips generated in the simulation can be seen in figure
7.10 where the total number of departed and arrived trips per zone is plotted on
the map. As seen in all the previously studied cases, the zones in the city center
are both the most attractive and the ones that generate the greatest number of
trips. Some additional gaps are presented in this maps due to zones that have not
originated or attracted any trip during the simulation.

The list of generated requests, bookings and the consequent unsatisfied trips
are plotted on the simulation time axis in figure 7.11. The first thing that can be
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(a) Demand (b) Demand rate

Figure 7.9: Simulation demand and demand rate (12-1pm)

noticed in figure 7.11a is that most of the time the curve of the bookings is below
the one of the unsatisfied requests suggesting that the percentage of unsatisfied
mobility demand is almost always above 50%. The gaps in the graphs instead
correspond not only to lack of input data but also to weekends for which data were
filtered out and the demand was not computed. Figure 7.11b shows a zoom on the
first part of the simulation profile. It can be noticed that at the very beginning
the number of unsatisfied requests is low and it increases in the following days to
remain above the satisfied bookings for the rest of the simulation. This transit
effect is due to the initial condition of the system for which in this case vehicles are
well distributed through the city. Then due to the heavy unbalances in the demand
and trips pattern, the system tend to be unbalance reaching a condition that can
be compared with the steady state of the analytical model with the hourly data
routing matrix.

Looking at the target system metrics, figure 7.12 shows the hourly throughput
and the fraction of unsatisfied mobility demand for each zone. The throughput in
7.12a as seen for the total originated trips in figure 7.10a has higher values in the
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(a) Departures (b) Arrivals

Figure 7.10: Total simulated departures and arrivals per zone (12-1pm)

city centre which are however relatively small compared to the ones seen for the
correspondent analytical model. Computing the overall hourly system throughput
the obtained value is only 18.60 with a total number of requests per hour which
instead reaches 65.39. With the hourly data matrix in the analytical model and
considering a closest station charging policy with no relocation, which is the most
similar scenario tested to the simulated one, the overall throughput value was
112.35. This difference is the result of much lower values for the simulated model
demand and in a general of a greater fraction of unsatisfied mobility. Absolute
numbers aside, the distribution of the throughput in the city is similar in the
two cases. The unsatisfied demand appears quite evenly distributed through the
network with most zones with a percentage of unsatisfied requests around 70%.
Few zones have smaller values and are placed where there is a charging station or
in a neighbouring zone.

Figure 7.13 gives a detail on the satisfied trips which are just 28.09% of the total
demand. Moreover 51.35% of them are satisfied by EV present in a neighbouring
zone with respect to the originally indented one. With the similar case in the
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(a) Whole period

(b) Starting period

Figure 7.11: Simulation event profile (12-1pm)

analytical model the fraction of unsatisfied demand was 68.13% which is comparable
to the 71.91% obtained here. If instead considering the number of trips originated
in the exact same zone as the intended one, this percentage would increase to
86.33% of all the requests.

The time needed to complete this simulation was 112.94 seconds which is smaller
than the one required by the previous case study in section 7.3.1 because of the
smaller dataset. However this remain much larger than the time required to build
the analytical model for the similar scenario which was on average 7.1 seconds
including the input data loading and the plots generation and 0.67 seconds for the
network building and the performance metrics extraction.

Charging stations indicators

In the end a simple analysis of the charging stations performances for this scenario
can be made.

Figure 7.14 shows throughput and utilisation of each single station in the city.
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(a) Throughput (b) Unsatisfied mobility demand

Figure 7.12: System target metrics per zone (12-1pm)

Figure 7.13: Satisfied trips details

Again the station with the lowest throughput and utilisation is the one placed at
the airport. On the contrary the most used and with the greatest throughput is the
one placed in the central zone which has a throughput much greater than all the
other zones. Overall in this scenario even the most used stations have a throughput
less than 0.12 charged EVs per hour and a maximum utilisation around 9%. On
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average the throughput in all the stations is 0.04 and the mean utilisation is 4.41%
This is the result of a lower throughput and an high percentage of unsatisfied
mobility requests as resulted from the previous analysis.

Figure 7.14: Throughput and utilisation of charging stations

The parameters regarding energy consumption and charging process statistics
in general for this scenario are reported in table 7.4.

Parameter Value
Total charges number 3485

Total WtW energy 122551.87 kWh
Total WtT energy 73245.77 kWh
Total TtW energy 49306.11 kWh

Total charges energy 62018.00 kWh
Total energy cost 4509.46 €

Total WtW CO2 emissions 28313.06 Kg
Average charging duration 3640.03 sec

Average EV SoC 60.23%
Charges by EV 8.58

Average SoC at charging 17.79%

Table 7.4: Simulation charging processes statistics
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With respect to the previous simulated case here all the absolute numbers
relative to total quantities are smaller due to the general lower throughput obtained
with this configuration. Looking at the relative results it can be seen that also
in this case the major component of energy consumption is in the WtT phase
which is again the only period in which CO2 emissions are produced. In this case
the simulated scenario presents much lower values of throughput and utilisation
of the charging infrastructure with respect to the analytical one. This result is
consistent with the much lower throughput of the mobility system and the higher
unsatisfied demand which inevitably lead to a lower need for energy to power the
fleet. Computing an hourly average of the used energy for charging the simulation
model requires 19.43kW each hour while in the analytical model scenario this value
is 76.40kW. For what concern the fleet instead, similar percentages of average
SoC in the system and when brought to charge are obtained with respect to the
balanced scenario. Also the average charging duration is around one hour while
the average number of charges per EV is much smaller since less trips are carried
out therefore consuming less energy.
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Chapter 8

Conclusions

In this thesis work the problem of modelling analytically a free-floating electric
MoD system was addressed. Queuing theory was the theoretical base on which
network models were constructed to describe the dynamics of this kind of systems.
Parameters for all models have been inferred from real data allowing to spatially
and temporally characterise the customers’ demand for mobility and the routing
of vehicles through the city. Many case studies are presented to study different
configurations of input parameters all based on trips data for the city of Turin. A
final comparison with results from a simulation model is then provided.

8.1 Contributions and key results
The novel approach implemented considered a closed network of M/M/1 queues
representing the city zones of the service’s operational area. Moreover charging
stations were modelled as multi-server M/M/C queues and additional M/M/∞
nodes were included to take into account delays associated to trips time. Movement
of vehicles through mobility zones were dictated by routing matrices extracted
from past trips data; similarly the nodes’ service rates were modelled according to
historic data of users demand. The networks were solved analytically using the
MVA to obtain the intended performance metrics.

A particular focus of this work was given to the definition of charging operations
and the exploration of possible policies for charging including relocation. A first
study on the number of charging stations in the network showed that system
performances can be improved up to a certain point from which including additional
stations does not provide any further benefit in terms of their throughput or
utilisation. Looking at the concentration of stations instead it has been seen that in
general it is convenient to spread charging outlets as much as possible through the
operational area compared to more aggregated approaches such as the definition of
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a big single charging hub. Moreover the positioning of the stations in the city has
shown to produce better results when they are placed in the busiest zones with
different level of improvement according to the selected charging policy.

The exploration of possible charging policies and relocation after charging has
resulted in different results based on the configuration of the network. However
a general conclusion can be drawn showing that when relocation is considered it
is better to relocate vehicles both before and after the charging operations and
this in general can improve the system performances (up to 20.4% and 12.2%
reduction in unsatisfied demand for balanced and hourly data network respectively).
On the other hand considering relocation only before (i.e. to bring EV to the
stations) or after (i.e. to take away EV from the station) the charging, in general
brings to unbalances in the network that do not enhance the overall throughput.
Moreover in all the studied cases, the utilisation of the charging stations did not
reach critical values (close to 100%) and the corresponding probabilities for an
EV to wait in line to charge were always relatively small (1.75% and 11.06% on
average for balanced and hourly data network with the best policies configurations)
justifying the assumption of not considering a queue capacity for the stations.

In the end it has been seen that introducing delays associated to the trips
resulted in a reduction of the system throughput, as expected, but with results
that do not differ much from the original network ones (2.23% and 1.77% reduction
in satisfied demand with balanced and hourly data network). Moreover in spite
of providing an accurate approach to derive the average trip times for each zone
based on the average distance from the rest of the network, the actual trip times
would obviously depend on the destination zone for each trip. To have an even
more accurate approximation it would be therefore required to define a delay zone
between each couple of possible origin-destination zones increasing the complexity
of the model by a N2 factor. However the strongest assumption made for the delay
zones is that trip times are exponentially distributed which can be seen as a stretch.

In general the proposed modelling approach seems to provide results that are
coherent with all the tested configuration. The steady state assumption required
by the analytical model to converge to a solution does not allow to obtain targeted
outcomes for specific and transitional network configurations. However this kind of
model is much convenient from a computational and time requirements point of
view and still can provide very useful insights on the general behaviour of the system.
To support these thesis the comparison of obtained results with the simulator ones
presented in chapter 7, has shown that the proposed model manages to provide a
fine approximation of the system dynamics with a much smaller time required.
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8.2 Future work
The proposed model provides an approximation for a generic free-floating electric
MOD system and can be further enriched including additional constraint or strate-
gies to better model possible different dynamics. A list of possible improvements
and future studies based on this work is proposed in the following.

• Capacity of mobility queues: a more accurate model can provide for the
possibility of including limited capacity mobility zones to describe the limited
availability of parking spots. This may be particularly useful if a different
definition based on smaller areas of city zones is used for example to highlight
mobility related phenomenon in smaller specific areas. Introducing capacities
as said before, can lead to possible losses and consequently to non product
form networks for which the MVA is not applicable. Different strategies may
be investigated to take into account capacities with blocking mechanisms and
rerouting of customers and without loosing the no losses assumption.

• Capacity of charging stations: similarly to what said for mobility zones,
capacities may be useful in charging queues especially in scenarios with an
high average utilisation of the stations which result in frequent lines forming.
Different charging strategies may be studied to limit the accumulation of
vehicles at stations including again blocking and rerouting.

• Multi-hour intervals for routing: considering trips data from multiple
hours intervals may allow to extract routing matrices and demand patterns
which still follow typical dynamics of a part of the day. The losses in precision
considering a bigger interval of time can be negligible in particular scenarios
but the steady state assumption would be more justifiable.

• Non-exponential distribution of service times: the exponential distri-
bution assumption for service times may be a stretch in particular for delay
zones. Different distributions such as Gaussian or even a constant service
time based on average trip times for each zone may be more accurate but
would result in a different network type for which MVA can not be applicable.
Different network solving strategies may be explored to include queues with
non-exponential distributions of service times.

• Additional charging and relocation policies: in this work three different
charging policies and four relocation after charging strategies have been
studied in all their possible combination. However other alternatives may be
investigated for example including the possibility for users to end their trip
directly into charging stations and possibly connect the EV to the outlet.
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• In depth study of peak-hour impact of charging operations on power
grid: in section 6.2.7 a brief study of the generated energy consumption by
the fleet charging operations has been presented. This aspect can be crucial
in a scenario in which the number of EVs or their high utilisation result in
an high quantity of consumed power. The study of power grid energy profiles
is an extremely relevant topic in research nowadays and the impact of an
entire EV fleet is significant. New implemented charging policies can therefore
taking into account common energy profiles to optimise the energy balance on
the grid.

• Simulation integration: a more accurate comparison of results would require
the integration in the simulation model of policies considered in the analytical
one and, on the other hand, the definition of additional parameters in the
analytical model to better mimics the reality of a MOD system. New artificial
traces for the simulation model can be created starting from fixed routing
matrix to also have a consistency in the input data.

• Environmental, sociological and economical impact: an important
aspect which has only been partially treated in the simulation environment
regards the environmental, economical and social dimension of the studied
system. A study of total emissions due to vehicles mobility or energy produc-
tion as well as other metrics related to the general psycho-physical wellbeing
such as the noise pollution can be carried out imposing additional input model
parameters. The economic aspect can be more easily integrated in the model
including bookings tariffs and costs for the installation and management of
the system.
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